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Abstract

The new millennium has seen an explosion of computational approaches to the study of music

production, due in part to the decreasing cost of computation and the increase of digital music

production techniques. The rise of digital recording equipment, MIDI, digital audio work-

stations (DAWs), and software plugins for audio effects led to the digital capture of various

processes in music production. This discretization of traditionally analogue methods allowed

for the development of intelligent music production, which uses machine learning to numeri-

cally characterize and automate portions of the music production process. One algorithm from

the field referred to as “reverse engineering a multitrack mix” can recover the audio effects

processing used to transform a multitrack recording into a mixdown in the absence of infor-

mation about how the mixdown was achieved.

This thesis improves on this method of reverse engineering a mix by leveraging recent ad-

vancements in machine learning for audio. Using the differentiable digital signal processing

paradigm, greybox modules for gain, panning, equalisation, artificial reverberation, memory-

less waveshaping distortion, and dynamic range compression are presented. These modules are

then connected in a mixing chain and are optimized to learn the effects used in a given mixdown.

Both objective and perceptual metrics are presented to measure the performance of these

various modules in isolation and within a full mixing chain. Ultimately a fully differentiable

mixing chain is presented that outperforms previously proposed methods to reverse engineer a

mix. Directions for future work are proposed to improve characterization of multitrack mixing

behaviours.
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Chapter 1

Introduction

1.1 Background

The field of music production is incredibly broad, with research journals, conferences, and

university programs dedicated to its study and advancement. To quote Burgess [2013]

Music production is the technological extension of composition and orchestration.

It captures the fullness of a composition, its orchestration, and the performative in-

tention of the composer(s). In its precision and inherent ability to capture cultural,

individual, environmental, timbral, and interpretive subtleties along with those of

intonation, timing, intention, and meaning (except where amorphousness is speci-

fied), it is superior to written music and oral traditions. Music production is not

only representational but also an art in itself.

The new millennium has seen an explosion of computational approaches to the study of

music production, due in part to the decreasing cost of computation and the increase of digital

music production techniques. The rise of digital recording equipment, MIDI, digital audio

workstations (DAWs), and software plugins for audio effects led to the digital capture of var-

ious processes in music production [Burgess, 2014]. The discretization and transfer of music

production into the digital realm invites its measure along some numerical dimension, and this

measurement is a form of production in and of itself [Foucoult, 1975].

During this period the fields of music information retrieval (MIR) and machine learning

(ML) have seen significant advancements that have provided methods for measuring and em-

ulating portions of music production. Early machine learning experiments demonstrated that

artificial neural networks (ANNs) could be used for music composition [Mozer, 1994, Eck and

Schmidhuber, 2002], with more recent advancements acting as a co-composer and extending

compositions [Dinculescu et al.]. Digital audio synthesis has expanded from simple additive

methods such as those presented in Risberg and Shapiro [1981] to the synthesis of minute-long

mp3 files [Broek, 2021]. For tasks related to multitrack mixing, a quick survey of the mar-

ket sees both MIR and ML employed in software plugins such as iZotope’s production suite,

hardware such as Digico’s mixing consoles, and music production platforms such as LANDR.

These latter algorithms can be roughly lumped into a body of research referred to as

“Intelligent Music Production,” (IMP) which is interested in automating portions of the music
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production process. Some mix engineers maintain that portions of the mixing process are ripe

for automation because they are rote, time-consuming, and require little creative thought. To

quote White [2008], “there’s no reason why a band recording using reasonably conventional

instrumentation shouldn’t be EQ’d and balanced automatically by advanced DAW software.”

According to the definition provided by De Man et al. [2019], “intelligence” refers to the

automatic parameter configuration based on the analysis of the signals these systems work on

(often driven by machine learning), and “music production” refers roughly to multitrack mixing

as defined by effects processing applied to a multitrack recording to produce a mixdown. In the

introduction of De Man et al. [2019], the authors state that “novel, multi-input multi-output

(MIMO) audio signal processing methods are required, which can analyze the content of all

sources to then improve the quality of capturing, altering and combining multitrack audio.”

Recently published literature has demonstrated that ANNs constitute a family of these

novel MIMO methods. Examples such as [Stein et al., 2010, Mart́ınez Ramı́rez et al., 2021,

Mart́ınez-Ramı́rez et al., 2022] present algorithms that transform a multitrack to a mixdown

with no input from a mix engineer. These neural networks extract information about individual

tracks of the multitrack, combine this information, and use it to apply audio effects across the

multitrack and produce a mixdown. If a machine can successfully imitate the mix engineering

process, what further lines of inquiry exist for researchers looking to push the field of IMP?

Two research opportunities immediately present themselves when diving into how these

systems work. First, the audio processing applied to the multitrack by these algorithms do

not allow for the intervention of a mix engineer. Each of these algorithms performs effects

processing using blackbox audio effects, which means they use neural network-based computa-

tions to produce a mixdown rather than traditional digital signal processing algorithms. Case in

point, the neural network in [Mart́ınez Ramı́rez et al., 2021] mixes a multitrack using cropping,

concatenation, and convolutional operations. Though the mixdowns produced by the neural

network are indistinguishable from mixdowns that use traditional effects like dynamic range

compression and equalisation, a mix engineer would have a hard time making adjustments to

the machine’s mix due to its elaborate computations.

Second, these models have not been used to explain tendencies or trends in multitrack

mixing. Upon inspection, these ANNs contain an implicit model of mixing behaviour that

is the result of being trained on some dataset – given a multitrack, the ANN will produce a

mixdown by applying effects based on some knowledge it has distilled from the dataset it was

trained on. If machine learning is powerful enough to imitate multitrack mixing in some broad

sense, can it be used to numerically characterize mixing behaviours and tendencies?

MIR has found applications towards answering this second question. In Wilson and Fazenda

[2016], the authors perform MIR feature extraction on a dataset of mixdowns and analyze how

these features vary across mixes. While there is some disagreement in the literature regarding

how this approach may generalize [Colonel and Reiss, 2019], the core idea remains illuminating

– if a model of mix engineering behaviour exists in datasets of multitracks and their mixdowns,

how best can it be extracted?

An ethnographic approach to this question was presented in [Pras et al., 2018]. Here,

the authors gathered data from mixing sessions made by five students in the Paris Conser-

vatoire’s mix engineering program. The authors noted the order of tasks the mix engineers

performed, how long these tasks took, the usage of audio effects, and the manner in which this
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processing was applied (i.e. analog effects, DAW, etc). Low-level information regarding the

relative loudness of sonic elements in the mix was gathered as well, made possible by the re-

searchers collecting the students’ DAW sessions and printing the individual stems. Though the

researchers presented insightful characterization of these students’ mixing behaviours, there

exists a roadblock when looking to scale up this approach to numerically model mixing. The

collection and maintenance of DAW sessions is difficult and labor intensive, as version updates,

software licenses, and quirks across platforms can all prevent access to the mixing sessions. The

introduction of any analogue equipment or non-stock software plugins into the mixing chain

would only compound these issues.

Another approach, called “reverse engineering a mix,” was proposed in Barchiesi and Reiss

[2010]. Given a multitrack and a mixdown this technique can match the effects used to mix the

multitrack, with certain limitations. For example, this method does not attempt to match any

reverb that may be used in a mixdown. Moreover, the paper presents separate methods for

matching linear processing and nonlinear processing with no explicit method for combining the

two into a full mixing chain. However, this approach does sidestep the need for DAW sessions

as it makes no assumptions about how the mix was produced, e.g. if analogue technology was

used, or what DAW the session may have been mixed in.

Given the recent developments in machine learning for audio mentioned above, it is worth-

while to revisit reverse engineering a mix with modern techniques.

1.2 Research Questions

The overarching question that underpins this thesis is

How can recent advances in machine learning for audio improve the

technique of reverse engineering a mix?

Barchiesi and Reiss [2010] mentions that one way to improve the reverse engineering algo-

rithm would be to jointly solve for the linear and nonlinear processing in the mixdown. The

software provided by the authors can reverse engineer either the dynamics processing of a

mixdown, constrained to dynamic range compression, or the linear processing of a mixdown,

constrained to a finite impulse response equaliser. Can a new approach to reverse engi-

neering a mix simultaneously optimize the linear and nonlinear processing of the

mix?

When evaluating improvements to this approach, the ultimate goal is to reverse engineer a

mix within perceptual tolerance. Though this was not a goal explicitly stated in Barchiesi and

Reiss [2010], reaching perceptual tolerance would demonstrate that the improved algorithm is

sufficiently powerful to model mix engineering behaviour.

It would also be ideal for this new approach to reach perceptual tolerance with limited

information about what processing was used to produce the target mixdown. A successful

improvement to the reverse engineering algorithm would be able to match a mix produced by

a human mixer using methods of their own choosing within perceptual tolerance, regardless of

the software or hardware employed. Thus, this work asks can a mix be reverse engineered

in the absence of information about how the mixdown was produced? A successful
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answer to this question may help to expand and scale research like Pras et al. [2018] by avoiding

the need to collect and maintain DAW sessions, equipment lists, and effect parameter notes.

This leads to another question: which audio effects need to be emulated in order

to reverse engineer a mix within perceptual tolerance? There is much research de-

voted to the emulation of individual audio effects using machine learning and neural networks.

Therefore, decisions will ultimately be made regarding the composition of the mixing chain the

algorithm reverse engineers.

Finally, Can the parameters of a reverse engineered mixdown be made legible to

a mix engineer? Avoiding blackbox mixing, such as that mentioned above Mart́ınez Ramı́rez

et al. [2021], would be a welcome addition to the field of IMP. Designing an algorithm which

applies legible audio processing in a familiar mixing chain allows for the interrogation of re-

sults by mixing practitioners, and the rendering of these sessions into standardized numerical

parameters allows for their manipulation by MIR and ML techniques.

1.3 Aim

This work aims to improve and expand upon methods for “reverse engineering a mix” using

recent developments in machine learning for audio. More specifically, the field of differentiable

digital signal processing (DDSP) will serve as the basis for the development of the algorithms

presented here. The choice of DDSP avoids the blackbox approaches to neural network multi-

track mixing mentioned above.

Individual audio effects commonly employed by mix engineers will be explicitly modelled

using DDSP and benchmarked. These effects will include gain, panning, equalisation, memo-

ryless distortion, dynamic range compression, and artificial reverberation. These effects will be

implemented in a greybox manner, which means that their parameters will be interpretable to

a mix engineer. As standalone algorithms, these modules contribute to a large body of DDSP

literature and may have broad application to tasks outside of mix modelling.

Ultimately these effect modules will be combined to recreate a mixing chain and used to

reverse engineer mixes. Various configurations of these mixing chains will be tested against

human made mixdowns with minimal restrictions to test their modelling capabilities. Listening

tests will be conducted on the outputs of these systems to determine whether or not they match

targets within perceptual tolerance.
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1.4 Thesis structure

Chapter 2 provides necessary background of music production for the dissertation. This

includes descriptions of music production, multitrack mix engineering, and audio effects.

Chapter 3 outlines machine learning for audio. This includes definitions of machine learning,

gradient descent, neural networks, and music information retrieval. A literature review

is also presented on differentiable digital signal processing, audio effects modelling with

machine learning, and automatic multitrack mixing with neural networks.

Chapter 4 presents methodologies for matching time-invariant finite impulse response audio

effects. A literature review is presented on how to match gain, panning, and equalisation.

Traditional methods for artificial reverberation matching are compared against newer

DDSP techniques.

Chapter 5 presents a neural network for matching time-invariant infinite impulse response

audio effects. Families of random polynomials used to train this neural network are

detailed. The performance of the neural network is compared to traditional algorithms

for matching infinite impulse response filters.

Chapter 6 presents a novel DDSP waveshaping distortion effect. A brief definition of Wiener-

Hammerstein models is provided to explain the design of the distortion effect. Several

families of differentiable waveshaping functions are proposed. The difference in modelling

performance of these families is measured on a reverse engineering of distortion task.

Notes on the initialization of the effect for this task are provided. Both objective measures

and perceptual measures are provided.

Chapter 7 presents a novel DDSP dynamic range compression effect. The notion of an ap-

proximate moving average filter is presented and discussed. The objective performance

of the effect is measured on a reverse engineering of dynamic range compression task.

Notes on the initialization of the effect for this task are provided.

Chapter 8 defines the task of reverse engineering a multitrack mix. A method for reverse

engineering a mix using only linear time-invariant effects is presented, which employs a

DDSP mixing chain comprised of gain, panning, equalisation, and reverb. Notes on the

initializations for each module in the mixing chain are provided. The performance of

different mixing chains are compared to one another and measured using both objective

and perceptual tests.

Chapter 9 presents a methodology for reverse engineering a mix using both linear and non-

linear effects. A DDSP mixing chain comprised of gain, panning, equalisation, reverb,

waveshaping distortion, and dynamic range compression is shown. Notes on the initial-

izations for each module in the mixing chain are provided. The performance of different

mixing chains are compared to one another and measured using both objective and per-

ceptual tests.

Chapter 10 concludes the dissertation and presents directions for further work.
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1.5 Contributions

Contributions of this thesis are:

• Chapter 5: A neural network architecture IIRNet is presented which can match an arbi-

trary magnitude response to a cascade of biquads.

• Chapter 6: A differentiable Wiener-Hammerstein model is presented that can match a

memoryless distortion effect within perceptual tolerance.

• Chapter 7: A differentiable dynamic range compressor with ballistics is presented that

uses approximate moving average filters to match attack and release times.

• Chapter 8: A differentiable linear time-invariant mixing chain is demonstrated to match

LTI multitrack mixes within perceptual tolerance.

• Chapter 9: A differentiable nonlinear time-invariant mixing chain is proposed that can

match nonlinear time-invariant mixes within perceptual tolerance, and an ablation study

demonstrates how objective accuracy is best with a mixing chain comprised of gain,

panning, equalisation, dynamic range compression, distortion, and reverb.
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America 150.1 (2021): 608-619.

Contains portions of Chapter 8

1.6.2 Conference Papers

Peer Reviewed

– Colonel, Joseph, et al. ”Reverse engineering memoryless distortion effects with

differentiable waveshapers.” Audio Engineering Society Convention 153. Audio En-

gineering Society, 2022.

Contains portions of Section 2.5 & Chapter 6

– Colonel, Joseph T., et al. ”Direct design of biquad filter cascades with deep learning
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Contains portions of Section 2.3 & Chapter 5
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Convention 147. Audio Engineering Society, 2019.

Contains portions of Section 3.2
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Chapter 2

Music Production and Audio

Effects

This chapter describes the process of music production with a focus on mix engineering. With

this background established, common audio effects used in mix engineering are listed and their

formulations and usages are detailed.

2.1 Music Production and Multitrack Mixing

The notion of a “mix engineer” developed from the introduction of magnetic tape recording

technology to recording studios. From Hepworth-Sawyer and Hodgson [2016]:

The creation of magnetic tape and its adoption within the studio environment

meant that no longer were engineers capturing the performance that would effec-

tively serve as the master for production (production here meaning manufacture of

the listener’s product). As soon as magnetic tape made an entrance, it was neces-

sary for a new stage, a new task, whether undertaken by the same person as the

recording, whereby the audio material needed to be transferred or ‘cut’ to vinyl.

From its genesis, mix engineering has concerned itself with the transformation of a mul-

titrack recording into a mixdown, often a stereo or mono recorded medium. In the modern

context, the Berklee College of Music’s career website presents the following scenario to describe

the work of a mix engineer 1:

After receiving tracks from the recording engineer following a recording session,

the mixing engineer focuses on three main tasks: manipulating the volume levels

to emphasize the important elements in each section, enhancing the sonic character

of each track with the aid of processers such as EQ and compression, and adding

effects like delay and reverb. [...] When all parties are satisfied, the final mix of

the recording—or ”mixdown”—is printed and delivered to the client.

1https://www.berklee.edu/careers/roles/mixing-engineer, Accessed 20 April, 2023
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Taken for granted in this description is the typical division of labour seen in major recording

studios of the global North. Within this framework a recording engineer would be responsible

for the setup of microphones, a mastering engineer responsible for mastering the mixdown,

and a music producer overseeing and directing the project. Yet these neat divisions are rarely

encountered outside of such studios.

Over the course of the 20th and 21st centuries, technological advances have blurred the

lines between traditional roles in music production. The advent of cheap recording equipment,

powerful computer hardware, digital audio workstations (DAW), widely available plugins, and

decentralised knowledge sharing has created a scenario where someone can be composer, per-

former, recording engineer, mix engineer, and mastering engineer from the comfort of their

bedroom. More astonishingly, recent advancements in machine learning and artificial intelli-

gence can automate this entire process [Najduchowski et al., 2018, Civit et al., 2022].

Nevertheless, many researchers continue to define mix engineering as the application of

audio effects to a multitrack in order to produce a mixdown. What is lost, and what is gained,

by using this simplification?

As Pras et al. [2019] observes, this definition of “mixing” is far from universal. Case in point,

DAW practitioners of music studios in Bamako, Mali frequently rearrange their compositions,

swap MIDI presets, and mute certain repetitions throughout a recording session. However,

this process is referred to as “mixing” once vocals have been recorded. Other techniques left

out of a simplified definition of mixing include take selection, time alignment of sources, pitch

correction, and the various soft skills employed during a recording session.

However, this shared understanding of mixing held by mix engineers of the global North

is worthy of further inquiry; this flattening of mix engineering to effects processing has led

to a rich body of research. Several dissertations’ worth of research has been published that

seek to interrogate, categorize, and model this restricted definition of mix engineering. For

example, one PhD dissertation presented interrogations of mixing “best practices and common

sense [Pestana, 2013].” This work presented 88 assumptions regarding mixing, and interviewed

49 mix engineers to ascertain the validity of these assumptions. Moreover, five mix engineers

were asked to mix excerpts of two separate multitracks using a specific methodology: beginning

with level setting, followed by panning, then EQ, then compression, then reverb, and finally

automation.

Another such thesis, “Towards a Better Understanding of Mix Engineering [De Man, 2017],”

provides much of the framework for this dissertation. In it, the author produces a “Mix

Evaluation Dataset” in order to explore differences in the effects processing of different mix

engineers. Mix engineers contributed to this dataset by providing mixdowns of pre-selected

multitracks as well as commenting on their peers’ mixdowns in a blind fashion. This restriction

of “mix engineering” allows for computationally driven inquiries of the semantic descriptors

found in the dataset [Moffat et al., 2022]. Moreover, this framework has allowed for the

measurement of cultural differences in mix engineering and listening habits between Western

and Japanese mix engineers [Tajima and Kawahara, 2019].

As such, this dissertation will adopt a similar definition of mix engineering as that explored

in De Man [2017]. This definition, adapted from Izhaki [2008], defines mix engineering as “a

complex task that includes dynamically adjusting levels, stereo positions, filter coefficients,

dynamic range processing parameters, and effect settings of multiple audio streams.” Thus,

22



when looking to model music production behaviour, we are specifically seeking to

model the effects processing used by mix engineers. We posit that though this is a

rather strict definition, it allows for a broad treatment and deep line of inquiry.

According to Izhaki [2008] a mix engineer can transform a multitrack in this fashion by

targeting dimensions such as the mix’s

• Mood – the emotional context of the music in the mix

• Balance – the perceived affect of frequencies, stereo image, and levels in the mix

• Definition – how distinct and recognizable sounds are within the mix

• Interest – accommodations to the listener’s fluctuations in attention across the mix

2.2 Levels and Panning

Levels are often the first consideration when mixing a multitrack. It is the job of the mix

engineer to ensure each sonic element of the multitrack is presented in a mix according to its

importance, and a strong level balance is the first step in determining which elements of the

multitrack should exist in the foreground [Case, 2011].

In order to achieve a rough perceptual balance, the mix engineer will apply multiplicative

gains to the individual tracks in the multitrack. Various scales and regimes for gain staging

may be used depending on the interface used by the mix engineer. Traditional mixing consoles

provide potentiometer-based or vca-based faders, which provide tactile feedback when gain

staging (move the fader up, the gain goes up) [Izhaki, 2008]. Typically, these faders display

gain on the decibel (dB) scale, with 0dB applying unity gain and −∞dB applying 0 gain (or

muting the track). A dB scaled fader cannot apply a negative gain to track. In order to apply

a negative gain, polarity inversion can be used in conjunction with the dB fader.

Panning refers to moving individual elements in the stereo field of the mix, or where these

individual elements will be perceived on a horizontal plane in front of the listener. It is possible

to pan tracks by setting faders that correspond to the level sent to the left and right channel of

a stereo mix. However, it is far more common to employ pan pots for panning [Izhaki, 2008].

When a pan pot is set to its farthest position counterclockwise (-1) the track is panned entirely

to the left (i.e. a gain of 0 is applied before sending the track to the right channel), and when

a pan pot is set to its farthest position clockwise (+1) the track is panned entirely to the right.

What happens between these positions varies across pan pot designs.

Both physical and digital pan pots use various pan laws to determine the left and right

channel gains for a track. The 0dB pan law does not drop the level of centrally panned signals,

i.e. both the left and right channel receive the track with unity gain. This can lead to a

perceived 3dB boost in the perceived signal loudness compared to a signal panned hard left or

hard right. Much more commonly used is the -3dB pan law [De Man and Reiss, 2013], in which

centrally panned signals are dropped 3dB to compensate for the perceived boost of the 0dB

pan law. The -3dB pan law, also referred to as the equal power or sine/cosine law, smoothly

increases the gain applied to the signal so that equal loudness is achieved across the stereo

field. With panning value p ∈ [−1, 1], the left gain gL and right gain gR can be calculated with
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gL = cos(
π(p+ 1)

4
)

gR = sin(
π(p+ 1)

4
)

(2.1)

2.3 Equalisation

Equalisation (EQing) shapes the frequencies of a track and can be used across a multitrack to

achieve a spectral balance in a mix. EQing is also often used to help separate the elements

in a mix, as the frequency ranges of varying instruments can overlap one another. By cutting

or boosting certain frequencies on given tracks the mix engineer can avoid masking, which

Miller [1947] defines as “the shift of the threshold of audibility of the masked sound due to

the presence of the masking sound.” In other words, the ability to discern one element in a

mix may be clouded by the presence of another element in the mix that occupies a similar

frequency range.

Digital EQs with no parameter automation can be considered linear time-invariant (LTI)

systems, which means their behaviour can be fully characterized by their impulse response

[Oppenheim et al., 1997]. In the digital domain, the impulse response for an LTI system can

be calculated by convolving the LTI filter with the digital Dirac function

δ[n] =

{
1 n = 0

0 otherwise
(2.2)

The z Transform

Often the frequency response of these systems is of interest. To gain an intuitive understanding

of this, the z Transform and discrete Fourier transform (DFT) must be defined. The following

definitions are adapted from Rabiner and Gold [1975].

Given a sequence x(n) defined for all n, its z transform is defined as the complex valued

function

X(z) =

∞∑
n=−∞

x(n)z−n (2.3)

where z is the complex variable. In the case where x(n) is nonzero on some finite interval

[N1, N2], X(z) converges everywhere in the complex plane with the possible exceptions of z = 0

or z = ∞. For causal signals, i.e. x(n) = 0 for n < 0, X(z) converges everywhere outside a

circle of radius R1 in the complex plane. R1 depends on the singularities, or poles, of X(z),

and if R1 < 1 the system is said to be stable.

The frequency response of a filter is defined as the evaluation of its z transform along the

unit circle

X(ω) =

∞∑
n=−∞

x(n)e−jωn (2.4)

This continuous, complex valued function can be decomposed into its magnitude response

|X(ω)| and its phase response ∠X(ω).
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When a sequence x(n) is convolved with a sequence h(n) to produce y(n), their z transforms

multiply, i.e.

Y (z) = X(z)H(z) (2.5)

Note here that |Y (ω)| = |X(ω)||H(ω)| and ∠Y (ω) = ∠X(ω) + ∠H(ω).

Discrete Fourier Transform

The DFT Xp[k] of a periodic signal xp[n] with period N is the complex-valued function

Xp[k] =

N−1∑
n=0

xp[n]e
−j(2π/N)nk (2.6)

An important connection exists between the z transform and the DFT. The periodic se-

quence created by using as its DFT coefficients the values of the z transform evaluated at N

points around the unit circle of a nonperiodic sequence is an aliased version of the nonperiodic

sequence.

EQs can be divided into finite impulse response (FIR) designs and infinite impulse response

(IIR) designs. As their names suggest, FIR EQs have an impulse response of finite duration

and IIR EQs have an impulse response of infinite duration. A comprehensive literature review

of equalisation effect designs and implementations is presented in Välimäki and Reiss [2016].

2.3.1 FIR EQs

A causal discrete FIR EQ of order N is formulated as

h[n] = b0δ[n] + b1δ[n− 1] + · · ·+ bNδ[n−N ]

=

N∑
i=0

biδ[n− i]
(2.7)

with bi the ith value of the filter’s impulse response.

FIR EQs have several desirable properties. First, these filters are stable by design, which

means a finite input will guarantee a finite output. Second, these filters have no feedback which

can help avoid rounding errors. Third, these filters can be easily designed to be linear phase

and thus avoid phase distortions.

To design an FIR filter with a desired frequency response, one may use the frequency

sampling method. As summarized by Rabiner and Gold [1975], “to approximate any continuous

frequency response, one could sample in frequency atN equispaced points around the unit circle

(the frequency samples) and evaluate the continuous frequency response as an interpolation of

the sampled frequency response.” To calculate the time-domain filter, one takes the inverse

DFT of the sampled frequency response [Smith, accessed 03 November, 2022]

xp[n] =
1

N

N−1∑
k=0

X(ωk)e
jωkn (2.8)
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2.3.2 IIR EQs

Infinite impulse response (IIR) filters have a variety of applications, such as control systems,

time series forecasting, and audio signal processing [Dorf and Bishop, 2011, Hamilton, 1994,

Välimäki and Reiss, 2016]. In audio applications, digital IIR filters are often used for equalisa-

tion, including tone matching, feedback reduction, and room compensation [Ramos and Lopez,

2006]. Classical methods for designing digital IIR filters are generally restricted to specific pro-

totypes, e.g. designing a lowpass filter with minimum passband ripple [Selesnick and Burrus,

1998]. However, some applications require designing a filter that achieves an arbitrary magni-

tude and/or phase response. Classical methods for this task include the modified Yule-Walker

(MYW) estimation [Chan and Langford, 1982], least squares approaches [Kobayashi and Imai,

1990, Lang, 1998], linear programming [Rabiner et al., 1974], Steiglitz-McBride [Stoica and

Soderstrom, 1981], and gradient-based optimization methods [Dodds, 2020].

