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Abstract: Artificial intelligence (AI) drives the creation of future technologies that disrupt the
way humans live and work, creating new solutions that change the way we approach tasks and
activities, but it requires a lot of data processing, large amounts of data transfer, and computing
speed. It has led to a growing interest of research in developing a new type of computing platform
which is inspired by the architecture of the brain specifically those that exploit the benefits offered
by photonic technologies, fast, low-power, and larger bandwidth. Here, a new computing platform
based on the photonic reservoir computing architecture exploiting the non-linear wave-optical
dynamics of the stimulated Brillouin scattering is reported. The kernel of the new photonic
reservoir computing system is constructed of an entirely passive optical system. Moreover, it is
readily suited for use in conjunction with high performance optical multiplexing techniques to
enable real-time artificial intelligence. Here, a methodology to optimise the operational condition
of the new photonic reservoir computing is described which is found to be strongly dependent on
the dynamics of the stimulated Brillouin scattering system. The new architecture described here
offers a new way of realising AI-hardware which highlight the application of photonics for AI.
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1. Introduction

Photonic reservoir computing (PhRC) is a physical realisation of an artificial neural network
(ANN) architecture based on reservoir computing (RC) as a photonic system [1–4]. PhRC
mimics the way the nervous system process information in a distributed manner, in contrast to
the centralised approach employed in a digital central processing unit (CPU) which is based on a
von Neumann architecture [5]. The central motivation in developing a neuromorphic computing
system is to have a closer integration between the hardware and information processing/computing,
enabling a hardware-level integration of artificial intelligence. Neuromorphic computing systems
other than PhRC are also actively explored, including photonic synapses [6,7], photonic spike
processors [8], and photonic neural networks [9]. Neuromorphic photonic systems are designed
to be inherently suited for AI operations and promise faster (106-fold more calculations per
second per m2 surface-area) and more energy-efficient (103-fold more calculations per second
per Watt) operations compared to traditional micro-electronics processors [5], making them a
highly promising choice for the development of a new photonic AI processor.

The RC scheme is the underlying concept of the new PhRC proposed in this present work;
readers are referred to [10–12] for a comprehensive review on the reservoir computing scheme.
The RC is a relatively new high-dimensional ANN computing scheme with recurrent neuron
interconnections; thus, it is a variant of the recurrent neural network [10,11]. Being part of
the recurrent neural network family, the RC is suited for a time-series based task. The RC
scheme consist of two main parts, namely a kernel and read-outs. The kernel is comprised of
randomly connected non-linear neurons with recurrent pathways; as such the neuron activation
state of each neuron in the kernel is a systematic variant of the driving time-dependent input
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signal. The read-out layers perform a final inference based on the sampled neuron activation
states of the neurons in the kernel. The PhRC’s operating principle is fundamentally different
compared to other neuromorphic approaches. The PhRC kernel is a semi-chaotic high-order
dynamical photonic system that maps input signals into a higher-dimensional feature space
through its dynamic behaviour. A linear estimator is applied at the read-out to infer potential
relationships/patterns in the transformed input data. For the PhRC, only the read-out undergoes
objective-specific training. This approach is made possible by the kernel’s ability to transform
the input signal into a higher dimensional representation, which can be analysed using a simple
linear estimator at the Read-out [1–3,10,12]. The PhRC system offers practical advantages over
other neuromorphic systems, viz.: (i) it offers different ways of realisation of higher-dimensional
photonic hardware system, e.g., using splitters, cavities, laser, amplifiers, etc [13]; (ii) the PhRC’s
read-out is designed by a fast, globally optimal linear regression while other neuromorphic
systems are trained by a slow-converging backpropagation or neural engineering framework
[5]; (iii) the PhRC utilises optical multiplexing to create highly scalable nodes, whereas other
approaches require physical nodes to be created [5]. Several implementations of RC as a photonic
system, PhRC, have been reported, for example as a time-delayed fibre loop architecture with
electro-optical components [2], or as a fully optical system exploiting non-linear characteristic of
a semi-conductor amplifier [14], or as a photonic crystal cavity [4,15,16]. In this paper, a new
architecture of PhRC, which is based on an optical-fibre and loop-free kernel configuration is
reported. A non-linear neuron activation function is achieved by means of a non-linear stimulated
Brillouin photon-phonon scattering process.

