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Two-dimensional systems such as quantum spin liquids or fractional quantum Hall systems ex-
hibit anyonic excitations that possess more general statistics than bosons or fermions. This exotic
statistics makes it challenging to solve even a many-body system of non-interacting anyons. We in-
troduce an algorithm that allows to simulate anyonic tight-binding Hamiltonians on two-dimensional
lattices. The algorithm is directly derived from the low energy topological quantum field theory and
is suited for general abelian and non-abelian anyon models. As concrete examples, we apply the
algorithm to study the energy level spacing statistics, which reveals level repulsion for free semions,
Fibonacci anyons and Ising anyons. Additionally, we simulate non-equilibrium quench dynamics,
where we observe that the density distribution becomes homogeneous for large times - indicating
thermalization.
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I. INTRODUCTION

Two-dimensional systems can support topological
point-like quasiparticle excitations, so-called anyons [1–
3], which obey statistics beyond regular bosons or
fermions. These anyons can lead to novel physical phe-
nomena and have thus attracted considerable attention
over the past decades. For instance, their topological pro-
tection from local perturbations led to the idea of fault-
tolerant topological quantum computing [4–8]. Experi-
mentally, anyons are of interest since they may be real-
ized in quantum spin liquids [9–13] or systems exhibiting
the fractional quantum Hall effect [14–17]. While being
hypothesized for quite some time [3], experimental ver-
ification came only recently in form of anyon collisions
for anyons featured in fractional quantum Hall systems
at ν = 1/3 filling [18] and measurements of the half-
integer quantization of the thermal Hall conductivity in
the Kitaev material candidate α-RuCl3 [19–21]. Further,
the ground state of the toric code model [7] was realized
on a superconducting quantum computer [22], which was
used to verify properties such as the topological entan-
glement entropy [23] and anyonic braid statistics. In yet
another work, topological string operators were measured
in quantum spin liquid states probed by a programmable
quantum simulator [24].

Theoretically, anyons may be described using
the framework of topological quantum field theory
(TQFT) [25, 26], which associates states / wave func-
tions in the Hilbert space to two-dimensional surfaces.
For many purposes, however, one can restrict oneself to
unitary modular categories, which essentially form the
mathematical basis of TQFT [27]. There are also exactly
solvable microscopic models that are capable of describ-
ing systems featuring anyonic excitations [7, 10, 28, 29].

It is of great interest to connect theory and experi-
ment by finding experimentally measurable signatures or
“fingerprints” that indicate the presence of anyonic ex-
citations. Studying, e.g., spectroscopic properties, far-
from-equilibrium dynamics and thermalization behavior
may reveal such measurable signatures. For example, it
was found that the spectral response of a system close
to the threshold of exciting a pair of abelian anyons de-
pends on their statistics [30]. Other studies focus, e.g.,
on anyonic systems featuring specific interactions [31–
35] or abelian anyons in one dimension in order to ap-
ply analytical methods [36–43]. As for numerical stud-
ies, simulations of anyons hopping on a square lattice for
abelian anyons have been considered [44–46]. The trans-

port properties of a single abelian or non-abelian anyon
on a ladder with background charges were numerically
examined, which revealed ballistic transport for abelian
anyons and uniformly distributed background charges
and dispersive transport for non-abelian anyons [47, 48].
Further, tight-binding models of non-abelian anyons on
chains and ladders have been studied using exact diag-
onalization of small system sizes [49–51], and of ladders
in thermodynamic limit [52] using symmetric tensor net-
work algorithms that incorporate the topological data of
anyon models and anyonic diagrammatic techniques into
ordinary tensor networks [48, 53–55].

In this paper, we introduce an algorithm that allows
for simulating both abelian and non-abelian anyons
on two-dimensional lattices beyond ladders, where all
anyons are mobile and are subject to an anyonic tight-
binding Hamiltonian that incorporates their statistics.
As an example, we utilize the algorithm to study the en-
ergy level spacing statistics and the density distribution
after a quench, where we focus on semions (abelian),
Fibonacci anyons and Ising anyons (both non-abelian),
for concreteness.

The paper is structured as follows. First, in section II,
we consider how to numerically simulate anyon dynam-
ics for three concrete examples: fermions, semions and
Fibonacci anyons. These examples highlight the new
considerations needed for simulating general abelian and
non-abelian anyons. In section III, the general formal-
ism that we will base our algorithm upon is reviewed
together with the most important concepts relevant for
our discussions. Then, in section IV, we discuss some im-
portant aspects of the Hilbert space and choose a basis.
Based on these considerations and the previously intro-
duced formalism, we discuss how the matrix elements
according to our algorithm are computed using fusion
diagrams (Sec. V). In section VI, we discuss some re-
sults obtained from the algorithm, where we concentrate
on the energy level spacing statistics and the dynamics of
the density distribution after a quench in order to see the
relaxation and thermalization behavior. In section VII,
we close the paper by giving our conclusion.

II. SIMULATION OF DIFFERENT ANYON
TYPES

Before introducing the general algorithm to simulate
arbitrary types of anyons, we consider three concrete ex-
amples. First, fermions which are routinely simulated
numerically [56]. Next, semions [46] where we have to
distinguish between clockwise and counter-clockwise ex-
changes and need to introduce an additional degree of
freedom on a torus corresponding to non-trivial topologi-
cal charges associated with the boundary conditions [57].
Finally, we consider Fibonacci anyons [31] whose non-
abelian statistics lead to further degrees of freedom
known as “fusion channels”, which are associated with
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i− Ly i
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FIG. 1. Possible choice for the Jordan-Wigner string for site
i. The associated contribution picks up a factor of eiπ for
each occupied site on the shaded string.

composite particles.

A. Fermions

Fermions can be simulated by utilizing the so-called
Jordan-Wigner transformation [56, 58], where operator

strings eiπ
∑i−1
j=0 nj are introduced in order to determine

the signs following from the fermionic anti-commutation
relations, where nj denote the site occupation opera-
tors. Using these strings, the fermionic operators can
be mapped to spin-1/2 operators [56] via

c†i = eiπ
∑i−1
j=0 njS+

i , ci = eiπ
∑i−1
j=0 njS−i . (1)

Here, S±i = Sxi ±iS
y
i denote the spin raising and lowering

operators, c†i , ci the fermionic creation and annihilation

operators with c†i ci = ni = S+
i S
−
i = Szi + 1/2 and Sx,y,zi

the usual spin operators in x, y, z-direction. For a 2D
system, the strings may be chosen to be like in Fig. 1,
where we chose to number the sites column by column,
starting with the left-most, as indicated by the shaded
string.

In one dimension, a local Hamiltonian can be mapped
via the Jordan-Wigner transformation to yet another lo-
cal Hamiltonian. For higher dimensional system on the
other hand, some local terms are expressed by non-local
Jordan-Wigner strings, as can be seen for the convention

in Fig. 1: A local term like c†i ci−Ly is mapped to the

non-local term e
iπ

∑i−1
j=i−Ly (Szj+1/2)

S+
i S
−
i−Ly .

B. Abelian Anyons: Semions

While indistinguishable fermions acquire a phase π un-
der exchange, abelian anyons [3] may acquire a more gen-
eral rational phase θ ∈ [0, 2π). Importantly, we must dis-
tinguish between clockwise (−θ) and counter-clockwise

Cut B

Cut A

1

2

3

4

x

y

FIG. 2. Choice of strings associated to anyons in order to
simulate abelian exchange statistics. The phases associated
to the anyons’ strings are π/2 for the vertical and π for the
horizontal parts for semions.

(+θ) exchanges. Such a distinction is not possible us-
ing the simple Jordan-Wigner strings discussed above.
Additionally, as will be described below, there are extra
degrees of freedom if we consider periodic boundary con-
ditions (PBC). In the following, we will focus on the case
of semions with θ = π/2 [59] to illustrate how abelian
anyonic statistics may be incorporated in an algorithm.

A solution to the problem of distinguishing clock-
wise and counter-clockwise exchanges can be found in
Refs. [45, 46]. New strings, as depicted in Fig. 2, are
introduced. The strings are chosen to originate from the
anyons, going into the plaquettes on the lower right of
the anyons’ sites and then follow the negative y-direction
until they almost reach cut A that is given by y = 1/2.
Then, the strings follow the positive x-direction, ending
when reaching cut B, which is given by x = Lx + 1/2
for a Lx × Ly lattice. The two mentioned cuts can be
viewed as two loops on the torus that need to be crossed
in order to translate an anyon once around the system in
x- or y-direction. For such translations, additional effects
need to be considered, which will be done below. We first
focus on translations without crossing a cut.

One key property of the anyons’ strings is that they
have phases associated with them. For semions, the
phases associated with the vertical parts of the strings
are π/2, whereas the ones associated with the horizontal
parts are π. When translating anyons across the lattice,
the phases corresponding to the translation processes are
determined by these strings. If a semion crosses another
semion’s string in a direction corresponding to counter-
clockwise exchange, like, e.g., for translating semion 3 in
Fig. 2 to the right or semion 4 to the left, the wave func-
tion is multiplied by eiπ/2. This factor is acquired for
each pair of semions (the one being translated and the
one whose string is crossed) fulfilling the just mentioned
condition. Similarly, the wave function is to be multi-
plied by e−iπ/2 for each time the semion being trans-
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lated crosses another semion’s string such that the pro-
cess corresponds to a clockwise exchange, such as trans-
lating semion 1 in Fig. 2 to the right or semion 2 to the
left. Translations in y-direction only yield a non-trivial
factor (eiπ) if a horizontal string is crossed, which can
only occur upon crossing cut A, like, e.g., for translating
semion 4 in Fig. 2 in positive y-direction.

The rules for translations in the bulk can be summa-
rized by noting that the acquired factors for nearest-
neighbor translations in positive x-direction are given by
eiπ(ni↑−nj↓)/2, where i and j refer to the initial and fi-
nal site of the semion that is translated. The number of
semions that are localized in the same column as site i
and possess a greater y-coordinate than site i is denoted
by ni↑, the number of semions localized in the same col-
umn as site j with a smaller y-coordinate than site j is
denoted by nj↓. For translations in negative x-direction,

the acquired phases are given by e−iπ(ni↑−nj↓)/2.
Translations over one of the two cuts have additional

effects that are more complicated. First, let us con-
sider what happens in the system when moving a semion
around the torus, as this is what translations across
the cuts correspond to. Semions can be viewed as
charged particles with infinitesimal flux tubes attached to
them [3, 45, 46] such that exchanging two semions yields
a phase of π/2, i.e., if the charges are e, the attached
flux tubes carry magnetic fluxes of φ0/2, with the flux
quantum φ0 = ch/e. Thus, when translating a semion
around the torus, the system effectively gains an addi-
tional flux in the respective direction, i.e., the obtained
state is (despite the semion returning to its initial po-
sition) physically different from the inital one. In order
to distinguish these states, we introduce wave function
components, also known as “sheets”, which reflect the
topological ground state degeneracy [57]. Translating a
semion twice around the torus introduces a flux in the
respective direction of magnitude φ0, i.e., for particles
with charge e, the state effectively remains unchanged
since they are only affected by flux modulo φ0. We thus
need precisely two sheets in order to describe semions on
a torus, which doubles the size of the Hilbert space.

The presence of these two sheets is reflected in the two
matrices (

1 0
0 −1

)
and

(
0 1
1 0

)
, (2)

which describe the transformation between the sheet
components when crossing cut A and B, respectively.
The second matrix represents the sheet switching due to
the introduction of an additional φ0/2 flux when trans-
lating a semion around the torus in x-direction. The
first matrix contains the phases that are picked up when
translating a semion across cut A due to the flux thread-
ing the torus. When crossing one of the cuts, the respec-
tive matrix has to be applied in addition to the string
rules discussed above. Note that the presence of multi-
ple wave function components as described above is not
restricted to semions. It turns out that on a torus, ev-

ery abelian anyon model features multiple sheets. The
total number of sheets in general depends on the num-
ber of particles and their charge and coincides with the
topological ground state degeneracy [57].

There is an important detail regarding semions that
we have not mentioned yet: The total number of semions
on a torus always has to be even. We explain the reason
for this and how to systematically obtain the total
number of sheets in the general case in Sec. IV after
having introduced some other important concepts.

It is possible to directly generalize the rules sketched
above to other abelian anyon models for which counter-
clockwise exchange yields a more general phase of θ.
The phases associated to the strings simply become θ
for the vertical and 2θ for the horizontal parts. The
generalized matrices acquired upon crossing a cut are
more complicated since their dimensions, which also
agree with the number of the wave function components,
depend on statistics of the anyons to be simulated. For
exchange statistics corresponding to θ = πp/M with p
and M being coprime integers, the total number of wave
function components is M [45, 60]. For details regarding
the general abelian case, we refer to reader to Ref. [45].

Note that there is a generalized Jordan-Wigner trans-
formation [61] that may be used as a mapping between
spins and abelian anyons in 2D with open boundary con-
ditions (OBC). I.e., anyonic systems featuring abelian
anyons can be simulated similarly to fermionic systems
by using spins. This transformation accounts for on the
exchange statistics but only works for OBC, that is, it
corresponds to a single wave function component.

C. Non-abelian Anyons: Fibonacci Anyons

Non-abelian anyons introduce an additional compli-
cation in the form of non-unique fusion. For fermions,
we know that two particles collectively behave as a
composite boson. Similar to this case, one can view
the composite particle of multiple abelian anyons as
another anyon that is uniquely determined by the anyons
forming it. For two semions for example, the composite
particle carries the (neutral) vacuum charge, i.e., it is
also a boson, as semions are their own antiparticles [59].
In particular, every composite particle of abelian anyons
can be considered as a single unique anyon. This
uniqueness is not present for composite particles of
non-abelian anyons, which is analoguous to the compo-
sition of spins. Two spin-1/2s for example may form a
composite spin singlet (spin-0) or spin triplet (spin-1),
which may be written as 1/2 ⊗ 1/2 = 0 ⊕ 1. Similarly,
the composition of two non-abelian anyons is not always
unique. An example is given by Fibonacci anyons [31].
Two Fibonacci anyons form a composite particle that
can possess either the Fibonacci anyonic charge or the
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(a)

τ τ τ
1 τ

≡ |0〉

τ τ τ
τ τ

≡ |1〉

τ τ τ
τ

1

≡ |N〉

(b)

τ τ τ

(c)

τ τ τ

FIG. 3. (a) The three distinct ways three Fibonacci anyons
can fuse. Exchanging different pairs of anyons yield different
results depending on the state. The exchange in (b) corre-
sponds to Eq. (3), whereas (c) corresponds to Eq. (4) for the
first two states in (a).

vacuum charge, i.e., as for spins, the result is not unique1.

When talking about composite particles in the context
of anyons, the term “fusion” is usually used. For the two
examples above, we thus say that two semions fuse to the
vacuum charge, whereas two Fibonacci anyons fuse either
to the vacuum charge or another Fibonacci anyon (or
some superposition). Each of these two outcomes is ref-
ered to as a “fusion channel” [62]. Using this terminology,
the difference between abelian and non-abelian anyons in
the context of fusion can be described as abelian anyons
always having an unique fusion channel for each pair of
anyons to fuse. For non-abelian anyons, however, there
exists a pair of anyons that has multiple fusion chan-
nels [4]. The fusion rules described above may be writ-
ten as s×s = 1 (s denotes the semionic charge and 1 the
vacuum charge) [62] and τ × τ = 1 + τ (τ denotes the
Fibonacci anyonic charge) [31].

Let us take a system of three Fibonacci anyons to illus-
trate the different fusion channels. For three Fibonacci
anyons, there are three different ways to fuse, correspond-
ing to three different wave function components, which
are depicted in Fig. 3a, where all anyons within a loop
fuse to the charge attached to it. The states are labeled

1 The analogy between spin-1/2s and Fibonacci anyons has even
led to examining the “golden chain” [31, 32], which is essen-
tially the analogue of the Heisenberg spin-1/2 chain for Fibonacci
anyons.

|0〉, |1〉 and |N〉, as usually done in topological quantum
computing [5].

It turns out that exchanging (or more generally, braid-
ing) a pair of anyons may have different effects on the
state, depending on the fusion products. That is, ex-
changes are in general associated with unitary matrices
rather than simple phases. To illustrate this, we consider
the three states |0〉, |1〉 and |N〉 in Fig. 3a. If the first and
second Fibonacci anyon are exchanged counter-clockwise
(Fig. 3b), the transformation between the three wave
function components corresponding to the three states
is described by the matrix [5]e−4πi/5 0 0

0 e3πi/5 0
0 0 e3πi/5

 . (3)

In the second case, i.e., counter-clockwise exchanging the
second and the third anyon (Fig. 3c), the corresponding
matrix is [5] φ−1e4πi/5 φ−1/2e−3πi/5 0

φ−1/2e−3πi/5 −φ−1 0
0 0 e3πi/5

 , (4)

where φ = (1 +
√

5)/2 is the golden ratio. The off-
diagonal entries in this matrix imply that if the initial
state is |0〉 or |1〉, the result of swapping the second an
the third anyon is a superposition of the two states. In
both scenarios, we can see that the exchanges do not
simply correspond to phases as in the abelian case but
to unitary matrices.

Using the above example, it can be seen that it is not
sufficient to simply determine how many anyons are ex-
changed in a certain process (and whether or not this
exchange is clockwise) as in the abelian case. We need
to develop a more sophisticated algorithm that is able
to incorporate the non-abelian nature of the anyons. It
needs to keep track of the states’ fusion products and
compute the effects of exchanging anyons based on this
information.

III. FORMALISM

In this section, we review the most important as-
pects of the formalism [57, 59, 62–65] used for describ-
ing abelian and non-abelian anyons. This formalism al-
lows us to connect the physical picture of anyons on a
torus (Sec. III A) to fusion diagrams (Sec. III B), which
is crucial for the discussion of the basis states later on in
Sec. IV. Considering the different effects translations of
anyons may have on the states, we discuss braiding in the
fusion diagrams in terms of the F -moves (Sec. III C), the
R-moves (Sec. III D) and the braid operators (Sec. III E).
For the special case of translating anyons around the
torus in y-direction, we introduce the punctured torus
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(a)

a
b

c
d e

(c)

a b

c

d

e

f

(b)

F

R

B

F̃

S

FIG. 4. (a) Torus with anyons associated with the three punctures. These are, similar to their fusion products, measured
by the black oriented lines. (b) Five examples for operations that need to be considered for anyons hopping on a lattice with
PBC: F , R and B correspond to translations of anyons that can be computed using the R- and F -moves. Translations of

anyons around the torus in x-direction (F̃) can also be calculated with the F -moves. Evaluating translations around the torus

in y-direction (S) additionally requires the punctured torus S-matrix S(z). (c) Fusion diagram associated with the punctured
torus. The final fusion product (charge e) fuses with the anyonic charge f moving along a non-contractible loop, which follows
the negative x-direction; the black loop being threaded by f follows the (positive) y-direction. The fusion order of the charges
indicated here is used as the conventional fusion order for braiding.