An N th degree digital IIR filter can be characterized by its transfer function as shown in

(2.9).

H(z) =
b0 + b1z

−1 + · · ·+ bNz−N

a0 + a1z−1 + · · ·+ aNz−N
(2.9)

For most applications, bi, ai ∈ R. To facilitate numerical stability, these filters are often

implemented as a cascade of K second order biquad section H(z) =
∏K−1

k=0 Hk(z) where

Hk(z) = g
1 + b1,kz

−1 + b2,kz
−2

1 + a1,kz−1 + a2,kz−2
. (2.10)

Should the poles and zeros of each biquad fall within the unit circle of the complex plane, the

digital IIR filter is said to be minimum phase. The magnitude response of these filters |H(eiω)|
can be calculated by evaluating H(z) along the unit circle in the complex plane, and taking

the magnitude of the result.

|H(eiω)| =
∣∣∣ b0 + b1e

−iω + · · ·+ bNe−iNω

a0 + a1e−iω + · · ·+ aNe−iNω

∣∣∣ (2.11)

In practice, the logarithm of this magnitude response is of interest,

log(|H(eiω)|) = G+ log
(K−1∏

k=0

∣∣∣ 1 + b1,ke
−iω + b2,ke

−2iω

1 + a1,ke−iω + a2,ke−2iω

∣∣∣ ). (2.12)

where G refers to the gain of the filter.

2.3.3 Parametric EQs

Quoting Välimäki and Reiss [2016],

The parametric equalizer is the most powerful and flexible of the equalizer types.

Midrange bands in a parametric equalizer have three adjustments: gain, center

frequency, and quality factor Q (or bandwidth). A parametric equalizer allows the

operator to add a peak or a notch at an arbitrary location in the audio spectrum.

At other frequencies, far away from the peak or notch, the parametric equalizer does

not modify the spectral content, as its magnitude response there is unity (0dB).
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A parametric equaliser is made up of first- or second-order sections connected in cascade.

These sections typically include second order notching/peaking filters and first- or second-

order shelving filters for the lowest and highest frequencies.

Low shelving filters are designed to boost or attenuate frequencies below a specified “crossover”

frequency and leave other frequencies untouched. High shelving filters do the opposite and

boost or attenuate frequencies above a specified crossover frequency.

Peaking and notching filters are designed to alter frequencies within a specified band. Peak-

ing filters boost these frequencies, and notching filters attenuate them. These filters can be

designed given a center frequency, which defines the center of the frequency band the filter will

alter, a quality factor Q, or the ratio of the filter’s center frequency to its bandwidth, and the

filter’s gain G.

2.3.4 Graphic EQs

Again quoting Välimäki and Reiss [2016],

The graphic equalizer is a tool for independently adjusting the gain of multiple

frequency regions in an audio signal. [...] Structurally, a graphic EQ is a set of

filters, each with a fixed center frequency and bandwidth. The only user control is

the command gain, or the amount of boost or cut, in each frequency band.

Typically the bands of a graphic EQ are spaced logarithmically to mimic human perception,

such as octave bands or 1/3 octave bands. A graphic EQ can be implemented either as a

cascade of equalising filters or as a parallel bank of bandpass filters. Both designs suffer

from interaction between neighboring filters, where a change in one command gain affects the

magnitude response of a fairly wide frequency range. Figure 2.1 plots the magnitude response

of a 10 octave band graphic EQ. Note that while each command gain is set to +10dB, the

magnitude response of the EQ exhibits ripple and can boost certain frequencies up to +15dB.

2.4 Reverberation

Senior [2011] states that reverberation is “the most widely used sweetening effect in record

production” that can provide five enhancements for a mix simultaneously:

• Blend – making disconnected tracks sound as if they belong with one another

• Size – increasing the apparent dimensions of a mix’s acoustic environment

• Tone – altering the subjective tone of a track due to the phase-cancellation of echoes

• Sustain – increasing the duration of a dry sound

• Spread – spreading information across the stereo image

A comprehensive literature review of artificial reverberation effect designs and implemen-

tations is presented in Valimaki et al. [2012] and Välimäki et al. [2016]. Valimaki et al. [2012]

provides a scientific definition of reverberation:
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Figure 2.1: Magnitude responses of a graphic EQ’s second order sections and total magnitude
response

Reverberation refers to the prolonging of sound by the environment, which is es-

sentially caused by the reflectivity of surfaces and by the slow speed of sound in

air [...]. As sound radiates from a source, it interacts with the environment, carry-

ing with it to the listener an imprint of the space, and a sense of the objects and

architecture present.

In the early days of broadcast and recording, artificial reverberation was applied to audio

through various physical systems, including echo chambers, spring reverberators, and reverber-

ation plates. It wasn’t until Schroeder and Logan [1961] that the idea of artificial reverberation

based on digital signal processing was proposed.

Valimaki et al. [2012] divides artificial reverberation algorithms into four classes:

• Delay networks – algorithms that simulate reverberation using delay lines, filters, and

feedback connections

• Convolutional methods – algorithms that convolve a dry signal with a recorded, approx-

imated, or simulated room impulse response (RIR)

• Computational acoustics – algorithms that simulate the propagation of sound in a spec-

ified geometry
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• Virtual analog models – algorithms that simulate electromechanical or electrical devices,

such as tapes, plates, or springs) used for producing reverberation effects

Each of these classes currently sees an abundance of research and investigation [Ibnyahya

and Reiss, 2022, Okuzono et al., 2021, Mart́ınez Ramı́rez et al., 2020]. For the purposes of this

dissertation, however, only convolutional algorithms will be discussed.

2.4.1 Convolutional Algorithms

Theoretically speaking the application of a convolutional reverb is the same as an FIR EQ:

an audio signal is convolved with a RIR to simulate that room’s reverberation characteristics.

The measurement and collection of RIRs is a field unto itself, and a thorough description falls

outside the scope of this dissertation. The primary distinction between an FIR EQ and RIR

is length in time – a typical FIR EQ has a length on the order of 104 samples, whereas a RIR

may have length of 105 or even 106 samples. Case in point: a 1.0 second long RIR sampled at

48kHz requires 48, 000 multiplications and additions per output sample, or 5 billion floating-

point operations per second [Valimaki et al., 2012]. Moreover, these computations quickly

double as distinct IRs are typically used in the left and right channel of a stereo mix as natural

reverberation becomes decorrelated by the time it reaches a listener’s ear.

Advancements in processing power, especially in GPU processors, have allowed for the

widespread adoption of convolutional reverb algorithms in audio production. Moreover, much

research has gone into fast convolutional techniques that enable speed-ups in the application

of artificial convolutional reverb. A fast Fourier transform (FFT) algorithm can reduce the

the O(N2) time complexity of a time-based convolution to a O(n log n) multiplication in the

frequency domain.

2.5 Distortion

Distortion occurs when some nonlinearity is introduced to the signal processing chain. No ana-

logue components are perfectly linear, so technically speaking distortion is introduced whenever

analogue circuitry is used in music production. More relevantly, musical distortion can be in-

troduced by saturating the equipment used for recording or playback; because the components

in audio circuitry are rated for some nominal voltage range, they can introduce obvious dis-

tortions when pushed beyond this range. According to Izhaki [2008], distortion is prominent

in mixing because it can compensate for “boringly precise” digital sounds and because it can

increase the aggression of a track (whether metal, pop, or dance). This type of distortion is

referred to as waveshaping distortion, as it alters the waveform of a signal rather than its phase

or time-domain characteristics [De Man and Reiss, 2014].

2.5.1 Harmonic Distortion and Inter-modulation

A musical tone such as that of a guitar playing a note can be characterized by its fundamental

frequency and overtones. The fundamental frequency is measured as the lowest frequency of

a periodic waveform, and overtones are the integer multiples of fundamental. Perceptually,

the pitch of a tone is informed by the fundamental (though it is more accurate to say that
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pitch is informed by the lowest perceived harmonic, which may not be the fundamental). The

overtones play a key role in the perceived timbre of a sound and, for example, can help a

listener distinguish between a violin and a guitar playing the same fundamental.

As its name implies, harmonic distortion alters the harmonics of a sound [Izhaki, 2008].

Many analog distortion circuits are sought after due to the harmonic distortion their compo-

nents can apply to a signal. Inter-modulation distortion effects, on the other hand, introduce

additional frequencies that are not harmonically related to the input sound. When naively

implemented, many digital distortion effects can introduce inter-modulation and can sound

more harsh than analog effects producing harmonic distortion, though analog effect circuits

can impart some amount of inter-modulation distortion as well.

Inter-modulation distortion can occur when the overtones produced by the distortion exceed

the Nyquist frequency, or half the sampling rate of the audio signal, and alias. For example,

if a 8kHz sinewave is sampled at 44.1kHz and distorted, its fourth harmonic at 32kHz exceeds

the Nyquist frequency of 22.05kHz. This fourth harmonic will mirror around the Nyquist

frequency as 12.1kHz, which is not harmonically related to the fundamental. Techniques such

as oversampling and antiderivative antialiasing can be used to avoid inter-modulation [Bilbao

et al., 2017].

2.5.2 Memoryless Distortion

Quoting Rouphael [2009],

Nonlinear circuits are considered to be either memoryless or with memory. In

memoryless circuits, the output of the circuit at time t depends only on the in-

stantaneous input values at time t and not on any of the past values of its input.

[...] The output of a nonlinear circuit with memory at time t, on the other hand,

depends on the input signal at time t as well as inputs that occurred in previous

instances before t. The largest time delay on which the output depends determines

the memory of the circuit.

Trivially, a memoryless distortion can be characterized as

y[n] = f(x[n]) (2.13)

where f(·) is some nonlinear function [Parker et al., 2016]. While much research has gone

into modeling distortion effects with memory, this dissertation will only treat memoryless

distortion.

2.6 Dynamic Range Compression

Dynamic range compression is an essential tool in mix engineering and audio production [Izhaki,

2008]. This nonlinear audio effect is often used to reduce the dynamic range of a signal. This

is done by selectively attenuating peaks in the signal while leaving quieter portions untouched.

Digital implementations of dynamic range compressors (DRC) vary, leading to much diversity

in the types of controls exposed to users and the considerations taken into account when setting

parameter values [Giannoulis et al., 2012].
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Challenges arise in the design of digital DRC as it is a nonlinear time-dependent audio

effect with memory. A typical feedforward digital DRC, as outlined in Bitzer et al. [2006],

is composed of the following modules: a level detector tasked with measuring the level of the

incoming signal; a gain computer tasked with calculating the instantaneous attenuation or gain

to be applied to the signal; and a gain smoother tasked with modifying the output of the gain

computer based on the time-varying fluctuations of the input signal’s loudness. Key to the

design of many DRCs are the attack and release times that control the gain smoother. These

parameters help to avoid introducing distortion and control how quickly the DRC acts.

Due to the complexity of a DRC and its usage, much work has gone into characterizing, esti-

mating, and automating its parameters. Previous literature has developed procedures and test

signals for profiling DRCs [Bitzer et al., 2006], used regression models and reference signals to

control a DRC [Sheng and Fazekas, 2017], developed feature-based heuristics to operate a DRC

[Giannoulis et al., 2013], and implemented cross-adaptive algorithms to set DRC parameters

settings across a multitrack recording [Ma et al., 2015].

The operation of a DRC can be defined using the following parameters. The analysis

presented here is primarily adapted from Giannoulis et al. [2012].

• Threshold is the level used to determine whether or not to apply compression to the

input signal. When the signal is measured above the threshold, compression is applied.

In this formulation, the knee is not centered about the threshold; instead, it begins after

the threshold. How the input’s level is measured varies across DRC designs, with typ-

ical implementations including sample-by-sample peak detection and root-mean-square

(RMS) measures.

• Ratio determines the amount of compression applied and is a measure of the input/output

ratio for signals crossing the threshold.

• Knee-width is a threshold-dependent value that allows for a smooth transition in the

DRC’s compression characteristic curve above and below the threshold. A small value

creates a sharp transition between unity gain and the compression ratio, and a larger

value produces a gradual transition.

• Makeup Gain refers to a gain applied to the compressor’s output signal.

• Attack time and release time determine how long it takes the compressor to attenuate the

signal according to the ratio after surpassing the threshold and how long the compressor

continues to attenuate the signal after dropping below the threshold, respectively. In

many designs these parameters also control how the attenuation applied by the compres-

sor is smoothed over time.

The characteristic curve of a DRC describes its static parameter settings and plots its

input/output transfer function. An example characteristic curve is shown in Figure 2.2 with

threshold set to −20dB, makeup gain +10dB, compression ratio 5 : 1, and both hard and soft

knee.

Figure 2.3 shows a test signal used to characterize the attack and release of a DRC and the

result of that signal being passed through a compressor with attack time set to 40ms and release

time set to 200ms. As demonstrated in the figure the DRC smoothly reaches its characteristic
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attenuation over several milliseconds after the test signal crosses the threshold and smoothly

ceases attenuation over a longer time frame.

Figure 2.2: Characteristic curve of a DRC

Figure 2.3: Dry and wet waveform of a test signal compressed with attack and release
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Chapter 3

Machine Learning for Audio

This section defines machine learning, applications of machine learning to audio, music infor-

mation retrieval, and the short-time Fourier transform.

3.1 Machine Learning

Though machine learning has come to describe a vast field of study, Mitchell and Mitchell

[1997] provides a straightforward definition of what constitutes a machine learning algorithm:

A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P, if its performance at tasks in T, as measured

by P, improves with experience E.

Machine learning has been applied to such tasks as learning to drive autonomous vehicles,

learning to play board games such as backgammon or go, and learning to recognize spoken

words.

According to Mitchell and Mitchell [1997], when designing a machine learning algorithm

for some task T one must explicitly chose the training experience E, the target function which

maps actions the algorithm can take to some state, a numerical representation of this target

function, and a learning algorithm which can improve the target function’s ability to map an

experience E according to a performance measure P.

3.2 Music Information Retrieval

Many machine learning applications for audio make use of music information retrieval (MIR),

though MIR has seen broad research outside of machine learning for audio. To quote Schedl

et al. [2014], “MIR is foremost concerned with the extraction and inference of meaningful

features from music (from the audio signal, symbolic representation or external sources such as

web pages), indexing of music using these features, and the development of different search and

retrieval schemes (for instance, content-based search, music recommendation systems, or user

interfaces for browsing large music collections).” Downie [2003] propose the following facets

that MIR attempts to categorize within music:
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• Pitch facets – “the perceived quality of a sound that is chiefly a function of its fundamental

frequency in—the number of oscillations per second;” the temporal facet

• Temporal facets – that which makes up the rhythmic component of a musical work

• Harmonic facets – when two or more pitches sound at the same time

• Timbral facets – all tone and color not related to pitch or harmony

• Editorial facets – performance instructions such as fingerings, ornamentation, dynamic

instructions, and so on

• Textual facets – aspects such as lyrics of songs, arias, chorales, hymns, and symphonies

• Biographic facets – information concerning a work’s title, composer, arranger, editor,

lyric author, publisher, edition, catalogue number, publication date, discography, per-

former(s), and so on

Feature extraction can be used to characterize several of these facets from an audio wave-

form. Roughly, MIR features (such as those mentioned in Lartillot et al. [2008]) can be divided

into calculations performed on an audio waveform (e.g. zero-crossing rate, RMS energy, en-

velope) and calculations performed on an audio signal’s frequency content (e.g. spectrum,

filterbank).

3.2.1 Short-Time Fourier Transform

To analyze the pitch, harmonic, and timbral facets of music, it is useful to obtain a represen-

tation of a finite discrete signal in terms of its frequency content. One useful representation is

the Short-Time Fourier Transform (STFT). The STFT of a signal x[n] is

X(n, ω) =

∞∑
m=−∞

x[n+m]w[m]e−jωm (3.1)

where w[n] is a window sequence and ω is the frequency in radians. Note that the STFT

is periodic in ω with period 2π. Thus we need only consider values of ω for −π ≤ ω ≤ π.

Often, the Hann window is chosen as w[n]

wHann[n] =

{
0.5− 0.5cos(2πn/M) 0 ≤ n ≤M

0 otherwise
(3.2)

Refer to Figure 3.1 for plots of the Hann window. Spectral resolution refers to the STFT’s

ability to distinguish two sinusoidal components of a signal with fundamental frequencies close

to one another. Spectral resolution is influenced primarily by the width of the main lobe of

the window’s frequency response. Spectral leakage, on the other hand, refers to a window’s

tendency to smear a sinusoid’s fundamental frequency into neighboring frequency bins. Spectral

leakage is influenced primarily by the relative amplitude of the main lobe to the side lobes.

A signal’s STFT can be inverted using an overlap-add procedure [Allen, 1977]. First, a

windowed output frame is obtained via:
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Figure 3.1: Hann window and its frequency response

x̂′
m(n) =

1

N

N/2−1∑
k=−N/2

X̂ ′
m(ejωk)ejωkn (3.3)

Then, the final output is reconstructed by overlapping and adding the windowed output

frames:

x̂(n) =
∑
m

x̂′
m(n−mR) (3.4)

where R is the hop size, or how many samples are skipped between frames. This analysis

and resynthesis becomes an identity operation if the analysis windows sum to unity, i.e.

Aw(n) ≜
∞∑

m=−∞
w(n−mR) = 1 (3.5)

The STFT is a complex valued signal, which means that each X(ni, ωj) has a magnitude

and phase component. We refer to a three dimensional representation of the magnitude of the

STFT ||X(n, ω)||2 as “the spectrogram.” The spectrogram is used throughout audio analysis

because it succinctly describes a signal’s spectral power distribution, or how much energy is

present in different frequency bands, over time. Refer to Figure 3.2 for an example spectrogram.

3.3 Artificial Neural Networks

Artificial neural networks (ANNs) are a class of machine learning algorithms that have found

widespread usage in machine learning tasks. ANNs “provide a practical method for learning

real-valued and vector-valued functions over continuous and discrete-valued attributes, in a

way that is robust to noise in the training data [Mitchell and Mitchell, 1997].” The name is

inspired by biological neurons and thus uses the term “neurons” to describe the individual

units of the ANN that are connected to one another via some calculation.

The most straightforward ANN topology is the “feedforward neural network.” Adopting

the terminology provided by Bishop [1994]:

A feedforward neural network can be regarded as a nonlinear mathematical func-

tion which transforms a set of input variables into a set of output variables. The
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Figure 3.2: Spectrogram of a speaker saying “Free as Air and Water”

precise form of the transformation is governed by a set of parameters called weights

whose values can be determined on the basis of a set of examples of the required

mapping. The process of determining these parameters values is often called learn-

ing or training, and may be a computationally intensive undertaking. Once the

weights have been fixed, however, new data can be processed by the network very

rapidly.

In a single layer feedforward network, the input layer maps an input vector x ∈ Rd to the

hidden layer y ∈ Re. Then, the output layer maps y to z ∈ Rg. In this formulation, the input

layer maps x→ y via

y = f(Wx+ b) (3.6)

where W ∈ R(e×d), b ∈ Re, and f(· ) is an activation function that imposes a non-linearity in

the neural network. The hidden layer has a similar formulation:

z = f(Wouty + bout) (3.7)

with Wout ∈ R(g×e), bout ∈ Rg.

The multilayer perceptron (MLP) is a type of feedforward neural network that consists

of an input layer of neurons, an arbitrary number of hidden layers, and an output layer. A

multilayer perceptron acts in much the same way as a single layer feedforward neural network,

but with an arbitrary number of hidden layers (and a corresponding number of W ’s and b’s).

The multilayer perceptron trains the weights of the W ’s and b’s to minimize some cost function.

This cost function should minimize the distance between the output z and some target. The

choice of activation functions f(· ) and cost functions depends on the domain of a given task.
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3.3.1 Stochastic Gradient Descent and Backpropagation

To quote Ruder [2016]:

Gradient descent is a way to minimize an objective function J(θ) parameterized by

a model’s parameters θ ∈ R by updating the parameters in the opposite direction

of the gradient of the objective function ∆θJ(θ) w.r.t. to the parameters. The

learning rate η determines the size of the steps we take to reach a (local) minimum.

In other words, we follow the direction of the slope of the surface created by the

objective function downhill until we reach a valley.

In the context presented here, the model parameters θ are the W ’s and b’s of the MLP.

Theoretically one can perform gradient descent by passing each input to the network to get

an output, compare each output to its target to find J(θ), calculate this objective function’s

gradient by summing over all calculated costs, find each parameter’s partial contribution to this

gradient, and finally update each parameter according to the step size η. This rarely happens

in practice, however, due to the computational constraints of performing all these calculations

on a large dataset with a large ANN.

Instead, the stochastic gradient descent algorithm is used to approximate this procedure.

Rather than summing over all training examples and then updating parameters, stochastic

gradient descent updates the ANN parameters incrementally over individual training exam-

ples or mini-batches of training examples. Adam [Kingma and Ba, 2015], or its modification

AdamW [Loshchilov and Hutter, 2017], are widely used methods for performing stochastic

gradient descent with ANNs.

The parameters of an ANN are updated using the backpropagation algorithm. This al-

gorithm can efficiently calculate the contribution of each parameter in an ANN to the cost

function for a single input-output pair compared to a naive direct computation of the gradient

with respect to each weight individually. The backpropagation algorithm works by computing

the gradient of the loss function with respect to each weight by the chain rule, computing the

gradient one layer at a time, and iterating backward from the last layer to avoid redundant

calculations of intermediate terms in the chain rule. ANN programming libraries such as Ten-

sorflow and Pytorch provide a framework for autodifferentiating these networks [Abadi et al.,

2016, Paszke et al., 2019], allowing for the rapid construction, training, and deployment of

ANNs.

3.3.2 Cost Functions

In order to train an ANN, a cost function of the model’s parameters θ must be chosen. Given

some inputs m (and assuming M total inputs) this function measures some distance between

the ANN’s output ŝ(m) and a target s(m). Commonly used cost functions are mean absolute

error (MAE)

C(θ) =
1

M

M−1∑
m=0

|s(m)− ŝ(m)| (3.8)
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and mean squared error (MSE)

C(θ) =
1

M

M−1∑
m=0

(s(m)− ŝ(m))2 (3.9)

Often times the MAE is referred to as the L1 loss, and MSE referred to as the L2 loss.

In machine learning for audio tasks, another commonly used cost function is the multi-

scale spectrogram (MSS) loss. Inspired by the multi-resolution spectral amplitude distance

demonstrated in Wang et al. [2020], Engel et al. [2019] defines the MSS as follows:

Assuming s(m) is the target audio and ŝ(m) is the estimated audio, compute their magni-

tude spectrograms Si and Ŝi with a given FFT size i. The spectrogram loss is defined as the

sum of the L1 difference between Si and Ŝi, as well as the L1 difference between log(Si) and

log(Ŝi)

Li = ||Si − Ŝi||1 + ||log(Si)− log(Ŝi)||1 (3.10)

The total loss is the sum of all the spectral losses for the various chosen FFT sizes i

MSS =

i∑
Li (3.11)

Though MAE in the time domain can be used in audio applications, and is cheaper to

compute than MSS loss, the latter has recently gained popularity as it can ignore the phase

differences between the target and estimated signals. This resilience to slight phase changes is

said to mimic human perception [Chi et al., 2005]. Though using several FFT sizes increases

the cost and complexity of the loss calculation, Wang et al. [2020] states that “using multiple

spectral distances is expected to help the model learn the spectral details of natural waveforms

in different spatial and temporal resolutions.”

Notes on Interpreting MSS Loss

Table 3.1: MSS loss measured between various signals and their copy -3dB using different sets
of FFTs.

Set A Set B
Sinewave 1.59 1.53

White Noise 35.72 6.73
Rock Song 0.51 0.13

It is difficult to provide a rule of thumb for interpreting the values of MSS loss. The values

MSS loss takes depends on several factors, include the content of the signals being measured,

the number of FFTs chosen, and the size of the FFTs. Aside from reaching 0 when comparing

two identical signals, it is difficult to intuit even the order of magnitude the MSS loss will take.

Consider the following three 10-second signals: a 1kHz sinewave with amplitude 1; a zero-

mean unit-variance white noise signal; and a mono mixdown of the chorus of a rock song

(“Haunted House” by the band Woodfire, which is used in Chapter 9). Two sets of FFTs will

be used to measure some MSS losses: Set A, which uses sizes {4096, 2048, 512}, and Set B
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which uses sizes {128, 64, 32}. At a 44.1kHz sampling rate, Set A uses FFT windows ranging

from 10ms to 93ms, and Set B uses FFT windows ranging from 1ms to 3 ms.

For each set of FFTs, the MSS loss will be measured between each signal and a copy of the

signal -3dB. These MSS values using Set A and Set B are presented in Table 3.1.

In general, MSS losses calculated on tonal signals tend to be invariant to changes in FFT

sizes. Also, MSS losses tend to take larger values on broadband signals compared to narrowband

signals, though this does not necessarily hold across different FFT sizes. Thus it is difficult to

gauge, just by looking at a final MSS value, how close of a perceptual match two signals are.

Nevertheless, MSS loss has found success as a cost function in neural network literature.

Should researchers want to claim that the output of their algorithm is perceptually indistin-

guishable from some baseline, it is common practice to run a listening test. See Sec 3.4 for a

fuller discussion.

3.3.3 Activation Functions

The following are common activation functions found in ANNs.

Sigmoid Function

The sigmoid function, also known as the logistic function, is commonly found in ANNs:

σ(x) =
1

1 + e−x
(3.12)

This function asymptotically approaches 0 as x → −∞ and asymptotically approaches 1

as x→∞. As such, this function is often used to continuously describe logical functions.

Hyperbolic Tangent Function

The hyperbolic tangent function (tanh) is also commonly used in ANNs:

tanh(x) =
ex − e−x

ex + e−x
(3.13)

This function asymptotically approaches -1 as x→ −∞ and asymptotically approaches 1 as

x→∞. Though this function is similar to the sigmoid function, its gradient can be four times

greater than the sigmoids and thus may allow for faster convergence with the backpropagation

algorithm. This activation function can also be useful to represent both positive and negative

features.