Brillouin scattering is a well-known light-matter interaction phenomenon and has been
extensively studied since the early 1920s [17]. The scattering phenomenon originates from
the interaction of a photon from incident light with the medium, due to electrostriction, which
modifies the material’s mechanical density profile generating a backscattered photon and a
phonon. The scattered photon losses energy which is observed as a red shifting in frequency.
This scattered photon is called a Stokes photon after George Stokes who first observed this red
shifting phenomenon. The present work will consider Brillouin scattering phenomena occurring
in a single-mode optical fibre. In such a scenario, the counter-propagating Stokes light interferes
with the incident (pump) light which enhances the electrostriction process, creating a feedback
loop, known as stimulated Brillouin scattering (SBS). The stimulated Brillouin scattering is
a non-linear interaction between three-waves (pump, Stokes, and acoustic waves). Although
SBS can be detrimental in optical telecommunication applications [18], it has been exploited
and used in a range of applications, including radio-over-fibre, laser generation, sensors, etc.
[19–22]. Related to the fundamental requirement of PhRC of memory, a SBS system has been
shown to inherently possess memory property; applications as optical memory devices have been
demonstrated [20–23]. Although in the present work in-fibre SBS phenomena are considered, it
is noted that there is active research in developing a Brillouin scattering system in an integrated
circuit, see Review papers [20]. It is believed that the work presented in this work will be relevant
in the realisation of all optical PhRC based on SBS in a photonic chip.

The following section details the architecture of the new PhRC system based on a stimulated
Brillouin scattering system, i.e., PhRC-SBS. It describes the governing three-wave interaction
equations used to model the PhRC-SBS system. It defines the optical multiplexing used to encode
information and the demultiplexing approach. Section 3 analyses the wave optical dynamics of
the SBS system in relation to the performance of the PhRC-SBS system. Section 4 evaluates the
performance of the PhRC-SBS to perform machine learning benchmark tests, including memory
capacity evaluation, prediction of the non-linear dynamical system and for a communication
channel equaliser. Finally, section 5 summarises the findings reported in this paper.
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2. Photonic reservoir computing with stimulated Brillouin scattering fibre
kernel

In the present work, the PhRC-SBS system is comprised of input, kernel, demultiplexer and
read-out, as shown in Fig. 1. It utilises two light sources, i.e., the pump and the Stokes
continuous-wave sources. The Stokes source operates at frequency νs and the pump source
operates at frequency νp with νp>νs. Information is temporally multiplexed to the pump light
using a Mach-Zehnder modulator via electrical biasing, which typically is done in practice by
using an arbitrary waveform generator. The kernel is constructed of a spool of optical fibre in
which the pump and Stokes laser signals propagate in opposing directions to stimulate Brillouin
scattering. The circulators have been included at both of the fibre’s ends to avoid backscattered
light from the photodetector and dumping port. As the pump and Stokes light only coexist in the
kernel, the three-wave non-linear SBS interaction only occurs in the kernel part of the PhRC-SBS.
The neuron activation state signal is monitored by the photodetector upon which it undergoes
demultiplexing and is subsequently inferred by the read-out. In the following subsection, the
roles of each part of the PhRC-SBS are described.

Fig. 1. Schematic of the PhRC-SBS system. (a) The input, (b) the kernel, (c) demultiplexer
and (d) the linear read-out.

2.1. Reservoir kernel based on stimulated Brillouin scattering

In this paper, the three-wave interaction (TWI) coupled partial differential equations [19,23,24]
are used to model the SBS non-linear interaction which occurs in the kernel of the PhRC-SBS.
The TWI equations are given by [19,23,24],
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(1)

where Ep, Es and ϱ are the complex-valued slowly varying envelope of the pump, Stokes electric
fields and acoustic wave, respectively; c and va are the speed of light in vacuum and sound
in the material, respectively; and n is the effective index of the propagating waveguide mode.
Attenuation of the pump, Stokes, and acoustic waves are given by γp, γs, and γa parameters,
respectively. The light and acoustic waves coupling, i.e., photon-phonon interaction, is given by
the Brillouin coupling constant K. Parameter δ = 2π(νp − νs − δνres) describes the resonance
detuning condition, where νp, νs and δνres are the pump, Stokes, and Brillouin shift frequency,
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respectively. As such, the interaction is at resonance when νp − νs = δνres and at off-resonance
when νp − νs ≠ δνres. The resonance detuning δ is amendable via chemical doping or mechanical
stress due to temperature change or strain along the fibre; this dependence has been exploited for
application in distributed sensor systems [19,23].