S-matrix in Sec. III F and show how it can be utilized
to transform diagrams to their dual versions in order to
deal with such translations. We note that due to the
formalism being used for both abelian and non-abelian
anyons, the resulting algorithm discussed later on repro-
duces the algorithm sketched in Sec. II B for the special
case of abelian anyon models.

A. Physical Picture

Physically, we can associate states in the Hilbert space
with surfaces, as done in topological quantum field the-
ory (TQFT) [25]. In this context, localized anyonic ex-
citations on top of a ground state can be thought of as
punctures in the system with which the corresponding
topological charges are associated. Here, when talking
about “ground states”, we refer to systems without any-
onic excitations. In other contexts, we can refer to states
containing anyonic excitations as ground states of the
corresponding punctured system since anyonic charges
are associated with each boundary component [57]. For
PBC, the resulting physical picture is thus a torus with
punctures for each anyon, as depicted in Fig. 4a for three
anyons labeled a, b and c that are measured2 with respect
to the black oriented loops. Similar to what is depicted
in Fig. 3a, there are also loops that measure the fusion
of multiple anyons. In this case, charges a and b fuse to
d and d and c (or alternatively, a, b and c) fuse to charge
e. Translations of anyons thus correspond to translations
of punctures, as depicted in Fig. 4b, where five different

2 Anyonic charges are in general measured with respect to ori-
ented loops. This concept will be introduced in Sec. III B when
discussing fusion diagrams.

translations of punctures that need to be considered are
indicated. These include counter-clockwise exchange of
the first two anyons’ fusion product with the third anyon
(F), counter-clockwise exchange of the first and second
anyon (R), counter-clockwise exchange of the second and
third anyon (B), translation of an anyon around the torus

in x-direction (F̃) and translation of an anyon around
the torus in y-direction (S). After introducing the rep-
resentation of anyons using fusion diagrams, we discuss
the corresponding operations on them that are needed to
compute the effects of all the different translations in the
following sections step by step.

In Sec. II B, we mentioned that translating a semion
around the torus changes the physical state. In order to
distinguish these different states, we introduce another
black loop in Fig. 4a that measures such charges. Note
that the process of translating an anyon around the torus
is independent of other anyons in the system since even
in the absence of any localized anyons, we can create an
anyon-antianyon pair, move one anyon around the torus
and annihilate the pair of anyons again, which in gen-
eral changes the state. The additional black loop is thus
important to distinguish different wave function compo-
nents corresponding to different anyonic charges being
translated around the torus. The physical intuition be-
hind this loop will become clearer after the introduction
of fusion diagrams below, which will lead us to Fig. 4c.

B. Diagrammatic Representation

Let us start by discussing some basics about anyon
models and fusion and introducing the general diagram-
matics of anyon models. For this and all the other discus-
sions regarding diagrammatics, we follow Refs. [59], [64]
and [66]. For additional details, we refer the reader to
Refs. [57, 59, 62–66].
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Each anyon model contains a set C of anyonic / topo-
logical charges, which are conserved quantum numbers
obeying the commutative and associative fusion algebra

a× b =
∑
c

N c
abc, (5)

where N c
ab are the so-called fusion multiplicities. The

fusion multiplicities are non-negative integers describing
the number of distinct ways in which two anyonic charges
a and b can fuse to charge c. In section II C, the concept
of fusion was already introduced for semions (s× s = 1,
i.e., N1

ss) and Fibonacci anyons (τ × τ = 1 + τ , i.e.,
N1
ττ = Nτ

ττ = 1). Equation (5) simply represents the
generalization of these fusion rules. As for the set of
anyonic charges C, C = {1, s} for semions and C = {1, τ}
for Fibonacci anyons, where s, τ and 1 again denote the
semionic charge, Fibonacci anyonic charge and vacuum
charge, respectively. For Ising anyons, C = {1, σ, ψ} and
N1
σσ = Nψ

σσ = N1
ψψ = Nσ

σψ = 1, where σ are Ising anyons
and ψ fermions. The vacuum charge 1 is special in the
sense that each anyon model contains a unique charge 1 ∈
C which obeys the fusion rules N c

a1 = δac and N1
ab = δab,

where a refers to the conjugate charge (“antiparticle”) of
charge a, which is also contained in C: a ∈ C, with 1 = 1.
This means that fusion with the vacuum charge is trivial.

The difference between abelian and non-abelian anyon
models can now be described as non-abelian anyon mod-
els possessing the property of there being at least a sin-
gle pair of charges a and b for which

∑
cN

c
ab > 1, i.e.,

there are multiple fusion channels for these two charges.
Abelian anyon models on the other hand possess the
property that there is a unique fusion product for each
pair of charges, i.e.,

∑
cN

c
ab = 1 for all a, b ∈ C.

With the concept of fusion, we can introduce the
diagrammatic notation for anyons, where the anyonic
charges are represented by oriented lines with the corre-
sponding charge labels attached to them. The following
diagram is an example, in which charges a and b fuse to
charge c:

a b

c

. (6)

This is only allowed if N c
ab 6= 0 and corresponds to the

diagram

a b

c
(7)

in the notation introduced previously in Fig. 3a for Fi-
bonacci anyons. Oriented loops, such as the one encir-
cling charges a and b, are associated with projectors onto
anyonic charges [57, 67]. In notations displaying such
loops, like in, e.g., Eq. (7), we only associate anyonic

charges consistent with the fusion rules with these loops
since otherwise, the state is annihilated by the projec-
tion. Such loops can be thought of as measuring the
total charge of the enclosed anyons. In particular, we
can also associate oriented loops with the punctures of
the surface, such that these loops measure the anyonic
charges of the excitations, as depicted for the punctures
in Fig. 4a. Note that the orientation of the loop measur-
ing charge c in Eq. (7) is of importance since reversing
its orientation corresponds to measuring the conjugated
charge c. Similar to reversing the orientation of the loops,
one can also reverse the orientations of the lines in the
fusion diagrams (Eq. (6)). This corresponds to replacing
an anyonic charge by its conjugate charge and may be
interpreted as a particle moving forward in time being
identical to its antiparticle moving backwards in time.

In Eqs. (6) and (7), one would in principle need to in-
troduce an additional label taking values 1, ..., N c

ab in or-
der to distinguish the different ways in which the charges
a and b can combine to form charge c. For convenience,
we assume that N c

ab ∈ {0, 1} such that we can ignore
such labels and simplify the notation. Diagrams such
as the one in Eq. (6) can be thought of as states in the
corresponding “fusion space”. We denote the state rep-
resented by this diagram as |(ab)c〉, where the charges in
the brackets fuse to the charge in brackets’ index.

In order to connect the fusion diagrams to physical
states like the one depicted in Fig. 4a, we deform the
torus containing the anyons such that it resembles the
diagrams. This deformation is done in such a way that
the resulting state does not differ from the initial one in a
topological sense, i.e., the punctures and the handle (and
the associated charges) remain unchanged. The final re-
sult can be seen in Fig. 4c, where the fusion diagram is
depicted inside the torus. The diagram contains the ad-
ditional anyon f , which moves along a non-contractible
loop in x-direction. This anyon corresponds to the flux
that we used in Sec. II B to distinguish the two wave func-
tion components for semions, which can be now described
by f = 1 and f = s. Note that anyon f is not associated
with any puncture and does not represent an excitation;
it is also present in the system’s ground states [57] and
corresponds to the charge f moving around the torus. It
is essential in order to distinguish the different physical
states, as indicated above for the semionic case. Looking
at Fig. 4c, it can be seen that the state can represented
by the diagram

y

a b c

e

d

f

, (8)
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where anyons a and b fuse to d and d and c to e. The
symbol ⊗ represents a non-contractible loop and the at-
tached index y is used to represent its direction. This
loop is thus complementary to the one along which charge
f moves. The index is of importance as both directions
need to be considered in the algorithm. Similar to before,
we may choose to write the state depicted in Eq. (8) as
|((ab)dc)e; f〉.

In Fig. 4c and Eq. (8), it can be seen that the fusion
product of all anyons (charge e) is connected to charge
f [68]. This implies that for the state in Fig. 4c to exist,

Nf
ef 6= 0 has to be fulfilled. Fig. 4c also indicates the

convention for the fusion order that will be used later on
for the basis states: First, the two “left” anyons a and
b fuse, then their fusion product fuses with the anyon
associated with the third puncture. This fusion product
then fuses with the anyon threading the torus. This fu-
sion order can be generalized to more anyons by letting
them fuse one after another, starting from the left. The
generalized diagram for N anyons then reads

y

α1 α2 αN−1 αN

f1

fN−3

fN−2

fN−1 fN

, (9)

where αi are the anyonic charges associated with
the punctures of the torus, fi their fusion prod-
ucts according to the defined fusion order with i =
1, . . . , N − 1 and fN the anyon moving along the non-
contractible loop. The corresponding state is denoted
by |(. . . ((α1α2)f1α3)f2 . . . αN )fN−1

; fN 〉. The diagrams
in Eq. (9) define the canonical form for the fusion di-
agrams that will be used for the basis states to be in-
troduced in Sec. IV. They will be utilized for all braid
operations to be performed in our algorithm and will be
connected to lattice configurations of anyons via a fusion
order on the lattice. Apart from the fusion consistency
conditions in all other vertices that also have to be satis-
fied, the generalized consistency condition involving the
final fusion product of all the anyons and the anyon mov-
ing along the non-contractible loop reads

NfN
fN−1fN

6= 0. (10)

Note that for abelian anyon models, Eq. (10) can only be
fulfilled if fN−1 = 1 due to the relations

∑
cN

c
ab = 1 and

N b
1a = δab. I.e., abelian anyons must fuse to the vacuum

charge in order to be able to exist on a torus, which
implies that semions must appear in even numbers.

C. The F -moves

Using the diagrammatic notation, we can now take a
closer look at translation processes and their effects on
the fusion diagrams by utilizing the five examples de-
picted in Fig. 4b. Let us start by considering F , which
translates anyon c to the left such that the resulting
fusion diagram is not in canonical form since the first
anyons to fuse are still a and b, which are now on the
right side of the diagram. We can relate the obtained
non-conventional fusion order to the canonical one using
the F -moves:

c a b

e

f
=
∑
d

[
F cabe

]
fd

bac

e

d
, (11)

where we omitted the parts of the diagrams that are not
affected by the F -moves. In the considered scenario (op-
eration F in Fig. 4b), one would thus have use the inverse
F -moves to bring the diagram back to its canonical form.
Due to the unitarity of the F -moves, the inverse is given
by [

F abcd

]−1

ef
=
[
F abcd

]†
ef

=
[
F abcd

]∗
fe
. (12)

Further, the F -moves are F abcd = 1 if any of the charges
a, b or c is the trivial charge 1 and the fusion is allowed by
the fusion rules. As for the anyon models to be studied
in this paper, the only non-trivial F -move for semions is
[F ssss ]11 = −1 [62]. For Fibonacci anyons, the non-trivial
F -moves are [5]

F ττττ =

(
φ−1 φ−1/2

φ−1/2 −φ−1

)
, (13)

where the first (second) entry in each row / column cor-

responds to charge 1 (τ) and φ = (1 +
√

5)/2 is again
the golden ratio. For Ising anyons, the non-trivial F -

moves [65] are [Fσψσψ ]σσ = [Fψσψσ ]σσ = −1 and

Fσσσσ =
1√
2

(
1 1
1 −1

)
, (14)

where the first and second entries in each row / column
correspond to 1 and ψ, respectively.

It turns out that the F -moves are even sufficient to
obtain the canonical form of the braided fusion diagrams
for processes that translate anyons around the torus in

x-direction, like F̃ in Fig. 4b. A calculation showing the
general idea of how this works is given later in Fig. 11
in Sec. V B for the case of two anyons. The generaliza-
tion to N anyons can be found in App. A 2. Note that
above, we only considered the change in fusion order due
to the process F in Fig. 4b. We ignored that one first
has to exchange anyon c with d (the fusion product of
anyons a and b) to arrive at this state. Such exchanges
are considered in the following section.
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D. The R-moves

Exchanges of two anyons that fuse with each other,
such as indicated by R in Fig. 4b, may be represented in
the fusion diagrams as

b a

d

= Rabd

b a

d

, (15)

where it was used that the braided diagram can be writ-
ten in terms of the unbraided diagram using R-moves. In
Eq. (15), we omitted the parts of the diagrams that are
unaffected by the R-moves. The R-moves are unitary,

i.e., they obey
(
Rabd

)−1
=
(
Rabd

)†
=
(
Rbad

)∗
, where Rabd

corresponds to counter-clockwise and
(
Rabd

)−1
to clock-

wise exchange. Further, braiding with the vacuum charge
is trivial, R1b

d = Ra1
d = 1. Note that the same exchange

as above was already introduced in Fig. 3b for Fibonacci
anyons. The corresponding R-moves are given by [5]

Rττ1 = e−4πi/5 and Rτττ = e3πi/5. (16)

With this, it is easy to see that the exchange in Fig. 3b
indeed corresponds to the matrix in Eq. (3). For semions,
the only non-trivial R-move is Rss1 = i [59]. The non-
trivial R-moves for Ising anyons are Rσσ1 = e−i

π
8 , Rσσψ =

ei
3π
8 , Rσψσ = Rψσσ = e−i

π
2 and Rψψ1 = −1 [65].

E. The Braid Operator

After having briefly discussed how exchanges of anyons
that fuse with each other affect the diagrams, it is natural
to go one step further and consider exchanges of anyons
that do not directly fuse with each other. An example
for such an exchange process is given by B in Fig. 4b,
where anyon b is exchanged with anyon c. The idea how
to resolve such braids is not complicated: We know from
Sec. III C that we can use F -moves to change the order
in which the anyons fuse with each other. We can thus
simply apply F -moves until the anyons to be exchanged
directly fuse with each other, then use the R-moves intro-
duced in the previous section and finally transform the
diagram back to its canonical form using F -moves again.
For the counter-clockwise exchange corresponding to B
in Fig. 4b, this is written in diagrams as

a cb

e

d
=
∑
f

[
Babce

]
df

a b c

e

f
(17)

where the unitary braid operator B is

[
Babce

]
df

=
∑
g

[
F acbe

]
dg
Rcbg

[
F abce

]−1

gf
. (18)

Its inverse
[
Babce

]−1

df
=
[
Babce

]†
df

can be used to compute

clockwise exchanges of anyons. Note that the exchange
associated with B in Fig. 4b is the same as the one in-
troduced in Fig. 3c for Fibonacci anyons. Using Eq. (18)
together with Eqs. (13) and (16), it is straight forward
to verify that the exchange in Fig. 3c indeed corresponds
to the matrix in Eq. (4).

In general, when dealing with more than three anyons,
exchanges can be computed in a similar way by us-
ing multiple F -moves until the R-moves can be applied
and then transforming the diagram back to the canoni-
cal form. With this, one can in principle compute any
exchanges of anyons, no matter how many anyons are
involved and which anyons are to be exchanged. The
remaining translation processes that need to be consid-
ered involve translations of anyons around the torus in
y-direction, as indicated by S in Fig. 4b. For such trans-
lations, we need to introduce the punctured torus S-
matrix.

F. Dual States and the Punctured Torus S-matrix

Our approach of dealing with translation processes
that involve anyons moving around the torus in y-
direction, such as S in Fig. 4b, is to transform the
corresponding fusion diagrams such that the transla-
tions resemble translation processes of anyons around

the torus in x-direction, like F̃ in Fig. 4b, since we al-
ready know how to deal with these translations. The
sought-for transformation changes the direction of the
non-contractible loops in the fusion diagrams and can be
achieved using the punctured torus S-matrix [66, 68], as
we will see below. The punctured torus S-matrix is given
by

a b zS
(z)
ab =

1

D
√
dz

(19)

=
1

D
∑
c

dadb
θc
θaθb

[
F bbaa

]
1c

[
F bbaa

]−1

cz

[
F zaaz

]
a1
,

with Nz
aa 6= 0 and Nz

bb
6= 0; da denotes the quantum

dimension of charge a, θa its topological spin and D the



10

a b

c

d

e

f ′

FIG. 5. Physical picture of the dual state in the so-called
“outside basis” [68] obtained by transforming with the punc-
tured torus S-matrix. The charge f ′ moves along a loop com-
plementary to the one of charge f in the initial state in Fig. 4c
and the lines corresponding to the charges associated with the
punctures are outside the torus rather than inside.

total quantum dimension. These quanities are given by

a =
∣∣[F aaaa

]
11

∣∣−1
,da = (20)

a
=
∑
c

dc
da
Raacθa =

1

da
(21)

and D =

√∑
a

d2
a. (22)

In many other contexts, S(1) is simply refered to as
“the S-matrix”. S(z) can be used to transform a state to
its dual representation. In the dual basis, the anyon mov-
ing along the non-contractible loop is replaced by a dif-
ferent anyon moving along another, complementary non-
contractible loop, which may be illustrated using Fig. 4c:
When transforming with S(e), anyon f is replaced by
another anyon f ′ moving along a complementary non-
contractible loop, similar to the black one measuring the
anyonic charge f in the initial state. This black loop is
then also transformed to a non-contractible loop comple-
mentary to its initial one after the transformation, simi-
lar to the initial loop of charge f . The resulting physical
picture is illustrated in Fig. 5. The lines correspond-
ing to the charges associated with the punctures are also
slightly different: Rather than inside the torus, they are
now located outside, similar to the non-contractible loop
of charge f ′; the orientation of the lines is also reversed3.

3 This can be seen by computing the inner product [69] between
a fusion diagram and its transformed counterpart, which corre-

For S(z) to actually be the correct transformation, all
the charges associated with the punctures on the torus
need to fuse to charge z. The two different basis choices
are also refered to as “inside basis” and “outside ba-
sis” [68]; Fig. 4c corresponds to the inside basis and Fig. 5
to the outside basis.

In the diagrammatic notation, the basis change using
the punctured torus S-matrix reads

y

a b c

e

d

f

dual−−−→
∑
f ′

S
(e)†
ff ′ ,

x

a b c

e

d

f ′

(23)

where we denote the change to the dual basis by
dual−−−→ and

⊗x represents a non-contractible loop complementary to
the loop in y-direction along which f ′ moves. The sum
runs over all these anyonic charges f ′ and the orientation
of all lines associated with the punctures is reversed. The
orientation of the line corresponding to the anyon mov-
ing along the non-contractible loop is also reversed upon
changing the basis, which follows from the definition in
Eq. (19). Diagrams corresponding to states in the dual
space are commonly depicted upside down [59, 65]. We
will not do so here for convenience. Whether a diagram
corresponds to a state in the dual space or not can al-
ways be infered from the index x or y attached to ⊗ and
the orientation of the lines. Note that the transformation
in Eq. (23) is done using S(e)† rather than S(e). This is
a detail arising from the way the crossings of the non-
contractible loops in Eq. (19) are oriented with respect
to each other [28].