Rectified Linear Unit and Leaky Rectified Linear Unit

The rectified linear unit (ReLU) [Nair and Hinton, 2010]

ReLU(x) =

{
0, x < 0

x, x ≥ 0
(3.14)

has been used in ANNs to avoid the “vanishing gradient problem [Hochreiter, 1998],” where

due to the chain rule an individual neuron’s contribution to a gradient calculation can tend
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towards zero in sufficiently large ANNs with sigmoid or tanh activations. As opposed to the

sigmoid or tanh activations, the ReLU’s derivative is 0 for negative values and 1 otherwise.

Therefore, an ANN composed of ReLU activations will never have a neuron’s contribution to

the gradient disappear.

However, ReLUs can suffer from the “dying neuron problem [Lu et al., 2019],” in which

a poor initialization can lead a neuron’s parameters to become static as it is trapped in the

negative support of the ReLU where the derivative is zero. Thus the leaky rectified linear unit

(LReLU)

LReLU(x) =

{
βx, x < 0

x, x ≥ 0
(3.15)

has been proposed by Xu et al. [2015]. The parameter β is typically chosen to be small (on

the order of 10−1) and sets the derivative of its negative support to be nonzero, thus avoiding

the dying neuron problem.

3.3.4 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a powerful class of ANNs. CNNs distinguish them-

selves from fully-connected architectures such as MLPs in a few key ways [Kiranyaz et al.,

2021]:

• CNNs combine feature extraction and feature classification into one architecture

• CNNs can efficiently process large inputs due to their sparsely-connected neurons with

tied weights

• CNNs can be invariant to small transformations to an input

• CNNs can adapt to different input sizes

For two-dimensional inputs such as audio, the 1D forward propagation of a CNN-layer is

expressed as

xl
k = blk +

Nl−1∑
i=1

conv1D(wl−1
ik , sl−1

i ) (3.16)

where xl
k is the input, blk the bias of the kth neuron at layer l, sl−1

i is the output of the ith

neuron at layer l−1, and wl−1
ik is the kernel from the ith neuron at layer l−1 to the kth neuron

at layer l. “conv1D” performs ‘in-valid’ 1D convolution without zero-padding, thus making

the dimension of xl
k smaller than that of sl−1

i . The intermediate output can be expressed as

ylk = f(xl
k) and slk = ylk ↓ ss (3.17)

where f(·) is some activation function, slk is the output of the kth neuron of the lth layer,

and ↓ ss represents a downsampling operation with factor ss.

Typically the convolution kernels w are thought of as feature extractors that operate at

varying resolutions of the input dependent on the downscaling factor ss. Fully connected MLPs
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can be used after several convolutional layers to produce some embedding of these features and

see widespread usage in classification tasks.

3.4 Perceptual Evaluation of Audio Algorithms

Though cost functions are used to fit models and provide a numerical characterization of a

system’s performance, often a perceptual evaluation is desired for the outputs of an audio

algorithm. To quote Bech and Zacharov [2007]

However, this [numerical] characterisation of the physical audio signal does not

tell us how the human auditory system will interpret and quantify it. [...] An

alternative means of assessing how listeners perceive an audio signal would be to

ask them to quantify their experience, [which] often takes the form of a formal

listening test.

In the absence of a sufficiently descriptive numerical measure for an audio signal, a listening

test can be performed to answer a researcher’s specific question about the outputs of their audio

algorithm. Formal listening tests are commonly used to answer questions such as

• Are a set of audio stimuli identical to one another?

• Is an audio stimulus inferior, equivalent, or superior to another stimulus in regards to

quality?

• Is an audio system suitable for a given task?

When asking participants of a formal listening test to rate several stimuli simultaneously,

e.g. to compare the results of different configurations of an audio algorithm, the Multi Stimulus

test with Hidden Reference and Anchor (MUSHRA) is commonly used [BS.1534-3, 2003]. As

summarized in De Man et al. [2019], the hallmarks of a MUSHRA test are

• At least 4 stimuli presented simultaneously

• A separate slider per stimulus used to rate some continuous quality scale marked “Bad,”

“Poor,” “Fair,” “Good,” and “Excellent”

• A reference stimulus is provided which the other stimuli are compared to with attributes

including “basic audio quality”

• The reference is also included in the stimuli to be rated as a “hidden reference”

• Among the stimuli to be rated is one or more “anchors,” which are meant to present a

low-quality comparison

To run a MUSHRA listening test, it is possible to use web versions of the test such as

the Web Audio Evaluation Tool or webMUSHRA [Jillings et al., 2015, Schoeffler et al., 2018].

Although distributing a MUSHRA evaluation online does limit a researcher’s ability to con-

trol the environment and equipment used to perform the test, it greatly expands the pool of

potential participants. Web-based MUSHRA listening tests have become a standard in evalu-

ating intelligent music production algorithms and have been used to perceptually evaluate the

outputs of all the algorithms cited in Section 3.6.
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3.5 Audio Effects Modelling

The following discussion is adapted from Vanhatalo et al. [2022]. While the authors focused on

modelling guitar distortion effects, their categorization of audio effect modelling is illuminating.

Depending on the degree of prior knowledge applied to model a target effect, the existing

approaches for effect modelling can be divided into three categories: white-, black-, and grey-

box. Both traditional signal processing algorithms and neural networks have been applied to

these categories.

In the case of greybox modelling, a new family of neural network algorithms referred to as

differentiable digital signal processing (DDSP) are foundational to this thesis. Though they

technically constitute a branch of the modelling described in Section 3.5.3, they will receive a

separate treatment in Section 3.5.4.

3.5.1 Whitebox Modelling

Whitebox modeling is based on the complete knowledge of the system, uses ordinary/partial

differential equations to describe its behaviour and adopts numerical methods to solve them in

the continuous or discrete domain. Since they reproduce all the important characteristics of a

target device, such models can achieve very good results and are preferable when the sound of

a specific analog device is to be replicated with high accuracy. Such models can be very time

consuming to develop, require exact knowledge of the equations describing nonlinear elements,

and can result in substantial computational load. Simple systems can be modelled manually by

solving differential equations [Yeh et al., 2007, D’Angelo and Välimäki, 2014, Esqueda et al.,

2017]; but, for more complex cases, there exist general-purpose frameworks like: state-space

models [Mačák, 2012, Holters and Zölzer, 2015, Yeh et al., 2009], wave digital filters [Werner

et al., 2015, 2018, Dunkel et al., 2016, Cauduro Dias de Paiva et al., 2011, De Sanctis and

Sarti, 2009, D’Angelo et al., 2012], and port-hamiltonian systems [Falaize and Hélie, 2016].

For artificial reverberation modelling, computational acoustics can be considered a class

of whitebox models [Valimaki et al., 2012]. Wave-based methods rely on numerical approx-

imations for solving the wave equation [Savioja et al., 1994], and geometry-based methods

assume a ray-like approximation of the propagation of sound waves [Funkhouser et al., 1998].

Whether they directly estimate an IR or estimate time-energy responses, both methods model

the underlying physics that govern the reflections of sounds in a room.

Given how mathematically intensive and explicit whitebox approaches tend to be, there

are fewer neural network examples compared to blackbox and greybox models. In Parker et al.

[2019], the authors adopt a deep neural network in the context of a state-space model for

distortion modelling, which they call state trajectory network. The network uses both the

input signal and an internal state to predict the output. The authors apply the method to a

first-order and a second-order diode clipper.

In Esqueda et al. [2021] the authors introduce the concept of differentiable whitebox virtual

analog modeling, with the idea of using backpropagation to optimize the components’ values in

an analog distortion circuit. The authors apply this method to find the resistors’ and capacitors’

values that best approximate the frequency response of an RC filter and a tone-stack.

Another recent work, Parker et al. [2022], uses recurrent neural networks with fast convolu-

tional layers to model partial-differential equations governed systems, focusing on the modelling
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of acoustic, mechanical and electrical systems. Specifically, they use the proposed approach to

investigate a lossy dispersive string, a 2D wave equation, and a tension modulated string.

3.5.2 Blackbox Modelling

Blackbox modeling requires no prior knowledge about the system and relies exclusively on

input-output measurements. The main advantage of such approaches is that they simplify

the modeling procedure to gathering sufficient data, but they might require time-consuming

optimisations, and they seldom offer any interpretability.

Non-neural network blackbox algorithms that have seen applications in effects modelling

are the Volterra series and dynamic convolution. The mathematical complexities of Volterra

series and dynamic convolution fall outside the scope of this discussion, but heuristically they

can be thought of as higher order impulse responses to nonlinear systems. Because of their

ability to model systems with memory, Volterra series have seen application in analogue circuit

modelling. In Hélie [2006] Volterra series were used to emulate a Moog ladder filter, and

in Orcioni et al. [2018] they were used to model tube distortion effects. Though dynamic

convolution algorithms have weaker memory modelling capabilities, their explicit modelling

of system behaviour at different input levels have seen them used for guitar pre-amp circuit

modelling [Primavera et al., 2012b,a].

Neural networks have assumed the lion’s share of new approaches to blackbox audio effect

modelling over the past few years. Neural networks are a natural fit for blackbox modelling

as ANNs learn behaviour strictly from input and output pairs. In Mart́ınez Ramı́rez [2021],

the author presents a generalized neural network approach to effects modelling. With minor

tweaks to the neural network topology, the author demonstrates that an ANN can perform

(separate) blackbox modelling of EQ, distortion, guitar amplifiers, (multiband) dynamic range

compression, chorus, flanger, phaser, tremolo, vibrato, auto-wah, ring modulator and a Leslie

speaker. Each of the presented ANNs is comprised of an analysis front-end (which extracts

features of the audio input to the effect) that passes information to a deep neural network

latent space, whose latent representation of the input audio drives a synthesis back-end that

modulates the input audio with adaptive filters. One drawback of this approach, however, is

that the ANNs are only trained on one set of parameters for each effect. For example, one

ANN must be trained to emulate a lowpass EQ while another must be trained to emulate a

highpass EQ.

Blackbox networks have also been used to model DRC effects. In Hawley et al. [2019], a

joint real/imaginary neural network is trained on input/output spectrogram pairs to model

an LA-2A compressor. Steinmetz and Reiss [2022] also models the LA-2A compressor, using

time-based convolutional layers known as TCNs. In both cases, the blackbox algorithms learn

to apply dynamic range compression using neural network based operations rather than the

DSP calculations shown in Section 2.6. Furthermore, both blackbox algorithms are limited by

the parameterization of the LA-2A; the blackbox algorithms learn DRC parameterized using

the LA-2A’s peak reduction knob and the compress/limit switch parameters (rather than all

the parameters outlined in 2.6). While this may not be a bad outcome, it does underscore the

fact that blackbox algorithms are limited to the data on which they are trained.

The blackbox network proposed in Steinmetz [2020] is able to model several effects simul-
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taneously, as well as have the parameter settings of those effects exposed and changeable. This

network simultaneously models gain, panning, EQ (in the form of a 5 band graphic EQ), DRC,

and artificial reverberation. By training on input/output audio pairs as well as the parameter

settings for each of the effects, the network avoids the need to be re-trained for each effect.

Moreover the parameters sent to the neural network are chosen such that they are familiar

to musicians and mix engineers, e.g. the attenuations in each band of the graphic EQ, the

threshold of the DRC, or the decay of the artificial reverberation.

3.5.3 Greybox Modelling

Greybox approaches combine a partial theoretical structure, referred to as block-oriented

model, with data – typically input/output measurements – to complete the model. Grey-

box models have the advantage of greatly reducing the prior knowledge necessary to model a

device while maintaining a degree of interpretability, thanks to the block oriented approach.

The specific structure – together with the measurement and optimization procedures – are

critical to achieve a good approximation, especially for nonlinear systems where the output is

a function of the input signal amplitude.

These models are typically represented as an interconnection of linear filters and static

nonlinearities, such as: Hammerstein models (static nonlinearity followed by linear filter),

Wiener models (linear filter followed by static nonlinearity) or Wiener-Hammerstein models

(static nonlinearity inbetween two linear filters) [Novak et al., 2009, 2016, Cauduro Dias de

Paiva et al., 2012, Rébillat et al., 2010]. But they also include more complex arrangements like

cascaded and parallel blocks, such as those presented by Schoukens and Ljung [2019].

In the case of distortion circuits and amplifiers, Wiener-Hammerstein models have been

extended to include: non-static nonlinearities (i.e. hysteresis and memory) [Eichas et al., 2015,

Eichas and Zölzer, 2016], and pre- and power-amp modeling [Kemper, 2014, Eichas et al., 2017,

Eichas and Zölzer, 2018].

For artificial reverberation, feedback delay networks can be considered a family of grey-

box models [Smith, accessed 03 November, 2022]. Feedback delay networks approximate the

reflections of natural reverberation by sending input audio through parallel delay lines with

absorption equalisers in the forward pass, a dispersion matrix in the feedback connection, and

a tone equaliser right before the network’s output. These greybox models have found usage

in machine learning in reverberation matching tasks, and are often optimized using genetic

algorithms [Ibnyahya and Reiss, 2022, Coggin and Pirkle, 2016, Chemistruck et al., 2012].

3.5.4 Differentiable Digital Signal Processing

The term “differentiable digital signal processing” (DDSP) was proposed by Engel et al. [2019],

in which common DSP modules are manually implemented in a differentiable framework such

as Tensorflow or Pytorch. This autodifferentiated regime allows for these modules to be imple-

mented in or controlled by neural networks due to their ability to backpropagate gradients. In

Engel et al. [2019], an ANN was proposed that used differentiable harmonic oscillators, noise

filtered through FIR EQs, and convolutional reverb to synthesize audio. Since then, many

individual audio effects have been implemented using the DDSP paradigm.
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Nercessian [2020] presents a DDSP inspired parametric EQ. The authors train an ANN

that, given an arbitrary magnitude response, estimates the parameters of a parametric EQ

that matches said response. The parametric EQ is comprised of a low shelf filter, high shelf

filter, and 10 peaking filters. The ANN learns to control the cutoff filter, gain, and Q of each

of these biquads. By implementing complex polynomial evaluation in an autodifferentiating

framework, the author enabled an ANN to directly control a parametric EQ via the frequency

sampling method rather than controlling a proxy blackbox network.

This parametric EQ formed the basis for a DDSP distortion algorithm presented in Ner-

cessian et al. [2021]. This network learns to match a distortion effect by controlling a cascade

of parametric EQs and tanh nonlinearities. The values of these EQs and tanh blocks are “hy-

perconditioned,” which means information regarding the parameter settings of the distortion

effect are injected into the network. The authors baseline their approach by modelling a BOSS

MT-2 distortion pedal, ultimately concluding that the DDSP distortion competed reasonably

well against a blackbox neural network model that had a hundred times more parameters.

Parametric reverberation was implemented using DDSP in Lee et al. [2022]. The authors

present three different types of DDSP artificial reverberators: a filtered velvet noise effect, an

advanced filtered velvet noise effect, and a feedback delay network. Using a similar framework

as Nercessian [2020], the authors implement the various FIR and IIR EQs that appear in

traditional artificial reverberators using DDSP. The authors baseline the performance of their

algorithms on two tasks: an analysis synthesis task, and a blind estimation task. As opposed

to the blackbox reverb estimation algorithm presented in Sarroff and Michaels [2020], this

DDSP algorithm produces a fully characterized RIR whose color and tone can be tweaked by

modifying its learned EQs.

While blackbox neural networks have been used to emulate DRCs [Hawley et al., 2019,

Steinmetz and Reiss, 2022], to the author’s knowledge only two DDSP DRCs has been proposed

in the literature: Steinmetz et al. [2022] and Wright et al. [2022]. In Steinmetz et al. [2022]

the authors implemented a DRC using Pytorch with tunable threshold, ratio, knee width,

makeup gain, and a ballistics control. The authors approximate both attack and release time

with a joint smoothing parameter that controls a single pole IIR filter to smooth the DRC’s

attenuation curve. This IIR filter is then approximated using an FIR filter. As stated by

the authors, forcing the attack time and release time to be shared restricts the modelling

capabilities of the DRC. The work presented in Wright et al. [2022] applies a similar technique,

but adds complexity to the one-pole filter used for smoothing and can separately model attack

and release.

Outside of individual effects modelling, DDSP has also been used in synthesis tasks. In

Hayes et al. [2021] the authors present a waveshaping synthesizer. Using a similar architecture

to Engel et al. [2019], the authors train neural networks to learn a bank of waveshapers, which

are then used to synthesize audio. Another algorithm, presented in Shan et al. [2022], uses a

DDSP wavetable synthesizer capable of learning a bank of periodic wavetables. Most recently

a differentiable DX7 synthesizer was presented in Caspe et al. [2022], which implemented FM

synthesis using DDSP techniques.

Similarly, singing voice synthesis has also seen implementations using DDSP, such as the

algorithms presented in Nercessian [2021] and Nercessian [2022]. While Nercessian [2021] uses

the architecture shown in Engel et al. [2019] to synthesize singing voices, Nercessian [2022]
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presents a novel DDSP implementation of the WORLD vocal synthesizer [Morise et al., 2016].

DDSP presents an exciting new direction in machine learning for audio, as it leverages

the wisdom of traditional DSP algorithms with the modelling capacity of neural networks.

Interpretability of module parameters is commonly found in DDSP approaches as they often

seek to update and improve on well established, traditional algorithms for audio effects and

synthesis. As such, this dissertation will use DDSP as a guiding paradigm in the development

of legible modules for use in IMP tasks such as reverse engineering a mix.

3.6 Automatic Multitrack Mixing with Neural Networks

Several publications have proposed ANNs to automate the mixing of multitracks. These papers

outline architectures that use “end-to-end” methods, which means the input and output to the

networks are strictly time-domain audio. The networks do not take intermediate representa-

tions for input or output, such as the feature embeddings described in Section 3.2, and instead

learn to complete some task using only audio. In terms of a mixing task, an end-to-end system

would be able to learn about mix engineering using raw tracks and associated mixdowns.

3.6.1 Intelligent Drum Mixing with the Wave-U-Net

In Mart́ınez Ramı́rez et al. [2021], the authors present an ANN that can mix a batch of raw

drum tracks to a stereo mixdown . The architecture is based on the “Wave-U-Net,” which was

originally developed for a source separation task Stoller et al. [2018].

The raw audio of K stems are input to the neural network on the left side and passed

through downsampling blocks. These blocks apply 1D convolutions and then perform a down-

sampling operation. This serves to create increasingly small and abstract feature represen-

tations of the input multitrack. After performing L downsampling operations, the network

then begins to upsample the feature representations as shown on the right of the diagram.

Corresponding representations in the downsampling blocks are cropped and passed to the up-

sampling blocks, forming skip connections. Thus the network is able to retain the feature map

of a downsampling block past the network’s bottleneck and use it to inform the upsampling

operation. Finally the network outputs two channels of audio, which are meant to be the left

and right channels of a stereo mix of the K input stems.

The authors chose to use the ENST drums dataset for their work [Gillet and Richard, 2006].

The dataset consists of several hours of solo drum performance recorded on eight channels

and mixed to stereo. The performances include individual hits, fills, solos, and accompanied

playing. The eight channels each correspond to a mic on a part of the drum kit, i.e. kick,

snare, tom 1, etc. Implicit in the dataset is a notion of how to mix a set of eight raw tracks

into a stereo mixdown, based on what content is present in each track of the multitrack and

the desires of the mix engineer who mixed the dataset.

To train the network, a 2.75 second snippet of each time-aligned stem acts as input and 2

second snippets of the left and right channels of the stereo mixdown (that corresponds to the

center part of the inputs) act as targets. This gives the network a “receptive field” and allows

the network to make mixing decisions based on audio that occurs right before and right after

the target 2 second snippet of the multitrack. An L1 loss is calculated between the output of
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the network and the target mixdown for both the left and right channels. All audio is sampled

at 44.1 kHz.

Given this training setup, the network is tasked with learning when and how to apply audio

processing to the stems in order to produce a stereo mixdown. Because the mixdowns in the

ENST dataset use gain, panning, EQ, reverb, DRC, and distortion, the network is tasked with

learning how to apply these effects. Furthermore, the network must learn when to apply effects

given what audio is presented at the input. It is important to note that the network can only

mix drums with this setup, and that the drums must always be input to the same channels as

they were during training. For example, if the kick drum was placed as stem 2 during training,

then it must be placed as stem 2 for any inference.

3.6.2 Differentiable mixing console of neural audio effects

In Steinmetz et al. [2020], the authors present an ANN “differentiable mixing console.” Each

raw track is passed to an encoder network, which passes an embedded representation of each

input track to a context processor. This unit outputs the parameters that control the trans-

formation network. This transformation network is tasked with applying processing such as

gain, panning, EQ, reverb, and DRC based on the parameters from the post-processor. The

transformation network then applies effects to each input track, and the results are summed

to make a left and right channel of a mixdown. A spectrogram based stereo loss function is

used as the cost function in lieu of an L1 penalty.

The network is set up such that across N inputs, the encoder weights, post-processor

weights, and transformation network weights are shared. In other words, there are N copies

of the same neural network that each individually process the N input tracks. This allows for

flexibility with the order in which the raw tracks are fed to the model. Furthermore, the encoder

network is a spectrogram-based VGGish architecture which is able to generate embeddings for

a wide domain of input audio, rather than just being trained on drums [Hershey et al., 2017].

A stereo-invariant multi-scale spectrogram cost function is proposed by the authors, as it

was found that the network could not learn to pan properly when trained on a multi-scale

spectrogram loss on the mixdowns’ left and right channels.

3.6.3 Automatic music mixing with deep learning and out-of-domain

data

Mart́ınez-Ramı́rez et al. [2022] present an ANN that can mix a multitrack based on a novel

methodology for preprocessing the multitrack.

As the authors note, one difficulty when training an ANN to mix multitracks is the relative

lack of paired clean raw multitracks and mixdowns. They go on to note that a wealth of wet

stems and mixdowns are available through source-separation tasks. In a vacuum, however,

these wet stems cannot be used to train an ANN mixing system as the mixdown is often an

unweighted sum of the stems.

As such, the authors present a methodology of measuring the various effects applied to

wet stems in these datasets. Instead of removing the audio effects found on these stems before

mixing them, the authors normalize each stem based on audio features related to several classes
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of audio effects. These normalizations consider loudness, equalisation, panning, dynamic range

compression, and reverberation. An ANN is then trained to mix these effect-normalized stems

to their associated target mixdown.

With this preprocessing methodology established, the authors then demonstrate how to mix

a multitrack of raw tracks. Each K raw track is effect normalized according to the distribution

of effects mentioned in the previous paragraph. Then, this raw track is passed to the ANN’s

adaptive front end, which extracts salient features of the raw track. These features are then

passed to the ANN’s latent space mixer, which learns a mixing mask to apply to the raw track

in the ANN’s synthesis backend.

The authors present a stereo-invariant loss function similar to Steinmetz et al. [2020].

3.7 Reverse Engineering Mixes

Gorlow and Marchand [2013] provides a neat conceptual encapsulation of reverse engineering

in audio:

The objective of reverse audio engineering can be either to identify the transfor-

mation parameters given the input and output signals [...] or to recover the input

signal that belongs to the output signal given the transformation parameters, or

both. An explicit signal and system model is mandatory in either case.

One very large branch of this field is source separation [Makino, 2018]. As its name suggests,

source separation involves separating the individual sources that make up an audio mixture.

While a full literature review of this field falls outside the scope of this dissertation, it is

worthwhile to mention due to its sheer size and influence on machine learning for audio.

What follows are a few examples of reverse engineering literature that adhere more closely

to the definition provided above.

3.7.1 Reverse Engineering DJ Mixes

Schwarz and Fourer [2021] presents a methodology and dataset for reverse engineering DJ

mixes. As with mix engineering, several machine learning based approaches have emulated

the behaviours of DJs, such as the neural network presented in Chen et al. [2022] and the

MIR driven approach shown in Kim et al. [2017]. However, Schwarz and Fourer [2021]’s

approach is concerned with extracting information from human-made mixes rather than seeking

to automate their choices. According to the authors, in order to automatically annotate DJ

mixes the following components are required:

• Identification of tracks used in the DJ mix

• Alignment of where the used tracks start and stop within the mix

• Time-scaling to match speech changes that may have been used by the DJ

• Unmixing to estimate the cue regions where the cross-fades between tracks happen, the

curves for volume, bass and treble, and the parameters of other effects
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• Content and metadata to inform about the choices a DJ makes when creating a mix

The authors choose to focus on the alignment, time-scaling, and unmixing components

of this problem. This is different to another DJ mix unmixing work presented in Ramona

and Richard [2011], which does not consider time-scaling. Their method begins with a rough

alignment of the tracks identified in the mix, which is then refined to sample precision, after

which gain curves and cue regions are estimated.

The authors also present a dataset for use in their reverse engineering task referred to as the

UnmixDB Dataset [Schwarz and Fourer, 2018]. This dataset consists of 444 mixes, each made

by blending three tracks from a set of 37 total tracks. One of four effects (bypass, bass boost,

distortion, or DRC) are applied to each track, as well as one of three time-altering algorithms

(bypass, resampling, or stretching).

The authors evaluate their reverse engineering method using objective measures of frame,

sample, and suppression error for alignment, speed error for time-scaling, and fade error for

both. These error statistics are measured accross the whole dataset, and are also broken down

into different combinations of effects applications between blends to measure their sensitivity

to different effects processing. The authors conclude by mentioning “with some refinements,

our method could become robust enough to allow the inversion of fading, EQ, and other

processing.”

Though the UnmixDB mixes are not as natural as those presented in other works such as

Sonnleitner et al. [2016], the authors maintain that access to ground truth labels regarding cue

points and time altering are crucial to the evaluation of their reverse engineering approach.

Furthermore, the authors do not attempt to estimate the effects processing applied to the

tracks in a blend.

3.7.2 Reverse Engineering Two Stage Cascade Mixes

Gorlow and Marchand [2013] reduces mixing and mastering to a simplified process in order to

solve a reverse engineering and source separation problem:

Given the mixing, mastering, and signal parameters listed, recover the source sig-

nals from a mixture signal with a compressed dynamic range in the best possible

quality.