TWI Eq. (1) can be simplified by taking normalisations of variables T = tγa, Z = zγa(n/c),
∆ = δ/γa, and variable substitutions ap → EpK/γa, as → EsK/γa, and aa → ϱKejδt/γa. Then,
further considering the case of that modern telecom-grade optical fibre has a very low loss, e.g.,
attenuation of standard SMF-28 γp,s<0.18 dB/km [25], it yields to the situation whereby the
photon-phonon interaction occurs on a timescale much faster than the propagation of the acoustic
wave, as such Eq. (1) can be expressed as [23,24]

∂
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ap +

∂

∂Z
ap = −asaa

∂

∂T
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∂
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∂
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Throughout this work, the normalised TWI equations, (2), are solved numerically using the
finite-difference approach [26]. The present work considers SBS in a standard SMF-28 fibre
as in [23] which uses Brillouin coupling parameters K = 80 ms−1V−1 and γa = 200 MHz
(corresponding to 35 MHz resonance-linewidth). The kernel, a standard SMF-28 fibre, is
operating around the 1.3 µm wavelength with an effective mode area A = 85 µm2 and effective
index n = 1.467[25]. Using these realistic parameters: an optical fibre length in the normalised
unit L = 1 corresponds to a physical length of 1.02 m, normalised detuning parameter ∆ = 1
corresponds to δ = 200 MHz, and ap,s = 1 corresponds to Ep,s = 2.5 MVm−1 from which
the optical power P can be calculated from the normalised pump or Stokes amplitude ap,s via
P = AnE2

p,s/(2Z0) ≈ 1.034a2
p,s (in Watt) with Z0 the free-space wave impedance. For generality,

normalised variables are used from hereon.

2.2. PhRC-SBS input

In the present work, let the Stokes light be a continuous wave propagating from the right to left
and not carrying any information, see Fig. 1. The information symbol stream is encoded onto
the pump light which is injected from the left-end side of the fibre. It will be seen, in Section 4,
that different types of input symbol will be used depending on the task to be solved. An optical
multiplexing technique is utilised to encode the information symbol, S, as a temporally amplitude
modulated signal.

The encoding scheme is described as follows: first, the raw symbol S is normalised as such its
entries are valued between χ and 1 via S̄ = (1 − χ) S−min[S]

max[S]−min[S] + χ, where 0<χ<1. Then, a
sample and hold operation is performed, as such the normalised symbols S̄ are serialised in time,
each with a duration of τ to yield the temporal signal J. Next, a modulation is applied to J by a
periodic mask signal, m(t) = m(t + τ), where m ∼ (1 +U(−m̂, m̂)). Here,U(−m̂, m̂) denotes a
uniformly distributed random number generator over a limited interval of (−m̂, m̂). This way, the
mask signal fluctuates around m̂ with a mean value of 1. The mask signal is piecewise constant
over a period of θ = τ/Nx, where Nx denotes the number of masks per mask period τ. Finally,
the masked information signal is adjusted by the information modulation depth κ̂. Concisely, the
modulated pump signal ap is given by,

ap(t) = âpu(t), (3)

where
u(t) = 1 + κ̂m(t)J(t). (4)
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In (3), âp is the amplitude of the injected pump. This encoding scheme allows differentiation
between the case of no-symbol and min-valued symbol; as such, in the case of no-symbol
S̄ = {∅}, ap = âp and in the case of S̄ = χ, ap ≈ âp(1 + κ̂ χ). In the case of no-symbol, the
PhRC-SBS is referred to as being in the idle state (operating but not processing any information).
Note that the encoding scheme described follows an approach used in [1,2,12,27] in which the
number of masks Nx directly corresponds with the number of ‘virtual’ neuron nodes. Other
multiplexing techniques, e.g., phase modulation [28], can be used.

Although, in principle, the floor bound of S̄ can be of any value 0<χ<1, practically one needs
to consider the resolution of the digital-to-analogue signal converter; throughout the present
work χ = 0.5 has been used. Moreover, such a modulation is typically achieved by using an
electro-optics Mach-Zehnder modulator [27]. Linear operation of the electro-optical modulator
is considered, here, meaning that it operates at the quad point and max[u] −min[u] ≪ Vπ , where
Vπ denotes the half-wave voltage, i.e., the voltage needed to induce a π phase shift between the
two optical arms of the interferometer. It is emphasised here that the role of the modulator is
only to encode the information stream to the pump laser and the PhRC-SBS does not exploit the
non-linear property of the modulator for computing, in contrast to other PhRC systems [1,2,27].
For definiteness, in the present work the following encoding parameters κ̂ = m̂ = 10% are fixed
throughout. To demonstrate the encoding schemed described, here, an illustrative example with a
detailed process is provided in the Appendix (Subsection 5).

