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Abstract

The imitation of percussive sounds via the human voice is a natural and effective tool for com-

municating rhythmic ideas on the fly. Query by Vocal Percussion (QVP) is a subfield in Music

Information Retrieval (MIR) that explores techniques to query percussive sounds using vocal

imitations as input, usually plosive consonant sounds. In this way, fully automated QVP sys-

tems can help artists prototype drum patterns in a comfortable and quick way, smoothing the

creative workflow as a result. This project explores the potential usefulness of recent data-driven

neural network models in two of the most important tasks in QVP. Algorithms relative to Vocal

Percussion Transcription (VPT) detect and classify vocal percussion sound events in a beatbox-

like performance so to trigger individual drum samples. Algorithms relative to Drum Sample

Retrieval by Vocalisation (DSRV) use input vocal imitations to pick appropriate drum samples

from a sound library via timbral similarity. Our experiments with several kinds of data-driven

deep neural networks suggest that these achieve better results in both VPT and DSRV compared

to traditional data-informed approaches based on heuristic audio features. We also find that these

networks, when paired with strong regularisation techniques, can still outperform data-informed

approaches when data is scarce. Finally, we gather several insights relative to people’s approach

to vocal percussion and how user-based algorithms are essential to better model individual dif-

ferences in vocalisation styles.
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Chapter 1

Introduction

Music Information Retrieval (MIR) aims at extracting relevant information from music. It is

a relatively new field in modern computer science and it is having an increasing impact on the

music industry. Some of the main disciplines in MIR like chord recognition, music transcription,

and source separation are receiving a growing amount of attention from independent musicians,

as they constantly output applications that can make their creative workflow more pleasant. For

example, automatic music transcription enables artists to learn and produce musical works more

comfortably by transcribing instrumental lines in songs, while source separation is able to create

karaoke tracks by extracting individual vocal tracks from songs.

Along these lines, many mechanical and sometimes laborious tasks can now be fully auto-

mated thanks to MIR, allowing artists to keep their focus on the creative aspects of their craft.

Music producers and creators working on Digital Audio Workstations (DAW) sometimes have

to deal with plugins with a high number of parameters, which usually interrupt their creative

flow. To let artists avoid this and make their creative process more streamlined, plugins that act

like shortcuts to achieve the desired result (e.g. Synthassist [1] for synthesising sounds based

on an input vocal query) are available to those that may otherwise find it difficult to use some

plugins in DAWs. The main motivation for this thesis is to investigate to what extent can vocal

percussion be used as a shortcut to create drum patterns within DAWs.

1
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Query By Example (QE) is a discipline that investigates how to quickly query a specific

audio file from a sound library by providing another file that sounds similar to it, like a sketch

recording. This search is usually fully audio content-based, not requiring any other additional

kind of metadata for queries like labels or text descriptions. A special case of QE is that of

Query By Vocal Imitation (QVI), in which the example audio file that is fed to the system con-

tains a vocal imitation of the desired sound. The subject covered in this thesis, Query By Vocal

Percussion (QVP), is a form of QVI in which percussive sounds are retrieved from percussive

vocal imitations. These are vocal utterances that are usually articulated so as to communicate a

rhythmic idea, usually by imitating the sound of percussive instruments like those featured in a

drum set. QVP systems map these vocal percussion sounds to real drum samples from a sound

library so as to create a realistic drum loop in seconds, making composers save time and effort

prototyping rhythms even without actual music knowledge.

Despite the potential practicalities of these systems, they are seldom used today. This could

be due to several reasons, including the limited commercial spread of the applications and the

insufficient precision of their algorithms. The latter issue, which also influences the former, could

be due to some important limitations of current heuristic algorithms when adapting to different

application contexts. The simplicity of heuristic algorithms, based on engineered audio features

and traditional machine learning systems, makes them ideal to approach problems with few

samples and low data complexity. However, they can underperform when they are presented with

several sources of variance like performances recorded with different microphones, on different

locations, with different levels of background noise, and from different participants’ voices with

different ways of imitating drum sounds. In those situations, it is challenging to select a set of

audio features that is supposed to work optimally for such a wide variety of input data. Data-

driven algorithms like deep neural networks [2] could potentially offer better accuracies, as they

are able to learn features directly from vocal percussion sounds’ spectrograms from different

contextual sources. For this reason among others, they are also consistently proven to be more

effective than heuristic methods in music analysis [3] and audio event detection [4].

However, data-driven deep learning models have a significantly higher number of parameters
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than heuristic methods, which leads to a higher risk of data overfitting in limited-data scenarios.

This means that neural networks are more likely to model training data so accurately that they

lose extrapolation power and end up underperforming in the evaluation task. Fortunately, sev-

eral strategies have been developed over the years to make data-driven algorithms less prone to

overfitting in low-data user-based scenarios and they are now being used with more frequency in

problems where training data is scarce [5].

Vocal percussion is divided into two main practices: beatbox and amateur vocal percussion.

Vocal percussion sounds relative to beatbox are produced using several parts of the vocal tract,

some of which are used in normal speech and some of which are not [6]. The articulation of

these vocal percussion sounds is usually carried out in a relatively similar way, slightly modulat-

ing their loudness and timbre for expressive purposes. Also, it has its own universal set of basic

techniques from which individual beatboxers base their own [7]. In contrast, amateur vocal per-

cussion involves performers with little or no previous experience in beatbox, usually including

most musicians and music producers. In this modality, the vast majority of vocal percussion

sounds are speech-like and performers are much less consistent in articulation compared with

beatboxing [6]. Also, as amateur performers do not follow vocal percussion techniques, they

mostly decide to use their own particular set of vocal percussion sounds, which are based on

their way of imitating drum sounds and usually differ from those of other amateur performers

[8].

This thesis explores the relevance of data-driven algorithms and routines to the two main

tasks in QVP. The first task, Vocal Percussion Transcription (VPT), aims at using vocal percus-

sion sounds to trigger drum samples. The second task, Drum Sample Retrieval by Vocalisation

(DSRV), aims at using vocal imitations of real drum samples to automatically retrieve these

or similar-sounding samples from a sound library. These two tasks are complementary to one

another in music production contexts: in order to produce or sketch a drum line using vocal

imitations, producers would first select the drum samples they want to use (DSRV) and then

vocalise a beatbox-like performance that will be transcribed to the final drum line (VPT). We

take a closer look at these two tasks in the following sections.
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1.1 Task 1: Vocal Percussion Transcription

Vocal Percussion Transcription (VPT) is a relatively old subfield in MIR that is concerned with

the detection and classification of vocal percussion sound events so as to trigger drum samples,

sitting just between monophonic music transcription and speech recognition. In this way, fully

automated VPT systems help artists prototype drum patterns in a comfortable and quick way,

smoothing the creative workflow as a result. The goal of VPT is to transcribe vocal percussion

sound events into typical drum instrument classes, usually including kick drums, snare drums,

and hi-hats.

VPT is a problem of correspondence between a sound and a label, i.e., a classification task.

As such, the most relevant set of audio features to feed VPT algorithms would be the one that

best separates vocal percussion sounds, independently of the timbral similarity between these

sounds and the drum samples that they are triggering. The models and techniques used in VPT

are shared across many other disciplines in MIR and sound event detection like musical instru-

ment recognition, music transcription, query by vocal imitation, and anomalous sound detection.

Likewise, vocal percussion datasets are also used in areas like music cognition and to study inter-

personal differences in vocal imitation styles among others [9].

There are two main frameworks in VPT. Match and adapt tries to find the most similar spec-

trum to the query one in a database of rhythmic performances [10], while onset-wise separation

divides the audio file in individual vocal percussion sounds and analyse them separately [11]. In

this thesis, we focus exclusively on the latter (onset-wise separation), as it consistently outputs

better performances [8, 12, 13]. This method is composed of two usually independent tasks:

onset detection and classification. Vocal percussion onset detection deals with the prediction of

the exact moments in the audio waveform where vocal percussion sounds start, whereas vocal

percussion classification tries to assign each sound the correct associated drum instrument label

(e.g. kick drums for p-like sounds). We will dedicate several experiments in this thesis to inves-

tigate the relevance of data-driven methods in both the onset detection and the classification

tasks. This is done for several realistic VPT scenarios that often require distinct approaches to
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be effectively solved.

Vocal percussion onset detection is usually performed in an user-agnostic context; that is,

disregarding information about individual participants when detecting vocal percussion sound

onsets. This is done under the assumption that vocal percussion sounds, whether they belong to

beatbox or amateur vocal percussion, have similar features in their onset region that allow algo-

rithms to model them all together without losing prediction accuracy. Data-driven algorithms

are the ones to benefit more from this method, as the more data with shared characteristics fed

to the models the better their performance.

Beatbox sound classification is also typically approached in a user-agnostic fashion, as beat-

box has a universal set of techniques that does not vary significantly among performers [7, 14].

In contrast, most recent works in amateur vocal percussion classification carry out the classifi-

cation process in a user-driven fashion, as this is known to improve classification performance

compared to user-agnostic approaches [15–17]. In a user-driven context, users show the classi-

fier their particular way of vocalising drum instruments (training set) so that the algorithm can

recognise those vocal percussion sounds in the future, usually within a beatbox-style improvi-

sation (test set). Training sets are usually recorded either by reproducing a predictable beatbox-

style phrase multiple times, which is called the fixed phrase strategy or by recording individual

audio files containing same-class vocal percussion sounds, which is called the isolated samples

strategy.

Independently of the recording methodology, user-driven training sets relative to amateur

vocal percussion often contain less than one hundred sounds. This data bottleneck limits the

amount of input audio features that classifiers can take for modelling so as to minimise their

risk of overfitting. In consequence, amateur vocal percussion classifiers are in need of naturally

informative input feature sets to guarantee robustness in prediction accuracy for all participants,

irrespective of their stylistic idiosyncrasies and vocal percussion skills. As the informative power

of a feature set depends largely on the task at hand, the exploration, and evaluation of feature

sets would most likely have to pass through regularisation processes, potentially including data

augmentation routines [18, 19], heuristic feature selection [20], and representation learning [21]
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among others.

VPT can also be carried out in two different regimes. In offline mode, the algorithm has

access to the whole audio file containing the vocal percussion performance and can use all that

information at once to detect the onsets of vocal percussion sound events and classify them. The

system would output a transcription file afterward with the sound events and their timings. Con-

versely, in online mode, the algorithm only has access to a short analysis buffer that contains

the most recent few milliseconds of the recorded audio stream. In this case, the system would

have to detect, classify, and usually trigger the response very shortly after the sound event is

recorded; for instance, it would trigger a snare drum sound almost at the same time as the per-

former vocalises the percussive sound event that is supposed to trigger it. This online procedure

puts an important constraint on the system, forcing a trade-off between delay (length of the anal-

ysis buffer) and performance (detection and classification accuracy). In this sense, the longer the

analysis buffer, the more information is available to the algorithm and the better the performance

is expected; but also the more delay between the trigger and the response. This delay could be

perceptually unpleasant if it exceeds a certain threshold that usually depends on the nature of the

task at hand.

In this thesis, we wanted to see to what extent can data-driven algorithms improve the state

of the art in VPT. We dedicated individual chapters to onset detection, offline classification, and

online classification where we detailed experiments on data-driven VPT and how their results

compare with earlier heuristic approaches. To the date of the beginning of the thesis, no data-

driven VPT method was yet proposed in the literature.

1.2 Task 2: Drum Sample Retrieval by Vocalisation

Commercial drum sound libraries typically contain thousands of samples from different drum

types and articulations. For this reason, they could be too large for an individual to explore and

find, for example, a specific snare drum sample to use in a musical piece. To save search time,

some pieces of software use perceptual attributes like “brightness” or “warmness” to filter the
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samples [22]. Drum Sample Retrieval by Vocalisation (DSRV) provides a complementary and

potentially faster way of selecting desired drum samples [22, 23], allowing artists to carry on

creating without having to deal with exhaustive manual searches.

In contrast with VPT, DSRV is a problem of correspondence between two sounds, i.e. simi-

larity estimation, and the main objective is to find the set of audio features that best link them in

relation with other distractor sounds. DSRV is firstly studied in [2], where authors implemented

different convolutional autoencoder models to extract embeddings (learnt feature sets) that can

predict listeners’ drum-imitation similarity scores. DSRV was also implicitly studied in the past

through QVI, as drum samples were often part of the evaluated datasets. Main insights from QVI

studies suggest that humans are generally skilled when performing and recognising vocal imi-

tations of generic sounds, with most results pointing towards the high retrieval accuracy, speed,

and usability of QVI systems when compared to query-by-text ones. Recent implementations

of QVI systems use deep representation learning techniques to estimate the similarity between

source sounds and vocal imitations through metric learning, which significantly increases the

retrieval accuracy of QVI systems [24].

DSRV can also be approached in user-agnostic and user-driven ways. The former, user-

agnostic, would assume that the vocal imitations of drum sounds are similar enough among users

that they can be analysed and modelled altogether. This assumption was proven to be correct to

some extent [2], although other studies suggested that vocal imitation styles vary significantly

among some users and that a user-driven approach could potentially improve accuracy in some

scenarios [9, 25]. Apart from the user-agnostic and user-driven DSRV distinction, the problem

can also be described in terms of the learning strategy that algorithms employ, more specifically

the type of metric that they calculate sound similarity with. In this sense, algorithms using

heuristic metrics first extract a set of features from drums and vocal imitations and compute the

similarity between them using a fixed metric (e.g. Euclidean distance). By contrast, algorithms

using learnt metrics aim at discovering the optimal metric that links drum sounds with their

vocal imitations given a set of features. An interesting property that some end-to-end data-

driven algorithms have is that they are capable of learning features and metrics at the same time
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(e.g. siamese neural networks).

In this thesis, as with VPT, we explore to what extent can data-driven DSRV algorithms

improve the state of the art in the field. We dedicated a full chapter to data-driven DSRV detailing

the methodology and results from three experiments, putting performances in context with earlier

heuristic and data-driven approaches.

1.3 Outline of the thesis

Chapter 2 provides an extensive review of the thesis’s background information. The chapter

is divided into two sections. The first one outlines the theoretical foundations of the work,

covering both heuristic and data-driven signal processing. The second section attempts to gather

all relevant past literature on the topic of QVP and related fields.

Chapter 3 presents the datasets that are going to be used throughout the thesis for data-driven

QVP, some of them already available in literature and others to be crafted.

Chapter 4 details the main routines that we followed to create and evaluate the performances

of several heuristic and data-driven vocal percussion onset detection methods, generally directed

to VPT. We describe these approaches and present the final results for both offline (non-real-

time) and online (real-time) onset detection.

Chapter 5 discusses the methodology and results of experiments on vocal percussion sound

classification in an online context. We first investigate which phoneme-to-instrument mappings

were the most adequate to perform online amateur vocal percussion classification. Then, we

evaluate the performance of several algorithms when classifying beatbox sounds and also the

sounds derived from the previously-mentioned mappings for amateur vocal percussion.

Chapter 6 focuses on the experiments relative to vocal percussion classification in an offline

context. We first introduce the different types of datasets available for offline vocal percussion

classification and explore the performance of different heuristic and end-to-end data-driven algo-

rithms. Then, we attempt to improve the efficiency, effectiveness, and generalisation abilities of
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user-based amateur vocal percussion via supervised embedding learning.

Chapter 7 details the experiments we carried out for DSRV. We first carry out a preliminary

analysis of the main DSRV dataset to explore user differences in vocal imitation styles, discover

audio features that these users imitate skilfully, and inform future data-driven DSRV systems on

how to represent the audio data that their learning algorithms take as input. Then, we use the

previous insights to explore the potential of user-agnosict data-driven techniques to learn useful

features for DSRV.

Chapter 8 outlines the main conclusions of the thesis, summarising its main findings and

discussing the challenges to overcome in order to advance the field of QVP.
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Chapter 2

Background

In this second chapter, we provide an extensive review of the thesis’s background information.

The chapter is divided into two sections. The first one outlines the theoretical foundations of the

work, covering both heuristic and data-driven signal processing. The second section attempts to

gather all relevant past literature on the topic of QVP and related fields.

To write our theoretical summary, we have taken care of several attributes that we believe are

of relevance and help to the reader. On the one hand, we tried to maximise comprehensiveness

in such a way that even readers specialised in different but related fields of knowledge have

the possibility of understanding it. On the other hand, while keeping an appropriate level of

comprehensiveness, we also tried to cover important low-level details of the most important

concepts (e.g. neural network dynamics). Lastly, as we acknowledge that we cannot cover all

related algorithms in literature (audio features, machine learning algorithms, types of neural

networks...), we tried to assign priority to those methodologies that are most relevant for our

thesis, while sometimes briefly commenting on interesting approaches and referencing related

review papers that cover these and other approaches in a more extensive way.

To write the literature review related to this thesis, we also took care of several desirable

attributes regarding the reader. The first one is the conceptual connectivity to the theoretical

summary, meaning that we ensured that most of the concepts that would arise when summarising

12
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the content of relevant papers have been already explained beforehand or are properly referenced

with papers that explain them. We also tried to gather all literature in QVP to date and provide

an extensive review of each of the most relevant papers, dedicating a full paragraph to each

of them. Lastly, we provided a distilled review of several related fields (e.g. automatic drum

transcription), covering the most important works in the fields and outlining the methodologies

that are likely to inform this thesis’s approaches.

2.1 Theory

In this section, we provide an extensive review of the theoretical foundations related to this

thesis. As discussed in the chapter’s introduction above, we divided this review into heuristic

signal processing and data-driven signal processing. The former elaborates on topics like spec-

tral processing, audio feature extraction, traditional machine learning algorithms, and similarity

estimation. The latter, data-driven signal processing, includes a detailed overview of neural net-

works’ building blocks, characteristics, architectures, and dynamics.

The main high-level purpose of this theoretical review is to allow the reader to familiarise

himself/herself with the concepts that this thesis is built on. The reader also has the possibility of

diving deeper into the details and functioning of these concepts through both the review’s body

text and the referenced literature.

2.1.1 Heuristic Digital Signal Processing

In order to dive into the details and techniques related to heuristic signal processing, we find

it most appropriate to define the concept so as to get an idea of the types of algorithms that it

covers.

A signal is defined as “a detectable physical quantity or impulse (such as a voltage, current,

or magnetic field strength) by which messages or information can be transmitted” [1]. By this

definition, images and audio recordings can also be referred to as “signals”. The term digital

is defined as “composed of data in the form of especially binary digits” [2]. In contrast with
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analogue signals, which are considered continuous (i.e., they have an assigned value for any

arbitrary point in time), digital signals are discrete (i.e., they have an assigned value every t

timesteps of fixed length). Hence, Digital Signal Processing (DSP) would be the field of knowl-

edge dedicated to analysing, modifying, and synthesising digital signals.

The use of the word heuristic to describe certain traditional signal processing algorithms,

although extensively used in literature, is still somewhat contentious regarding the precision of

its meaning. The word “heuristic” means “of or relating to exploratory problem-solving tech-

niques that utilize self-educating techniques (such as the evaluation of feedback) to improve

performance” [3]. Adopting this, it could seem at first that practically every problem-solving

strategy in computer science is heuristic by definition. Nevertheless, we believe there are two

implicit distinctions within the term that help with concretising its meaning, one of them quali-

tative and the other quantitative.

The qualitative distinction concerns the subject that has agency over the “exploration of

problem-solving techniques”. In this way, we would describe an approach as heuristic if a

human is in charge of the exploration of these problem-solving techniques and their evalua-

tion. If a machine is in charge, the approach would not be described as heuristic. However, it

could be argued that virtually all signal processing approaches comprise a mixture of human- and

machine-driven decisions, so the concept would still be ill-defined in signal processing. How-

ever, we also see a relevant quantitative distinction within the term that helps to narrow down

its meaning, and that is the level of agency of the subject. In this way, if the most important

decisions when exploring problem-solving techniques are done by humans and/or the majority

of algorithm developing time and evaluation is carried out by humans, the approach could be

described as “more heuristic” than another approach where machines get to make the most cru-

cial decisions that affect performance and/or take the most amount of working time (e.g. when

training end-to-end neural networks).

Although here we use the term “heuristic” categorically, we believe that the ideal way of

using it would be as a quantitative term. To illustrate this, below are a few examples of method-

ologies in descending order of heuristicness:
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• The approach of a researcher who observes that the signals relative to harmonic sounds

are more periodic than noisy sounds manually estimates signals’ periodicity by measuring

the length stability of the spaces between the zero-crossings of signal cycles, and manually

sets a thresholding parameter relative to this periodicity in such a way that, if exceeded, the

signal would be labelled as “harmonic” and, if not exceeded, the signal would be labelled

as “noisy”.

• The approach of the same researcher above but, instead of manually setting a manual

threshold, feeds the value to a decision tree machine learning algorithm (see 2.1.1.3) and

allows it to decide whether the signal is harmonic or noisy.

• The approach of the same researcher above but, instead of manually estimating the signal’s

periodicity and setting a manual threshold, calculates the CQT spectrogram (see 2.1.1.1)

and feeds it to an end-to-end neural network (see 2.1.2.1) that decides whether the signal

is harmonic or noisy.

• The approach of the same researcher above that feeds the raw waveform directly into an

end-to-end neural network that decides whether the signal is harmonic or noisy.

In this work, we would consider the first two approaches as “heuristic” and the last two

approaches as “non-heuristic”, which we would also refer to as “data-driven” later on (see 2.1.2).

2.1.1.1 Audio Representations

An audio signal can be mathematically represented in several different ways, some more appro-

priate and interpretable than others depending on the application context. No matter which rep-

resentation method we choose in DSP, they all come from digitally measuring a physical audio

wave through an electronic device. A physical audio wave is created by the oscillatory move-

ment of the air particles due to rapid changes of pressure in the environment. In essence, a digital

audio recording is trying to approximate this continuous physical audio wave by measuring the

air pressure in the environment at a very high rate, usually 44,100 pressure measurements per

second. A scheme representing this is given in Figure 2.1.
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Figure 2.1: Schematic representation of the process of audio recording. Source:
Muller, 2015 [4].

The digital representation of these measurements displayed in chronological order is called

the audio waveform, which is illustrated in Figure 2.2. This waveform, if recorded digitally, is

composed of a large number of amplitude measurements in a very short amount of time called

samples. For instance, the audio content of a Compact Disk (CD) has 44,100 amplitude mea-

surements per second, which is known as the sample rate. As we will see in later paragraphs,

the higher the sample rate, the more exact the representation of the physical audio signal and,

hence, the better the audio quality.

The raw waveform is the most basic representation of an audio signal, which can be later

transformed to obtain other types of representation. There exist two main types of transforms

for audio signals: the invertible or lossless transforms and the non-invertible or compressive

transforms. By applying the invertible transforms, one can go back to the original representation

by applying the inverse transform without any loss of information. With non-invertible trans-

forms, in contrast, one cannot retrieve the original representation via an inverse transform, as the

direct transform is already compressing the original signal.



Chapter 2. Background 17

Figure 2.2: Diagram of a raw audio waveform. Source: Muller, 2015 [4].

Invertible Transforms

The most popular invertible transform of the raw audio waveform is the Discrete Fourier

Transform (DFT), which expresses the audio waveform in terms of its frequency components.

The output of this transform is known as the frequency spectrum of the audio signal. Mathemat-

ically, the DFT is defined as:

Xk =
N−1∑
n=0

xn · e−
i2π
N

kn =

N−1∑
n=0

xn ·
[
cos

(
2π

N
kn

)
− i · sin

(
2π

N
kn

)]
(2.1)

where n ∈ [0, N−1] is the sample index in the audio waveform, xn is the amplitude value of

the audio waveform at sample n, k ∈ [0, N − 1] is the index of the frequency bin, and Xk is the

Fourier coefficient relative to bin k. The last equivalence derives from Euler’s formula, which is

given by the formula:

e−
i2π
N

kn = cos

(
2π

N
kn

)
− i · sin

(
2π

N
kn

)
(2.2)

Lastly, the inverse transform to obtain the samples of the audio waveform from the bins of

the frequency spectrum is defined as:

xn =
1

N

N−1∑
k=0

Xk · e
i2π
N

kn (2.3)

Figure 2.3 provides an example of a DFT applied to an audio waveform. Among the relevant



Chapter 2. Background 18

Figure 2.3: Illustration of an audio waveform and the magnitude of its DFT coeffi-
cients. Source: Muller, 2015 [4].

properties and characteristics of the DFT are the fact that it is horizontally symmetric with respect

to the k = N
2 bin, it is time-invariant, and it encodes both the magnitude and phase information

of all the sinusoidal signals that compose the original raw waveform. For audio analysis, the

magnitude spectrum, which is given by the absolute value of the Fourier coefficients, is one

of the most popular types of representations and also the basis to compute other non-invertible

transforms. The phase spectrum, which is given by the angle of the complex sinusoids within

the Fourier coefficients, is not as commonly used in heuristic DSP and it is usually reserved for

concrete use cases like transient analysis and onset detection (see 2.2.3.1).

Another popular invertible transform related to the DFT is the Fast Fourier Transform [5]

(FFT). This is a time-optimised convolution-based algorithm for calculating the DFT but orders

of magnitude more efficient in terms of computation time than the original DFT algorithm. We

use this transform extensively in this thesis to calculate spectral representations, especially for

real-time processing, where optimising processing speed as much as possible is important so as

to reduce response latency.

For a long audio file with millions of samples in its waveform, the usual approach to visualise

the frequency content is to divide it into small frames of a few milliseconds in length, compute

their associated spectrum, and lay these spectra vertically and in chronological order to see the

variances of frequency content across time. This outputs an image type of representation called

the spectrogram of an audio signal. This is illustrated in Figure 2.4.

Non-Invertible Transforms
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Figure 2.4: Waveform and spectrogram of the phrase “The sun began to rise”. Darker
regions correspond to more energy and the vertical dotted lines corre-
spond to the estimated word boundaries. Source: Weber and Scharen-
borg, 2012 [6]

Popular non-invertible transforms are those based on the non-linear DFT (or FFT) compres-

sion using scaled frequency bands. In this way, one can choose an arbitrary number of bands

and the DFT spectrogram would be compressed accordingly. For instance, if a total of 32 bands

are selected, the information in the magnitude spectrum would be reduced to 32 bins whose

value encodes the average spectral energy contained in each of these bands. This way of com-

pressing the DFT is useful when the relatively high dimensionality of the DFT representation

difficults analysis, which is common when feeding these representations to machine learning

algorithms. The reason for this is that, the higher the dimensionality of input representations, the

higher the amount of data required for the algorithm to generalise appropriately to unseen data

points.

The most popular scales to compute frequency bands in audio signal processing literature

are the Mel [7], Bark [8], and ERB [8] scales, whose frequency response is inspired by the way

the human ear compresses auditory information to send to the brain. The frequency responses of

each of these scales is compared against each other in Figure 2.5.
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Figure 2.5: Normalised Linear, Mel, Bark, and ERB scales. Source: Rohr, 2015 [9].

Apart from the above, other types of non-invertible transforms that are widely used in MIR in

particular include the Constant-Q Transform (CQT) and the Pitch Class Profile (PCP) series of

algorithms, both of which are used to effectively encode the harmonic content in a compressed

representation for analysis. As we are concerned with percussive signals, whose harmonic con-

tent is not as present as in other musical signals, we considered it best not to use these in the

thesis.

2.1.1.2 Heuristic Audio Features

Given a certain task, DSP practitioners can further compress all the audio representations out-

lined above in a strategic way to solve the task in the most efficient way.

For instance, if the task is distinguishing between the audio signal of a bass guitar and the

audio signal of a high whistle, the practitioner does not usually need the information from all

the frequency bins in the DFT to base the decision upon. Instead, the practitioner can define

and calculate a few informative heuristic audio features that are able to separate the classes by

themselves. For instance, in our example, features that estimate the energy contained in the

high-frequency bins appear to be relevant, as a bass guitar is expected to have a low amount of

energy located there while the high whistle is likely to have almost all of its energy around that
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region in the spectrogram.

Heuristic features are usually composed by two elements: a base audio descriptor and an

associated statistical functional. The former is what is used to compress the information inside

the original audio representation for a single audio frame of a few milliseconds, while the latter

is what is used to aggregate the values of the audio descriptors across frames (i.e. in time).

Below, we provide a list of some popular audio descriptors in DSP and MIR that we use in

our work. A more complete overview of these and other descriptors is featured in [10].

• Spectral Energy: This is simply defined in DSP as the bin-wise squared value of the spec-

trum.

• Zero Crossing Rate (ZCR): This is defined as the number of times that the signal changes

sign (i.e. crosses the zero line) divided by the length of the signal in samples.

• Mel Frequency Cepstral Coefficients (MFCC): These descriptors are widely-used in speech

recognition and MIR to compress relevant frequency information in audio signals with the

Mel scale as a basis. More information about the computation of these coefficients can be

found in [11].

• Spectral Roll-Off: This is the frequency under which a certain percentage of the total

spectral energy falls.

• Spectral Flux: This is defined as the difference in magnitude between the spectrum of the

current frame and the one of the previous frame.

• Spectral Moments: These are derived by conceptualising the frequency spectrum as a

statistical distribution whose values are the frequency bins and whose probabilities are

the normalised amplitudes. The first, second, third, and fourth moments are known as

the centroid, variance, skewness, and kurtosis respectively. The first moment, the spectral

centroid, is frequently used in MIR like timbre analysis, whose approaches are generally

relevant for this thesis.
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• Fundamental Frequency: This is the frequency in a harmonic sound from which the over-

tones emerge, which is highly correlated with the psychoacoustical descriptor of pitch.

Some common statistical functionals that are applied to the values of these descriptors com-

puted in a frame-wise manner are the mean value, the standard deviation, the maximum value,

the minimum value among others. It is also a common practice in related fields like sound event

detection to calculate these statistical descriptors not only from the original feature vectors but

from the first and second derivative of these [12].

2.1.1.3 Machine Learning Models

Once an appropriate set of audio features is extracted from sounds, the modelling stage begins.

Here, either the human researcher or an automated computer program (or both) takes charge of

making sense of the information contained in the extracted feature set and uses it to solve the

task at hand.

Modelling has been usually carried out via machine learning algorithms. These are auto-

mated computer programs that “learn” to solve a certain task usually by optimising a predefined

objective function. The human researcher is normally in charge of designing the algorithm and

setting its main learning hyperparameters according to external factors like the amount of data

available for training.

Below, we outline some popular machine learning algorithms in the literature that we use in

our work. A more complete overview of these and other machine learning algorithms can be

found in [13].

• K-Nearest Neighbours (KNN): This is a simple algorithm that calculates the distance

(usually Euclidean) between the feature vector of an unseen sample and those of train-

ing samples and classifies it using the majority vote of its k neighbours.

• Support Vector Machine (SVM): This algorithm works by estimating optimal decision

boundaries in the feature space. The shape of these boundaries is given by SVM kernels,

which could be of both linear and non-linear nature.
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• Decision Tree (DT): This algorithm iteratively splits training data into ramifying subsets

that land into one of the target classes. The splitting is done strategically, taking into

account the most relevant features to separate classes.

• Random Forest (RF): This is a set of randomly-initialised trained DTs that classifies unseen

samples by the majority vote of these DTs.

• Logistic Regression (LR): This algorithm is trained to predict the probability of an event,

usually of binary nature, by fitting input data to a logit function via regression.

• Extreme Gradient Boost (XGB): This is an ensemble learning algorithm, i.e., a model

made of several machine learning algorithms called base estimators, that usually makes

more robust classification decisions when given a high amount of training data. It works

under the assumption that the combination of enough weak and average classifiers can

give rise to a single robust classifier.

2.1.2 Data-Driven Digital Signal Processing

As discussed earlier, heuristic DSP had two defining characteristics. On the one hand, the human

researcher was the main subject carrying out the task. On the other hand, the human researcher

had more agency on the task than the employed machines, usually making the most important

decisions maybe also for a more prolonged time than machines.

Data-Driven DSP is a form of non-heuristic DSP that shifts the focus to the machine learn-

ing algorithms, being the main subject doing the task and making the most important deci-

sions to achieve optimal results. Here the algorithms, instead of being informed by the human

researcher’s experience and intuitions on how to solve the task efficiently by observing data, are

informed by the data itself. This means that the data-driven algorithms themselves are the ones

to observe data and distil the relevant information that is necessary to solve the task.

The most popular and historically effective type of data-driven algorithms are Artificial Neu-

ral Networks (ANNs), in particular Deep Neural Networks (DNN). These algorithms are able to

learn and extract meaningful compressed features from data that are generally better-performing
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Figure 2.6: Network graph of a perceptron with D input neurons and C output neu-
rons. Source: Stutz, 2017 [15]

than features extracted heuristically (see 2.1.1.2), and therefore perform better than heuristic

approaches on a regular basis if certain prerequisites like the sufficient amount of training data

are met.

Below, we provide a comprehensive summary of the building blocks of neural networks,

their dynamics, and the types that have been most successful over the years and that we employ

in our thesis.

2.1.2.1 Introduction to Deep Neural Networks

The historical predecessor of deep neural networks was the perceptron algorithm, originally

invented in 1958 [14]. This network consisted of D input neurons, corresponding to the input

features, and C output neurons, corresponding to the labels. The neurons belonging to the input

layer are all connected to those belonging to the output layer while the neurons inside these

individual layers are not connected to each other. This is known as a Fully-Connected (FC)

scheme. As the algorithm only learns a mapping between input features and output labels with-

out calculating any intermediate representations, the perceptron is still considered a heuristic,

non-data-driven algorithm. An illustration of the algorithm’s architecture is given in Figure 2.6.

Later advances in neural network research gave rise to the Multi-Layer Perceptron (MLP)

[16], which was the first DNN that was capable of learning representations in a data-driven way.
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Figure 2.7: Network graph of an MLP with (L+ 1) layers. Source: Stutz, 2017 [15]

The MLP architecture and dynamics are exactly the same as the perceptron ones except that the

MLP has a layer of neurons between the input and the output layers, called the hidden layer,

that learns intermediate features and adds complexity to the resulting mapping function between

inputs and outputs. Figure 2.7 schematises this type of network.

DNNs like MLPs are usually composed of the following basic elements:

• Input Layer: This is the first layer of the DNN, which stores the input features for the

mapping process, each in one neuron.

• Output Layer: This is the last layer of the DNN, which stores the output layers for the

mapping process, each in one neuron.

• Hidden Layers: These are the intermediate layers of the DNN, between the input and

the output layers, and they store intermediate features that are learnt during the mapping

process. The more hidden layers that a DNN has, the more complex the mapping will

generally be.

• Weight Matrices: These are the “synapses” of the neural network, as they connect all the

neurons in the layers sequentially via matrix multiplication. These matrices are multiplied

by the values stored in the neurons of the previous layer so as to give the values that will
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be stored in the next layer. The values in the weight matrices are updated in each learning

iteration of the DNN so to optimise the mapping between input features and output labels.

• Biases: These are numerical constants that are added to each of the multiplications between

layers and weight matrices, acting as an intercept point. They provide stability to the cal-

culations, with their primary use being that of making sure that the calculated values for

the next layer fall into the effective region of the activation function, which will be subse-

quently applied.

• Activation Function: These are generally non-linear functions (e.g. a sigmoid function)

that are applied to the values calculated by multiplying the weight matrices by the previous

network layer and adding the bias term. These functions add complexity to the mapping

function that the networks calculate by introducing non-linearities.

• Objective Function: This is the function that the neural network is trying to optimise. In

this way, the algorithm could, for example, learn a mapping between inputs and outputs

that minimises a certain classification error metric (i.e. maximises classification accuracy).

These building blocks are common for all types of DNNs, whose structure and dynamics

have been developed over the years giving rise to different types of DNN architectures and

learning dynamics. In the next sections, we will give an overview of the learning strategies that

DNNs can follow, we will explain their training dynamics with some common regularisation

techniques, and detail the functioning and use cases of some of the most popular types of neural

networks that we will be using in our thesis.

2.1.2.2 Learning Strategies

Given factors like the amount of data, the availability of labels, and the nature of the task at

hand, different learning strategies for DNNs might be more appropriate. In this way, there are

three main learning strategies that neural networks can follow: supervised learning, unsupervised

learning, and reinforcement learning. These learning strategies also apply to other model types

different than DNN like the machine learning algorithms in Section 2.1.1.3.
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Supervised learning is the set of learning techniques that allow a certain machine learning

algorithm to fit the objective function using labelled data. In this way, the labels (classes) that

the data points have attached to them guide the algorithm in its goal of optimising the objective

function and getting, for instance, optimal classification accuracies. The labels attached to data

points could be of a categorical nature (e.g. kick drum vs. snare drum), where a classification

algorithm is applied, or of quantitative nature (e.g. fundamental frequency), where a regression

algorithm is used.

Conversely, the techniques that belong to unsupervised learning are the ones that do not

have access to labelled data. Such strategies, like data clustering, make use of distance and/or

similarity metrics to organise data points into subsets based on their resemblance to each other.

These subsets can be seen as potential labels of some kind, although their relevance to the task

at hand is not always guaranteed. For instance, an unsupervised clustering algorithm can end

up segregating snare drum samples according to their brightness, duration, brand, recording

setting... etc depending on the information contained in the feature vectors.

Lastly, reinforcement learning comprises a relatively new set of techniques that, although

resemblant to supervised learning in a way, is fundamentally different to supervised and unsu-

pervised learning. In reinforcement learning, algorithms learn to react to an environment with

a single or few implicit goals on their own. For instance, a reinforcement learning algorithm

can learn to play an arcade videogame in a trial-and-error way, recognising when the agent is

failing and updating itself to avoid failure in future trials. This way, a major difference between

reinforcement and supervised learning is that the former has implicit goals encoded in the envi-

ronment it is reacting to while the latter’s goals are made explicit via labelling.