In this formulation, the authors reduce multitrack mixing to gain and panning, and re-

duce mastering to dynamic range compression. The authors seek to estimate the parameters

for panning angle, gain power, compression detection type, threshold, compression ratio, at-

tack/release times, and makeup gain. After the estimation of these parameters, the authors

attempt to recover the original, uncompressed signals present in the mixture.

Their method is evaluated using one mix of a five-track multitrack that is 24 seconds in

length. Objective measures of the signal recovery include an RMS error between the ground

truth and estimated signals, as well as a perceptual similarity measure known as PEMO-Q

[Huber and Kollmeier, 2006]. The authors use the PEMO-Q measure in lieu of a formal listening

test. According to Huber and Kollmeier [2006], “to evaluate the audio quality of a given

distorted signal relative to a corresponding high-quality reference signal, the auditory model

is employed to compute ”internal representations” of the signals, which are partly assimilated
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in order to account for assumed cognitive aspects.” These mathematically based perceptual

measures find widespread usage when evaluating speech and audio codecs.

3.7.3 The Reverse Engineer of a Mix

Barchiesi and Reiss [2010] serves as the foundation of this dissertation. In this paper are

two algorithms based on a least-squares optimization that can be used for reverse

engineering a mix. The evaluation of our techniques shows that, given the raw mul-

titrack recording and the final or target mix, it is possible to estimate the param-

eters of a wide range of different effects, including linear time-invariant processors

(gains, delays, stereo panners, and filters) and dynamic effects.

The authors note that they present an improvement to Kolasinski [2008], which employed

a genetic algorithm to estimate the gains used to mix a multitrack down to a mono mixdown.

A thorough description of the authors’ proposed linear effect estimation is presented in

Chapter 4. To summarize, the authors use a least-squares estimation procedure based on linear

algebra that can recover the magnitudes of taps in an LTI filter used to mix a multitrack.

The authors separately use this MIMO least-squares estimation procedure to estimate gain

envelopes that can model dynamics processing in multitrack mixing. To allow for gain variation

within a frame and to encourage smoothness in the envelope estimation, the authors model the

gain in each frame as a polynomial of a specified order. In their final evaluation, the authors

chose a polynomial of order 4 and a frame size of 128 samples.

To evaluate the linear processing, the authors mix a 30-second long four track multitrack

by applying gain, delay, FIR EQ, IIR EQ, and panning. By setting their FIR filter estimation

order to 100, the authors are able to recover each IR used in their mixing. The authors

also present a “real-world” reverse engineering demonstration, where a six-track recording was

mixed using Apple Logic Pro software using only linear processing. Ultimately the algorithm is

able to fit order 512 FIR EQs to each track in the multitrack, resulting in a MSE of 5.42×10−4

between the target and estimated mix. The authors note that the EQ matching of the algorithm

performs better in frequencies below 10kHz due to quantization noise in the target mix.

To evaluate the dynamics processing, the authors mixed an eight track multitrack using

DRC on each track with random settings for threshold, compression ratio, attack time, and

release time. Three different compressor models with different gain computers were used to

measure the modelling power of the polynomial gain estimation. The authors state that the

reverse engineering algorithm almost exactly estimates the compression envelopes in two of the

three test cases, with the model slightly underperforming in the case of a DRC with the least

smooth envelopes. Graphs are shown overlaying the ground truth compression envelope with

the learned envelope, but no objective measures are presented.
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Chapter 4

Time-Invariant FIR Audio Effect

Matching

This section outlines procedures for matching time-invariant FIR audio effects given an input

signal x[n] and output y[n]. Methods are described to match gain, panning, FIR EQ, and

convolutional reverb.

Mathematically speaking, gain, panning, FIR EQ, and convolutional reverb (which includes

delay and echo) all constitute FIR LTI systems. Given the formulation above, where both the

input and output signal are assumed available, a closed form time domain solution exists that

is outlined in Barchiesi and Reiss [2010].

However, computational constraints prevent using the time domain solution for matching

convolutional reverb with a sufficiently long IR. In this case, spectral methods are considered.

A classical frequency division method is compared to a newer gradient descent method enabled

by Engel et al. [2019].

Therefore, Sections 4.1 and 4.2 constitute a literature review, and Section 4.3 presents a

measure of matching performance and comparison to a classical method not explicitly demon-

strated in literature (i.e. [Engel et al., 2019]).

4.1 Gain and Pan Matching

Given an input signal x[n] that has had some nonzero gain g applied to produce an output

y[n], it is possible to recover g via

g =
y[n]

x[n]
(4.1)

In the multitrack case, Barchiesi and Reiss [2010] proposes a closed-form solution to match

a set of gains gi applied to the tracks xi[n] of an N track multitrack to produce a mono output

y[n]

y[n] =

N−1∑
i=0

gixi[n] (4.2)
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This linear combination can be recast as the matrix operation

y = Xg (4.3)

where X is a matrix whose ith column is xi[n] and g is a column vector whose ith entry

is gi. Assuming that X is not singular, an optimal set of coefficients ĝ can be found that

minimize the Euclidean distance (i.e. MSE) ||y −Xg|| via the least squares formula

ĝ = (XTX)−1XT y (4.4)

In the case that X is singular, X−1 does not exist and thus this method cannot be used.

Singularity may arise when one track in the multitrack is muted (i.e. all zeros) or when

one track in the multitrack is a subgrouping of other tracks in the multitrack (i.e. a linear

combination of tracks in the multitrack).

The same procedure can be used to match the gan and pan within a stereo mix, producing

a set of gains gL and gR that match the left channel yL[n] and right channel yR[n] respectively.

These left and right channel gains can be factored into gain and pan parameters (pL and pR)

using the -3dB panning law described in Section 2.2:√
g2L + g2R =

√
g2p2L + g2p2R =

√
g2(p2L + p2R) = g (4.5)

pL =
gL
g
, pL = cos(θ) =⇒ θ = arccos(pL) (4.6)

pR =
gR
g
, pR = sin(θ) =⇒ θ = arcsin(pR) (4.7)

In this formulation, an additional polarity parameter would need to be included should the

signs of gL and gR not match.

4.2 EQ Matching

Assume that y[n] = x[n] ∗ h[n], i.e. that y[n] is the result of applying some EQ h[n] to x[n].

Mathematically speaking it is possible to recover h[n] using x[n] and y[n] by calculating an

inverse filter:

y[n] = x[n] ∗ h[n] =⇒ Y [ω] = X[ω]H[ω] =⇒ H[ω] =
Y [ω]

X[ω]
(4.8)

However, there is no guarantee that this filter is stable. Moreover, in the absence of infor-

mation regarding the length of h[n] or in the event of truncation of y[n] this method cannot

guarantee a perfect match. As such, methods for EQ matching differ based on whether the

EQ effect being fit is FIR or IIR.

4.2.1 FIR EQ Matching

Assuming a P th order LTI system it is possible to estimate h[n] using the frequency sampling

method mentioned in Section 2.3.1. By taking a length P DFT of y[n] and x[n], Equation 4.8
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suggests

H[ω] =
Y [ω]

X[ω]
=⇒ |H[ω]| = |Y [ω]|

|X[ω]|
(4.9)

Thus by dividing the magnitude responses of y[n] and x[n] and inverting to the time domain,

h[n] can be estimated.

Barchiesi and Reiss [2010] point out that a formulation similar to that presented in Sec 4.1

can be used to reverse engineer FIR EQs applied to a single track or a multitrack. Assuming

a P th order LTI system, the single track formulation y[n] = x[n] ∗ h[n] can be recast as

y = Xph (4.10)

where Xp is a matrix whose ith columns contains a copy of x[n] that has been shifted

(i.e. zero-padded) i samples. In the multitrack case Xp is replaced with XK,p, which contains

shifted versions of each of the k tracks in the multitrack.

4.3 Reverb Matching

Using the same conventions as Section 4.2, assume that y[n] = x[n] ∗ h[n], i.e. that y[n] is the
result of applying some reverb IR h[n] to x[n]. Mathematically speaking, the LSE solution

proposed by Barchiesi and Reiss [2010] ought to work when trying to match a reverb IR. In

practice, however, this approach is not viable due to computational constraints.

The matrix inversion, which is the most expensive computation in Equation 4.4, scales

O(n3) in time, with n being of taps in the LTI system. Case in point, to reverse engineer

a one second convolutional reverb at CD quality, the time domain LSE algorithm requires a

transpose, multiplication, and inversion of a 44100x44100 matrix. This matrix contains about

2 billion values, which is too large for most modern hardware (e.g. this 44100x44100 matrix of

random values would not fit on the author’s laptop with with 16GB RAM).

The reverb’s IR can be retrieved using frequency-domain approaches. Two approaches will

be discussed: using explicit division in the frequency domain; and using stochastic gradient

descent with a frequency domain based reverb application.

4.3.1 Case 1: No truncation

Assume the dry signal x[n] has support of length M and the wet signal y[n] has support of

length M +N − 1 for some N ≥ 1. In this case it can be deduced that the reverb IR h[n] has

length N due to the nature of convolution.

An approximation of the reverb IR can be recovered using division in the frequency domain

using the following procedure. First zero-pad x[n] to match the length of y[n], then multiply

each signal with a Hann window of length M +N − 1, and then take the DFT of each to find

X(ω) and Y (ω). From there, divide X(ω) from Y (ω) and perform the IDFT on the quotient.

This yields a time-domain signal with length M + N − 1 where the first N samples are the

estimate of h[n].

It is also possible to estimate h[n] using gradient descent. First, a length N vector h[n] is

initialized with Gaussian noise that has mean 0 and variance 10−3. Then, this reverb IR is
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(a) Frequency Division Estimate (b) Frequency Division Residuals

(c) MAE Gradient Descent Estimate (d) MAE Gradient Descent Residuals

Figure 4.1: Various reverb IR estimates in Case 1

applied to x[n] using a multiplication in the frequency domain to produce an estimated ŷ[n].

Finally a MAE is calculated between y[n] and ŷ[n] and used as the cost function to update

the values of h[n]. In this procedure, the gradient descent begins with a learning rate of 10−4

until early stopping, then reduced to 10−5 until early stopping, and finally reduced to 10−6

until early stopping is reached.

The result of each procedure can be seen in Figure 4.1. Both methods do a good job of

matching the overall shape of the original IR. Note that the residuals for the frequency division

method are on the order of 10−3, whereas the residuals of the gradient descent method are

on the order of 10−2. Moreover, the residuals from the frequency division method are more

uniformly distributed than those of the gradient descent method, which closely mirror the

shape of the original IR.

4.3.2 Case 2: Truncation

Assume the dry signal x[n] and wet signal y[n] both have support of length M . In this case no

information is immediately available regarding the length of the reverb IR h[n]. A situation

such as this can arise when dealing with an exerpt of a mixdown or bounce. Though many

algorithms deal with the estimation of reverb parameters in a blind setting [Scharrer and

Vorländer, 2010, Löllmann et al., 2010, Sarroff and Michaels, 2020], they fall outside the scope

of this dissertation. One can estimate an h[n] of a desired length N ≤ M using either the

frequency division method or using gradient descent.

To estimate h[n] using the frequency division method, first truncate x[n] and y[n] to length

N , then multiply each signal with a Hann window of length N , and then take the DFT of each

to find X(ω) and Y (ω). From there, divide X(ω) from Y (ω) and perform the IDFT on the

quotient. This yields a time-domain signal with length N , the estimate of h[n].
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It is also possible to estimate h[n] using gradient descent. First, a length N vector h[n] is

initialized with Gaussian noise that has mean 0 and variance 10−3. Then, this reverb IR is

applied to the entirety of x[n] using a multiplication in the frequency domain to produce an

estimated ŷ[n]. Finally a MSE is calculated between y[n] and ŷ[n] and used as the cost function

to update the values of h[n]. In this procedure, the gradient descent begins with a learning rate

of 10−4 until early stopping, then reduced to 10−5 until early stopping, and finally reduced to

10−6 until early stopping is reached.

The result of each procedure can be seen in Figure 4.2. Both methods do a good job of

matching the overall shape of the original IR. Note that the residuals for the frequency division

method are on the order of 10−3, whereas the residuals of the gradient descent method are

on the order of 10−2. Moreover, the residuals from the frequency division method are more

uniformly distributed than those of the gradient descent method, which closely mirror the

shape of the original IR.
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(a) Frequency Division Estimate (b) Frequency Division Residuals

(c) MSE Gradient Descent Estimate (d) MSE Gradient Descent Residuals

(e) MAE Gradient Descent Estimate (f) MAE Gradient Descent Residuals

Figure 4.2: Various reverb IR estimates in Case 2
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Chapter 5

Time-Invariant IIR Audio Effect

Matching

Continuing from Section 4.2, assume that some magnitude response has been calculated using

Eqn 4.9 and it is desired to match an IIR filter to this magnitude response.

Classical methods for designing an IIR filter that achieves an arbitrary magnitude and/or

phase response include the modified Yule-Walker (MYW) estimation [Chan and Langford,

1982], least squares approaches [Kobayashi and Imai, 1990, Lang, 1998], linear program-

ming [Rabiner et al., 1974], Steiglitz-McBride [Stoica and Soderstrom, 1981], and gradient-

based optimization methods [Dodds, 2020].

However, these approaches have drawbacks that may limit their application in scenarios

that require high accuracy, fast estimation, or both. For example, while MYW can be per-

formed quickly with a small number of operations, it may produce inaccurate results for more

challenging target responses. On the other hand, iterative methods often provide greater ac-

curacy and can be tailored with customized loss functions. However, this comes with higher

computational cost due to need for multiple gradient update operations. In addition, since

this optimization process is generally non-convex, performance is often very sensitive to initial

conditions and also may suffer from getting stuck in local minima [Dodds, 2020, Nercessian,

2020].

Recently, there has been interest in integrating deep learning approaches for filter design.

The parallels between recurrent neural networks (RNNs) and IIR filters have been exploited

to learn arbitrary filters from data [Kuznetsov et al., 2020, Pepe et al., 2020, Ramı́rez and

Reiss, 2018]. While these networks simulate the sample-by-sample operations of a digital IIR

filter, they can be slow and difficult to train due to their recursive nature, which requires many

gradient steps through time.

Other approaches have instead been trained to directly estimate the parameters of graphic [Välimäki

and Rämö, 2019] and parametric equalizers [Nercessian, 2020, Yospanya et al., 2021] given a

desired magnitude response. While these approaches avoid the need for iterative estimation,

they are potentially restricted by the IIR filter prototypes they estimate.

To address these limitations, a novel MLP can be constructed that is capable of learning

the mapping from a desired arbitrary magnitude response to the coefficients of an IIR filter,
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IIRNet 

freqz

... ...

Figure 5.1: Block diagram of IIRNet.

removing the need for iterative optimization. This MLP, named “IIRNet,” is trained with

randomly generated filters to estimate a cascade of biquads given a desired magnitude response,

as shown in Figure 5.1.

This chapter is organized as follows:

• Sec 5.1 presents a literature review on the field of random polynomials, which has not

seen much usage outside of theoretical inquiries

• Sec 5.2 presents the architecture of the IIRNet MLP

• Sec 5.3 mentions the baselines against which IIRNet’s accuracy will be measured

• Sec 5.4 outlines the three experiments to be run that will measure how the performance

of IIRNet is affected by the filter families used to train it, the size of the MLP, and the

order of filters used to train it

• Sec 5.5 outlines three sets of filter families used to evaluate IIRNet

• Sec 5.6 discusses the results of these experiments and their impact

5.1 Random Polynomials

Training neural network filter estimators relies on the generation of a dataset of random digital

IIR filters. While sampling random filters for this training process may appear straightforward,

it was found that the sampling method plays an important role in generalization. Implicit in

the process of random filter generation is a random sampling of polynomials, as demonstrated

in Equation (2.9). Figure 5.2 shows the root placements of these polynomials sampling methods

for 100 filters with degree 32.
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(f) Uniform Parametric EQ

Figure 5.2: Root placements of 100 randomly sampled 32nd degree polynomials.

A. Polynomials with normal coefficients — Given a degree N polynomial cNxN +

· · · + c1x + c0, sample each ci from the normal distribution N (0, 1). For sufficiently large

N , the roots of this polynomial converge to the unit circle Hammersley [1956]. Most roots

are approximately 1
N away from the unit circle Shepp and Vanderbei [1995], and some roots

are approximately 1
N2 away from the unit circle Michelen and Sahasrabudhe [2020]. Roughly

2
π logN roots fall on the real line Kac [1943], most of which are close to 1 and −1. The closest

real root to the unit circle is approximately 1
N away Michelen [2021]. Much of the behaviour is

unchanged if the coefficients are other distributions Ibragimov and Maslova [1971], Bharucha-

Reid and Sambandham [2014], Tao and Vu [2015b]. Under very general conditions, the zeros

of these polynomials experience repulsion Tao and Vu [2015b]. As long as the polynomial and

its derivative are not both likely to be small at the same time, the roots repel each other Tao

and Vu [2015b].

B. Biquads with normal coefficients — Given a desired polynomial order N , sample N
2

second order polynomials b2,ix
2 + b1,ix + b0,i, with bj,i independently sampled from N (0, 1)

and multiply them together. This is a process where roots are sampled independently in

pairs, which means the roots of the derivative polynomial are uniformly independent in the

same way Pemantle and Rivin [2013], Kabluchko [2015]. A Monte Carlo simulation with 108

iterations suggests that about 64.8% of roots sampled using this method are real.

C. Polynomials with uniformly sampled roots in the unit disk — Given a desired

order N , sample N
2 roots in the complex plane using the following procedure: take θ uniform

in [0, 2π] and r =
√
U where U ∼ Unif[0, 1]. Then, select these roots’ complex conjugates as

the remaining N
2 roots. Similar to (B), the roots of the derivative polynomial are uniformly

independent in the same way Pemantle and Rivin [2013], Kabluchko [2015], with no expected

density of real roots given this sampling.

D. Polynomials with roots sampled uniformly in magnitude and argument — Given
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a desired polynomial order N , sample N
2 roots in the complex plane using the following proce-

dure: take θ uniform in [0, 2π] and take r uniform in [0, 1]. Then, select these roots’ complex

conjugates as the remaining N
2 roots. Similar to (C), the roots of the derivative polynomial are

uniformly independent in the same way Pemantle and Rivin [2013], Kabluchko [2015]. There

is no expected density of real roots given this sampling. Compared to the roots sampled in

(C), these roots will exhibit a greater density closer to the origin than the unit circle.

E. Characteristic polynomial of a random matrix — Given a desired polynomial order

N , take a random matrix A ∈ RN×N whose entries are sampled i.i.d. from N (0, 1) and use its

eigenvalues (rescaled by 1
N ) as the roots of the desired polynomial Ginibre [1965], Mehta [1967].

These roots exhibit a repulsion from one another Tao and Vu [2015b]. The eigenvalues converge

to the unit disk for various distributions of entries Tao and Vu [2010]. The characteristic

polynomial of this random matrix has roughly
√

2N/π real roots Edelman et al. [1994]. It is

known this behaviour persists for a family of random variables whose first four moments match

those of the Gaussian (i.e. E[X] = 0, E[X2] = 1, E[X3] = 0, E[X4] = 3) Tao and Vu [2015a],

but still open in cases such as if the coefficients are {−1,+1} with equal probability Vu [2020].

F. Uniform parametric EQ — Given a desired polynomial order N , uniformly sample

the parameters of a parametric EQ made up of one low shelf section, one high shelf section,

and N−4
2 peaking filters Nercessian [2020]. The uniformly sampled parameters include each

section’s corner/center frequency, gain, and Q factor.

5.2 IIRNet Architecture Design

The goal is to train a neural network to learn a mapping fθ that takes a desired magnitude

response X ∈ RF sampled at F linearly spaced frequencies over [0, fs
2 ], where fs is the system

sample rate, and estimates an N th order digital IIR filter with a magnitude response X̂ ∈ RF .

For simplicity, N is fixed to be even. This cascade of biquads can then be represented by

a scalar gain G ∈ R, and a set of K second-order sections comprised of K complex poles

P = {p0, ..., pK−1 | pk ∈ C} and K complex zeros Z = {z0, ..., zK−1 | zk ∈ C}, where K = N/2.

Thus the network learns a mapping fθ(X) → G,P,Z → X̂, with X, X̂ ∈ RF as shown in

Figure 5.1. Each pole and zero is paired with its complex conjugate to ensure each biquad has

real-valued coefficients. Thus the kth biquad takes the form

Hk(z) =
1− 2Re(zk)z

−1 + |zk|2z−2

1− 2Re(pk)z−1 + |pk|2z−2
. (5.1)

Estimating a system gain G rather than an individual gain for each second order section

reduces the total number of parameters without loss of generality, and was found to aid stability

in training higher order models. Additionally, forcing the system gain G ∈ (0, 100) aids training

stability by applying the sigmoid function to IIRNet gain estimate and then multiplying by 100.

To ensure a minimum phase filter, the estimated poles pk and zeros zk are rescaled according

to Nercessian et al. [2021] as shown in (5.2). To further stabilize training, a constant ϵ = 10−8
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was added to prevent root placement at the origin or on the unit circle.

pk ←
(1− ϵ) · pk · tanh( |pk| )

| pk + ϵ |

zk ←
(1− ϵ) · zk · tanh( |zk| )

| zk + ϵ |

(5.2)

During training, the network is tasked with minimizing a loss function L that measures the

distance between the input and estimated magnitude response. The mean squared error of the

log of the magnitude responses of the estimated and target magnitude responses over a set of

F linearly spaced frequencies [0, fs
2 ] is used.

L =
1

F

∣∣∣∣∣∣ log(X̂)− log(X)
∣∣∣∣∣∣2
2

(5.3)

The complex response of each second order section was calculated by performing the DFT on

the numerator and denominator polynomials with zero padding, and dividing the result. This

allows for parallelized computation, as opposed to the sample-based gradient optimization in

previous works [Kuznetsov et al., 2020, Pepe et al., 2020]. The base IIRNet architecture is

composed of 2 linear layers with hidden dimension D, each followed by layer normalization [Ba

et al., 2016] and LReLU with α = 0.2. The final layer has no activation, and projects the

hidden dimension to the number of filter parameters, which is a function of the filter order.

The estimation of complex values is treated as the individual estimation of their real and

imaginary components.

5.3 Baselines

Two baselines were considered to benchmark IIRNet against existing methods: the modi-

fied Yule-Walker [Chan and Langford, 1982] method and a stochastic gradient descent (SGD)

method. For the SGD approach the same biquad parameterization and loss function as IIRNet

were used, but instead randomly initialized a vector with G,P,Z parameters that are opti-

mized over a number of gradient steps using a learning rate of 5 ·10−4. The number of gradient

steps were then varied to observe the impact on run-time as well as accuracy.

5.4 Experiments

AdamW [Kingma and Ba, 2015, Loshchilov and Hutter, 2017] was used for SGD and IIRNet

was trained for 500 epochs with a batch size of 128, where 1 epoch is defined as 20, 000

random filters, equating to a total of 10 million filters. The target magnitude response was

evaluated over F = 512 linearly spaced frequencies. To aid stability, all responses are clipped

X ∈ [−128 dB, 128 dB] and then scaled between [−1, 1]. All models were trained with an

initial learning rate of 10−5 unless otherwise noted, and the learning rate decayed by a factor

of 1/10 at 80 and 95% through training. Gradient clipping is applied where the norm of

the gradients exceeded 0.9. Three experiments were conducted to investigate the behaviour

of IIRNet, training a total of 19 models. Code for these experiments along with pre-trained
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models is provided.1

Filter family — To investigate the impact of the random filter sampling method seven

models were trained, training each on a different family of random 16th order filters (A-F) as

described in Section 5.1, with the final model trained using all of the families together (G). For

these experiments, each linear layer had D = 1024 hidden units, and each model was trained

to estimate a 16th order biquad cascade.

Model size — The size of the linear layers within IIRNet has a direct impact on the inference

time, which is of interest for online and real-time applications. The impact of the model size

on the run-time and accuracy was investigated by training another seven models using hidden

sizes D ∈ 64, 128, ..., 4096. These models were trained an equal number of random filters from

all of the families (G). All timings were performed on CPU and averaged over a total of 1000

runs, using a machine with an AMD Ryzen Threadripper 2920X.

Filter order — IIRNet predicts a fixed order filter given a desired magnitude response,

which means that a different model must be trained for different filter order estimations. To

investigate the performance of IIRNet as a function of the filter order, another five models

were trained, varying both the order of the random filters used in training, and the filter order

estimated by IIRNet. These models used D = 2048 hidden units in each linear layer and

were trained again with random filters from all families (G). Since the training of models that

estimate higher order filters (N ≥ 32) was found to be more unstable, all such models were

trained with an initial learning rate of 10−6.

Training Method
Random polynomial families Real-world

Avg
A B C D E F G HRTF Gtr. Cab.

Modified Yule-Walker (N = 16) 12.84 32.46 16.67 124.23 6.80 1.40 19.73 1.19 60.86 30.69

A. Normal coefficients 4.38 6.80 6.22 23.11 1.42 1.11 5.07 1.35 6.73 6.24
B. Normal biquads 13.19 2.70 0.21 1.29 2.14 0.57 2.64 2.40 6.86 3.55
C. Uniform disk 193.81 328.79 0.08 1.19 8.91 50.42 83.32 263.06 1203.40 237.00
D. Uniform magnitude disk 175.81 279.54 0.09 0.54 11.25 61.41 76.37 250.38 1111.05 218.49
E. Characteristic polynomial 22.95 32.66 0.35 2.44 0.81 0.72 6.81 11.02 138.99 24.08
F. Uniform parametric EQ 19.33 12.84 3.06 17.84 3.52 0.21 6.89 3.79 17.50 9.44

G. All families 6.24 2.89 0.11 0.67 1.12 0.34 1.28 1.40 5.59 2.18

Table 5.1: Average dB MSE for IIRNet trained using different families of random 16th order
(K = 8) filters.