2.3. Demultiplexing and the read-out

In the PhRC-SBS setup, the output of the kernel is monitored by the photodetector. Following
the convention in the photonic reservoir computing community, the term of activation state signal
x(t) for the monitored output signal coming out from the kernel is used. As the information
stream has been temporally multiplexed and masked at the input, it is necessary for the activation
state signal to be demultiplexed and repartitioned in terms of its mask before being interpreted
by the read-out. The present work has adopted a demultiplexing procedure which has been
used previously [1,2,27] which is briefly described as follows: first, the activation state signal
is defined as the absolute value of the laser amplitude at the right-end of the fibre spool with
an addition of noise, viz., x(t) = |ap |(t, L) + η where η is an independent identically distributed
(i.i.d) Gaussian noise with zero mean adjusted in power corresponding to a signal-to-noise ratio
(SNRη), emulating the overall system’s noise. To demultiplex activation signal x(t) in terms of
each mask index, x(t) is spun with a winding period of τ. This scheme produces a discretised
and partitioned activation state signal x(t̃) = [x1(t̃), . . . , xk(t̃)]T , where k = 1, 2, . . . , Nx denoting
the index of the virtual nodes and each entry of matrix x(t̃) are given by xk(t̃) ← x(t̃τ + kθ)
with t̃ = 0, 1, . . . being the winding index. Figure 1(c) illustrates the demultiplexing scheme.
Alternatively, for a real-time application one can utilise an ultrafast all optical time-division
demultiplexing technique [29,30].

The process subsequently following the demultiplexing is estimation. The present work utilises
a linear estimation procedure in which the estimated output signal y is constructed from the
demuxed activation state matrix x(t̃),

y(t̃) =WROx(t̃), y ∈ RNy×1 (5)

where WRO ∈ R
Ny×Nx is the read-out weighting and Ny is the dimension of the output signal. For

clarity, throughout this paper, the notation y and ȳ is used to denote the estimated and target output
signals, respectively. The read-out weight is obtained from a training session by a Tikhonov
regularisation with cross-validation as in [4,11]. There are other estimation schemes, including
those which use constant bias and/or auto-regression as in [11] or an online Kalman filter [31].
Here, the linear estimation scheme is used as it is the simplest estimator and allows comparison
with other published PhRC configurations which have used the same linear estimation approach.
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It is further assumed, here, that inclusion of constant bias and/or auto-regression will yield to
better estimation.

3. Dynamics of PhRC kernel based on stimulate Brillouin scattering

This section analyses the dynamics of the PhRC-SBS kernel whose underlying non-linear property
is originated from the stimulated Brillouin scattering (SBS). It will show that the dynamics of the
SBS undergoes a phase transition from a single- to a multi-states wave-scattering system which
in the context of the present work directly influences its performance as a PhRC system. The SBS
phenomena have been studied extensively analytically and experimentally, see [19,20,24]. Its
dynamics are known to exhibit phase transition from single- to multi-states behaviour. There are
a few tuneable parameters in Eq. (2) which define is overall dynamics, including, the amplitude
of the driving pump and Stokes light âp,s and the detuning parameter ∆. Moreover, it is expected
that the total optical fibre L which defined the non-linear interaction length will also have impact
on the phase transition. To analyse the dynamics of the SBS, in this section the PhRC-SBS is
operating in its idle state.

Figure 2(a) shows the maximum and minimum states of the pump laser at the end of the
fibre spool ap(L) as a function of the injected pump âp for a fixed driving Stokes laser with
amplitude âs = 10−4 at the steady state. It shows that at the steady states, ap(L) is single valued,
i.e., max[ap(L)] = min[ap(L)], until âp ≈ 0.44 from which point it splits into two states. This
point is referred to as the bifurcation point, which denotes the transition between single- and
multi-states solutions. This bifurcation is exemplified in Fig. 2(b) which depicts the steady state
of ap(t, L) operating at âp = 0.46 after the bifurcation point. Phase transition behaviour also can
be observed by varying the driving Stokes laser amplitude âs. Figure 2(c) shows the max[ap(L)]
and min[ap(L)] as a function of âs for a fixed driving pump âp = 0.45. It shows the presence of a
coalescence point, i.e., ap(L) is double valued at low value of âs and coalesce to a single valued
state at this point. To provide an overall picture of the dynamics, Fig. 2(d) depicts the range

Fig. 2. Phase transition from single- to multi-states of the SBS system. (a) Min and max
states of the pump light as a function of âp with âs = 10−4. (b) The temporal signal ap(L)
for âp = 0.46, in the multi-states regime with âs = 10−4. (c) Min and max state of the pump
light as a function of âs with âp = 0.45. (d) The range of pump light states in the (âp, âs)
parameters space. (e) Impact of L and ∆ to the bifurcation line. (f) Bifurcation lines of the
SBS system for various L in the (∆, âp) parameter space for a fixed value of âs = 2.5 × 10−3.
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of ap(L), i.e., max[ap(L)] −min[ap(L)], for both the âp and âs. It indicates two distinct regions
where ap(L) is either single-state or not, which in general the multi-states region occurs at low
âs and high âp values. The dashed line in Fig. 2(d) indicates the phase transition of the range
manifold which is referred to as the bifurcation line from hereon.