IV. BASIS STATES ON THE LATTICE

Before discussing how to use the diagrams introduced
in the previous section to construct the anyonic tight-
binding Hamiltonian, we need to introduce a basis of the
Hilbert space on the lattice and make a few remarks. In
this section, we introduce the basis states by connect-
ing anyon configurations to fusion diagrams. Then, in
Sec. IV A, we discuss how to systematically determine the
wave function components, which correspond to different
fusion products in the fusion diagrams in Eq. (9). For
systems featuring anyonic excitations of distinct charges,
i.e., for distinguishable anyons, additional aspects regard-
ing the wave function components need to be considered.

sponds to S(z) in Eq. (19). Note that the inner product we refer
to here corresponds to the trace of the inner product as defined
in Ref. [68].



11

Cut B

Cut A

(a)

b

c

a

x

y

(b)

x

y

Cut B

Cut A

FIG. 6. (a) Choice of cuts A and B on a lattice contain-
ing three anyons corresponding to the diagram in Eq. (8) if
the fusion products are chosen accordingly. (b) Choice of fu-
sion order. Anyons with small x-coordinates fuse first; among
those with the same x-coordinate, anyons with smaller y-
coordinates fuse first.

These aspects are discussed in Sec. IV B and may be
omitted if all anyonic excitations in the system have the
same charge. In particular, this is the case for the semion
and the Fibonacci anyon model. Even for the Ising anyon
model, we will focus on the case where all excitations are
Ising anyons such that the details of Sec. IV B are not
needed to reproduce our results presented in Sec. VI.

The first step towards choosing the basis states is to
connect anyon configurations on the lattice with the fu-
sion diagrams. This is done as depicted in Fig. 6. By
noting that the fusion order convention is indicated in
Fig. 6b, the first anyons to fuse in the corresponding
diagrams are the ones with the smallest x-coordinates.
Among those with the same x-coordinates, the anyons
with smaller y-coordinates fuse before those with larger
y-coordinates. This means that the anyon configuration
depicted in Fig. 6a may correspond to the diagram in
Eq. (8). However, we cannot tell from the anyon config-
uration itself whether or not this is the case since it only
shows the charges of the localized anyons and not of their
fusion products. That is, in terms of the previously intro-
duced notation, the configuration in Fig. 6a corresponds
to some superposition of states |((ab)dc)e; f〉, where d, e
and f are not determined by the configuration itself. As
this information is of fundamental importance for the un-
derlying physics, we introduce tuples f that contain the
fusion products and the anyon moving along the non-
contractible loop. The tuple corresponding to the state
|((ab)dc)e; f〉 is f = (d, e, f). Combining anyon config-
urations and tuples f thus fixes the topological charges
in the fusion diagrams, i.e., different fusion products in
the diagrams correspond to different tuples. The tuples
therefore correspond to the wave function components of
a physical state.

With this consideration, a basis of the Hilbert space
for N anyons associated with the diagrams in Eq. (9) is
given by the states

|(αk, ~rk)Nk=1, f〉
≡ |(αk, ~rk)Nk=1〉 ⊗ |(. . . ((α1α2)f1α3)f2 . . . αN )fN−1

; fn〉,
(24)

where (αk, ~rk) denote tuples containing the charge αk
and position ~rk of the k-th anyon; (αk, ~rk)Nk=1 denotes
all such tuples ordered according to the fusion order in
Fig. 6b. The tuples f contain the fusion products of the
fusion diagram in Eq. (9) associated with the state, i.e.,
f = (f1, f2, . . . , fN ). We discuss how to systematically
obtain all the tuples that are consistent with the fu-
sion rules in Sec. IV A. The overlap between two states
|(αk, ~rk)Nk=1, f〉 and |(α′k, ~r ′k)Nk=1, f

′〉 is given by

〈(α′k, ~r ′k)Nk=1, f
′|(αk, ~rk)Nk=1, f〉

=

(
N∏
k=1

δα′kαkδ~r ′k~rk

)
× δf ′f ,

(25)

where δx′x = 1 if x′ = x and δx′x = 0 otherwise; this
holds for topological charges, (position) vectors and
tuples.

Similar to the abelian case sketched in Sec. II B, two
cuts, one in x- and one in y-direction named cuts A and
B, were introduced to the lattice depicted in Fig. 6. Cut
A is chosen to have a y-coordinate equal to y = 1/2,
such that translating an anyon with a y-coordinate of
y = Ly in positive y-direction translates it over the cut,
where y = Ly corresponds to y = 0 due to the PBC.
Similarly, cut B is chosen to have an x-coordinate of
x = 1/2, with x = Lx corresponding to x = 0. The two
cuts may be viewed as two loops that need to be passed
when translating an anyon around the torus. They are
needed in order to keep track of the topological charge
associated with the PBCs and thus play a special role
when constructing the Hamiltonian later on, as they do
in the algorithm sketched in Sec. II B.

A. Determining the Wave Function Components

We have seen above that the tuples f are essential for
assigning an anyon configuration to a fusion diagram /
wave function component. It is thus important to discuss
a systematic way to determine the tuples corresponding
to actual physical states, i.e., determining fusion prod-
ucts that agree with the fusion rules of the anyons in the
system. Before considering the general case, let us take
a look at the semion, the Fibonacci anyon and the Ising
anyon model for concreteness.

For semions, with the fusion rules s × s = 1 and
s × 1 = s [62], there are either two or zero wave func-
tion components. If there is an even number of semions
in the system, the anyons always fuse to the vacuum
charge. Then, the consistency condition (10) is fulfilled
for both fN = 1 and fN = s and thus, there are two
different wave function components corresponding to the
tuples (1, s, 1, s, . . . , 1, 1) and (1, s, 1, s, . . . , 1, s). If the
number of semions is odd, the consistency condition (10)
can never be fulfilled, i.e., such a system can not ex-
ist on a torus, which corresponds to zero wave func-
tion components / tuples f . This argument agrees with
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the constraint ei2θN = 1 for abelian anyons [45] (with
θ = π/2 for semions) and also confirms that semions
have two wave function components on a torus, as stated
in Sec. II B.

For Fibonacci anyons, the consistency condition (10)
can be fulfilled for an arbitrary (positive) number of τ -
anyons. The reason for this is the non-abelian fusion
rule τ × τ = 1 + τ [31], which makes sure that both cases
fN−1 = 1 and fN−1 = τ are consistent with fN = τ .
Thus, any number of Fibonacci anyons may exist on a
torus, which is in sharp contrast to the semion case or
more generally the abelian case, for which fN−1 = 1 has
to be fulfilled. For, e.g., a single Fibonacci anyon, the tu-
ple corresponding to the only wave function component
is (τ), which only contains the anyon associated with the
non-contractible loop. For two Fibonacci anyons, the tu-
ples are (1, 1), (1, τ) and (τ, τ), i.e., there are three wave
function components. More generally, the total number
of wave function components nc(N) for N > 0 Fibonacci
anyons is

nc(N) = 2FN−1 + FN , (26)

with the Fibonacci series FN+1 = FN + FN−1, F0 = 0
and F1 = 1. This formula is based on the fact that if
the N τ -anyons fuse to 1, both fN = 1 and fN = τ are
consistent with Eq. (10), whereas if they fuse to τ , only
fN = τ is allowed. Using that the number of different
ways of N τs fusing to τ is given by FN [31], one arrives
at the above relation as due to the fusion rules, the only
way for N τs to fuse to 1 is for the first N − 1 τs to fuse
to τ .

For Ising anyons, we can see from the fusion rules σ ×
σ = 1 +ψ, σ× 1 = σ and σ×ψ = σ [65] that for an odd
number of σs, that is, for N odd, fN−1 = σ. This implies
that the consistency condition (10) cannot be fulfilled,
i.e., only an even number of Ising anyons can exist on
tori, which is similar to the semionic case. From the just
mentioned fusion rules and ψ × ψ = 1, we also see that
fN = 1, σ, ψ is consistent with fN−1 = 1, whereas only
fN = σ is consistent with fN−1 = ψ. Overall, taking
the intermediate fusion products into account, the total
number of wave function components nc(N) for N > 0
Ising anyons can be written as

nc(N) =

{√
2
N+2

, for N even

0, for N odd.
(27)

In the general case, the total number of wave function
components can be obtained by iterating over all combi-
nations of fusion products {fi} in Eq. (9) and checking
the fusion multiplicites in each of the N vertices. If there
is a vertex that is associated with a multiplicity N c

ab = 0,
the corresponding state is unphysical. The total number
of tuples f = (f1, f2, . . . , fN ) associated with physical
states thus corresponds to the number of wave function

Algorithm 1 Construction of the set of tuples f whose
entries fi are the fusion products of N anyons {αi} as
defined by the canonical form of the fusion diagrams in
Eq. (9) such that fusion is consistent with the fusion mul-
tiplicities {N c

ab}. Input C contains all topological charges
of the anyon model.

1: function GetTuples({αi}, {Nc
ab}, C)

2: {f} ← set containing all tuples (f) fulfilling Nf
α1α2

> 0
3: for i← 1 to N − 2 do
4: for f in {f} and for f in C do

5: if Nf
fiαi+2

> 0 then

6: add tuple (f1, f2, . . . , fi, f) to {f}
7: end if
8: end for
9: remove all tuples containing i entries from {f}

10: end for
11: for f in {f} and for f in C do

12: if Nf
fN−1f

> 0 then

13: add tuple (f1, f2, . . . , fN−1, f) to {f}
14: end if
15: end for
16: remove all tuples containing N − 1 entries from {f}
17: return {f}
18: end function

components4.
The method for determining the wave function com-

ponents and tuples described above is a brute force ap-
proach since it requires to iterate over all configurations
of {fi} and checking the corresponding fusion multiplici-
ties. By noting that the number of distinct configurations
of charges in the tuples scale exponentially with the num-
ber of anyons localized in the system, it is clear that we
would like to employ a more efficient method. This can
be done by building the tuples f iteratively, as shown in
form of pseudocode in Alg. 1. We start with a set in-
cluding all tuples that contain an anyon consistent the
fusion of the first and second anyon. From this point, we
successively check the fusion multiplicities in the vertices
in Eq. (9) and extend the tuples by consistent anyonic
charges until we end up with tuples f that contain N en-
tries. These final tuples correspond to the wave function
components; the total number of wave function compo-
nents is thus |{f}|.

Using semions as an example, it can be seen that the
above method of finding the tuples is more efficient: For
N semions, we have to check 2N fusion multiplicities and
carry out the operations needed to iteratively build the
tuples. For the brute force approach on the other hand,
we need to check up to 2NN fusion multiplicities. In
both cases, we end up with the tuples (1, s, 1, s, . . . , 1, 1)
and (1, s, 1, s, . . . , 1, s) for an even number of semions.

4 Note again that we focus on Nc
ab ∈ {0, 1}. For Nc

ab > 1, there
may be multiple wave function components associated with the
same tuple f , which may be distinguished by additional labels.
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B. Distinguishable Anyons

Up to now, we only considered the fusion products
for a given anyon configuration when talking about the
wave function components and the corresponding tuples
f . This is sufficient as long as we focus on systems whose
anyonic excitations ({αi} in Eq. (9)) are of the same
charge. If this is no longer the case, i.e., if there are distin-
guishable anyonic excitations, different orderings of the
anyons {αi} may result in different tuples f due to differ-
ent intermediate fusion products. Let us illustrate this by
considering the toric code [7], which features three topo-
logical charges apart from the trivial vacuum charges:
electrical charges e, magnetic vortices m and fermions f .
These charges obey the fusion rules [62]

e× e = 1 m×m = 1 f × f = 1

e×m = f e× f = m m× f = e.
(28)

All other fusion processes are trivial as they involve the
vacuum charge 1. If we now consider a system featuring
two electric (e) and two magnetic (m) excitations, it can
be seen from the convention of the fusion order on the
lattice in Fig. 6b that there are anyon configurations for
which, e.g., α1 = α2 = e and α3 = α4 = m in the fusion
diagrams in Eq. (9). In this case, the set of tuples {f} is
given by

{f} = {(1,m, 1, 1), (1,m, 1, e), (1,m, 1,m), (1,m, 1, f)}
for α1 = α2 = e, α3 = α4 = m. (29)

On the other hand, there are also anyon configurations
corresponding to α1 = α2 = m and α3 = α4 = e for the
same system, i.e., the set of tuples {f ′} is

{f ′} = {(1, e, 1, 1), (1, e, 1, e), (1, e, 1,m), (1, e, 1, f)}
for α1 = α2 = m, α3 = α4 = e. (30)

It can be seen from Eqs. (29) and (30) that the tuples
corresponding to the two anyon orderings do not agree
with each other. The components of the wave function,
which correspond to the different fusion diagrams, thus
depend on the anyon ordering. One key observation in
this context is that the number of tuples in the set {f}
does not depend on the anyon ordering, that is, |{f}| =
|{f ′}| for two different anyon orderings. This is shown
in App. B and implies that the total number of wave
function components does not change upon exchanging
anyons despite the fact that the tuples associated with
some components may change.

In practice, when dealing with distinguishable anyonic
excitations, we can determine the tuples f associated with
the wave function components by utilizing the iterative
method described by Alg. 1 in the previous section. The
only difference is that we have to apply this method for
all different anyon orderings, i.e., for all distinct permu-
tations of the anyonic charges {αi}, and associate them
with the wave function components accordingly. A pseu-
docode implementing this procedure is given in Alg. 2.

Algorithm 2 Construction of the tuples f for all distinct
anyon orderings using Alg. 1. The tuples correspond to
the wave function components and depend on the anyon
ordering, they are stored in the dictionary WFCtuples
(“wave function component tuples”).

1: function GetTuplesForOrderings({αi}, {Nc
ab}, C)

2: permutations ← list of distinct permutations of the
anyons {αi}

3: WFCtuples← empty dictionary
4: for ordering in permutations do
5: {f} ← GetTuples(ordering, {Nc

ab}, C)
6: WFCtuples[key = ordering]← {f}
7: end for
8: return WFCtuples
9: end function

It shows that we associate a set {f} of tuples that cor-
responds to the different wave function components with
each anyon ordering, i.e., we make the wave function
components dependent on the ordering. Note that it is
possible to make this algorithm more efficient by realizing
that tuples obtained for a certain anyon ordering do not
change upon permuting the first and the second anyon
(fusion is commutative). One can thus use the result of
the permuted anyon ordering if the tuples have already
been computed for this case.

V. COMPUTATION OF THE MATRIX
ELEMENTS

The goal of our algorithm is to simulate anyons hop-
ping on a 2D Lx×Ly square lattice according to a tight-
binding Hamiltonian H for anyons. This Hamiltonian
can be written as

H = −t
∑
〈ij〉

(
T~ri,~rj + H.c.

)
, (31)

where the sum runs over all nearest-neighbor lattice site
pairs i and j. The hopping amplitude is denoted by t and
the translation operator translating the anyon located at
position ~ri (corresponding to site i) to position ~rj (cor-
responding to site j) by T~ri,~rj .

For bosonic or fermionic systems, we can rewrite the
translation operators in terms of creation and annihila-

tion operators, i.e., T~ri,~rj = b†jbi and T~ri,~rj = c†jci, where

b†i (bi) and c†i (ci) denote the bosonic and fermionic cre-
ation (annihilation) operators. For anyonic systems on
the other hand, such a notation is in general not possi-
ble. The reason for this can be seen when considering
semions. We know from the considerations in the pre-
vious section that only an even number of semions can
exist on a torus, which implies that anyonic systems do
in general not have the standard Fock spaces bosonic or
fermionic systems feature. We thus have to rely on the
translation operators T~ri,~rj rather than on creation and
annihilation operators.
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(a)

τ

τ

τ

(b)

T~r2,~r2+~ex τ τ τ
1 τ

= τ τ τ
1

τ

=
∑

f ′1∈{1,τ}

−t−1Hs′s τ τ τ
f ′1 τ

FIG. 7. (a) The indicated translation of the second anyon using T~r2,~r2+~ex leads to fusion in the final state that does not
agree with the convention for the basis states. (b) The translated state can be expressed in terms of the basis states using the
Hamiltonian’s matrix elements Hs′s, which depend on f ′1. This translation is equivalent to the translation process B in the
torus picture in Fig. 4b.

Note that we focus on hard-core anyons that do not
allow multiple anyons to be localized at the same site.
Information on how to generalize the algorithm is pro-
vided in App. C. Since we consider square lattices with
PBC, we can also write the Hamiltonian in Eq. (31) as

H = −t
∑
i

(
T~ri,~ri+~ex + T~ri,~ri+~ey + H.c.

)
, (32)

where ~ex (~ey) denotes the unit vector in positive x-
direction (y-direction); the lattice spacing is set to unity.
The states given by Eq. (24) will be used as basis to
explain the construction of the anyonic tight-binding
Hamiltonian H for an arbitrary anyon model by com-
puting the matrix elements with respect to these basis
states. The matrix elements are given by

〈(α′k, ~r ′k)Nk=1, f
′|H|(αk, ~rk)Nk=1, f〉 ≡ Hs′s, (33)

where we used the shorthand notation |s〉 ≡
|(αk, ~rk)Nk=1, f〉 and |s′〉 ≡ |(α′k, ~r ′k)Nk=1, f

′〉 for more
convenient indices. From the form of the Hamiltonian
in Eqs. (31) or (32), it can be seen that Hs′s is only
non-zero if the anyon configuration associated with |s′〉
can be obtained by translating a single anyon in the
configuration of |s〉 to a nearest neighboring site. In
the following discussions, we will thus assume that |s′〉
denotes such a state.

Let us first illustrate the general idea by considering
the anyon configuration depicted in Fig. 7a, which fea-
tures Fibonacci anyons. The “second” anyon of the initial
state (|0〉 from Fig. 3a) is translated by T~r2,~r2+~ex in such
a way the anyon ordering of the final state in Fig. 7b is not
canonical (see Fig. 6b). This is actually the same scenario
as indicated by the translation process B in the torus pic-
ture in Fig. 4b. Due to the definition of the Hamiltonian
H, its matrix elements Hs′s can be used to rewrite the
translated state in terms of the basis states. In the case
considered in Fig. 7, this is done by summing over all pos-
sible fusion products f ′1 of the first two anyons, where we
suppressed in the notation that the states |s′〉 and thus
Hs′s depend on f ′1. More generally, rewriting the transla-
tion operators using the Hamiltonian’s matrix elements

requires summing over multiple fusion products. Note
that for convenience, the diagrams in Fig. 7b do not con-
tain the anyon associated with the non-contractible loop
(fN in Eq. (9)).

With this general idea, we discuss the rules to actually
compute the matrix elements of the Hamiltonian H using
fusion diagrams in the two following sections. To simplify
this discussion, we note that it is sufficient to consider
translations of anyons only in positive x- and y-direction
since translations along the respective negative directions
can be obtained by hermitian conjugation. Further, by
looking at the fusion order in Fig. 6b, we can see that
we need to distinguish four different cases: Translations
in the bulk in x-direction, translations in the bulk in y-
direction, translations over cut A and translation over
cut B.

A. Translations in the Bulk

We start by considering translations that do not cross
cuts A or B. Although there is no physical boundary
due to the PBC, we refer to such translations as being
“in the bulk”. The cuts represent loops on the torus that
need be crossed when translating an anyon around the
system. Such processes lead to additional effects due to
different braids in the fusion diagrams and are discussed
in Sec. V B.