5.5 Evaluation Datasets

Three different sets of filters were used to evaluate the models. First, 1000 random filters

from each of the 7 proposed random filter families (A-G) were evaluated. Then, models were

measured on how they generalized to distributions of filters not seen during training, as well as

matching the magnitude response of real-world filters such as measured head-related transfer

functions (HRTFs) and guitar amplifier cabinets. Though phase is an integral part of the

HRTF, some studies suggest that the HRTF can be reproduced within perceptual tolerance

under certain conditions via a minimum phase magnitude response plus delay match [Kulkarni

et al., 1999]. Guitar cabinets combine loudspeakers with guitar amplification circuits for use

in creative settings within music production. The impulse response of these cabinets can

1https://github.com/csteinmetz1/IIRNet
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Method Params. Time (G) HRTF Gtr. Cab.
Million ms dB MSE dB MSE dB MSE

MYW - 9.00 19.73 1.19 60.86

SGD (1) - 7.75 2458.28 3165.43 5648.83
SGD (10) - 58.21 998.20 1393.29 2362.49
SGD (100) - 578.52 11.74 3.49 5.67
SGD (1000) - 5784.94 9.49 0.76 2.25

IIRNet 64 0.04 0.28 3.70 2.74 7.22
IIRNet 128 0.09 0.29 2.95 2.41 7.11
IIRNet 256 0.21 0.30 2.08 2.03 6.29
IIRNet 512 0.55 0.36 1.51 1.69 6.54
IIRNet 1024 1.63 0.71 1.29 1.39 5.54
IIRNet 2048 5.35 1.87 1.16 1.52 5.02
IIRNet 4096 19.1 4.65 1.11 1.38 5.86

Table 5.2: Comparison of average dB MSE and runtime in milliseconds fitting 16th order filters
with other IIR filter design methods.

Train Test order (G)
HRTF Gtr. Cab.

Order 4 8 16 32 64

4 1.21 7.65 20.30 75.28 196.19 11.77 19.20
8 0.37 1.59 6.20 24.98 80.10 6.08 11.96
16 0.22 0.68 2.13 9.55 34.76 1.97 6.12
32 0.17 0.39 0.98 4.82 21.32 0.66 1.92
64 1.96 2.07 2.69 7.49 22.61 3.29 4.70

Table 5.3: dB MSE evaluating IIRNet with different estimation orders.

then be used for digital emulation of the linear behaviour of these devices. 187 HRTFs were

sourced from the IRCAM-Listen HRTF Dataset2 and 32 guitar cabinet impulse resposnes were

sourced from Kalthallen Cabs3. All impulse responses were resampled to 16-bit 44.1kHz and

a Savitzky-Golay filter [Luo et al., 2005] was used to smooth the magnitude responses before

input to IIRNet.

5.6 Results and Discussion

The MSE between the estimated and target response are reported using a dB scale, enabling

a more interpretable analysis of the error. Experiments with different random filter families

in Table 5.1 show that training on a specific family of random filters resulted in the best

performance when evaluating on that filter family. Furthermore, it was found that training

on certain families (A, B, F) rather than others (C, D, E) resulted in better performance on

real-world filters. This supports the claim that the method for constructing random filters is

a significant consideration in training this type of model. Notably, IIRNet trained on all filter

families (G) achieved the lowest combined MSE across all datasets, indicating that training on

multiple families is superior to training on any single family alone.

The performance of these models is also compared against the MYW approach, as shown

in the first row of Table 5.1. Here MYW is used to fit the desired response specifying the filter

2http://recherche.ircam.fr/equipes/salles/listen/
3https://cabs.kalthallen.de
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order N = 16, the same as the target filter. This approach performs worse than IIRNet trained

with (G) across all of the random polynomial families, along with the guitar cabinet responses.

However, it was found that MYW outperforms other methods on the HRTF dataset. These

results point to MYW performing better when the overall range of the magnitude response is

more limited, but this approach may struggle when the response has a much larger range in

the magnitude space.

The run-time and accuracy of variants of IIRNet are compared to an SGD and MYW

approximation on identical datasets in Table 5.2. Both the run-time and accuracy increase as

we increase the size of IIRNet, as expected. All versions of IIRNet are both faster and more

accurate across the set containing all random filter families (G) as compared to both SGD and

MYW. On the real-world filter estimation tasks, SGD with 1000 iterations outperforms MYW

and even the largest IIRNet model, but has a run time orders of magnitude higher. MYW

beats all other approaches on the HRTF estimation task, but performs worse than even the

smallest IIRNet model across all random filters families and guitar cabinet estimation.

Since IIRNet is trained to estimate filters of a fixed order, it was evaluated how perfor-

mance changed as a function of the estimation order. Table 5.3 demonstrates that in general,

increasing the estimated filter order of IIRNet improves estimation accuracy at all orders less

than or equal to the training order. However, it was found training models that estimate filters

with order N ≥ 64 challenging, often leading to instability. As a result, the model trained to

estimate 64th order filters diverged, and hence performs worse than the 32nd order model.

While these results demonstrate that IIRNet produces accurate estimates of both unseen

random and real-world filters, this approach has some limitations including fixed order filter

estimates, consideration only of the magnitude response, and the inability to apply additional

design constraints. Future work could investigate a formulation of the loss function that also

considers phase, along with architectural adjustments that may support variable filter order

estimation. However, it may be possible to address some of these limitations by using IIRNet

simply as a method for generating an initial estimate that can be refined with more flexible

iterative techniques.
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Chapter 6

Memoryless Distortion Effect

Matching

This section outlines procedures for matching memoryless distortion audio effects given an

input signal x[n] and output y[n]. As mentioned in Sec 3.5, there is a wealth of approaches to

modelling audio distortion effects that range in complexity and interpretability.

Differentiable whitebox methods like those presented in Parker et al. [2019] can emulate

the differential equations that govern analogue distortion circuits on a sample-by-sample basis.

The authors’ novel feedforward ANN formulation enables avoids the often costly and difficult

to train autoregressive networks such as RNNs. To do this, the authors collect not only

input/output samples from the distortion effects, but also internal measurements of the circuit’s

behaviours. The authors baseline their approach on three distortion circuits: a first-order diode

clipper, a second-order diode clipper, and a Sallen-Key filter.

On the other hand, differentiable blackbox methods like those presented in Mart́ınez Ramı́rez

[2021] require no measurements of analogue circuitry and learn their behaviour strictly from

input/output samples. Among the many audio effects modelled, two analogue distortion ef-

fects are modelled: the Universal Audio vacuum-tube preamplifier 610-B and the Universal

Audio transistor-based limiter amplifier 1176LN. While this approach reduces the complexity

of the dataset needed to emulate a distortion effect, the complexity of the algorithm itself must

increase to compensate. The best performing architectures in this task employed neural net-

works with memory, thus drastically increasing their training time and complexity compared

to the MLPs of Parker et al. [2019].

A lightweight approach that splits the difference between the interpretability of Parker et al.

[2019] with the ease of data collection in Mart́ınez Ramı́rez et al. [2021] is the greybox, DDSP

approach in Nercessian et al. [2021]. As described in Sec 3.5.4, this approach uses a cascade of

differentiable parametric EQs and tanh nonlinearities to model distortion effects. The authors

choose emulate a Boss MT-2 distortion pedal using 10 cascaded filtering stages.

This greybox approach allows for an interpretable model of a distortion effect, as the pa-

rameters of the parametric EQs and tanh nonlinearities are readily readable. However, this

model would be difficult to tweak as it would involve a user to modify the parameters of six

parametric EQs and saturating nonlinearities.
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Figure 6.1: Block diagram of the proposed DDSP W-H distortion effect.

This chapter presents a novel differentiable Wiener-Hammerstien (W-H) DDSP memoryless

distortion effect. This model is smaller and more interpretable than the methods cited above,

with the addition of being easily modified by a user. In Sec 6.1, the W-H model is defined.

Sec 6.2 presents a dataset of audio samples for three different software distortion effects. This

dataset will be used to evaluate the modelling power of the differentiable W-H model. Then,

Sec 6.3 details the formulation of each processing block in the DDSP W-H model. Here, several

different families of learnable nonlinear waveshaping functions will be discussed. These include

two novel formulations: the SumTanh family and PowTanh family. Sec 6.4 describes the

optimization procedure used to fit an input/output pair of audio samples, as well as notes on

initialisation. Sec 6.5 presents the results of an objective evaluation and a perceptual evaluation

of the algorithm, and Sec 6.6 discusses the results.

6.1 Wiener-Hammerstein Models

The typical W-H model consists of a linear block, a nonlinear block, and a linear block cascaded

in series. The W-H models in this work are time-invariant, formulated using graphic equalizer

pre-emphasis and de-emphasis filters for the linear blocks and a parameterized waveshaping

function as the nonlinearity. While previous literature focused on power series and Chebyshev

polynomials to model the nonlinear blocks [Novak et al., 2010b,a], in this work several other

waveshaping functions are investigated. Figure 6.1 shows a diagram of the proposed W-H

model used in this work.

6.2 Evaluation Dataset

A novel dataset of processed electric guitar samples following the same procedure described

in Comunità et al. [2021] was assembled, using unprocessed recordings from the IDMT-SMT-

Audio-Effects dataset [Stein et al., 2010].

The source dataset1 includes monophonic (624 single notes) and polyphonic (420 intervals

and chords) recordings (wav - 44.1kHz, 16bit, mono) from 2 different electric guitars, each

with two pick-up settings and up to 3 plucking styles. The monophonic recordings cover the

common pitch range of a 6-string electric guitar, and the polyphonic samples were obtained

mixing single notes recordings to generate 2-note intervals and 3- or 4-note chords. All samples

1https://www.idmt.fraunhofer.de/en/business units
/m2d/smt/audio effects.html
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Table 6.1: Plugins used in this work

Designer Plugin Emulation of Id

Audified Multidrive ProCo Rat RAT
Pedal Pro

Mercuriall Greed Smasher Mesa/Boogie MGS
Grid Slammer

Analog
Obsession

Zupaa Vox Tone Bender VTB

Table 6.2: Plugin settings used to generate the dataset

Id Level Gain Tone/Eq

RAT [1.0] [0.2, 0.5, 1.0] [0.2, 0.8]
MGS [1.0] [0.2, 0.5, 1.0] [0.2, 0.8]
VTB [1.0] [0.1, 0.2, 0.5, 0.8, 1.0] —

are 2 seconds long. The monophonic recordings required removal of background noise before the

note onset, which was obtained using a python script together with Librosa’s onset detection

function [McFee et al., 2015].

To assemble the dataset an overdrive, distortion and fuzz plug-ins (see Table 6.1) designed

to emulate some of the most iconic and widely used analogue guitar effect pedals were selected.

By selecting 3 different types of distortion plug-ins from 3 different developers, it was desired

to cover a wide range of timbres and designs while keeping the amount of data limited. All

the plugins have 2 or 3 controls and, regardless of the specific name adopted by the designer,

the controls can be identified by their processing function: Level, Gain, Tone/Equalisation.

A summary of the controls and settings is shown in Table 6.2. These values were chosen as

they were found to be perceptually distinct from one another. The samples’ were processed

in MATLAB - making use of its VST plugin host features - and both unprocessed inputs and

processed outputs were normalised to 0dBFS.

6.3 Methods

6.3.1 Learnable Graphic EQ

Similar to the formulation in Colonel and Reiss [2021], separate 20-band finite impulse response

(FIR) graphic EQs are learned for the pre-emphasis and de-emphasis linear blocks [Välimäki

and Reiss, 2016]. These EQs are calculated using the frequency sampling method as in Engel

et al. [2019]. First, a frequency transfer curve is specified. The inverse short-time Fourier

transform (ISTFT) of this magnitude response is taken using a zero-phase response to obtain

the filter’s impulse response (IR). Afterward the EQ is applied by multiplying the magnitude

response of this new IR with the windowed STFT of the input audio signal.

The 20-band graphic EQ can be characterized using a 20 dimensional ΘEQ gains. The 20

values specify the gain of each octave band filters, which are centered at 40, 65, 80, 130,
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200, 270, 400, 540, 800, 1000, 1500, 2000, 3000, 4000, 6000, 8000, 12000, and 16000 Hz

respectively. Shelving filters are used for frequencies below 40Hz and above 16000 Hz that

match the attenuation specified at the lowest and highest octave band respectively.

These 20 values are transformed via

ΘEQ gains ← σ(ΘEQ gains) (6.1)

where σ denotes the sigmoid function

σ(x) =
1

1 + e−x
(6.2)

The values in the transformed ΘEQ gains range from (0, 1) due to the bounds of the sigmoid

function.

Finally a piecewise linear frequency transfer curve ΘEQ is constructed using linear inter-

polation between the octave band attenuations specified by ΘEQ gains. Thus the EQ module’s

frequency transfer curve is bounded from (0,1) at all points. The estimated values are initial-

ized with random uniform noise from [-1,1], which initializes the octave band gains from -6dB

to -1dB.

Because this EQ formulation only allows for the attenuation of frequencies, a gain value

is specified in tandem with the pre-emphasis filter, and a volume value is specified in tandem

with the de-emphasis filter. It was found that this decoupling of gain and attenuation helps

stabilize the optimization.

6.3.2 Waveshaping nonlinearity functions

Tanh Nonlinearity

A hyperbolic tangent (Tanh) with DC offset is used as the baseline nonlinearity in this work.

The tanh function

tanh(x) =
e2x − 1

e2x + 1
(6.3)

is often used to model distortion effects due to its saturating behavior towards ±∞. To

enable the modelling of nonsymmetric distortion, a DC offset bDC can be applied before the

tanh nonlinearity. However, this offset must be removed after the nonlinearity to ensure the

output signal maintains no DC offset

f(x, bDC) = tanh(x+ bDC)− tanh(bDC) (6.4)

SumTanh Nonlinearity

Proposed in this work is a family of functions called a “harmonic sum of tanh functions” with

DC offset (SumTanh)

f(x) = a1 tanh(x) + a2 tanh(2x) + · · ·+ an−1 tanh((n− 1)x) + an tanh(nx) (6.5)

As a weighted sum of tanh functions, the SumTanh family exhibits saturation towards ±∞.
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As a sum of odd functions, the SumTanh family are odd functions, meaning they can model

symmetric distortions. Note that ac tanh(c × 0) = 0, meaning the waveshaper introduces no

DC offset. To model asymmetric distortions, a DC offset can be introduced via

f(x, bDC) = a0 + a1 tanh(x+ bDC) + · · ·+ an−1 tanh((n− 1)(x+ bDC)) + an tanh(n(x+ bDC))

(6.6)

with a0 = −
∑n

c=1 ac tanh(c × bDC) to remove the DC component after the nonlinearity.

For stability, a1 is initialized close to 1 and ac are initialized close to 0 otherwise. During

optimization, f(x) is normalized such that max(|f(x)|) = 1

PowTanh Nonlinearity

Also proposed in this work is a family of functions called a “power sum of tanh functions”

(PowTanh)

f(x) = a1 tanh(x) + a2 tanh(x
2) + . . . an−1 tanh(x

n−1) + an tanh(x
n) (6.7)

As a weighted sum of tanh functions, the PowTanh family exhibits saturation towards ±∞.

However, as a sum of even and odd functions the PowTanh can model both symmetric and

asymmetric distortions. Note that ac tanh(0
c) = 0, meaning the waveshaper introduces no DC

offset. As such, no DC offset is included in this parameterization. For stability, a1 is initialized

close to 1 and ac are initialized close to 0 otherwise. During optimization, f(x) is normalized

such that max(|f(x)|) = 1

Fourier Series

Because they are well known for their modelling capability, a parameterized Fourier series

waveshaper is investigated. An N th degree Fourier waveshaper takes the form

f(x) = a1 sin(x) + a2 sin(2x) + · · ·+ an
2
sin(

n

2
x)+

b0 + b1 cosx+ b2 cos(2x) + · · ·+ bn
2
cos(

n

2
x)

(6.8)

As a sum of even and odd functions, this waveshaper can model both symmetric and

asymmetric distortions. However, this waveshaper can introduce a DC offset due to its cosine

components, and thus b0 is fixed to −
∑n/2

c=1 bc.

Traditionally, the support of a Fourier series is [−π, π]. However, a fourier series can exhibit

overshoot behavior towards the ends of that support. Therefore, the input audio signal to the

waveshaper is normalized between [−0.9π, 0.9π] to avoid overshoot artefacts. In practice this

means the gain parameter in Figure 6.1 is ignored. As the waveshaper is expected to model

distortion, the coefficients of the Fourier series are initialized with an N th order approximation

to a square wave. During optimization, f(x) is normalized such that max(|f(x)|) = 1

Legendre Polynomials

Because they are well known for their modelling capability, a parameterized Legendre polyno-

mial waveshaper is also investigated. Legendre polynomials are a family of polynomials Pn(x)
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orthogonal on [−1, 1] with Pn(1) = 1. From Rodrigues’ formula these polynomials can be

expressed as

Pn(x) =

n∑
k=0

xk

(
n

k

)(n+k−1
2

n

)
(6.9)

and the waveshaper takes the form

f(x) = a0 + a1P1(x) + a2P2(x) + · · ·+ anPn(x) (6.10)

As a sum of even and odd functions, this waveshaper can model both symmetric and

asymmetric distortions. However, this waveshaper can introduce a DC offset due to its constant

components, and thus a0 is fixed to −
∑n

c=1 acPc(0).

Similar to the Fourier series, Legendre polynomials can exhibit overshoot behavior towards

the edges of its support. Therefore, the input audio signal to the waveshaper is normalized

between [−0.9, 0.9] to avoid overshoot artefacts. In practice this means the gain parameter in

Figure 6.1 is ignored. As the waveshaper is expected to model distortion, the coefficients of

the Legendre polynomials are initialized with an N th order approximation to the square wave.

During optimization, f(x) is normalized such that max(|f(x)|) = 1

6.4 Optimization

Stochastic gradient descent (SGD) is used to update the W-H parameters to fit a dry/wet

audio pair. These parameter include the attenuations of each band in both pre-emphasis and

de-emphasis filters, the gain parameter, each coefficient in the waveshaper, and the volume

parameter. The cost is calculated by passing a dry audio sample through the estimated W-H

model and measuring the distance between the estimated and target audio signal. SGD is

performed using the Adam method with an initial learning rate of 10−3. The cost function

chosen is multiscale spectrogram loss with window sizes 46ms, 12ms, and 3ms [Engel et al.,

2019]. The optimizations are allowed to run for a maximum of 40000 iterations. Early stopping

is employed with a patience of 1000 iterations. The learning rate is dropped to 10−4 when the

first early stopping is reached, or when the optimization reaches 20000 iterations.

6.5 Results

6.5.1 Objective Evaluation

The dataset outlined in Section 6.2 was used to measure the objective performance of each

waveshaping method. Each waveshaper was modeled using 10 degrees of freedom. Presented

in Table 6.3 are the average multiscale spectrogram losses measured on each waveshaping

method across each plugin and across all plugins. Across all plugins, the PowTanh method

performs best. Similarly, the PowTanh method outperforms all other methods on the RAT

and VTB plugins. On the MGS plugin, the SumTanh performs best. Both PowTanh and Sum-

Tanh methods outperform the Tanh baseline on all tasks. Notably, the Fourier and Legendre

waveshapers did not outperform the Tanh baseline on any of the tasks.
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Figure 6.2: Example of estimated waveforms for each waveshaping model on a VTB example

Table 6.3: Mean multiscale spectrogram loss of the waveshapers evaluated across pedals

Waveshaper RAT MGS VTB Total

Powtanh 1.321 0.559 2.117 1.332
Sumtanh 1.321 0.573 2.400 1.431
Fourier 1.588 0.603 2.686 1.625
Legendre 1.703 0.640 2.893 1.746
Tanh 1.353 0.597 2.478 1.476
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Table 6.4: Results of pairwise comparison of waveshaping method architecture on perceptual
similarity rating across all stimuli, with Bonferroni Correction, o > 0.9, *<0.001 ·=no com-
parison. No waveshaping method was found to be perceptually indistinguishable from the
reference.

Ref SumTanh PowTanh Fourier Legendre Tanh

Ref · * * * * *
SumTanh * · o * * o
PowTanh * o · * * o
Fourier * * * · * *
Legendre * * * * · *
Tanh * o o * * ·

6.5.2 Perceptual Evaluation

A listening test was conducted using webMUSHRA on a subset of 12 samples from the dataset

[Schoeffler et al., 2018]. This subset consists of two unique monophonic and two unique poly-

phonic stimuli passed through each of the three distortion plugins. No plugin parameter

settings were repeated across any of the stimuli. These stimuli were chosen to cover a broad

subset of the dataset and to avoid biasing results towards a specific effect, parameter setting,

or input signal.

Participants of the study were told:

You will be provided with a reference at the top of the page. The task is then to

rate the stimuli below based on their quality compared to the reference. Adjust the

sliders for each example to rate the quality, and use the whole scale when possible.

A perfect score should constitute a signal that exactly matches the reference.

Participants were asked to rate how closely each of the learned W-H models’ outputs

matched a reference signal, with 0 representing a poor match and 100 representing a per-

fect match. The reference signal was included among the stimuli. Thus for each of the 12

reference stimuli, the participants were presented with samples reverse engineered using the

SumTanh, PowTanh, Tanh, Fourier, and Legendre waveshaping families as well as the hidden

reference.

A total of 17 participants took part in the study, with an average age of 31 years and

standard deviation of 5.34. 8 participants identified as men, 7 as women, and 3 as nonbinary

or gender nonconforming. 11 participants reported having at least 5 years of experience with

music production or audio engineering, 2 reported having 3 years experience, and 4 participants

reported no experience. No participants reported any diagnosed hearing impairments. Box

and whisker plots of the participants’ ratings are presented in Figure 6.3, broken down by the

waveshaping family used for reverse engineering the stimuli.

The analysis that follows is adapted from the perceptual study presented in Moffat and

Reiss [2018]. The null hypothesis is that the perceptual evaluation scores are from the same

distribution. A one-way ANOVA, with Bonferroni correction, shows for all stimuli that the
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Figure 6.3: Box and whisker plots of the median, standard deviation and 95% confidence inter-
vals of all participant ratings for each waveshaping method across all plugins. No waveshaping
method was found to be perceptually indistinguishable from the reference.

effect each waveshaper had on user perception was statistically significant.

With the null hypothesis rejected, a post-hoc Tukey pairwise comparison, with Bonferroni

correction to reduce the chance of type I errors, was used. Table 6.4 shows the results of these

pairwise comparisons for all architectures used. The pairwise comparisons demonstrate that

across all plugins, the perception of each waveshaping method differs significantly from the

reference. However, when broken down by plugin type the perception of the SumTanh model

does not differ significantly from the reference for the MGS and VTB effects. For the MGS

effects the caluclated p-value between the reference stimulus and SumTanh stimulus is 0.372,

and for the the VTB effects the calculated p-value is 0.064.

6.6 Discussion

Despite outperforming all models in the objective evaluation, the PowTanh waveshaper did

not hold up to perceptual evaluation. Instead, the SumTanh model proved to be the most

perceptually accurate model. Both the Fourier and Legendre waveshapers performed worse

than the baseline Tanh model in the perceptual evaluations. This demonstrates that MSS loss

does not necessarily correlate to perceptual closeness. While Engel et al. [2019] correctly points

out that MSS loss can ignore slight discrepancies in phase modelling that a human listener may
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not notice, others like Turian and Henry [2020] point out that MSS loss can do poorly when

matching pitch. Differentiable mesostructural approaches like that shown in Vahidi et al. [2023]

or contrastive learning approaches like Manocha et al. [2021] may be more appropriate for this

reverse engineering task.

Figure 6.2 shows the estimated waveforms of learned W-H models for each waveshaper given

a VTB target. Both the SumTanh and PowTanh models are able to match the asymmetric

distortion well. The Fourier model exhibits an obvious tremolo-like artefact, and the Legendre

model shows an overshoot behavior during the attack of the sample. These behaviors were

typical across the objective study. The Tanh model was unable to learn the asymmetry in the

waveform, a behavior that deserves future exploration.

Figure 6.4 shows the learned EQs and waveshaping function for the SumTanh model men-

tioned above. In this example the learned gain is 16.084, DC offset is −0.026, and volume

is 1.170. The pre-emphasis filter appears to mimic a standard high-pass filter with a cutoff

frequency of 1kHz, and the de-emphasis filter has a slight attenuation for most of the middle

frequencies and a steep notch at 100Hz. The waveshaper learned to have a slight overshoot

for values close to 0 and to saturate at a value less than 1. Future work may involve better

understanding the trajectories of these learned parameters over the course of the optimization.

Further studies must be undertaken to fully understand where the SumTanh and PowTanh

models underperformed in the perceptual evaluation. One potential issue may be that anti-

aliasing is not explicitly addressed in either of these models. While the multiscale spectrogram

loss would penalize aliasing harmonics, most waveshaping distortion models explicitly account

for anti-aliasing. While internal oversampling may be feasible within the DDSP framework, it

would certainly be possible to oversample the dry/wet audio pairs and apply a fixed lowpass

filter after the de-emphasis filter when fitting parameters. The authors note that computation

time to fit an example would scale with the oversampling factor.
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Figure 6.4: Example of learned parameters using the SumTanh waveshaping model on the
VTB stimulus. (A) Pre-emphasis filter (top) and de-emphasis filter (bottom), (B) Learned
waveshaping function
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Chapter 7

Dynamic Range Compression

Effect Matching

This section outlines procedures for matching dynamic range compression audio effects given

an input signal x[n] and output y[n].

While blackbox neural networks have been used to emulate DRCs [Hawley et al., 2019,

Steinmetz and Reiss, 2022], to the author’s knowledge only two DDSP DRC has been pro-

posed in the literature [Steinmetz et al., 2022, Wright et al., 2022]. In Steinmetz et al. [2022]

the authors implemented a DRC using Pytorch with tunable threshold, ratio, knee width,

makeup gain, and a ballistics control. The authors approximate both attack and release time

with a joint smoothing parameter that controls a single pole IIR filter to smooth the DRC’s

attenuation curve. This IIR filter is then approximated using an FIR filter. As stated by the

authors, forcing the attack time and release time to be shared restricts the modelling capabil-

ities of the DRC. Research has shown that attack and release settings in a DRC play a role in

the perception of sound quality [Wagenaars et al., 1986, Neuman et al., 1998] and style/genre

[Bromham et al., 2018].

The work presented in Wright et al. [2022] applies a similar technique to Steinmetz et al.

[2022], but adds complexity to the one-pole filter used for smoothing and can separately model

attack and release. The authors do this in two ways. In the first, separate attack and release

times are used to switch the one pole filter used for smoothing. This approach requires a

recursive calculation based on the signal’s current and previous values, which slows down

training. In the second, a hidden RNN is used to modulate the one pole filter, which also

slows training. The authors also model the makeup gain with another RNN, as many analog

compressors use a voltage-controlled amplifier for makeup gain application.