As was mentioned, the dynamics of the SBS system is expected to be influenced also by the
physical length of the fibre L and the detuning parameter ∆. Figure 2(e) depicts the impact
of varying L and ∆ to the phase transition of the SBS system. It shows that by increasing the
length of fibre L, phase transition happens at lower driving pump amplitude while increasing the
detuning parameter ∆ shifts the overall bifurcation line to a higher injected Stokes amplitude.
Figure 2(f) shows that the bifurcation lines resemble the well-known L-shaped bifurcation lines
in the (∆, âp) parameter space as previously reported in [24]. It also affirms that increasing the
length reduces the required âp to reach phase transition.

4. Benchmark

Optimum operation for a neuromorphic PhRC system based on a time-delayed architecture
has been shown previously to be around the phase transition of the kernel [27,32]. It can be
rationalised that at the bifurcation point the dynamics of the kernel is highly non-linear and
sensitive to perturbation, which are key requirements for reservoir computing [2]. In Section
3, the presence of the bifurcation line was observed; in this section the performance of the
PhRC-SBS is evaluated and benchmarked to performing complex machine learning operations,
including memory capacity estimation, prediction of a non-linear dynamical system, and for a
communication channel equaliser. It will confirm that optimum operating conditions for these
applications are indeed near the bifurcation line.

4.1. Memory capacity

Systems exhibiting SBS are known to exhibit a memory property which has been exploited for
a random-access memory device application [21,22]. This memory property occurs because
light propagates much faster than the acoustic wave, and the generated acoustic wave from
the SBS retains some memory from this counter-propagating non-linear wave interaction. In
this section, the (fading) memory property of the PhRC-SBS system is measured following the
framework described in [3,12,33] which provides a quantitative measurable indicator in the
context of neuromorphic computing. In this framework, memory is measured by calculating the
total capacity to reconstruct a set of memory-dependent functions [3,12,33]. These functions’
response depends on their past value, i.e., they are recurrent, and can either be linearly or
non-linearly dependent which yields linear and nonlinear memory capacities, respectively. The
memory capacity C can be calculated from the normalised mean squared error (NMSE) ε of the
reconstruction of the memory-dependent function y via C = 1 − ε[y]. Other ways to calculate C
based on mutual- and self-correlation formulations can be found in [33]. Throughout this paper,
NMSE is calculated by,

ε =
⟨(y − ȳ)2⟩
⟨(ȳ − ⟨ȳ⟩)2⟩

, (6)

where ⟨·⟩ denotes an ensemble averaging operation. For the linear fading memory, the PhRC-SBS
is tasked to recall past input information symbol S, i.e.,

ȳlin
k (t̃) = S(t̃ − k), k = 1, 2, . . . , (7)

where the input symbol is S ∼ U(−1, 1). The total linear memory capacity is calculated by,

Clinear =
∑︂

k
Ck =

∑︂
k

(︁
1 − ε[yk]

)︁
. (8)
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Jaeger, et al. in [10] showed that the total linear memory capacity Eq. (8) is less than the
number of the computing kernel nodes, i.e., Clinear<Nx. In [33], Dambre, et al. generalised
this relation, showing that the overall capacity of constructing a memory-dependent function
covering all possible orthogonal functions in the Hilbert space, CH∞ , is bounded by Nx, i.e.,
CH∞ ≤ Nx; that is a PhRC with a perfect memory will have CH∞ = Nx. For orthogonal functions
in the Hilbert space, one can use the whole set of Legendre or Chebyshev polynomials as the
reconstruction target function. To allow comparison with other published memory capacities,
the present work will only consider the second order Legendre polynomial reconstruction target
function,

ȳquad
k (t̃) = 3S2(t̃ − k), k = 1, 2, . . . , (9)

and the product of two past values of the input information sequence symbol,

ȳcross
kk′ (t̃) = S(t̃ − k)S(t̃ − k′), k, k′ = 1, 2, . . . . (10)

The total capacities for these non-linear memory reconstruction tasks, Cquad and Ccross, are
calculated in the same way as Clinear. The impact of the pump’s and Stokes’ amplitude âp,s and
modulation time parameter τ to the memory capacities is now analysed. Throughout this analysis,
the kernel’s optical fibre length L = 200, and the SBS detuning parameter ∆ = 1 are fixed. Also,
the analysis uses 3000 symbols of which the first 80% is used for training and the remaining
for testing. For comparison purposes, the same number of masks Nx = 50 and k = 100 for the
memory reconstruction tasks have been used; these are the same parameters as used in [2,3].