Let us first discuss translations of anyons in y-
direction, which is the easiest case to be considered.
From the fusion order in Fig. 6b, it can be seen that
translating an anyon in the bulk in y-direction does not
affect the fusion order, i.e., the order of the anyons in
the basis states corresponding to the initial and final
state is the same. Therefore, the corresponding matrix
elements are Hs′s = −t. Here, we assumed that the
anyon configuration of |s′〉 can be obtained from the
one of |s〉 by translating an anyon in y-direction to a
neighboring site; the matrix element is zero otherwise.

A scenario in which braiding is involved can occur
when translating an anyon in x-direction. This can be
seen using the anyon configuration depicted in Fig. 8a
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FIG. 8. Illustration of the braid rules for translating anyons in positive x-direction without crossing cut B. (a) Lattice with
an anyon configuration and indication which anyon is to be translated. (b) Effect of the translation on the fusion diagram.

and the fusion order in Fig. 6b. Initially, the anyons are in
alphabetical order, whereas after the translation, b comes
after c, d and e and is now the last anyon. This example
shows that the fusion order is changed when translat-
ing an anyon in positive x-direction and there is another
anyon with an x-coordinate equal to the x-coordinate of
the former anyon before (after) the translation and a y-
coordinate larger (smaller) than the one of the anyon to
be translated.

The effects of the above translation process on the fu-
sion diagrams can be seen in Fig. 8b, where ~rb denotes
the position of anyon b and f1 to f5 the remaining any-
onic charges. Anyon b is moved to come after e such
that the resulting fusion diagram is not in canonical form
since the line associated with the translated anyon moves
across the lines of the other anyons that are affected by
the changed anyon order, that is, the corresponding lines
are braided. In general, there are two different ways a
braid can occur. The line associated with the translated
anyon can either move “in front of” or “behind” the lines
of the anyon it is braided with. In the case considered
in Fig. 8b, anyon b moves in front of c and d and behind
e. Here, moving a line in front of another one corre-
sponds to counter-clockwise exchange, which can be seen
using the anyon configuration in Fig. 8a since in this ex-
ample, the indicated translation corresponds to counter-
clockwise exchange of the two anyon pairs b and c and
b and d. Similarly, this translation also corresponds to
exchanging anyons b and e clockwise, which is depicted
in the fusion diagrams by the line of anyon b moving be-
hind the one of anyon e. Using this method, the braids
in the fusion diagrams can be generalized to arbitrary
anyon configurations; Fig. 8 serves as a summary that
covers every case that may be encountered.

Alternatively, the braids associated with the trans-
lation process in Fig. 8a can be explained by merging
the fusion diagram and the anyon configuration into a
single picture, as done in Fig. 9 for a different anyon
configuration. In this picture, translating an anyon
to a neighboring site results in moving the associated
line correspondingly from the initial site to the final
one at the given point in time. If anyon b in Fig. 9
is translated in positive x-direction, the corresponding

Cut A

Cut B

a b

c

d

e

x

yt

y

f5

f1
f2
f3
f4

FIG. 9. Merging fusion diagrams and anyon configurations
into a single picture explains the braids associated with trans-
lations. Braids correspond to line crossings that are obtained
upon tranlating an anyon to a neighboring site.

line moves in front of the line associated with c and
behind the line associated with d, as expected from the
rules discussed above using Fig. 8. This 3D picture can
thus explain the braids introduced by translations in
x-direction. It also shows that translations in the bulk
in y-direction are trivial since such hoppings can never
lead to line crossings. Further, as we will see in the next
section, Fig. 9 also explains the braids associated with
translations across cuts A and B.

Using the rules above, the matrix elements Hs′s can be
computed as follows. First, the braided fusion diagram
corresponding to the translation of state |s〉 (see Fig. 8b)
needs to be obtained. Then, braid operators as discussed
in Sec. III have to be applied on the diagram until it is ex-
pressed as superposition of fusion diagrams in canonical
form (9). For each fusion diagram in this superposition,
the corresponding tuple can be extracted and compared
to the tuple associated with the fusion diagram of the
final state |s′〉. If both tuples agree, the matrix element
Hs′s is given by the prefactor of the corresponding fu-
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FIG. 10. Illustration of the braid rules for translating anyons in positive x-direction across cut B. (a) Lattice with an anyon
configuration and indication which anyon is to be translated. (b) Effect of the translation on the fusion diagram.

T~rb,~rb+~ex

y

a b

c
d

=

y

ab

c

d

=
∑
d′

[
F abdd

]
cd′

y

ab

d

d′

=
∑
d′

[
F abdd

]
cd′

y

b a

d′

d

=
∑
d′,c′

[
F abdd

]
cd′

[
F bad

′

d′

]−1

dc′

y

b a

c′
d′

FIG. 11. Translating anyon b across cut B corresponds to
translating it around the non-contractible loop. The resulting
fusion diagram can be expressed as sum over diagrams in
canonical form using F -moves.

sion diagram in the superposition of diagrams multiplied
by −t. We refer to App. A 1 for more details, where we
explicitely consider the example in Fig. 8b.

B. Translations over the Cuts

Finally, let us consider translations of anyons across
the two cuts, which corresponds to translating them
around the torus in the respective directions. Before
looking at the example in Fig. 10 that can be used
to generalize the occuring braids for translations in
x-direction, we start by illustrating how translations

around the torus are dealt with diagrammatically using
the simplest example of two anyons a and b fusing
to anyon c, which is depicted in Fig. 11; the anyon
moving along the non-contratible loop has charge d.
Anyon b is translated in positive x-direction over cut B,
which is indicated by the translation operator T~rb,~rb+~ex
acting on the initial fusion diagram. This translation
corresponds to translating the respective anyon around
the non-contractible loop5 in the fusion diagram and
by using F -moves, this diagram can be expressed in
terms of fusion diagrams in canonical form again. This
calculation can be generalized to the corresponding
translation in arbitrary fusion diagrams, which can be
expressed as accordingly weighted superpositions of
diagrams in canonical form. The weights are strings of
F -moves and are introduced in App. A 2.

Using this consideration, let us now look at the more
general example depicted in Fig. 10, where the anyon con-
figuration is shown in Fig. 10a. Initially, the anyons are
in alphabetical order and after translating anyon c, the
order becomes a, c, b, d, e. The braids among the anyons
in the diagram in Fig. 10b follow the same rules as before.
The line associated with anyon c moves in front of the
lines of d and e and behind the one of a, in accordance
with the picture introduced in Fig. 9. The only difference
to the case discussed before is that upon crossing cut B,
i.e., in between the braids, the translated anyon moves
around the torus. We can thus use Fig. 9 also in this case
to determine the braids as long as we keep in mind how to
move anyons crossing cut B around the non-contractible
loop in the fusion diagrams; Fig. 10 contains all informa-
tion needed to apply the braids to any case that may be
encountered.

5 The process of translating an anyon around the non-contractible
loop is very similar to what can be found in Ref. [70] for a
chain of anyons. But in contrast to them, we do not include
any twist/phase factor associated with the translation of anyons
around the torus. We give an argument why we chose to exclude
non-trivial phase factors for these processes in App. F.
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FIG. 12. Illustration of the braid rules for translating anyons in positive y-direction across cut A. (a) Lattice with an anyon
configuration and indication which anyon is to be translated. (b) Effect of the translation on the fusion diagram.

The Hamiltonian’s matrix elements Hs′s are computed
in the same way as for translations in the bulk. First, we
apply the above rules to obtain the braided fusion dia-
gram of the translated state, as done in Fig. 10b. Then,
we apply braid operators until the braided diagram is
expressed as superposition of fusion diagrams in canon-
ical form and read off the corresponding contributions
that have to be multiplied by −t. Details, including
an explicit treatment of the example in Fig. 10b, are
provided in App. A 2.

The final case to be considered involves translations
of anyons across cut A, which corresponds to translat-
ing them around the torus in y-direction. In contrast
to translations in y-direction in the bulk, braiding is in-
volved in this case, which is illustrated by the exam-
ple depicted in Fig. 12. The initial anyon configuration
(Fig. 12a) is again chosen such that the anyons are in
alphabetical order. After translating anyon c, the order
becomes a, c, b, d, e, which implies that braids need to be
involved in the fusion diagrams. The first step towards
understanding how the braids in Fig. 12b arise is to note
that we need to transform the initial fusion diagram using
the punctured torus S-matrix introduced in Sec. III F.
Since going to the dual space corresponds to changing
the direction of the non-contractible loop of anyon g in
Fig. 12b, we can treat translations around the torus in y-
direction in the transformed fusion diagrams in the same
way as translations around the torus in x-direction in
canonical form. That is, the anyon crossing cut A moves
clockwise around the non-contractible loop of the trans-
formed diagram. Finally, we have to determine the braids
among the anyons. This can be done using the 3D pic-
ture in Fig. 9: When translating an anyon (c in Fig. 9)
across cut A, it braids with all anyons possessing a larger
x-coordinate as its line has to move behind the lines of
such anyons. Similarly, the translated anyon braids with
all anyons featuring smaller x-coordinates by moving in
front of them. The only anyons not involved in any braids
are those in the same column as the anyon being trans-
lated. We can use Fig. 12 as summary for translations
across cut A; it contains all information needed to con-

struct the braided fusion diagrams for all cases that may
be encountered.

The Hamiltonian’s matrix elements are again com-
puted in the same way as for the other cases. We need
to apply the braids to the diagrams and then resolve
them using braid operators. The final superposition of
fusion diagrams in canonical form reveals the matrix
elements. An explicit treatment of the case depicted in
Fig. 12b can be found in App. A 2.

Overall, the general structure used for computing the
Hamiltonian H can be summarized in the pseudocode in
Alg. 3, which assumes that the basis states were already
constructed using Alg. 1 or 2. By interpreting the i-th
basis state as unit vector in the i-th direction, the Hamil-
tonian becomes a matrix whose columns correspond to
the vectors associated with the superpositions obtained
after applying the Hamiltonian on the basis states. As
discussed above, we split the translations into the four
different cases and focus on translations in the positive
directions since their counterparts in the negative direc-
tions can be obtained via hermitian conjugation. The
functions defined to treat the four cases are introduced
as pseudocodes in App. A.

For the case of abelian anyon models, the algorithm
described above is related to the algorithm introduced in
Ref. [45] and sketched in Sec. II B. This relation is shown
in App. D and reveals that our algorithm and the one in
Ref. [45] use different conventions for the external fluxes
Φx and Φy that have not been introduced yet. For our
algoirthm, we may choose to incorporate external fluxes
as additional factors of e2πiΦx/φ0 and e2πiΦy/φ0 that are
acquired when translating an anyon over cut B or A in
positive x- or y-direction, respectively, where φ0 = hc/e
denotes the flux quantum [45, 46].

It is additionally possible to construct momentum
states that block diagonalize the Hamiltonian H, which
allows us to numerically simulate larger systems. The
basic idea is to construct eigenstates to translation oper-
ators that translate all anyons simultaneously in x- or y-
direction. A detailed discussion of the momentum states
and their construction can be found in App. E.
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Algorithm 3 Computation of the Hamiltonian using the
basis states {|(αk, ~rk)Nk=1, f〉}. The hopping amplitude is
denoted by t; all other parameters, in particular those
defining the anyon model, are contained in {. . .} for con-
venience. The two lattice vectors are ~ex and ~ey.

1: function ComputeHamiltonian( t, {|(αk, ~rk)Nk=1, f〉},
{. . .})

2: basis ← list of all basis states |s〉 = |(αk, ~rk)Nk=1, f〉;
the i-th entry |si〉 is represented by ~ei

3: H ← empty matrix whose dimensions equal the basis
size

4: for |si〉 in basis do
5: for k ← 1 to N do
6: if ~rk · ~ex < Lx − 1 then
7: ~v ← TranslationBulkX(~ei, k, {. . .})
8: else
9: ~v ← TranslationCutB(~ei, k, {. . .})

10: end if
11: if ~rk · ~ey < Ly − 1 then
12: ~v ′ ← TranslationBulkY(~ei, k)
13: else
14: ~v ′ ← TranslationCutA(~ei, k, {. . .})
15: end if
16: for j ← 1 to dim(~v) do
17: Hji = −t(~v + ~v ′) · ~ej
18: end for
19: end for
20: end for
21: return H +H†

22: end function

Finally, we also note that the above algorithm is not
restricted to square lattices. An algorithm for other 2D
lattice forms may be obtained by establishing a fusion
order, similar to Fig. 6b. The hopping of anyons can then
be expressed as discussed above; the rules determining
the braids remain unchanged.

VI. SIMULATION RESULTS

To demonstrate the algorithm discussed in the previ-
ous sections, we apply it to study spectral properties and
non-equilibrium dynamics. Specifically, we start with a
light discussion of the energy eigenvalues of systems con-
taining one and two anyons, showing the similarities and
differences with systems of bosons and fermions. Next,
we focus on systems of multiple anyons, where we dis-
cuss the statistical distribution of the energy levels and
on the density distribution following a quench. We con-
sider semions, Fibonacci anyons and Ising anyons as sim-
ple representations of abelian and non-abelian anyons,
respectively, and compare them to hard-core bosons
(HCBs). For the quenches, we further compare them to
fermions. In our simulations, we use translation invari-
ance to construct momentum states and split the Hamil-
tonian into disconnected momentum sectors, as explained
in App. E.

2× E(1)
Fib E

(2)
Fib (nx, ny)

−8 −7.7314 (0, 0)

−6.494 −7.2514 (0,−1), (0, 1), (−1, 0), (1, 0)

−4.9879 −6.923 (−1,−1), (−1, 1), (1,−1), (1, 1)

−3.1099 −6.2969 (0,−2), (0, 2), (−2, 0), (2, 0)

TABLE I. The energy of a collection of anyons is not the
sum of the individual particles’ energies. Here, we show a
sample of the ground state energies in different momentum
sectors for systems of Fibonacci anyons on 7×7 lattices. The

first column shows twice the energies of one particle, E
(1)
Fib,

the second column the energies for two particles, E
(2)
Fib. The

momenta are quantized as kx = 2π
7
nx and ky = 2π

7
ny. Note

that we only show a subset of the full spectra.

A. One- and Two-Particle Energies and Energy
Level Spacing Statistics

The tight-binding model of a single anyon on a torus
has the same spectrum as a single fermion/boson in 2D
with PBC. We confirmed that our algorithm works even
in this simple case for models that permit having a single
anyon on a torus, like the Fibonacci anyon model.

Within the bulk of the lattice, hopping of an anyon
is trivial. Further, the topological amplitudes associated
with hopping processes around the torus turn also out to
be trivial. Therefore, the behavior of a single anyon on a
torus is like a single fermion/boson on a 2D lattice with
periodic boundary conditions, and hence they have the
same spectrum.

When the number of anyons is two or more, some
of the rich peculiarities of braiding statistics start
to manifest if the particles are allowed to experience
their statistics through braiding. In particular, unlike
fermions and bosons, the energies are no longer sums of
energies of individual anyons, as illustrated in Table I.

Let us now use a more sophisticated method for ana-
lyzing the energy spectra by studying the spectral statis-
tics of the Hamiltonian. In particular, consider the ratios
rn [71, 72] of consecutive energy level spacings with

rn =
min{δn, δn−1}
max{δn, δn−1}

, δn = En+1 − En, (34)

where the energy levels En are ordered ascendingly, i.e.,
δn ≥ 0. It is expected that the level spacing statistics of
integrable Hamiltonians follow the Poisson distribution.
For non-integrable systems on the other hand, the statis-
tics are expected to behave like the Wigner-Dyson distri-
bution of the Gaussian orthogonal ensemble (GOE) for
time-reversal (TR) invariant systems and like the Gaus-
sian unitary ensemble (GUE) for systems breaking TR
symmetry [73]. The Poisson (Poi), GOE and GUE pre-
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dictions for the distribution of r are given by [74]

PPoi(r) =
2

(1 + r)2
, (35)

PGOE(r) =
27

4

r + r2

(1 + r + r2)5/2
and (36)

PGUE(r) =
81
√

3

2π

(r + r2)2

(1 + r + r2)4
. (37)

When looking at the distribution of r, it is important
to consider the symmetries of the system. For exam-
ple, due to the Hamiltonian’s translation invariance, mo-
mentum states with distinct momentum quantum num-
bers are decoupled and thus, the corresponding expecta-
tion values are conserved. Similarly, the spatial reflec-
tion symmetries may lead to further conserved quanti-
ties. In general, the presence of such conserved quanti-
ties is expected to lead to Poisson statistics. If conserved
quantities are absent, the energy levels are expected to
show level repulsion, which corresponds to Wigner-Dyson
statistics. Therefore, if one analyzes the level spacing
statistics without restriction to a certain sector of the
quantum numbers, a non-integrable, interacting system
may seem to be integrable and non-interacting due to
the lack of level repulsion between the energy levels in
different sectors [73]. It is thus important to only look at
the statistics of energy levels associated with states that
share the same quantum numbers. Here, we choose to
look at three different momentum sectors.

In Fig. 13, the Poisson, GOE and GUE predictions of r
are plotted together with the distributions P (r) obtained
from exact diagonalization (ED) [75–77] for semions, Fi-
bonacci anyons and Ising anyons on L×L square lattices
in the three momentum sectors kx = ky = 0 (Fig. 13a),
kx = 0, ky = 2π/L (Fig. 13b) and kx = 2π/L, ky = 4π/L
(Fig. 13c). The corresponding distributions for HCBs are
also shown for comparison6. For all simulations, the par-
ticle number is set to N = 4. Due to the total number
of wave function components depending on the particle
type, different lattice sizes are used: L = 9 is chosen for
HCBs, L = 8 for semions and L = 6 for both Fibonacci
anyons and Ising anyons.