As stated in Steinmetz et al. [2022], the difficulty in implementing a DRC using a dif-

ferentiable framework lies in the recursive nature of the attack and release calculation. This

sample-by-sample “differentiation through time” is costly in both time and memory. Thus the

methodology presented here seeks to avoid sample-by-sample calculations and instead approx-

imates attack and release passages as smoothing filters applied to a downsampled loudness

curve of the audio signal.

The proposed DDSP DRC architecture is detailed in Sec 7.1. This section also includes a
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Figure 7.1: Block diagram of proposed DDSP DRC

definition of an approximate moving average filter, which is a novel construct for modelling

differentiable attack and release. An experiment to measure the modelling performance of the

algorithm is outlined in Sec 7.2. Notes on parameter initialization for the proposed DRC in a

reverse engineering task are given in Sec 7.3. Sec 7.4 presents the results of the experiment,

and Sec 7.5 discusses said results.

7.1 Proposed DDSP DRC

Refer to Figure 7.1 for a block diagram of the proposed system. Given a fixed length audio

signal sampled at 44.1kHz and values for parameters mentioned in Section 2.6 the following

steps are used to apply dynamic range compression.

First, a root mean square (RMS) level measurement is calculated using a 5ms window and

hop size 0.22ms and converted to dB. This generates a loudness curve measured at 4410 frames

per second.

Then, attack and release passages are estimated by finding when this loudness curve crosses

the threshold value. Attack passages are calculated by convolving a rectangular window of

length τat with the rising edge of the input signal passing the threshold, and release passages

by convolving a rectangular window of length τrt with the falling edge. The length of these

rectangular windows correspond to the attack and release times calculated in frames. These

passages finally interfere with one another when they overlap so that the DRC is not simulta-

neously set to attack and release. Finally, gain smoothing passages are calculated by finding

the portions of the loudness curve both above the threshold and outside of attack passages.

Thus three masks are produced that are the length of the signal’s loudness curve corresponding

to attack passages, release passages, and smoothing passages.

Afterwards a compression characteristic is calculated using the threshold, ratio, and knee

width for the duration of the signal. This compression characteristic curve is then subtracted

from the original signal’s loudness curve in order to produce an attenuation curve. Note that

this curve measures the dB attenuation per frame that when applied to the original signal

produces the characteristic curve.
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Given a time constant τ in frames, an approximate moving average filter with support

[0, N ] takes the form

h(x) =
1∑N

0 (tanh(0.1 ∗ relu(τ − x))
tanh(0.1 ∗ relu(τ − x)) (7.1)

where tanh(x) refers to the hyperbolic tangent function and relu(x) refers to the rectified

linear unit. While a multiplicative constant larger than 0.1 would make h(x) more closely

approximate a moving average filter, it was experimentally found that the 0.1 scaling factor

provides a decent approximation while allowing for gradients to backpropagate through the

system.

Three approximate moving average filters are calculated using τat, τrt, and τst, correspond-

ing to the attack action, release action, and gain smoothing action of the DRC. These three

filters are convolved in parallel with the attenuation curve, windowed according to the at-

tack/release/smoothing passages mentioned above, and then summed. Afterwards the makeup

gain is applied.

Finally the smoothed attenuation curve is converted from dB to a linear scale, upsampled

from 4410 frames per second to the original sampling rate using linear interpolation, delayed

by 5ms to simulate the lag in level measurement, and applied to the original audio sample via

multiplication.

7.2 Experiment

The modeling capability of the proposed method is evaluated using a reverse engineering of

dynamic range compression task [Bitzer et al., 2006], in which the parameters of a DRC are

inferred using a compressed signal and its dry counterpart. A similar task was proposed in

Barchiesi and Reiss [2010], where dynamic effects processing in a multitrack mix was estimated

using frame-based polynomial gain estimation. Two signals were chosen to test the performance

of the method: a signal proposed in Bitzer et al. [2006] to profile the ballistics of a DRC, and

a clip of speech. Compressed signals were generated using the Cockos VST ReaComp plugin

with an RMS level detector set to 5ms.

The test signal defined in Bitzer et al. [2006] is a 1kHz sinewave whose amplitude varies

above and below a DRC’s threshold. For this experiment, the DRC’s threshold is set to -10dB,

thus the sinewave’s amplitude modulates from 0.25 to 1.0, and then later from 1.0 to 0.25.

The attack time is set to 40ms, and the release time set to 200ms; therefore to ensure the full

transients of the DRC can be observed, the sinewave has amplitude 0.25 for 500ms, then has

amplitude 1.0 for 1000ms, and finally goes back to amplitude 0.25 for 500ms. The compression

ratio is set to 10, knee-width set to 0dB, and the makeup gain set to -3dB. The construction

of this signal allows for a simultaenous profiling of the algorithm’s ability to match the VST

DRC’s characteristic attenuation as well as ballistics on a straightforward signal.

For a more complicated signal, a two second clip of a man speaking was compressed using

a preset suggested by Curtis Judd 1. This “light-touch” compression uses a fast attack of 3ms

and slow release of 300ms, knee-width of 1.0 dB, and compression ratio 5.0. The threshold of

1“Compression for Dialogue Audio - Presets for Video Editors - Quick and Dirty,” Accessed 18 April, 2023
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Table 7.1: DRC parameters used in ReaComp VST and learned from gradient descent on
ballistics profiling signal proposed in Bitzer et al. [2006].

ReaComp Learned Value

Threshold (dB) −10.0 −11.7
Ratio 10.0 4.8

Makeup Gain (dB) −3.0 −3.0
Knee Width (dB) 0.0 1.6
Attack Time (ms) 40.0 54.0
Release Time (ms) 200.0 268.0

Smoothing Time (ms) - 31.1

Table 7.2: DRC parameters used in ReaComp VST and learned from gradient descent on
speech signal.

ReaComp Learned Value

Threshold (dB) −15.0 −20.5
Ratio 5.0 1.8

Makeup Gain (dB) 3.9 3.4
Knee Width (dB) 1.0 0.0
Attack Time (ms) 3.0 35.1
Release Time (ms) 300.0 37.6

Smoothing Time (ms) - 13.2

-15.0dB and makeup gain of 3.9dB were selected to ensure DRC was applied to the signal, and

that the output signal was normalized to the same amplitude of the input signal.

7.3 Initialization and Optimization

Because the methodology proposed in Section 7.1 can be implemented in an autodifferentiating

framework such as Tensorflow, a gradient descent can be performed to optimize DRC param-

eters for a given dry/wet audio pair. The cost is calculated by passing a dry audio sample

through the estimated DRC and measuring the distance between the estimated and target wet

audio signal. Gradient descent is performed using the Adam method with an initial learning

rate of 10−4 [Kingma and Ba, 2015]. The cost function chosen is MSS loss with window sizes

46ms, 12ms, and 3ms [Engel et al., 2019]. This loss function is chosen to avoid phase issues

that may arise. Optimization is allowed to run for a maximum of 40000 iterations. Early

stopping is employed with a patience of 1000 iterations.

The DDSP DRC parameters must be initialized such that each contributes to the compres-

sion applied to the dry signal. Otherwise, these parameters will not update during optimization.

Furthermore, “reasonable” parameters should be chosen to avoid portions of the loss surface

very far from expected DRC parameters. As such the threshold value is initialized close to

the mean value of the dry signal’s downsampled RMS level curve, the ratio initialized close to

2.0, the knee-width initialized close to 2dB, makeup gain initialized just above 0dB, τat and
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Figure 7.2: Waveforms for the dry, compressed, and reverse engineered test signals proposed
by Bitzer et al. [2006]

τst initialized close to 45 frames (about 10ms), and τrt initialized close to 450 frames (about

100ms).

7.4 Results

Tables 7.1 and 7.2 compare the VST plugin settings to the parameters learned in the gradient

descent. Figures 7.2 and 7.4 show the uncompressed, VST compressed, and differentiable

DRC compressed waveforms for the test signal and speech signal respectively. Figures 7.3 and

7.5 show the downsampled loudness curves of the VST compressed and differentiable DRC

compressed waveforms for the test signal and speech signal respectively.

7.5 Discussion

In general it is difficult to compare parameter settings across DRCs as their implementations

vary greatly across designs. Furthermore, few DRCs have an explicit τst to measure. As such

attention will be paid to the compressed waveforms themselves.

With the test signal, the differentiable DRC is able to match the static characteristic of the

target signal well, with nearly 0dB residual. Though the learned release time is off by 68ms

from the VST, the differentiable DRC’s release passage closely matches that of the VST’s. The

biggest discrepancy occurs during the attack passage, where the differentiable DRC cannot

match the VST’s sloped attack attenuation settling.
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Figure 7.3: Loudness curves for the compressed test signal, the reverse engineered signal, and
the residual between the two.
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Figure 7.4: Waveforms for the dry, compressed, and reverse engineered speech signal.
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Figure 7.5: Loudness curves for the compressed speech signal, the reverse engineered signal,
and the residual between the two.

The speech signal tasks the differentiable DRC with matching a “light touch” compression

on a dynamic signal, which it is able to do within about 3.5dB. Though the differentiable DRC’s

threshold is set several dB lower than the VST, it compensates with a longer attack time —

this smoothing decreases the initial attenuation to portions of the loudness curve just above

-20dB. It is interesting to note that the differentiable DRC learns a makeup gain 0.5dB smaller

than the target. Better initialization may help avoid this bias and improve the parameter

estimation.

Though a formal listening test would need to be conducted to make any certain claims about

the perceptual matching of these reverse engineered waveforms, some informed guesses can be

made. According to a perceptual evaluation presented in Bromham et al. [2022], both novice

and experienced listeners could only discern differences in compressed signals when attack

differed from 10ms to 30ms, and when release differed from 100ms to 300ms. Furthermore,

these differences in ballistics are more pronounced for higher threshold DRC settings than lower

threshold settings. Therefore, it is doubtful that the reverse engineered DRC on the speech

signal is perceptually indistinguishable from the reference. Given the closeness of the reverse

engineered DRC’s parameters to those used for the test signal, there may be more of a chance

of perceptual matching.

Regardless, the algorithm presented here represents a step forward in DDSP modelling of

DRC effects. As opposed to Steinmetz et al. [2022], the DRC here is able to separately model

attack and release times, and as opposed to Wright et al. [2022], the DRC here implements no

recursive calculations and thus avoids differentiation through time.
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Chapter 8

Reverse Engineering a Linear

Time-Invariant Multitrack Mix

The DDSP modules presented in Engel et al. [2019] are sufficient to recreate the multitrack

linear effect matching of Barchiesi and Reiss [2010]. To briefly summarize Barchiesi and Reiss

[2010], the authors choose LTI filters of order N and fit them to the effect processing applied

to the individual tracks of a multitrack in the time domain. The fitted impulse response for

each filter is then factored into a gain, delay, EQ, and panning parameter. A similar process

could be implemented with the FIR EQ blocks presented in Engel et al. [2019], where a user

could specify the order of the EQ module and fit the EQ parameters using gradient descent.

However, it is possible to improve on the approach presented in Barchiesi and Reiss [2010]

in two ways just using the modules in Engel et al. [2019]. First, Engel et al. [2019] includes

a learnable convolutional reverb effect which would expand the possible effects modelling of

Barchiesi and Reiss [2010]. There still remains the question, though, of how best to incorporate

reverb into the learned mixing chain, which is explored in this chapter. Second, the EQs learned

in Barchiesi and Reiss [2010] are unconstrained, meaning there is no guarantee that the learned

filters will be easy to engage with. As demonstrated in this chapter it is possible to constrain

the EQ modules of Engel et al. [2019] to mimic an octave band graphic EQ, which increases

interpretability and the possibility of intervention.

Thus in this chapter a method to retrieve the parameters used to create a multitrack mix

using only raw tracks and the stereo mixdown is presented. This method is able to model

linear time-invariant effects such as gain, panning, EQ, delay, and reverb. The optimization

procedure used is gradient descent in the spectral domain, with the aid of differentiable digital

signal processing modules. This method allows for a fully interpretable representation of the

mixing signal chain by explicitly modelling audio effects using greybox DDSP modules, rather

than using differentiable blackbox modules. The chapter is organized as follows:

• Sec 8.1 presents a formal problem statement to be solved.

• Sec 8.2 presents a formulation of each effect to be fitted in the mixing chain, methods

for initializing their parameters, and the optimization procedure used to reverse engineer

a mix. Two reverb module architectures are proposed, a “stereo reverb” model and an
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“individual reverb” model.

• Sec 8.3 gives the results of an experiment consisting of reverse engineering six mixdowns

mixed using only linear time-invariant effects processing. Objective measures are pre-

sented using MIR features, and a formal listening test is used to measure the perceptual

closeness of the reverse engineered mixes to their reference mixdown.

• Sec 8.4 concludes by discussing the results

8.1 Formal Problem Statement

Let y(n) represent a target mixdown, and let ˆy(n) represent the mixdown produced by some

mixing chain characterized by a set of parameters θ. The goal is to find values θ that correspond

to parameter settings in a mixing chain that will minimize ||y(n)− ŷ(n)||, where || · || denotes
some cost function.

8.2 Architecture and Optimization

8.2.1 Overview

The signal processing chain applied to each input raw track is as follows: Dry Input → FIR

EQ → Gain → Pan → Reverb & Wet/Dry Mix → Sum with other stems. Note that since

these effects are all linear time-invariant, the order of application of the effects is arbitrary. In

mix engineering, a “stem” refers to a raw track that has had processing applied to it. To drive

each module, a set of parameters Θmodule are estimated. For example, ΘEQ refers to the set of

parameters estimated to drive the EQ module. A stem which has been processed by applying

both EQ and gain to a raw track x(n) can be written as

stemEQ, Gain(n) = Gain(EQ(x(n)|ΘEQ)|ΘGain) (8.1)

and a stereo mixdown of N raw tracks xi(n) with EQ, gain, pan, and reverb applied can

be written as

ŷL(n) =

N∑
i=1

Reverb(PanL(Gain(EQ(x(n)i|ΘEQ)|ΘGain)|ΘPan)|ΘReverb)

ŷR(n) =

N∑
i=1

Reverb(PanR(Gain(EQ(x(n)i|ΘEQ)|ΘGain)|ΘPan)|ΘReverb)

(8.2)

8.2.2 EQ

The frequency transfer curve module is used for equalisation by multiplying an input signal’s

short-term Fourier Transform (STFT) magnitude response with a user specified curve in the

frequency domain [Engel et al., 2019]. In this work, a 1025 point frequency transfer curve ΘEQ

is used. This corresponds to a finite impulse response (FIR) EQ with 2048 taps in its impulse
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response. Given a raw track x(n), the EQ module can be written as

EQ(x(n)|ΘEQ) = ISTFT
(
STFT(x(n))×ΘEQ

)
(8.3)

where ISTFT refers to the inverse short-time Fourier transform and × refers to pointwise

multiplication.

In this work the EQ is modelled after a 10 band FIR graphical EQ [Välimäki and Reiss,

2016], which can be characterized using a 10 dimensional ΘEQ gains. The ten values specify

the gain of each octave band filters, which are centered at 30, 60, 125, 250, 500, 1000, 2000,

4000, 8000, and 16000 Hz respectively. Shelving filters are used for frequencies below 30Hz and

above 16000 Hz that match the attenuation specified at the lowest and highest octave band

respectively.

The following procedure is used to calculate the 1025 dimensional ΘEQ that will approxi-

mate a 10 band FIR graphical EQ. First a 10 dimensional ΘEQ gains is generated. Then, these

values are transformed via

ΘEQ gains ← 1− σ(ΘEQ gains) (8.4)

where σ denotes the sigmoid function

σ(x) =
1

1 + e−x
(8.5)

The values in the transformed ΘEQ gains range from (0, 1) due to the bounds of the sigmoid

function.

Finally a piecewise linear frequency transfer curve ΘEQ is constructed using linear inter-

polation between the octave band attenuations specified by ΘEQ gains. Thus the EQ module’s

frequency transfer curve is bounded from (0,1) at all points The estimated values are initialized

with random uniform noise from [-1,1], which initializes the octave band gains from -6dB to

-1dB.

8.2.3 Gain and Pan

The gain module is formulated as

G(x(n)|ΘGain) = LReLU(ΘGain)× x(n) (8.6)

where LReLU() refers to the leaky rectified linear unit [Maas et al., 2013]

LReLU(x) =

{
βx, x < 0

x, x ≥ 0
(8.7)

with tunable parameter β. For this work β = 0.5 has been chosen. Note that these gains

can go negative, which corresponds with applying a phase shift to the EQed stem. The gain

parameters ΘGain are initialized with random uniform noise from [0.9,1.1], which corresponds

to gains from −0.915dB to 0.828dB.
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The pan module utilises a linear panning law and is formulated as

PanL(x(n)|ΘPan) =
(
0.5 + (0.5× tanh(ΘPan))

)
× x(n)

PanR(x(n)|ΘPan) =
(
1− PanL

)
× x(n)

(8.8)

where × denotes pointwise multiplication and tanh() denotes the hyperbolic tangent func-

tion

tanh(x) =
ex − e−x

ex + e−x
(8.9)

The panning module applies a gain of PanL to the signal before sending it to the left channel

and a gain of PanR to the signal before sending it to the right channel. The pan parameters

ΘPan are initialized with mean 0, variance 10−6 Gaussian noise.

8.2.4 Reverb

Similar to the EQ module, the reverb module also performs convolution with a given impulse

response via multiplication in the frequency domain. Instead of estimating a frequency transfer

curve, however, the reverb module directly estimates an impulse response.

Two reverb architectures were tested in this work, one using a stereo reverb bus (thus

requiring two estimated impulse responses for a mixdown), and one using two impulse responses

per channel (thus requiring [2 x Number of Tracks] impulse responses for a mixdown). Figures

8.1 and 8.2 show block diagrams for the two architectures respectively.

For the stereo reverb bus architecture, a wet/dry mix is produced by performing a weighted

sum with the signal input to the reverb module with the signal output by the reverb module.

Thus the module estimates θIR for the reverb’s impulse response and θW/D for the module’s

wet/dry mix. For the individual bus architecture, θW/D is omitted.

In the stereo reverb bus case, the module’s output is formulated as

output = dry + σ(θW/D)× (dry ∗ θIR) (8.10)

where σ() denotes the sigmoid function. Note that should bypass=0, the module applies no

reverb and passes the dry signal through. With bypass=1, this module applies a convolutional

reverb to an input and sums it in proportion to the dry input. θW/D is initialized with uniform

random noise from [−0.3, 0.3], which corresponds to a range of −7 dB to −5 dB.

In the individual reverb bus case, the output becomes

output = dry + dry ∗ θIR (8.11)

where ∗ denotes the convolution operation. In both cases, θIR is initialized with mean 0,

variance 10−6 random Gaussian noise.

The choice to investigate two reverb architectures stems from a desire to balance the

method’s modelling capacity with network size and complexity. Mathematically speaking,

both a left and right convolutional reverb impulse response must be estimated for each raw

track in a multitrack in order to fully characterize the mixing chain. This is necessary because

mixing engineers typically use stereo reverb impulse responses that are decorrelated in the left

and right channel to increase spatialisation [Kendall, 1995].
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However, the number of learned reverb parameters θIR is orders of magnitude larger than

θW/D, θEQ, θPan, and θGain combined. As formulated in this paper, the number of parameters

needed to describe the mixing chain before the reverb module is 12: one for gain, one for

pan, and 10 for the graphic EQ. In order to model a one second convolutional reverb impulse

response sampled at CD quality, 44, 100 values are needed. Given that multitracks often contain

more than 10 raw tracks, at least 20 impulse responses would have to be estimated for a full

characterization, which balloons θIR to 882, 000 estimated values. The stereo reverb model

would cap θIR at 88, 200 parameters in this case, regardless of how many raw tracks make

up the multitrack. In this formulation θW/D is necessary to control the “amount of reverb”

applied to each raw track sent to the left and right channels.

8.2.5 Loss and Optimization Procedure

Given randomly initialized Θgain, Θpan, ΘEQ, ΘIR, and ΘW/D, target mixdown y(n), raw

tracks xi(n) and estimated mixdown ŷ(n) as described in Eqn 8.2, stochastic gradient descent

can be used to minimize ||y(n) − ŷ(n)|| by updating the module parameters Θ, where || · ||
denotes some norm used as a cost function.

In this work, a multi-scale spectrogram (MSS) loss is used as the cost function || · || [Engel
et al., 2019], which was inspired by the multi-resolution spectral amplitude distance demon-

strated in Wang et al. [2020]. As the name implies, MSS computes a norm by measuring the

distance between the spectrograms of two audio signals with varying STFT window sizes and

performing a weighted sum of these differences. Though mean absolute error (MAE) in the

time domain is often used in audio applications and is cheaper to compute than MSS loss, the

latter was chosen because it ignores the phase differences between the target and estimated

signals, which mimics human perception [Chi et al., 2005]. The resolutions for the spectro-

grams used are 2048, 512, and 128 samples. At 44.1kHz sampling rate, these correspond to

windows of size 50ms, 12ms, and 3ms. An L1 loss is computed on these spectrograms, which

is the absolute value of the difference between the spectrograms reduced across both the frame

and frequency dimensions.

Stochastic gradient descent was performed with learning rate scheduling and early stopping

[Darken et al., 1992]. The descent begins using the ADAM optimizer with learning rate 10−3

[Kingma and Ba, 2015]. Once the loss reaches an early stopping criterion, the learning rate is

dropped to 10−4. After the same procedure happens again, the learning rate is further dropped

to 10−5. The gradient descent concludes thereafter.

8.3 Results and Analysis

All audio used in this work is sampled at 44.1kHz, corresponding to CD quality audio. A

professional mixing engineer was tasked with producing mixdowns for five separate multitrack

recordings. The multitracks were chosen because they ranged from roughly 10 to 20 raw

tracks each, had representative excerpts between 20 to 30 seconds in length, and were diverse

in instrumentation and genre. All stereo tracks were converted to two mono tracks. All

multitracks were downloaded from the Cambridge Multitracks dataset [Senior, 2011]. Table

8.1 shows the artist and song title for each song used in this work. For each multitrack, three
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approximated mixdowns were calculated: a stereo bus approximation (2 Bus), an individual

bus approximation (Ind. Bus), and a stereo gain mix approximation using the least squares

estimatation method in Barchiesi and Reiss [2010] (Gain Mix).

Similar to the procedure followed in Barchiesi and Reiss [2010], the mixing engineer only

used linear processing to create the mixdown, including gain, pan, EQ, delay, and reverb. No

distortion or dynamic range compression was used. Moreover no automation was used on the

linear effects. All audio discussed in this paper can be found at https://jtcolonel.github.

io/RevEng/.

Table 8.1: Songs chosen for mixing and shortened names used in this paper.

Artist Song Name Genre Reference Name
Araujo The Saga of the

Harrison Crabfeathers
Jazz Saga

Blue Lit Moon Dad’s Glad Alternative Rock Glad
Carol Dant I am the Desert Electronica Desert
The Complaniacs Etc Punk Etc
Timboz Pony Metal Pony

Table 8.2: Average relative errors by feature subgroup for approximated mixdowns compared
to the reference mixdown.

Mixdown Spectral PMF Stereo Loudness Total
Desert Two Bus 0.95% 14.86% 5.99% 1.68% 4.88%
Desert Gain Mix 5.87% 15.96% 13.00% 4.80% 9.21%
Desert Ind Bus 35.55% 104.67% 133.84% 25.24% 70.52%
Etc Two Bus 2.52% 6.57% 14.07% 3.67% 6.54%
Etc Gain Mix 19.21% 95.99% 33.83% 5.94% 32.91%
Etc Ind Bus 9.63% 62.78% 20.37% 22.64% 25.07%

Glad Two Bus 7.10% 6.04% 32.49% 1.80% 12.16%
Glad Gain Mix 23.16% 38.72% 51.85% 8.76% 29.60%
Glad Ind Bus 34.83% 91.09% 92.46% 17.52% 55.13%
Pony Two Bus 1.70% 21.34% 9.95% 7.67% 8.82%
Pony Gain Mix 28.24% 49.42% 35.33% 15.68% 30.49%
Pony Ind Bus 61.16% 55.86% 159.22% 16.65% 74.21%
Saga Two Bus 2.25% 3.26% 3.53% 0.41% 2.28%
Saga Gain Mix 13.57% 25.52% 17.44% 12.03% 16.26%
Saga Ind Bus 27.37% 356.85% 137.33% 61.17% 122.17%

8.3.1 Objective Evaluation

To objectively measure how close the estimated mixdowns matched the target mixdowns, a

set of low-level audio features were calculated and compared according to the methodology

in Wilson and Fazenda [2016]. These features can be subgrouped into spectral measures

[Bogdanov et al., 2013], loudness measures [Recommendation], stereo features [Tzanetakis

et al., 2007], and envelope probability mass function (PMF) features [Wilson and Fazenda,

2014]. The PMF features are calculated by making a histogram of the values a digital audio
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Table 8.3: F stat and p-values for each multitrack and all multitracks, including all partici-
pants.

Group F Stat p-value
All Songs 316.178 3.737× 10−107

Desert 143.595 4.127× 10−32

Etc 100.860 4.195× 10−27

Glad 91.140 9.891× 10−26

Pony 70.035 2.575× 10−22

Saga 42.554 1.529× 10−16

Table 8.4: F stat and p-values for each multitrack and all multitracks, including only partici-
pants with audio production or mixing experience.

Group F Stat p-value
All Songs 207.896 1.322× 10−57

Desert 47.444 6.977× 10−12

Etc 91.529 8.701× 10−16

Glad 117.997 2.208× 10−17

Pony 53.478 1.450× 10−12

Saga 35.129 3.062× 10−10

signal takes, normalizing this historgram so it becomes a probability mass function, and then

calculating statistical measures of this PMF.

To aggregate each mixdown’s performance, the average relative error of each subgroup of

features can be calculated. Relative errors must be taken as different features have different

units of measurements, and furthermore different feature measures can be orders of magnitude

apart from one another. Observing an average relative error across subgroups of features allows

for an overall picture of how each mixdown matched the reference across perceptual correlates.