Figures 3(a-d) show the memory capacities, i.e., Clinear, Cquad, Ccross and Ctotal, of the PhRC-
SBS system for various pump amplitudes, âp ,and Stokes’ amplitudes, âs. The total capacity is
defined as Ctotal = Clinear +Cquad +Ccross, as in [2,3]. Specifically for Figs. 3(a-d), the modulation
parameter τ = 160γ−1

a and an effective SNRη = 35 dB have been used. Figures 3(a-d) show that
in all cases, the optimum memory capacity occurs at the edge of the bifurcation line, shown
as dashed lines, deviating by approximately 10% due to the multiplexing parameter κ̂. On
each of Figs. 3(a-d), the optimum operation conditions within the parameters search space,
10−5 ≤ âs ≤ 10−3 and 0.3 ≤ âp ≤ 0.5, have been denoted by a star.

Optimal operation of the SBS kernel for PhRC applications occurs at the edge of the bifurcation
line, as indicated in Figs. 3(a-d). Additionally, the location of the bifurcation line depends on the
length of the fibre; a shorter length results in the bifurcation line appearing at higher input laser
intensities, while a longer length shifts it towards lower intensities, see Figs. 2(e-f). However,
using longer fibres introduces extended signal delays, which increase the computational delay of
the PhRC system. Therefore, for the practical realisation of the PhRC-SBS system, one must
consider the damage threshold optical power of the fibre, acceptable computational delay, and
power budgeting of the overall system. Alternatively, to enable SBS at lower injected power and
shorter fibre, one can utilise specialty glass fibres with higher Brillouin gain [34].

To investigate the impact of parameter τ and SNRη on the memory capacity, parameter sweeps
as in Fig. 3(a-d) were repeated for different values of τ and SNRη . The optimum memory
capacity for each reconstruction task are plotted in Figs. 3(e-h). Figures 3(e-h) confirm that
higher SNRη yields to a higher memory capacity in all cases. Generally, Figs. 3(e-h) show that
low τ yields to a low memory capacity; increasing τ also increases the memory capacity but
reaches a plateau at a different rate. For the linear, cross, and total capacities, further increases of
τ leads to a gradual decrease in capacity, while for the quadratic memory, the capacity saturates.
From Figs. 3(e-h), the maximum capacities for a moderate SNRη = 35 are listed in Table 1.
To compare the capacities with other PhRC systems, Table 1 also lists the maximum memory
capacities from [2,3] which are based on the time delayed architectures. The PhRC-SBS has a
comparable memory capacity to other fibre based PhRC systems.
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Fig. 3. Operational condition for PhRC-SBS to perform memory reconstruction tasks.
(a-d) Memory capacities Clinear, Cquad, Ccross and Ctotal as function of pump and Stokes
amplitude âp,s. The maximum capacity found within the parameter space has been marked
by a star. (e-h) The maximum capacity as function of modulation parameter τ for various
noise SNRη = 15,25,35 and 50.

Table 1. Maximum memory capacities for PhRC-SBS in comparison to other
time-delayed based PhRC systems. For the PhRC-SBS capacity, SNRη = 35

All-optical reservoir
computing [3]

Opto-electronic reservoir
computing [2]

The present work of
PhRC-SBS

max Clinear 20.8 31.9 21.9

max Cquad 4.16 4 3.1

max Ccross 8.13 27.3 27.2

max Ctotal 28.84 48.6 48.6

4.2. Prediction of NARMA system

Non-linear auto-regressive moving average (NARMA) systems are a class of non-linear dynamical
system which have been extensively used as a model in the machine learning communities,
including the PhRC, as a time-series prediction problem [2,35]. In this benchmark, the PhRC-SBS
is trained to predict the future value of the tenth order NARMA model, i.e., NARMA-10, by,

ȳ(t̃ + 1) = 0.3ȳ(t̃) + 0.05ȳ(t̃)

[︄ 9∑︂
k=0

ȳ(t̃ − k)

]︄
+ 1.5S(t̃)S(t̃ − 9) + 0.1, t̃ ≥ 9 (11)

where the input information symbols are taken from a random number generator S ∼ U(0, 0.5).
The prediction task based on the NARMA-10 time series model (11) is dependent on the past input
signal S and past output values y(t̃ − k) and so it is expected that an optimum operation condition
to perform this task reflects the optimum operation condition in the memory reconstruction tasks.
For the NARMA-10 benchmark, a stream of 3000 symbols S was generated from which the
first 100 samples were discarded from the training to washout the transient, then the next 2500
samples were used for training and the last 400 samples were used for testing, as was done in
[2,35]. The following parameters have been fixed and used throughout this task: number of
virtual nodes Nx = 50, and noise SNRη = 35.
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Figure 4(a) displays the NMSE ε of the PhRC-SBS performing NARMA-10 benchmark for
different pumps amplitude âp and Stokes’ amplitude âs for τ = 144γ−1