2.1.2.3 Training Methodology

To describe the usual training methodology of neural networks, we will take the case of a super-

vised MLP classifier, although the process is practically identical to the cases of unsupervised

and reinforcement learning.

Data Normalisation
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It is good practice in deep learning to normalise input feature vectors before feeding them to

the network. These routines ultimately help the algorithm with the process of learning, making

it more smooth and less prone to unsuccessful learning.

Depending on the task, the type of network, and the type of weight initialisation routine (see

below), one could apply different data normalisation techniques. The two most extended ones

are normalisation between 0 and 1 and standardisation (or z-score), where the data would end

up having an arithmetic mean of 0 and a standard deviation of 1. Normalisation between 0 and

1 is achieved by subtracting the minimum value from the feature vectors and dividing the result

by the difference between the maximum and the minimum value, while standardisation is done

by subtracting the mean value from the data and dividing the result by its standard deviation.

Hyperparameter Definition

In general, neural networks have associated with them a set of hyperparameters that dictate

the dynamics of the learning process. These hyperparameters usually have to be set manually by

the researcher based on experience and intuitions about the optimal way to solve the task.

Some of the most relevant hyperparameters for the MLP are the number of hidden layers,

the number of neurons in each hidden layer, the number of iterations or epochs dedicated for

training, batch size per iteration, and the learning rate, which regulates the speed at which the

MLP will learn in each iteration. This hyperparameter is of special relevance as, depending on

external factors like the amount of input data, the representativeness of this input data for all

labels, and the complexity of the problem, one might set the learning rate accordingly so that the

MLP is able to learn an appropriate mapping between input features and labels.

Weight Initialisation

Several initialisation routines for the weight matrices have been proposed over the years and,

like data normalisation, their aim is to smooth the learning process ensuring that the algorithm

optimises the objective function correctly.

Weight initialisation is carried out by generating random numbers under a specific proba-
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bility distribution. Popular random weight initialisation techniques include the random normal

initialisation (weights are initialised by sampling from a normal distribution), the random uni-

form initialisation, the Xavier initialisation [17], and the He initialisation [18]. The choice of one

initialisation technique over another is highly impacted by the external setting like the nature of

the distribution of input features and by algorithmic design elements like the chosen activation

function [19].

Forward Propagation

The network dynamics start with a process known as forward propagation or forward pass.

Here, the input neurons are multiplied by their respective weight matrices, added their respective

bias term, and applied the activation function so as to give the values inside the neurons of the

first hidden layer. Then, the neurons in this first hidden layer are multiplied by their respective

weight matrices, added their respective bias term, and applied the activation function so as to

give the values inside the neurons of the second hidden layer. And so on until we get the values

in the output layer, which will be the predictions of the current network’s iteration.

For instance, for a 1-hidden-layer neural network, the calculations relative to the forward

pass can be expressed in the following manner:

Z2 = X ·W1 +B1

H2 = σ (Z2)

Z3 = H2 ·W2 +B2

Ŷ = σ (Z3)

(2.4)

where X is the input feature vector, Wn are the weight matrices relative to the nth layer (1

= input layer, 2 = hidden layer, and 3 = output layer), Zn are the non-activated neuron values,

Hn are the activated neuron values (hidden states), σ is the activation function, and Ŷ are the

activated neuron values in the output layer (predictions).

Error calculation
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After the forward pass, we obtain the prediction values for the current data point and iteration.

In the first forward pass, these values generally will not be close to the target labels (e.g. 0 if the

data point is relative to a snare drum and 1 if it is relative to a kick drum). Hence, in order to

correct the values of the weight matrices so that the predictions is closer to the targets in the next

forward pass, we first need to calculate the error between the target values Y and the predicted

values Ŷ .

There are several error metrics available whose appropriateness depends largely on the task

at hand. For instance, in our case (supervised classification), we could use the cross-entropy

error function [20], which is given by the expression (−Y · log(Ŷ )− (1− Y ) · log(1− Ŷ )).

Backward Propagation

Once the error is calculated, the backward pass is initialised. This is the most important

process of the learning algorithms in DNNs, as it updates the values of the weight matrices

through an algorithm called backpropagation [21]. Following this update, the network weights

are tuned to maximise the possibility that the next forward pass would output prediction values

that are closer to the target ones than the ones derived from the previous forward pass.

In our example above of a 1-hidden-layer neural network, the calculations relative to the

backward pass through the backpropagation algorithm are expressed in the following way:

∂W1 =
∂E

∂W2
=

∂E

∂Ŷ
· ∂Ŷ

∂Z3
· ∂Z3

∂W2

∂W2 =
∂E

∂W1
=

∂E

∂Ŷ
· ∂Ŷ

∂Z3
· ∂Z3

∂H
· ∂H
∂Z2

· ∂Z2

∂W1

(2.5)

where E is the error function, and ∂ denotes a partial derivative. If we calculate these partial

derivatives using the expressions of the forward propagation phase (e.q. 2.4), we obtain the

following simplified expressions:
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∂W1 = HT ·
(
(Ŷ − Y ) · σ′ (Z3)

)
∂W2 = XT ·

(
(Ŷ − Y ) · σ′ (Z3) ·W T

2 · σ′ (Z2)
) (2.6)

where the ′ sign denotes the derivative of the function, the T sign means a transposing oper-

ation, and Ŷ are the output predictions from the forward pass. These matrices can be then used

to update the weight matrices in the following way:

W up
1 = W1 − λ · ∂W1

W up
2 = W2 − λ · ∂W2

(2.7)

where λ is the learning rate hyperparameter and W up
n are the updated weight matrices that

would be used in the following forward pass.

In this way, all in all, the learning process of the neural network is a succession of forward

propagations, error calculations, and backward propagations that ideally converge in an optimal

solution for the task at hand.

Train, Validation, and Test Subsets

In machine learning, the dataset to be modelled is usually divided into the train and the test

subsets. In this manner, the former would be used for training the algorithm and the latter would

be used to evaluate its predictions in an “unseen” portion of the original dataset, from which the

final results are derived.

In deep learning, however, it is best practice to include yet another subset for successfully

training the algorithm: the validation (or development) set. The goal of this validation subset

is to monitor the training performance and dynamics of the neural network using unseen data.

In this way, if the network is performing well on the training set and poorly on the validation

set, it might indicate issues with the generalisation abilities, usually due to overfitting on the

training dataset. Some regularisation techniques like early stopping (below) take advantage of
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the predictions in the validation set to control the network’s learning routines and stop training

when the risk of overfitting is high enough.

Regularisation Techniques

The goal of regularisation in DNNs is to minimise the chances of overfitting during the

training phase. Overfitting occurs when the mapping function is excessively complex and fits

the training data excessively well so that the final algorithm is significantly less accurate when

predicting unseen samples. In other words, if an algorithm overfits on its training dataset, its

generalisation power decreases sharply. Although the chances of overfitting might have to do

with the amount and quality of data as well, they mostly attend to factors related to the DNN

design like, for instance, the number of trainable parameters (e.g. weights) that it has.

In this way, regularisation techniques are applied to minimise the chances of overfitting the

training set. Some of the most popular regularisation strategies which we used in our thesis are:

• Data augmentation: This process consists in augmenting the size of the training subset by

applying realistic transformations. For instance, a kick drum sample could be pitch-shifted

within a range so that the transformed sample sounds realistic enough and incorporate it

into the training set. Augmenting the size of the training set is vital in low-data regimes, as

neural networks need very high amounts of data to generalise properly to unseen samples.

Other common transformations for data augmentation in audio signal processing include

time stretching and noise addition among others.

• Early stopping: This routine monitors the training and validation errors in the learning

process and stops the training of the network if the validation error has not decreased

for a certain number of training epochs. This simple heuristic is a very widely-adopted

technique to avoid overfitting, specifically when the validation error starts rising.

• Dropout: This technique consists of the temporary turn-off of random network weights

(by setting them to zero) during each of the forward propagation passes. In this way, the

network weights are forced to be informative enough by themselves so that, if some of
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the remaining weights are set to zero, the network can still perform forward propagation

passes without losing a significant amount of accuracy. When these weights are set to their

usual value when evaluating the model, it is usually found that the models can achieve

better accuracies and generalise better due to this restricted access to their own weights

during training time.

• Batch normalisation: This technique consists in normalising the layers’ inputs in the net-

work via standardisation. This usually makes the networks converge faster to an optimal

mapping and also makes the training process more stable (i.e. training and validation

errors gradually decreasing at the same pace).

2.1.2.4 Other Types of Neural Networks

Apart from the MLP, which is arguably the simplest form of DNN, there exist several more

families of DNNs that are widely used in deep learning literature, including the present thesis. In

this last section of the theoretical review, we will introduce the main families of neural networks

that we use in our thesis: Convolutional Neural Networks (CNNs), Recurrent Neural Networks

(RNNs), Convolutional Recurrent Neural Networks (CRNNs), several types of Autoencoders

(AEs), Siamese Networks (SNs), and Triplet Networks (TNs).

Convolutional Neural Network (CNN)

CNNs [22] are feed-forward DNNs composed of convolutional layers. The neurons in these

layers compose a set of small local filter kernels to analyse the input, creating several feature

maps as a result. An example of a two-dimensional convolutional operation is illustrated in

Figure 2.8 A convolutional layer is usually followed by another convolutional layer, by a pooling

layer, which subsamples these resulting feature maps following a certain set of rules, or by a

fully-connected layer like the ones in the MLP. The main reason behind the use of CNNs for

audio analysis is that they can effectively recognise spatial patterns in magnitude spectrograms

that are informative to the classification task.

Recurrent Neural Network (RNN)
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Figure 2.8: Illustration of a two-dimensional convolution operation on an input
matrix I and a sliding kernel W with learnable weights.
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Figure 2.9: Diagram of a rolled (left) and unrolled (right) RNN, with x being the

input feature vector, A being the recurrent cell, h being the hidden state,
and t the time step.

The functioning of an RNN, in contrast with CNNs, is dependent on the information acquired

from past inputs, allowing these networks to model complex data sequences in a non-linear way.

An illustration of the recurrent structure in RNNs is given in Figure 2.9. When spectrograms are

fed to RNNs, these networks can detect and model changes in time by contrasting observations

from current frames with information from previous ones, which are especially useful in tasks

like musical onset detection.

The training of RNNs is challenging due to inherent problems like the exploding/vanishing

gradient, which states that big gradients that grow over training iterations can make the model

unable to learn. In order to solve this problem and allow the networks to better handle depen-

dencies in time, special memory cells for RNN have been proposed in recent years, one of them

being the Long Short-Term Memory (LSTM) unit [23]. This memory cell introduced a cell state

complementing the original hidden state of RNNs, which effectively stores information longer
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Figure 2.10: Diagram of an LSTM cell, with c being the cell state, h the hidden
state, Tanh the hyperbolic tangent activation function, σ the sigmoid
activation function, and t the time step.

in time while keeping training gradients numerically stable. A diagram of an LSTM unit is

provided in Figure 2.10.

Autoencoder (AE)

A deep autoencoder (AE) is a type of DNN that tries to learn embeddings by reconstructing

(replicating) the values of an input feature vector while compressing its information by pass-

ing data through a bottleneck of lower dimensionality [24]. The bottleneck or latent space is

also known as embedding, which we use extensively in this thesis and essentially means a com-

pressed representation of an input one. AEs are, therefore, DNN-based dimensionality reduction

algorithms, which we illustrate in Figure 2.11. Apart from the regular fully-connected AE, it has

also been proposed variants of the model with convolutional and recurrent layers that are widely

used for representation learning.

There have been several proposed variances of the original AE with fully-connected layers.

Some of the most impactful ones include the Variational Autoencoder (VAE) [25], which is a

generative model whose embeddings are sampled from a probability distribution (see Figure

2.12) and the Conditional Autoencoder [26], which takes label information to inform the model
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nth index, µ the vector containing the mean values of the probability
distribution, and σ the vector containing its standard deviations.

while learning representations.
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Siamese Network (SN)

SNs [27] are DNNs that learn features (embeddings) that maximise separability between

samples from a different class and minimise separability between samples of the same class by

optimising a special type of objective function called the contrastive loss. This is, therefore, a

form of distance metric learning method and not a classifier per se. SNs are especially useful

in one-shot and few-shot learning tasks, where there are one or just a few samples per class

respectively [28].

Triplet Network (TN)

Similarly to SNs, TNs [29] are DNNs that use another special type of loss called the triplet

loss to make learnt embeddings that maximise separability between classes via the triplet loss.

The triplet loss is a more sophisticated version of the contrastive loss and works by forming

random data triplets with data samples: an anchor, a positive and a negative sample. The anchor

and the positive samples are of the same class while the negative is not, and the goal of the

algorithm is to minimise the distance (usually Euclidean) between the embeddings from the

anchor and the positive samples while maximising the distance between the embeddings from

the anchor and the negative samples.

2.2 Literature Review

In this second main section of the chapter, we provide a literature review of the most relevant

past work for our thesis. We selected both the studies that we thought are most likely to inform

our approaches in the thesis and also some of the most important works in the fields, even if they

would end up having a limited impact on the development of our studies. We think that these

studies, while not being used enough in our thesis, are still likely to have an impact on future

directions of QVP, and thus are worth mentioning.

We dedicate a full section to the past literature related to vocal percussion transcription,

another section to drum sample retrieval by vocalisation, and another one to related topics, which
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include musical onset detection, automatic drum transcription, query by vocal imitation, sound

event detection, and phoneme recognition.

2.2.1 Vocal Percussion Transcription (VPT)

Vocal Percussion Transcription (VPT) is a subfield in MIR that aims at both the detection and the

classification of vocal percussion sound events. These vocal percussion sounds generally occur

in improvised musical performances (e.g. beatbox) and, given that the sounds are produced with

the vocal apparatus, these performances are usually monophonic in nature, meaning that no two

vocal percussion sound events can occur at the same time.

2.2.1.1 Methodology

As discussed in the introduction chapter (see 1.1), in this thesis we will pursue the onset-wise

separation strategy when approaching VPT, as it is one of the most successful approaches not

only in VPT, but also in similar fields like sound event detection [12]. This strategy consists of

two tasks that are performed one after the other: sound onset detection and classification.

Sound onset detection algorithms usually work by (i) extracting input representations from

the vocal percussion sound’s waveform in a frame-wise manner, (ii) calculating an activation

function (sometimes called novelty function in the literature) with the input representations as

variables, (iii) postprocessing the resulting activation function (e.g. applying a low-pass fil-

ter to remove noise), and (iv) identifying the local maxima in the activation function through

pick-picking functions. These input representations can be either engineered audio descriptors

(heuristic onset detection) or a spectral frame like the FFT (data-driven onset detection). Simi-

larly, the activation function could be calculated by combining the input audio descriptors’ val-

ues (heuristic onset detection) or through the training of an end-to-end deep learning algorithm

(data-driven onset detection). The most popular metric to evaluate onset detection tasks, and the

one we will use in our thesis, is the F1-score [30].

After the onset of the vocal percussion sounds is predicted, the actual content of the sounds is

assumed to be within the regions in between the onsets. These regions are extracted and analysed
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separately so that the classification process can take place. Sound classification algorithms usu-

ally work by (i) extracting input representations from the vocal percussion sound’s waveform in

a frame-wise manner from the onset time to an arbitrary point ahead, and (ii) training a machine

learning classifier with such representations. These input representations could be descriptors

aggregated over time using statistical functionals (heuristic classification) or a time-frequency

spectral representation like the Mel spectrogram (data-driven classification). The most popular

metric to evaluate classification tasks, and the one we will use in our thesis, is the accuracy [31].

2.2.1.2 Past Work

Until the starting date of the thesis, most (if not all) of the systems that used vocal percussion

sounds to query drum sounds were mostly focused on beatboxing and they used heuristic feature

extraction [32] and traditional machine learning methods [33] to train and evaluate classifiers. In

the following paragraphs, we will detail the most relevant methodological aspects and conclu-

sions from each of these studies, dedicating one paragraph to each of them.

Kapur et al. [34] recorded a dataset of 75 beatboxing sounds and studied the efficacy of

different audio features and feature sets when classifying such sounds into a kick drum, snare

drum, and hi-hat. The authors tried several time-domain features like the ZCR, the waveform

energy via the Root Mean Square (RMS); some spectral features like MFCCs, centroid, roll-

off, and flux; and some other features like Linear Predictive Coefficients (LPC) and wavelet

coefficients. The zero-crossing rate achieved the best performance on its own (97.3% accuracy)

as input to a neural network classifier. The authors also performed rhythm analysis via the Beat

Histogram on drum loops using the Discrete Wavelet Transform (DTW) to measure tempo (main

peak of DTW) and extract several heuristic features. Results suggested that the average tempo

information is an important feature to distinguish between drum loops pertaining to different

music genres. They output two systems from this work: the Bionic BeatBoxing Voice Processor

and the Musescape tools, the former being a VPT system and the latter being a browsing device

for drum and beatboxing loops.

Nakano et al. [35] recorded 200 utterances of vocal percussion patterns containing kick drum
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and snare drum vocal percussion sounds and built a retrieval system based on pattern matching.

The system comprised several modules including an MFCC extractor, an acoustic model based

on a phoneme-level Hidden Markov Model (HMM) that used an onomatopoeic pronunciation

dictionary, and a Viterbi algorithm, and a cosine similarity calculator of Inter-Onset Interval vec-

tors. The onomatopoeic dictionary consisted of several expressions that could be composed of

consonants, vowels, choked sounds, syllabic nasals, and long vowels. They reported an accuracy

of 91.0% for drum pattern retrieval using user-based acoustic models and the vocal percussion

pronunciation dictionaries. This work was later used to develop a percussion instrument notation

interface called Voice Drummer [36]. The system had three main modes: practice/adaptation,

where the user records an imitation of one of eight possible practice drum patterns to also update;

notation, where the user performs drum patterns vocally and are analysed and played by the sys-

tem; and arrangement mode, where the user performs a vocal percussion accompaniment for a

melodic backing track.

In a later study, Hazan [37] conducted experiments on VPT in a similar way as Kapur et

al. using an energy-based onset detection algorithm and extracting several temporal and spectral

features from vocal percussion sounds for classification. They explored the effectiveness of two

kinds of classifiers: a KNN algorithm and a C4.5 decision tree. They also evaluated the latter

by itself, with boosting, and with bagging. The author reports a cross-validation classification

accuracy of 89.3% in his dataset (62 samples in the evaluation set) using C4.5 decision trees with

bagging. They found especially helpful sound envelope descriptors like the attack duration and

decay durations, time-domain descriptors like the ZCR, and spectral descriptors like the kurtosis

(fourth spectral moment), and the second and fourth MFCC.

Sinyor et al. [38] were the first to explicitly include amateur vocal percussion sounds in the

evaluation dataset, which were ensured to mimic beatboxing technique and sound qualitatively

similar to the rest of the same-class sounds. When recording their dataset, they found that users

generally imitated kick drums using the phoneme /p/, the closed hi-hat using /t/, and the open

hi-hat using /s/, with the snare samples displaying more variance regarding their phonetic rep-

resentation (/p/, /ps/, and /k/). The authors did not apply any onset detector algorithm like the
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study above but segmented the vocal percussion samples manually. They also applied feature

selection routines using genetic algorithms so to reduce the dimensionality of the feature set,

which showed a significant performance improvement for some classifiers. They reported an

accuracy of 95.6% using an AdaBoost algorithm along with C4.5 decision trees in their dataset.

Stowell et al. [39] conducted a study on real-time beatbox sound separability between kick

drum, snare drum, and hi-hat in a beatboxing context. They extracted several audio heuristic

descriptors [32] to build feature vectors for each vocal percussion sound and used the Kullback-

Liebler divergence as an inter-class distance measure. They observed that one could obtain

higher classification accuracies by delaying the start of the analysis frame 23 milliseconds from

the onset time, noticing that some of the separability sub-tasks (e.g. kick vs. snare) showed

peak performance at significantly higher delays than others. They also tried feature stacking and

feature selection with no significant improvement in separability scores. Lastly, they run a user

study based on a MUSHRA type of test [40] where participants evaluated the unpleasantness

of onset delays in drum performances in both isolated and musical contexts. They found that a

delay of 12 to 35 ms was consistently described as having either excellent or good audio quality,

while delays larger than 35 ms were usually described as having bad audio quality.

Hipke et al. [41] developed their own system called BeatBox that performed VPT in a user-

based fashion, meaning that the algorithm was trained and evaluated on data coming from single

users, usually of a few samples per drum class. They fed a total of 8 heuristic features (mean,

standard deviation, minimum, and maximum of the spectral centroid and RMS) to a K-Nearest

Neighbours (KNN) classifier with the Euclidean distance as the metric. The users of the BeatBox

system are able to record the number of samples per instrument that they desire at any time and

remove the badly-recorded ones so as to interactively update the algorithm. The users are also

able to visualise the current classifier reliability by seeing to which class the algorithm assigns

each of the recorded samples independently of the drum type that it was recorded for in the

first place. They finally conducted an observational study where several participants trained

and interacted with the model’s graphical user interface. According to the authors, participants

leaned on the classifier reliability feedback and the disabling of classification labels so as to
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simplify the problem if such labels were not going to be used in their prompts.

Picart et al. [42] attempted the classification of beatbox performances using a Hidden Markov

Model (HMM). The authors recorded a dataset of 1,835 vocal percussion sounds from two beat-

boxers, which included kick drums, snare drums, rimshots, hi-hats, and cymbals. They used

the spectral flux descriptor for onset detection and several audio features for classification like

MFCCs (with first and second derivatives) and LPCs among others. They also used other per-

formance metrics apart from the usual accuracy one including the number of substitutions, dele-

tions, and insertions, which were later used to calculate the error rate. The authors reported an

accuracy of 93% when classifying the five different classes of vocal percussion sounds.

Ramires [31] employed a similar strategy to Hipke et al. for amateur vocal percussion clas-

sification, as they also fed several heuristic features to a K-Nearest Neighbours (KNN) classifier

operating in a user-based way. The author recorded a dataset of 841 vocal percussion sound from

20 different participants with different levels of skill using three different recording microphones

(PC, AKG, and iPad) and three different types of imitated drum instruments (kick, snare, and

hi-hat). This dataset is publicly available and we use it under the name of Live Vocalised Tran-

scription (LVT) dataset (see 3.1.1), referencing the name of the system that was later derived

from the study [43]. As his approach is user-based, they reported several transcription F1-scores

(onset detection + classification) for different users. He also reported that the best onset detec-

tion algorithm for his particular dataset was one based on the High-Frequency Content (HFC)

descriptor and that, for certain users, only one feature was sufficient when separating the classes

to obtain a perfect classification score.

2.2.2 Drum Sample Retrieval by Vocalisation

Drum Sample Retrieval by Vocalisation (DSRV) is another subfield of MIR that is concerned

with finding appropriate sets of audio features that best link drum samples with their vocal imi-

tations. DSRV has been implicitly studied in the past through the field Query by Vocal Imitation

(QVI), as drum samples were often part of the evaluation datasets. As seen in the introduction

chapter (see 1.2), the primary application of DSRV in music production is to assist drum sample
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search engines.

2.2.2.1 Methodology

As in a standard similarity estimation task, DSRV works by (i) extracting input representations

from the vocal percussion and drum sounds in a frame-wise manner from the onset time to

an arbitrary point ahead, and (ii) estimating similarity between vocal percussion sounds and

drum samples using a predefined similarity metric. This similarity metric could be of different

nature (distance-based, correlation-based...) and it is generally fixed when estimating similarity,

although recent methods are applying metric learning strategies that outperform fixed similarity

metrics when enough drum-imitation pairs are provided for training. The most popular metric

to evaluate classification tasks, and one of the metrics that we will use in our thesis, is the Mean

Reciprocal Rank (MRR) [44].

2.2.2.2 Past Work

Although the field of QVI has extensive research on it, DSRV had only one published paper at

the time of this thesis’s beginning [45] and another one to be published in the following year

[46]. Here we detail both of these papers and will leave the topic of QVI to Section 2.2.3.3 as a

related field.

To the best of our knowledge, the first study that approached the topic of DSRV exclu-

sively was that of Mehrabi et al. [45], where authors implemented a Convolutional Autoencoder

(CAE) model to extract embeddings (learnt feature sets) that can predict human listeners’ drum-

imitation similarity scores. Therefore, instead of investigating the correspondence of variations

in the acoustic space of drum sounds with those in the acoustic space of vocal imitations like in

typical DSRV and QVI tasks, this study investigated the correspondence of variations in these

two spaces and with those of several listeners’ drum-imitation similarity ratings. This way, the

evaluation metrics used throughout the thesis and some methodological aspects like the calcula-

tion of psychoacoustically-inspired input representations had a more marked perceptual nature

than typical QVI tasks.



Chapter 2. Background 44

The authors used a dataset of thousands of vocal percussion sounds and generic vocal imita-

tions as well as drum samples to train the convolutional autoencoder models. Then, they recorded

a small dataset, which we refer to as the Mehrabi Drum Vocalisations (MDV) dataset, consist-

ing of 30 drum sounds and their respective vocal imitations performed by 14 participants. They

also performed a user study that gathered perceptual similarity ratings from 63 listeners between

drum samples and imitations from the MDV dataset using a MUSHRA test. They used these

similarity ratings as the ground truth for the experiments. They evaluated several network archi-

tectures using the MDV dataset and the perceptual similarity ratings as labels via two metrics:

the Akaike Information Criterion (AIC) of a Linear Mixed-Effects Regression model (LMER)

and the percentage of imitated sounds for which the fitted slope in a regular linear regression is

significantly below 0 (under the 95% confidence interval), which they refer to as the “accuracy”

metric.

Results from this study suggest that CAE models are better equipped than baselines like

MFCCs to learn meaningful features from drum samples and vocal imitations even in a com-

pletely unsupervised way. The best scores were obtained using a CAE model with a wide kernel

on the first and the last convolutional layers.

The same authors extended this work in a follow-up journal article elaborating on obser-

vations on the task and the main results from their previous experiment [46]. Their goal with

this paper extension, in their own words, was to “establish whether musicians could effectively

imitate percussion sounds such that listeners would consider the imitations more similar to the

imitated sound than to other same–category sounds.” They derived the following list of main

observations, some of which we take into account for our own thesis decisions in DSRV:

• It was difficult for some listeners to reproduce their own similarity scores for certain drum-

imitation pairs.

• Imitators tended to focus on the sounds’ envelope when imitating same-instrument sounds.

• Participants found both the imitation and listening tasks significantly difficult, probably

due to the fact that some of the same–category sounds were very similar.
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• There was considerable confusion between sounds when the imitators adopted similar

vocal techniques to imitate different sounds.

• 12 out of 63 listeners could not reproduce their own results to a reasonable enough degree

so to include them for evaluation.

• There was a moderate-to-strong agreement amongst the ratings for the listeners that could

reproduce their results well enough.

• 16 out of 30 drum sounds were overall considered as most similar to their original imita-

tions.

• Imitators used different techniques to imitate the same sounds and, thus, DSRV systems

may benefit from user-based approaches.

2.2.3 Related Fields

In this last section, we provide a review of the fields that we consider relevant for VPT and

DSRV. We have chosen these disciplines attending to the simliarities with QVP mostly in terms

of the type of data that they work with, but we also in terms of tooling and training/evaluation

methodology. With this criteria in mind, we chose fields of Musical Onset Detection (MOD),

Automatic Drum Transcription (ADT), Query by Vocal Imitation (QVI), Sound Event Detection

(SED), and Phoneme Recognition.

2.2.3.1 Musical Onset Detection

Musical Onset Detection (MOD) algorithms attempt at identifying the onset of musical sounds

in a certain audio recording and their methodologies can be of a heuristic and data-driven nature.

The usual concepts and methodological aspects to carry out the task of MOD are explained in

Section 2.2.1.1.

The first methods to approach MOD were based on the extraction heuristic audio descriptors

and thresholding routines to predict onsets in case the value of the threshold is exceeded for a

certain descriptor. Below, we list some of the most relevant audio descriptors and features that
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have been traditionally used for heuristic onset detection. A more complete review of these is

given in [47].

• Spectral Energy: the amount of spectral energy that is contained on the whole spectrum or

in specific energy bands. [48]

• High-Frequency Content (HFC): the summation of the bin magnitudes of the spectrum

multiplied by their own bin indices. [49]

• Spectral Flux: is a frame-wise measure of how quickly the magnitude in each frequency

bin of the spectrum changes over time. The sharper the change in a particular region, the

more probable a percussive onset is occurring there. [47]

• Kullback-Liebler divergence (KL): is a probabilistic measure of spectral distance between

the current and past frame [50]

• Modified Kullback-Liebler divergence (MKL): is a correction of the original KL diver-

gence measure that accounts exclusively for positive amplitude changes in frequency bins

and removes the original weighting that was done using the current frame’s norm. [51]

• Spectral Phase: instead of using the energy of frequency bins in the magnitude spectrum,

the phase [52] spectrum can also be used to detect onsets, in particular by measuring

the amount of phase instability in the signal. In this way, high phase instability would

correlate with the transient part of the sound while low phase instability would correlate

with its steady-state part.

• Complex Domain: combines the above phase information with the one contained in the

magnitude spectrum by detecting onsets directly in the complex domain. [53]

An important contribution to heuristic MOD is the SuperFlux method introduced by Böck et

al. [54]. This is an enhanced version of the spectral flux MOD algorithm that reduces the number

of false positives due to the vibrato (frequency modulation) and tremolo (amplitude modulation)

of musical instruments, which can sometimes confuse onset detectors. They achieved this apply-
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ing a trajectory-tracking algorithm with a maximum-filtered version of the input spectrogram.

Although the superflux holds state-of-the-art in heuristic onset detection, it is not as clear if it

would replicate this for vocal percussion sounds, as these usually do not display any vibratto nor

tremolo.

Later on, new data-driven MOD methods based on end-to-end artificial neural networks were

being proposed instead. The use of Bidirectional Recurrent Neural Networks (BRNN) [55] with

Long-Short Term Memory (LSTM) units [56] for MOD was first proposed by Eyben et al. in

[57]. The activations that these networks produced were computed using the log Mel spectro-

gram of frames as input calculated with a hop size of 10 ms. They fed two Mel spectrograms

to the BRNN, one of them computed with a frame size 23.2 ms and another one with a frame

size of 46.4 ms, allowing the network to have access to two different frequency and time reso-

lutions that help with the onset estimation of multiple musical instruments. BRNNs consistently

achieved better results than heuristic onset detectors in several datasets including pitched percus-

sive instruments, pitched non-percussive instruments, non-pitched percussive instruments, and

complex music mixes.

The idea of Eyben et al. above was later adapted to real-time processing by Böck et al.

in [58], some of which were authors of the previous paper. They changed its architecture to

a Recurrent Neural Network (RNN) [59] without LSTM memory units that took three types

of Bark-filtered spectrogram frames: one of them with frame size 23.2 ms, another one with

frame size of 46.4 ms, and an additional one with frame size of 92.8 ms. They also included

the derivatives of these Bark bins stacked in the final feature vector. As it was directed to real-

time regimes, which restricts the model to causal inference (no access to information after the

current frame), their RNN did not achieve state-of-the-art results in MOD when compared with

[57], although it came close to this result and also outperformed all the heuristic MOD methods

evaluated.

In a later study, some of the same authors of the previous work compared the performance

under an online (real-time) regime of their real-time RNN MOD system with those from several

MOD algorithms based on heuristic descriptors [30]. The RNN in [58], apart from proving to be
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more accurate than the rest of the heuristic methods, it also demonstrated its invariance to loud-

ness level differences of input data. In this way, while heuristc MOD methods lost accuracy as

the loudness level of input data dropped, the RNN’s performance remained stable, highlighting

this practical property of data-driven onset detectors.

Convolutional Neural Networks (CNN) [60] would be the ones to later inspire a CNN MOD

algorithm [61] that further improved the state of the art in musical onset detection. CNNs were

an especially popular algorithm in computer vision that achieved high accuracies when detecting

edges in images. The main idea behind their use for MOD is that CNNs can effectively detect

edges in the magnitude spectrograms as well, which usually correspond to audio onsets. They

fed as input representations three Mel spectrograms of 80 bands by 15 time steps computed with

a hop size of 10 ms and with frame sizes of 23.2, 46.4 ms, and 92.8 ms respectively. The authors

also implemented dropout-based regularisation, annotation fuzziness, and ReLU activation func-

tions in the CNN, which all demonstrated to improve its performance. It was also discovered

that the CNN, like spectral flux-based MOD techniques, computes spectral differences over time

and uses them to estimate the likelihood of an onset happening in a certain time region. CNNs

constitute the current state of the art in MOD.

Concerning MOD applied to vocal percussion sounds specifically, Hazan [37] used an energy-

based onset detection algorithm, Kim et al. [62] used the RNN onset detection method in [58],

and Ramires et al. [31] used an onset detection algorithm based on the High-Frequency Content

(HFC) in their respective studies. The latter HFC algorithm detected 96.7% of all vocal percus-

sion events in the LVT dataset without any false positives. Also, Picart et al. [42] studied the

performance of several heuristic onset detection methods on beatbox performance segmentation,

with the spectral flux method achieving the highest F1-score (0.922).

2.2.3.2 Automatic Drum Transcription

Automatic Drum Transcription (ADT) is a relatively old discipline in MIR that attempts to both

predict the onsets of drum sounds in a given audio recording and classify them into the correct

instrument class. Therefore, given the methodological resemblance with VPT, we believe that the
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findings that have been gathered in the past in ADT could inform the design of VPT algorithms

to a certain extent. Below, we provide a selection of the studies that we considered most relevant

for our work. A detailed review of ADT can be found in [63].

A pioneering study in heuristic ADT was included in the thesis of Schloss [64], where he

studied audio features relative to the transients of percussive sounds and developed a method-

ology for pitch estimation on these types of samples. Gouyon et al. [65] proposed the Zero-

Crossing Rate (ZCR) audio descriptor to classify kick and snare drums. The authors found the

decay part of the sounds especially discriminative between these two types of drum sounds.

Fitzgerald et al. conducted two subsequent studies [66] [67] in which they applied Indepen-

dent Subspace Analysis (ISA) and Prior Subspace Analysis (PSA) to drum sound classification

respectively. They found that prior knowledge about audio sources significantly improved results

when compared to the ISA approach.

Later on, Van Steelant et al. [68] applied Support Vector Machines (SVM) to the classifi-

cation of kick and snare drums. They used spectral and temporal descriptors to compute input

feature vectors, including the energy of three frequency bands via the Root Mean Square (RMS),

the ZCR, and spectral moments. They also found out that linear SVM kernels performed simi-

larly to Gaussian kernels, saving a significant amount of computation time. Paulus and Virtanen

[69] proposed an approach based on Non-negative Matrix Factorization (NMF) that achieved

better classification results than those relative to the PSA and the SVM approaches.

Paulus and Klapuri [70] tried an approach based on Hidden Markov Models (HMMs) to

transcribe drum sounds in polyphonic music. They preprocessed the signals via sinusoidal mod-

elling [71] to filter out harmonic components, extracted features relative to the signals’ MFCCs,

ran Linear Discriminant Analysis (LDA) to reduce the dimensionality of the feature vectors, and

fed these vectors to the HMM. They also post-processed data via Maximum Likelihood Linear

Regression (MLLR) and the Viterbi algorithm. Then, Kaliakatsos-Papakostas et al. [72] used

amplifiers and band-pass filters to transcribe drums in a real-time regime. In this way, if the

amplitude of the filtered signals crossed a certain heuristically-determined threshold, the relative

drum sound is predicted.
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One of the first studies proposing neural networks as a viable data-driven approach to ADT

was that of Gajhede et al. [73], who applied CNNs to the classification of a dataset of around

3,000 isolated samples pertaining to kick drum, snare drum, and hi-hat instruments. They used

Mel spectrograms as input and got the best results when using batch normalisation for regular-

isation. Then, Southall et al. [74] proposed a Bidirectional RNN (BRNN) for the transcription

of the kick drum, snare drum, and hi-hat, achieving state-of-the-art results in the IDMT-SMT-

Drums and ENST minus one datasets, widely used in ADT. They also created an open-source

web framework for ADT called ADTweb and a toolbox called ADTLib [75].

Vogl et al. [76] explored the use of several RNN models to predict kick drum, snare drum,

and hi-hat as well. They obtained the best results when using a delay of 25 ms when training,

similarly to the 23 ms delay in [77] for real-time beatbox transcription. In a later study [78],

the same authors evaluated their RNN model with delayed prediction against past approaches

and demonstrated its better performance in polyphonic ADT. In a subsequent study, Vogl et al.

[79] approached the task of multi-instrumental ADT, which included classes relative to other

percussive instruments usually featured in drum sets (cymbals, tambourines, cowbells...) and

also ramified some of the drum labels used in the past (e.g. opened and closed hi-hat as two

separate classes). They evaluated several models against the earlier one in [76] and demonstrated

that their proposed Convolutional RNN (CRNN) model obtained the best results. This CRNN

approach is able to take the surrounding context of the current frame into account to inform

predictions.