Table 8.2 provides a summary of the average errors across each feature subgroup for each

approximated mixdown relative to the reference mixdown. Within each song, the two bus

architecture outperforms both the individual bus architecture and gain mix across all sub-

groups of features. For the songs “Saga,” “Pony,” ”Desert,” and “Dad’s Glad,” the gain mix

outperforms the individual bus mix in average relative error across each subgroup of features.

For the song “Etc,” the individual bus mix outperforms the gain mix in average relative error

for spectral, PMF, and stereo measures, with the gain mix performing best for the loudness

features.

There are certain instances where the gain mix or the individual bus mix matches the

reference more closely than the two bus mix in a given feature. When measuring 95% spectral

rolloff, the individual bus mix performs best in the song “Saga.” When measuring spectral

spread, the gain mix outperforms the two bus mix in the songs “Dad’s Glad” and “Saga.”

These are the only instances in spectral measure where the two bus architecture does not

perform best.

When measuring PMF centroid, the gain mix performs best for the song “Dad’s Glad,” and

the individual bus performs best for the song “Etc.” For PMF skew, the gain mix performs

best in the songs “Desert” and “Pony.” For PMF kurtosis, the gain mix performs best in the

song “Desert.” In all other PMF measures, the two bus architecture performs best.

88



Table 8.5: Results of pairwise comparison of mixdown architecture on perceptual similarity
rating across multitracks, with Bonferroni Correction, o > 0.05, *<0.001 ·=no comparison

Reference Mix Gain Mix Ind Bus Mix 2 Bus Mix
Reference Mix · * * o

Gain Mix * · * *
Ind Bus Mix * * · *
2 Bus Mix o * * ·

Table 8.6: Results of pairwise comparison of mixdown architecture on perceptual similarity
rating within the “Etc” multitrack, with Bonferroni Correction, o > 0.05, *<0.001 ·=no com-
parison

Reference Mix Gain Mix Ind Bus Mix 2 Bus Mix
Reference Mix · * * *

Gain Mix * · * *
Ind Bus Mix * * · *
2 Bus Mix * * * ·

When measuring both the stereo panning spectrum across all bands and across high fre-

quency bands, the individual bus mix performs best for the songs “Dad’s Glad” and “Etc.” For

the mid band stereo panning spectrum, the individual bus performs best for the song “Etc.”

For the stereo left-right ratio, the gain mix performs best for the song “Desert.” In all other

stereo measures, the two bus architecture performs best.

For the loudness range measure, the gain mix performs best for the song “Pony.” For the

average crest factor measured with a resolution of 100ms, the individual bus mix performs

best for the song “Desert,” and the gain mix performs best for the song “Pony.” When the

resolution of the crest factor is increased to 1000ms, the gain mix performs best for the song

“Desert.” The two bus mix performs best for all other measures of loudness.

8.3.2 Perceptual Evaluation

While much research has been done to numerically characterize timbre (see Peeters et al. [2011])

and relate closeness of timbres within a perceptual space (e.g. Caclin et al. [2005],Elliott et al.

[2013]), there are no perfect numerical measures for determining how close two timbres are.

Furthermore, the timbral complexity of multitrack mixes renders numerically characterizing

mixes challenging [Wilson and Fazenda, 2015, Colonel and Reiss, 2019]. While the results

presented in the objective evaluation show the two bus mix outperforming the other two mixes

in numerical measures, this is no guarantee that the two bus mix sounds most similar to

the reference mix. Thus, a listening study was performed to assess how well each method

perceptually matched the reference mix.

Participants were presented with the following text when beginning the listening test:

Multitrack mixing describes the process of combining distinct pieces of audio into

a final ’mixdown.’ This process often includes editing and applying sound effects

to a set of multitrack recordings to produce a mixed song.

This listening test will present you with a reference mix which has been mixed by
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Table 8.7: Results of pairwise comparison of mixdown architecture on perceptual similarity
rating within the “Pony” multitrack, with Bonferroni Correction, o > 0.05, *<0.001 ·=no
comparison

Reference Mix Gain Mix Ind Bus Mix 2 Bus Mix
Reference Mix · * * o

Gain Mix * · o *
Ind Bus Mix * o · *
2 Bus Mix o * * ·

Table 8.8: Results of pairwise comparison of mixdown architecture on perceptual similarity
rating within the “Desert” multitrack, including only participants with audio production ex-
perience with Bonferroni Correction, o > 0.05, *<0.001 ·=no comparison

Reference Mix Gain Mix Ind Bus Mix 2 Bus Mix
Reference Mix · o * o

Gain Mix o · o *
Ind Bus Mix * o · *
2 Bus Mix o * * ·

a professional audio engineer. You will be asked to rate different mixes according

to the similarity of these in relation to the reference mix. Please rate the sounds

you hear from ’least similar’ to ’most similar,’ using the full scale when possible.

Each mix will be of medium duration: 25-30 seconds.

The aim of the test is to identify which mix is closer to the reference example.

This will be done for different songs, each of which has been mixed using a unique

combination of processing and effects. The test will take approximately 25 minutes

and should be conducted on headphones.

23 participants took part in a listening study to evaluate the approximated mixdowns of

the five multitracks. 14 participants reported having no audio production or mixing experi-

ence, while nine participants reported having some audio production or mixing experience.

Demographic information was not collected of the participants, which was an oversight by the

author. The choice to recruit both novice and experienced listeners was to ensure that a large

enough sample size could be taken to perform statistical analysis on the listening test results.

However, given the larger than expected response by experienced listeners, their results will

be given a separate treatment from the whole population.

Participants were tasked with rating a set of mixes based on how closely the mixes matched

a reference mix on a continuous scale of 0 to 1, where 0 represented a mix “very far” from the

reference, and 1 represented a mix “matching exactly” the reference mix.

During the test participants were presented each of the mulitracks in a random order,

one-by-one. For a given multitrack, participants were presented with four stimuli to rate

against the reference mix. One stimulus was the identical reference mix. The other presented

stimuli were three approximated mixdowns: a stereo bus approximation, an individual bus

approximation, and a stereo gain mix approximation. Participants evaluated mixes for each of

the five multitracks, thus providing a total of 20 ratings. Participants were encouraged to use

the full 0 to 1 rating range when appropriate. Furthermore participants were given no time
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limit for the test, and no limit was placed on how many times a participant could listen to a

given stimulus.

The analysis that follows is adapted from the perceptual study presented in Moffat and

Reiss [2018]. The null hypothesis is that the perceptual evaluation scores are from the same

distribution. A one-way ANOVA, with Bonferroni correction, shows for all mixdowns that the

effect the method used to reverse engineer the mix had on user perception was statistically

significant. This result holds when analysing the ratings separated by each multitrack as well.

Table 8.3 lists the f stats and p-values. Figures 8.3 and 8.4 show the box plots of the overall

results of the listening study.

With the null hypothesis rejected, a post-hoc Tukey pairwise comparison, with Bonferroni

correction to reduce the chance of type I errors, was used. Table 8.5 shows the results of these

pairwise comparisons for all architectures used. The pairwise comparisons demonstrate that

the mean of participants’ ratings for the reference mix and the stereo bus mix do not differ

significantly. All other pairwise comparisons do differ significantly.

When breaking down the data by song, the above results hold for three of the five mul-

titracks: “Blue,” “Desert,” and “Saga.” For the multitrack “Etc,” the pairwise comparisons

demonstrate that the mean of participants’ ratings differ significantly for all pairs including

the reference and stereo bus model as shown in Table 8.6. For the multitrack “Pony,” the

reference/stereo bus model pair and gain mix/individual bus model do not have participant

rating distributions that differ significantly as shown in Table 8.7.

Most of these results hold when excluding the listeners with no audio production or mixing

experience. Box plots can be found in Figs 8.5 and 8.6. A one-way ANOVA, with Bonferroni

correction, shows for all mixdowns that the effect the method used to reverse engineer the

mix had on user perception was statistically significant. This result holds when analysing the

ratings separated by each multitrack as well. Table 8.4 lists the f stats and p-values for this

subset of participants with some audio production or mixing experience.

Post-hoc Tukey pairwise comparisons of the ratings provided by this subset of participants

are similar to that of the whole group. When comparing across all songs and mixdowns,

the values of the Tukey analysis match those presented in Table 8.5. This also remains true

for the songs “Blue” and “Saga.” For the multitrack “Etc,” the pairwise comparisons again

demonstrate that the mean of participants’ ratings differ significantly for all pairs including the

reference and stereo bus model as shown in Table 8.6. And again in “Pony,” the reference/stereo

bus model pair and gain mix/individual bus model do not have participant rating distributions

that differ significantly as shown in Table 8.7. This subset’s ratings do differ for the song

“Desert,” where there is no statistical difference between the stereo bus/reference pair and

gain/reference pair. Results are shown in Table 8.8 As Fig 8.3 demonstrates, participants

rated the stereo bus model as nearly identical to the reference mix, then rated the gain mix

next closest, and finally rated the individual bus mix the furthest from the reference.

8.4 Discussion

The results of both the objective evaluation and the listening test suggests that the stereo reverb

bus model outperforms both the gain mix and individual bus model in a reverse engineering

of a mix task. Furthermore, the gain mix outperforms the individual bus model in almost all
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cases.

It is interesting to note that the individual bus architecture performs worse than a gain

mix in both objective and subjective measures, given that the gain mix does not apply EQ or

reverb. Even with the explicit ability to modify a raw track’s spectral content, the individual

bus architecture does a worse job than the gain mix of matching the reference mix’s spectral

features in four of five songs. “Etc” is the only song where the individual bus model outperforms

the gain mix in spectral measures, and incidentally is the only song where the individual bus

mix outperforms the gain mix in all other measures as well. Yet the results of the listening test

place the individual bus estimate of “Etc” lower than the gain mix, for both experienced and

inexperienced listeners. This highlights the difficulty in using objective features to characterize

multitrack mixes. In its estimate the individual bus architecture placed a prominent reverb on

the vocal stem that does not match the reference mix, which is most likely why it performed

so poorly in the listener evaluation. In general, the mixes estimated by the individual bus

architecture frequently apply much more reverb than the reference.

Across all tests the “Desert” mix from the individual bus model performed the worst in the

listening test, and the “Desert” mix from the stereo bus model performed the best. In “Desert,”

several synthesizers (Synth1-6) are layered within the composition and provide backing to a

layered vocal (Vox1-3). The reference mix applies both delay and reverb to most of the song’s

elements, in keeping with a “washed-out electronica” style mix, as well as EQ, gain, and pan.

Figs 8.7 and 8.8 show ΘIR and the frequency transfer curves for select stems from the song

“Desert” produced by the individual bus model and stereo bus model respectively. Observing

Figure 8.7, one can see the stark differences between the learned reverb impulse responses

across the stems. Synth3 appears to have both echo and reverb applied, Synth6 has a dense

reverb with significant energy in the tail applied, and Vox2 has a light echo applied. Note as

well that the gradient descent produces distinct reverbs for the left and right channels for each

of these stems. When listening to this mix, however, the vocals are barely audible, and the

synthesizers dominate the mix. Figure 8.8 shows that the stereo bus model has combined both

a reverb with less energy in the tail than the individual bus model with a prominent echo into

the left and right channel learned impulse responses. The result is a mixdown that is nearly

indistinguishable from the reference mix.

This failure by the individual bus model may be due to the relatively large parameter

space the optimization has to navigate. It may be the case that given random parameter

initialization for the 20 raw tracks, the optimization begins too far away from the parameters

of the reference and instead converges to a random local minimum. Note that with 20 raw

tracks, ΘIR consists of 1.764 × 106 parameters. It is interesting to note that the individual

bus model’s optimization also does not match the reference when panning certain raw tracks.

While the stereo reverb bus model pans Vox2 nearly center with PanL = 0.502, the individual

reverb bus model pans Vox2 to the right with PanL = 0.314. This again suggests that the

individual reverb bus model is exploring some area of the parameter space distant from the

reference mix.

Future improvements may be made to the individual bus model by bypassing the reverb

module for the beginning of the stochastic gradient descent. For example, the bypass could be

activated until the first early stopping, which would allow for the network to best fit gain, pan,

and EQ parameters before attempting to apply reverb. A full study of how DDSP performs in
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reverb estimation may also shed light on the issues of the individual bus model, including how

a gradient descent performed on an FIR reverb IR can match IIR reverb implementations and

reverb impulse responses with non-integer delays.
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Figure 8.1: Mixing chain diagram for the “stereo bus” architecture. In this architecture,
only two reverb IRs are reverse engineered, regardless of how many stems are present in the
multitrack.
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Figure 8.2: Mixing chain diagram for the “individual bus” architecture. In this architecture,
each stem learns its own left and right channel reverb IRs. Thus in this diagram, a total of
2K reverb IRs are reverse engineered.
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Figure 8.3: Box and whisker plots of the median, standard deviation and 95% confidence inter-
vals of listener ratings broken down by reverse engineering architecture. The mixdown reverse
engineered using the stereo reverb bus architecture was found to be perceptually indistinguish-
able from the reference.

Figure 8.4: Box and whisker plots of the median, standard deviation and 95% confidence
intervals of listener ratings broken down by mixdown. A full breakdown of results is in Sec
8.3.2
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Figure 8.5: Box and whisker plots of the median, standard deviation and 95% confidence
intervals of listeners with audio production experience ratings broken down by architecture.
Within this subset of listeners it was again found that the mixdowns reverse engineered using
the stereo bus reverb architecture are perceptually indistinguishable from a reference.

Figure 8.6: Box and whisker plots of the median, standard deviation and 95% confidence
intervals of listeners with audio production experience ratings broken down by mixdown. A
full breakdown of results is in Sec 8.3.2
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(a) Synth 3 EQ (b) Synth 3 Reverb IRs

(c) Synth 6 EQ (d) Synth 6 Reverb IRs

(e) Vocal 2 EQ (f) Vocal 2 Reverb IRs

Figure 8.7: Learned EQs and reverbs for “Desert” using the individual bus model. The individ-
ual bus model learns an individual reverb IR for each stem, thus six reverb IRs are presented
for three stems. In this case a very dense reverb IR with little decay was learned for Synth6,
a separate dense reverb with delay for Synth3, and practically no reverb for Vox2.
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(a) Synth 3 EQ (b) Synth 6 EQ

(c) Vocal 2 EQ (d) Stereo bus reverb IRs

Figure 8.8: Learned EQs and reverbs for “Desert” using the stereo bus model. The stereo
bus model learns a left and right reverb IR for the whole mixdown, thus two reverb IRs are
presented for three stems. A reverb IR with reasonable decay and echo was learned for the
mixdown.
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Chapter 9

Reverse Engineering a Nonlinear

Multitrack Mix

Though the results of Chapter 8 are heartening in their ability to reverse engineer a mix within

perceptual tolerance, the constraint of only mixing with LTI processing is rather strict. Thus,

to expand the reverse engineering methodology, the DDSP distortion presented in Chapter 6

and the DDSP DRC presented in Chapter 7 will be included in the “stereo reverb bus” mixing

chain shown in Chapter 8.

This chapter seeks to synthesize the whole dissertation and answer the questions posed in

Sec 1.2. A method for jointly optimizing the linear and nonlinear processing of a multitrack

mix will be presented. By measuring the performance of this method by using a dataset of

mixes made by students, there are fewer restrictions on the type of effects processing used to

produce the dataset than in Barchiesi and Reiss [2010] or in Chapter 8. The reverse engineered

mixing chains will explicitly model gain, panning, EQ, reverberation, memoryless distortion,

and DRC using greybox DDSP modules. The parameters of these modules are formulated to

be familiar to any mix engineer. Ultimately, a formal listening test is run in conjunction with

an ablation study to determine which audio effects need to be reverse engineered in order to

reach perceptual tolerance.

The chapter is organized as follows:

• Sec 9.1 repeats a formal problem statement to be solved for consistency’s sake.

• Sec 9.2 presents a formulation of each effect to be fitted in the mixing chain, methods for

initializing their parameters, and the optimization procedure used to reverse engineer a

mix.

• Sec 9.3 describes how the multitracks were selected and how the mixdowns were produced

that are used to evaluate the reverse engineering method.

• Sec 9.4 gives the results of an experiment consisting of reverse engineering the mixdowns.

Objective measures are presented using MSS loss, and a formal listening test is used

to measure the perceptual closeness of the reverse engineered mixes to their reference

mixdown.
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• Sec 9.5 concludes by discussing the results and demonstrating how the approach can be

used to further research in perceptual correlates of mix engineering

9.1 Formal Problem Statement

Let y(n) represent a target mixdown, and let ˆy(n) represent the mixdown produced by some

mixing chain characterized by a set of parameters θ. The goal is to find values θ that correspond

to parameter settings in a mixing chain that will minimize ||y(n)− ŷ(n)||, where || · || denotes
some cost function.

9.2 Architecture and Optimization

All raw tracks and mixdowns are sampled at 44.1kHz. The signal processing chain applied to

each input raw track is as follows: Dry Input → linear Gain → FIR EQ → DRC & Wet/Dry

Mix → Distortion & Wet/Dry Mix → Pan → Reverb & Wet/Dry Mix → Sum with other

stems. To drive each module, a set of parameters Θmodule are estimated. Refer to Figure 9.1

for a block diagram of the proposed system.

The gain, pan, EQ, and stereo reverb modules are parameterized and initialized identically

to those in Sec 8.2, with one exception: the gain and pan modules are now initialized using

the LSE method described in Sec 4.1. The DRC is parameterized and initialized according to

Sec 7.3, and the distortion is parameterized and initialized according to Sec 6.3.

Figure 9.1: Signal chain of full reverse engineering system.

For each mixdown, four separate reverse engineering procedures are used that form an

ablation study for the proposed system.

The first method utilises the full mixing chain in Fig 9.1. Once parameters are initialized

the gradient descent with Adam optimizer and initial learning rate 10−4 first updates the gain,
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EQ, DRC, and panning parameters while bypassing the distortion and reverb modules for

40, 000 iterations or until early stopping is reached. Afterwards distortion is introduced to the

mixing chain and jointly updated with gain, EQ, DRC, and panning parameters for another

40, 000 iterations or until early stopping is reached with learning rate 10−4. Finally, reverb

is introduced to the chain and all parameters are updated with a learning rate of 10−5 for

another 40, 000 iterations or until early stopping is reached.

The second method (DRC-EQ-Reverb) excludes the use of the distortion module. To

compensate, the gain, EQ, DRC, and panning parameters are allowed to update for 80, 000

iterations with learning rate 10−4 or until early stopping is reached. The reverb module is then

introduced, the learning rate dropped to 10−5, and the gradient descent proceeds for 40, 000

or until early stopping is reached.

The third method (EQ-Reverb) excludes both distortion and DRC, thus producing a linear

mixdown similar to that of Sec 8.2. The gain, EQ, and pan parameters are allowed to update

for 80, 000 iterations with learning rate 10−4 or until early stopping is reached. Afterwards

the reverb module is introduced, the learning rate dropped to 10−5, and descent proceeds for

another 40, 000 iterations or until early stopping is reached.

The final method (Gain Mix), which acts as the baseline for the study, uses only gain and

panning. This mix is calculated using the MSE method presented in Sec 4.1.

The reverse engineered mixdowns are measured against the reference mixdowns with an L1

MSS loss of resolutions 32768, 2048, 512, and 128 samples, which corresponds to windows of

length 750ms, 50ms, 12ms, and 3ms.

9.3 Data

The multitracks used to evaluate the system were taken from the Cambridge Multitracks

dataset [Senior, 2011]. Three multitracks performed by the alt-rock band Woodfire for their

Weird Fear EP were chosen because the multitracks were all recorded in the same studio, by the

same engineer, under similar circumstances. The song “Animals” was recorded to 15 tracks,

the song “Haunted House” to 14 tracks, and the song “Wealthy in Time” to 13 tracks.

These time-aligned multitracks were given to student mix engineers at Queen Mary Univer-

sity of London to mix as part of their coursework, with each student responsible for producing

one mixdown of the multitrack they were assigned. Students were given two hours to produce

a mixdown of a song’s first verse and chorus using the DAW of their choice and any plugins

or automation they saw fit. Students were instructed to not alter the composition of any of

the multitracks, but were allowed to mute any elements in the mix. Eight students produced

mixdowns of “Animals,” another eight students produced mixdowns of “Haunted House,” and

seven students produced mixdowns of “Wealthy in Time.”

Ten seconds from each song’s chorus was chosen for the reverse engineering task. Thus

the system was tested against 23 mixdowns, ten seconds in length, across three multitracks.

Ultimately 92 mixdowns were reverse engineered.
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9.4 Results

9.4.1 Objective Results

The final MSS loss caluclated for each reverse engineered mixdown can be found in Table 9.1.

Mixes XX A are mixes of the song “Animals,” XX B are mixes of the song “Haunted House,”

and XX C are mixes of “Wealthy in Time.” Across all mixdowns, the full system performed

best and the gain mix performed worst. 65% of the DRC-EQ-Reverb mixes outperformed

the EQ-Reverb mixes on this objective measure. For the song “Animals,” the full system

performed best on the “03 A” and “08 A” mixdowns; for the song “Haunted House,” the full

system performed best on the “06 B” and “14 B” mixdowns; for the song “Wealthy in Time,”

the full system performed best on the “19 C” and “20 C” mixdowns.

Table 9.1: Multiscale spectrogram losses for reverse engineered mixes. Rows in bold denote
the top two performing reverse engineered mixes using the full system for each song.

Mix Full system DRC-EQ-Reverb EQ-Reverb Gain Mix
00 A 1.2793 1.2840 1.2864 1.8987
01 A 1.8406 1.8683 1.9056 5.6233
02 A 1.5722 1.6723 1.7533 3.7127
03 A 0.6690 0.7307 0.7295 1.3044
04 A 1.5292 1.5734 1.5596 2.1578
05 A 1.1569 1.1815 1.2052 2.0023
08 A 0.9358 0.9818 0.9945 1.5779
17 A 1.9104 1.9148 1.9086 4.1754
06 B 1.1986 1.3081 1.2858 2.8000
07 B 2.7731 2.8395 2.8708 7.1260
09 B 1.9183 1.9733 1.9644 3.7378
10 B 5.9941 6.153 6.3025 11.0797
11 B 5.5800 5.9868 6.6175 9.5553
13 B 1.8684 2.0345 2.2830 4.2610
14 B 1.5434 1.5575 1.5564 3.1416
15 B 5.0719 5.2030 5.2575 8.6782
16 C 1.0712 1.0871 1.0842 1.8942
18 C 0.7481 0.8480 0.9614 2.1836
19 C 0.6245 0.6469 0.6564 1.5719
20 C 0.5101 0.6606 0.6784 1.6957
21 C 1.0388 1.2630 1.2925 2.4537
22 C 2.0082 2.0421 2.0868 4.5832
23 C 1.2846 1.3053 1.3028 2.0972

9.4.2 Perceptual Results

The top two performing reverse engineered mixes of each multitrack were chosen for a listener

evaluation using the webMUSHRA framework [Schoeffler et al., 2018]. These mixdowns can

be listened to at https://jtcolonel.github.io/NonlinRevEng/. All reference and reverse

engineered mixdowns were normalized to -24.0 LUFS-I for the listening test.

Participants were presented with a reference mix and five stimuli, the four reverse engineered

mixdowns plus a hidden reference, across six reference mixes. Participants were asked to rate
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each stimuli according to how closely it matched the reference, with 0 representing a poor

match and 100 representing a perfect match. Participants were presented with the following

preamble before taking the test:

You will be provided with a reference mixdown at the top of the page. The task is

then to rate the stimuli below based on how closely they match the reference. When

evaluating how close two mixdowns are, one should consider how the individual

elements of the multitrack are balanced in each of the mixdowns. This balance

may include how loud elements are compared to one another, how these elements

are spread in the stereo field, the tone of each element, the dynamic characteristics

of each element, and how the mixdown coheres as a whole. Adjust the sliders for

each example to rate the closeness, and use the whole scale when possible. A perfect

score should constitute a mixdown that exactly matches the reference.

A total of 8 participants took part in the study, with an average age of 35 years and

standard deviation of 7.08. 5 participants identified as men, and 3 as women. 7 participants

reported having at least 4 years of experience with music production or audio engineering,

and 1 participant reported no experience. No participants reported any diagnosed hearing

impairments. Box and whisker plots of the participants’ ratings are presented in Figure 9.2.

Figure 9.2: Box and whisker plots of the median, standard deviation and 95% confidence
intervals of all participant ratings across all mixes. The listening test found that the mixdowns
reverse engineered using the whole mixing chain were indistinguishable from a reference.
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The analysis that follows is adapted from the perceptual study presented in Moffat and

Reiss [2018]. The null hypothesis is that the perceptual evaluation scores are from the same

distribution. A one-way ANOVA, with Bonferroni correction, shows for all stimuli that the

effect each reverse engineering method had on user perception was statistically significant.

With the null hypothesis rejected, a post-hoc Tukey pairwise comparison, with Bonferroni

correction to reduce the chance of type I errors, was used. Table 9.2 shows the results of these

pairwise comparisons for all architectures used.

The pairwise comparisons demonstrate that across the six selected mixdowns, the percep-

tion of the full system’s reverse engineered mixes do not differ significantly from the reference,

and those of all other reverse engineering methods do differ significantly from the reference.

These results hold for all but two mixdowns: 06 B and 19 C. In the case of 06 B, the perception

of all reverse engineered mixes differ significantly from the reference. In the case of 19 C, the

perception of both the full system and gain system’s reverse engineered mixes do not differ

significantly from the reference.

Table 9.2: Results of pairwise comparison of mixdown architecture on perceptual similarity
rating across multitracks, with Bonferroni Correction, o > 0.05, *<0.001 ·=no comparison.
The listening test found that the mixdowns reverse engineered using the whole mixing chain
were indistinguishable from a reference.

Reference Mix Full Mix DRC-EQ-Rev Mix Linear Mix Gain Mix
Reference Mix · o * * *

Full Mix o · * * *
DRC-EQ-Rev Mix * * · o o

Linear Mix * * o · o
Gain Mix * * o o ·

9.5 Discussion

The results of both the objective evaluation and the listening test suggests that the full reverse

engineering mixing chain outperforms all other mixing chains.

As mentioned in Sec 3.3.2, there are no rules of thumb when interpreting MSS loss values.