a . It shows that the region
of low error, i.e., high prediction rate, is located near the bifurcation line and has a similar shape
to that found in the memory reconstruction tasks. Also, similar to the memory reconstruction
task, there is an approximately 10% deviation from the bifurcation line, which is due to the
information modulation amplitude κ̂. The optimum operation point is denoted by the star in
the figure. To investigate the impact of the modulation parameter τ on the NARMA-10 task
performance, Fig. 4(b) plots the minimum NMSE by repeating the parameter scan in Fig. 4(a)
for various τ values. It shows that the error ε decreases rapidly as τ increases and reaches a
minimum ε = 0.13 at τ = 240γ−1

a . The PhRC-SBS has a higher prediction rate performance
for the NARMA-10 benchmark compared to other previously reported PhRC configurations,
for instance, ε = 0.168 for the single delay line feedback loop with electro-optical nonlinear
PhRC system [2] and ε = 0.23 for the all-optical fibre time-delayed PhRC [35]. To highlight
the performance of the PhRC-SBS in this benchmark, Fig. 4(c) displays the desired target ȳ and
the predicted y NARMA-10 time-series for the first 150 samples of the testing samples. The
predicted values agree well with the desired series. Figure 4(d) shows the probability density
function between the desired and predicted NARMA-10 output. It confirms that the PhRC-SBS
can perform the NARMA-10 prediction with a good accuracy.

Fig. 4. PhRC-SBS performing NARMA-10. (a) The NMSE ε as function of pump’s âp and
Stokes’ amplitude âs. The lowest error ε is marked by a star. (b) The lowest ε as function of
modulation parameter τ. (c) The first 150 samples of the predicted y and target ȳ. (d) The
probability distribution function (PDF) of the predicted y and target ȳ for all testing samples
from (c). For (a,c,d), τ = 144γ−1

a . For (c,d), âp = 0.41 and âs = 4 × 10−5.

4.3. Non-linear channel equalisation task

For this benchmark task, the PhRC-SBS is used to perform a non-linear channel equalisation
(NCE) task. NCE is an important signal processing task in wireless communication. It is used to
recover information symbols which are distorted during its multipath propagation from transmitter
to the receiver, i.e., multipath fading. Multipath fading is an important communication challenge
and the PhRC can be used to address this issue at the edge of the data-infrastructure landscape.
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For this benchmark, multipath fading is modelled using the scheme defined in [2,10,31] and is
briefly described as follows: A sequence of information symbols is randomly generated from
a set of possible values, i.e., S ∈ {−3,−1, 1, 3}. Due to multipath signal arrival, the signal
undergoes inter-symbol interference distortion,

q(t̃) = 0.08S(t̃ + 2) − 0.12S(t̃ + 1) + S(t̃) + 0.18S(t̃ − 1)
− 0.1S(t̃ − 2) + 0.091S(t̃ − 3) − 0.05S(t̃ − 4)
+ 0.04S(t̃ − 5) + 0.03S(t̃ − 6) + 0.01S(t̃ − 7), t̃ ≥ 7.

(12)

It then goes through a noisy non-linear channel producing,

q̃(t̃) = q(t̃) + 0.036q2(t̃) − 0.011q3(t̃) + ϑ, (13)

where, ϑ is the communication channel noise and given as a zero-mean Gaussian distributed
noise adjusted in power to yield to a particular signal-to-noise ratio of the communication channel
(SNRϑ). In this benchmark, the distorted information bits q̃ is encoded to u(t) following the
multiplexing technique described in Section 2.2.2 and modulated onto the pump laser. The
PhRC-SBS is, then, trained to reconstruct the distorted information bits with the following target
signal,

ȳ(t̃) = S(t̃). (14)

To find the optimum PhRC-SBS operational parameters, as in the previous benchmark task,
a stream of 3000 information symbols was generated from which the first 80% were used for
training and the remaining 20% were used for testing. A similar procedure to that described
in Section 4.4.2 was used to find the optimum operation parameters, i.e., scanning over the
parameters space âp, âs and τ. The following parameters were fixed and used: number of virtual
nodes Nx = 50 and PhRC-SBS noise SNRη = 35. Figure 5(a) presents the NMSE as a function of
pump amplitude âp and Stokes amplitude âs for a specific value of τ = 192γ−1