From the results, it can be seen that P (r) follows the
Poisson distribution in the kx = ky = 0 momentum sec-
tor for all particle types. This is expected since there are
four spatial reflection symmetries that we do not account
for in our simulations. Hence, as explained above, the
distributions of r follow the Poissonian prediction. For
HCBs, it can be seen that P (r) follows the GOE predic-
tion in the kx = 2π/L, ky = 4π/L momentum sector due
to the absence of further symmetries, HCBs being inter-
acting particles and the system being TR symmetric. In

6 We choose to forgo showing the distributions P (r) for fermions in
Fig. 13 since due to fermions being non-interacting, their energy
level spacings are expected to follow the Poissonian prediction in
every momentum sector.
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FIG. 13. P (r) for HCBs on a 9× 9 lattice with column cou-
pling rcol = 0.5, semions on a 8× 8 lattice, Fibonacci anyons
on a 6 × 6 and Ising anyons on a 6 × 6 lattice for N = 4
particles in the (a): kx = ky = 0, (b): kx = 0, ky = 2π/L and
(c): kx = 2π/L, ky = 4π/L momentum sector together with
the Poisson, GOE and GUE predictions.

the kx = 0, ky = 2π/L sector, the distribution is neither
Poissonian nor GOE-like but in between. This is charac-
teristic for spectra containing two symmetry blocks [78],
which is the case in the given situation due to the pres-
ence of the reflection symmetry in x-direction. For more
than two symmetry blocks in the energy spectrum, the
distribution of r tends towards the Poisson prediction
more strongly (for kx = ky = 0, there are 24 unaccounted
symmetry sectors in total, which leads to P (r) follow-
ing the Poissonian prediction). For semions, Fibonacci
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anyons and Ising anyons, P (r) agrees with the GUE pre-
diction for kx = 2π/L, ky = 4π/L. The reason is that
the studied anyonic systems break TR symmetry. This
can be seen by noting that under TR, anyons are mapped
to their TR partners that feature the opposite exchange
statistics [79]. The anyonic systems further break the
individual spatial reflection symmetries since the corre-
sponding operators map counter-clockwise exchanges to
clockwise exchanges and vice versa. The combination of
a reflection symmetry and TR symmetry is however con-
served (i.e., by exchanging anyons with their TR partners
and reversing braid directions, we effectively recover the
initial system). This leads to P (r) following the GOE
distribution in the kx = 0, ky = 2π/L momentum sec-
tor where the combination of TR symmetry and reflec-
tion symmetry in x-direction is present7. The presence
of further combinations of reflection symmetries and TR
symmetry in the kx = ky = 0 momentum sector leads
to P (r) following the Poisson distribution. The above
results also suggest that for the considered anyonic sys-
tems, there are no additional symmetries to be exploited
in every momentum sector in order to further block di-
agonalize the Hamiltonian.

It is important to note that there is a fundamental dif-
ference between HCBs and the anyons that goes beyond
the presence or absence of TR symmetry: For HCBs,
a hard-core potential has to be introduced in order to
avoid multiple bosons being localized on the same site,
which may be absorbed into the on-site commutation re-
lations by making them anti-commutation relations. For
the considered anyons however, the localization of multi-
ple anyons on a single site is prohibited by their exchange
statistics, similar to fermions. It follows that despite the
anyons also obeying the Pauli exclusion principle, their
statistics and non-local properties make them behave like
interacting particles.

B. Quench Dynamics

Lastly, let us consider non-equilibrium dynamics fol-
lowing a quench, where the density distribution over time
is monitored using ED. The lattice is now chosen to be
periodic with Ly = 2, as depicted in Fig. 14. This figure
also shows the initial state, in which N = 4 particles are
localized in the middle of the lattice in a zigzag pattern
such that there is one particle per column and no two
particles are initially on neighboring sites. The zigzag
pattern is chosen since two anyons are not allowed to be
on the same site. It should thus reduce the blocking of the

7 We mentioned earlier that the presence of TR symmetry leads to
GOE statistics. This statement is not quite precise: the actual
condition to obtain GOE statistics is the presence of any anti-
unitary symmetry [80], which is exactly what we observe for the
anyonic systems studied here.

Cut B

Cut A

α

α α

α

ni(t)

FIG. 14. Initial configuration for the quench simulations on
periodic lattices with Ly = 2: N = 4 particles of type α are
localized in the middle of the lattice in a zigzag pattern. The
operator ni(t) measures the number of particles localized in
the i-th column at time t.

initial dynamics. Further, we choose an equal superposi-
tion of all wave function components / fusion diagrams
for the initial state, i.e., the initial state can be written as
|{f}|−1/2

∑
f |(αk, ~rk)Nk=1, f〉, where (αk, ~rk)Nk=1 denotes

the anyon configuration described above and depicted in
Fig. 14 and f all tuples that are consistent with the fusion
rules; {f} is the set containing all these tuples f .

The particle density is measured for each column
rather than for each site since we are interested in the
time dependence of the density along the x-direction.
The operator measuring the density in the i-th column at
time t is denoted by ni(t), as indicated in Fig. 14. In or-
der to obtain results that allow for better comparison, the
lattice is chosen to have the same size, 30×2, for all parti-
cle types to be considered. In Fig. 15, the time dependent
particle density 〈ni(t)〉 is plotted for fermions, HCBs,
semions, Fibonacci anyons and Ising anyons. For HCBs,
we slightly modify the Hamiltonian in Eq. (32). When
hopping from one site to another in y-direction, hopping
in the “bulk” is equivalent to hopping across cut A due to
the trivial statistics and Ly = 2, see Fig. 14. This means
that the coupling between two sites connected by a single
hopping process in y-direction is effectively doubled. In
order to make the system isotropic and avoid unintended
effects, we modify the y-coupling by introducing a “col-
umn coupling” rcol (i.e., T~ri,~ri+~ey → rcolT~ri,~ri+~ey in the
Hamiltonian (32)) and set it to rcol = 0.5 such that the
mentioned effect is compensated. This issue is unique to
bosons since all other particle types feature non-trivial
statistics, i.e., translations over cut A differ from trans-
lations in the bulk.

For the fermionic case, the non-interacting behavior
can be seen by the way the density spreads over time.
When two wave packets collide, they simply pass through
each other due to the lack of interactions. This leads
to interference effects that do not decay with increasing
time. I.e., even in the limit of infinite times, fluctuations
in the density distribution can be observed. This is indi-
cated in Fig. 15a, where the fluctuations are prominent
at all times. Quite the opposite is observed for HCBs in
Fig. 15b. Due to their interacting behavior, wave pack-
ages can not fully pass through each other, which leads
to decaying interference effects and the density distribu-
tion becoming more homogeneous with increasing time.
For semions (Fig. 15c), Fibonacci anyons (Fig. 15d) and
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FIG. 15. Particle density per column 〈ni(t)〉 for (a) fermions, (b) HCBs, (c) semions, (d) Fibonacci anyons and (e) Ising anyons
on a 30× 2 ladder. Initially, the N = 4 particles are localized in the middle of the ladder in a zigzag pattern (see Fig. 14). The
initial state further features an equal superposition of all wave function components. For HCBs, the column coupling is set to
rcol = 0.5.

Ising anyons (Fig. 15e), the observed behavior is very
similar to the one obtained for HCBs, i.e., the density
distribution becomes more homogeneous at larger times.

We note that results very similar to those in Fig. 15 are
obtained for other superpositions of the wave function
components in the initial state, i.e., the above obser-
vations seem to be general for a quench with localized
anyons. It is thus concluded that free semions, Fibonacci
anyons and Ising anyons on a 2D lattice behave similarly
to interacting particles if their dynamics are governed
by a tight-binding Hamiltonian that merely accounts for
their statistics, as their energy level spacing statistics
show level repulsion and their density distributions after
a quench seem to become homogeneous in the limit of
large times.

A similarly interesting observation was made for 1D
systems of hard-core abelian anyons of arbitrary statistics
governed by the anyonic tight-binding Hamiltonian [36].
It was found that for quenches, one-body observables re-
lax to the predictions of the generalized Gibbs ensem-
ble for all abelian statistics (including HCBs) except for
fermionic ones, suggesting that abelian anyons behave
like interacting particles. This observation for 1D chains
is consistent with what we found for free semions on quasi
2D lattices.

VII. CONCLUSION

We have developed an algorithm that is capable of sim-
ulating arbitrary abelian and non-abelian anyons subject
to an anyonic tight-binding Hamiltonian that incorpo-
rates the anyons’ statistics in two dimensions, where we
focused on periodic boundary conditions. The algorithm
can also be generalized to other, non-periodic, bound-
ary conditions, which may feature anyonic charges on
the boundaries. In the algorithm, the effects of anyonic
statistics are expressed as braids in fusion diagrams. We
also introduce momentum states in App. E in order to

block diagonalize the Hamiltonian. The main differences
to other algorithms [44–46, 48] is that the presented algo-
rithm is designed to deal with non-abelian anyon models,
where all anyons are mobile on the lattice.

Our simulation results indicate thermalizing behavior
for semions, Fibonacci anyons and Ising anyons: The sta-
tistical distributions of the energy levels feature level re-
pulsion within the momentum sectors and the density
distributions after a quench seem to converge to homo-
geneous distributions.

These results are only a first demonstration of the algo-
rithm. In future, it can help to find new signatures that
may be used to distinguish different anyonic charges as,
e.g., done in one dimension for abelian anyons using the
momentum distribution of the ground state [40] or in two
dimensions by measuring the spectral response of a sys-
tem close to the threshold of exciting a pair of abelian
anyons [30]. It would be particularly useful to identify
differences between abelian and non-abelian anyons, as
done for the transport properties of a single anyon on a
ladder with background charges [47, 48]. For the latter
goal, one might suggest to study systems of three or more
anyons in greater detail since exchanging two non-abelian
anyons in this case does in general no longer correspond
to simple R-moves like for two anyons. As for numerical
methods, it may be beneficial to implement the presented
algorithm using matrix product states or tensor product
states as done in, e.g., Refs. [48, 53–55, 81] for other
Hamiltonians. In particular, interactions and constraints
on fusion products can be easily incorporated into our
algorithm.
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Appendix A: Examples for Braiding Diagrams and
Pseudocodes for the Different Translation Cases

In this section, we illustrate how braided fusion dia-
grams can be expressed as superposition of diagrams in
canonical form (9) using some examples. We use this op-
portunity to introduce pseudocodes that implement func-
tions treating the four different translations discussed in
Sec. V; these functions were refered to in Alg. 3. Let us
start by defining a second braid operator, B′, which is
very similar to the braid operator B defined in Eqs. (17)
and (18):

a cb

d

e
=
∑
f

[
B′abcd

]
ef

a b c

d

f
, (A1)

where[
B′abcd

]
ef

=
∑
g

[
F acbd

]
eg

(
Rcbg
)−1 [

F abcd

]−1

gf
. (A2)

Using the unitarity of the F - and R-moves, it can be seen
that B and B′ are related by (note the reversed order of
charges b and c)[

Babcd

]−1

ef
=
[
Babcd

]†
ef

=
[
B′acbd

]
ef
. (A3)

Algorithm 4 Computation of the final state after trans-
lating the k-th anyon by one lattice spacing in positive
y-direction in the bulk. The initial state |(αk, ~rk)Nk=1, f〉
is represented by ~ei.

1: function TranslationBulkY(~ei, k)
2: ~v ← vector representing |(αk′ , ~rk′ + δkk′~ey)Nk′=1, f〉
3: return ~v
4: end function

This means that one of those operators would be suffi-
cient in order to resolve braids. Nevertheless, both op-
erators will be used as doing so provides more clarity.
With this, we discuss in the following how to resolve the
braids for the three examples given in Sec. V and in-
troduce the corresponding pseudocodes; Sec. A 2 further
includes the generalization of the operation depicted in
Fig. 11, which corresponds to the translation of an anyon
around the torus.

1. Translations in the Bulk

Lets us start by considering translations in the bulk
in y-direction. Since this case does not involve braiding
among the anyons, the corresponding pseudocode, which
is shown in Alg. 4, merely needs to change the position
vector of the anyon to be translated.

For translations of anyons in x-direction, the rules sum-
marized in Fig. 8 are to be applied to the fusion diagrams.
Braided diagrams that are obtained by these rules, like
the one in Fig. 8b, can be expressed as superposition of
diagrams in canonical form using the braid operators de-
fined in Eqs. (17) and (A1). Concretely, for the example
depicted in Fig. 8b, we obtain the expression in Fig. 16.
Using this result, the Hamiltonian’s matrix element Hs′s
in Eq. (33) can be computed by comparing the superpo-
sition of fusion diagrams in canonical form to the fusion
diagram of the final state |s′〉. It is obtained by multi-
plying the contribution in the superposition that corre-
sponds to the same fusion diagram as |s′〉 by −t. For the
case depicted in Fig. 16, the matrix element is

Hs′s = −t
[
Bacbf2

]
f1f ′1

[
B
f ′1db
f3

]
f2f ′2

[
B
′f ′2eb
f4

]
f3f ′3

δf4f ′4δf5f ′5 ,

(A4)

where we assumed that the tuple associated with
the fusion diagram of the final state |s′〉 is f ′ =
(f ′1, f

′
2, f
′
3, f
′
4, f
′
5). The operator string can be general-

ized by applying a B(B′)-operator each time the trans-
lated anyon moves in front of (behind) another anyon.
Each application of these operators changes an interme-
diate fusion product on which the subsequent operator
depends. Summing over all these intermediate fusion
products yields the desired superposition of fusion dia-
grams in canonical form. From the discussion in Sec. V A,
it follows that B-operators are always applied before B′-
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FIG. 16. Example showing how to express the braided fusion diagram in Fig. 8b in terms of diagrams in canonical form.

Algorithm 5 Computation of the final state after trans-
lating the k-th anyon by one lattice spacing in positive
x-direction in the bulk. The initial state |(αk, ~rk)Nk=1, f〉
is represented by ~ei. The matrices corresponding to braid
operators only act on the subspace defined by the fusion
degrees of freedom, i.e., on the second part in the tensor
product |(αk, ~rk)Nk=1〉 ⊗ |f〉.
1: function TranslationBulkX(~ei, k, {. . .})
2: nccw, ncw ← number of anyons with which αk is

braided counter-clockwise and clockwise, respectively
3: ~v ← vector representing |(αk′ , ~rk′ + δkk′~ex)Nk′=1, f〉
4: for i← 1 to nccw do

5: B ← matrix corresponding to B
fk−3+iαk+iαk
fk−1+i

,

where {fk} are the fusion products associated with ~v;
f−1 ≡ 1, f0 ≡ α1

6: ~v ← B · ~v
7: end for
8: for i← nccw + 1 to nccw + ncw do

9: B′ ← matrix corresponding to B
′fk−3+iαk+iαk
fk−1+i

10: ~v ← B′ · ~v
11: end for
12: return ~v
13: end function

operators. This generalization is summarized as pseu-
docode in Alg. 5.

2. Translations over the Cuts

According to the rules discussed in Sec. V B, each
anyon crossing either of the two cuts moves around the
torus. We sketched how such a process can be expressed
in terms of fusion diagrams in canonical form for a sys-
tem of two anyons in Fig. 11. Here, we generalize this to
arbitrary fusion diagrams and introduce the new quan-
tity Ux (α, f ′, f) that is defined by the relation in Fig. 17.
Here, α = (α1, α2, . . . , αN ) denotes the tuple containing
the anyonic charges of the unbraided initial fusion dia-
gram (i.e., before any translations were performed). The
tuples f and f ′ are the tuples associated with the initial
diagram and the diagrams in the superposition, respec-
tively. The sum runs over all tuples f ′ that are consisitent
with the fusion rules.

As indicated, Ux (α, f ′, f) depends on the anyons {αk}
and their order, the fusion diagram associated with the
initial state and the one associated with respective con-
tribution to the final state. It is given by

Ux (α, f ′, f) =



[
F
fN−2αNfN

fN

]
fN−1f ′N

[
F
αNfN−2f ′N
f ′N

]−1

fNf ′N−1

[
FαNα1α2

f ′2

]−1

f1f ′1

×
∏N−4
j=0

[
F
αNfN−3−jαN−1−j
f ′N−1−j

]−1

fN−2−jf ′N−2−j

, for N > 2[
Fα1α2f2
f2

]
f1f ′2

[
F
α2α1f ′2
f ′2

]−1

f2f ′1

, for N = 2

(A5)

and is trivial for N = 1. By taking another look at
Fig. 17, it can be seen that moving all N anyons one
after another around the torus does not change the fusion
diagram since doing so recovers the initial order of anyons
without braiding them. Here, the lines associated with

the fusion products may also be moved clockwise around
the torus to make the equivalence to the fusion diagram of
the initial state in Eq. (9) more apparent. Equivalently,
this observation can be expressed in terms of Ux (α, f ′, f)
as
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FIG. 17. A fusion diagram whose final anyon moves along a non-contractible loop can be expressed in terms of fusion diagrams
in canonical form using Ux (α, f ′, f), which is given by Eq. (A5), where f and f ′ are the tuples associated with the initial and
final diagrams and α = (α1, α2, . . . , αN ) contains the anyonic charges of the unbraided initial fusion diagram.
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f5

=
∑

f ′1,f
′
2,f
′
3,f
′
4

f ′5,f
′′
2 ,f
′′
3

[
Bf1dcf3

]
f2f
′′
2

[
B
f ′′2 ec
f4

]
f3f
′′
3

× Ux
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α, f ′, f̃

) [
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FIG. 18. Example showing how to express the braided fusion diagram in Fig. 10b in terms of diagrams in canonical form, where

α = (a, b, d, e, c), f̃ = (f1, f
′′
2 , f

′′
3 , f4, f5) and f ′ = (f ′1, f

′
2, f
′
3, f
′
4, f
′
5).

∑
f (1),f (2),...,f (N−1)

Ux

(
σN−1(α), f (N), f (N−1)

)
. . . Ux

(
σ(α), f (2), f (1)

)
Ux

(
α, f (1), f (0)

)
= δf (0)f (N) , (A6)

where σ(1, 2, . . . , N) = (N, 1, 2, . . . , N − 1). Note that
the order of the anyonic charges in the arguments
of Ux (α, f ′, f) in Eq. (A6) is crucial. We can now
express the braided fusion diagram depicted in Fig. 10b
in terms of canonical diagrams, as done in Fig. 18,

where α = (a, b, d, e, c), f̃ = (f1, f
′′
2 , f

′′
3 , f4, f5) and

f ′ = (f ′1, f
′
2, f
′
3, f
′
4, f
′
5). The final B′-operator can be

replaced by the appropriate R-move. The corresponding
matrix elements Hs′s can be computed in the same
way as described at the end of the previous section
(Sec. A 1). A pseudocode for computing the final state
after such translations is Alg. 6, which clearly shows par-
allels to Alg. 5 when it comes to braids among the anyons.

Finally, let us briefly state the string of operators
needed to compute the matrix elements Hs′s for the

braided fusion diagram given as example in the context
of translations in y-direction in Fig. 12. The matrix ele-
ments are

Hs′s = −t
∑

f ′′2 ,f
′′
3 ,f
′′
5 ,f
′′′
5

S
(f4)†
f5f ′′5

[
B′f1dcf3

]
f2f ′′2

[
B
′f ′′2 ec
f4

]
f3f ′′3

× Ux
(
α, f̃ ′, f̃

) [
B1ac
f ′1

]
ca
S

(f ′4)

f ′′′5 f ′5
,

(A7)

where the intital state |s〉 and the final state |s′〉
are again associated with the tuples (f1, f2, f3, f4, f5)

and (f ′1, f
′
2, f
′
3, f
′
4, f
′
5), respectively. Further, f̃ =

(f1, f
′′
2 , f

′′
3 , f4, f

′′
5 ) and f̃ ′ = (f ′1, f

′
2, f
′
3, f
′
4, f
′′′
5 ). Note that

despite the transformation with S(z)† reversing the orien-
tation of the lines in the fusion diagrams, the same braid
operators as for the other scenarios can be used; there
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Algorithm 6 Computation of the final state after trans-
lating the k-th anyon by one lattice spacing in positive
x-direction across cut B. The initial state |(αk, ~rk)Nk=1, f〉
is represented by ~ei. The matrices corresponding to braid
operators only act on the subspace defined by the fusion
degrees of freedom, i.e., on the second part in the tensor
product |(αk, ~rk)Nk=1〉 ⊗ |f〉.
1: function TranslationCutB(~ei, k, {. . .})
2: nccw, ncw ← number of anyons with which αk is

braided counter-clockwise and clockwise, respectively
3: ~v ← vector representing |(αk′ , ~rk′ + δkk′~ex)Nk′=1, f〉
4: for i← 1 to nccw do

5: B ← matrix corresponding to B
fk−3+iαk+iαk
fk−1+i

,

where {fk} are the fusion products associated with ~v;
f−1 ≡ 1, f0 ≡ α1

6: ~v ← B · ~v
7: end for
8: Ux ← matrix with (Ux)ij = Ux (α, fi, fj), α =

(α1, . . . , αk−1, αk+1, . . . , αN , αk)
9: ~v ← Ux · ~v

10: for i← −1 to ncw − 2 do
11: B′ ← matrix corresponding to B

′fiα2+iαk
f2+i

12: ~v ← B′ · ~v
13: end for
14: return ~v
15: end function

is no need for any adjustments such as replacing charges
with their conjugated ones. This can also be seen by
noting that S(z) commutes with the braid operators B
and B′ since these operators do not change the charges
fN−1 or fN that determine the action of S(z). We can
thus transform the fusion diagrams using the punctured
torus S-matrix directly before applying Ux (α, f ′, f), as
shown in Alg. 7, which contains a pseudoalgorithm for
computing translations across cut A.