Choi and Cho [80] developed a novel unsupervised strategy for ADT based on a CRNN

model that takes advantage of unlabelled data for training, which is considered an important

bottleneck in ADT [63]. Their work was followed-up by Wang et al. [81], who implemented a

semi-supervised few-shot learning method that is also able to generalise predictions to unseen

drum instrument types. Lastly, the work of Ishizuka et al. [82] further advanced the state of

the art of supervised ADT by proposing an encoder-decoder architecture with a self-attention

mechanism.
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2.2.3.3 Query by Vocal Imitation

Research in Query by Vocal Imitation (QVI) has been very active over the last decade and it

was mainly characterised by investigations on (i) the nature of vocal imitations and the acoustic

relationship with their respective source sounds [46, 83, 84], (ii) the ability of humans to imi-

tate sounds and link imitations to their source sound [83, 85, 86], (iii) the usefulness of vocal

imitations for sound design [87, 88], (iv) their suitability as inputs for audio retrieval engines

[44, 89–92], and (v) their relative importance when compared to text information [92, 93].

All in all, insights from these studies in QVI suggest that humans are generally skilled

when performing and recognising vocal imitations of generic sounds, with most results point-

ing towards the high retrieval accuracy, speed, and usability of QVI systems when compared to

query-by-text ones. Recent implementations of QVI systems use deep representation learning

techniques to estimate the similarity between source sounds and vocal imitations through metric

learning, which significantly increases the retrieval accuracy of QVI systems [44, 45, 92, 94].

Regarding particular relevant studies, Blancas et al. [91] created a supervised QVI model

using heuristic features and a Support Vector Machine (SVM) classifier. They compared the

SVM’s performance to that of a Naı̈ve Bayes classifier and found that the SVM significantly

improved results: They also compared the performances of the SVM with 472 input features

and the same model with 31 selected features via a Correlation-based Feature Selection (CFS)

algorithm and found that selecting features this way meant a drastic improvement in accuracy

scores.

Zhang and Duan [95] trained a data-driven model based on a supervised Stacked Auto-

Encoder (SAE) architecture and an SVM that classified vocal imitations. They evaluated the

algorithm using the accuracy and the Mean Reciprocal Rank (MRR) metrics in various sound

categories including acoustic instruments, commercial synthesisers, everyday sounds, and sin-

gle synthesiser sounds. They compared the performance of features learnt using the SAE with

several extracted MFCCs and the former ouperformed the latter in every metric for all types of

sounds.
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The same authors of the earlier study, Zhang and Duan, proposed yet another deep learning-

based algorithm called IMISOUND [94] that operated in an unsupervised manner, using the

SAE above for feature extraction. Instead of using an SVM, the authors employed both the

Kullback-Leibler divergence and the Dynamic Time Warping distance to measure similarity

between embeddings. Results with these learnt features still excelled those calculated with

MFCCs and were similar to those from their earlier study in [95]. They also found that this

unsupervised system performed significantly worse than the earlier one in [95] when it came to

everyday sounds, which reached around half of the original accuracy.

Still the same authors, Zhang and Duan, later presented an end-to-end Siamese Networks

(SN) system of CNNs [96] that leveraged transfer and metric learning to measure similarity

between samples. They experimented with three types of SN models: a tied one, where the

two subnetworks of the SN shared exactly the same weights and biases in all layers; an untied

model, where the two towers did not share weights nor biases while sharing architecture; and

the partially tied model, where the weights and biases in the two towers are not shared for the

first half of convolutional layers, but are shared for the last half. The algorithm, called IMINET,

displayed a significant improvement over the earlier one, IMISOUND, when the probabilities

of the three types of models (tied, untied, and partially tied) were multiplied to make the final

decision.

A more advanced model that the system above was presented as TL-IMINET in [44]. While

the two convolutional subnetworks in the original IMINET model both took 72 CQT bins and

129 time frames with a hop size of 26.25 ms, the new TL-IMINET model used input represen-

tations of 39 Mel bands by 482 time frames as input for the subnetwork that analysed vocal

imitations and of 128 mel bands by 128 time frames for the subnetwork that analysed the sound

recordings to imitate. Therefore, domain knowledge of the optimal frequency and time resolu-

tion for sound recordings and their vocal imitations was applied to maximise performance. The

TL-IMINET model was shown to have slightly better results for most sound categories when its

probabilities were multiplied with the ones derived from the IMISOUND model.

This TL-IMINET model was further explored and interpreted in [97]. There, authors visu-
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alised the input patterns that maximise the activation of different neurons in each convolutional

subnetwork of the TL-IMINET model and visualised the imitation-sound input pairs that max-

imised the activation of different neurons in the layers relative to the fully-connected network that

joins the convolutional subnetworks for metric learning. The findings revealed how the model

learnt to conceptualise sounds and imitations and proved that performing transfer learning on the

TL-IMINET model helped to improve its performance.

Lastly, an interesting study on the appropriateness of vocal imitations for sound retrieval was

carried out by Kim et al. in [98]. They demonstrated that vocal imitation feedback in query-by-

example systems improves the retrieval performance by a statistically significant margin, while

exploring methods of how to combine multiple kinds of similarity estimation methods to achieve

this feedback.

2.2.3.4 Sound Event Detection

Sound Event Detection (SED) is concerned with both the detection and classification of generic

sound events of usually environmental nature. By this definition, SED could be considered

the parent field of both VPT and ADT, with its related successful algorithms being potentially

useful for VPT and vice versa. SED-related algorithms have also been traditionally divided

into heuristic and data-driven depending on the approach to solve the task. See [12] for a more

in-detail review of most of these algorithms and others.

Heuristic SED methods first extract audio features from audio and then feed these features

to a machine learning algorithm that detects and classifies sound events. Some of the most pop-

ular features to extract from audio signals for heuristic SED are the MFCCs with their first and

second derivatives [99], the FFT spectrogram [100], and the Mel spectrogram [101]. Regarding

algorithms, GMM-HMM models coupled with Viterbi algorithm for sequence decoding were

extensively used throughout the literature [99], as well as NMF-based approaches with regres-

sion algorithms [101].

Data-driven SED methods usually take the energies in the Log Mel spectrogram as input fea-

tures [102] and sometimes other complementary features like pitch and harmonic content [103].
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Architectures of neural networks include MLPs [104], BRNNs [105], CNNs [106], and Cap-

sule Neural Networks (CapsNets) [102], which are a type of biologically-inspired CNNs whose

layers are arranged so as to better model hierarchical relationships. CRNNs have also been fre-

quently used in SED [107, 108] More sophisticated hybrid network methodologies also emerged

in SED as a way to overcome limitations like the large amounts of strongly-labelled training

data. Some of the successful approaches in this front included three-dimensional CNNs that

modelled both Log Mel energies and information related to the Generalized Cross-Correlation

Phase Transform (GCC-PHAT) [109] and a CRNN-based Auxiliary Classifier Generative Adver-

sarial Network (AC-GAN) [110].

The results that these approaches output significantly favour data-driven approaches with

respect to heuristic ones. As an example of which, the evaluation of the heuristic algorithm

described in [101] using the development subset of the TUT-SED dataset gave a total error rate

of 69.5%, while the algorithm described in [102] gave a total error rate of 36.0% using the same

evaluation set.

2.2.3.5 Phoneme Recognition

Phonemes are the smallest sound units that can be perceptually distinguished by humans. As

there are significantly fewer phonemes than syllables and words in a certain language, some early

speech recognition systems attempted to retrieve phonetic information using acoustic features,

which was also known as acoustic-phonetic analysis [111].

This field gathered some insights about which acoustic features were useful for phoneme

recognition. Among others, studies mention several widely-used features in phoneme recog-

nition like the auto-correlation coefficients, fundamental frequency, energy, zero crossing rate,

spectral centroid, spectral bands and their derivatives, silences, and most prominent peak fre-

quency [112]. Also, apart from acoustic features, psychoacoustic features are also commonly

used in the field, which include information about pitch, duration, loudness, and timbre, also

known as voice quality in speech recognition [113]. These psychoacoustical features overlap

with prosodic (also known as suprasegmental) features of speech, which usually include accent,
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stress, rhythm, tone, pitch, and intonation [114].

Traditional and modern machine learning techniques include Hidden Markov Models (HMMs)

[115], naive Bayes classifiers [116], KNNs [117], Support Vector Machines (SVMs) [118], Deci-

sion Trees (DTs) [119], Random Forests (RFs) [120], and DNNs which, at the same time, include

connectionist networks [121], MLPs [122], RNN-LSTMs [123], and CNNs [124] among other

more complex and hybrid models like DNN-HMMs [125].

2.3 Summary

In this chapter, we provided both a theoretical review, necessary to understand basic concepts in

the thesis, and a literature review, necessary to give an appropriate sense of context to the thesis.

The first part of the theoretical review was dedicated to heuristic digital signal processing,

covering the basic concepts related to DSP, heuristic feature extraction, and traditional machine

learning. The second part was dedicated to data-driven digital signal processing, which cov-

ered the essential components of deep neural networks, their training dynamics, and their most

popular and effective types in literature.

The literature review was structured so that the first two sections provided extensive reviews

of VPT and DSRV respectively while the third section provided a synthesised review of five

related fields: musical onset detection, automatic drum transcription, query by vocal imitation,

sound event detection, and phoneme recognition.
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Chapter 3

Data

As we briefly discussed in the thesis’s introduction chapter, there exist some issues with data

scarcity in QVP that can potentially constitute a major problem when applying data-hungry

algorithms like neural networks. User-driven training sets relative to amateur vocal percussion

transcription often contain a few samples per user, and this is also the case for user-driven DSRV,

whose datasets normally contain a few reference sounds with a single associated vocal imitation

for each of them. Hence, we conducted a search for publicly available vocal percussion datasets

and also the curation of additional datasets for VPT and DSRV that can support existing datasets

when being fed to data-driven algorithms.

This chapter presents the datasets that are going to be used throughout the thesis for data-

driven QVP, some of them already available in literature and others to be crafted.

3.1 Publicly Available Datasets

Here, we first take a look at the datasets that were already published in literature at the start time

of the thesis. We included the datasets that could potentially allow VPT and DSRV algorithms

to be trained and evaluated with both heuristic and data-driven algorithms.

67
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3.1.1 Vocal Percussion Transcription

Early studies in VPT were usually carried out focusing on three classes of imitated sounds:

kick drum, snare drum, and hi-hat. In most cases, a vocal percussion dataset of a few hundred

examples was recorded for evaluation purposes, oriented to general rhythmic vocal percussion

[1–4] or just beatboxing [3, 5–8]. While most of these studies did not publish the data they

used in their experiments, two of them released the vocal percussion recordings and annotation

information they used in their studies.

The first one is the beatboxset1 (BTX) by Stowell et al. [8]. It gathers experienced beatboxers

to record 14 audio files (one per participant) with a mean duration of 47 seconds which resulted

in a total of 3,611 annotated vocal percussion sounds. Both typical drum sounds and beatbox-

specific ones were labelled, being the audio files recorded in several environmental conditions

(different microphones, equipment, noise levels...). The authors provide onset annotations and

eleven types of labels including kick drum (k), k-like snare (sk), b-like and p-like snare (sb),

other snares (s), closed hi-hat (hc), opened hi-hat (ho), breath sound (br), humming (m), speech

and singing (v), miscellaneous (x), and undefined (?).

The second one is the Live Vocalised Transcription (LVT) dataset by Ramires et al. [4]. It

contained 841 sounds from 20 amateur participants using three microphones with different noise

levels and sound qualities (condenser, laptop, and ipad microphones). It was recorded using the

“isolated samples” strategy (see section 1.1) with two files per participant being provided: one of

them containing the imitation of a simple drum loop and the other a free rhythmic improvisation.

The authors provide onset annotations and three types of labels including kick drum (Kick),

snare drum (Snare), and closed hi-hat (HH).

Although data-driven algorithms are especially data-hungry, 3,611 beatbox sounds are arguably

enough samples for neural networks to work with, provided that strong regularisation techniques

like data augmentation (see 2.1.2.3) take place during the training phase. However, it cannot be

said the same thing about the 841 sounds from the LVT dataset, especially if one of the goals is

to explore user-driven VPT systems for amateur vocal percussion. This insufficient amount of
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amateur vocal percussion sounds to feed data-driven algorithms inspired us to record the dataset

described in section 3.2.

3.1.2 Drum Sample Retrieval by Vocalisation

As with VPT, the vocal imitation data that was used in the majority of past DSRV studies was

not released. Still, there were two publicly available datasets of interest for this thesis, one of

them containing generic vocal imitations that included drum sounds and the other containing

drum vocal imitations.

The first of these datasets is the Vocal Imitation Set (VIS) by Kim et al. [9]. This was directed

to the vocal imitation of sound events in general, containing a total of 11,242 crowd-sourced imi-

tations from 302 different classes that included environmental, synthesised, and musical sources.

It featured imitations of several percussion instruments including 38 vocal imitations of a kick

drum sample, 48 of a snare drum sample, 52 of a hi-hat sample, and 33 of a crash cymbal sample.

The second dataset by Mehrabi et al. [10] contains 420 vocal imitations of several drum

sounds. We refer here to this the Mehrabi Drum Vocalisations (MDV) dataset. More specifi-

cally, 14 musicians were asked to imitate 30 percussion sounds, which included 6 kick drums, 6

snare drums, 6 hi-hats, 6 toms, and 6 cymbals. The recording was done using a condenser micro-

phone in an acoustically treated room. The dataset also included a collection of drum-imitation

similarity ratings from 63 human listeners.

The number of drum vocal imitations in the VIS dataset (171) is insufficient to train data-

driven DSRV systems. The imitations are also not suitable for the evaluation of DSRV systems,

as only four of the sounds provided are drum-specific single shots. Also, the reference drum

samples pertain to four different instrument classes (kick drum, snare drum, hi-hat, and crash

cymbal), which would not allow any within-class analysis and retrieval. While the MDV dataset

is also not suitable for training due to data scarcity, its structure based on drum-imitation pairs

allows it to be used as an evaluation dataset for DSRV. Not only does it contain enough refer-

ence drum samples for evaluation (30 sounds), but also includes 6 drum sounds from each of
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the 5 classes (kick drums, snare drums, hi-hats, toms, and cymbals), which permits evaluation

on within-class imitations. Also, the imitations provided were taken from 14 different users,

enabling user-driven analysis to check for individual differences in vocal imitation styles. The

training of data-driven algorithms can be done in the same way as in [11]: learning embeddings

using deep autoencoders and evaluating their capabilities of predicting the correct reference sam-

ples or listeners’ similarity ratings.

3.2 The Amateur Vocal Percussion Dataset

As discussed in 3.1.1, we were in need of gathering more data in order to explore the potential

of user- and data-driven algorithms to model amateur vocal percussion sounds. This is the main

reason why we recorded the Amateur Vocal Percussion (AVP) dataset, whose audio files and

annotations can be found in the link https://doi.org/10.5281/zenodo.3250230.

The AVP dataset is characterised by the following attributes:

• 28 participants.

• A total of 9,780 amateur vocal percussion sounds in 280 audio files.

• Annotated onsets and labels (kick, snare, closed hi-hat, and opened hi-hat).

• Recorded with one microphone (MacBook Pro’s built-in microphone).

• 2 modalities: personal imitations (4,873 sounds) and fixed imitations (4,905 sounds).

• 5 files for each modality each (four files with sounds of the same class and one with an

improvisation).

The AVP focuses exclusively on people with little or no experience in beatboxing, making

it suitable for research on amateur vocal percussion transcription. It is, to our knowledge, the

largest vocal percussion dataset both in the number of participants and number of vocal percus-

sion sounds. It also incorporates a second subset of fixed drum imitations; this is, four specific

syllables are given to all participants to imitate the four instruments. This fixed subset was

https://doi.org/10.5281/zenodo.3250230
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Instrument - ‘label’ Personal Fixed Improvisation

Kick Drum - ‘kd’ 799 818 1201
Snare Drum - ‘sd’ 813 839 811
Closed Hi-Hat - ‘hhc’ 799 833 673
Opened Hi-Hat - ‘hho’ 816 830 548

Table 3-A: Number of vocal percussion sounds for every drum instrument and subset.

recorded in order to investigate how practical a fixed technique of performing vocal percussion

could be, as deriving accurate algorithms to classify the personal subset as a whole is relatively

challenging. The total number of vocal percussion sounds belonging to each of the four classes

are gathered in table 3-A.

A notable weakness of the AVP dataset is that it was recorded without using any extra micro-

phones or in an acoustically untreated room. However, this dataset is directed to music produc-

ers, with a big percentage of them working with their laptops in regular rooms. In that way,

the realism of the AVP dataset recording context, which features quiet environmental noises as

well, could be proven helpful for the algorithms to perform well in non-controllable external

conditions.

3.2.1 Recording

The materials used to record the dataset were a MacBook Pro laptop, GarageBand software,

and a closed room of approximately 40 m3. The experiment took an average of 15 minutes per

participant.

As the first step of the process, a standard loop featuring kick and snare was presented and

participants were asked to both reproduce it vocally and write down in a provided notebook the

onomatopoeias of the sounds they used to imitate the drums. This performance was intended

as a first contact with the process and it did not get recorded, while the annotation of the ono-

matopoeias was done to facilitate the recalling of imitations and to better stick to them. As it

turned out to be hard for participants to imitate complex beats with hi-hat included in the prelim-

inary tests, five isolated repetitions of a closed hi-hat and an open hi-hat sounds were presented
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instead. Participants decided their imitations and wrote down their onomatopoeias in the same

way as with the kick drum and snare drum.

Once participants were familiarised with the task, they were asked to sit naturally in front

of the computer, as they would normally do. Then, the recording of the dataset started with

two modalities taking place: personal and fixed. For the personal modality, participants used

their own vocal imitations to record around 25 vocal percussion sounds of kick drum, snare

drum, closed hi-hat, and opened hi-hat sounds in four separated audio files. The sounds fol-

lowed a simple rhythmic loop (one crotchet and two quavers) and a 90-BPM metronome track

was provided through headphones to the participants in order to record them. An audio file of

improvised vocal percussion featuring all or most instruments was recorded afterward. For the

fixed modality, the procedure above was repeated once more, but now four specific sounds were

given to the subjects. These fixed imitations were based on speech syllables so to feel natural for

participants to reproduce, and their timbral characteristics were intended to mimic the imitated

percussion instruments. A /pm/ syllable would correspond to the kick drum, /ta/ to the snare

drum, /ti/ to the closed hi-hat, and a /tSi/ to the opened hi-hat. The articulation of these sounds,

as they were performed in a percussive setting, generally resulted in brighter transient signals

and more inharmonic steady-state signals compared to usual speech sounds.

3.2.2 Post-Processing and Annotation

Once the raw audio files were recorded, two post-processing stages took place to prepare them

for analysis: the trimming of silent regions at the beginning and the end of each file to reduce

their size and the removal of in-between passages where the participants made accidental mis-

takes or notable pauses. The annotation of the files was manually carried out right after this

cleaning process, using Sonic Visualiser [12] to write down the onset locations and class labels.

Both onset locations and class labels were determined by one annotator and were validated and

corrected by two other annotators, all of them with musical training. As illustrated in table 3-A,

the tag ‘kd’ was used for kick drum, ‘sd’ for snare drum, ‘hhc’ for closed hi-hat, and ‘hho’ for

opened hi-hat.
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Figure 3.1: Annotation of two onsets, corresponding to two /s/ phonemes. Figure
1a) displays the vocal percussion sounds with their onsets marked in red.
The waveform is plotted in blue and the magnitude spectrogram in green.
Figures 1b) and 1c) are zoomed images of the first and the second onset
respectively.

An important point to note here is that choice of the exact starting moment of a sound event

is generally considered to be dependent on the task at hand. For instance, if the goal is prepar-

ing a vocal percussion sound with a long transient to be used as a sound triggered by a MIDI

message, the onset would sometimes be preferably placed near the point of maximum energy in

the signal. In our case, we decided to place the onsets at the very beginning of the sound, where

the percussive transient starts to build the sound. This is due to the fact that our primary goal

is to classify the vocal percussion sound, and its transient region could be informative as well,

especially for the time-constrained online VPT case.

Also, on a few occasions during the annotation process, two vocal percussion sounds were

very close to each other or even seemed to be part of one single utterance. A joint approach of

waveform visualisation, spectrogram visualisation, and listening at quarter speed was employed

to solve the ambiguity in these cases. An example of how these specific annotations were

approached is illustrated in figure 3.1.
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3.2.3 Observations

A list of observations worth commenting on was made while recording and listening back to the

audio files in the AVP dataset. These are the following:

• A small set of recorded vocal percussion sounds exhibit a form of double percussion (such

as /suk/ or /br/), which can make onset detectors output the events as a whole without

splitting them.

• Various participants got mistaken in a few occasions when recording the improvisation

files, using other speech-like phonemes like /tSa/ instead of /ta/ when imitating the snare

drum or /dm/ instead of /pm/ when imitating the kick drum. These passages were omitted

in the final version of the dataset.

• Several participants reported that the given fixed sounds, despite their resemblance with

the original drum sounds, felt unnatural for them to perform.

• Participants generally improvised non-complex and predictable loops, which could make

the classification routines benefit from a rhythmic pattern analyser.

Finally, there have been three participants whose vocal percussion sounds within the personal

dataset were either not consistent with each other, unintelligible, or practically indistinguishable

from the rest. The audio files and annotations pertaining to these cases are stored in the “Dis-

carded” folder, although they could still be used for classification purposes.

3.3 Other Datasets and Extra Annotations

Apart from the AVP dataset described above, we created two more vocal percussion datasets.

These were composed by already made royalty-free vocal percussion recordings on the internet

and also from the audio files of one of the previously mentioned publicly available datasets. We

also annotated the phonetic information relative to the vocal percussion sounds from the LVT

dataset and the personal subset of the AVP dataset.



Chapter 3. Data 75

3.3.1 Freesound Beatbox Dataset

In order to build the Freesound Beatbox (FSB) dataset, we collected 4,296 beatbox sounds from

552 audio files from the Freesound repository [13]. The audio files contained vocal percussion

performances from different beatboxers that could be either beatbox improvisations (65 files),

which composed the Multi subset, or single isolated beatbox samples (487 sounds), which com-

posed the Single subset. We annotated the onset location of all sounds using Sonic Visualiser

[12].

The purpose of this dataset was three-fold: it could serve (i) as extra data for the training

and evaluation of data-driven onset detection algorithms, (ii) as extra data for the training and

evaluation of data-driven DSRV algorithms, and (iii) as unlabelled data when training semi-

supervised beatbox classification systems.

3.3.2 VIS Percussive Dataset

The VIS Percussive (VIS-P) dataset gathered 3,393 sounds taken from the percussive vocal utter-

ances in the VIS dataset [9] (see 3.1.2). Apart from the imitations of the four drum sounds in

the original dataset, we also included sounds from imitation audio files provided that both their

reference audio file and the files themselves contained percussive sounds. As with the FSB

dataset, we only annotated the onset location of sounds using Sonic Visualiser [12], with no

class information being provided.

This set could also be useful as extra data for training and evaluating data-driven onset detec-

tion and DSRV algorithms. Another possible use could be the unsupervised pre-training of

amateur VPT algorithms, although the data provided by the LVT and AVP datasets together is

tentatively enough to carry out the supervised training and, if needed, pre-training of amateur

VPT algorithms.

3.3.3 Phonetic Annotations

We manually extended the annotations of the AVP and LVT datasets (onsets and instrument

labels) so that they also contained the phonetic representation of vocal percussion sounds. This
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Dataset Mic. Place Type # P # S Instruments Phonemes

AVP-P Lap. Room
Amateur

Vocal
Perc.

28 4,873

Kick: 1,447
Snare: 1,253

C. Hi-Hat: 1,164
O. Hi-Hat: 1,009

Onset Phonemes:
/p/: 1,325, /t/: 1,255, /tS/: 794,
/ts/: 661, /tC/: 238, /k/: 227,
/kg/: 120, /s/: 57, /tZ/: 56,
/ÜÝ/: 51, /kS/: 34, /!/: 29,

/dZ/: 26.
Coda Phonemes:

/x/: 2,242, /h/: 763, /A/: 497,
/u/: 376, /U/: 287, /i/: 207,
/W/: 98, /@/: 70, /æ/: 67,
/9/: 52, /2/: 47, /I/: 48,
/o/: 41, /e/: 27, /5/: 27,

/œ/: 24

AVP-F Lap. Room
Amateur

Vocal
Perc.

28 4,905

Kick: 1,364
Snare: 1,204

O. Hi-Hat: 1,195
C. Hi-Hat: 1,141

-

LVT
Cond.,
lap.,
ipad.

Acoust.
treated
room

Amateur
Vocal
Perc.

20 841
C. Hi-Hat: 334

Kick: 329
Snare: 178

Onset Phonemes:
/p/: 338, /ts/: 303, /t/: 168,

/k/: 8, /ÜÝ/: 8, /tS/: 8,
/P/: 4, /s/: 3, /!/: 1
Coda Phonemes:

/x/: 444, /u/: 243, /a/: 151,
/h/: 2, /U/: 1.

BTX Misc. Misc. Beatbox 14 3,611

Misc.: 926
C. Hi-Hat: 882

Kick: 627
K Snare: 384

Humming: 230
P Snare: 204

Other Snares: 115
O. Hi-Hat: 105
Undefined: 85

Breath: 47
Singing: 6

-

VIS-P Lap. Room
Amateur

Vocal
Perc.

- 3,393 - -

FSB Misc. Misc. Beatbox - 4,296 - -

MDV Cond.
Acoust.
treated
room

Vocal
Imi.

14 420

Kick: 84
Snare: 84
Hi-Hat: 84
Toms: 84

Cymbals: 84

-

Table 3-B: Table summarising the information in the datasets used in this thesis.
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information is divided between that relative to the onset phonemes, which are the first phonemes

of the syllable and are usually plosive or fricative consonants in vocal percussion, and the coda

phoenemes, which are the last phonemes of the syllable and are usually vowels, a breath sound

(h), or silence (x). These phonemes were annotated following notation conventions from the

International Phonetic Alphabet (IPA) [14].

These phonetic annotations will be used as labels for supervised feature learning in section

5.2 and also as means to choose adequate phonemes for online amateur vocal percussion tran-

scription in section 6.1.

3.4 Summary

In this chapter, we described the different publicly available vocal percussion datasets in liter-

ature and the datasets that we put together and annotated ourselves to complement the former.

Table 3-B lists all of these datasets along with their distinctive features. In terms of the total

number of samples, we now have enough data to approach the tasks that this thesis explores

from a data-driven perspective: vocal percussion onset detection, amateur vocal percussion clas-

sification, beatbox classification, and drum sample retrieval by vocal imitation.
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Chapter 4

Vocal Percussion Onset Detection

Onset detection is the first stage of the transcription process. The systems in charge of perform-

ing the task, called onset detectors, inform the subsequent classification algorithms of where

a certain sound event starts so that they can place the starting point of their analysis windows

exactly there or strategically close to it.

Vocal percussion sounds often resemble speech phonemes and syllables, making onset detec-

tion slightly more challenging with vocal percussion than with regular monophonic percussion,

whose instruments exhibit shorter and better-defined attacks. Additionally, when analysing syl-

lables that include onset and coda phonemes (see 3.3.3), onset detection algorithms need to

discriminate between the beginnings of onset phoneme sounds (e.g. /p/, /t/, /k/...) and those of

coda phoneme sounds (e.g. /a/, /e/, /o/...), predicting only the onsets relative to the former and

not the latter. A typical example of this scenario is illustrated in figure 4.1.

Another source of confusion that can affect onset detectors’ performance is the distinction

between onsets associated with breathing sounds from those associated with actual vocal per-

cussion sounds. These breath sounds are a minority in the dataset we used to train and evaluate

onset detection algorithms (∼ 150 sounds) and most of them have relatively slow attacks (i.e.

they are not strictly percussive). Despite this, we found that heuristic methods would sometimes

incorrectly predict some of these breath sounds’ onsets. Likewise, it was reported in the AVP

79
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Figure 4.1: Waveform pertaining to a single vocal percussion sound event. The coda
phoneme /a/ that completes the /ta/ syllable has a relatively marked tran-
sient, which could potentially confuse onset detectors.

dataset that a few participants sometimes pronounced two s-like phonemes (e.g. /ts/) very close

to each other, resulting in poorly-defined onset locations for the second sounds. Also, in gen-

eral, any percussive ambient sound that could have been recorded accidentally would constitute

a source of confusion for algorithms.

The above-mentioned and other unidentified sources of confusion favour data-driven algo-

rithms in terms of performance, as they are naturally drawn to recognising these challenging

utterances so as to optimise onset prediction accuracy. We lean on this fact and in the high accu-

racies of data-driven algorithms for musical onset detection [1–4] to justify their exploration in

a vocal percussion context.

In this chapter, we detail the main routines that we followed to evaluate the performances

of several heuristic and data-driven onset detection methods. We describe these approaches and

present the final results for both offline and online onset detection. In particular, we want to

answer the following research questions:

• Are data-driven models more accurate than heuristic algorithms?

• Are the onsets predicted by data-driven models closer to ground-truth onsets than those

predicted by heuristic onset detectors?
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• How fast is data-driven models’ inference compared to that of heuristic methods?

• Which onset detector algorithm is the most appropriate for offline1 vocal percussion tran-

scription?

• From what amount of time delay do vocal percussion onsets begin to be reasonably

detectable in an online context?

4.1 Offline Onset Detection

In the offline scenario (i.e. non-real-time), onset detectors have access to whole vocal percussion

performances and can use them for training. This contrasts with online (real-time) onset detec-

tion, where algorithms can only access a small buffer of an audio stream and have to make quick

decisions on whether an onset just happened or not.

4.1.1 Methodology

Here we discuss four topics that give a complete account of our methodology. The first one pro-

vides an overview of the vocal percussion datasets used for offline onset detection and how we

prepared and split them to build the final dataset. The second and the third topic would present

the implementation details of heuristic and data-driven algorithms respectively. We explored

three types of data-driven models for onset detection: a Bidirectional Recurrent Neural Net-

work (BRNN), a Convolutional Neural Network (CNN), and a Convolutional Recurrent Neural

Network (CRNN). Finally, the fourth topic would give an account of the training and evalua-

tion methodology that we followed, including information about label pre-processing, parameter

optimisation, and evaluation metrics among others.

4.1.1.1 Data

We trained, validated, and tested onset detection algorithms using all audio data and onset anno-

tations from the AVP-P, AVP-F, LVT, BTX, VIS-P, and FSB datasets (see chapter 3), excluding
1Appropriateness of online onset detectors needs to be studied with results from online classification (section 6).
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the files containing single isolated sounds. Before concatenating the audio files, we split the data

into a train set with ∼85% of data and a test set with the remaining ∼15%. The files that made

the test set were manually selected so that they contained performances that were representative

of the whole dataset. The final set accounted for a total length of 118 minutes of audio data and

21,598 vocal percussion sound events.

To build input representations for the data-driven models (RNN, CNN, and CRNN), the

dataset was first downsampled to 22,050 Hz and taken its spectrogram based on the Fast Fourier

Transform (FFT) with a Hann window size of 11.6 ms and a hop size of 5.8 ms. The frequency

resolution of the final representations was 128 bins. We split the data into time sequences of

16 frames with an overlap of 75% and fed these to the RNN and CNN (size 128x16). For each

sequence of 16 frames (training sample), the networks calculated individual activations for those

16 time steps in the sequence, which were later flattened and averaged to give the final predicted

onset activations. For CRNNs, data was also fed in sequences of 16 data points, except here each

data point was a spectrogram of size 128x8 instead of a spectrum of 128 frequency bins.

4.1.1.2 Heuristic Algorithms

We evaluated the performance of heuristic methods based on the following audio descriptors:

the spectral energy, phase domain, complex domain, HFC, spectral difference, KL divergence,

MKL divergence, spectral flux, and superflux. Refer to section 2.1.1.1 for a theoretical overview

of these descriptors.

Onset detection systems associated with the descriptors above functioned in the same way:

first (i) the audio descriptor is extracted from the sounds’ spectrum from the waveform (sam-

pled at 44.1 kHz) in a frame-wise manner; then, (ii) an activation function is calculated for

each of these frames based on the information that these descriptors provided; and lastly, (iii)

a peak-picking process is carried out on the activation function to predict onsets on the frames

whose associated activation value surpasses a certain threshold value. Section 2.1.1.1 details the

calculation of activation functions and peak-picking.

Logarithmic compression and adaptive whitening of spectral data were applied in some of
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these onset detection approaches. In particular, logarithmic compression based on a Gamma (γ)

parameter of magnitude spectrograms [5] (the smaller the value of γ, the more compressed the

output spectrogram) was applied to onset detectors related to the complex domain (γ = 1), HFC

(γ = 1), KL (γ = 0.02), MKL (γ = 0.02), and spectral flux (γ = 10), while adaptive whitening [6]

was applied to those related to the complex domain, phase, KL, MKL, and spectral flux.

All onset detectors were implemented via the Aubio library [7] except the superflux method,

for which we used the Madmom library [8].

4.1.1.3 Data-Driven Algorithms

We trained a bidirectional RNN with three bidirectional recurrent layers with 64 Gated Recurrent

Units (GRU) [9] and hyperbolic tangent activation functions followed by a dropout layer of rate

0.15 and a final dense layer connecting the final GRU layer outputs to the 16 predictions relative

to the 16 input frames.

The CNN was based on the state-of-the-art model described in [2] and had three convolu-

tional blocks, a dropout layer of rate 0.5, and a final dense layer connecting the flattened feature

maps to the 16 predictions. Each of the convolutional blocks had a single convolutional layer

followed by a batch-normalisation layer, a Rectified Linear Unit (ReLU) activation function, and

a max-pooling operation. The first block had 32 filters of kernel dimensions of 7x3 with strides

of 1x1 in its convolutional layer and had a pooling kernel size of 1x4; the second block had 64

filters of dimensions 3x3 with strides 1x1 and a pooling kernel size of 2x4; and, lastly, the third

block had 128 filters of dimensions 3x3 with strides 1x1 and a pooling kernel size of 2x4.

Finally, the CRNN was composed of a CNN module preceding an RNN module that operated

with the feature maps from the former. The CNN module had two convolutional blocks and no

dense layers. The first block had 16 filters of kernel dimensions of 7x3 with strides of 1x1 in

its convolutional layer and had a max-pooling kernel size of 2x4, and the second block had 32

filters of dimensions 3x3 with strides 1x1 and a max-pooling kernel size of 2x8. Hence, the final

feature maps had a dimensionality of 256x16. The RNN module had the same architecture as

our RNN model but with a dropout layer of rate 0.2.
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The number of filters, the number of GRU units, and the dropout rate of all networks were

optimised via grid search (i.e., exhaustive search) to maximise performance accuracy.

4.1.1.4 Training and Evaluation

While one could use the whole audio data to predict all onsets in data-driven approaches, we

employed a relatively small analysis window (∼ 93 ms for CNNs and RNNs and ∼ 140 ms for

CRNNs) in order to avoid unwanted effects like unnecessary processing delay and overfitting.

Algorithms trained on the whole data would also be more likely to identify rhythmic patterns

that affect predictions. This is usually beneficial for strictly rhythmical vocal percussion data,

as it helps clear doubts when algorithms are unsure of whether an onset has happened or not

based on acoustical data alone. While we encourage to explore this kind of rhythm modelling

to inform onset detectors, we strictly focused on acoustical data in this project, choosing small

analysis regions to make sure that algorithms have as little access to rhythmic information as

possible (i.e. they are rhythm-agnostic). This way, potential users of VPT algorithms will not be

bound to reproducing rhythmic performances to ensure a good transcription performance.

Data-driven models were trained for five iterations with different random seeds for weight

initialisation. Their results were later averaged for reporting. We trained the models using an

Adam optimisation algorithm [10], early stopping if the validation losses did not decrease after

20 epochs, and learning rate downscaling if validation loss did not decrease after 10 epochs.

Instead of running a binary classification task (onset vs. non-onset), we set up a regression task

with fuzzy labels [2]. In this way, we gave a class weight of 0.2 to the data frames right before

the onset frames, 0.5 to the frames right after the onset, and 0.1 to the frames right after these.

To choose the decision threshold for heuristic approaches, we optimised its value using the

train set and then predicted the final evaluation onsets in the test set using this value. To choose

the threshold for data-driven approaches, we performed a seven-fold cross-validation routine

with the train set. We calculated the decision threshold that optimised the F1-score in the val-

idation set for each of the seven folds and then averaged these seven thresholds to get the final

threshold value that is used to predict the test onsets and, hence, derive the final results. To
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run the evaluation, we chose the cross-validated model whose decision threshold was closer in

absolute magnitude to the mean threshold value.

We found that applying a moving maximum smoothing window to the activation function

had a beneficial effect for all networks performance-wise. We optimised the parameters of these

moving maximum functions to optimise performance for individual networks. These parameters

were the length of the moving windows from the current point to a previous point and their

length from the current point to a future point.

We used the F1-Score to measure performance accuracy, which is defined as:

F1 = 2 · Precision · Recall
Precision + Recall

(4.1)

where

Precision =
tp

tp+ fp
, Recall =

tp

tp+ fn

, being tp, fp and fn the number of true positives, false positives and false negatives respec-

tively.

Apart from this accuracy score, we also reported both the absolute and relative time devia-

tions from ground-truth onset annotations and algorithms’ inference speed. The absolute time

deviation shows us the amount of time imprecision that the algorithms have when placing the

evaluation onset, while the relative time deviation illustrates the skewness of these imprecisions.