a . It shows that the
suitable operation region for the NSE task also occurs around the bifurcation line. The optimum
operation with least error ε = 0.025 is marked by a star. To obtain the suitable information
modulation parameter τ, Fig. 5(b) plots the minimum NMSE ε within the search parameter space
(âp, âs) as in Fig. 5(a) for various τ parameters. It shows that ε rapidly decreases as τ increases
and saturates at τ ≈ 192γ−1

a beyond which the NMSE is in general ε<0.03.
Comparison of the PhRC-SBS performance for NCE against other PhRC implementations is

now made. From Fig. 5(b), the optimum operational parameters of âp = 0.49 and âs = 8.1× 10−4

are used to perform NCE of a stream of 9000 symbols. Here, the first 3000 symbols are used for
training and the remaining 6000 are used for testing as also in [2]. The symbol error rate (SER),
which is defined as the ratio of the total mistakenly reconstructed symbols S̃ by the total number
of testing information symbols S, is used as a quantitative measure for comparison purposes.
To obtain the reconstructed symbols S̃ from the estimated signal y, an equidistant thresholding
scheme was used, as also in [2,10], that is the symbol “1” was chosen if 0<y<2, symbol “3” was
chosen if 2<y<4, etc. The PhRC-SBS has a comparable performance for NCE applications to the
EO-PhRC based on electro-optical system, as shown in Fig. 5(c). As the SER of the EO-PhRC is
based on a first-principle model, with no presence of system noise SNRη , the SER results for
PhRC-SBS also calculated for η = 0. Figures 5(d,e) and Figs. 5(f,g) compare the performance the
PhRC-SBS at two SNRϑ (16 and 32, respectively). They show that high SNRϑ leads to higher
symbol reconstruction rate. The PDFs, in Fig. 5(e,g), show that in the lower SNRϑ case, there is
a strong overlap in the distribution of the estimated signal y which leads to a lower reconstruction
rate. In contrast, Fig. 5(g) shows that there are four distinct distributions which each correspond
to the four target symbols S which yields an excellent symbol reconstruction.

Based on the benchmarks conducted in Section 4, an important observation can now be made
regarding the suitable information modulation parameter τ. Since the information encoding
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Fig. 5. Application of the PhRC-SBS for wireless non-linear channel equalisation task.
(a) The NMSE ε for both function of pump’s and Stokes’ amplitude âp,s, operated with
τ = 192γ−1

a and SNRη = 35. The maximum capacity found within the parameter space scan
has been marked by a star. (b) The lowest ε as function of modulation parameter τ. (c) The
SER of the PhRC-SBS in comparison with electro-optics based EO-PhRC [2] for various
channel noise SNRϑ = 12,16, 20, 24, 28, and 32. Error bar shows the standard deviation of
10 independent train/test operations as in [2]. (d,f) The first 100 samples of the predicted
y and target S for SNRϑ = 16 and 32, respectively. (e,g) The probability distribution
function (PDF) of the predicted y and target S for all testing sample for SNRϑ = 16 and 32,
respectively. For comparison purposes (c-g) use η = 0.

approach employed in the new PhRC-SBS system uses a time-multiplexing scheme in time-delay-
based PhRC systems [1,2,12,27], the benchmark results confirm that the suitable information
modulation parameter τ for the PhRC-SBS system exhibits an intrinsic timescale linked to the
signal propagation time within the fibre i.e. τγa ≈ L.

5. Conclusions

A new passive photonic reservoir computing architecture based on a stimulated Brillouin scattering
system is described and numerically demonstrated. By solving the three-wave interaction model,
the underlying property of the SBS system is analysed and shown to exhibit a phase transition
from single to multi-states operation. It further shows the strong dependency of the PhRC-SBS’s
performance to the phase transition of the SBS system, as such in all benchmark task the optimum
operation condition is found to be at the edge of the bifurcation condition. It shows that the
new PhRC-SBS system has a comparable or better performance in comparison to other reported
PhRC systems.

Appendix: Time-multiplexing scheme

For example, let a four symbols information stream be given by S = [0.1; 1.5; 0; 0.7]. First
a normalisation is performed via S̄ = (1 − χ) S−min[S]

max[S]−min[S] + χ. Using χ = 0.5, as is used
throughout the current work, leads to S̄ = [0.533; 1; 0.5; 0.75]. Then, the normalised symbols S̄
undergo a sample and hold operation which produces an analogue piecewise signal J with width
of τ. A periodic mask m is applied on to J with m̂ = 0.1, producing a small fluctuation within
each τ duration. Finally, the masked signal is adjusted by u(t) = 1 + κ̂m̂(t)J(t), with κ̂ = 0.1, to
allow for modulation using electro-optics modulator device. Figure 6 illustrates this procedure.
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Fig. 6. Illustrative example of the optical multiplexing modulation procedure used in the
present work.
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