Appendix B: Proof of the Number of Wave Function
Components Being Unaffected by the Anyon

Ordering

Here, we show that for distinguishable anyons, the
number of tuples f , and thus the number of wave func-
tion components, does not depend on the anyon ordering.
First, note that two distinct anyon orderings can be re-
lated by (multiple) permutations of neighboring charges
αn and αn+1 in the fusion diagrams in Eq. (9). We can
thus focus on this case. Due to the associativity and com-
mutativity of fusion, the fusion products fn, fn+1, . . . , fN
are unaffected by permuting αn and αn+1. This also
holds for the fusion products f1, f2, . . . , fn−2, which do
not involve αn and αn+1. For the unpermuted anyon
ordering, the contribution of the fusion product fn−1 to

the number of tuples is
∑
fn−1

N
fn−1

fn−2αn
Nfn
fn−1αn+1

. For

the permuted anyon ordering, the corresponding contri-

bution is
∑
f ′n−1

N
f ′n−1

fn−2αn+1
Nfn
f ′n−1αn

. Due to the associa-

Algorithm 7 Computation of the final state after trans-
lating the k-th anyon by one lattice spacing in positive
y-direction across cut A. The initial state |(αk, ~rk)Nk=1, f〉
is represented by ~ei. The matrices corresponding to braid
operators only act on the subspace defined by the fusion
degrees of freedom, i.e., on the second part in the tensor
product |(αk, ~rk)Nk=1〉 ⊗ |f〉.
1: function TranslationCutA(~ei, k, {. . .})
2: ncw, nccw ← number of anyons with which αk is

braided clockwise and counter-clockwise, respectively
3: ~v ← vector representing |(αk′ , ~rk′ + δkk′~ey)Nk′=1, f〉
4: for i← 1 to ncw do

5: B′ ← matrix corresponding to B
′fk−3+iαk+iαk
fk−1+i

,

where {fk} are the fusion products associated with ~v;
f−1 ≡ 1, f0 ≡ α1

6: ~v ← B′ · ~v
7: end for
8: Sz ← matrix with (Sz)ij = S

(z)

(fN )i(fN )j
, (fN )i is the

N -th entry in fi
9: Uy ← matrix with (Uy)ij =∑

k,l S
(z)†
(fN )j ,k

Ux
(
α, f̃ ′, f̃

)
S

(z)

l,(fN )i
, (fn)i: n-th entry in

fi, f̃ = ((f1)j , . . . , (fN−1)j , k), f̃ = ((f1)i, . . . , (fN−1)i, l),
α = (α1, . . . , αk−1, αk+1, . . . , αN , αk)

10: ~v ← Uy · ~v
11: for i← −1 to nccw − 2 do
12: B ← matrix corresponding to B

fiα2+iαk
f2+i

13: ~v ← B · ~v
14: end for
15: return ~v
16: end function

tivity of fusion, these two sums agree with each other

since
∑
eN

e
abN

d
ec =

∑
f N

d
afN

f
bc [65]. I.e., since the con-

tribution of the only fusion product that is changed due
to the permutation of αn and αn+1 to the number of tu-
ples is the same for the permuted and the unpermuted
case, the number of tuples for both anyon orderings agree,
|{f}| = |{f ′}|. This implies that all anyon orderings fea-
ture the same number of tuples f and shows that we can
indeed think of the wave function components as being
associated with tuples that depend on the anyon order-
ing.

Appendix C: Effect of Mutual Bosonic Statistics

In section V, we excluded hopping that leads to mul-
tiple anyons being localized at the same site. In general,
such scenarios may occur if the corresponding anyons do
not pick up a non-trivial phase upon being exchanged.
When dealing with identical anyons, this is usually not
the case. This can however be relevant for anyons of
different charge if one does not explicitly add hard-core
interactions. Then, as we will see, one has to take special
care when constructing the basis according to Sec. IV; the
braids remain the same as discussed in Sec. V.

Suppose there are two anyons a and b located at posi-
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tions ~ra and ~rb, respectively, that fuse to anyon c. The
effect of exchanging the two anyons counter-clockwise is
given by the R-moves:

ψa,b→c(~ra, ~rb) = Rabc ψa,b→c(~rb, ~ra), (C1)

where the first (second) argument in ψa,b→c represents
the position of anyon a (b). If both anyons are localized
at the same site, i.e., if ~ra = ~rb, the wave function can
only be non-zero if Rabc = 1, that is, the two anyons
are mutual bosons. Using this result, it is clear that
the algorithm / braid rules for the different translations
described above in Sec. V can also be applied if an anyon
is translated onto an already occupied site, given this is
allowed by the just discussed constraint. In particular,
it does not matter whether anyons at the same site are
braided with each other due to Rabc = 1.

There are a few things to be considered when con-
structing the basis states representing such lattice con-
figurations. Let us start with fusion diagrams where all
anyons located at the same sites fuse together and their
fusion product then fuses with the intermediate fusion
products according to the fusion convention rather then
each anyon on the same site fusing one after another with
the intermediate fusion products. An example for such a
fusion diagram is given by

y

a b c d e

f1 f2

f3

f4 f5

, (C2)

where anyons c and d are located at the same site. Dia-
grams as the one above allow to straight forwardly read
off the R-moves corresponding to the constraint discussed
above. In the given example, states corresponding to the
fusion diagram in Eq. (C2) can only exist if Rcdf2 = 1.
Having assured that the considered states can indeed ex-
ist, we can now bring the fusion diagram back to the
canonical form (9) using F -moves; for the diagram in

Eq. (C2), [F f1cdf3
]−1
f2f ′2

needs to be used. There are two

crucial observations to be discussed. Firstly, applying F -
moves yields a superposition of fusion diagrams in canon-
ical form. These superpositions correspond to the basis
states for this anyon configuration, which is in contrast
to the basis states introduced in Sec. IV. Secondly, when
dealing with distinguishable anyons, we have fix an or-
der in which anyons localized at identical sites fuse. The
reason is that if two anyons of different charge located
at the same site are first exchanged and then, the fusion
diagram is brought to the canonical form, the interme-
diate fusion products of the obtained diagrams in the

superposition may be different from the intermediate fu-
sion products when not exchanging the anyons (see the
discussion in Sec. IV B). As these two superpositions de-
scribe the same physical state, we have discard one of
them. This can be done by introducing an “on-site fu-
sion order” that fixes the order in which anyons localized
at identical sites fuse. In the case depicted in Eq. (C2),
we choose the on-site fusion order to be the alphabetical
order.

To sum up, the first thing to do when dealing with
multiple anyons at identical sites is to rewrite the fusion
diagrams in such a way that anyons at the same sites
directly fuse with each other. Then, using the R-moves,
we can check whether or not the states associated with
the diagrams can actually exist. If they do exist, we have
to order the anyons at identical sites according to an on-
site fusion order that we have to define. Finally, we can
use F -moves to express the fusion diagrams as superpo-
sitions of fusion diagrams in canonical form, which serve
as basis states. In general, there may be more than two
anyons localized at a single site and multiple sites may be
occupied by more than one anyon. Then, we start with
fusion diagrams containing small fusion trees for each of
those sites. Their fusion products fuse with the other
fusion products of the anyons located at the other sites.
The constraint above is changed such that at each ver-
tex of the fusion trees for a single site, the corresponding
R-move has to equal identity.

Appendix D: Special Case of Abelian Anyons and
Relation to Existing Algorithms

Here, we show that for abelian anyon models, our al-
gorithm presented in Sec. V is related to the algorithm in
Ref. [45] that was briefly sketched in Sec. II B for semions.
More generally, the latter algorithm simulates N abelian
anyons on a torus, where all anyons possess the same
charge and a phase of θ is acquired upon exchanging two
of them, with ei2θN = 1. Translating an anyon around
the torus along a non-contractible loop is modelled us-
ing two M ×M matrices, where M is the smallest pos-
itive integer fulfilling ei2θM = 1, i.e., θ = πp/M with p
and M being coprime integers. To show the relation be-
tween the two algorithms, we choose the same starting
point as in Ref. [45], that is, we only know the exchange
statistics in terms of the phase θ and first need to find
an abelian anyon model that features the corresponding
anyons. Then, based on this anyon model, we compute
all relevant phases and matrices that are to be applied
when translating the anyons and show the relation to the
corresponding quantities in the algorithm in Ref. [45].

1. Appropriate Abelian Anyon Models

First, we have to take a look at the anyonic charges of
the given anyon model: From the string rules in Ref. [45]
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that were also sketched Sec. II B, one can see that when
fusing two anyons and exchanging this fusion product
with another anyon, a phase of 2θ is picked up since
the phases associated with the fusion product’s string
correspond to twice the phases associated with an ini-
tial anyon’s string. Thus, M anyons fuse to the vac-
uum charge and as this is the minimal number of anyons
to do so, there are overall M anyonic charges in the
anyon model. We will refer to these charges as [a]M ,
[a]M ∈ {0, ...,M − 1}, where [a]M = 0 denotes the vac-
uum charge (note the changed convention compared to
the main text) and [a]M = η with 1 ≤ η ≤ M − 1 the
charge of the anyons being simulated.

We can see from the discussion in Sec. IV A that due
to the abelian nature, there are M wave function compo-
nents / tuples in total, agreeing with the dimensionality
of the M ×M matrices in Eq. (2.19) in Ref. [45]. For
the description of the anyon model, we follow the rele-
vant parts in Bonderson’s PhD thesis [65]. In the above
notation, the fusion rules are

[a]M × [b]M = [a+ b]M , (D1)

where anyon charges within the brackets [ ]M are always
taken mod M . For convenience, the brackets [ ]M will
only be written in the following where the corresponding
arguments may not be in the set {0, ...,M − 1}. The F -
and R-moves are given by[

F a,b,c[a+b+c]M

]
[a+b]M ,[b+c]M

= ei
π
M a(b+c−[b+c]M )

and Ra,b[a+b]M
= e

i θ
η2
ab
,

(D2)

the entries of the modular S-matrix, which corresponds
to S(0), are

Sa,b =
1√
M
e
i 2θ
η2
ab
. (D3)

Here, it was used that Rη,η[2η]M
= eiθ and assumed that

the anyon model containing the appropriate R-moves is

Zn+1/2
M with n = p

2η2 −
1
2 ∈ {0, 1, ...,M − 1} and M even.

I.e., η, and therefore also n, has to be chosen based
on p = Mθ/π in order to determine an appropriate
anyon model. If there is no appropriate choice of η
such that n fulfills the above constraint, the second
type of abelian anyon models that includes M distinct
charges, ZnM with n = p

2η2 ∈ {0, 1, ...,M − 1} has to

be utilized. These models feature trivial F -moves and
will be considered later on. Note that we can find an
appropriate anyon model for every p since for η = 1 and

odd p, the condition for Zn+1/2
M with n = (p − 1)/2 is

fulfilled, whereas for η = 1 and even p, the condition
for ZnM with n = p/2 is fulfilled. We can thus restrict
ourselves to η = 1 from now on.

2. Relating the Translation Processes

Let us now show that the matrices τi and ρi
(Eqs. (2.12) and (2.13) in Ref. [45]) and σj = eiθ with
i ∈ {1, ..., N}, j ∈ {1, ..., N − 1} naturally arise from the
rules in our algorithm. The operators corresponding to τi
and ρi move the i-th anyon along a non-contractible loop
in positive x- and y-direction (without any translations in
the perpendicular direction), respectively, σj corresponds
to counter-clockwise exchanging the j-th and (j + 1)-th
anyon. Since τi and ρi are matrices rather than opera-
tors, they are defined as the action of the above operators
on a specific anyon configuration. This anyon configura-
tion contains N anyons, where the coordinates of the i-th
anyon are denoted by xi and yi and fulfill xi+1 > xi and
yi+1 > yi for i = 1, ..., N − 1 (Fig. 1 in Ref. [45]).

a. Translations in the Bulk

For the operations correspdoning to σj , no cut has to
be crossed, i.e., according to the rule in Fig. 8, it is given
by

σj =
[
B

[j−1]M ,1,1
[j+1]M

]
[j]M ,[j]M

= R1,1
[2]M

1M = eiθ1M , (D4)

in agreement with what is found in Ref. [45].

b. Translations across Cut B

Using the above result and the rules in Figs. 10 and 12,
it can be seen that τj+1 = e−i2θτj = e−i2θjτ1 and ρj+1 =
ei2θρj = ei2θjρ1, which also follows from the more general

relations τj+1 = σ−1
j τjσ

−1
j and ρj+1 = σjρjσj [45, 60].

It thus remains to show that our algorithm reproduces τ1
and ρ1. The former can be computed using Fig. 10 and
Eq. (A5):
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(τ1)[a−1]M ,a
=eiθ(N−1)

[
F
M−1,1,[−a]M
[−a]M

]
0,[1−a]M

[
F

1,M−1,[1−a]M
[1−a]M

]−1

[−a]M ,0

×
[
F 1,1,1

[3]M

]−1

[2]M ,[2]M

N−4∏
j=0

[
F

1,[−2−j]M ,1
[−j]M

]−1

[−1−j]M ,[−1−j]M

=eiθ(N−1)ei
π
M {M([−a]M−[−a+1]M )−(2−[2]M )−

∑N−4
j=0 ([−2−j]M+1−[−1−j]M )}

=eiθ(N−1)e−iπ(1+N/M+b−1/Mc)

=eiθ(N−1)e−iπN/M ,

(D5)

where eiθ(N−1) originates from the braid operations σj
and N > 2 and M ≥ 2 was assumed. The contribution
([−a]M−[1−a]M ) is either −1 or M−1 and due to M be-
ing even and this contribution appearing in the exponen-
tial, both cases yield the same result. The sum in the ex-
ponent was found to equal (N−3)+[2]M − [−1]M , where
it was used that [N ]M = 0. Finally, [x]M = x−Mbx/Mc
was utilized, where bxc denotes the largest integer smaller
than or equal to x. For M = N = 2, the correct result
for (τ1)[a−1]M ,a

is given by −eiθ and thus also agrees with

the above result. Equation (D5) therefore holds for all
allowed choices of M and N ; M = 1 is not considered
since it corresponds to the trivial case of simulating vac-
uum charges.

According to Eq. (D5), charge a is moving along the
non-contractible loop in the initial state, whereas in the
final state, that charge is [a− 1]M , which can be seen by

thinking of the wave function components as entries in
a vector this matrix acts on. All other entries in τ1 are
zero, i.e., τ1 is given by

τ1 = eiθ(N−1)e−iπN/M


0 1
... 0

. . .

0
. . . 1

1 0 · · · 0

 . (D6)

c. Translations across Cut A

Using this result and Fig. 12, ρ1 is computed to be

(ρ1)jk = e−i2θ(N−1) 1

M

M−1∑
a,b=0

S
(0)†
ja (τ1)abS

(0)
bk

= e−iθ(N−1)e−iπN/M
1

M

M−1∑
a=0

e−i2θjaei2θ[a+1]Mk

= e−iθ(N−1)e−iπN/M
1

M

M−1∑
a=0

ei2θ(k−j)aei2θk(1−Mb(a+1)/Mc)

= e−iθ(N−1)e−iπN/Mei2θkδjk,

(D7)

where we used the fact that the translation across cut A
can be obtained by transforming the translation across
cut B via S(z) (z = 0 for abelian anyons). The prefactor
e−i2θ(N−1) compensates the factor eiθ(N−1) in Eq. (D5)
and accounts for the other braids according to Fig. 12.
It was used that ei2θM = 1. This result is again valid for

N ≥ 2 and M ≥ 2. Written as matrix, ρ1 takes the form

ρ1 = e−iθ(N−1)e−iπN/M


1

ei2θ

. . .

ei2θ(M−1)

 .

(D8)

The two M ×M matrices in Eqs. (D6) and (D8) agree
with the respective matrices in Ref. [45] except for the
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prefactor. This is however of no concern as we can al-
ways choose to introduce fluxes in both directions that
compensate the differences in phase.

In addition to the rules derived from the operators
corresponding to τi, ρi and σj , for the algorithm simu-
lating abelian anyons [45], one final rule is needed. If an
anyon is translated across cut A, the wave function picks
up an additional factor of eiθ for each anyon located in
the same column as the anyon being translated. This
additional phase is naturally contained in our algorithm,
see the rules summarized in Fig. 12. It thus follows
that for abelian anyons, our algorithm reproduces the
algorithm in Ref. [45].

Until now, we assumed that the appropri-

ate abelian anyon model is given by Zn+1/2
M for

n = p
2 −

1
2 ∈ {0, 1, ...,M − 1} (with η = 1) and M even,

see App. D 1. However, if the appropriate anyon model
turns out to be ZnM for n = p

2 ∈ {0, 1, ...,M − 1}, a very
similar result is obtained: Due to the F -moves being
trivial, the prefactor in Eq. (D6) is changed to eiθ(N−1)

and the prefactor in Eq. (D8) becomes e−iθ(N−1). All
other results remain unaffected. This implies that also
for these models, the two matrices τ1 and ρ1 can be
made to agree with those in Ref. [45] by introducing
external fluxes.

With this, it is shown that for abelian anyons, our al-
gorithm is related to the algorithm discussed in Ref. [45].
It is to be stressed that the two algorithms use different
conventions for external fluxes, which has to be kept in
mind when verifying this relation numerically.