In this way, a positive score in the relative time deviation metric means that onsets are generally

predicted after the ground-truth labels, while a negative one means that predictions generally

precede the loaction of these ground-truth labels. Inference speed was calculated using an audio

file of 120 seconds containing random numbers between -1 and 1. It mainly includes spectro-

gram calculation, normalisation, division in sequences, prediction, and sequence flattening. The

inference was run on a MacBook Pro 2015 with a 2.5 GHz Quad-Core CPU processor.
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Heuristic CNN RNN CRNN

F1-Score .932 .954 ± .003|.003 .964 ± .002|.001 .965 ± .003|.002
Precision .903 .936 ± .007|.006 .960 ± .002|.002 .956 ± .003|.004

Recall .963 .972 ± .008|.007 .968 ± .003|.002 .975 ± .001|.001

Deviation 4.4 ± 8.9 0.6 ± 8.3|7.3 0.7 ± 8.2|7.2 0.4 ± 8.0|7.0
Abs. Deviation 8.0 ± 6.9 6.8 ± 6.4|5.6 6.4 ± 6.4|5.4 6.4 ± 6.3|5.5

Inference Time 10.6 ± 0.2|0.1 20.9 ± 0.5|0.2 14.2 ± 0.3|0.1 126.7 ± 6.4|2.8

Table 4-A: Offline accuracies (five iterations for data-driven methods), time devia-
tions (relative and absolute) of predicted onsets from ground truth, and
inference speed (twenty iterations). Time deviations are given in millisec-
onds, and inference speed in milliseconds per analysed second of audio.
Error is expressed in terms of standard deviation (left) and 95% confi-
dence intervals (right). Time deviations were added half of the hop size
(2.9 ms) to account for measurement uncertainty except for mean relative
deviations.

A fixed tolerance window length of 30 ms was used for offline evaluation, meaning that

only onsets predicted at a time between -15 ms and +15 ms from the ground truth onsets are

considered to be correct. This is a smaller window than the one typically used for musical onset

detection (50 ms), as we are dealing with monophonic vocal percussion sounds with generally

fast attacks.

4.1.2 Results and Discussion

Results are outlined in table 4-A. The best-performing model was the CRNN, followed by the

RNN, the CNN and the best-performing heuristic method. The RNN model exhibits modestly

higher stability than the CNN and CRNN, and none of their lower bounds reach the heuristic

method’s F1-score, meaning that there’s a high chance that these data-driven algorithms would

consistently outperform heuristic methods for onset detection. A few natural advantages of data-

driven methods related to the sources of confusion mentioned in the chapter’s introduction can

help explain their higher performance, which would also hold true for online onset detection.

The best-performing heuristic method was the MKL divergence. It outperformed both the

HFC (F1 = .921) and the complex domain method (F1 = .919), which were observed to be opti-

mal for vocal percussion transcriptions in the LVT and AVP dataset [11, 12]. We hypothesise
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that the inclusion of beatbox-related utterances specifically could have played a role in the selec-

tion of this method over the HFC and the complex domain. We can also see in the table that

its precision score is significantly lower than the ones relative to data-driven models, while its

recall score is on par with them. This means that the amount of incorrectly predicted onsets

(false positives) is far greater for the heuristic method than for the data-driven ones, which was

expected due to the sources of confusion outlined in the introduction. This signals the robustness

of data-driven algorithms when faced with these sorts of distracting utterances.

We see that the CRNN and RNN methods achieved higher accuracies than the CNN model,

which is considered state-of-the-art in musical onset detection. To see if this also translated

to the two pretrained models in the literature, an RNN [1] and a CNN [2], we implemented

them using the Madmom library and optimised their respective threshold and moving maximum

parameters in the same way as for the heuristic approaches. The F1-scores we got from these

two algorithms were .902 for the RNN and .941 for the CNN, meaning that our observation of

the outperformance of the RNN model is not replicated by pretrained models.

A possible reason for this could be the low frequency resolution of input representations for

the pretrained RNN, which are 40 Mel bands and their derivatives from two analysis frames

(160 features per data point). These frames, of 23 and 46 ms respectively, had their right edges

adjacent to the current time location and extended towards the past. We hypothesise that this way

of arranging representations could be counterproductive performance-wise in some contexts, as

information from past frames is already available in training sequences and RNNs are able to

implicitly take time derivatives into account while training. If true, the RNN model would be

losing frequency resolution while not benefitting from it. The pretrained CNN also includes

spectral content from different frames, though it has two times the RNN frequency resolution

(80 bins), which could explain its higher accuracy.

Performances relative to the RNN and CRNN models are very close to each other, both in

terms of accuracy and time deviation from ground truth onsets. Although the CRNN model

accounts for a slightly higher F1-Score and lower relative time deviation, its inference time is

almost nine times that of the RNN. For example, for a typical vocal percussion performance
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of 10 seconds, the CRNN would theoretically run inference in 1.27 seconds while the RNN

would do it in 0.142. While the choice between one or the other would ultimately depend on

the context, we would generally recommend using the RNN model, as it runs significantly faster

and achieves almost identical results.

Data-driven approaches also accounted for a lower amount of time deviation from ground-

truth labels in both absolute and relative terms. The RNN accounted for the lowest absolute time

deviation from ground truth onsets. Although this deviation can statistically reach 10 ms, this

amount is still reasonably tolerable in terms of perceived quality of drum transcriptions [13].

Therefore, even for such amounts of deviation, users are not likely to find the final transcription

of their performance excessively off-rhythm. The positive magnitude of relative time deviations

indicates that predictions are generally skewed to the future. Data-driven methods have the

lowest mean results, although the high values of the standard deviations imply that there could

be a comparable amount of negative and positive deviation measures around the ground-truth

labels.

Finally, all algorithms run their inference significantly faster than real-time. The MKL

method was the quickest detector, followed closely by our recommended method, the bidirec-

tional RNN. While these inference times would likely be lowered in product deployment (e.g.

optimising speed for sequence building and flattening), we were still surprised by the high infer-

ence speed of our deep learning models. We believe lower-level programming frameworks for

audio processing are likely to further optimise inference speed as well.

4.2 Online Onset Detection

While offline algorithms have access to the whole audio recording, online algorithms can only

process a short analysis buffer containing the most recent few milliseconds of the recorded audio

stream. This constraints online models to operate using current and past information exclusively

(i.e., in a causal regime), and therefore exposes them to a trade-off between delay and detection

accuracy: the longer the analysis buffer, the more information the algorithm can use and the
2We run this experiment in particular and got means of 1.39 and 0.23 seconds for CRNN and RNN respectively.
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higher the accuracy is expected, but also the more delayed the detection decision will be.

As online VPT aims at triggering drum samples practically at the same time that the user

produces the vocalisation, it is important to strategically shorten the length of the analysis buffer

(delay) to avoid perceptually unpleasant transcriptions without compromising detection accu-

racy. Stowell et al. tried to estimate the delay threshold from which human listeners begin to

perceive percussive transcription as unpleasant in [14]. They concluded that this happened at

around the 46 milliseconds mark of delay, which we took as the upper bound for our algorithms

to operate within.

4.2.1 Methodology

This section is divided in the same way as in the offline case. It outlines information about data

processing, heuristic algorithms, data-driven algorithms, and training and evaluation routines.

4.2.1.1 Data

The data, the splits, and the preprocessing steps for data-driven approaches were the same as

the offline case, except for what concerns time sequences: our data-driven algorithm was trained

on sequences of 10 time frames (∼ 58 ms). We saw that performance did not improve substan-

tially from this length on, so we fixed the length there to avoid extra computation delays. The

sequences were exactly one time frame away from each other, i.e., they started one time frame

later than the previous one.

4.2.1.2 Heuristic Algorithms

We implemented the same heuristic methods as in the offline case applying the adequate causal

constraints of the online setting, which the Madmom library had support of. This way, no future-

informed processing was carried out in neither the spectrum nor the activation function. We fol-

lowed the same validation threshold estimation routine as in the offline case except that here we

calculated five thresholds instead of one. These five thresholds were used to compute algorithms’

accuracies at 1, 2, 3, 4, and 5 frames after the onset frame respectively, which would correspond
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to delays of 8.7, 14.5, 20.3, 26.1, and 31.9 milliseconds (adding half of the spectrogram’s hop

size value to account for measurement uncertainty).

4.2.1.3 Data-Driven Algorithms

Apart from heuristic methods, we built our own unidirectional (causal) RNN model based on

the pretrained RNN model in [3], which is state-of-the-art in online musical onset detection [4].

We also evaluated the performance of this pretrained model, which was implemented via the

Madmom library. We kept our RNN as simple as possible to achieve fast computation speeds

without compromising detection accuracy. The final network architecture consisted on a single

recurrent layer with 32 Long Short-Term Memory (LSTM) units [15], a dropout layer of rate

0.1, and a dense layer connecting learnt feature maps to the prediction value.

4.2.1.4 Training and Evaluation

We attempted to train our RNN model using an Adam optimisation algorithm, but we found

out that it was probably the reason why the model did not generalise well to the test set at

small time delays. We hence changed the optimiser to a Stochastic Gradient Descent one [16],

which gave closer results to validation accuracies. We also used early stopping, and learning rate

downscaling using the same parameters as in the offline case.

In contrast with offline models, our causal RNN calculated a single activation value for each

sequence, the ground truth of which was the annotation of the last time frame of the sequence.

We trained a total of six RNN models that used different fuzzy ground truth labels. This time,

these were simply label dilations of the original onset annotations: the labels associated with

the first model had class weights of 1 in the onset frames, the labels associated with the second

model would have class weights of 1 in the onset frames and in the frames right after them, the

labels associated with the third model would have class weights of 1 in the onset frames and the

two frames after them, and so on. We named these models RNNN − Frame, where N is the

number of frames in the future that the annotation extends to. Decision thresholds relative to

activation functions were determined using a seven-fold cross-validation routine and averaging
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them afterwards as in the offline case.

We also optimised the moving maximum parameters of all onset detectors. As we were in

an online regime, we set the windows’ extensions from the current point to a future point to

zero, but still optimised the length of the moving windows from the current point to a previous

point. Finally, we timed the models in the same way as we did for the offline case to check for

suitability for real-time processing.

4.2.2 Results and Discussion

Results related to accuracy are illustrated in Figure 4.2. This time, the best-performing heuristic

onset detector was the one based on the superflux descriptor. This algorithm was also proven

to be the best-performing one within the Madmom library. We hypothesise that the vibrato

suppression engine that characterises the detector could explain its high performance, as it might

help avoid confusion between onsets from percussive phonemes and those from vowel phonemes

within the same syllable. We also observed that this algorithm significantly outperformed the rest

of the heuristic ones at 8.7 and 14.5 ms of delay, where the onset vs. non-onset decision is made

quicker.

Performances from RNN N-Frame models are generally superior to those from the superflux

and pretrained RNN methods and appear to plateau around the 0.9 mark from 14.5 ms delay on.

This might mean that there is usually no need for further delaying prediction in most situations

so as to gain a little more accuracy. We can also see that, even at the lowest amount of delay

(8.7 ms), RNN N-Frame models are able to reach the 0.8 accuracy mark, which tells us that

vocal percussion onsets are usually highly recognisable in their very first milliseconds. The

standard deviations and 95% confidence intervals of RNN N-Frame models seem small enough

to consider them relatively stable to weight initialisation and our cross-validated model selection

routine.

We see how the performances relative to the 0-Frame and 1-Frame RNN models fall shorter

than the rest of the neural networks. Hence, in an online setting, onset annotations with 2 or
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Figure 4.2: Online detection accuracies. Results relative to RNN N-Frame are aver-
aged over their five iterations. Error is given in terms of standard devia-
tion (long cap) and 95% confidence intervals (short cap, hardly seen) for
trained RNN.

more frame dilation seem to benefit onset detectors, potentially allowing algorithms to grasp a

better understanding of the onsets’ characteristics.

Relative time deviations of each algorithm’s predictions from ground truth onsets are dis-

played in Figure 4.3. One observation of interest is that predictions from heuristic and pre-trained

RNN algorithms have consistently higher amounts of deviation than trained RNNs (almost dou-

ble for all delays). A possible reason for this could be the fact that these onset detectors were

originally engineered for musical onset detection, where some note attacks are not as well-

defined as percussive ones (e.g. a violin legato). Also, the pretrained RNN model functions

with a fixed hop size of 10 ms when computing the spectrogram, whereas our trained RNNs use

one of 5.8 ms for a higher time resolution. This also explains the significantly lower accuracy

score of this model with respect to the trained RNNs at 8.7 ms delay.
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Figure 4.3: Relative time deviations of algorithms’ predictions from ground truth
onsets. Deviations relative to RNN N-Frame models are averaged over
their five iterations. Error is given in terms of standard deviation (long
cap) and 95% confidence intervals (short cap) for data-driven methods.
Errors were added half of the hop size (2.9 ms) to account for measure-
ment uncertainty.

Predictions from the RNN 0-Frame model deviated less than those from the rest of the meth-

ods, although it also had the highest standard deviations for all delays. Also, relative deviations

were mostly positive, meaning that algorithms usually placed the onset somewhere after the

ground truth annotations. Deviations from our trained RNNs usually do not reach the 3 ms mark

in terms of mean value and 12/-10 ms in terms of 95% confidence intervals. These results look

certainly promising for online VPT, as the classification process after onset detection usually

works with analysis frames of 23 ms on [14, 17]. In this sense, just by (i) correcting onset

placement using the mean relative time deviations and (ii) making sure that the 95% confidence

intervals of relative time deviations fall in a region where classification accuracy is high and

delay is low, would theoretically suffice to achieve optimum transcription performance. Finally,

the RNN N-Frame models accounted for the lowest mean inference time (7.9 ± 0.3|0.1 ms)
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compared to those of the superflux algorithm (12.0 ± 0.2|0.1 ms) and the pretrained RNN (25.5

± 2.1|0.9 ms), further supporting its suitability for real-time processing.

Apart from the algorithms discussed above, we explored two other online onset detection

methods that were ultimately less successful. One of these was a stateful RNN that processed

data frame by frame. Its results were slightly better than the rest of the algorithms for delay 8.7,

with a mean F1-score of .816, but did not get past the .854 mark for the rest of the delays. We

also implemented a CRNN for real-time processing. This way, convolutional layers compressed

the spectrum of individual frames using 1-dimensional convolutions and those features were

processed by the RNN module. This method achieved indistinguishable results from those of

RNNs at the expense of significantly higher computation time.

4.3 Summary

We studied the suitability of several data-driven algorithms for vocal percussion onset detection

and contrasted their performances with their heuristic counterparts. The network models we

proposed consistently outperformed heuristic algorithms and pretrained models in both offline

and online onset detection in terms of accuracy, time deviation from ground truth onsets, and

also inference speed in the online case.

For offline onset detection, we saw that CRNNs and bidirectional RNNs gave the best per-

formance accuracies and that the latter had a significantly lower inference time than the former.

Hence, we would generally recommend bidirectional RNNs for offline processing, although the

choice between one or the other would ultimately depend on the transcription context.

For online onset detection, the RNN N-Frame models were the fastest and most accurate of

the evaluated methods, reaching an F1-score of 0.9 at 20.3 ms of delay. An accuracy score of

0.8 is already reached for 8.7 ms of delay, meaning that vocal percussion onsets are reasonably

recognisable at very low delays. The final choice of what RNN N-Frame onset detector to use

for online processing is contingent on the accuracy vs. delay trade-off of subsequent classifiers,

addressed in chapter 6.
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[4] S. Böck, F. Krebs, and M. Schedl, “Evaluating the online capabilities of onset detection

methods.” in Ismir. Citeseer, 2012, pp. 49–54.

[5] M. Müller, Fundamentals of music processing: Audio, analysis, algorithms, applications.

Springer, 2015.

[6] D. Stowell and M. Plumbley, “Adaptive whitening for improved real-time audio onset

detection,” in Proceedings of the 2007 International Computer Music Conference, ICMC

2007. University of Surrey, 2007, pp. 312–319.

[7] P. M. Brossier, “Automatic annotation of musical audio for interactive applications,” Ph.D.

dissertation, 2006.

[8] S. Böck, F. Korzeniowski, J. Schlüter, F. Krebs, and G. Widmer, “Madmom: A new python

audio and music signal processing library,” in Proceedings of the 24th ACM international

conference on Multimedia, 2016, pp. 1174–1178.

[9] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent

neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014.

[10] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[11] A. F. S. Ramires, “Automatic transcription of vocalized percussion,” 2017.

[12] A. Delgado, S. McDonald, N. Xu, and M. Sandler, “A new dataset for amateur vocal per-

cussion analysis,” in Proceedings of the 14th International Audio Mostly Conference: A



Chapter 4. Vocal Percussion Onset Detection 96

Journey in Sound, 2019, pp. 17–23.

[13] J. Frühauf, R. Kopiez, and F. Platz, “Music on the timing grid: The influence of micro-

timing on the perceived groove quality of a simple drum pattern performance,” Musicae

Scientiae, vol. 17, no. 2, pp. 246–260, 2013.

[14] D. Stowell and M. D. Plumbley, “Delayed decision-making in real-time beatbox percussion

classification,” Journal of New Music Research, vol. 39, no. 3, pp. 203–213, 2010.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,

no. 8, pp. 1735–1780, 1997.

[16] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Proceedings

of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[17] A. Delgado, C. Saitis, and M. Sandler, “Phoneme mappings for online vocal percussion

transcription,” in Audio Engineering Society Convention 151. Audio Engineering Society,

2021.



Chapter 5

Offline Vocal Percussion Classification

The present chapter focuses on vocal percussion classification in an offline, non-real-time con-

text. In contrast with online classification, which will be later addressed in Chapter 6, here we

have access to the whole audio file containing the vocal percussion performance. Therefore,

we expect higher classification accuracies than those relative to an online setting a priori, which

would only have access to the very beginning of vocal percussion sounds.

Offline vocal percussion classification is usually carried out by (i) applying onset-wise seg-

mentation to the audio file assuming that vocal percussion sounds lie in-between onsets (ii)

extracting or learning relevant audio features from each of the individual segments in a frame-

wise manner, and (iii) training a machine learning algorithm to classify the vocal percussion

sounds in the audio segments given the input features. While one could take advantage of the

information in the rest of the audio file, e.g., rhythmic patterns, here we exclusively focus on

classifying individual sounds (regions in-between onsets) irrespective of the information con-

tained in the rest of the audio file.

We placed a high emphasis on user-based amateur vocal percussion classification [1, 2],

where we explored different data-driven strategies. As discussed in earlier chapters, user-based

amateur vocal percussion classification is a generally challenging task, and we specifically see

three main points of difficulty that condition the design of algorithmic routines.

97
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The first of these issues is the different vocal percussion styles among participants. While

beatbox performers share a common set of techniques that makes their vocalisations sound sim-

ilar to each other, amateur performers approach vocal percussion via vocal imitation and they

usually have distinct ways to vocalise drum instruments.

The second point of difficulty is that participants usually do not label the sounds they record

for the algorithm to train successfully, so the labels have to be made implicit in some way. In

order to sort this out, amateur vocal percussion datasets are recorded in such a way that training

annotations are made implicit for the classification algorithms. As introduced in 1.1, the “fixed

phrase” and the “isolated samples” strategies are successful recording techniques that automat-

ically label training samples without the need of having the users do it manually. However,

depending on the way these training samples are recorded, they could end up not resembling the

testing ones enough and therefore fail to generalise to improvisatory performances.

The third and last issue is the inconsistency in the articulation of vocal percussion sounds

by users. This issue is especially prominent in amateur vocal percussion improvisations, which

are the kind of performances that are used for evaluation. The lack of uniformity in the sounds’

timbre across these evaluation samples could sometimes confuse classifiers which, if trained in

a user-based manner, might experience a significant drop in performance due to the low number

of samples that they learn from. Regularisation techniques for data-driven models like data

augmentation, batch normalisation, dropout, and early stopping are likely to mitigate the effect

of this issue to some extent.

This chapter details the classification routines and evaluation strategies we followed for both

amateur vocal percussion and beatbox. It is composed of two related studies. The first one

introduces the different types of datasets available for offline vocal percussion classification and

explores the performance of different heuristic and end-to-end data-driven algorithms. The sec-

ond set of experiments is directed to improve performances of user-based amateur vocal per-

cussion via supervised embedding learning. This embedding learning strategy is based on the

training of data-driven network algorithms using labels that describe vocal percussion sounds

at different levels of abstraction, namely instrument-level, syllable-level, phoneme-level, and
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sound-level.

In summary, here we wanted to answer the following research questions:

• Which classification strategy is most adequate to carry out offline classification with ama-

teur vocal percussion and beatbox sounds?

• How do data-driven algorithms perform in low data regimes such as purely user-based

scenarios?

• Is embedding learning preferable to end-to-end offline classification?

• To what degree does setting a fixed way of vocalising sounds help with offline amateur

vocal percussion classification? How does its performance compare to using sounds of the

participants’ choice?

• How fast is data-driven models’ inference compared to that of heuristic methods?

• How stable to arbitrary training parameters are the performances of heuristic and data-

driven classifiers?

5.1 End-to-End Offline Vocal Percussion Classification

The first study that we carried out for offline vocal percussion classification explored end-to-end

data-driven models, comparing their performances with those of baseline heuristic approaches.

In essence, the main purpose of this study was to assess the performance of data-driven classifiers

in scenarios with different input data and see ways of improvement in case these accuracies fall

short from expectations.

5.1.1 Methodology

In this section, we present the methodology that we followed in this first study. We talk about

the data with which we train and evaluate the studied algorithms, the classification tasks that we

set up based on different strategies and arrangements of the data, the heuristic and data-driven
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classification algorithms that we built for the tasks, and the training and evaluation routines.

5.1.1.1 Data and Tasks

We compared purely user-based approaches and heuristic approaches on three main tasks: user-

based amateur vocal percussion classification (AVP UB), user-agnostic amateur vocal percussion

classification (AVP UA), and user-agnostic classification with the BTX dataset (BTX UA).

In the AVP UB task, algorithms were trained in a user-based manner, i.e., each algorithm

modelled and predicted the label of the sounds pertaining to a single participant. Therefore,

we would have as many trained algorithms as users in the end, which were trained using the

personal subset of the AVP dataset. As discussed earlier, this task is especially challenging from

a classification perspective, as users were also allowed to choose the phonemes or syllables that

they wanted to use to trigger the sounds relative to each drum type. Results relative to the AVP

UB task are expressed in both a participant-wise (AVP UB-Part) and a sound-wise (AVP UB-

Sound) manner. In the case of the former, accuracy is averaged across participants while, in

the latter’s case, accuracy is averaged across sounds irrespectively of the participant or the drum

type they belonged to.

In the AVP UA task, algorithms were trained in a user-agnostic manner, i.e., a single algo-

rithm modelled and predicted the label of all sounds irrespectively of the participants they

belonged to. We tried three different approaches in this case, each of them classifying differ-

ent types of sounds.

The first approach, AVP UA, consisted in training the classifier in the personal subset of the

AVP dataset. As here participants selected the sounds that they vocalised, we expect a lower

accuracy score with respect to the user-based case above, which takes information from single

participants into account. Hence, this method would also serve as a baseline performance to

assess the degree of success of the user-based strategy.

The second approach, AVP UA Syll, attempts at classifying the sounds pertaining to the

fixed set of the AVP dataset, which are represented by the syllables /pm/, /ta/, /ti/, and /tSi/.
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Although the four syllables could be used to trigger any drum sound, the originally recommended

mappings in the AVP dataset are /pm/ for kick drum, /ta/ for snare drum, /ti/ for closed hi-hat,

and /tSi/ for opened hi-hat.

Finally, in the third approach, AVP UA Phon, algorithms classify the sounds pertaining to the

phonemes /p/, /k/, /t/, /ts/, and /tS/. The choice of these phonemes for VPT is explained by their

high frequency of use among performers, their high spectral similarity with drum instruments

(kick, snare, and hi-hat), and their high classification separability. These three properties of the

phonemes above are experimentally justified later in this thesis, more specifically in Section 6.1.

Also, we called the task “AVP UA Phon” because of the use of single phonemes in the case of

/p/, /k/, /t/, despite also containing the /ts/, and /tS/ syllables.

Lastly, the BTX UA task also consisted of a user-agnostic classification process like AVP

UA but using the sounds in the BTX dataset instead. The BTX dataset was annotated under

the assumption that participants’ beatbox techniques were similar enough to each other to study

them jointly. The dataset also consisted of beatbox performances exclusively, without specific

subsets for user-based training and evaluation.

The data for all these tasks and methods was pre-processed by a 14-fold data augmentation

routine on both waveforms and spectrograms. In this way, we applied different data augmenta-

tion methods in random order for 14 iterations. For the first waveform-based augmentation rou-

tine, we applied random pitch-shifting (semitone range = [-1.5,+1.5]), time-stretching (stretch

factor range = [0.8,1.2]), and Gaussian noise (minimum amplitude = 0.001, maximum ampli-

tude = 0.05, probability of application = 0.5) one after the other in random order. For the second

spectrogram-based augmentation routine, we used a spectral frequency mask (minimum mask

fraction = 0.03, maximum mask fraction = 0.25, probability of application = 0.75) [3].

5.1.1.2 Algorithms

We gathered a set of 262 heuristic features to which we applied dimensionality reduction via

Principal Component Analysis (PCA). The audio descriptors associated with these features were

mainly chosen for their relevance and the good performances in VPT-related literature (see Sec-
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tion 2.2.1.2). They were also chosen attending to their relevance in heuristic Sound Event Detec-

tion (see [4]) and other related tasks like musical instrument classification and timbre analysis

[5]. We believe these good performances in both identical and analogous tasks enough to justify

their inclusion in our heuristic VPT analysis pipeline.

In this way, the final features were based in the following audio descriptors: 13 Mel Fre-

quency Cepstral Coefficients (MFCCs), spectral energy of 8 frequency bands (0-300, 300-800,

800-1600, 1600-4000, 4000-7000, 7000-11000, 11000-16000, and 16000-22050 Hz), 4 spectral

roll-off frequencies (ratios of 0.25, 0.50, 0.90, and 0.95), spectral complexity, high frequency

content, spectral strongpeak, 4 spectral central moments (centroid, variance, skewness, and kur-

tosis), spectral crest, spectral decrease, spectral entropy, spectral flatness, root mean square,

and zero-crossing rate. We extracted these audio descriptors using the Essentia toolbox [6] and

aggregated them in time using the mean, variance, minimum, and maximum values of these and

their first derivative; hence, a total of 8 aggregators per descriptor except for the MFCCs and the

spectral energy bands, which were taken the mean value and variance from themselves and their

first and second derivatives in the case of MFCCs and just the mean in the case of the spectral

bands. Lastly, we also extracted four envelope descriptors which included the derivative after

the maximum amplitude, the maximum derivative before the maximum amplitude, the flatness

coefficient, and the temporal centroid to total length ratio.

We applied ten iterations of randomised PCA [7], each with a different random state, to these

262 features so as to reduce their dimensionality to 32 components. These components were

later fed to the final classification task, where we explored the performance of seven different

machine learning classifiers: five KNN algorithms with 3, 5, 7, 9, and 11 neighbours respectively,

a random forest algorithm (best-performing model in [8]), and a logistic regression model. We

report the best performance derived from these models, which were all implemented using the

Scikit-Learn library [9].

Apart from the heuristic routine above, we used three different CNN architectures for the

AVP UB, the AVP UA, and BTX UA tasks respectively. In the case of the AVP UB task, with an

average of 115 training samples per user (1725 augmented), the CNN model was kept small-sized
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in order to decrease the number of parameters and hence the chance of overfitting. It took Mel

spectrograms with dimensions of 16 bands by 12 frames calculated using a window size of 96 ms

and a hop size 46 ms, accounting for a total of 0.55 seconds per sound. The CNN was composed

of two convolutional blocks, both with a single convolutional layer of kernel size 3x3 and strides

1x1, a batch normalisation layer, a ReLU activation gate, and a max-pooling operation. The

convolutional layers in the first and second block had 16 and 32 filters respectively, and the

max-pooling kernels of these had a size of 2x2 and 2x3 respectively.

The CNN model for the AVP UA Phon task, with 2,226 training samples (33,390 aug-

mented), was medium-sized, taking as input 64x48 Mel spectrograms calculated using a window

size of 96 ms and a hop size 11 ms (0.55 seconds per sound). This CNN was composed of four

convolutional blocks like the ones for AVP UB. The convolutional layers in the first, second,

third, and fourth blocks had 8, 16, 32, and 64 filters respectively, and the max-pooling kernels of

these had all sizes of 2x2.

Finally, the CNN model for the AVP UA, AVP UA Syll, and BTX UA tasks, with 3,227

(48,405 augmented), 3,320 (49,800 augmented), 3,611 (54,165 augmented) training samples

respectively, was large-sized, and it took the same input representation and had the same archi-

tecture as the previous medium-sized model but with double layers in each block except for the

max-pooling one. In this way, for example, the first convolutional block had one convolutional

layer with 8 filters, a batch normalisation layer, a ReLU activation gate, another convolutional

layer with 8 filters, another batch normalisation layer, another ReLU activation gate, and the

max-pooling operation at the end.

The MLP models were also built considering the size of the dataset to be modelled. In this

way, the model relative to the AVP UB task had two hidden layers of 32 neurons each, the model

relative to the AVP UA Phon had two hidden layers with 64 neurons each, and the model relative

to the AVP UA, AVP UA Syll, and BTX UA tasks had three hidden layers of 64 neurons each.

We test two types of MLP-based approaches, the MLP-Heur and the MLP-Spec, with the former

models taking the 32 PCA component features as input and the latter taking the flattened version

of a 16x12 spectrogram as input, which was calculated with a window size of 96 ms and a hop
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size 46 ms (0.55 seconds per sound).

5.1.1.3 Training and Evaluation

We carried out the train-validation routines of the AVP UB task with the sounds provided for

training and the evaluation routines using the sounds provided for testing. The final train-

evaluation split was approximately 60-40%. For the AVP UA task, we carried out the train

and validation routines with the sounds provided for training and some of the sounds provided

for testing in order to get a 75-25% train-evaluation split. We reserved the remaining testing

sounds for evaluation. Lastly, both the train-validation and the evaluation routines relative to

the BTX UA task were built with the sounds in the BTX dataset with a 75-25% train-evaluation

split.

CNN and MLP models were trained using an Adam optimisation algorithm, early stopping if

the validation losses did not decrease after 20 epochs, and learning rate downscaling if validation

loss did not decrease after 10 epochs. We also ensured that all train-validation-evaluation splits

had the same percentages of sound labels.

For each of the three types of tasks, AVP UB, AVP UA, and BTX UA, we averaged results

through the ten train-test iterations, taking their standard deviation and their 95% confidence

interval as error measures. For the AVP UB task, we reported final results in two modalities:

participant-wise, where accuracy scores of single test participants are calculated and averaged,

and sample-wise, where accuracy scores are calculated for all evaluation samples independently

of the participants they belong to.

In the case of AVP UB models, training times were measured and averaged across the 10

iterations of the 28 participants. These training times would give us an idea of how long would

users have to wait for the algorithm to be trained on the examples they just provided before being

ready to predict samples within vocal percussion performances. These timing experiments were

performed on the same machine (MacBook Pro 2015 laptop) and under the same conditions.
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Heuristic End-To-End

KNN-Heur MLP-Heur MLP-Spec CNN

AVP UB-Part .730 ± .014|.008 .714 ± .031|.019 .779 ± .051|.031 .789 ± .031|.019
AVP UB-Sound .731 ± .014|.009 .708 ± .026|.016 .762 ± .053|.032 .770 ± .030|.019

AVP UA .578 ± .004|.003 .623 ± .012|.008 .644 ± .010|.006 .692 ± .012|.007
AVP UA Syll .815 ± .003|.002 .859 ± .008|.005 .887 ± .006|.004 .916 ± .005|.003
AVP UA Phon .834 ± .008|.005 .715 ± .012|.007 .820 ± .012|.008 .970 ± .009|.006

BTX UA .744 ± .008|.005 .669 ± .012|.007 .742 ± .019|.012 .832 ± .013|.008

Table 5-A: Offline amateur vocal percussion and beatbox classification accuracies.

5.1.2 Results and Discussion

Final results are presented in table 5-A, with the best-performing heuristic classifier being KNN

with 3 neighbours.

We see how the end-to-end data-driven models (MLP-Spec and CNN) consistently outper-

form heuristic approaches (KNN-Heur and MLP-Heur), and that the CNN method in particular

is the best-performing model for all tasks. In particular, the difference in performance of the

CNN method with respect to the other methods is significant for the AVP UA Phon and BTX

UA one, and slightly more modest for the AVP UB, AVP UA, AVP UA Syll ones. The KNN-

Heur and the MLP-Spec methods perform better than each other depending on the task, with the

former achieving better accuracies overall. This shows how simple non-parametric models like

a KNN classifier can achieve better accuracies than data-driven models with a large number of

parameters like MLPs when taking heuristic features as input, i.e., when not trained end-to-end.

When trained end-to-end with input spectrograms, as is the case with the MLP-Spec approach,

we can see how the performance is consistently superior to both heuristic methods.

Heuristic strategies were generally the most stable to random parameters than end-to-end

methods. In that manner, one can also note the significantly higher stability of heuristic and

CNN methods in user-agnostic (UA) tasks than user-based (UB) ones. This could be explained

by the fact that UA tasks are single classification tasks using a large number of samples (>2,000

unaugmented) whereas UB ones are 28-way classification tasks, one per participant, using a

notably smaller amount of data per subtask (<150 unaugmented), which potentially leads to
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higher variance in performance over the ten iterations.

For the AVP UB case, we got average training times of 5.29, 23.41, 22.80, and 177.61 sec-

onds for the KNN-Heur (PCA included), MLP-Heur (PCA included), MLP-Spec, and CNN.

Hence, the CNN model, while being the most accurate one, trains significantly more slowly than

the rest of them, almost reaching the 3-minute mark. The inference times of all methods were

similar to each other, taking around 50 milliseconds per predicted label. Therefore, if waiting

for training to finish is not an issue, the user could use the end-to-end CNN algorithm to clas-

sify sounds as fast as the other methods and with higher accuracy. Nevertheless, as we wrote

in Section 4.1.2 regarding the RNN and CRNN onset detectors, we would recommend the use

of the MLP-Spec algorithm instead of the CNN one in practice, as the former achieves similar

accuracies to the latter at a much lower training time (more than 10 times faster).

We have also demonstrated our hypothesis that the user-based method (AVP UB) performs

significantly better than the user-agnostic one (AVP UA) when participants vocalise the sounds

that they like for each of the instruments. The user-based method shows a superior performance

via its best-performing algorithm (CNN) and the best score from its related models (.708 for

MLP-Heur) is still higher than the lowest score from the related models of the user-agnostic

method (.692 for CNN). However, the highest user-based performance (.770 sound-wise for

CNN) is still notably poor with respect to the performance of the AVP UA Syll and AVP UA

Phon methods, which might mean that user-agnostic strategies are still better approaches than

user-based strategies when choosing specific fixed input phonemes and syllables, as AVP UA

Phon achieves almost perfect accuracies (.970 for CNN).

We can also see how performances related to the AVP UA Syll task are better than AVP UA

Phon for some algorithms (MLP-Heur and MLP-Spec) and lower for others (KNN-Heur and

CNN). There are several reasons that might explain this result. One of them could be related to

the fact that the number of training parameters was possibly too large for medium-sized MLPs

to model the input data of the AVP UA Phon task or for large-sized CNNs to model that of the

AVP UA Syll task. This may have resulted in some degree of overfitting for both cases. Another

thing that may have affected performance in both tasks is the fact that for the AVP UA Phon
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method a small part of sounds taken from improvisation performances, which were supposed

to be used for evaluation, were used for training and validation instead. While none of these

sounds nor their augmented versions were used for evaluation, algorithms could learn features

that are particular to these sounds in the improvisation performances and use them for evaluation.

This does not occur in the case of the AVP UA Syll method, where algorithms are trained using

the training set (isolated samples) exclusively and evaluated on the testing set (improvisation),

and therefore may have been at disadvantage with respect to the AVP UA Phon one, especially

considering successful end-to-end methods like the CNN.

One issue we noted regarding evaluation was that, in the case of the AVP UA Phon task,

the dataset had notably less samples relative to the /k/ phoneme (262) compared to the amounts

relative to the /p/ (532), /t/ (608), /ts/ (658), and /tS/ (723). This is concerning a priori, as

most of the mistakes that the classifiers commit in the evaluation stage could be related to the

/k/ phoneme, as it has the least amount of samples and algorithms could neglect it in favour

of higher accuracies. However, we checked the confusion matrices of all ten iterations of the

CNN algorithm and the models consistently got all of the samples relative to the /k/ phonemes

correct, which included a total of 80, 39, 91, 99, and 109 samples for /p/, /k/, /t/, /ts/, and /tS/

respectively. We mostly attribute this finding to both the high separability of the /k/ phoneme

with respect to the rest of them and to the stratified train-validation-evaluation splits that had the

same percentage of labels.

Lastly, we consider results related to the BTX UA task underwhelming and pointing towards

the difficulty of the task in itself. More research is warranted to assess to what extent individual

beatbox labels are separable between each other in a classification task and to weigh the need of

recommending specific beatbox sounds to improve accuracies.
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5.2 Representation Learning for Offline Amateur Vocal Percussion

Classification

In the last section, we argued that the low number of data samples that user-based algorithms

take as input is an important issue to consider when trying to apply data-driven methods to the

task, as it limits the amount of input audio features that classifiers can take for modelling so as to

minimise their risk of overfitting. On the other hand, as we saw in the results from the previous

study, data-driven models like MLPs and CNNs outperform heuristic approaches despite taking

significantly more time to train, especially in the case of CNNs.