However, some trends do appear within the objective evaluation. For example, within each

mixdown the gain mix achieves the highest MSS loss, suggesting that just the introduction

of EQ and reverb improves the system’s matching performance. The DRC-EQ-Reverb mix

slightly outperforms the EQ-Reverb mix on MSS loss, but not enough to make a convincing

case that one is better than the other. It is interesting to note that all of the best performing

mixdowns mentioned above achieve the lowest MSS for their gain mix approximations as well.

This suggests that the full reverse engineering signal chain will perform best when the gain

approximation is strong. However, in terms of perceptual evaluation the gain mix had a higher

average rating than both the DRC-EQ-Reverb mix and linear mix.

The listening test results for mix 06 B demonstrate that the MSS loss measure does not

necessarily measure perceptual closeness – even though the full system’s reverse engineered

14 B mix had a greater MSS cost than that for 06 B, listener’s rated the 14 B closer to its

reference than 06 B. This contributes to a larger discussion in the literature regarding the
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need for more perceptually relevant cost functions for use in audio tasks [Manocha et al., 2021,

Vahidi et al., 2023].

As well as providing mixdowns, students were asked to comment on the mixes of their peers.

These comments provide potential explanations for what type of mixes the system performed

poorly on. For example, across 16 comments on mix 10 B the word “creative” appears in five.

One evaluation mentions that the “singer seems like he is on a completely different stage from

the band,” and another mentions that “the reverb/delay on the vocal was not quite fit.” This

suggests that the reverb and delay used on the vocal is probably distinct than that used on

the rest of the mix, which the full mixing chain is not equipped to handle. This may explain

why mix 10 B performed worst on the MSS objective measure.

For the reverse engineered mixes that do reach perceptual tolerance, the stems of the mixes

can be bounced individually and compared with the students’ comments. For example, 11 of

17 students mention that the vocals in the mix are too low when commenting on mix 08 A.

After bouncing the stems using the mixing chain learned by the full system, the vocals measure

-29.1 LUFS-I, compared to the full mix minus vocals which measures -23.8 LUFS-I. Pestana

[2013] found that listeners prefer when vocals sit between -2 and 0 LU compared to the rest of

the mix, which may explain why comments on the mix noted that the vocals were low.

For mix 20 C, several students commented that the kick drum is boomy and too prominent.

The kick stem measures -25.6 LUFS-I, and the rest of the mix measures -26.0 LUFS-I. Pestana

[2013] found that the main element of the mix ought to be within -2 to 0 LU of the rest of the

mix, so the relative loudness of the kick suggests that it will draw focus. When observing the

reverse engineered mix’s individual effects as seen in Figure 9.3, the EQ on the kick has a slight

boost between 60Hz and 300Hz. In terms of spectrum, the descriptor “boomy” is typically

applied to elements within the range of 20-250 Hz [Man and Reiss, 2015], with Owsinski [2014]

specifically suggesting the range 60-250 Hz. Figure 9.4 shows log frequency spectrograms of

the raw kick track and processed kick stem. Here it can be seen that the reverse engineered

effects processing increases the density of spectral energy below 200Hz, which may explain the

“boomy” comments.

There are several directions future work can take. One is modelling automation, which

is frequently used by mixing engineers. This could be realised using frame-by-frame approx-

imations of mixing parameters, or some other control scheme. Another direction would be

a method for learning what mixing chain may best suit a mix, rather than fixing the chain

shown in Fig 9.1. This could entail identifying which effects have been applied to the raw

tracks in the mixdown, similar to the work of Koo et al. [2022]. It would also be interesting

to incorporate the time alignment and pitch correction shown in Schwarz and Fourer [2021],

rather than forcing time and pitch alignment before applying the reverse engineering algorithm

This reverse engineering work may also aid in numerically characterizing mixing engineers’

behaviour by analyzing and extracting mix parameters from a corpus of professional mixes.

This corpus could then be used to improve objective measures of multitrack mixes for per-

ceptual correlation to avoid issues such as those encountered when objectively measuring mix-

downs.
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Figure 9.3: Learned EQ of kick drum raw track in mix 20 C. The slight boost in frequencies
between 60Hz and 300Hz is associated with “boominess.”

Figure 9.4: Log frequency spectrogram of the raw kick track and processed kick stem for mix
20 C. This demonstrates the reverse engineered effects removed most content above 250Hz and
increased spectral density below 250Hz.
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Chapter 10

Conclusions and further work

10.1 Summary of contributions

Throughout this dissertation, the paradigm of differentiable digital signal processing has been

applied to audio effect modelling, culminating in a new method for reverse engineering a

nonlinear mix of a multitrack recording.

The dissertation begins with demonstrations of FIR linear time-invariant effect matching

in Chapter 4. Examples of gain, panning, and FIR EQ matching in the time domain were pre-

sented from previously published literature. Additionally, a method for matching a reverb IR

given a dry/wet pair using gradient descent was described and compared to a reverb matching

method using division in the frequency domain.

In Chapter 5, a novel neural network-based method for matching the coefficients of a

cascade of biquads to an arbitrary magnitude response, named IIRNet, was proposed. This

MLP learned to map a magnitude response to the parameters of a cascade of biquads via

training on a dataset of filters whose coefficients are generated by random polynomials. An

experiment demonstrated that training IIRNet on a combination of different families of random

polynomials performed better than training on any individual family. IIRnet’s accuracy and

inference time were compared against two classical methods for IIR EQ matching: the modified

Yule-Walker algorithm; and a gradient descent method. These methods were compared to one

another using three datasets of filters: random filters generated using random polynomials; a

dataset of guitar cabinet impulse responses; and a dataset of HRTFs. IIRNet was shown to be

faster than the two traditional methods and most accurate across the three datasets.

Presented in Chapter 6 are methods for matching memoryless distortion effects. A dif-

ferentiable Wiener-Hammerstein based model was shown to match memoryless waveshaping

distortion effects. This model learned a cascade of an FIR pre-emphasis filter, gain parameter,

waveshaper with DC removal, FIR de-emphasis filter, and volume parameter. Two novel fam-

ilies of parameterized waveshaping functions based on the hyperbolic tangent function, named

the “SumTanh” and “PowTanh” families, were shown to outperform Fourier series-based and

Legendre polynomial-based parameterized waveshapers as well as a baseline tanh waveshaper

on objective measures. The PowTanh model performed best at matching a memoryless distor-

tion effect when measured using a MSS loss. A listening test was also conducted to measure

how well each method could match a reference perceptually. In the listening test, the SumTanh
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model performed best. Methods for DC removal were outlined for each of these waveshapers

as well.

A method for matching dynamic range compression effects is shown in Chapter 7. A dif-

ferentiable feedforward DRC was proposed that learns values for threshold, compression ratio,

knee width, attack time, release time, smoothing time (to smooth attenuation while the DRC

operates after attack and before release), and makeup gain. This DRC approximates attack

and release time using approximate moving average filters. This approach avoids the sample-

by-sample recursive calculations used in traditional digital DRCs, which when implemented

differentiably require large amounts of time and memory to learn effects. The performance

of this differentiable DRC was objectively measured on two dry/wet pairs of audio: one test

signal proposed by Bitzer et al. [2006] that profiles the ballistics of a DRC; and one speech

signal. Ultimately it was demonstrated that the DDSP DRC can match the compression on

the test signal well, while slightly underperforming on the speech signal.

Chapter 8 revisits the problem of reverse engineering a multitrack mix using only linear

time-invariant effects as proposed in Barchiesi and Reiss [2010]. In this task, a set of mixing

parameters θ are learned that can map a raw multitrack recording to a mixdown. Here, θ

defines the parameters for a mixing chain composed of gain, panning, FIR EQ, and reverb. The

FIR EQs were formulated to approximate a graphic EQ by learning attenuations at specified

octave bands and linearly interpolating a frequency transfer curve between those values. The

performance of two differentiable mixing chains were compared to a gain/panning mix baseline.

One mixing chain, called the stereo bus model, learned distinct reverb IRs for the left and

right channel of the mixdown as well as wet/dry parameters for each track in the mulititrack.

The other mixing chain, called the individual bus model, learned left and right reverb IRs

for each individual track in the multitrack. Ultimately, these reverse engineering algorithms

were applied to a dataset of six mixdowns produced using only linear time-invariant effects. An

objective evaluation of the reverse engineering methods was performed by comparing extracted

MIR features from the reverse engineered mixdowns to those of the reference mix, and this

objective evaluation showed that the stereo bus architecture outperformed all other reverse

engineered mixes. Then, a formal listening test was done to evaluate whether any of the

reverse engineered mixes were perceptually indistinguishable from a reference. The outcome of

this perceptual evaluation showed that only the mixdowns reverse engineered using the stereo

bus architecture were perceptually indistinguishable from a reference mix.

Chapter 9 concludes the dissertation with a method for reverse engineering a nonlinear mix.

A full mixing chain with gain, FIR EQ, DRC, distortion, panning, and reverb was proposed,

and an ablation study was performed to measure the impact adding distortion and DRC has

to the reverse engineered mixdowns. The full mixing chain was compared to a mixing chain

without distortion, a mixing chain without DRC and distortion, and a gain/panning mix.

When measured objectively using MSS loss, the full mixing chain was shown to outperform

all other mixing chains on a dataset of 23 student mixes. Furthermore, a formal listening test

showed that the reverse engineered mixes produced by the full mixing chain were perceptually

indistinguishable from reference mixes on a subset of six student mixes.
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Returning to the questions presented in Sec 1.2:

How can recent advances in machine learning for audio improve the technique

of reverse engineering a mix?

This thesis has demonstrated that the paradigm of differentiable digital signal processing

can be used to improve the technique of reverse engineering a mix originally proposed in

Barchiesi and Reiss [2010]. In Barchiesi and Reiss [2010], methods were shown to match gain,

panning, EQ, and DRC. The new technique for reverse engineering a mix proposed in this

thesis can now model gain, panning, EQ, memoryless distortion, DRC, and reverb.

Furthermore, this dissertation sought to match mixes within perceptual tolerance, a goal

not explicitly stated by Barchiesi and Reiss [2010]. When evaluating their algorithms, the

authors of Barchiesi and Reiss [2010] used only objective measures related to how closely

reverse engineered filters matched a reference, or how closely a reverse engineered mixdown’s

waveform matched a reference. In this dissertation, listening tests were performed to assess how

closely reverse engineered mixdowns matched their reference. For both linear time-invariant

mixdowns and nonlinear mixdowns, listening tests demonstrated that the reverse engineered

mixdowns which performed best on objective measures also matched their reference mixdowns

within perceptual tolerance.

The expansion of methods presented in this thesis allowed for the algorithms to be baselined

on more natural mixdowns than those shown in Barchiesi and Reiss [2010]. Whereas Barchiesi

and Reiss [2010] baselined their algorithm on three mixdowns produced by the authors, this

dissertation baselined a method for reverse engineering linear time-invariant mix using six mix-

downs mixed by a professional mix engineer, and baselined a method for reverse engineering a

nonlinear mix using 23 mixdowns mixed by students.

Can a new approach to reverse engineering a mix simultaneously optimize the

linear and nonlinear processing of the mix?

It was demonstrated that DDSP allows for the simultaneous optimization of linear and

nonlinear processing due to its ability to incorporate gradient descent into matching effect

parameters. As detailed in Chapters 8 & 9, a a piecemeal approach performed best. Rather

than simultaneously optimizing all parameters in the mixdown, it is best to begin the reverse

engineering with the gain and panning approximation shown in Barchiesi and Reiss [2010].

Then, EQ and DRC values are optimized along with gain and panning. Afterwards, distortion

is added to the optimization. Finally, reverberation is added and all parameters are optimized

until early stopping is reached. This demonstrates a clear improvement to Barchiesi and Reiss

[2010], which presented two separate algorithms: one for matching linear processing, and one

for matching DRC.

Can a mix be reverse engineered in the absence of information about how the

mixdown was produced?

In Chapter 9, few restrictions were placed on the types of processing the students could use

to make their mix. Students were allowed to mix using the DAW of their choice, any plugins

they wished to use, and could apply their effects in any order they saw fit. Furthermore, the

methodology makes no requirements that all mixing happen within a DAW; it is theoretically
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possible to mix fully analog, or use a hybrid analog/digital mixing chain.

The method does assume that time alignment has already been performed (i.e. is not part

of the mixing process), and that no pitch correction takes place in mixing. Furthermore, the

method assumes that no automation has been applied to any parameters in the mixing chain.

Which audio effects need to be emulated in order to reverse engineer a mix

within perceptual tolerance?

Gain, panning, EQ, reverb, distortion, and DRC were all required in order to match student

mixes within perceptual tolerance. Mixing chains without all of these effects could not reverse

engineer the student mixdonws within perceptual tolerance.

As a result, novel formulations for DDSP memoryless distortion, DRC, and IIR EQ match-

ing were presented. IIRNet, shown in Chapter 5, represents an improvement to the magnitude

response matching proposed in Nercessian [2020] and contributes to a larger body of literature

regarding IIR filter estimation. In Chapter 6, the DDSP W-H method represents an improve-

ment to the approach detailed in Nercessian et al. [2021], as the waveshaping action is much

more interpretable, and the use of only two emphasis filters is easier to inspect and modify

than the cascade of six filters and tanh nonlinearities of Nercessian et al. [2021]. Additionally,

the DDSP DRC shown in Chapter 7 is able to separately model the attack and release action

of a DRC without the use of recursive calculation, making it more lightweight than the method

shown in Wright et al. [2022] and more expressive than the model shown in Steinmetz et al.

[2022]. Ultimately, these modules contribute to an expanding body of DDSP literature.

Can the parameters of a reverse engineered mixdown be made legible to a mix

engineer?

All of the learned parameters in the reverse engineered mixes presented in this thesis can

be easily read by a mix engineer. The “graphic EQ” formulation used in Chapters 6, 8, & 9

presents a legible frequency transfer curve that ought to be familiar to anyone who has used a

graphic EQ while mixing. The waveshaping module used in the distortion effect prints a clear

waveshaping transfer curve, as demonstrated in Fig 6.4. The parameters learned by the DRC

module follow a traditional implementation of a digital DRC, as shown in Table 7.1. Finally,

the stereo bus reverb architecture explicitly learns two reverb IRs, as shown in Fig 8.8. While

these reverb IRs may be difficult to modify, they are completely explained.

Previous examples of automatic multitrack mixing, like the algorithms presented in Mart́ınez-

Ramı́rez et al. [2022] or Mart́ınez Ramı́rez et al. [2021], rely on blackbox neural network audio

effects to mix multitracks. As such, they employ neural network operations that are unfamiliar

to those outside the field. The work presented in this dissertation has provided the field of

automatic mixing with greybox, differentiable DSP modules that are inspired by the effects

used by mix engineers. Therefore, they represent an important step in bringing automatic

mixing tools to practitioners and encouraging intervention in machine-made automatic mixes.
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10.2 Further work

There are several opportunities to continue modelling various individual audio effects with

differentiable greybox techniques. In terms of linear effects, a dedicated delay/echo module

could improve the performance of the reverse engineered mixes. Currently, the reverb module

is tasked with jointly learning reverberation across the entire mix as well as delay/echo effects

that may have been applied to individual tracks in the multitrack.

Also, the inclusion of a parameterized differentiable reverb module would also be desirable.

The proposed model learns the individual taps of a reverb IR, i.e. the reverb module currently

learns 88200 parameters for a given mix. The inclusion of a differentiable feedback delay

network, such as that in [Ibnyahya and Reiss, 2022], would reduce the number of learnable

parameters as well as increasing the legibility and control of the learned effect.

There are several nonlinear effects that can also be implemented in a differentiable greybox

manner. For example, the development of a differentiable distortion effect with memory would

be desirable as many mix engineers use these effects in their process. In addition, a more

accurate differentiable DRC may improve system performance. Additionally a differentiable

noise gate effect has yet to be proposed in the literature, which is an effect commonly used by

mix engineers.

This work did not attempt to model any automation in the mixing chain, which is quite

restrictive when trying to model professional mix engineering behaviours. It may be possible

to model automation in the following way. First, a mixing chain can be learned to match an

excerpt of the target mixdown (i.e. the first second of the mix). Then, these learned parameters

can be used to initialize a gradient descent performed on the next portion of the mix, and so

on. Should no drastic automation take place between two excerpts, one would expect the

parameters to only change slightly. Finally, a smoothing procedure such as a Savtizky-Golay

filter can be used to interpolate these automations across the mix.

In addition, this work did not attempt to model any time-alignment or pitch correction,

which are two techniques that are typically expected of a mix engineer. Inspiration can be

taken from Schwarz and Fourer [2021], in which time-alignment and pitch correction are used

to reverse engineer DJ mixes. It may be possible, for example, to use the two-tap delay

filters mentioned in Nercessian et al. [2021] to perform a differentiable alignment. To improve

methods for reverse engineering DJ mixes, the differentiable effects modules presented in this

dissertation could be combined with the methods shown in Schwarz and Fourer [2021] to not

only reverse engineer time alignment and pitch correction, but also the effects used to blend

two tracks together (e.g. high-pass filtering, DRC, etc.).

Determining what effects may have been applied to individual tracks in the raw track is also

an open question. The proposed methodology assumes a fixed mixing chain for each raw track,

which may limit its modelling capabilities. Cues can be taken from Steinmetz et al. [2022],

where an ANN audio effects encoder learns audio effects related information from a reference

music recording, and from Koo et al. [2022], where a similar methodolgy was used to apply the

style of one multitrack mix to a separate mixdown. Learning a unique mixing chain for each

mixdown may improve the performance of the method as well as provide another paradigm for

modelling individual mix engineer’s practice.

Finally, a multimodal analysis that combines comments on mixdowns with the learned ef-
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fects of the reverse engineered mixdowns may also deepen our understanding of mix engineering

as a practice. Research ventures, such as the FAST IMPACt (Fusing Audio Semantic Tech-

nologies for Intelligent Music Production and Consumption) initiative 1, have published much

literature that tries to tie semantic descriptions of mixes with objective features calculated

on the mix. This reverse engineering technique can allow for a more fine-grained approach

to numerically characterizing common mix descriptors. In the same vein, this new technique

may help reduce the need for collection and maintenance of DAW recording sessions when

studying mix engineering, which could increase the scope of ethnographic inquiries such as

those shown in Pras et al. [2018], or studies of analog and digital mixing techniques like that

in Chambers-Moranz et al. [2019].

1http://www.semanticaudio.ac.uk/publications-2/ Accessed 21 April, 2023

113

http://www.semanticaudio.ac.uk/publications-2/


Bibliography

Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: a system for

large-scale machine learning. In 12th USENIX symposium on operating systems design and

implementation (OSDI 16), pages 265–283, 2016.

Jont Allen. Short term spectral analysis, synthesis, and modification by discrete fourier trans-

form. IEEE Transactions on Acoustics, Speech, and Signal Processing, 25(3):235–238, 1977.

doi: 10.1109/TASSP.1977.1162950.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.

arXiv:1607.06450, 2016.

Daniele Barchiesi and Joshua Reiss. Reverse engineering of a mix. Journal of the Audio

Engineering Society, 58(7/8):563–576, 2010.

Søren Bech and Nick Zacharov. Perceptual audio evaluation-Theory, method and application.

John Wiley & Sons, 2007.

Albert T Bharucha-Reid and Masilamani Sambandham. Random polynomials: Probability and

mathematical statistics: a series of monographs and textbooks. Academic Press, 2014.

Stefan Bilbao, Fabián Esqueda, Julian D. Parker, and Vesa Välimäki. Antiderivative antialias-
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Dmitry Bogdanov, Nicolas Wack, Emilia Gómez Gutiérrez, Sankalp Gulati, Herrera Boyer,

Oscar Mayor, Gerard Roma Trepat, Justin Salamon, José Ricardo Zapata González, Xavier

Serra, et al. Essentia: An audio analysis library for music information retrieval. In Britto

A, Gouyon F, Dixon S, editors. 14th Conference of the International Society for Music

Information Retrieval (ISMIR); 2013 Nov 4-8; Curitiba, Brazil.[place unknown]: ISMIR;

2013. p. 493-8. International Society for Music Information Retrieval (ISMIR), 2013.

114



Korneel van den Broek. Mp3net: coherent, minute-long music generation from raw audio with

a simple convolutional gan. arXiv preprint arXiv:2101.04785, 2021.

Gary Bromham, Dave Moffat, Mathieu Barthet, and György Fazekas. The impact of compres-

sor ballistics on the perceived style of music. In Audio Engineering Society Convention 145.

Audio Engineering Society, 2018.

Gary Bromham, David Moffat, Di Sheng, and György Fazekas. Measuring audibility threshold

levels for attack and release in a dynamic range compressor. Journal of the Audio Engineering

Society, october 2022.

Recommendation ITU-R BS.1534-3. Method for the subjective assessment of intermediate

quality level of coding systems. International Telecommunication Union, 2003.

Richard James Burgess. The art of music production: The theory and practice. Oxford Uni-

versity Press, 2013.

Richard James Burgess. The history of music production. Oxford University Press, 2014.

Anne Caclin, Stephen McAdams, Bennett K Smith, and Suzanne Winsberg. Acoustic correlates

of timbre space dimensions: A confirmatory study using synthetic tones. The Journal of the

Acoustical Society of America, 118(1):471–482, 2005.

Alex Case. Mix smart: Pro audio tips for your multitrack mix. Focal Press, 2011.

Franco Caspe, Andrew McPherson, and Mark Sandler. Ddx7: Differentiable fm synthesis of

musical instrument sounds. arXiv preprint arXiv:2208.06169, 2022.

Rafael Cauduro Dias de Paiva, Jyri Pakarinen, Vesa Välimäki, and Miikka Tikander. Real-time
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Thomas Hélie. On the use of volterra series for real-time simulations of weakly nonlinear analog

audio devices: Application to the moog ladder filter. In Proceedings of the 9th International

Conference on Digital Audio Effects (DAFx’06), pages 7–12. Citeseer, 2006.

Russ Hepworth-Sawyer and Jay Hodgson. Mixing music. Taylor & Francis, 2016.

Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis, Jort F Gemmeke, Aren Jansen, R Chan-

ning Moore, Manoj Plakal, Devin Platt, Rif A Saurous, Bryan Seybold, et al. Cnn architec-

tures for large-scale audio classification. In 2017 ieee international conference on acoustics,

speech and signal processing (icassp), pages 131–135. IEEE, 2017.

Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets and

problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based

Systems, 6(02):107–116, 1998.

118



Martin Holters and Udo Zölzer. A generalized method for the derivation of non-linear state-

space models from circuit schematics. In 2015 23rd European Signal Processing Conference

(EUSIPCO), pages 1073–1077. IEEE, 2015.

R. Huber and B. Kollmeier. Pemo-q—a new method for objective audio quality assessment

using a model of auditory perception. IEEE Transactions on Audio, Speech, and Language

Processing, 14(6):1902–1911, 2006. doi: 10.1109/TASL.2006.883259.

Ilias Ibnyahya and Joshua D Reiss. A method for matching room impulse responses with

feedback delay networks. In Audio Engineering Society Convention 153. Audio Engineering

Society, 2022.

Il’dar A. Ibragimov and Nina B. Maslova. The mean number of real zeros of random poly-

nomials. I. Coefficients with zero mean. Teor. Verojatnost. i Primenen., 16, 1971. ISSN

0040-361x.

Roey Izhaki. Mixing audio: concepts, practices, and tools. Focal Press, 2008.

Nicholas Jillings, Brecht De Man, David Moffat, Joshua D Reiss, et al. Web audio evaluation

tool: A browser-based listening test environment. 2015.

Zakhar Kabluchko. Critical points of random polynomials with independent identically dis-

tributed roots. Proc. Amer. Math. Soc., 143(2), 2015. ISSN 0002-9939. doi: 10.1090/

S0002-9939-2014-12258-1.

Mark Kac. On the average number of real roots of a random algebraic equation. Bull. Amer.

Math. Soc., 49, 1943. ISSN 0002-9904. doi: 10.1090/S0002-9904-1943-07912-8.

Christoph Kemper. Musical instrument with acoustic transducer, August 5 2014. US Patent

8,796,530.

Gary S. Kendall. The decorrelation of audio signals and its impact on spatial imagery.

Computer Music Journal, 19(4):71–87, 1995. ISSN 01489267, 15315169. URL http:

//www.jstor.org/stable/3680992.

Adrian Kim, Soram Park, Jangyeon Park, Jung-Woo Ha, Taegyun Kwon, and Juhan Nam.

Automatic dj mix generation using highlight detection. Proc. ISMIR, late-breaking demo

paper, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR

(Poster), 2015.

Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef Gabbouj, and Daniel J

Inman. 1d convolutional neural networks and applications: A survey. Mechanical systems

and signal processing, 151:107398, 2021.

Takao Kobayashi and Satoshi Imai. Design of IIR digital filters with arbitrary log magnitude

function by WLS techniques. IEEE Trans. Acoust., 1990.

Bennett Kolasinski. A framework for automatic mixing using timbral similarity measures and

genetic optimization. journal of the audio engineering society, may 2008.

119

http://www.jstor.org/stable/3680992
http://www.jstor.org/stable/3680992


Junghyun Koo, Marco A Martinez-Ramirez, Wei-Hsiang Liao, Stefan Uhlich, Kyogu Lee, and

Yuki Mitsufuji. Music mixing style transfer: A contrastive learning approach to disentangle

audio effects. arXiv preprint arXiv:2211.02247, 2022.

Abhijit Kulkarni, SK Isabelle, and HS Colburn. Sensitivity of human subjects to head-related

transfer-function phase spectra. JASA, (5), 1999.

Boris Kuznetsov, Julian D Parker, and Fabián Esqueda. Differentiable iir filters for machine

learning applications. In Proc. Int. Conf. Digital Audio Effects (eDAFx-20), pages 297–303,

2020.

Mathias C Lang. Weighted least squares IIR filter design with arbitrary magnitude and phase

responses and specified stability margin. In IEEE Symp. on Adv. in Dig. Filt. and Sig. Proc.,

1998.

Olivier Lartillot, Petri Toiviainen, and Tuomas Eerola. A matlab toolbox for music information

retrieval. In Data analysis, machine learning and applications, pages 261–268. Springer, 2008.

Sungho Lee, Hyeong-Seok Choi, and Kyogu Lee. Differentiable artificial reverberation.

IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2022.
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