Appendix E: Momentum States

Due to the periodicity in x- and y-direction, it is pos-
sible to construct momentum states which block diag-
onalize the Hamiltonian H given by Eq. (32). Before
discussing the actual construction, let us first introduce
a new notation for superpositions of the basis states in-
troduced in Sec. IV. We have seen that tuples, which are
used to associate fusion diagrams with the basis states,
correspond to wave function components. By thinking of
wave function components as different components of a
vector, we can alternatively associate unit vectors with
the tuples / fusion diagrams, i.e., we may associate tuple
f with the unit vector in the i-th direction, ~ei. A different
tuple f ′ is then assoicated with a unit vector along an-
other direction j 6= i. Using this notation, we can write
superpositions of basis states as∑

i

ai|(αk, ~rk)Nk=1, fi〉 ≡ |(αk, ~rk)Nk=1〉 ⊗ |
∑
iai~ei〉

≡ |(αk, ~rk)Nk=1,
∑
iai~ei〉,

(E1)

where ai ∈ C are arbitrary complex numbers and we as-
sociate unit vector ~ei with tuple fi. We refer to the vector

|
∑
i ai~ei〉 describing the superposition of fusion diagrams

as “fusion diagram amplitude vector” (FDAV) since the
entries in its components correspond to the probability
amplitude of the anyon configuration featuring the fusion
processes associated with the respective fusion diagrams.

We will further use the more convenient notation of | ~A〉
for the FDAV.

There are a few remarks to be made regarding the
above definition. First of all, we can use the superpo-
sitions (E1) rather than the states in Eq. (24) as basis
for computing the Hamiltonian H. We only need to en-

sure orthonormality, i.e., 〈 ~A| ~A〉 = 1 and 〈 ~A′| ~A〉 = 0 for

| ~A〉 6= | ~A′〉. Further, all the operators acting on the fu-
sion diagrams can be interpreted as matrices that are
to be multiplied onto the FDAVs. I.e., the F -moves,
R-moves, braid operators B and B′ and the punctured
torus S-matrices S(z) become unitary matrices in the
subspaces they act on. These subspaces are given by
the components corresponding to fusion diagrams that
are consistent with the indices of respective operators.
The punctured torus S-matrices S(z) for example repre-
sent unitary matrices in the subspaces corresponding to
fusion diagrams for which fN−1 = z in Eq. (9). The ma-
trices corresponding to the operators Ux (α, f ′, f) defined
by Eq. (A5) in App. A 2 turn out to be of particular in-
terest for the construction of the momentum states. We
thus introduce the notation

Ũx (α)ij = Ux (α, fi, fj) (E2)

for these matrices. Multiplying Ũx (α) onto | ~A〉 thus cor-
responds to moving the final anyon in the fusion order
around the torus in x-direction for each fusion diagram.
Since this operation is reasonable for every fusion dia-

gram / tuple, the matrices Ũx (α) are unitary in the
space corresponding to all possible linear combinations
of fusion diagrams. We can also express the property in

Eq. (A6) in terms of Ũx (α):

Ũx
(
σN−1(α)

)
Ũx
(
σN−2(α)

)
. . . Ũx (α) = 1, (E3)

where σ(1, 2, . . . , N) = (N, 1, 2, . . . , N − 1) again.
Note that if there are distinguishable anyonic excita-

tions in the system (see Sec. IV B), the tuples correspond-
ing to all the allowed fusion diagrams in general depend
on the anyon ordering. This means that while the di-
mensions of the vectors in the superpostions (E1) do not
change, the fusion diagrams associated with the individ-
ual components might change when exchanging anyons
of distinct charge.

Having introduced the new notation for superpositions
of fusion diagrams, we can now discuss the construction
of momentum states. To do this, we start in App. E 1
by taking a look at the action of the two operators Tx
and Ty that translate all anyons in positive x- and y-
direction, respectively. We then use this knowledge to
construct the momentum states (App. E 2), where we
first consider momentum eigenstates in x-direction in
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App. E 2 a. These states are then extended to momen-
tum eigenstates in both x- and y-direction in App. E 2 b.
Lastly, in App. E 3, we argue that the translation opera-
tors commute with each other and with the Hamiltonian
H, which is a requirement for them to block diagonalize
H. We also argue that both of the momentum states
indeed form bases of the Hilbert space. Note that the
final section does not contain information that is impor-
tant for the construction of the momentum states. It can
therefore be omitted.

1. The Translation Operators Tx and Ty

In this section, we introduce the two translation op-
erators Tx and Ty and discuss some properties that are
crucial for the construction of the momentum states later
on.

a. The Translation Operator Tx

Applying the translation operator Tx onto an arbitrary

state |s〉 = |(αk, ~rk)Nk=1,
~A〉 does in general not only shift

the anyons’ positions in positive x-direction, but does

also change the FDAV | ~A〉. From the braid rules dis-
cussed in the Sec. V, we know that braiding can only oc-
cur if anyons are translated over cut B since Tx translates
all anyons simultaneously. If only one anyon is translated
across cut B upon applying Tx, the FDAV is multiplied

by the matrix Ũx(α) introduced above.
If multiple anyons are translated simultaneously over

cut B, the resulting FDAV can be expressed in terms of

multiple matrices Ũx(α) being multiplied onto | ~A〉. The
reason for this can be seen when moving multiple anyons
around the non-contractible loop in a fusion diagram.

Successively applying Ũx(α) on | ~A〉 with the proper order
of anyon charges in the arguments then takes care of
the loops one after another, starting with the most inner
one. In fact, such fusion diagrams are also obtained if
Tx is applied multiple times onto a state, where for each
application, no more than a single anyon crosses cut B.
Thus, the application of Tx onto an arbitrary state can
be written as

Tx|(αk, ~rk)Nk=1, ~A〉 =|(αk, ~rk + ~ex)Nk=1〉

⊗
nx−1∏
i=0

Ũx(σi (α))| ~A〉.
(E4)

Here, ~rk + ~ex is understood modulo the lattice size

due to the PBC. The product
∏j−1
i=0 Ũx

(
σi (α)

)
=

Ũx
(
σj−1 (α)

)
Ũx
(
σj−2 (α)

)
...Ũx (α) is ordered,

σ(1, 2, ..., N) = (N, 1, 2, ..., N − 1) and nx is the
number of anyons being translated over cut B when
applying Tx.

From Eqs. (E3) and (E4), it can be seen that
T Lxx = 1, i.e., both the final anyon configuration and

the final FDAV after applying T Lxx agree with the
ones of the initial state. This is fairly obvious for the
anyon configuration due to the PBC. That this also
holds for the FDAVs can be seen when looking at an
arbitrary fusion diagram as given in Eq. (9): Applying
T Lxx is in terms of the fusion diagrams equivalent to
moving all N anyons around the non-contractible loop,
without any further braiding among them. As this is
done with all anyons, the diagram is in fact equivalent
to the initial one, as discussed in the context of Eq. (A6).

The insight above has important consequences: If an
anyon configuration on the lattice possesses a periodicity
px with 0 < px < Lx such that applying T pxx yields the
same anyon configuration again (where one also has to
consider the anyonic charges, not only the positions), the

matrices Ũx(α) associated with these configurations have
an additional property. Suppose that by applying T pxx ,
nx = Npx/Lx anyons are translated over cut B. Then,
it follows from Eq. (E3) that[

nx−1∏
i=0

Ũx
(
σi (α)

)]Lx/px
Pxpx = 1Pxpx , (E5)

where Pxpx denotes the projector onto the basis states
associated with anyon configurations possessing a peri-
odicity of px in x-direction. This implies that within

this subspace,
∏nx−1
i=0 Ũx

(
σi (α)

)
is diagonalizable with

eigenvalues e2πijpx/Lx , j ∈ {0, 1, ..., Lx/px − 1}. In par-
ticular, if there are N identical anyons on the lattice,

the matrix Ũx(α) (there exists only one matrix in this
case as each possible configuration of the charges {αk}
is the same) is diagonalizable with eigenvalues e2πij/N ,
j ∈ {0, 1, ..., N − 1}.

b. The Translation Operator Ty

Applying the translation operator in y-direction Ty
onto a state |(αk, ~rk)Nk=1,

~A〉 shifts the positions of all
anyons by one lattice spacing in positive y-direction and
entails braiding in the fusion diagrams if an anyon crosses
cut A. This braiding occurs as summarized in Fig. 12
in Sec. V B. If multiple anyons are translated across cut
A simultaneously, this rule is applied for each of those
anyons, where it is not important to apply the rule to
the relevant anyons in a specific order, as can be seen
from the following argument.

Suppose that two anyons a and b are translated across
cut A simultaneously, as depicted in diagrammatic form
in Fig. 19. If we first apply the rule in Fig. 12 to anyon
a and then to anyon b, the fusion diagram on the left in
Fig. 19 is obtained. On the other hand, if we first apply
the rule to anyon b and then to anyon a, the diagram
on the right in Fig. 19 is obtained. In both cases, the
line crossings can be resolved since the line of one anyon
is always in front of / behind the line of the other one,
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FIG. 19. When translating two anyons simulateously across cut A, it is not important to apply the rule summarized in Fig. 12
in a specific order. Applying it first on anyon a (left diagram) leads to the same result as applying it first to anyon b (right
diagram).

which leads to the fusion diagram in the center of Fig. 19.
Note that the presence of additional anyons that are not
translated across cut A upon applying Ty does not change
the above observation. It is straight forward to see from
Fig. 12 that braids involving such anyons are independent
from the order in which the rule in Fig. 12 is applied since
the positions of these anyons in the fusion diagrams do
not change.

With this argument, it becomes clear that anyons
crossing cut A do not braid with each other. These
anyons, however, do braid with all other anyons, which
is not unexpected, given the rule in Fig. 12. Further,
the same braided fusion diagram can be obtained if
the anyons are translated over cut A one after another,
that is, Ty is applied multiple times and each time
no more than a single anyon crosses cut A. This also

implies that applying T Lyy moves all anyons around the
non-contractible loop without braiding them with each
other, as the above argument can be employed for each
pair of anyons in this scenario. The resulting fusion
diagram is thus equal to the one before the application

of T Lyy , implying that T Lyy = 1 both in terms of the
anyon configurations and the fusion diagrams.

In principle, one could now write the action of Ty onto
an arbitrary state similar to Eq. (E4) in terms of B-
and B′-operators, the punctured torus S-matrix and the

matrices Ũx(α). We will forgo this since it would not add
any benefits as the operator string is already evident from
the rule in Fig. 12 and the example in App. A; it would be
necessary to introduce many new auxiliary quantities in
order to obtain a general, bloated expression that would
have to be absorbed into another quantity anyways in
order to maintain readable expressions. We will thus
simply write

Ty|(αk, ~rk)Nk=1, ~A〉 =|(αk, ~rk + ~ey)Nk=1〉

⊗ Ũy((αk, ~rk)Nk=1)| ~A〉,
(E6)

where ~rk + ~ey is understood modulo the lattice size.

Ũy((αk, ~rk)Nk=1) are matrices that apply the rule in

Fig. 12 to the superposition of fusion diagrams encoded

in | ~A〉 for each anyon that is translated across cut A
when applying Ty. These matrices do not only depend
on the order of the anyons {αk} in the initial state, but
also on their positions. We generalize this to the ordered

product
∏j−1
i=0 Ũy((αk, ~rk + i~ey)Nk=1) = Ũy((αk, ~rk + (j −

1)~ey)Nk=1)Ũy((αk, ~rk + (j − 2)~ey)Nk=1) . . . Ũy((αk, ~rk)Nk=1)
when applying T jy .

It is to be emphasized that Ũx(α) as defined in

Eq. (E4) and Ũy((αk, ~rk)Nk=1) as defined above are
different in the sense that for each time an anyon crosses

cut B, Ũx(α) is to be applied, i.e., the total number of

Ũx(α) to be applied depends on the particle number.

Ũy((αk, ~rk)Nk=1) on the other hand is applied for each
time Ty is acting on a state, which means the total

number of Ũy((αk, ~rk)Nk=1) to be applied does not depend
on the particle number.

Similar to the translation in x-direction, an anyon con-
figuration might be periodic in y-direction with a period-
icity py that is smaller than the lattice size, 0 < py < Ly.
In this case,

[
py−1∏
i=0

Ũy((αk, ~rk + i~ey)Nk=1)

]Ly/py
Pypy = 1Pypy (E7)

holds with Pypy being the projector onto the subspace
of anyon configurations possessing a periodicity of py
in y-direction. This implies that

∏py−1
i=0 Ũy((αk, ~rk +

i~ey)Nk=1) is diagonalizable with eigenvalues e2πijpy/Ly , j ∈
{0, 1, ..., Ly/py − 1}.

c. Combining Tx and Ty

We can further introduce the “mixed” periodicity
pxy ≡ (p′x, p

′
y) involving translations in both x- and y-

direction, which is defined by
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(p′x, p
′
y) ≡ min

i

(
min
j

(
{(i, j) : T jyT

i
x|(αk, ~rk)Nk=1〉 = |(αk, ~rk)Nk=1〉, 0 < i ≤ Lx, 0 < j ≤ Ly}

))
, (E8)

where p′y ≤ py holds. Here, the operators Tx and Ty
correspond to the parts in the translation operators Tx
and Ty that act on the anyon configurations and not on
the fusion diagrams. Using [Tx, Ty] = 0, which will be
argued below in App. E 3 a, it is evident that

[ p′y−1∏
i=0

Ũy((αk, ~rk + p′x~ex + i~ey)Nk=1)

×
nx(p′x)−1∏

i=0

Ũx(σi (α))

]γ
Pxyp′x,p′y = 1Pxyp′x,p′y ,

(E9)

where γ is the least common multiple of Lx/p
′
x

and Ly/p
′
y and nx(p′x) again denotes the number

of anyons being translated over cut B when apply-

ing T p
′
x

x . The projector Pxyp′x,p′y projects onto the

subspace spanned by the anyon configurations pos-
sessing the mixed periodicity (p′x, p

′
y). Similar to

the other cases, it follows that
∏p′y−1

i=0 Ũy((αk, ~rk +

p′x~ex + i~ey)Nk=1)
∏nx(p′x)−1
i=0 Ũx(σi (α)) is diagonalizable

with eigenvalues e2πij/γ , j ∈ {0, 1, ..., γ − 1}.

2. Construction of Momentum States

Using the above relations, we can now construct mo-
mentum states in x- and y-direction.

a. Construction of Momentum States in x-Direction

Let us start by first constructing momentum states
that exploit the translational invariance in x-direction,
for which property (E5) is crucial. These states are

|(αk, ~rk)Nk=1, kx, ~A〉 ≡
1√
Nx

Lx−1∑
j=0

eijkxT jx |(αk, ~rk)Nk=1, ~A〉

=
1√
Nx

Lx−1∑
j=0

eijkx |(αk, ~rk + j~ex)Nk=1〉 ⊗
nx(j)−1∏
i=0

Ũx(σi (α))| ~A〉,

(E10)

where nx(j) denotes the number of anyons being
translated across cut B when applying T jx onto

|(αk, ~rk)Nk=1,
~A〉, Nx = L2

x/px the normalization con-
stant and kx the momentum in x-direction with kx ∈
{0, 2π/Lx, ..., 2π(Lx − 1)/Lx} if px = Lx with the peri-
odicity in x-direction px (the case px < Lx is considered

below). |(αk, ~rk)Nk=1,
~A〉 will be refered to as “reference

state” of |(αk, ~rk)Nk=1, kx,
~A〉, as it is the state generat-

ing the momentum state by being translated. From the
definition in Eq. (E10), it can be seen that

Tx|(αk, ~rk)Nk=1, kx,
~A〉 = e−ikx |(αk, ~rk)Nk=1, kx,

~A〉,
(E11)

as expected for a momentum state with momentum kx.

If the anyon configuration of |(αk, ~rk)Nk=1,
~A〉 in

Eq. (E10) is periodic in x-direction with a periodic-
ity px < Lx, there is a constraint for the allowed mo-

menta kx. By choosing | ~A〉 to be an eigenvector of

∏nx(px)−1
i=0 Ũx

(
σi (α)

)
,

eipxkxe2πiβpx/Lx = 1

with

nx(px)−1∏
i=0

Ũx
(
σi (α)

)
| ~A〉 = e2πiβpx/Lx | ~A〉

(E12)

has to be fulfilled, restricting the allowed momenta to
kx = 2πn/px − 2πβ/Lx, n ∈ {0, 1, ..., px − 1}. Here,
β ∈ {0, 1, ..., Lx/px − 1} is an integer that is deter-
mined by the second equation in Eq. (E12). The
above constraint follows from Eq. (E5) and assures that

eipxkxT pxx |(αk, ~rk)Nk=1,
~A〉 = |(αk, ~rk)Nk=1,

~A〉. Note that
the allowed values for kx are in sharp contrast to the re-
spective values for fermionic and bosonic systems since
the momenta for anyons are shifted by 2πβ/Lx, i.e., not
all momenta are multiples of 2π/px.

Thus, when constructing momentum states with mo-
mentum in x-direction, one first has to find the period-
icity px of each anyon configuration. Then, if px < Lx,
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eigenstates of
∏nx(px)−1
i=0 Ũx

(
σi (α)

)
have to be used as

FDAVs. The momentum sectors in which such a state
may exist are obtained by checking condition (E12). If

there are multiple eigenstates | ~A〉 to the same eigenvalue,
it is to be assured that these eigenstates are pairwise or-
thonormal.

b. Construction of Momentum States in x- and y-Direction

Using the considerations for the translation operators
discussed in App. E 1 and those in the previous section,

we can now construct momentum states possessing the
momentum kx in x-direction and ky in y-direction:

|(αk, ~rk)Nk=1,
~k, ~A〉 ≡ 1√

Nxy

Lx−1∑
j=0

Ly−1∑
l=0

eijkx+ilkyT lyT jx |(αk, ~rk)Nk=1, ~A〉

=
1√
Nxy

Lx−1∑
j=0

Ly−1∑
l=0

eijkx+ilky |(αk, ~rk + j~ex + l~ey)Nk=1〉 ⊗
l−1∏
i=0

Ũy((αk, ~rk + j~ex + i~ey)Nk=1)

nx(j)−1∏
i=0

Ũx(σi (α))| ~A〉,

(E13)

where ~k = (kx, ky)> denotes the momentum vector and
Nxy = L2

xL
2
y/pxp

′
y the normalization constant. When

there are no additional constraints due to the periodic-
ities px, py, p′x and p′y, the allowed momenta are given
by kx(y) ∈ {0, 2π/Lx(y), ..., 2π(Lx(y) − 1)/Lx(y)}. Sim-
ilar to the momentum eigenstates in x-direction, for

|(αk, ~rk)Nk=1,
~k, ~A〉,

Tx(y)|(αk, ~rk)Nk=1,
~k, ~A〉 = e−ikx(y) |(αk, ~rk)Nk=1,

~k, ~A〉
(E14)

holds. When constructing the momentum states for a

reference state |(αk, ~rk)Nk=1,
~A〉 with non-trivial periodic-

ities, there are multiple things to consider. First of all,
if px < Lx, the same constraint as for momentum states

in x-direction has to be fulfilled: | ~A〉 has to be chosen to

be an eigenvector of
∏nx(px)−1
i=0 Ũx(σi (α)) and Eq. (E12)

has to be fulfilled, restricting the allowed momenta in x-
direction to kx = 2πn/px−2πβ/Lx, n ∈ {0, 1, ..., px−1},
where β ∈ {0, 1, ..., Lx/px − 1} is determined by the sec-
ond equation in Eq. (E12).