This section is an attempt to mitigate the tendency to overfitting and the long training times

of data-driven methods via deep representation learning. In particular, we explore the potential

of several supervised embedding learning approaches to generate informative feature sets for

amateur vocal percussion classification. These embedding learning models have been proven

to be powerful feature extractors for high-dimensional data including sound events, music, and

speech [10], so we hypothesise that they could likewise be beneficial for our vocal percussion

classification task.

We supervised deep neural networks on four different types of label sets and took the values

in their penultimate layer as the final feature sets to be evaluated. The four label sets that super-

vised the algorithms describe vocal percussion sounds at different levels of abstraction, namely

at instrument-level, syllable-level, phoneme-level, and sound-level. We assessed the informative

power of each of the learnt feature sets in terms of their classification accuracy and the stability of

the metric to random train-validation splitting and initialisation routines. Finally, we carried out

a complementary investigation of how relevant different regions in the spectrogram are for the

models by applying backpropagation-based saliency maps [11]. The related code is published in

an open-source repository1.
1https://github.com/alejandrodl/vocal-percussion-transcription
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AVP Dataset LVT Dataset

Number of Participants 28 20

Number of Sounds 4,873 841

Recording Strategy Isolated Samples Fixed Phrase

Instrument Labels kd, sd, hhc, hho kd, sd, hhc

Phoneme Labels Yes Yes

Table 5-B: Summary of datasets’ contents (kd = kick drum, sd = snare drum, hhc =
closed hi-hat, hho = opened hi-hat).

5.2.1 Methodology

In this section, we provide an in-detail account of the main data sources, algorithms, and rou-

tines used throughout our study. In section 5.2.1.1, we talk about the two datasets that we used

(AVP and LVT), how we joined them and expanded their annotations so as to include phonetic

information, and how we built input representations and carried out the data augmentation pro-

cess. In section 5.2.1.2, we describe the architecture of the embedding learning model and the

seven types of label sets that we used for its supervision. In section 5.2.1.3, we present the three

baseline methods whose performances were compared to those of the embedding learning model

supervised on different label sets and in section 5.2.1.4 we show how both the training and the

evaluation processes were carried out.

5.2.1.1 Data and Pre-Processing

We used two publicly available vocal percussion datasets throughout the study: the AVP dataset

[12] and the LVT dataset [1]. We contrast some of these datasets’ characteristics in Table 5-B.

To train our acoustic models, we exclusively used the personal subset of the AVP dataset (par-

ticipants vocalising sounds of their choice), although we also used the fixed subset (participants

vocalising the same sounds) to train the sequential module of the baseline speech recognition

model (see section 5.2.1.3). Regarding the LVT dataset we exclusively use its third subset, as

the recordings’ quality and background noise level are similar to those from the AVP dataset.

We manually expanded the annotations (onsets and instrument labels) of both datasets so as
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Onset Phonemes Coda Phonemes
/t/ and /!/ /A/, /æ/, /5/, and /2/
/ts/ and /s/ /e/, /œ/, and /@/

/tS/, /tC/, /dZ/, and /tZ/ /i/, /y/, and /I/
/kx/, /k/, and /kS/ /o/ and /U/

/p/ and /ÜÝ/ /u/ and /W/

Table 5-C: Phoneme groupings for the reduced sets.

to include the syllabic representation of vocal percussion sounds. The syllables were composed

of a first onset phoneme, usually plosive or fricative, and a second coda phoeneme, usually a

vowel, a breath sound, or silence (no coda phoneme). These phonemes were annotated follow-

ing notation conventions from the International Phonetic Alphabet (IPA). Apart from the origi-

nal phoneme set, we also elaborated a reduced phoneme set in which several similar-sounding

phonemes were put together to form single classes. For this reduced version of phoneme anno-

tations, onset and coda phonemes were grouped as shown in Table 5-C. We also make final

AVP-LVT dataset with expanded annotations publicly available2.

Joining the AVP and LVT datasets, we had a total of 5714 vocal percussion sounds. As

this amount of data was relatively modest for deep embedding modelling, we applied waveform

data augmentation to individual sounds, specifically random pitch-shifting (semitone range =

[-1.5,+1.5]) and time-stretching (stretch factor range = [0.8,1.2]), one after the other in random

order. This kind of data augmentation is standard in audio signal processing [13] and it has been

proven to improve the accuracy of vocal percussion classification algorithms [8]. We applied ten

iterations of random data augmentation in this manner, ending up with a total of 62854 vocal

percussion sounds in the final dataset.

As input to neural networks, we built Mel spectrogram representations from each vocal per-

cussion sound using 64 Mel frequency bands and a hop size of 12 milliseconds. We used 48

time steps (∼ 0.56 seconds) so that the final sound spectrograms had a final dimension of 64x48

and we explored frame sizes of 23, 46, and 93 milliseconds, ultimately reporting the one that

brought the best results in Section 5.2.1.1. We post-processed spectrograms with a logarithmic
2https://zenodo.org/record/5578744#.Yfpu9PXP30o
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transform (log(spectogram+ 0.0001)) and normalised them to a [0,1] range.

5.2.1.2 Supervised Embedding Learning

We used the penultimate layers of several CNN classifier models [14] as the final embeddings

to perform evaluation. They all had four convolutional blocks with 8, 16, 32, and 64 filters

respectively and two fully-connected (FC) linear layers, one connecting the flattened feature

maps to the embedding space and another one connecting the embedding space to the labels.

Each convolutional block had two convolutional layers with kernels of size 3x3 and stride 1x1,

each one followed by a batch normalisation module and a ReLU activation gate. A final max-

pooling operator with kernel size 2x2 is applied at the end of each convolutional block so as to

progressively downsample the feature maps.

We explored seven different supervision strategies to train and validate the above-mentioned

CNN classifiers. These strategies use different types of labels that describe the same input data

at different levels of abstraction.

Instrument-Level Annotations: We used two types of drum instrument annotations: the

ones relative to the original set (kick drum, snare drum, closed hi-hat, and opened hi-hat) and

the ones relative to a reduced version of it (drum and hi-hat). These constituted the first and the

second supervision strategies.

Syllable-Level Annotations: We also used syllable labels, put together by joining the onset

and coda phonemes in the original and the reduced phoneme sets (see table 5-C). These consti-

tuted the third and the fourth supervision strategies.

Phoneme-Level Annotations: We used individual phoneme labels, which also came from

the original and the reduced phoneme sets. These constituted the fifth and the sixth supervision

strategies. It is worth noting that, while the two phoneme-level sets contained the same infor-

mation as the two syllable-level ones, here the CNN classifier predicts onset and coda phoneme

labels separately in a multi-task way, managing two different validation losses and accuracies.

Sound-level Annotations: Finally, we used sound labels to describe vocal percussion sounds
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at the lowest level of abstraction. These sound classes were integrated by sounds that had differ-

ent associated syllables and also pertained to different participants. This constitutes the seventh

supervision strategy.

5.2.1.3 Baseline Algorithms

We compare the performance of learnt embeddings with two baseline feature sets and a speech

recognition model.

The first baseline model is the timbre feature set, which is made of Mel Frequency Cep-

stral Coefficients (MFCC) and envelope features. The MFCCs are computed using the same

frame-wise analysis parameters as for the spectrogram representations (see 5.1.1.2). For the

final 32-dimensional feature vector (see 5.2.1.4), we take the mean of the first 14 MFCCs, the

mean of their first derivative, and four envelope descriptors: the derivative after the maximum

amplitude, the maximum derivative before the maximum amplitude, the flatness coefficient, and

the temporal centroid to total length ratio. For the 16-dimensional feature vector, we take the

mean of the first 12 MFCCs along with the four envelope descriptors.

In a similar way as with the embedding learning methods, we built seven importance-based

feature selection algorithms whose base algorithms were supervised using the same seven super-

vision strategies described in Section 5.2.1.2. We only report the best result from these seven

approaches in Section 5.2.2. Here, instead of learning embeddings from spectrogram representa-

tions, we extracted a set of 258 engineered features from the spectrum and the envelope of vocal

percussion sounds, derived feature importances from a random forest base algorithm through a

10-way feature permutation process [15], and selected the most informative features to build the

final set. In the case of phoneme-level supervision strategies, the final selected features were

drawn from the intersection of the two independent feature importances arrays, gathering the

features that were considered most important to classify both onset and coda phonemes. We

use the Essentia toolbox [6] to calculate these audio descriptors and the ones mentioned in the

paragraph above.

For the last baseline method, we tackled vocal percussion classification by means of a GMM-
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HMM speech recognition system, an approach proposed by Evain et al. in [16] that was orig-

inally applied to beatbox classification with satisfactory results and that we bring to amateur

vocal percussion classification in order to provide context for our methods. Here, each instru-

ment type to detect is considered as a word to be recognized. First, an acoustic model was

trained to learn a relationship between acoustic speech features and phonemes. These features

were 13-band MFCCs computed at 16 kHz sampling rate and using a frame length of 25 ms. The

mapping between instrument types and their corresponding phonemes was established through a

pronunciation dictionary, converting phoneme posterior probabilities to word type probabilities.

We exploited both instrument- and phoneme-level annotations to construct this pronunciation

dictionary. Word probabilities were then smoothed using a language model so as to obtain gram-

matically sensible transcriptions. The language model was 5-gram trained on the transcriptions

from training data, and the recognizer was trained via the Kaldi GMM-HMM recipe [17] using

the code in https://github.com/emirdemirel/ALTA [18]. Our final model was a triphone GMM-

HMM model trained with speaker adaptive features [19]. Hyperparameters were determined

empirically and they are available in the paper’s repository.

5.2.1.4 Training and Evaluation

A schematic diagram of the training and evaluation processes is provided in figure 5.1.

We chose four participants from the AVP dataset and four from the LVT dataset to compose

the evaluation set. Two women and two men per dataset were selected for evaluation on the basis

of acceptable pronunciation and overall representativeness of the dataset. In the end, we had a

total of 8 participants in the evaluation set and 40 participants in the train-validation set. We

provide the distribution of the instrument, syllable, onset phoneme, and coda phoneme labels in

the project’s code repository.

We trained our seven CNN models (see section 5.2.1.2) using the train-validation dataset.

We set up a 5-fold cross-validation routine in which models were trained and validated for 5

iterations per fold, each with different initialisation parameters. Therefore, we end up with 25

deep embedding models per supervision strategy that encapsulate two main sources of training
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AVP-LVT Dataset (48)

Train-Validation Set (40) Evaluation Set (8)

Augmented Train-Validation

Trained CNN Classifiers (25)

CNN Embedding Models (25)

Ev-Train Set Ev-Test Set

Augmented Ev-Train

Embeddings Ev-Train (25)

Trained KNN Classifier (125)

Raw Accuracies (125)

Final Accuracy

10-fold data
augmentation

5-fold CV & 5 ran-
dom initialisations

Remove last layer

10-fold data
augmentation

Embeddings calculation

KNN with K=3,5,7,9,11

Classification

Mean and STD

Figure 5.1: Diagram of the training-evaluation process. Background colour code:
orange = dataset-related, green = model-related, red = results-related.

arbitrariness: the content of train-validation splits and random weight initialisation. We compute

the mean and standard deviation of the subsequent 25 evaluation performances when reporting

final results for a given supervision strategy. The same train-validation arrangement applies to

the seven baseline feature selection methods. We trained the models using an Adam optimisation

algorithm [20], early stopping if validation loss has not decreased after 10 epochs, and a further

regularisation routine that downscales the learning rate if validation loss has not decreased after

5 epochs. In the case of phoneme-level supervision, we explored two settings of loss weights

to compute the joint loss value after each training batch. The onset-coda weight percentages for

those two settings were 50-50% and 60-40%.

As explained in section 5.2.1.1, each of the 8 participants in the evaluation set have their

own train and test subsets. From here on, we refer to these as the ev-train and the ev-test sets

respectively to improve readability. During evaluation, a KNN algorithm was trained on the

ev-train set of each participant and evaluated on the ev-test, taking the learnt CNN embeddings

and the baseline feature sets as input representations. As these embeddings and feature sets are

expected to have different information for the KNN algorithm to rely on, they are also expected
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to make the classifier perform better or worse given the underlying suitability of these feature

sets for classification. As KNN algorithms are purely distance-based and non-parametric, our

assumption is that a high classification accuracy using them is more likely to translate into a high

accuracy using other types of machine learning algorithms. In Section 5.2.2, we had the oppor-

tunity to briefly test this hypothesis by replacing the KNN classifier with three other popular

machine learning classifiers whose results are commented on but not reported.

The evaluation procedure above is applied to all proposed and baseline methods except for

the GMM-HMM-based speech recognition model. This model does not extract embeddings but

rather predicts the ev-test labels directly ignoring the ev-train subset (user-agnostic). Also, to

alleviate the disparity in the amount of ev-train data in the AVP and the LVT datasets (1,000

vs. 220 augmented data samples approx.), we extract two different amounts of embeddings and

selected features: 32 to carry out evaluation on AVP participants and 16 to do it on LVT ones.

This means that for each supervision method we end up having 25 feature sets of size 32 to

evaluate on AVP data and other 25 of size 16 to do it on LVT data.

We report final results in two modalities: participant-wise, where accuracy scores of single

test participants are calculated and averaged, and sound-wise, where accuracy scores are calcu-

lated for all evaluation vocal percussion sounds in a participant-agnostic way. We express error

measures from several training iterations via the standard deviation and the 95% confidence

interval.

Then, in order to compare the performance of the best embedding learning model with the

ones related to the end-to-end algorithms in 5.1.2, we evaluate on the AVP dataset exclusively.

To that end, we evaluated models on one participant at a time while training them with the data

pertaining to the remaining 27 participants (leave-one-out strategy), giving a total of 28 mod-

els. We ran ten training iterations of each of the models with different weight initialisations and

train-validation splits and performed classification with a random forest, a logistic regression

algorithm, and a KNN algorithm with 3, 5, 7, 9, and 11 neighbours. We reported the mean accu-

racy and its associated errors for both participant-wise and sound-wise performances featuring

the best-performing classification algorithm.
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Finally, in order to better interpret our models’ decision-making process, we calculated sev-

eral saliency maps [11] via backpropagation using the embedding learning models trained with

the original instrument-level labels. These maps highlight the sections of the input spectrograms

that receive a stronger amount of gradient, which correlate with the regions that these models

consider important for correct classification. These maps are computed given an input x and the

penultimate layer output of a deep learning model A as: dAi
dx , where i is the label with respect

to which the saliency map is computed. In our case, A is the CNN model conditioned on the

original instrument labels. We aggregated the saliency map by taking the absolute value and

thresholding it, so that the top 10% of the map is set to one and the rest is set to zero. Then we

averaged the saliency map over the 25 models.

5.2.2 Results and Discussion

5.2.2.1 Classification Performance on AVP-LVT Dataset

Final evaluation accuracies for all methods are gathered in Table 5-D. Best results were obtained

using a frame size of 46 ms and, in the case of phoneme-level classification, loss weights of 0.6

and 0.4 for onset and coda phonemes. Also, the best-performing feature selection routine was

the one using the original syllable label set.

We can observe in the table that all supervised embedding models except for those super-

vised with instrument-level classes are consistently superior to baseline approaches, including

feature selection approaches. This observation lies in accordance with previous literature on the

usefulness of deep learning models as feature extractors for speech utterances [10]. It also high-

lights the unsuitability of instrument-level classes for embedding learning supervision, which

was somewhat expected given that participants have different ways of vocalising drum instru-

ments. Thus, label sets of such (high) level of abstraction are undesirable for embedding learning

in our case.

We see that the best performance for both participant-wise and sound-wise evaluation metrics

is achieved by supervised embedding learning models that used the original syllable-level label

set. This difference is notable not only for the high mean accuracy score but also for its standard
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Baseline Instrument-Level

Timbre Selection HMM∗ Original Reduced

Part-wise .840 .827 ± .078|.030 .725 .812 ± .095|.037 .779 ± .087|.034

Sound-wise .835 .795 ± .083|.033 .734 .774 ± .097|.038 .738 ± .086|.033
∗ User-agnostic model

Syllable-Level Phoneme-Level

Original Reduced Original Reduced

Part-wise .899 ± .066|.025 .883 ± .078|.030 .876 ± .071|.028 .874 ± .075|.030

Sound-wise .874 ± .074|.029 .852 ± .080|.031 .840 ± .074|.029 .838 ± .081|.032

Sound-Level

End-To-End Siamese Triplet

Part-wise .861 ± .076|.030 .849 ± .068|.027 .857 ± .084|.033

Sound-wise .832 ± .078|.031 .831 ± .069|.027 .834 ± .089|.035

Table 5-D: Final evaluation accuracies from generated feature sets. Accuracies are
given participant-wise and sound-wise, and best performances for both
modalities are highlighted in bold font. For feature selection, only the
best performance is reported (reduced syllable-level). Errors from several
training iterations are expressed via the standard deviation (left) and the
95% confidence interval (right).

deviation, which is the lowest for both participant-wise and sound-wise metrics. This means

that the informative power of the resulting embeddings, apart from being the most prominent, is

also the most robust to the two sources of training arbitrariness that we studied here (see Section

5.2.1.4). We carried out experiments using other different classifiers than KNN, namely logistic

regression, random forest, and extreme gradient boosted trees. There, we observed that the orig-

inal syllable-level method still outperforms the rest of the approaches, which further reinforces

its suitability for classification. All methods performed similarly on these extra algorithms, both

in terms of absolute and relative performances.

Models supervised using original and reduced phoneme-level classes also yielded similar

scores to those of the ones with syllable-level supervision, although still lower and generally less

robust to training arbitrariness, possibly due to the extra complexity of the multi-task learning
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approach. The same applied to sound-level supervision, which performed slightly worse than

phoneme-level supervision, possibly indicating that very low levels of supervision abstraction

are relatively counterproductive for vocal percussion classification engines.

Another reason that could explain this lower performance for sound-level supervision could

be its large amount of output labels (∼150 sound types), which complicates validation. In order

to tackle this issue, we built and trained an alternative siamese network model [21] with the same

architecture as the CNN except for the last fully connected layer, which was removed. This

network uses metric learning directly on embeddings to discriminate between same-class sound

pairs and different-class ones, therefore reducing our large label vector to a “same-different”

binary auxiliary vector. In the end, its final accuracy was found to be moderately lower than the

one relative to the CNN classifier, so we kept the latter’s result.

We also notice that the generic (user-agnostic) HMM-based speech recognition model per-

forms worse than any other user-based method. This result further evidences the importance of

taking user idiosyncrasies into account in amateur vocal percussion classification, making user-

based strategies preferable to generic user-agnostic ones. Finally, we observe that accuracies

derived using the timbre feature set are higher than all the ones pertaining to baseline feature

selection algorithms. This result could indicate an excessive information redundancy of selected

features compared to that of the timbre set, which is a more internally cohesive feature set.

A clear limitation of the syllable-level embeddings as inputs to amateur vocal percussion

classifiers is that these were learnt using samples recorded with electronic devices in a small

room with little background noise, which emulates the typical recording setting of amateur

music producers. This is likely to work similarly well in recording studios, where audio qual-

ity is higher, but may very well lose a significant part of its accuracy when faced with low-

quality recordings or contexts with too much noise. The timbre feature set could be of great help

for these situations, as its features are context-agnostic and therefore adapt well to challenging

recording scenarios.
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5.2.2.2 Classification Performance on AVP Dataset

The syllable-level embedding model trained and evaluated on the AVP dataset and a KNN algo-

rithm with 3 neighbours (best-performing final classifier) obtained a participant-wise accuracy

score of .784 ± .087|.054 and a sound-wise accuracy score of .767 ± .082|.051. These results

are slightly lower than the ones we obtained with the end-to-end CNN (.789 and .770) and higher

than those from the rest of the methods, including the MLP-Spec (see Section 5.1.2). In partic-

ular, we can see how it is significantly more accurate than both the KNN-Heur and MLP-Heur

methods, which used 32 heuristic features for classification. This showcases the superior perfor-

mance of learnt features relative to heuristic ones in our specific classification context. Another

important thing to note is that the embedding learning method is also significantly less stable

than the end-to-end CNN method, with standard deviations of .087 participant-wise and .087

sound-wise for the former and .031 and .030 for the latter respectively.

Hence, performing feature extraction with our syllable-level embedding model and classi-

fication with the KNN algorithm with 3 neighbours is notably faster (the embedding learning

model requires no training time), generally prevents overfitting (only 32 features to model with a

KNN algorithm), and achieves a comparable performance to that from the end-to-end CNN clas-

sifier. In general, we believe that this embedding learning strategy is, overall, the most practical

one for user-based amateur vocal percussion classification. However, this comes at the expense

of having potentially lower performance stability related to training parameters and validation

splits, which might be undesirable under some circumstances.

5.2.2.3 Saliency Maps

Four representative examples3 of these maps are shown in Figure 5.2. We found that, in general,

models tended to focus more on frequencies between 1000Hz and 2000Hz for vocal percus-

sion sounds associated with snare drum, closed hi-hat, and opened hi-hat. This region usually

coincides with a high-energy one for these sounds, which often share phonetic representations.

It also might indicate a useful thresholding point for the network to tell the sounds apart. Hence,
3See project’s repository for more examples of saliency maps.
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(a) Kick drum (b) Snare drum

(c) Closed Hi-Hat (d) Opened Hi-Hat

Figure 5.2: Log mel spectrogram (left) and corresponding saliency map (right) of
four sounds of different instrument class.

this could be implying that a higher frequency resolution in this region could potentially improve

the accuracy of future amateur vocal percussion classifiers.

The network also appears to attend to silences and regions of lower spectral energy in the

case of the kick drum and closed hi-hat. This could mean the absence of energy, especially at

the high end of the spectrum, might also be a key feature for the models to differentiate the kick

drum and closed hi-hat from the rest of the instruments. The high attention density in silences

specifically could also be implicitly suggesting that the duration of vocal percussion sounds is a

key factor to distinguish the kick drum and closed hi-hat from the snare drum and opened hi-hat,

as the sounds associated with these last two instruments tend to be longer.
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5.3 Summary

In this chapter, we have taken a look at vocal percussion classification in an offline context.

We have explored and compared the performance of heuristic, end-to-end, and feature learn-

ing algorithms. We also weighted their suitability for offline classification attending to several

parameters of interest apart from accuracy, like performance stability and training time in the

case of user-based approaches.

In our first study, we built several heuristic and end-to-end data-driven algorithms and com-

pared their classification performances using the AVP and the BTX datasets for training and eval-

uation. We saw that, for amateur vocal percussion, user-agnostic algorithms with fixed sounds

significantly outperformed user-based methods, meaning that it is generally desirable to make

the users stick to a fixed set of sounds to vocalise for each instrument rather than letting them

use the sounds of their choice. We also saw that the user-based methods that used the CNN

classifier needed around 3 minutes to train on a CPU, which could potentially be impractical

from a user-satisfaction perspective when implementing the algorithm in real-world scenarios.

Also, the low classification accuracies relative to beatbox sounds might signal a need for a more

thorough study on this form of vocal percussion for offline classification purposes.

In the second study, we explored embedding learning techniques to shorten the training

time of user-based amateur vocal percussion classification algorithms and improve their gen-

eralisation power by minimising the chances of overfitting. We built several CNNs supervised

on four types of label sets (instrument-level, syllable-level, phoneme-level, and sound-level)

and used the 32 features in their penultimate layer as input to a KNN classifier. We discov-

ered that the embeddings extracted from the CNN model supervised with syllable-level labels

were the best-performing ones in both accuracy and stability to training conditions. Apart from

bringing the training times down and reducing overfitting, this embedding learning strategy

also achieved comparable performances to those relative to the end-to-end CNN model, mak-

ing embedding learning an appropriate alternative when classifying user-based vocal percussion

sounds. Saliency maps derived from these embedding learning models also revealed that spec-
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trogram regions in the 1-to-2 kHz frequency band and those with absence of energy seem to be

of special relevance for these algorithms when classifying drum instruments.
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Chapter 6

Online Vocal Percussion Classification

Once the onsets relative to vocal percussion sounds are detected in audio streams, the classi-

fication process takes place. This is the last stage of the transcription process and consists in

assigning a class label to the detected sounds based on the audio information right after the

predicted onset. In this chapter, we take a look at vocal percussion classification in an online

(real-time) context.

While in offline mode classifiers have access to the whole audio file containing the vocal

percussion performance, in online mode classifiers have access to a short analysis buffer that

contains the most recent few milliseconds of the recorded audio stream. An online transcription

system would have to detect, classify, and usually trigger a response shortly after the sound event

is recorded. For instance, an online system would trigger a snare drum sound almost at the same

time as the performer vocalises the percussive sound event that is supposed to trigger it. This

online procedure puts an important constraint on the system, forcing a trade-off between delay

(length of the analysis buffer) and performance (detection and classification accuracy). In this

sense, the longer the analysis buffer, the more information is available to the algorithm and the

better the performance is expected; but also the more delayed the triggered response will be,

which could be perceptually unpleasant if it exceeds a certain threshold that usually depends on

the nature of the task at hand.

124
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In this chapter, we firstly investigated which phoneme-to-instrument mappings were the most

adequate to perform online amateur vocal percussion classification with. For that, we used three

different evaluation criteria to base our decision upon: frequency of use of phonemes among

different performers, spectral similarity to reference drum sounds, and classification separabil-

ity. Following such criteria, the final recommended mappings would potentially feel natural for

performers to articulate while enabling classification algorithms to achieve the best performance

possible.

In our second study, we evaluated the performance of several algorithms when classifying

the above-mentioned sounds for amateur vocal percussion and those in the BTX dataset for

beatbox. As input representations, we explored several analysis frames of different lengths and

placements along a short audio buffer right after each sound’s onset. Like in the case of onset

detection, we evaluated the performance of different heuristic and data-driven models given the

spectral content within the input analysis windows. We then put the final results in context with

those from Chapter 4 (onset detection) and offer a final discussion on which onset detection and

classification models to choose for online beatbox and amateur vocal percussion transcription.

All in all, we wanted to answer the following research questions:

• Which phoneme-to-instrument mappings are the most adequate to perform online amateur

vocal percussion classification with?

• Which classifier is most adequate to carry out online vocal percussion classification with?

• Are beatbox sounds more separable than amateur vocal percussion sounds in an online

context or is it vice versa?

• How do processing times of data-driven algorithms compare to those of heuristic methods?

• How reliable and stable are heuristic and data-driven classifiers?

• Which is the recommended transcription delay to avoid perceptual unpleasantness from

response delay while achieving high transcription accuracies?
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6.1 Phoneme Mappings for Online Amateur Vocal Percussion Clas-

sification

Vocal percussion sound events are mostly composed of plosive, fricative, and affricative phonemes.

As the delay buffer to trigger percussive responses in real-time is generally short, some of these

phonemes are more distinguishable than others within their first few milliseconds. For instance,

the phonemes /p/ and /s/ are vocally articulated in a different way and are likely to be easily dis-

cernible, while the phonemes /p/ and /b/ are articulated in a similar way and are usually harder

to separate in a classification task, even when having access to the complete sound events. Also,

for the process to feel natural to performers, usually music producers and musicians, it is con-

venient for them to vocalise specific phonemes on the basis of their auditory resemblance with

their response triggers. For example, if the response trigger is a kick drum sample, one would

prefer a /p/ sound to an /s/ sound, as the spectral content and dynamics of the former sound are

generally closer to those of a generic kick drum.

The motivation for this first study is urged by the two above-mentioned facts. More specifi-

cally, we try to answer the following question: which group of phonemes provide optimal online

Vocal Percussion Transcription (VPT) performance while remaining natural for the performer to

use?

We evaluated the appropriateness of each phoneme to make the final set on the basis of three

criteria. The first criterion was the frequency of use of the phonemes, i.e., how many participants

chose these phoneme-to-instrument mappings. The second one was spectral similarity to refer-

ence drum sounds; that is to say, how similar the phonemes’ sounds are to those of real drums.

Finally, the third one was classification separability, which evaluated how reliably algorithms

can distinguish between different pairs of phonemes so as to maximise classification accuracy.

6.1.1 Relevant Work and Data

To the best of our knowledge, this was the first study that addressed the problem of phoneme

recommendation for online VPT, although earlier work touched on some aspects of our three
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criteria. Picart et al. [1] gathered data about the frequency of use of several phonemes among

two beatboxers and Stowell et al. [2] released a dataset with fourteen beatbox performances from

different participants with phoneme annotations in most of their sound events. In contrast with

our case, these sound events are sometimes polyphonic (e.g. /ps/ = kick drum + opened hi-hat)

and are heavily influenced by already established beatboxing techniques.

Perhaps the most similar study to the present one regarding the spectral similarity between

drum and phoneme sounds is that of Patel et al. [3], where the authors compared several audio

features extracted from both tabla sounds and their traditionally associated syllable sounds and

found strong correlations between them, which suggests that onomatopoeia might have played

an important role in the origin of such tabla vocalisations. A related recent study tied drum

sounds with their vocal imitations directly using both engineered features and features learnt by

a neural network from the input spectrograms [4]. However, unlike the previous study in tabla

sounds, this study did not carry out phoneme-wise feature analysis nor spectral analysis.

An especially relevant piece of research for classification separability and for this study in

general was that of Stowell et al. [2]. In this work, which looked at online VPT with beatbox

sound events, the authors explored classification accuracies under different frame delays from

the onset times and also conducted a listening experiment on the perceived quality of different

response delays so as to provide an upper bound to the length of the analysis audio buffer. The

accuracies they reported, however, took drum instruments as classes instead of phonemes, and

therefore we could not extract phoneme-wise classification separability observations from such

results.

Another study [5] presented a VPT system with custom vocal percussion phonemes that

could operate in online mode and also informed the users about the classification separability of

their chosen sounds. This study did not include an investigation of phoneme-wise classification

separability as well. However, a few studies in acoustic-phonetic analysis [6, 7] provided results

on plosive phoneme classification separability. They used engineered features like the Mel Fre-

quency Cepstral Coefficients (MFCC) and machine learning models like Hidden Markov Mod-

els (HMM) to classify plosive phonemes and illustrated results via confusion matrices. We got
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inspiration from such methods when planning the methodology of the present study; although,

in contrast with our work, the whole phoneme sounds were taken for classification instead of

just their first few milliseconds.

In our study, we analysed vocal percussion sounds and drum samples data from two datasets.

We used the Amateur Vocal Percussion (AVP) dataset [8] as our reference dataset for vocal

percussion sounds. We chose this dataset because it is the one that has the widest variety of

phonemes and all its vocal percussion sounds have annotated onsets, instrument labels, and

phonetic representations. We specifically used the 4873 sound events that made the personal

subset, where participants were asked to trigger the drums in their own particular style. For all

participants, we used the sound events from their training (isolated sound events) and testing

(beatbox-like improvisation) sets. In the case of the reference drum sounds, we took samples

from InMusic’s BFD3 library [9] at velocities 64 and 127. These included 150 kick drum sam-

ples, 274 snare drum samples, 276 closed hi-hat samples, and 276 opened hi-hat samples. All

sounds were sampled at 44100 Hz, and we applied dither to downscale the bit-depth of reference

drum sounds from 24 to 16 bits so that it matched that of AVP sounds.

6.1.2 Analysis

6.1.2.1 Frequency of Use

To calculate the frequency of use of each phoneme in the AVP dataset, we first extracted the

annotations regarding onset and coda phonemes (see 3.3.3) of sound events contained in the per-

sonal subset. If we represent sound events as syllables, onset phonemes would be their first part,

generally a plosive, fricative, or affricative phoneme. Coda phonemes would be the second part

of the syllable, coming immediately after onset phonemes and usually being vowel phonemes.

While coda phonemes are not necessary to build the sound event, they come in handy for offline

VPT, providing a further degree of freedom to construct sound events upon. For the frequency

of use criterion, we considered the onset phonemes of all sound events, with and without coda

phonemes, while for the rest of the criteria we analysed those sound events that consist of just

one onset phoneme without coda phoneme (see section 6.1.2.2).
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Kick Drum Snare Drum Closed Hi-Hat Opened Hi-Hat All Instruments
/dZ/ 1 3.6% - - - - - - 1 3.6%
/k/ - - 3 10.7% - - 2 7.1% 5 17.9%
/kS/ - - - - - - 1 3.6% 1 3.6%
/kx/ - - 3 10.7% 1 3.6% - - 4 14.3%
/p/ 22 78.6% 3 10.7% 1 3.6% - - 22 78.6%
/s/ - - - - 1 3.6% 2 7.1% 3 10.7%
/t/ 4 14.3% 7 25.0% 19 67.9% 7 25.0% 24 85.7%
/ts/ - - 3 10.7% 7 25.0% 11 32.1% 16 57.1%
/tS/ - - 6 21.4% 4 14.3% 9 32.1% 14 50.0%
/tC/ - - 4 14.3% - - 2 7.1% 6 21.4%
/tZ/ 1 3.6% 1 3.6% - - - - 2 7.1%
/ÜÝ/ 1 3.6% - - - - - - 1 3.6%
/!/ - - 1 3.6% - - - - 1 3.6%

Table 6-A: Frequency of use of onset phonemes in the AVP dataset. These are the
percentages and the raw numbers of participants (out of 28) that used the
phonemes to trigger each of the four drum instruments (first four pairs
of columns) and that used the phonemes to trigger at least one of the
instruments (“All instruments” pair of columns).

We looked at how many participants used each onset phoneme to trigger each of the four

instruments. For instance, how many participants used the onset phoneme /t/ to trigger the snare

drum sound. The assumption we make here is that the higher the number of participants that

decided to use a phoneme to trigger a particular drum sound, the more natural it would feel

for a generic performer to trigger that drum sound with that phoneme sound. Results from this

analysis are shown in Table 6-A.

There are two clarifications to be made regarding this table. The first one is that the “All

Instruments” column contains the raw numbers and percentages of participants that used each

phoneme. Note that this is not constructed simply by adding the terms in the rows of the four

instruments, as one participant can use the same onset phoneme to trigger more than one drum

instrument, in which case it would be still counted as one. The second clarification is that some

participants ended up using two or more different onset phonemes interchangeably to trigger a

single instrument, in which cases we included both phonemes. For instance, if we take a look at

the kick drum column and sum up the numbers we get 29 participants (instead of 28). This is

because the participant that used the phoneme /tZ/ to trigger the kick drum also used the phoneme
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/dZ/ for that purpose.

Looking at the table, we see that the dataset featured several plosive phonemes (/k/, /p/, /t/),

fricative phonemes (/s/), affricative phonemes (/dZ/, /kS/, /kx/, /ts/, /tS/, /tC/, /tZ/, and /ÜÝ/), and

even click phoenes (/!/). The phoneme /p/ was the preferred one to trigger the kick drum, /t/

to trigger the snare drum, /t/ again to trigger the closed hi-hat, and /ts/ to trigger the opened

hi-hat. The phoneme /t/ was the one used by the highest number of participants (24) followed

by /p/ (22), /ts/ (16), and /tS/ (14). It was also the only one used to trigger all four instruments.

Interestingly, we found that the phonemes that participants used to trigger the snare drum were

significantly varied compared to the rest of the instruments, which would deserve a closer look

in future studies.

Here we also selected the most popular phonemes to be considered and analysed in the

following sections. We carry out this filtering to both focus on the potentially most natu-

ral phonemes to do VPT with and to ensure representative sample sizes for the classification

task. Onset phonemes that had a significantly similar method of vocal articulation were grouped

together and reduced to one phoneme. This way, the phoneme /k/ accounted for the phonemes

/k/ and /kx/; the phoneme /tS/ accounted for the phonemes /tS/ and /tC/; and /tZ/ accounted for the

phonemes /tZ/ and /dZ/. By defining such groupings, the “All Instruments” column in Table 6-A

changed accordingly and we got that the /k/ group was used by 8 participants, the group /tS/ was

used by 18 participants, and the group /tZ/ was used by 3 participants. In order to count the num-

ber of samples that each phoneme had, accounting for the newly-defined groups, we took the

vocal percussion sound events associated with them that had no coda phonemes (i.e., pure onset

phonemes). That way, the phoneme /k/ had 263 samples associated with it, the phoneme /p/ had

532, the phoneme /s/ had 23, the phoneme /t/ had 617, the phoneme /ts/ had 652, the phoneme

/tS/ had 720, the phoneme /tZ/ had 56, the phoneme /ÜÝ/ had 46, and the phoneme /!/ had 29.

We observed that there was a pronounced jump between the number of samples associated with

the phoneme /tZ/ (56) to that associated with the phoneme /k/ (263). We considered the latter

as an appropriate sample size for classification, with its associated phoneme (/k/) being used by

more than a quarter of participants (28.6%). Therefore, we kept all phonemes whose sample size
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lied above 263 samples, leaving us with /p/, /k/, /t/, /ts/, and /tS/ as the final phoneme set to be

analysed.

6.1.2.2 Spectral Similarity

This part of the process deals with the spectral analysis of the sound events relative to phonemes

(/p/, /k/, /t/, /ts/, and /tS/) and reference drum sounds (kick drum, snare drum, closed hi-hat,

opened hi-hat). For that, we take a single fixed-length frame from the first few milliseconds of

each sound, compute its Fast Fourier Transform (FFT), and then apply an Equivalent Rectangular

Bandwidth (ERB) scaling operation to the spectrum’s frequency axis (ERB-rate scale) to derive

the ERB spectrum [10]. This ERB scaling operation approximates the bandwidths of the filters

in human hearing and, therefore, the kind of spectra derived from it would allow us to visually

compare the sounds on the basis of their perceptual similarity. Our hypothesis here is that the

more similar the ERB spectrum of a certain phoneme is to that of a drum sound, the more natural

it would feel to performers to trigger that specific drum by vocalising that phoneme.

We also had to select an appropriate frame size to compute the ERB spectrum from. We

considered lengths of 512, 1024, 2048, 4096, and 8192 samples, which would be approximately

equivalent to 12, 23, 46, 93, and 186 milliseconds respectively. We based our decision on two

main properties of sound events. The first one is the sound events’ effective duration, i.e., the

amount of time that the sound’s energy envelope lies above a certain threshold. The second

one is how recognisable are sound events when cropped to different frame sizes, both visually

and auditorily. For that, we took a look at the sounds’ waveforms cropped at different lengths,

listened to them, and discussed which length was the one that included the least amount of

silence time while allowing samples to remain perceptually discernible. We concluded that 4096

samples was an ideal frame length to conduct the spectral analysis.

An important difference between the drum sounds in the BDF dataset and the phoneme

sounds in the AVP dataset is that the former were recorded with professional microphones in

a noise-isolated room, while the latter were recorded in an acoustically untreated room with a

laptop microphone. This introduces noise when comparing the spectra of a drum sound to that
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Figure 6.1: Normalised mean ERB Spectra of the first 93 ms of the four drum types
and the five phonemes (grey) and mean value of each individual ERB
band (black dots).

/p/ /k/ /t/ /ts/ /tS/
Kick Drum .169 .063 .042 .022 .033
Snare Drum .492 .416 .303 .228 .303

Closed Hi-Hat .312 .418 .512 .522 .437
Opened Hi-Hat .321 .448 .487 .478 .440

Table 6-B: Mean cosine similarities between individual ERB spectra from drum
instruments and those from phoneme sound events. Values in bold are
the highest ones per drum instrument.

of a phoneme sound. Fortunately, the AVP dataset includes a fifty-second audio file containing

room noise; thus, in order to correct this issue to a reasonable extent, we subtracted the average

magnitude spectrum of 500 non-overlapping noise frames to all the phoneme sounds’ spectra,

clipping results to zero so as to avoid negative spectral magnitudes. This removed some of

the components of the recordings’ noise, including those belonging to the room and the laptop

microphone.

After this, we took the average spectrum of the ERB spectra pertaining to a certain class (e.g.

/p/ phoneme, snare drum,...) and we normalised it so that it had a minimum value of 0 and a

maximum of 1. These ERB spectra, nine in total, are shown in Figure 6.1. We also compute

the cosine similarities between individual ERB spectra from drum instruments and those from

phoneme sound events. Table 6-B collects the mean values of the resulting similarity matrices

for each drum-phoneme combination.
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Several observations about sound similarity could be derived from Figure 6.1 and Table 6-B.

For instance, the average spectrum taken from /p/ phonemes looks very similar to the one taken

from snare drums. This means that it would potentially feel most natural for users to vocalise this

particular phoneme to trigger a snare drum sound. The average spectrum of the /p/ phonemes

also bears a marked resemblance to that pertaining to the kick drum, making it a second option

to consider. Both these observations are corroborated by looking at the mean cosine similarities

of the phoneme /p/ with the snare drum and the kick drum respectively.

The phoneme /k/ average spectrum, on the other hand, seems to resemble that of the opened

hi-hat and, looking at the mean cosine similarities, it also appears to bear some similarity to the

snare drum, achieving the second-highest similarity score for that particular instrument. We can

also see that the average spectrum of phonemes /t/, /ts/, and /tS/ seem to be most similar to those

of closed and opened hi-hat, especially to the former. This can also be corroborated by looking at

the table with the mean cosine similarities, although by this metric the cosine similarity between

the phoneme /tS/ and the opened hi-hat is slightly higher than the one between such phoneme

and the closed hi-hat.

6.1.2.3 Classification Separability

An ideal online VPT system would trigger the response at the exact time that the vocal percussion

sound event (the stimulus) begins; but, of course, this is impossible, as the algorithm has no

prior information available to base its decision upon, and thus the need for an analysis buffer.

Depending on the task at hand, one would require a longer or shorter maximum buffer length

and, in the case of VPT, this maximum length is dictated by the perceptual unpleasantness of

the system’s response delay. Stowell et al. [2] conducted a listening experiment in which a

reactive system, right after the input is detected, outputs a mixture of all possible waveforms

(kick, snare... etc) until a certain moment (e.g. 11.6 ms after) when this mixture waveform

becomes the waveform of the correct class via crossfading. This showed that, for percussive

events, listeners perceive delays as acceptable up to a buffer length of 34.8 ms, which we adopted

as a reference in our study. Therefore, a VPT system operating in online mode would have to



Chapter 6. Online Vocal Percussion Classification 134

ONSET

23|1 (14.5 MS)

23|2 (26.1 MS)

23|3 (37.3 MS)

23|4 (49.3 MS)

46|1 (37.3 MS)

46|2 (49.3 MS)

Figure 6.2: Frames for online vocal percussion classification with lengths 23 ms
(below) and 46 ms (above). Prediction delays with extra 2.9 ms of mea-
surement error are next to their nomenclature in parenthesis.

detect and classify vocal percussion sound events within 34.8 ms after they are produced by the

performer.

Stowell et al. used 23.2-ms long analysis frames with a hop size of 11.6 ms. A delay of 34.8

ms, as they refer to in their paper, means that the analysis frame of 23.2 ms can be centered at

34.8 ms from the onset time at most. If it is centered further than 34.8 ms, performers would

experience a delay in the system’s response that is likely to not be well-tolerated perceptually

speaking. Therefore, if a frame of 23.2 ms is centered at 34.8 ms after the onset, it means that

we can analyse up to 46.4 ms from the sounds’ onset. Apart from this, we would also want

to include some samples before the onset in our analysis buffer, as sound onsets are sometimes

not accurately annotated or detected and some part of the sounds’ transient might remain before

the onset time. We take 11.6 ms before the onset and incorporate them into the buffer. Hence,

all in all, the length of the analysis buffer that we used to conduct online VPT was of 58 ms,

which would be composed of the 11.6 ms immediately before the onsets and the 46.4 ms after

the onsets.

Our buffer could be analysed in several ways. For instance, we could take single analysis

frames of different sample lengths centred at different points within the buffer and extract fea-

tures from them, or even concatenate the features from different frames into a single feature vec-

tor. The latter approach was explored by Stowell et al. [2] and showed little to no improvement



Chapter 6. Online Vocal Percussion Classification 135

Figure 6.3: Two-dimensional t-SNE mapping of phonemes’ engineered features.

in classification separability. Therefore, taking into account that the higher the feature dimen-

sionality the higher the algorithms’ risk of overfitting, we decided to take single frames from the

buffer and explore them individually. We took six frames whose positions and extensions in the

buffer are illustrated in Figure 6.2 and explored their classification performance.

We extracted 38 engineered features from these six frame types. In the case of spectral

features, we multiplied the frames by a Hann window before taking their FFT, from which we

extracted the features. We extracted a total of 38 features, which included 13 Mel Frequency

Cepstral Coefficients (MFCCs), spectral energy of 8 frequency bands (0-300, 300-800, 800-

1600, 1600-4000, 4000-7000, 7000-11000, 11000-16000, and 16000-22050 Hz), 4 spectral roll-

off frequencies (ratios of 0.25, 0.50, 0.90, and 0.95), spectral complexity, high frequency content,

spectral strongpeak, 4 spectral central moments (centroid, variance, skewness, and kurtosis),

spectral crest, spectral decrease, spectral entropy, spectral flatness, root mean square, and zero-

crossing rate. We also reduced the sample size of the /p/, /t/, /ts/, and /tS/ phonemes to 263 via

random sampling to ensure that all phoneme classes had an equal number of classes and thus

have a balanced-class classification task.
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46|1 46|2 23|1 23|2 23|3 23|4
Nearest Centroid .673 .673 .638 .662 .657 .670

Naive Bayes .659 .670 .544 .649 .665 .624
Single-Layer Perceptron .792 .798 .737 .778 .778 .784

Linear SVM .782 .792 .736 .768 .773 .776
K-Nearest Neighbours .830 .841 .751 .810 .817 .828

Decision Tree .710 .728 .661 .700 .711 .714
Random Forest .802 .821 .739 .789 .801 .809
Extreme Trees .704 .693 .622 .692 .678 .653

Extreme Gradient Boost .808 .832 .758 .803 .815 .804

Table 6-C: Best classification performances from each machine learning algorithm
using each of the six frame types as inputs. Results are given in raw accu-
racy from 0 to 1. Bold numbers are the best performances with respect
to the six frame types and the underlined bold number is the best perfor-
mance overall.

We applied t-distributed Stochastic Neighbor Embedding (t-SNE) [11] to reduce the dimen-

sionality of the feature map from 38 to 2 so as to better visualise phoneme class separability.

Figure 6.3 displays such feature map. There, we can see that the /p/ and /k/ phonemes are both

moderately distinguishable from each other and very distinguishable from the /t/, /ts/, and /tS/

phonemes in a feature-wise sense. This was somewhat expected, as we could eventually see how

their average spectra reflected this difference earlier in section 6.1.2.2. It is also worth noting

how the data points pertaining to the phonemes /t/, /ts/, and /tS/ are very close together in the

feature space, possibly meaning that they would be difficult for algorithms to separate. Although

the phonemes /ts/ and /tS/ display moderate separability from each other, the data points relative

to the phoneme /t/ are scattered all over the /ts/ and /tS/ regions, making this a possible conflicting

phoneme when attempting classification.

The resulting feature vectors were normalised via the z-score before being fed to the clas-

sification algorithms. We explored 9 different machine learning-based algorithms (see Table

6-C) so as to provide an algorithm-independent measure of phoneme separability. We imple-

mented the first eight algorithms via the Scikit-Learn library [12] and the ninth with the XGBoost

library [13]. We performed hyperparameter optimisation by conducting a grid search for most of

the algorithms’ hyperparameters, applied 10-fold cross-validation to improve the generalisabil-

ity and statistical significance of the output accuracies, and reported the best results from each



Chapter 6. Online Vocal Percussion Classification 137

Figure 6.4: Above: confusion matrix taken from the best-performing frame type
(46|2) averaged across all nine algorithms. Below: confusion matrix
taken from the best classification performance (frame 46|2 + k-nearest
neighbours).

method in Table 6-C. There, we could see which algorithm was potentially the best suited for

separating the five phonemes and which of the six frame types allowed the algorithms to perform

best in general. Most importantly, we wanted to visualise the classification separability of each

phoneme with each other, which could be easily done via confusion matrices. We constructed

two confusion matrices: one from the best-performing frame type’s results averaged through the

nine algorithms and another one from the best performance, both algorithmic and frame-wise.

These two confusion matrices are displayed in Figure 6.4.

In Table 6-C, we see that the k-nearest neighbours algorithm performed best for all frame
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types but the 23|1 one, where the extreme gradient boost performed best. Considering that the

k-nearest neighbours algorithm simply operates by measuring the Euclidean distance between

feature vectors, this highlights the general a priori adequacy of the extracted features. Regarding

frame types, we observe that the vast majority of best performances are achieved using the 46|2

frame, i.e., the frame that extends from the onset time to the end of the audio buffer. This is

somehow understandable, as this frame was the only one that covered the whole sound from its

onset, so it had access to all the changes happening within that small portion of sound that maybe

the rest of the frames could miss up to some point.

A more detailed view of the way the algorithms classified vocal percussion sound events into

individual phonemes is given by Figure 6.4. We can immediately see that the observations that

we drew earlier from Figure 6.3 perfectly translate to both confusion matrices. Essentially, the

/p/ and /k/ phonemes are relatively separable from the rest, which lies in accordance to [7], while

the phoneme /t/ is hard to separate from the /ts/, and /tS/ phonemes, especially in the case of the

former.

6.1.3 Discussion

The results drawn from the previous analyses highlighted several properties of phoneme and

drum sound events that were relevant for our goal, which was to choose the most appropriate

phonemes to do online VPT with. In this section, we integrated the insights from these results

and discussed the potential consequences that they may have in a real-life online VPT context.

This ultimately led us to the final choice of phonemes which, as expected, depended significantly

on the application setting.

The first part of the analysis, which looked at the frequency of use of onset phonemes in

the AVP dataset, told us that the phonemes that people used the most were the /p/, /k/, /t/, /ts/,

and /tS/ phonemes. This is the case for amateur vocal percussion, i.e., participants that have not

learnt beatbox technique, but looking at the phonemes preferred by beatboxers we realise that

they happen to be very similar to those chosen by amateur participants [1, 2]. This suggests that

the choice of these phonemes to trigger certain drum samples is based on the vocal imitation
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of such drum samples to some extent and therefore the phonemes usually feel natural for the

generic performer to use. We would therefore recommend using these phonemes for both online

and offline VPT.

The second part of the analysis, which covered the spectral similarity among phonemes and

drum sounds, gave us hints of which phoneme sound events typically sound more similar to

a certain drum sound regarding their respective frequency distributions. We saw that the kick

drum sound resembled the /p/ phoneme most, which explains the fact that the vast majority

of participants (78.6%) selected such phoneme to trigger the kick drum sound. The average

spectrum of the snare drum sound was also significantly similar to that of the /p/ phoneme,

which is also reflected in their cosine similarity measure. This finding clashes with that of the

frequency of use of the /p/ phoneme to trigger the snare drum (only 10.7% of participants) and

the generally dispersed frequencies of use among phonemes for that particular drum sound. We

suspect that this could be due to cultural conventions inspired by vocal percussion techniques

like beatboxing or that it could also be a consequence of having already selected the /p/ sound

for the kick drum and being inclined to choose a different one for the snare drum. Either way,

this would require a follow-up investigation that falls beyond the scope of the thesis. Given that

the /t/, /ts/, and /tS/ phonemes resembled closed and opened hi-hat sounds the most, we would be

initially inclined to leave the /p/ sound to trigger the kick drum and the /k/ sound to trigger the

snare drum, which were the first and the second most-featured phonemes for such instruments

respectively.

The picture is completed via the third part of the analysis, which studied the classifica-

tion separability among phonemes. Looking at the final confusion matrices, we saw that the

phonemes /p/ and /k/ were generally well separated by the algorithms. This finding, along with

the previous ones, provides a further reason to adopt these phonemes for the kick drum and snare

drum respectively, as they are often used to trigger these instruments, they are spectrally simi-

lar to such instruments, and they can be separated in a classification process with relative ease.

Also, the phoneme /t/ is especially hard to separate from the /ts/ phoneme and moderately hard

to separate from the /tS/ phoneme. This tells us that, although the /t/ phoneme was the most fea-
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K p S, HO k, ts/tsh
S p HC, HO ts, tsh

HC t K, S, HC p, k, ts
HO ts/tsh K, S, HO p, k, ts
K, S p, k K, HC, HO p, ts, tsh

K, HC p, t S, HC, HO k, ts, tsh
K, HO p, ts/tsh K, S, HC, HO p, k, ts, tsh
S, HC k, ts K, S, HC, HS, HO p, k, t, ts, tsh

Table 6-D: Phoneme recommendations for different drum set configurations. Nota-
tion: K = kick drum, S = snare drum, HC = closed hi-hat, HO = opened
hi-hat, and HS = semi-opened hi-hat.

tured one in the dataset, especially for hi-hat sounds, it might be best avoided so as to optimise

classification performances.

In order to select the final phonemes for recommendation, we need to take into account the

application context. In a VPT process, both offline and online, the users can select the number

of instruments that they want to use for transcription. For instance, they could decide to only

choose two sounds to trigger the kick drum and the snare drum, with no triggers for hi-hat

sounds. Therefore, if the users could choose among four instruments and include any number of

them in the set, we would have a total of 15 potential drum set configurations that would require

individual analyses.

Also, the case of hi-hat sounds is usually a complex one. This instrument is able to make

timbres that are very different from each other depending on how it is played. Here, we consid-

ered the fully closed and the fully opened case, while there also exists the half-opened sound of

the hi-hat, which does not let the cymbals vibrate for as long as the fully opened hi-hat sound by

bringing them closer to each other, where they clash and thus attenuate each other’s sound.

Integrating the insights drawn from the previous discussion and taking the last paragraph’s

point into account, we built Table 6-D. This table lists all 15 possible drum set configurations

along with their recommended trigger phonemes considering each case carefully, including a

16th combination featuring the semi-opened hi-hat as an extra instrument in case performers

want to trigger it along with the other four drums. These recommendations are made considering
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the three criteria that we applied in the present paper, so we did not take into account the ease

of their vocal articulation, for instance, or the skill level and consistency that a certain user may

have when pronouncing these phonemes, which both fall beyond the scope of our paper. In any

case, the phonemes featured in Table 6-D are only meant to be recommendations for the users of

the online VPT system, so it would be up to them to decide which phonemes to use in the end.

6.2 Online Beatbox and Amateur Vocal Percussion Classification

For the second and last study in this chapter, we evaluated the performance of heuristic and

data-driven algorithms for the online classification of vocal percussion sounds. We attempted

classification using the sounds relative to the phonemes that we derived in the last section (/p/,

/k/, /t/, /ts/, and /tS/) and also using beatbox sounds in a separate classification task (BTX dataset).

In their study, Stowell et al. showed that these sounds were reasonably separable from each other

in real-time scenarios, whose labels were annotated independently of the participant to whom

they belonged [14].

6.2.1 Methodology

Similar to the separability experiments in Section 6.1.2.3, we placed ten frames along the anal-

ysis audio buffer whose positions and extensions are displayed in Figure 6.5. This way, we

wanted to know the dependence between decision time delay, window length, and classification

accuracy.

The frames could be either of length of 23 ms (7 frames) or 46 ms (3 frames), and they oper-

ated on the buffer region where the sound classification delay is perceptually tolerable for generic

users [14]. The audio content within each frame was sampled at 44.1 kHz. We applied an 10-fold

waveform data augmentation [15] to these vocal percussion sounds, specifically random pitch-

shifting (semitone range = [-1.5,+1.5]) and time-stretching (stretch factor range = [0.8,1.2]), one

after the other in random order.

For the first classification method, we extracted the same 38 descriptors as in Section 6.1.2.3
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ONSET

23|1 (14.5 MS)

23|2 (20.3 MS)

23|3 (26.1 MS)

23|4 (31.9 MS)

23|5 (37.3 MS)

23|6 (43.5 MS)

23|7 (49.3 MS)

46|1 (37.3 MS)

46|2 (43.5 MS)

46|3 (49.3 MS)

Figure 6.5: Frames for online vocal percussion classification with lengths 23 ms
(below) and 46 ms (above). Prediction delays with extra 2.9 ms of mea-
surement error are next to their nomenclature in parenthesis.

and fitted three machine learning algorithms to see which of them maximised accuracy. Two of

them were the ones that obtained the highest accuracies in Table 6-C (random forest and extreme

gradient boost) and the remaining one was a logistic regression algorithm. We excluded KNN

algorithms because of their computational inference time, which grows linearly with the number

of samples in the training dataset and could render data augmentation impractical. The fact that

the inference times of the remaining algorithms did not depend on the training set size allowed

us to keep data augmentation routines in place, which we saw had a notably beneficial effect in

this particular task.

We also coded a Multi-Layer Perceptron (MLP) and a 1-Dimensional CNN (1D-CNN) as

our data-driven approaches. Both of these took a 128-dimensional Mel spectrum from each of

the frames in Figure 6.5, whose audio content was previously multiplied by a Hann window

function.

The MLP model had two hidden dense layers, each one with 64 and 32 neurons and a final

dense layer connecting to the labels. Each of the hidden layers was followed by a batch normal-

isation layer and a ReLU activation gate. We found out that batch normalisation on its own gave

a better performance for MLP than dropout and a mix of the two.
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The 1D-CNN model had three convolutional blocks followed by a dense layer with 64 neu-

rons, a ReLU activation function, a dropout layer with a rate of 0.1, and a final dense layer

connecting to the labels. Each of the convolutional blocks had a zero-padding layer that padded

the input with 12 zeros on both of its extremes, a 1-dimensional convolutional layer using filters

of size 15 and strides of 3, and a ReLU activation function. The three convolutional layers had

16, 32, and 64 filters respectively.

The number of neurons in the MLP layers, the number of filters in the CNN layers, and the

kernel size of these convolutional layers were optimised using grid search. These models were

trained using an Adam optimisation algorithm, early stopping if the validation losses did not

decrease after 20 epochs, and learning rate downscaling if validation loss did not decrease after

10 epochs. We trained 10 model iterations with different train-validation-test splits and weight

initalisations for each of the input frame types. All splits were stratified, meaning that they were

built so that all of them had the same proportion of labels.

Lastly, we conducted a timing experiment in which the inference times of classifiers were

measured and compared with each other. This gives us an impression of how much extra pro-

cessing delay is to be expected given the use of different algorithms. We measured both the

preprocessing time and the inference time. Preprocessing time included feature extraction in the

case of the heuristic method, spectrum calculation in the case of data-driven methods, and data

normalisation for both cases. Inference time was simply the time that took the algorithms to

predict the label of the input sample. We run 10,000 iterations for each method and reported the

average time.

6.2.2 Results and Discussion

Results for amateur vocal percussion and beatbox are both illustrated in Figure 6.6. We plotted

the classification accuracy against the buffer delay in milliseconds. Error bars displayed for

MLP and 1D-CNN accounted for the standard deviation of the accuracies relative to their 10

model iterations. The best-performing heuristic algorithm, both for amateur vocal percussion

and beatbox, was the logistic regression one.
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Figure 6.6: Online classification.

We can see how the 1D-CNN models outperform the rest of the methods for both amateur

vocal percussion and beatbox. These models had also more stable performances than those

derived from the MLP. An intriguing point of divergence between results on both types of vocal

percussion sounds is that, while the MLP achieves significantly better accuracies than the logistic

regression for amateur vocal percussion, the opposite is true for beatbox. Although we think this

could be related to a high variation of the descriptive power of heuristic features when applied

to amateur vocal percussion and beatbox, we could not find any reasonable explanation for this

result.

One can also observe how accuracies relative to amateur vocal percussion sounds greatly

outperformed those relative to beatbox sounds. This phenomenon could be explained by the

fact that amateur vocal percussion sounds had a total of 5 labels (phonemes /p/, /k/, /t/, /ts/, and

/tS/) while beatbox sounds had 11 labels (see [14] or Section 3.1.1 for more details). We also

hypothesize that the 5 amateur vocal percussion phonemes could be better separable than some

of the sounds in the BTX dataset. Furthermore, amateur vocal percussion phonemes are better

defined than beatbox sounds, as two of the labels in the BTX dataset gathered miscellaneous

sounds (identifiable, but not fitting one of the other categories) and sounds where annotators

were unsure of classification.
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In the case of amateur vocal percussion phonemes, we can see how the 1D-CNN model

achieves very high accuracies at small delays (95% at 20.3 ms). This confirms that online ama-

teur vocal percussion classifiers can reach near-perfect performance with an appropriate set of

input phonemes, resembling the result obtained in section 5.1.2 for the AVP UA Phon offline

VPT task (.970 for CNN). Hence, this kind of input data was not only the best-performing in

online classification but also in the offline case. We can also see how 46-ms frames consistently

perform better than 23.2-ms ones. This was a rather expected result, as the 46-ms have access

to twice the amount of information than the 23.2-ms frames. The difference in performance is

especially acute for beatbox sounds, which might be in need of a higher buffer size to achieve

optimal accuracies. Despite their higher accuracies, 46.4-ms frames also display higher delays

within the analysis buffer, which could be undesirable in some contexts.

Stowell et al. found in [14] that, for beatbox sounds, optimal classification performance with

heuristic methods for 23.2-ms frames was achieved with the frame centered at 23.2 ms after the

onset, accounting for a total delay of 37.7 ms. In fact, we can see that the maximum classification

accuracies for our heuristic method using 23.2-ms frames is precisely reached at a delay of 37.7

ms. However, we can see how accuracies for 23.2-ms frames generally start plateauing at 20.3-

ms delay for both amateur vocal percussion and beatbox, a phenomenon we also observed for

online onset detection with the same delay. This means that, while maximum accuracy could

be reached at later delays and with longer frames, a delay of 20.3 ms using a 23.2-ms frame

is usually enough to achieve near-optimal and sometimes optimal transcription performances

(onset detection followed by classification). Therefore, if a drum sample is supposed to be

triggered right after transcription, we would generally advise restricting the online transcription

process to a maximum delay of around 20.3 ms so as to improve the perceptual pleasantness of

the triggered response without sacrificing much accuracy.

Putting these classification results in a transcription context, we see that the slightly subopti-

mal accuracies of online onset detection methods (∼ 90%) could be a limiting factor in amateur

vocal percussion transcription performance. However, as we discussed in the introductory para-

graph of Chapter 4, online onset detection algorithms deal with several sources of confusion
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in the detection process, and most of these sources could have an arguably minor effect when

detecting the onsets of /p/, /k/, /t/, /ts/, and /tS/ sounds. Additionally, these phonemes have higher

“plosiveness” or “impulsiveness” than other percussive phonemes included in the final onset

detection dataset like /b/, /d/, or /g/. These two facts indicate that the accuracy of online onset

detection algorithms could be higher when classifying these amateur vocal percussion phonemes.

Finally, the timing experiments we conducted output average preprocessing times of 2.9 µs

for the logistic regression method and 2.1 µs for both the MLP and 1D-CNN methods, and

average inference times of 0.8 µs, 24.6 µs, and 69.9 µs for logistic regression, MLP, and 1D-

CNN respectively. While the 1D-CNN is significantly slower than the logistic regression and the

MLP algorithms, these times are around three orders of magnitude lower than the recommended

delay relative to the analysis buffer (20.3 ms). The same applies to the online onset detection

preprocessing times in Section 4.2.2: the average processing time for the RNN online onset

detector was 7.9 ms per analysed second of audio, which translates to 45.9 µs per frame given

5.8 ms of hop size. Therefore, these added preprocessing and inference times of both onset

detection and classification algorithms can be considered residual when calculating the total

amount of response delay.

Finally, more research is needed to bring up beatbox transcription accuracies, which could

potentially benefit from a better-defined taxonomy, better regularisation techniques, and novel

strategies to extend the analysis buffer length without rising response unpleasantness from high

delays among others.

6.3 Summary

This chapter has explored the problem of online vocal percussion classification for both amateur

vocal percussion and beatbox. It was composed of two independent but related studies, where

the findings of the first one were used in the second one.

In the first study, we tried to find the group of phonemes that were the most appropriate for

online vocal percussion classification. This appropriateness was estimated via three criteria: the
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frequency of use of the phonemes, the spectral similarity to reference drum sounds, and their

classification separability. We concluded that the /p/, /k/, /t/, /ts/, and /tS/ phonemes were all

popular choices by participants, had a spectral shape that resembled drum instruments (/p/ and

/k/ for kick and snare drum and /t/, /ts/, and /tS/ for closed and opened hi-hat), and were relatively

separable using machine learning algorithms based on input heuristic features.

In the second study, we applied several heuristic and data-driven algorithms to online vocal

percussion classification. For amateur vocal percussion, we built the classification task using

the five phonemes derived from the first study as input (/p/, /k/, /t/, /ts/, and /tS/). For beatbox,

we used the sounds contained in the BTX dataset in a separate classification task. We found

that one-dimensional CNNs (1D-CNNs) with input spectral data outperformed MLPs with input

spectral data and logistic regression models with input heuristic features. Results also show

how the amateur vocal percussion phonemes display high classification accuracy at low delays

which, coupled with robust onset detection routines, is likely to achieve a near-perfect online

transcription performance. In contrast, the performances of online classification algorithms with

beatbox sounds as inputs resembled those in the offline case to a certain extent, meaning that

these vocal percussion sounds are also challenging to classify in an online scenario.
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Chapter 7

Drum Sample Retrieval by Vocalisation

In this chapter, we detail the experiments we carried out for Drum Sample Retrieval by Vocali-

sation (DSRV). DSRV, as described in section 1.2, is essentially a similarity estimation task: the

goal is to find audio features that can best link reference sounds with their vocal imitations.

We split the chapter into two parts. The first one was a preliminary analysis of the MDV

dataset [1] to explore user differences in vocal imitation styles, discover audio features that these

users imitate skilfully, and inform data-driven DSRV systems on how to represent the audio

data that their learning algorithms take as input. For that, we used time-frequency visualisation

techniques, hierarchical clustering, and statistical tests like the Mantel test [2] among others.

In the second part of the study, we used the insights from the first part to explore the potential

of data-driven techniques to learn useful features for DSRV. The experiments here were carried

out in a purely user-agnostic way, as data-driven user-based techniques require more reference-

imitation sound pairs than there were publicly available at the time.

All in all, we wanted to answer the following research questions:

• How similar are drum sounds and their vocal imitations?

• Which audio features correlate best the acoustic space of drum sound with that of vocal

149
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imitations?

• To what extent are learnt embeddings more informative than heuristic feature when linking

drum sounds with their vocal imitations?

• Does conditional feature learning produce more informative features than unconditional

feature learning?

7.1 Preliminary Study: Spectral and Temporal Cues

In this first part of the chapter, we analyse the MDV dataset via spectrogram representations and

study the correlation of several audio descriptors extracted from drum samples with the same

descriptors extracted from vocal imitations. These experiments tell us to what extent listeners

can communicate salient spectral and temporal features via vocal imitations while giving us hints

on how to calculate input spectrograms for data-driven DSRV to maximise their informative

power.

We specifically analyse the audio files contained in the MDV dataset [1] which, as seen in

Chapter 3, includes 30 drum sounds from acoustic and electronic sources and their respective

vocal imitations performed by 14 participants. This accounts for a total of 30 reference drum

samples and 420 vocal imitations (30 per participant). Reference sounds included 6 kick drums,

6 snare drums, 6 hi-hats, 6 toms, and 6 cymbals, and all audio files were sampled at 44.1 kHz.

7.1.1 Experiment 1: Average Spectrograms

For this first experiment, we took the sounds pertaining to each source (reference or imitation)

and instrument type (cymbal, hi-hat, kick drum, snare drum, and tom) and averaged their spec-

trograms for visualisation. This way, we had 5 plots averaging the 6 spectrograms from each

reference drum instrument and other 5 plots averaging the 6 spectrograms from each imitation

sound for the 14 users (84 sounds in total). This would let us see how sounds from different

sources and instrument types compare to each other and assess the potential of the spectrogram

representation as input for data-driven DSVR algorithms.
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Figure 7.1: Normalised average FFT spectrograms of reference and imitation sounds
per instrument category. Magnitude is given in decibels. Ref = reference
sounds; Imi = vocal imitations; CY = cymbals; HH = hi-hats; KD = kick
drums; SD = snare drums; TM = toms.

The sounds’ average FFT spectrograms, calculated at 44,100 Hz of sample rate with 46.4 ms

of frame size and 2.9 of hop size, are displayed in Figure 7.1. We can see how most of the energy

contained in reference drum sounds and vocal imitations is found in the lower half of the spec-

trograms. This implies that a band-based compression technique that augments the resolution of

the low end of spectrograms could make spectrograms better represent spectral features related

to lower frequencies, where most information concentrates. This kind of compression can be

achieved by postprocessing the FFT spectrogram with non-linear frequency scales like the Mel,

Bark, or ERB ones. We also see that practically all the sounds’ information, especially for kick

drums, snare drums, and toms, is contained in the first 1.5 seconds of audio. We thus consider

this an appropriate truncation length when calculating input spectrograms for DSRV systems.
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7.1.2 Experiment 2: Timbre Analysis

In this second round of experiments, we analysed the patterns of occurrence of three timbre

descriptors in drum sounds and vocal imitations. This is to evaluate to what extent participants

reproduced these timbre features as appearing in reference drum sounds and to explore inter-

personal differences in such reproduction patterns. This way, if most participants reproduced a

certain feature, it would mean that such a feature is useful for user-agnostic DSVR. Furthermore,

the acoustic interpretation of the timbre descriptors would signal best practices when calculating

input spectrogram representations for data-driven DSRV algorithms.

7.1.2.1 Timbre Descriptors

We extracted three timbre features. Two of them, the log attack time and the derivative after max-

imum describe the envelope’s shape. The remaining one, the mean spectral centroid, describes

the energy ratio between low and high frequencies. For the frame-wise calculation of the spec-

tral centroid, we used a Hann window with size of 46.4 ms, a hop size of 5.8 ms, and the mean

statistical functional to aggregate the descriptor through time. The three descriptors were all

computed using the Essentia library [3].

Log Attack Time: This is the logarithm in base 10 of the attack time of the sound’s envelope,

which is the time between the sound’s onset and its maximum amplitude. We place the start of

the attack where the envelope’s amplitude is one-tenth of its maximum value to avoid noise

interferences and its end when it reaches the maximum amplitude.

Spectral Centroid: This descriptor, informally referred to as the “center of gravity” of the

spectrum, is defined as the normalised average frequency weighted by amplitudes. This descrip-

tor highly correlates with the perception of sound “brightness” and, like the log attack time, it

has been found to be an essential descriptor in sound timbre analysis.

Derivative After Maximum: This descriptor measures the slope of the envelope’s region

right after its maximum amplitude. More technically, it calculates the mean of the envelopes’

derivative weighted by its amplitude.
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The log attack time and the derivative after maximum were chosen because they are highly

characteristic of impulsive sounds. Taking the ADSR model of the sound envelope [4], the log

attack time would relate to the attack region and the derivative after maximum would relate to the

decay, sustain, and release regions. However, the envelope of impulsive sounds like drums and

their vocal imitations can be mostly described by its attack and release regions, as it has negli-

gible decay and sustain parts. In this way, both descriptors help discriminate between impulsive

sounds via their “impulsivity”: the lower the value of these two descriptors for a certain sound,

the more impulsive this is.

The spectral centroid and the log attack time are also well-established salient descriptors of

timbre [5]. Moreover, the spectral centroid was the most selected descriptor across participants

and models for pure user-based amateur vocal percussion transcription, as seen in section 5.2.1.4.

Assuming that the trigger sounds that participants chose for VPT were inspired by the original

drum sounds to a certain extent, we considered that the fact that algorithms relied on the spectral

centroid while classifying vocal percussion sounds could signal that participants often used this

descriptor to differentiate between their own trigger sounds. If that is the case, there would be

a high chance that the spectral centroid is also being used to imitate reference drum sounds in a

DSRV context.

Although the derivative after maximum is an envelope descriptor and hence timbral, we

suspected that, for impulsive sounds, it could be highly correlated with the duration of the sound,

which is non-timbral by definition. The reason for this was that the maximum amplitude of

impulsive sounds is usually located very near their onset, and their release section accounts for

most of the sound’s duration. The release section of drum sounds in particular is characterised by

the stabilisation of the resonant percussive body and the early and late reflections from the room

where the sound took place. To check if this correlation between the derivative after maximum

and the duration could exclude the former from our timbral feature set, we measured the Pearson

correlation coefficient between these two descriptors across all reference and imitation sounds.

We found this correlation coefficient to be of r=.63 (p<.001). Although this is a moderately

high correlation, we considered it to not be high enough to regard the derivative after maximum
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as a non-timbral descriptor in the context of this experiment.

7.1.2.2 The Mantel Test

The Mantel test is a statistical test that measures the correlation between two symmetric matrices

of the same dimensions. In our case, one of such matrices relates to the acoustic space of drum

samples and the other one to the acoustic space of vocal imitations. In general, the higher the

mantel score (with a significantly low p-value) that a feature has for a certain imitator, the more

faithfully the imitator reproduces the feature vocally.

To calculate the Mantel score and its associated p-value, as detailed in [2], we constructed

two Euclidean distance matrices for a certain audio feature and imitator. Both matrices are given,

respectively, by:

Dref
ij =

∣∣∣xrefi − xrefj

∣∣∣2 (7.1)

Dimi
ij =

N∑
n=1

∣∣ximi
n,i − ximi

n,j

∣∣2 (7.2)

where i ∈ [1, 30] and j ∈ [1, 30] are the indices of the drum sound classes, N is the number

of imitators (14 in our case), xref are the feature magnitudes from the reference drum sounds,

and ximi
n are the feature magnitudes from the vocal imitations pertaining to the n-th user with

n ∈ [1, 14]. The first matrix (eq. 7.1) was built by calculating the Euclidean distance from

single descriptor values taken from all drum samples. It was, therefore, a symmetric matrix of

dimensions 30x30. For the second distance matrix (eq. 7.2), we first calculated the Euclidean

distances from descriptor values taken from vocal imitations of individual participants and we

then averaged the 14 resulting matrices into a single one of size 30x30.

Once we had the two symmetric distance matrices, we performed and averaged five iterations

of the Mantel test [2] on them, measuring the degree of statistical (Pearson) correlation between

them with the associated p-value. The Mantel test scores relative to the derivative after maximum
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descriptor for all 14 imitators gave a mean result of r=.561, a standard deviation of σr=.114, and

a maximum p-value of p<.001. For the spectral centroid, the results were r=.428, σr=.153,

p<.024 for a subset of 13 participants, and r=.102, p=.411 for one participant alone. For the log

attack time descriptor, the scores were r=.011, σr=.130, p<.997. Therefore, in summary, we

found that the spectral centroid and the derivative after maximum descriptors were consistently

found to be relevant DSRV descriptors across the 14 imitators, while the log attack time did not.

The fact that the log attack time descriptor failed to be a good predictor for one acoustic

space given the other indicates that, despite playing an important role in timbre perception, log

attack time might be difficult to reproduce vocally with enough precision, at least in the case of

percussive sounds, which have a fast attack. Instead, it appears that listeners can better imitate a

temporal envelope cue related to the length of the sound’s tail, i.e. the derivative after maximum.