If py < Ly, | ~A〉 has to be chosen to be an eigenvector

of
∏py−1
i=0 Ũy((αk, ~rk + i~ey)Nk=1) that fulfills

eipykye2πiβ′py/Ly = 1

with

py−1∏
i=0

Ũy((αk, ~rk + i~ey)Nk=1)| ~A〉 = e2πiβ′py/Ly | ~A〉,

(E15)

which restricts the allowed momenta in y-direction to
ky = 2πn/py − 2πβ′/Ly, n ∈ {0, 1, ..., py − 1}, where

β′ ∈ {0, 1, ..., Ly/py − 1} is determined by the second
relation in Eq. (E15).

Finally, if p′y < py, one has to choose | ~A〉
to be an eigenvector of

∏p′y−1

i=0 Ũy((αk, ~rk + p′x~ex +

i~ey)Nk=1)
∏nx(p′x)−1
i=0 Ũx

(
σi (α)

)
that fulfills

eip
′
xkx+ip′ykye2πiβ′′/γ = 1

with

p′y−1∏
i=0

Ũy((αk, ~rk + p′x~ex+i~ey)Nk=1)

×
nx(p′x)−1∏

i=0

Ũx
(
σi (α)

)
| ~A〉 = e2πiβ′′/γ | ~A〉,

(E16)

where γ again denotes the least common multi-
ple of Lx/p

′
x and Ly/p

′
y. This restricts the al-

lowed momenta to kx = 2πn/p′x − 2πβx/Lx and
ky = 2πm/p′y − 2πβy/Ly, n ∈ {0, 1, ..., p′x − 1},
m ∈ {0, 1, ..., p′y − 1} for all choices of βx and βy such
that exp(2πi(p′xβx/Lx + p′yβy/Ly)) = exp(2πiβ′′/γ),
where βx and βy are integers fulfilling 0 ≤ βx < Lx/p

′
x

and 0 ≤ βy < Ly/p
′
y and β′′ ∈ {0, 1, . . . γ − 1} is deter-

mined by the second equation in Eq. (E16). Note that
if p′y = py, this case is already covered by combining the
constraints due to the periodicities in x- and y-direction.
In this case, Eq. (E16) does not correspond to an
additonal constraint.

If a reference state |(αk, ~rk)Nk=1,
~A〉 fulfills multiple of

the conditions mentioned above (px < Lx, py < Ly, p′y <
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py), the FDAVs | ~A〉 need to be eigenvectors of all the
corresponding operators. The allowed momenta for the

momentum states |(αk, ~rk)Nk=1,
~k, ~A〉 are then restricted

by all the respective constraints given by Eqs. (E12),
(E15) and / or (E16). Due to the commutation rela-
tion [Tx, Ty] = 0 (see App. E 3 a below), we can indeed
choose the FDAVs to be simultaneous eigenstates of the
relevant operators.

To summarize, when constructing the momentum

states |(αk, ~rk)Nk=1,
~k, ~A〉, we should first find the period-

icities px, py, p′x and p′y of the anyon configuration and
identify which of the three constraints discussed above
need to be considered. Then, the FDAVs have to be
chosen to be (simultaneous) eigenstates of the relevant
operators, which also determines the allowed momenta.
Different FDAVs to identical anyon configurations have
to be orthogonal. Simultaneous eigenvectors of two op-
erators can be found numerically using the Zassenhaus
algorithm [85, 86], which computes a basis for the sum
and the intersection of two subspaces of a vectorspace.
In particular, we are interested in the intersection of the
subspace of an operator O1 corresponding to an eigen-
value v1 with the subspace of another operator O2 cor-
responding to some other eigenvalue v2, where the vec-
torspace is spanned by the FDAVs. All the vectors in
the intersection are therefore simultaneous eigenvectors
of the two operators O1 and O2 to the associated eigen-
values v1 and v2. If for an anyon configuration, e.g.,
px < Lx, py < Ly and p′y = py, we can find the eigenvec-

tors and therefore the subspaces of
∏nx(px)−1
i=0 Ũx

(
σi (α)

)
and

∏py−1
i=0 Ũy((αk, ~rk + i~ey)Nk=1) by diagonalization and

then find the simultaneous eigenvectors in the intersec-
tions of all the combinations of subspaces to the different
eigenvalues of the two operators using the Zassenhaus
algorithm. When identifying the different subspaces, it
is crucial to account for the numerical precision: In the
diagonalization process, one might obtain two slightly
different eigenvalues which in fact would agree with each
other in an exact treatment. Such cases can be identified
since we know the typical magnitude of numerical errors
and already discussed the form of all possible eigenval-
ues to the relevant operators. We thus need to combine
the corresponding eigenvectors in order to form to correct
(higher dimensional) subspaces. Otherwise, we might not
obtain the correct number of simultaneous eigenstates in
the intersections.

The simultaneous eigenvectors of three operators can
be found by applying the Zassenhaus algorithm a second
time, where one subspace corresponds to an intersection
of two subspaces of the first two operators, the other
subspace corresponds to a subpace of the third operator,
i.e., one subspace already corresponds to an eigenvalue
pair of the first two operators, the second subspace to
an eigenvalue of the third operator. With this method,
it is possible to construct all allowed momentum states

|(αk, ~rk)Nk=1,
~k, ~A〉 to every anyon configuration.

3. Existence and Completeness

Here, we argue that the momentum states constructed
above can indeed be used to block diagonalize the Hamil-
tonian H. We start by showing the necessary commuta-
tion relations involving H, Tx and Ty and then argue that
the momentum states form bases of the Hilbert space.

a. Commutator Relations

First, let us note that the translation operator Tx as
described in App. E 1 a can be thought of as applying the
part of the Hamiltonian H that translates anyons in pos-
itive x-direction in arbitrary order on each site at which
an anyon is located. This point of view is straight forward
to verify using the rules summarized in Figs. 8 and 10.
Due to the fact that all anyons are translated, there is
no braiding between different anyons involved; they can
at most move acorss cut B, which corresponds to mov-
ing the corresponding lines around the non-contractible
loop in the fusion diagrams. Similarly, we can see from
App. E 1 b that Ty can be thought of as applying the part
of the Hamiltonian H that translates anyons in positive
y-direction on each occupied site in arbitrary order. This
time however, in the fusion diagrams, braiding occurs be-
tween anyons that cross cut A and anyons that do not
cross cut A.

From these considerations, it can be seen that Tx (Ty)
commutes with the part of H that translates anyons
in x-direction (y-direction), that is, TxT~ri,~ri+~exT −1

x =
T~ri+~ex,~ri+2~ex and TyT~ri,~ri+~eyT −1

y = T~ri+~ey,~ri+2~ey , where
T~ri,~ri+~ex and T~ri,~ri+~ey are the translation operators in
the Hamiltonian H in Eq. (32).

To argue that TxT~ri,~ri+~eyT −1
x = T~ri+~ex,~ri+~ex+~ey , we

note that the action of T~ri,~ri+~ey is only non-trivial
in terms of the fusion diagrams if the anyon located
at ~ri is translated across cut A. Even in this case,
TxT~ri,~ri+~eyT −1

x = T~ri+~ex,~ri+~ex+~ey holds since Tx com-

pensates all effects introduced by applying T −1
x . This

can be understood intuitively by looking at Fig. 9. If the
term TxT~ri,~ri+~eyT −1

x was not equal to T~ri+~ex,~ri+~ex+~ey ,
this inequality would need to show up in the fusion dia-
grams, that is, the braids would differ. This is equivalent
to TxT~ri,~ri+~eyT −1

x T−1
~ri+~ex,~ri+~ex+~ey

6= 1, which describes

a process after which all anyons are again at their ini-
tial positions. This process can only be non-trivial in
the fusion diargams if one anyon circles around another
one. Since this is not possible due to Tx translating all
anyons simultaneously, it follows that TxT~ri,~ri+~eyT −1

x =
T~ri+~ex,~ri+~ex+~ey .

Similarly, it follows that TyT~ri,~ri+~exT −1
y =

T~ri+~ey,~ri+~ex+~ey since after the process described by

TyT~ri,~ri+~exT −1
y T−1

~ri+~ey,~ri+~ex+~ey
, all anyons are back at

their initial positions without any braids due to Ty
translating all anyons simultaneously. Overall, it thus
follows that [H, Tx] = [H, Ty] = 0. Since both Tx and
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Ty commute with the parts in H that translate anyons
along the different directions and can be viewed as these
very parts acting on all the anyons, it is clear that
[Tx, Ty] = 0 holds. Together with the other commutation
relations, it follows that H can be block diagonalized
using the simultaneous eigenstates of Tx and Ty that are
constructed in App. E 2.

b. Completeness of Momentum States in x-Direction

Here, we show that the momentum states

|(αk, ~rk)Nk=1, kx,
~A〉 introduced in Eq. (E10) indeed

form a basis of the Hilbert space, i.e., that different
momentum states are orthogonal and that the num-

ber of momentum states equals the number of states
in the original basis given by Eq. (24). As for the
orthogonality, it is easy to see that two momentum
states with unrelated reference states, meaning that the
anyon configuration of one reference state can not be
brought to the form of the anyon configuration of the
other one using Tx-operators, are orthogonal. We can
thus focus on momentum states with related reference
states and for those, we assume that the reference states
possess identical anyon configurations. This does not
further restrict the number of momentum states since
a momentum state generated by a translated version
of a reference state differs from the original one merely
by a phase. The overlap between two momentum
states whose reference states have identical anyon
configurations is given by

〈(αk, ~rk)Nk=1, k
′
x, ~A′|(αk, ~rk)Nk=1, kx, ~A〉

=
1

Nx

Lx−1∑
j,j′=0

ei(jkx−j
′k′x)〈(αk, ~rk)Nk=1, ~A′|T j−j

′

x |(αk, ~rk)Nk=1, ~A〉

=
1

Nx

px−1∑
j,j′=0

Lx/px−1∑
l,l′=0

ei(jkx−j
′k′x)〈(αk, ~rk)Nk=1, ~A′|T j−j

′

x |(αk, ~rk)Nk=1, ~A〉 =
L2
x/px
Nx

δkxk′x〈 ~A′| ~A〉.

(E17)

First, each sum ranging from 0 to Lx−1 appearing in the
momentum states can be divided into two sums, where
the limits of the first one are 0 and px−1 and the limits of
the second one 0 and Lx/px − 1; both momentum states
have the same periodicity since the reference states pos-
sess identical anyon configurations. Then, using that the
overlap of the anyon configurations yields δjj′ , the sum
over j is pxδkxk′x . The latter holds because the allowed
momenta for a momentum state with periodicity px are
2πn/px − 2πβ/Lx, n ∈ {0, 1, ..., px − 1}. The relevant

part in the sum is thus
∑px−1
j=0 exp 2πi(n− n′)j/px =

pxδn,n′ = pxδkxk′x , where it was already used that the

eigenvalue of
∏nx(px)−1
i=0 Ũx

(
σi (α)

)
for both of the two

reference states is identical due to the overlap 〈 ~A′| ~A〉.
One finally arrives at the last expression in Eq. (E17),
which states that both the momenta and the FDAVs have
to be identical for a non-zero overlap. As we already ar-
gued that the anyon configuration also has to match, it
follows that the momentum states are pairwise orthonor-
mal. This calculation also shows that Nx = L2

x/px.
There is a straight forward argument that the total

number of momentum states |(αk, ~rk)Nk=1, kx,
~A〉 is the

same as the total number of states |(αk, ~rk)Nk=1,
~A〉 in the

original basis: Every given anyon configuration possesses
a periodicity px ≤ Lx. By using a certain configuration
for the reference state, one can generate px different mo-
mentum states. At the same time, for the original basis,

there are also px states that have this exact anyon con-
figuration with the only difference being that all anyons
are translated in x-direction by 0, 1, . . . , px−1 sites. Tak-
ing the FDAVs into account yields a similar result. Due

to the fact that
∏nx(px)−1
i=0 Ũx

(
σi (α)

)
is diagonalizable,

the number of eigenvectors coincides with the number of
distinct FDAVs of the original basis and thus, it follows
that the number of momentum states equals the number
of states in the original basis. Therefore, the momen-

tum states |(αk, ~rk)Nk=1, kx,
~A〉 indeed form a basis of the

Hilbert space.

c. Completeness of Momentum States in x- and y-Direction

In order to show that the momentum states
|(αk, ~rk)Nk=1,

~k, ~A〉 also form a basis of the Hilbert
space, we first show their orthogonality, similar to
the procedure for the momentum states in x-direction

|(αk, ~rk)Nk=1, kx,
~A〉. Momentum states generated by ref-

erence states whose anyon configurations can not be
made to agree with each other by applying Tx- and Ty-
operators are orthogonal. Thus, we assume in the follow-
ing that the considered momentum states are generated
by the same reference state. The overlap between two

such momentum states with momenta ~k = (kx, ky) and
~k′ = (k′x, k

′
y) is
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〈(αk, ~rk)Nk=1,
~k′, ~A′|(αk, ~rk)Nk=1,

~k, ~A〉

=
1

Nxy

Lx−1∑
j,j′=0

Ly−1∑
l,l′=0

ei(jkx−j
′k′x)+i(lky−l′k′y)〈(αk, ~rk)Nk=1, ~A′|T l−l

′

y T j−j
′

x |(αk, ~rk)Nk=1, ~A〉

=
L2
xL

2
y/pxp

′
y

Nxy
δkxk′xδkyk′y 〈 ~A′| ~A〉.

(E18)

The calculation is similar to the one in Eq. (E17): Using
the definition of the translation operators and the rela-
tions (E12), (E15) and (E16), the sums over j, j′ and l, l′

yield δkxk′xL
2
x/px and δkyk′yL

2
y/p
′
y and the FDAVs’ scalar

product. The periodicity p′y appears instead of py since
in the definition of the mixed periodicity in Eq. (E8),
we first minimize with respect to the translations in y-
direction. From Eq. (E18), we see that the momentum

states |(αk, ~rk)Nk=1,
~k, ~A〉 are orthonormal.

There is also an argument that the total number of

momentum states |(αk, ~rk)Nk=1,
~k, ~A〉 agrees with the total

number of basis states |(αk, ~rk)Nk=1,
~A〉. For a given anyon

configuration, each combination of translations in x- and
y-direction is also contained in the latter basis, where the
number of translations in x- and y-direction have to be
chosen such that double counting is avoided. If we now
use this anyon configuration (or an arbitrary translation
of it) for the reference state to generate all allowed mo-
mentum states, it can be seen from the constraints (E12),
(E15) and (E16) that the number of momentum states
with distinct momentum quantum numbers agrees with

the number of states |(αk, ~rk)Nk=1,
~A〉 that possess this

anyon configuration modulo translations. A similar re-
sult is obtained when also considering the FDAVs. As Tx
and Ty are unitary and commute, these operators can be
simultaneously diagonalized. It follows that the number
of eigenvectors agrees with the dimensions of the FDAVs

and thus also with the number of states |(αk, ~rk)Nk=1,
~A〉.

Using this result and the orthonormality, it is shown
that the momentum states with momentum in x- and y-
direction indeed form another basis of the Hilbert space.

Appendix F: Constraints on the Phases Associated
with Non-trivial Loops

As previously mentioned in Sec. V B, there are different
conventions [45, 46, 70, 83] regarding which phase is to
be picked up by the wave function when an anyon is
translated along a non-trivial loop around the torus. This
phase is independent of the presence of other particles,
that is, it is also relevant for the single particle case and
thus has to be considered in addition to the statistical
effects among the anyons. It is clear that such phases
cannot be model dependent if they are truly associated
with the anyons themselves.

An answer to the question of which values such phases
are allowed to take can be found using TQFT. The ac-
tion of Wilson loop operators Wa(C) [27, 57], which act
along closed loops C, corresponds to creating an anyon-
antianyon pair (a and a), moving one of the anyons along
C and letting the anyons annihilate again. If translat-
ing anyons along non-trivial loops results in non-trivial
phases, such phases must be consistent with the Wilson
loop operators and their properties. In particular, the
Wilson loop operators fulfil the Verlinde algebra [87]:

Wa(C)Wb(C) =
∑
c

N c
abWc(C). (F1)

Let us now assume that there are multiple choices for the
phases we are interested in. Then, Eq. (F1) has to hold
for each of these choices. We can thus replace8 Wa(C)→
αaWa(C) (|αa| = 1) to derive a constraint on the allowed
phases. In general, this implies that αc = αaαb if N c

ab >
0, which already fixes α1 = 1 (due to N1

11 = 1) for the
vacuum charge.

Let us focus on what the above implies for the models
considered in this work. For abelian anyon models, using
the notation introduced in Sec. D (i.e., the vacuum charge
is now denoted by 0), we arrive at αn = e2πinl/M with
l ∈ {0, 1, ...,M − 1} for a model containing M anyonic
charges, where M = 2 for the semionic anyon model. It
has already been pointed out in Ref. [45] that all these
choices for αn are equivalent. For Fibonacci anyons, we
obtain the equation α2

τ (W1(C) + Wτ (C)) = W1(C) +
ατWτ (C), implying ατ = 1. For Ising anyons, using
Nσ
σψ = 1 = N1

σσ = Nψ
σσ, we get αψ = 1 and ασ = ±19.

Note that replacing the Wilson loop operators along
the non-trivial loops Wa(C) → αaWa(C) does also

8 If we think of Wilson loop operators as consisting of local op-
erators that translate anyons from one lattice site to a neigh-
boring one (assuming there is one anyon localized on one of the
two sites), we can interpret this replacement as introducing this
phase only for the operators translating anyons over cuts A and
B in our convention (see Fig. 6). In particular, this means that
Wilson loop operators acting along trivial loops are not affected.

9 Doing a quick analysis of the energy spectrum for different lattice
sizes, we found no differences between the choices ασ = 1 and
ασ = −1; the momenta are however shifted accordingly. This
suggests that both choices are equivalent, similar to the abelian
case.
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affect the S-matrix, see, e.g., the relevant equations in
Ref. [87]. The S-matrix then includes both the mutual
statistics of the anyons and these phases. Further, note
that it is also possible to use different choices for {αa}
for the non-trivial loops along different directions, as
long as consistency is ensured.

Having found whether or not the phases of interest
are unique, we still need a method to actually determine
them since the above considerations only show how one
set of phases can be obtained from another one. We
choose the determine the phases by considering string-net
models [10]. For these models, acting with Wilson loop
operators Wa(C) onto the vacuum state only yields triv-

ial phases, which in particular also holds for non-trivial
closed loops (the action of Wa(C) does have additional
effects on the vacuum state, which are of no interest for
this discussion). Specifically, there are string-net mod-
els that realize the doubled versions of the three anyon
models we consider, meaning that we are indeed correct
in setting these phase factors to one.

Note that the above discussion does not necessarily
mean that other choices for the phases, as found in, e.g.,
Refs. [46, 70, 83] are false. As already noted in Ref. [70],
the phases may actually be model-dependent. The Read-
Rezayi state [16], for example, exhibits a U(1) symmetry
that can be thought of as gauge freedom if the physical
system does not choose a particular U(1) sector.
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