This observation inspires further research from a timbre perception perspective, as the derivative

after maximum could play a role in the perception of percussive sounds and impulsive sounds in

general. Interestingly, participants appear to also imitate the spectral centroid cue dexterously,

which seems to reinforce its role in describing one of the most salient dimensions of timbre.

Both the log attack time and the derivative after maximum descriptors benefit from a higher

time resolution for accurate measuring while the spectral centroid benefits from a higher fre-

quency resolution instead. The derivative after maximum descriptor is not as sensitive to time

resolution as it is the log attack time, as the attack region of percussive sounds is significantly

shorter than their release region. However, the representation of the derivative after maximum in

input spectrograms might be affected if time resolution is too low. Therefore, we consider that

DSRV algorithms may generally benefit from higher frequency resolution than time resolution,

but not too high so that the derivative after maximum could be faithfully represented in input

spectrograms.

7.1.2.3 Hierarchical Clustering and Other Plots

For the final part of this experiment, we picked the two best-performing timbre descriptors, the

spectral centroid and the derivative after maximum, and plotted their values against each other for
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Figure 7.2: Normalised mean values of spectral centroid plotted against derivative
after maximum for all sounds. We used circle markers for drum sounds
and crosses for vocal imitations averaged across imitators.

drum sounds and vocal imitations, using different colours for the five imitated instruments. In the

plot, shown in Figure 7.2, we can see how the two descriptors can indeed help cluster the different

instruments and their imitations in the timbre space. Also, we observe that descriptors’ values

from same-category drum instruments are generally close to those from their same-category

vocal imitations. This could be telling us that imitators were aware of characteristic timbral

features from different drum instruments and used them when imitating their sound.

Lastly, we also applied an agglomerative hierarchical clustering algorithm to group imita-

tors based on the two-dimensional Euclidean distances between their Mantel test scores for the

spectral centroid and derivative after maximum descriptors. Figure 7.3 shows the dendrogram

derived from the hierarchical clustering process with three clusters and the clusters in the two-

dimensional plane where the distances were calculated. It can be observed how, as reported

earlier, the imitations of most participants are better captured by the derivative after maximum

than by the spectral centroid (points below the y=x line) except for three participants belonging

to Cluster 1.
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(a) Dendrogram

(b) Clustering Plane

Figure 7.3: (a) Dendrogram from hierarchical clustering process and (b) Mantel
scores from spectral centroid plotted against those from derivative after
maximum for all imitators with applied hierarchical clustering.

We can also observe some relevant interpersonal differences in the way these descriptors

were imitated. For instance, participants in Cluster 1 imitated both the derivative after maximum

and the spectral centroid most skilfully, especially the latter. This indicates that they attended to

spectrum-related and also to envelope-related timbral cues in drum sounds and faithfully repro-

duced them in their vocal imitations. Participants belonging to Cluster 2 imitated the derivative
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after maximum better than the spectral centroid, which signals a more temporal, envelope-focus

vocal imitation style. Finally, participants grouped in Cluster 3 also imitated the derivative after

maximum better than the spectral centroid but significantly worse than participants from Clus-

ter 2. These results signal that making DSRV algorithms aware of personal idiosyncrasies, i.e.,

making them user-based, could potentially improve their retrieval accuracies.

7.1.3 Experiment 3: Psychoacoustical Analysis

In this final experiment, we evaluated a larger psychoacoustically-driven feature set made from

audio descriptors related to timbre, pitch, loudness, and duration. The set was composed of the

first 12 Mel Frequency Cepstral Coefficients (MFCC) excluding the zeroth coefficient, their first

derivatives, the duration, the derivative after maximum, and the mean and standard deviation of

the loudness, the spectral centroid, and the pitch, which was calculated using the time-domain

YIN method [6]. The MFCCs, widely used in timbre analysis [7–9], were computed using 40

Mel bands, a frame size of 46 ms, and a hop size of 11 ms.

We performed five iterations of the Mantel test as described in 7.1.2 and plotted the heatmap

of mean Mantel scores and p-values for each of the features and for each of the imitators in

Figure 7.4. This helped us better visualise the relevance of these descriptors for DSRV and their

implications when building spectrogram-based input representations for data-driven models.

We see that the p-values related to the derivative after the maximum of the envelope are

very low for all imitators. This relates to the finding in [10] that imitators tend to reproduce

descending loudness ramps with high accuracy. We also note low p-values for the mean of the

spectral centroid, MFCC 1, and MFCC 2. These coefficients, much like the spectral centroid,

relate to the energy ratio between low and high frequencies and the perceived “brilliance” of the

sounds [5]. The high Mantel scores and low p-values for the duration of the sound indicate that

this feature was also emulated dexterously by all imitators, which was found to be of critical

importance in [11] for generic sounds. We can also see how the mean of the derivative of

the MFCCs, except for the MFCC 1 and MFCC 2, has significantly higher Mantel scores and

lower p-values than the mean of the MFCC vectors. This could mean that sounds’ timbral
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Figure 7.4: Mean Mantel scores and p-values (5 iterations) for each imitator using
the features in the heuristic set. DerAM = envelope’s derivative after
maximum; Loud = loudness; SCent = spectral centroid; m = mean; s =
standard deviation; d = derivative.

dynamics play an important role in the vocal imitation of drum sounds, pointing toward the

need for a relatively high temporal resolution when building the spectrogram representations for

data-driven DSVR algorithms.

A final observation here is that both [11] and [10] found that pitch was a key feature in

vocal imitations, but it does not appear to be the case for drum sounds. This could be explained

by some reasons, one of them being the fact that percussion sounds are generally unpitched.

Another reason is that pitched percussion sounds usually have a fundamental frequency that is

not as loud as their noisy components and, therefore, non-salient perceptually speaking. Lastly,

another explaiation is that imitators reproduce the musical note related to the pitch but in another

octave, sing out of tune, or right out ignore the pitched component of the percussion sound. We
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have indeed observed these three behaviours in the MDV dataset and, while a few participants

relied on pitch to imitate percussion sounds, it was generally not the case on a regular basis (see

Figure 7.4).

7.2 Conditional Auto-Encoders for DSRV Feature Learning

In this section, we use the observations from the above study to explore the potential of data-

driven feature learning algorithms for DSRV. In particular, we investigated the potential of con-

ditional autoencoder models to learn informative features in this context. We assessed the use-

fulness of their embeddings using four evaluation metrics, two of them relative to their acoustic

properties and two of them relative to their perceptual properties via human listeners’ similarity

ratings. Then, we also looked into user differences in vocal imitation style via the Mantel test

like we did in Section 7.1.3.

This study can be seen as a continuation of the work of Mehrabi et al. [1], which fea-

tured convolutional autoencoders as the data-driven feature learners. As our work is specifically

directed to improve DSRV applications, we included two acoustics-based drum-imitation sim-

ilarity metrics to complement the two perception-based similarity metrics in Mehrabi et al.’s

paper. Acoustics-based metrics differ from perception-based ones in that the former investigate

the correspondence of variations in the acoustic space of drum sounds with those in the acoustic

space of vocal imitations, while the latter investigate the correspondence of drum-imitation fea-

ture distances with human listeners’ drum-imitation similarity ratings. Apart from the inclusion

of such metrics, we (i) explored three types of label conditioning, (ii) investigated how net-

works’ architectures and hyperparameters affected performance, (iii) explored imitators’ differ-

ences in vocal imitation styles, (iv) included new drum and vocal percussion datasets for training

purposes, and (v) modelled single hits from vocal percussion and drum sounds exclusively, in

particular those related to kick drum, snare drum, closed hi-hat, and opened hi-hat.

In Section 7.2.1, we present the dataset of drum sounds and vocal percussion used through-

out the study and detail the implementation of the proposed deep conditional models, baseline
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Dataset Type Usage # Samples
Misc Drums Training 7,900

BFD3 [12] Drums Training 976
AVP [13] Imitations Training 5,220
BTX [14] Imitations Training 2,317
LVT [15] Imitations Training 1,682

BTX2 [16] Imitations Training 191
MDV [1] Both Evaluation 270

Table 7-A: Datasets of drum sounds and vocal imitations used throughout this study.

methods, and evaluation metrics and routines. We present the final results and discuss their

implications for DSRV in Section 7.2.2.

7.2.1 Methodology

The main goal of this study was to discover audio embeddings that can best link vocal imitations

with their reference drum samples both acoustically and perceptually. This section details the

methodology followed in the present work to get the above-mentioned embeddings, including

routines for data curation and preprocessing, model design and training, and final evaluation.

The implementation of these can be found in our project’s repository1.

7.2.1.1 Data and Pre-Processing

We used several open-source and commercial datasets of drum samples and vocal percussion

performances to train and evaluate our proposed algorithms. These are gathered in Table 7-

A. All drum samples and vocal percussion sounds had associated a label relative to the drum

instrument they described or emulated: kick drum, snare drum, closed hi-hat, and opened hi-hat.

Training files relative to vocal imitations (9,410 sounds) were taken from three vocal per-

cussion datasets: AVP [13], BTX [14], BTX2 [16], and LVT [15] (second and third subsets). In

the case of the AVP dataset, we used the sounds contained in the personal subset and in seven

improvisation performances from the fixed dataset, specifically those from participants 4, 8, 12,

16, 20, 24, and 28. We also exclusively used the samples in the BTX and BTX2 datasets that

were annotated as kick drums, snare drums, closed hi-hats, and opened hi-hats. The real drum
1https://github.com/alejandrodl/drum-sample-retrieval-vocalisation
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samples (8,876 sounds) were taken from miscellaneous sound libraries containing both acoustic

and electronic sources. We only took the files whose names or directories reveal their class label

(e.g. “snare01.wav”, “SN01.wav”, “/snares/01.wav”...).

The files we used to evaluate the embeddings were taken from the MDV dataset [1]. This

included 30 drum sounds from acoustic and electronic sources and their respective vocal imita-

tions performed by 14 participants. After removing the samples relative to cymbals and toms, we

had 18 drum samples and 252 vocal imitations (18 per participant). Reference sounds included

6 kick drums, 6 snare drums, 2 closed hi-hats, and 4 opened hi-hats. Silences sections were

trimmed for all sounds.

We applied an 8-fold waveform data augmentation [17] to drum samples and vocal percus-

sion sound events, specifically random pitch-shifting (semitone range = [-1.0,+1.0] for drums and

[-1.5,+1.5] for vocal imitations) and time-stretching (stretch factor range = [0.7,1.3] for drums

and [0.8,1.2] for vocal imitations), one after the other in random order.

After this waveform data augmentation process, we calculated the spectrogram represen-

tations based on the results that we derived from the preliminary analysis (Section 7.1). We

decided to use the Bark scale [18] to compress the spectrogram, as it is psychoacoustically moti-

vated and was featured in the study that we are basing ours on [1]. Considering that we needed

both frequency and time resolution to accurately depict spectral and temporal audio cues in vocal

imitation, we compared different frame sizes (23.2, 46.4, and 92.8 ms) and hop sizes (5.8, 11.6,

and 23.2) that would strike an appropriate time-frequency resolution balance while covering

most of the relevant region of the sounds. We chose a frame size of 46 ms and a hop size of 11

ms and calculated spectrograms with final dimensions of 128 frequency bins by 128 frames. The

representations, therefore, extended to a length of approximately 1.5 seconds, which we consid-

ered appropriate in Section 7.1.1. Finally, following [1], we applied the Terhardt’s ear model

curves [19] to scale the spectrograms to decibels.
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7.2.1.2 Baseline Methods

Apart from extracting the same psychoacoustically-motivated feature set as in 7.1.3, we also

implemented the regular Convolutional Autoencoder (CAE) model in [1]. We reproduced the

architecture and the training routine of the best-performing model as reference. As we are eval-

uating sets of 32 features, we added a final fully-connected layer to the original model that

connects its latent space of size 128 to an adapted one of size 32.

7.2.1.3 Proposed Models

We adopted the CAE in [1] as the base architecture of our proposed model. From there, we

applied several modifications that we later evaluated in terms of performance both individually

and jointly (see section 7.2.2). These modifications to the original model included:

• A variational latent space [20].

• The replacement of upsampling layers and convolutional layers with one unique trans-

posed convolution in the decoder.

• The use of max pooling operations instead of strided convolutions in the encoder.

• A change in the number of filters per layer: [4,8,16,32], [16,16,32,32], and [8,16,32,64].

• A change in the kernel dimensions of the filters: 3x3, 3x5, 5x3, 3x7, 7x3, 5x5, 5x7, 7x5,

7x7, 9x9, and 11x11.

The modifications above were explored considering hyperparameter combinations that ensured

that the networks had a similar amount of training parameters (∼ 400,000).

Once our final proposed model was built, we investigated the impact of the inclusion of label

information in the model’s architecture. This is known as model conditioning [21] and it has

been proven beneficial in some audio feature learning tasks [22, 23]. We built three models with

the same architecture as our proposed CAE but conditioned on different label sets. These sets

were (i) Sound-type Labels (SL) to distinguish between drums and vocal imitation (two labels);
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(ii) Drum-type Labels (DL) to distinguish between kick drum, snare drum, closed hi-hat, and

opened hi-hat (four labels); and (iii) Sound and Drum-type Labels (SDL) to distinguish between

kick drum, snare drum, closed hi-hat, and opened hi-hat and whether they are drums or vocal

imitations (eight labels). We fed the labels by concatenating a one-hot encoded vector to the

flattened feature maps after the last convolutional block in the encoder and to the ones before the

first convolutional block in the decoder.

Models were trained using an Adam optimisation algorithm [24], early stopping if validation

loss has not decreased after 10 epochs, and downscaling of the learning rate by a factor of 0.2 if

validation loss has not decreased after 5 epochs.

7.2.1.4 Similarity Metrics

A good DSRV algorithm would rank drum samples in an appropriate order of perceptual similar-

ity to an input vocal imitation. Measuring this similarity, however, is essentially task-dependent

and hence challenging to estimate. If imitations are associated with a single sound, like in our

case, one can use query-by-vocal-imitation metrics like the mean reciprocal rank to evaluate

systems [25–27], although it does not assess the similarity of lower-ranked samples with the

imitation. To account for the latter, other metrics and annotations like drum-imitation perceptual

similarity ratings from listeners are needed [1].

With this in mind, we evaluated the relevance of our feature sets via four similarity metrics.

On the one hand, the Mean Reciprocal Rank (MRR) [28] and the Mantel Score Significance

(MSS) [2] measure similarity between sounds and vocal imitations by correspondences between

both acoustic spaces. We refer to these as acoustics-based similarity metrics. On the other hand,

the Akaike Information Criterion (AIC) [29] and the prediction accuracy measure the capacity

of feature sets to model and predict human listeners’ drum-imitation similarity scores [1]. We

refer to these as perception-based similarity metrics.

Acoustics-based Metrics

For a collection of N vocal imitations per imitator (18 in our case), the Mean Reciprocal
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Rank (MRR) is defined as:

MRR =
1

N

N∑
n=1

1

rankn
(7.3)

where rankn is the rank of the relevant reference drum sound for the n-th imitation. As the

MRR is inversely proportional to the rank number, it acts as a penalisation factor in a simulated

DSRV task: the more delayed the retrieval of the correct sample, the lower the MRR score.

The second acoustics-based metric, the Mantel Score Significance (MSS), measures the

degree of global correspondence between the acoustic space of drum samples and that of vocal

imitations for all imitators. To calculate it, we ran the Mantel test [2] (see section 7.1.2) on the

individual features that compose embeddings and reported the percentage of statistically signifi-

cant Mantel scores (p<0.05). We ran 5 Mantel tests per feature and later averaged these results.

Perception-based Metrics

We followed the same procedure as in Mehrabi et al. [1] to calculate the two remaining

metrics. In this study, 63 human listeners rated the perceived similarity between a vocal imita-

tion and same-category drum sounds within the MDV dataset. They were presented with 30 test

pages (trials), of which 28 were unique and 2 were random duplicates used to assess listeners’

reliability. The listeners that were able to replicate their responses for at least one of the dupli-

cates with a Spearman rank correlation coefficient of ρ ≥ 0.5 were considered reliable. In this

study, we got 51 reliable listeners and a total of 5,532 similarity ratings. For each feature set,

the Euclidean distance was measured between each of the 252 imitations and their respective

6 within-class sounds, giving 1512 distance values. We calculated the percentage of imitated

sounds for which the fitted slope of the regression model rating ∼ distance was significantly

below 0. This is an implicit measure of accuracy, with a negative slope meaning an inverse

relationship between distances and similarity ratings. A slope’s value is significantly below 0 if

the upper 95% confidence interval (CI) is negative.

One of the limitations of the regression model above mentioned is that it only takes sounds’

features and similarity measures into account. It, therefore, fails to capture the influence of
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other determinant factors like which imitator produced the current sound or whose listener is

the current similarity score. To account for these idiosyncrasies, we fitted a Linear Mixed-

Effect Regression (LMER) model using R’s lme4 package [30] which was specified as rating ∼

distance∗sound+(1|listener/trial)+(1|imitator), with the similarity rating as the response

variable, fixed effects of distance and drum sound with an interaction term, and random inter-

cepts for listener, imitator, and trial (nested in listener). We used the Akaike Information Cri-

terion (AIC) as a metric to evaluate model fitness. Given two models, the one with the lowest

AIC displays less information loss and is, thus, a better fit. While the absolute value of the AIC

has no statistical meaning, a practical heuristic to compare scores is to consider two models with

∆AIC > 10 as one fitting the data significantly better than the other [31].

Finally, note that results for these two perception-based metrics are not directly comparable

to those in [1], as we did not analyse toms and cymbals, used a lower embedding size, used a

different dataset containing instrument labels, and averaged results over five models per method.

7.2.2 Results and Discussion

Applying the modifications in 7.2.1.3 to the baseline model (CAE-B) [1], we found that the

model benefited from (i) an increase in the number of filters from [8,16,24,32] to [8,16,32,64],

(ii) a change in internal filter sizes from 10x10 to 9x9, which avoids aliasing from odd dimen-

sions, and (iii) max-pooling operations in the encoder. The use of a variational latent space, an

increased depth of the networks, and the use of transposed convolutions instead of upsampling

layers in the decoder had a minor effect on performance while sometimes lowering the quality

of sample reconstructions. Hence, we kept the regular latent space and upsampling layers in our

proposed model (CAE).

Results for all evaluation metrics are displayed in Table 7-B. We see that the four proposed

CAE models’ results equal or surpass the ones from the baseline CAE-B model. Also, con-

ditional models tend to perform better than their non-conditional counterpart (CAE) and the

CAE-SDL model performs better than or like the rest of methods in all metrics.
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Baseline (7.2.1.2) Proposed (7.2.1.3)

HS CAE-B CAE CAE-SL CAE-DL CAE-SDL

MRR 34.7 39.6 ± 1.4|1.2 42.1 ± 1.2|1.0 41.2 ± 1.1|1.0 41.4 ± 1.5|1.3 41.7 ± 0.7|0.6

MSS 27.6 44.2 ± 3.8|3.3 43.0 ± 3.5|3.1 44.8 ± 3.4|3.0 45.0 ± 2.5|2.2 47.5 ± 2.8|2.5

Acc. 55.6 43.3 ± 2.2|1.9 47.8 ± 4.4|3.9 48.9 ± 6.5|5.7 47.8 ± 6.6|5.8 54.4 ± 2.1|1.9

AIC 999 658 ± 58|51 625 ± 61|53 609 ± 64|56 613 ± 59|51 576 ± 66|58

Table 7-B: Results for the four evaluation metrics. Error is expressed in terms of
standard deviation (left) and 95% confidence intervals (right) for five iter-
ations. MRR is expressed in terms of percentage and AIC values are sub-
tracted a constant value to improve readability. Numbers in bold indi-
cate best performances for the related metric. Notation: HS = heuristic
set, CAE = convolutional autoencoder, -B = baseline, -SL = sound-level
labels, -DL = drum-level labels, -SL = sound and drum-level labels.

Regarding acoustics-based similarity metrics, MRR and MSS, CAE embeddings performed

consistently better than the heuristic feature set. Similar results were observed in [25] for MRR,

where learnt features from a stacked autoencoder performed better than a set of 13 MFCCs and

their first and second derivatives. We also noted relatively high MSS scores for CAE embed-

dings, reaching 47.5% in the case of CAE-SDL. This means that statistically speaking, a generic

imitator would dexterously reproduce with the voice 15 out of the 32 CAE-SDL features as heard

in the reference drum sounds.

Regarding perception-based similarity metrics, accuracy and AIC, we find that deep embed-

dings from CAE models perform significantly better than heuristic features in AIC but the oppo-

site is true in the case of the accuracy metric. This is a rather surprising result considering the

higher accuracy scores by learnt features in [1], which could be due to the differences in the

experimental setting between the study and ours (see section 7.2.1.4). AIC scores from heuristic

features are far from CAE-related ones, as also observed in [1], which might mean that heuristic

features do not benefit as much as CAE embeddings from knowing about the current listener,

imitator, drum sound, and trial variables when computing similarity. This could be due to the

fact that CAE embeddings are learnt using datasets containing a wide range of vocal percussion

and drum sounds from various performers while heuristic features are extracted from sounds in a

context-agnostic way. We also see that the CAE-SDL accuracy score (54.4%) is relatively close
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to that of the heuristic set (55.6%). The CAE-SDL’s AIC score is also the lowest one, although

95% confidence intervals from AIC scores highly overlap with each other, meaning that we can-

not ensure the superiority of one method over the rest. Increasing the number of models per

method might clear doubts in this respect.

Apart from results in Table 7-B, we also trained the CAE-B model with the dataset used

in the original study [1], which gave scores of 39.2|1.2, 45.8|3.7, 48.9|6.5, and 579|94 for

MRR, MSS, accuracy, and AIC respectively. It, therefore, outperformed the CAE-B trained

with our dataset in perception-based metrics but did not outperform the best-performing model

(CAE-SDL) in any metric. Also, all methods significantly outperformed random feature vectors

(19.3|0.9, 4.7|1.6, 7.8|3.9, and 1035|129).

In summary, results show that conditioning DSRV systems on sound- and drum-type labels

is very likely to augment the degree of similarity between imitations and retrieved samples. We

believe these results can be extrapolated to general query by vocal imitation to some degree and

that query-by-vocal-imitation algorithms can potentially benefit from this kind of conditioning,

including metric learning systems trained with sample-imitation pairs [27].

Finally, we also plotted the mean Mantel scores and p-values from the five CAE-SDL embed-

dings in Figure 7.5. In comparison2 with the results for the feature set in Section 7.1.3 (see Figure

7.4), we see how the mantel scores associated with CAE-SDL features are generally higher than

those relative to the heuristic set while their p-values are lower, which is also reflected in their

MSS scores in Table 7-B. We also found that, while some learnt features are imitated skilfully

by all imitators, many other features find notable disagreements between imitators. This fur-

ther supports the idea of approaching DSRV via user-based systems [32], which could fine-tune

retrieval scores to specific imitators by taking their vocal imitation styles into account.
2A direct comparison cannot be made, as here we are analysing 18 of the 30 reference sounds.



Chapter 7. Drum Sample Retrieval by Vocalisation 169

Fe
at

_0
1

Fe
at

_0
2

Fe
at

_0
3

Fe
at

_0
4

Fe
at

_0
5

Fe
at

_0
6

Fe
at

_0
7

Fe
at

_0
8

Fe
at

_0
9

Fe
at

_1
0

Fe
at

_1
1

Fe
at

_1
2

Fe
at

_1
3

Fe
at

_1
4

Fe
at

_1
5

Fe
at

_1
6

Fe
at

_1
7

Fe
at

_1
8

Fe
at

_1
9

Fe
at

_2
0

Fe
at

_2
1

Fe
at

_2
2

Fe
at

_2
3

Fe
at

_2
4

Fe
at

_2
5

Fe
at

_2
6

Fe
at

_2
7

Fe
at

_2
8

Fe
at

_2
9

Fe
at

_3
0

Fe
at

_3
1

Fe
at

_3
2

Im
ita

to
rs

Mean Mantel scores for CAE-SDL set
Fe

at
_0

1
Fe

at
_0

2
Fe

at
_0

3
Fe

at
_0

4
Fe

at
_0

5
Fe

at
_0

6
Fe

at
_0

7
Fe

at
_0

8
Fe

at
_0

9
Fe

at
_1

0
Fe

at
_1

1
Fe

at
_1

2
Fe

at
_1

3
Fe

at
_1

4
Fe

at
_1

5
Fe

at
_1

6
Fe

at
_1

7
Fe

at
_1

8
Fe

at
_1

9
Fe

at
_2

0
Fe

at
_2

1
Fe

at
_2

2
Fe

at
_2

3
Fe

at
_2

4
Fe

at
_2

5
Fe

at
_2

6
Fe

at
_2

7
Fe

at
_2

8
Fe

at
_2

9
Fe

at
_3

0
Fe

at
_3

1
Fe

at
_3

2

Im
ita

to
rs

Mean Mantel p-values for CAE-SDL set

0.2

0.4

0.6

0.8

Figure 7.5: Mean Mantel scores and p-values (5 iterations) for each imitator using the
features in the CAE-SDL embeddings. DerAM = envelope’s derivative
after maximum; Loud = loudness; SCent = spectral centroid; m = mean;
s = standard deviation; d = derivative.

7.3 Summary

In this chapter, we have explored techniques to approach DSRV from a data-driven perspective.

We conducted several analyses on the MDV dataset for the first part of the chapter. These analy-

ses were aimed at discovering timbral relationships between drum samples and vocal imitations

and informing data-driven routines on how to construct audio input representations for network

algorithms. In the second part of the chapter, we used the insights from the previous study to

construct a data-driven feature learning system based on conditional auto-encoders.

In the first study, we observed that the derivative after the maximum of the sound envelope

and the spectral centroid are good predictors of the acoustic space of drum sounds given that

of vocal imitations and vice versa. This means that participants imitated these descriptors dex-



Chapter 7. Drum Sample Retrieval by Vocalisation 170

terously in their vocalisations. Conversely, the log attack time descriptor was not found to be a

relevant descriptor in this respect. These discoveries implied that both time and frequency reso-

lutions played an important role in describing the sounds in the timbre space. We also found that

1.5 seconds was an appropriate truncation length when calculating spectrogram representations

for data-driven DSRV and that there exist relevant user differences in vocal imitation styles that

encourage the use of user-based retrieval strategies.

In the second study, we evaluated the potential of several types of deep convolutional autoen-

coder models to learn useful feature sets for DSRV. We used four different interpretable metrics

to investigate how well these embeddings could link vocal imitations with their reference drum

sounds and found that models conditioned on both sound- and drum-type labels (CAE-SDL)

excelled in both acoustics- and perception-based metrics. We also found that learnt features,

like heuristic ones, are reproduced with different levels of skill across imitators, which further

promotes retrieval fine-tuning by building user-based DSRV systems, perhaps based on these

user-agnostic learnt embeddings.
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[6] A. De Cheveigné and H. Kawahara, “Yin, a fundamental frequency estimator for speech

and music,” The Journal of the Acoustical Society of America, vol. 111, no. 4, pp. 1917–

1930, 2002.

[7] F. De Leon and K. Martinez, “Enhancing timbre model using mfcc and its time deriva-

tives for music similarity estimation,” in 2012 Proceedings of the 20th European Signal

Processing Conference (EUSIPCO). IEEE, 2012, pp. 2005–2009.

[8] H. Terasawa, M. Slaney, and J. Berger, “The thirteen colors of timbre,” in IEEE Workshop

on Applications of Signal Processing to Audio and Acoustics, 2005. IEEE, 2005, pp.

323–326.

[9] ——, “Perceptual distance in timbre space.” Georgia Institute of Technology, 2005.

[10] A. Mehrabi, S. Dixon, and M. B. Sandler, “Vocal imitation of synthesised sounds varying

in pitch, loudness and spectral centroid,” The Journal of the Acoustical Society of America,

vol. 141, no. 2, pp. 783–796, 2017.

[11] G. Lemaitre, O. Houix, F. Voisin, N. Misdariis, and P. Susini, “Vocal imitations of non-

vocal sounds,” PloS one, vol. 11, no. 12, p. e0168167, 2016.

[12] “Bfd3 drum library,” https://www.fxpansion.com/products/bfd3/.

[13] A. Delgado, S. McDonald, N. Xu, and M. Sandler, “A new dataset for amateur vocal per-

cussion analysis,” in Proceedings of the 14th International Audio Mostly Conference: A

Journey in Sound, 2019, pp. 17–23.

[14] D. Stowell and M. D. Plumbley, “Delayed decision-making in real-time beatbox percussion

classification,” Journal of New Music Research, vol. 39, no. 3, pp. 203–213, 2010.

[15] A. Ramires, R. Penha, and M. E. Davies, “User specific adaptation in automatic transcrip-

tion of vocalised percussion,” arXiv preprint arXiv:1811.02406, 2018.

[16] J. Zhu, J. Wang, J. Liu, and X. Zhang, “Study on the classification of beatbox sounds

based on timbre features,” in 2020 International Conference on Culture-oriented Science

& Technology (ICCST). Ieee, 2020, pp. 543–545.

[17] L. Nanni, G. Maguolo, and M. Paci, “Data augmentation approaches for improving animal

https://www.fxpansion.com/products/bfd3/


Chapter 7. Drum Sample Retrieval by Vocalisation 172

audio classification,” Ecological Informatics, vol. 57, p. 101084, 2020.

[18] J. O. Smith and J. S. Abel, “Bark and erb bilinear transforms,” IEEE Transactions on speech

and Audio Processing, vol. 7, no. 6, pp. 697–708, 1999.

[19] E. Terhardt, “Calculating virtual pitch,” Hearing research, vol. 1, no. 2, pp. 155–182, 1979.

[20] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114,

2013.

[21] Y. Choi, M. El-Khamy, and J. Lee, “Variable rate deep image compression with a condi-

tional autoencoder,” in Proceedings of the IEEE/CVF International Conference on Com-

puter Vision, 2019, pp. 3146–3154.

[22] S. Dahmani, V. Colotte, V. Girard, and S. Ouni, “Conditional variational auto-encoder for

text-driven expressive audiovisual speech synthesis.” in Interspeech, 2019, pp. 2598–2602.

[23] B. Chettri, T. Kinnunen, and E. Benetos, “Deep generative variational autoencoding for

replay spoof detection in automatic speaker verification,” Computer Speech & Language,

vol. 63, p. 101092, 2020.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[25] Y. Zhang and Z. Duan, “Retrieving sounds by vocal imitation recognition,” in 2015 IEEE

25th International Workshop on Machine Learning for Signal Processing (MLSP). Ieee,

2015, pp. 1–6.

[26] ——, “Imisound: An unsupervised system for sound query by vocal imitation,” in 2016

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

Ieee, 2016, pp. 2269–2273.

[27] Y. Zhang, B. Pardo, and Z. Duan, “Siamese style convolutional neural networks for sound

search by vocal imitation,” IEEE/ACM Transactions on Audio, Speech, and Language Pro-

cessing, vol. 27, no. 2, pp. 429–441, 2018.

[28] M. Müller, Fundamentals of music processing: Audio, analysis, algorithms, applications.

Springer, 2015.

[29] H. Bozdogan, “Model selection and akaike’s information criterion (aic): The general theory

and its analytical extensions,” Psychometrika, vol. 52, no. 3, pp. 345–370, 1987.
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Chapter 8

Conclusion

In this thesis, we have explored the task of Query by Vocal Percussion (QVP) from a data-driven

perspective. We have conducted experiments in two of the most important subfields in QVP:

Vocal Percussion Transcription (VPT) and Drum Sample Retrieval by Vocalisation (DSRV).

The former aimed at detecting and classifying vocal percussion sound events in both online and

offline scenarios while the latter aimed at finding the best set of audio features to link drum

sounds with their vocal imitations.

We conclude our study in this last chapter by outlining its main findings and discussing the

challenges to overcome in order to advance QVP.

8.1 Summary of Findings

In this thesis, we have dedicated one chapter to introduce the topic of QVP (Chapter 1), one

chapter to provide theoretical and referential background (Chapter 2), one chapter to introduce

the audio data and annotations used in this thesis (Chapter 3) and a total of four chapters to carry

out the experiments in QVP (Chapters 4, 5, 6, and 7).

In Chapter 3, we presented several publicly available vocal percussion datasets and detailed

the creation of several other datasets to ensure that we had enough data to apply data-driven

174
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methods to QVP. The already publicly available datasets were the LVT dataset, containing 841

amateur vocal percussion sounds, the BTX dataset, containing 3,611 beatbox sounds, and the

Mehrabi Drum Vocalisations (MDV) dataset, containing 420 vocal imitations of drum sounds.

We realised that, while we arguably had enough beatbox sounds to train and evaluate VPT algo-

rithms and enough vocal imitations to evaluate DSRV algorithms, we lacked enough amateur

vocal percussion sounds to train and evaluate VPT algorithms. This led us to the curation of

the Amateur Vocal Percussion (AVP) dataset, which contained vocal percussion recordings from

28 participants with little or no experience in beatboxing. The dataset was divided into the per-

sonal subset (AVP-P), containing 4,873 vocal percussion sounds, and the fixed subset (AVP-F),

containing vocal percussion 4,905 sounds. In the AVP-P, participants were asked to imitate the

drums in their own way, while in the AVP-F participants were asked to imitate the drums using

specific syllables. It provides annotations for four drum instruments (kick drum, snare drum,

closed hi-hat, and opened hi-hat) and for individual phonemes in the case of the personal sub-

set. Apart from the AVP dataset, we also put together and annotated the VIS-P dataset (3,393

percussive vocal imitations by amateur performers) and the FSB dataset (4,296 beatbox sounds),

which were used in onset detection experiments.

In Chapter 4, we explored several data-driven algorithms for vocal percussion onset detec-

tion, comparing their performance with baseline heuristic algorithms. We trained a BRNN, a

CNN, and a CRNN for offline onset detection and several N-Frame RNN models for online

onset detection. We discovered that these trained neural networks consistently outperformed

heuristic baselines and some pretrained musical onset detection models in both the offline and

the online case for all metrics (accuracy, time deviation from ground truth onsets, and inference

speed). In particular, BRNNs and CRNNs performed best for offline onset detection, while the

latter had a significantly lower inference time than the former, making it more recommendable

for generic use cases. The accuracy measure for these models was near-perfect (F1-score of .965)

while displaying a small deviation from real onsets (6.4 ms of absolute deviation). In the case

of online onset detection, the RNN N-Frame models were the best-performing ones in terms of

accuracy (F1-score of 0.9 at 20.3 ms delay) and speed (7.9 ms of inference time). We also noted



Chapter 8. Conclusion 176

that high accuracies (F1-score of 0.8) were already reached for 8.7 ms of delay, which means

that vocal percussion onsets are usually recognisable at low delays. We recommend the usage

of 5-Frame RNNs for online onset detection, although the choice between these algorithms or

others would be contingent on the application context.

In Chapter 5, we carried out the experiments related to online vocal percussion classification.

This was done for both amateur vocal percussion and beatbox and consisted of two related

studies that were performed independently from one another. In the first one, we searched for

an appropriate set of phonemes for online amateur vocal percussion classification using three

criteria: the frequency of use of the phonemes, the spectral similarity of the phonetic sounds

to reference drum sounds, and the classification separability of these phonetic sounds. The

study concluded that the /p/, /k/, /t/, /ts/, and /tS/ phonemes were the most appropriate to carry

out online amateur vocal percussion classification with. In the second study, various heuristic

and data-driven algorithms were applied to online vocal percussion classification, using the five

phonemes derived from the first study as input for amateur vocal percussion classification and the

sounds contained in the BTX dataset for beatbox classification. The best-performing algorithm

for both amateur vocal percussion and beatbox was a 1D-CNN with the Mel spectrum as input.

We also found that the amateur vocal percussion phonemes selected in the first study accounted

for the highest F1-score of .950 at 20.3 ms of time delay. We also got relatively low online

beatbox classification accuracies, which may imply the need for more separable sounds and

warrants a more in-depth look at this type of vocal percussion for online VPT.

In Chapter 6, we covered the offline case of vocal percussion classification. Like the last

chapter, this also consisted of two independent but related studies. In the first study, we com-

pared several heuristic and end-to-end data-driven algorithms for five tasks: user-based classi-

fication of amateur vocal percussion (AVP UB), user-agnostic classification of amateur vocal

percussion (AVP UA), user-agnostic classification of amateur vocal percussion using the sylla-

bles in the AVP-F set (AVP UA Syll), user-agnostic classification of amateur vocal percussion

using the phonemes derived from the first study of Chapter 5 (AVP UA Phon), and user-agnostic

classification of beatbox sounds (BTX UA). We saw that, for amateur vocal percussion, the AVP
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UA Syll and the AVP UA Phon strategies significantly outperformed The AVP UB and AVP UA

strategies, which means that having a fixed set of sounds to classify generally makes algorithms

yield better classification accuracies than having sets of sounds that are derived from personal

choices. The performances for beatbox sounds (BTX UA) were similar to those derived from

the online case, reinforcing the need for a deeper look into beatbox sound classification to obtain

better accuracies. Also, the best-performing classifier for the AVP UB strategy (a CNN) needed

around 3 minutes to train on a CPU, which could be slow enough to make it impractical in

real-world scenarios. This realisation led to the second study, where we explored embedding

learning as an alternative strategy to shorten this training time and improve the generalisation

power of user-based classification approaches by minimising the chances of overfitting. Specif-

ically, we supervised several CNNs on four types of label sets (instrument-level, syllable-level,

phoneme-level, and sound-level) and used the 32 features in their penultimate layer as input to a

KNN classifier. Results suggested that the embeddings that were extracted from the CNN model

supervised with syllable-level labels were the most appropriate for user-based approaches, as

they were the best-performing feature sets in terms of both accuracy and stability to training

conditions. The embedding learning strategy also performed similarly to the best-performing

end-to-end model for the AVP UB task, making embedding learning a fast and non-overfitting

alternative for user-based vocal percussion classification. We also computed several saliency

maps from these embedding learning models that showed how the spectrogram regions in the

1-to-2 kHz frequency band and those with an absence of energy seem to have special importance

for the algorithms when classifying drum instruments in an end-to-end manner.

In Chapter 7, we carried out several experiments in DSRV using data-driven feature learning

algorithms. In the first part of the chapter, we conducted several analyses on the MDV dataset

to both search for timbral relationships between drum samples and vocal imitations and inform

algorithms on how to build input representations for training. We saw that features like the

derivative after the maximum of the sound envelope and the spectral centroid linked the acoustic

space of drum sounds with that of vocal imitations significantly well, meaning that users imitated

them skillfully. We also noted that the log attack time descriptor did not perform well in this
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respect. We also discussed how these two observations could imply that both time and frequency

resolutions are important when describing the sounds in the spectral domain. Looking at the

average spectrograms of drum sounds and vocalisations in the MDV dataset, we also found that

an adequate truncation length in the time axis when calculating the spectrogram representations

could be around 1.5 seconds. Finally, we confirmed that there are significant user differences in

vocal imitation styles that could justify the use of user-based algorithms. In the second part of

the chapter, we explored data-driven feature learning algorithms for DSRV using the previous

insights as guidance when computing input spectrograms. In particular, we studied the suitability

of several embeddings learnt via different types of deep convolutional autoencoder models for

the task of DSRV. To evaluate how well these embeddings could link vocal imitations with their

reference drum sounds, we used four different metrics, two of them acoustics-based (MRR,

MSS), and two of them perception-based (Accuracy, and AIC) via listeners’ similarity ratings of

drum-imitation pairs. Deep convolutional autoencoders conditioned on both sound- and drum-

type labels performed the best in all four metrics. We also saw how the features learnt by the

best-performing model were better reproduced by imitators than the set of heuristic features.

8.2 Challenges and Perspectives

With the study contained in this thesis, we believe we advanced the state of the art in QVP to a

certain degree and demonstrated that data-driven models like deep neural networks are powerful

tools to reach high performances. Regularisation and data augmentation techniques like pitch

shifting and time stretching were also proven to help algorithms generalise better, especially in

regimes with low amounts of training data.

Results obtained in this thesis suggest that some of the tasks where we carried out our exper-

iments could be considered, to a reasonable extent, solved. We believe this is the case for offline

percussive onset detection, for instance, as the associated accuracy score is near perfect and the

time deviation from the ground truth annotations is minimal. We were not overly surprised by

this result, as monophonic percussive transients are usually well-recognised by the human eye

in both the time and the frequency domains.
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Likewise, we obtained great results on the task of user-agnostic vocal percussion classifica-

tion with fixed sounds, achieving near-perfect accuracy scores for both offline and online classi-

fication. In this respect, we have argued that the selection of these fixed vocal percussion sounds

is a crucial step to optimise accuracy, as one would have to ensure that the sounds are separable

enough so that the classifiers are able to reach the maximum accuracy possible. Adopting the

sounds relative to the phonemes and syllables /p/, /k/, /t/, /ts/, and /tS/ as the set to perform clas-

sification on, we reached high accuracy scores while ensuring that the sounds remain natural for

the users to vocalise.

While the results above seem promising for QVP, we have also seen that many tasks are

certainly not solved yet, which can inspire future advances in the field. In particular, we see

four main unsolved problems: beatbox sound classification, user-based amateur vocal percus-

sion transcription, online (real-time) percussive onset detection, and DSRV in general. In the

paragraphs below, we offer several reasons why these problems are inherently hard to tackle and

ideas about potential strategies to attack them in an effective way.

We see several idiosyncrasies that make beatbox sound classification an inherently difficult

task to solve. Some of these particularities are (i) the high density of sound events in time

due to its fast pace, (ii) the user-to-user timbral variance of within-class beatbox sounds due to

stylistic differences, (iii) the inclusion of ill-defined labels like “miscellaneous” or “unsure of

classification”, and (iv) the relatively high number of labels. The first point of difficulty can be

easily tackled by choosing a little enough hop size when calculating representations. If the sec-

ond point negatively affects classification results significantly, the algorithms could benefit from

a user-based classification approach. As beatbox sounds are generally similar enough to each

other across users so to pursue user-agnostic classification strategies, algorithms could reach

better accuracy scores if the models can be further fine-tuned to individual users. The third and

fourth points of difficulty would require an informed consensus about the labelling of beatbox

sounds and the classification process itself. For instance, the third issue could be easily avoided

by excluding the problematic labels (e.g. “unsure of classification”) when calculating classifica-

tion accuracy. Also, the fourth issue could be solved by grouping labels into higher-level classes
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if the application context permits it (e.g. grouping “p-like snare” and “k-like snare” into a single

“snare” class).

Regarding user-based amateur vocal percussion transcription, there are several challenges to

overcome that relate to (i) the different vocal percussion styles among participants, (ii) the qual-

itative difference between train and test data, (iii) the selection of vocal percussion sounds that

are hard to separate, and (iv) sound vocalisation inconsistencies. The first and second points of

difficulty are inherent to the task and, thus, their negative effects on final performances would

not disappear completely. However, there exist effective ways to mitigate these negative effects

like, for instance, the recording of the train set in a “fixed phrase” manner using a vocal percus-

sion pattern that is complex enough to resemble an improvisatory performance. The third and

fourth challenges could be tackled, for example, by ensuring the selection of highly separable

phonemes through prompted recommendations in the case of the former and asking users to

record more examples of a sound class that the algorithm is finding hard to classify in the case

of the latter.

With respect to online percussive onset detection, we see several challenges that include

(i) avoiding the prediction of vowel coda phonemes in syllables, (ii) avoiding the prediction of

breath sounds, (iii) avoiding the prediction of percussive ambient noises, and (iv) predicting joint

onsets with no silence in-between. As the algorithms operate in a real-time regime, these chal-

lenges could sometimes be hard to overcome. For instance, breath sounds and some ambient

noises have a noisy spectral profile that is similar to those from percussive onsets. Hence, while

offline algorithms are able to take a look at a bigger part of the sound to decide if it is a rele-

vant onset or not, online algorithms may be more prone to this kind of errors given their short

analysis buffer. In the case of vowel coda phonemes, their usually harmonic structure could help

algorithms discern between them and a relevant vocal percussion onset, so that case is not likely

to be as problematic as the earlier ones. Lastly, predicting joint onsets accurately in time could

largely benefit from non-algorithmic fixes like, e.g., better diction from the users.

Finally, the main challenges associated with DSRV that we see are (i) the low amount of

publicly available drum-imitation sound pairs, (ii) the difficulty of imitating same-category drum
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sounds in a consistent manner due to the usually subtle timbral differences between them, and

(iii) the different imitation styles of users. The first issue can be simply tackled by recording a

dataset with drum-imitation pairs that is big enough to apply more refined data-driven algorithms

like those based on metric learning (e.g. siamese networks). That way, the learnt embeddings

could potentially be more informative and the retrieval accuracy could be higher. The second

challenge is inherent to the task and suggests that hearing and imitation skills might be decisive

when assessing which users are likely to benefit most from DSRV systems, raising the question

of whether DSRV systems are potentially useful tools for the general public or just for a few

people. Finally, and similarly to the case of beatbox sound classification, the third point of

difficulty is likely to benefit from user-based algorithms that fine-tune predictions via techniques

like active learning. That way, the DSRV system could be able to refine its own predictions by

strategically prompting the users the drum samples that it finds challenging to match so that they

imitate them vocally.

All in all, we believe that the challenges associated with QVP that we have observed in

this thesis could be overcome to a reasonable extent by trying out new strategies that include

the recording of more data, the selection of the learning strategy, and the interaction with the

user among others. If successful, they would facilitate the inclusion of QVP systems in music

production environments as reliable tools to assist artists in the creative process.
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This study was done in collaboration with Fred Bruford, Vinod Subramanian, SKoT McDonald,

and Mark Sandler in 2020. We include it as an appendix section because the dataset that it

references was never published due to issues related to intelectual property. The issues were

mostly due to the sudden purchase of the dataset by another company and to a change of priorities

regarding the mentioned BFD Player application, which has not been released yet neither by the
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the work could be of interest to research in Automatic Drum Transcription (ADT) among other

fields.
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Abstract

We present BFD Vintage Recording Techniques (BFD-VRT), a new dataset to test the robust-

ness of automatic drum transcription and source separation algorithms to different production

environments. BFD-VRT has a core library consisting of 960 professionally recorded multi-

channel drum samples, including 60 articulations from 14 drum instruments, 16 velocity layers,

27 microphone channels, and 2 processed channels. We show how this content can be used with

the BFD Player application to generate custom drum datasets. This way, researchers are able to

import symbolic drum patterns, adjust recording and post-processing parameters as desired, and

synthesise datasets on which to test their algorithms. We provide Python scripts and a Lua API

to facilitate this process. In the final evaluation section, we compare the robustness of five open-

source automatic drum transcription algorithms to different production techniques by running

them on fifteen of these generated datasets. The BFD-VRT dataset and the code for this paper

are freely available.

B.1 Introduction

The study of drum sounds and its applications in Music Information Retrieval (MIR) has been

recently led by two main disciplines: Automatic Drum Transcription (ADT) and Drum Source

Separation (DSS) [1]. The former attempts to localise and classify drum events in audio record-

ings [2] while the latter seeks to isolate the original drum signals from audio mixes [3].

The most popular algorithms for both ADT and DSS are based on end-to-end deep learning

techniques [4][5][6]. These neural network models learn representations of drum performances

directly from their spectrogram or audio waveform without the need for extracting engineered

features as an intermediate step. Results obtained from these data-driven approaches are directly

dependent on the quantity and the variety of the data available. In general terms, the larger and

more representative the training/validation dataset is, the better the generalisation capabilities of

the final classifier are expected to be.

Researchers in ADT and DSS may not always have access to such datasets. This is particu-
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larly true in scenarios where the drum audio files are processed using different techniques. There

are many possible ways for a music producer to process drum kit recordings, such as applying

gain balancing, panning, dynamics processing, equalisation, and adding reverberation and dis-

tortion. These processing styles are often genre-dependent. Most ADT and DSS systems in

literature are trained and evaluated on balanced mixes from signals captured by different micro-

phones, usually not accounting for any other pre- and post-processing routines that may alter the

timbre of the instruments and affect their place in the mix. Neglecting these issues can ultimately

cause the algorithms to fail in their predictions when faced with unseen real-world contexts. On

this note, quantifying how robust the models are to these contexts is still a challenge in music

transcription as a whole.

We release the BFD Vintage Recording Techniques (BFD-VRT) dataset as a new evaluation

framework to test ADT and DSS algorithms on realistic production scenarios. It contains a

collection of professionally produced drum samples that allows ADT and DSS researchers to

create drum patterns under the production conditions of their choice. This can be done by using

the dataset jointly with the BFD Player application1, a free ”player” edition of the BFD virtual

drum kit instrument that synthesises realistic sounding drum performances from symbolic drum

patterns and the BFD-VRT dataset. An easy-to-use scripting environment for generating audio

data is also provided.

In this paper:

• We discuss the main limitations of public drum datasets and review past attempts to over-

come them.

• We provide a detailed overview of the BFD-VRT dataset, with information on its samples,

mixing presets, metadata, and rendering process.

• We list some alternative use-cases for the BFD-VRT dataset in MIR apart from ADT and

DSS.
1https://www.fxpansion.com/products/bfd3
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• We use the BFD-VRT dataset to compare the robustness of five open-source ADT algo-

rithms.

B.2 Limitations of Public Drum Datasets

The most popular drum datasets for ADT and DSS are ENST-Drums [7] and IDMT-SMT-Drums

[8]. These are two sets of multi-channel drum recordings including single hits, common patterns,

and sometimes accompaniment recordings (ENST-Drums) and synthesized drum sounds (IDMT-

SMT-Drums). While both datasets provide clean drum recordings with precise annotations,

they may sometimes impose important limitations on the generalisation capabilities of ADT

and DSS models. In a recent review of ADT [2], authors identify significant shortcomings of

current public drum datasets and discuss how they could affect the performance of end-to-end

models that have been trained on them. Some of these limitations refer to the insufficient data

diversity within them while others refer to their inappropriately small size for some taks like

source separation.

The lack of data diversity is arguably the most important limitation. Popular drum datasets

only contain enough representative data of a few musical genres, hit articulations, playing styles,

and production conditions. Not accounting for the large variety of drum performances that exist

in the real world can cause data samples to be too similar to each other (often redundant) and

make algorithms unable to perform well outside the training data. Some attempts to overcome

this problem have involved the incorporation of playing techniques to the training phase. Studies

on timbral variations of snare drums [9], cymbals [10], and rack and floor toms [11] have been

carried out in the past with views to improve the generalizability of ADT systems. While tested

algorithms achieved good performances for solo drum kit recordings, it has been shown that

their accuracy drops significantly when background music is present in the audio files [12].

The insufficient size of the datasets is also seen as a big problem, especially in DSS [13].

This is mostly due to the large amount of training parameters that deep neural networks have,

which are in need of a large amount of data to make the right inferences. If the amount of



Appendix B. BFD-VRT: A Dataset to Test Robustness of Drum Transcription Algorithms 188

training samples is considerably lower than the number of trainable parameters in the model,

some undesirable phenomena like data overfitting might emerge at the evaluation stage. To deal

with this lack of data in drum sound libaries, a popular technique that has been tried recently is

data augmentation [14] [15]. Results using this strategy showcase how the generation of new

audio files by applying post-processing effects to original dataset samples can make algorithms

generalize better.

The issues discussed here raise concerns about how well ADT and DSS models trained on

current public drum datasets would actually perform in unseen real-world scenarios. We believe

the BFD-VRT dataset would help researchers in ADT and DSS to better quantify the robustness

of their algorithms in face of these limitations.

B.3 Dataset

The BFD-VRT dataset consists of a detailed sampling of a drum kit, with one-shot multi-channel

samples for strikes on individual kit instruments recorded for numerous articulations and veloc-

ities. Using the free BFD Player plugin, this sample set may be sequenced by symbolic data

in MIDI or BFD Groove format to render stereo audio loops. Within BFD Player it is possi-

ble to control mixing and effects processing for the rendering, as well as articulation, velocity,

and other parameters. Using a simple scripting environment provided with the dataset, the pro-

cess of rendering stereo audio files of drum loops can be automated. These features mean that

large datasets of realistic, studio-quality drum loops with matching ground truth data may be

easily generated from symbolic data, under controlled rendering conditions. It is this control of

rendering conditions that enables generation of datasets for robustness testing.

B.3.1 Recording

The samples contained within the BFD-VRT dataset were recorded by in-house FXpansion

recording engineers in a professional standard drum recording studio, with a professional drum-

mer. The microphones used in the recording, along with kit instruments and mic placements are

shown in Table 3. Aside from direct microphones, three mono room mics are used, along with 4
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Quantity Value
Mean Sample length 2.11s
Max Sample length 10s
Total number of kit pieces 14
Total articulations 60
Velocity layers per articulation 16
Total number of samples 960
Total number of channels per sample 28
Dataset size (BFDLAC) 2862MB
Dataset size (WAV) 7120MB

Table 2-A: Key statistics for all samples in dataset

overhead pairs, a sub mic, 2 ambient stereo pairs and a processed reverb pair. The overhead pairs

consist of an ORTF pair, Glyn Johns method spaced pair, a regular spaced pair, and a coincident

pair of fig-8 ribbon microphones forming a Blumlein array. There is a total of 30 microphone

channels and 2 digital reverb channels, for a total of 32 channels. Of these, 28 or 29 will present

in any one kit piece. All kit pieces’ direct mics apart from the cymbals provide ”bleed” signals

for all hits. The drum recording microphone techniques used are described in [16].

B.3.2 Samples

Information concerning the samples contained in dataset is shown in Table 1. Samples are avail-

able in two file formats, multichannel WAV and BFDLAC, BFD’s native lossless data compres-

sion format for multi-channel data [17]. Samples names are labeled according to their velocity,

with low numbers quietest and high numbers loudest (e.g. ”master01.bfdlac” would be the qui-

etest velocity sample for a given instrument articulation). Samples are grouped in folders for

each articulation separately. The number of different articulations for each instrument is found

Instrument Number of Articulations
Kick 1
Snare 6
Toms 3
China 2
Hi-hat 12
Other Cymbals 3

Table 2-B: Total number of articulations for each kit piece
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Source Brand and Size Microphone Placing Microphone(s) Delay
Kick Ludwig 22”x14” In AKG D112 3.8

Out Shure Beta52 3.4
Snare Ludwig 14” x 5” 400 Top Shure SM57 0.3

Bottom SE Electronics SE3A 0.1
Top 2 (Condensor) SE Electronics SE3A 0.5

Hi-hat Zildjian 14” Quick
Beat

Top Neumann KM184 3.1

Floor Tom
Low

Ludwig 18” x 16” Top Sennheiser MD421 3.0

Floor Tom Ludwig 16” x 16” Top Sennheiser MD421 2.0
Mid Tom Ludwig 13” x 19” Top Sennheiser MD421 2.1
High Tom Ludwig 12” x 8” Top Sennheiser MD421 1.4
Splash Zildjian 12” K Top SE Electronics SE3A
China Zildjian 19” K Top SE Electronics SE3A
Crash Zildjian 16” A Custom Top SE Electronics SE3A
Ride Zildjian 22” A Custom Top SE Electronics SE3A
Sub mic - Front kit JBL speaker 6.7
Ambient - Reverb 2x DSP / Processed 12.4
Room Mono - Far room Oktava MK-220 14.3

- Side kit Oktava MK-220 7.3
- Front kit Neumann U87 Fet 3.8

Room Stereo - Far Room 2x Ribbon 12.0
- Room 2x Ribbon 11.5
- Ribbon
- Blumlein Array 2x Ribbon 16.0
- Glyn Johns spaced

pair
2x Neumann TLM103 5.3

- ORTF Pair 2x AKG C451B 6.1
- Regular spaced pair 2x AKG C414 XLS 6.5

Table 2-C: List of all sound sources in the BFD-VRT dataset. Microphone group
delay times are given for a snare centre hit. For snare hits, there are no
bleed signals supplied from the cymbal microphones. The relative delay
(in milliseconds) to the onset in each channel is caused by the distance in
3D space of all microphones relative to the snare drum’s primary direct
Top mic.

in Table 2. The BFD-VRT dataset sounds have their delay tails capped at 10 seconds for com-

pactness.
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B.3.3 Metadata

Detailed metadata for individual kit pieces are provided within the folder structure alongside

the samples. For each kit piece, there is an XML file (entitled BFDInfo) providing detailed

information about the kit piece, such as the manufacturer, dimensions, year constructed, type

of beater or drum stick used, construction materials, audio channel structure and a photo of the

kit piece. All metadata was documented by FXpansion engineers and developers at the time of

recording of the dataset and is known to be accurate.

B.3.4 Groove Files

In addition to support for MIDI files, BFD’s native Groove files may be used to sequence the

drum samples for rendering audio drum patterns. BFD’s Grooves are symbolic drum patterns

recorded by human drummers. They are mostly unquantized and can trigger all velocities and

articulations. These are in an XML-based format, grouped in ”bundles” of around 20-40 similar

grooves of the same style and genre. Metadata is included in addition to the drum patterns

themselves, such as the original tempo they were recorded at (Grooves can be rendered at any

tempo), time signature, and articulations used. A set of 142 Grooves that were used in the

evaluation are provided with the sample dataset. These are described in Section 5.1.

B.3.5 Mixing and Effects

The BFD-VRT dataset provides 15 mixing presets for rendering drums. These presets can be

customised via mixer and engineering macro knobs within BFD Player, giving access to a wide

range of mixing possibilities, including channel balancing, EQ and dynamics processing, reverb,

distortion. The fifteen mixing presets provided are described in Table 4. The Macro Knobs in

BFD Player provide high-level sound design, linking to many underlying engineering and effects

parameters provided by the full BFD software.
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Preset Name Description
Blue Funky Compression on all direct mics, EQ and drive on kick.
Blumlein Blumlein array overheads and direct mics.
Direct Microphones Only No overheads or ambient microphones. No effects.
Far Room Microphones All direct mics and far room mics. No overheads. No effects.
Glyn Johns Technique Direct kick and snare mics and Glyn Johns overheads spaced pair.

No effects.
Mainly Mono Mics Direct kick snare and hi-hat. Three mono room mics. No effects.
Modern Heavy All direct mics and far room mics. Heavy compression, distortion

and EQ.
One Mic Mono feed from single room mic in front of drummer. No effects.
ORTF ORTF stereo overheads and all direct mics. No effects.
Pick N’ Mix Direct kick snare and hi-hat mics. Mix of all overheads. Heavy

compression and drive.
Pumped Up Monos All direct mics, spaced pair overheads and three mono room mics.

Compression.
Ribbon Time Reverb on all direct mics. EQ and drive on room mics.
Slow and Heavy Direct drums and hi-hat mics. Glyn Johns overheads. EQ, reverb,

compression and distortion.
Spaced Pair All direct mics and regular spaced pair overheads. No effects.
Sub Microphone All direct mics and spaced pair with added sub mic on kick. No

effects.
Vintage Crushed Direct mics on drums and hi-hat. 2 room mics and mixed overheads.

Heavy compression and distortion.

Table 2-D: Mixing presets in the BFD-VRT dataset

B.3.6 Scripting and Automation

A scripting environment for BFD Player provides functionality for rendering large numbers of

audio files from symbolic data, with matching ground truth data for dataset generation. A set of

Python functions call commands from within a Lua API that communicates with BFD from a

command line environment. A full guide to using this environment can be seen in [link will be

added after review].

Key functions of this scripting language include loading and saving presets, loading Groove

or MIDI files, muting channels, adjusting mixer or effects parameters, setting the tempo, render-

ing audio, and saving Groove or MIDI files as ground truth data. With this interface, it is simple

to automate the generation of audio drum patterns from symbolic data under various controlled

conditions. This way, datasets can be generated for the same symbolic patterns but with different
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mixing and processing techniques, with or without certain instruments, humanization (random

variations in onset timings or velocities), or other parameters. An example use case is provided

in the next section, where the same set of symbolic drum patterns are rendered as audio for a

number of different mixing styles with the aim of testing the robustness of ADT algorithms.

Example code is provided [link will be added after review] for generating the datasets used in

this paper.

For instance, the following is an example of a simple python script calling Lua commands

within BFD. It loads the preset Blue Funky with a groove waltz.mid, sets the tempo to 180, and

renders it to the wav file top10.wav.

lua2BFD("loadPreset(bfd, ’Blue Funky’)")

lua2BFD("loadGroove(bfd, ’waltz.mid’)")

lua2BFD("setTempo(bfd, 190)")

lua2BFD("exportGroove(bfd, ’top10.wav’)")

B.4 Other Research Topics

The BFD-VRT dataset will contribute to research topics beyond drum transcription and drum

source separation. Given that the BFD-VRT dataset provides new options for generating drum

grooves, it opens new avenues for research and analysis. In this section, we will present a non-

exhaustive list of topics for research that this dataset will contribute to.

B.4.1 Analyzing drum articulation

Playing technique datasets [9, 11] are usually comprised of isolated drum sounds. The drawback

is that it is not reflective of how different playing techniques occur in the real world.

The BFD-VRT dataset allows the incorporation of different playing techniques into the

Grooves to create realistic drum patterns and allows different mixing conditions to further emu-

late the diversity of drum sounds in the real world. This would serve as a bridge between evalu-

ating systems on isolated drum sounds and real drum recordings.
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B.4.2 Generalisability

A common problem with machine learning algorithms is the ability to estimate how well they

perform on unseen data in the real world.

A simple way to evaluate the generalisability of the system would be to partition the dataset

based on the mixing presets so that there is no overlap of the presets between the training and

test data. Then evaluating the performance on the test data gives a more realistic understanding

of how the system would behave in unseen scenarios.

Another approach for generalisability is through domain adaptation [18]. Creating features

that are invariant to the mixing conditions would increase the likelihood of good performance in

unseen mixing conditions. In music, this idea has been explored in the context of transposition

invariance for audio-to-score alignment [19]. A similar approach of using gated autoencoders

might be a good starting point for mixing invariance in drum transcription.

B.4.3 Automatic Mixing

Typically automatic mixing of music focuses on level, panning, EQ, compression, and reverb. As

De et al. [20] point out there is a constant need for trustworthy labeled data to perform automatic

mixing. In automatic drum mixing work [21] it is noted that machine learning approaches are

gaining popularity and that suitable data is needed. In addition, there is a need for more mixing

parameters.

The BFD-VRT dataset provides an easy setup to generate data for different types of mixing

parameters. The dataset would be suitable for machine learning approaches too.

B.4.4 Explainability of Drum Transcription

Debugging any deep learning system is tricky because they are black boxes. What can be

changed is the parameters of the input in order to verify certain assumptions about the system.

For example, if the model architecture used is a convolutional recurrent neural network and

there are concerns that the model is overfitting to pop genres. BFD-VRT can be used to generate
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uncommon rhythms, which the model can evaluate on to give a sense of whether the model

overfits to pop.

The ability to control so many parameters of the BFD-VRT with precision allows for analysis

where parameters of the input can be gradually changed until the system breaks. Ultimately

improving the ability to analyze these drum transcription systems.

B.5 Evaluation

In this section, we test the robustness of five open-source pretrained ADT algorithms to various

recording conditions and post-processing effects. This is intended to show the potential of the

BFD-VRT dataset to evaluate ADT models, as well as comparing the generalisability capacity

of the tested algorithms.

B.5.1 Data

To evaluate these models on different drum production scenarios, we synthesise fifteen datasets

based on the fifteen presets included in the BFD-VRT dataset. These presets encompass different

realistic settings of both recording techniques and post-processing effects. Table 4 describes

these presets.

The datasets are rendered using the set of drum loops featured in [22], which consist of 142

loops found within the BFD Groove library. They are drawn from a diverse range of styles,

with an equal split from each of these 8 genre groups: Rock, Metal, Jazz, Dance/Hiphop,

Blues/Country, Latin/Reggae, Funk, and Pop. All loops are 2 bars long, in 4/4 time, and ren-

dered at 120bpm. Some of them are swung or contain triplet rhythms. As they are recorded by

drummers, they are unquantized and contain variable velocity for each hit.

B.5.2 Models

We prepare five models for evaluation: NMF [23], ADTLib [24], CNN, CRNN and BRNN [15].

These are all open-source algorithms that have been trained to predict three instruments: bass
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drum, snare drum, and hi-hat.

The NMF model is described in [23]. Audio spectrograms of isolated drum sounds are used

to pre-train a dictionary matrix that is then used in a Partially Fixed Non-Negative Matrix Factori-

sation (PFNMF) algorithm. The PFNMF model analyses music signals and updates the original

dictionary matrix accordingly. The final activation matrix derived by this process contains the

predicted onsets and labels. Input spectrograms are calculated using a frame hop size of 11.6

ms.

The ADTLib model is based on the method described in [25]. It consists of a convolu-

tional neural network that extracts features from the whole magnitude spectrogram of the input

audio file, three soft attention recurrent neural networks (one for each class) to model how these

features change in time, and another recurrent network to perform peak-picking on the output

activation function. The input spectrogram is calculated using a frame hop size of 11.6 ms.

The CNN, CRNN, and BRNN models were originally proposed in [15]. The CNN and

CRNN algorithms share the same four-layer convolutional architecture in the network’s backend

while differing in their last block of layers. The last block in the CNN consists of two dense

layers, while the one in the CRNN consists of three bi-directional recurrent layers. The BRNN

is uniquely composed of three bi-directional recurrent layers, without any feature extractor oper-

ating in its backend. All three models take the log magnitude spectrogram of the audio file and

its first derivative as input representations. These are calculated every 10 ms.

B.5.3 Methodology

We run the five models in their recommended configurations on the fifteen generated datasets

and we use the F1-score metric F1 to evaluate transcription performances. Specifically, we

calculate the sum F1-score [26] per dataset. Minimal deviations from the annotated onsets in

the predictions are taken into account by setting a tolerance window of 50 ms. In addition to

the F1-score for each of the models, we also measure their performance stability. To do so, we

first calculate the standard deviation σF1 of a model’s F1-scores across all 15 datasets for each
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Model Precision Recall F1-score
CNN 0.934 0.579 0.715
ADTLib 0.662 0.548 0.600
BRNN 0.997 0.530 0.692
NMF 0.823 0.543 0.655
CRNN 0.991 0.626 0.768

Table 2-E: Model performances over instruments and mixing conditions.

instrument and then average the three resulting standard deviations.

B.5.4 Results and Discussion

Figure 1 and Table 5 display the results from the evaluation process described above.

Figure 2.1: Histograms illustrating results of each model for the generated datasets.

In terms of overall performance results, the CRNN model gave the highest F1-score (F1 =

.768), followed by the CNN (F1 = .715), the BRNN (F1 = .692), the NMF (F1 = .655), and

the ADTLib (F1 = .600). The fact that the NMF’s performance was comparable with the rest of

the models is particularly interesting, as this algorithm was trained on only 18 samples per class

at most. We also note that precision scores are significantly higher than recall scores, meaning

that the algorithms tend to miss a relatively high number of drum events while classifying most

detected ones correctly. Models based on activation functions, however, may adapt their pick-

picking threshold (detection sensitivity) and strike an optimal balance between precision and
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recall given the context.

Regarding performance stability, the NMF was the most stable (σF1 = .020), followed by

the CNN (σF1 = .060), the CRNN (σF1 = .063), the BRNN (σF1 = .066) and the ADTLib

(σF1 = .091). This would make sense, as the NMF is a linear model that was trained with

few data samples, making it less prone to overfit to the training dataset than highly complex

non-linear models like neural networks.

Several other observations can be drawn when looking at the accuracies on individual datasets.

The models performed significantly better on the ”Slow and Heavy” (F1 = .759) and ”Modern

Heavy” (F1 = .751) datasets, and significantly worse on the ”Ribbon Time” dataset (F1 = .563),

which also accounted for the least stable performances (σF1 = .149). This could indicate that

post-processing effects have the potential to help with the detection and classification of drum

instruments (e.g. equalisation can reduce instrument overlap in the frequency domain) and that

the addition of reverb to direct microphones could confuse the algorithms.

We can also see that the presence of room and ambient mics is a very important condition

for some models to detect certain instruments. For instance, the BRNN and CRNN models fail

to detect the hi-hat properly on the ”Direct Microphones Only” mix. The addition of the far

room microphone seems to improve performance in these situations, bringing it a little closer to

transcription accuracies with overhead microphones. This shortcoming could also be tackled by

the correct choice of hyper-parameters when attempting transcription.

B.6 Conclusions

This paper has covered the release of the BFD-VRT dataset, designed to assess the robustness

of ADT and DSS algorithms to recording conditions and post-processing engines. Its generative

character lets researchers create their own datasets from symbolic drum patterns while manipu-

lating production parameters like the type of microphones used, volume levels, and sound effects.

We illustrated the dataset’s potential by evaluating the performance of five open-source ADT

models using it. This allowed us to make some inferences about how accurate the algorithms
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are expected to be in specific production contexts. The BFD-VRT dataset and the accompanying

code for this paper are freely available at [link will be added after review].
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[8] C. Dittmar and D. Gärtner, “Real-time transcription and separation of drum recordings

based on nmf decomposition.” in DAFx, 2014, pp. 187–194.

[9] A. R. Tindale, A. Kapur, G. Tzanetakis, and I. Fujinaga, “Retrieval of percussion gestures

using timbre classification techniques.” in Ismir, 2004.

[10] V. M. Souza, G. E. Batista, and N. E. Souza-Filho, “Automatic classification of drum

sounds with indefinite pitch,” in 2015 International Joint Conference on Neural Networks

(IJCNN). Ieee, 2015, pp. 1–8.



Appendix B. BFD-VRT: A Dataset to Test Robustness of Drum Transcription Algorithms 200

[11] M. Prockup, E. M. Schmidt, J. J. Scott, and Y. E. Kim, “Toward understanding expressive

percussion through content based analysis.” in Ismir. Citeseer, 2013, pp. 143–148.

[12] C.-W. Wu and A. Lerch, “On drum playing technique detection in polyphonic mixtures.”

in Ismir, 2016, pp. 218–224.

[13] C. Dittmar, “Source separation and restoration of drum sounds in music recordings,” 2018.

[14] C. Southall, R. Stables, and J. Hockman, “Player vs transcriber: A game approach to data

manipulation for automatic drum transcription.” in Ismir, 2018, pp. 58–65.

[15] R. Vogl, M. Dorfer, G. Widmer, and P. Knees, “Drum transcription via joint beat and drum

modeling using convolutional recurrent neural networks.” in Ismir, 2017, pp. 150–157.

[16] B. Owsinski and D. Moody, The Drum Recording Handbook, 2nd ed. Hal Leonard, 2016.

[17] S. McDonald, “BFDLAC: A fast lossless audio compression algorithm for drum sounds,”

in Acmc, 2015.

[18] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, “A theory

of learning from different domains,” Machine learning, vol. 79, no. 1-2, pp. 151–175,

2010.

[19] S. Lattner, M. Grachten, and G. Widmer, “Learning transposition-invariant interval features

from symbolic music and audio,” arXiv preprint arXiv:1806.08236, 2018.

[20] B. De Man, J. Reiss, and R. Stables, “Ten years of automatic mixing,” 2017.

[21] D. Moffat and M. Sandler, “Machine learning multitrack gain mixing of drums,” in Audio

Engineering Society Convention 147. Audio Engineering Society, 2019.

[22] F. Bruford, M. Barthet, S. McDonald, and M. Sandler, “Modelling musical similarity for

drum patterns: A perceptual evaluation,” in Proceedings of the 14th International Audio

Mostly Conference: A Journey in Sound on ZZZ, 2019, pp. 131–138.

[23] C.-W. Wu and A. Lerch, “Drum transcription using partially fixed non-negative matrix

factorization with template adaptation.” in Ismir, 2015, pp. 257–263.

[24] C. Southall, N. Jillings, R. Stables, and J. Hockman, “Adtweb: An open-source browser

based automatic drum transcription system,” 2017.

[25] C. Southall, R. Stables, and J. Hockman, “Automatic drum transcription for polyphonic

recordings using soft attention mechanisms and convolutional neural networks.” in Ismir,

2017, pp. 606–612.



Appendix B. BFD-VRT: A Dataset to Test Robustness of Drum Transcription Algorithms 201

[26] C.-W. Wu, C. Dittmar, C. Southall, R. Vogl, G. Widmer, J. Hockman, M. Müller, and

A. Lerch, “A Review of Automatic Drum Transcription,” IEEE/ACM Transactions on

Audio, Speech, and Language Processing, vol. 26, no. 9, pp. 1457–1483, Sep. 2018,

conference Name: IEEE/ACM Transactions on Audio, Speech, and Language Processing.


	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Task 1: Vocal Percussion Transcription
	Task 2: Drum Sample Retrieval by Vocalisation
	Outline of the thesis
	References

	Background
	Theory
	Heuristic Digital Signal Processing
	Data-Driven Digital Signal Processing

	Literature Review
	Vocal Percussion Transcription (VPT)
	Drum Sample Retrieval by Vocalisation
	Related Fields

	Summary
	References

	Data
	Publicly Available Datasets
	Vocal Percussion Transcription
	Drum Sample Retrieval by Vocalisation

	The Amateur Vocal Percussion Dataset
	Recording
	Post-Processing and Annotation
	Observations

	Other Datasets and Extra Annotations
	Freesound Beatbox Dataset
	VIS Percussive Dataset
	Phonetic Annotations

	Summary
	References

	Vocal Percussion Onset Detection
	Offline Onset Detection
	Methodology
	Results and Discussion

	Online Onset Detection
	Methodology
	Results and Discussion

	Summary
	References

	Offline Vocal Percussion Classification
	End-to-End Offline Vocal Percussion Classification
	Methodology
	Results and Discussion

	Representation Learning for Offline Amateur Vocal Percussion Classification
	Methodology
	Results and Discussion

	Summary
	References

	Online Vocal Percussion Classification
	Phoneme Mappings for Online Amateur Vocal Percussion Classification
	Relevant Work and Data
	Analysis
	Discussion

	Online Beatbox and Amateur Vocal Percussion Classification
	Methodology
	Results and Discussion

	Summary
	References

	Drum Sample Retrieval by Vocalisation
	Preliminary Study: Spectral and Temporal Cues
	Experiment 1: Average Spectrograms
	Experiment 2: Timbre Analysis
	Experiment 3: Psychoacoustical Analysis

	Conditional Auto-Encoders for DSRV Feature Learning
	Methodology
	Results and Discussion

	Summary
	References

	Conclusion
	Summary of Findings
	Challenges and Perspectives

	Appendix Author's publications
	Appendix BFD-VRT: A Dataset to Test Robustness of Drum Transcription Algorithms
	Introduction
	Limitations of Public Drum Datasets
	Dataset
	Recording
	Samples
	Metadata
	Groove Files
	Mixing and Effects
	Scripting and Automation

	Other Research Topics
	Analyzing drum articulation
	Generalisability
	Automatic Mixing
	Explainability of Drum Transcription

	Evaluation
	Data
	Models
	Methodology
	Results and Discussion

	Conclusions
	References


