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Abstract 
There is growing interest in the use of clinical prediction models (CPMs) to aid decision making across 

healthcare. CPMs provide risk estimates for the presence of disease, or future outcomes, given current 

information about a patient. The pipeline of getting a CPM into clinical practice involves, (i) model 

development where a dataset is used to estimate the model parameters, (ii) model validation, where 

the predictive performance of the model is evaluated, (iii) impact assessment, where the clinical 

impact of the CPM is evaluated, and then finally (iv) model implementations into practice. It is 

commonly the case that once a model has been implemented, the model coefficients/parameters 

remain fixed, or at best are updated at arbitrary time points. However, healthcare and patient 

populations experience changes in terms of processes and case-mix, respectively, which means the 

covariate-outcome associations of the CPM also need to change, which is not reflected in most CPMs 

to-date. This results in the accuracy of the CPMs diminishing over time. This is known as calibration 

drift and is one of the major pitfalls of CPMs to date. Dynamic prediction models are a possible solution 

as the model parameters are not fixed and they attempt to acknowledge/model the temporal nature 

of the data. 

This thesis explores the challenges of CPMs in the presence of calibration drift. The aims of the thesis 

are to (a) provide a comprehensive understanding of the methodology and challenges with dynamic 

modelling, (b) compare the predictive performance of the different models, and (c) to develop a 

method to address the problem of arbitrary updating. 

Chapter 2 identifies existing methods used for dynamic prediction modelling through a review of the 

literature and highlights the current methodological challenges in dynamic prediction modelling. 

Chapter 3 discusses potential solutions to overcome the challenges described in chapter 2, leading to 

the suggestion of dynamic prediction systems, a way to continuously update and monitor a model 

over time. Following on from these chapters, chapters 4 and 5 compare the methods identified in 

chapter 2 through a simulation study and real-world data examples in cardiovascular disease. Despite 

the issues identified in chapters 2 and 3, chapters 4 and 5 found dynamic models perform as well as 

or better than non-dynamic models, which are currently the norm in the field. Building on this, chapter 

6 develops a solution to one of the major challenges in predictive modelling, continuous monitoring 

and feedback, and illustrates the novel approach through simulation. 

Generally, this thesis has the potential to improve performance and monitoring of prediction models, 

especially in presence of performance drift, by moving away from the current CPM framework and 

methods towards the proposed dynamic prediction systems. Practically, the thesis has used traditional 

and novel methodology to further the field of CPM development and validation. 
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Chapter 1 General Introduction 
The data revolution has led to the increase in collection and use of data throughout healthcare. 

Algorithms and statistical models, specifically clinical prediction models, are increasingly being used, 

but they degrade over time and methods to utilise the continual flow of data in healthcare are lacking. 

This thesis will identify and compare statistical modelling methods, known as dynamic prediction 

models, for model updating and monitoring to overcome the problem of model degradation. This 

chapter provides the background to the research area by first describing health data that are often 

used for clinical prediction modelling in healthcare before outlining the concept of the learning health 

system. Following this, an introduction to clinical prediction models is provided which includes the 

current approach to develop and validate models, before detailing one of the major pitfalls with 

clinical prediction models, calibration drift. Current practice to overcome this issue is then discussed 

and the need for further improvement is highlighted. Next, dynamic prediction models are introduced 

as a potential solution before discussing the current challenges and further research needed in this 

area. Finally, the chapter ends with the research aims and objectives. 

1.1 Electronic health records/ Health data 
Electronic health records (EHRs) contain the medical and treatment histories of patients, including 

diagnosis, medications, treatment plans, laboratory tests and referrals. Such data are stored digitally 

and often in real-time.  These data enable information to be available instantly and securely to those 

with access. The records consist of information from GP consultations and hospital inpatient and 

outpatient visits. They are used primarily to share information across the healthcare system and 

include information from numerous healthcare providers and organisations. As a secondary use, EHRs 

are increasingly used for research purposes given that the digitisation of routinely collected data 

provides data on a large number of individuals often across wide geographical areas. The widespread 

adoption of EHRs has provided a wealth of information for health research and has enabled 

opportunities to enhance patient care, embed performance measures into clinical practice, identify 

and recruit patients in research and improve productivity and efficiency of the healthcare system. 

Increases in digitisation, data collection and computing power have led to big data analytics and the 

data revolution1–3.  

1.2 Learning health system 
Inspired by the data revolution, such as EHRs, health informaticians have proposed the concept of 

a learning health system4 (LHS): a health system that improves itself by learning from data, 

continuously and in real time. This takes place through cyclical processes that mobilise health data, 

analyse it to create new knowledge, and apply that new knowledge to improve the health of 

individuals and populations (Figure 1.1).  

http://stm.sciencemag.org/content/2/57/57cm29.full
https://www.ncbi.nlm.nih.gov/pubmed/28480469
https://www.ncbi.nlm.nih.gov/pubmed/28480469
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Figure 1.1 - Representation of the Learning health system concept adapted from Friedman et al5 

LHSs are supported by infrastructures, such as cloud-based computing, that enable these processes 

to take place routinely and with efficiency of scale and scope. A key metric of the learning health 

systems is data-action latency6: the time lag between evidence being available and corresponding 

action being taken in clinical practice. Minimizing the data-action latency requires concerted data 

capture, data consolidation, and analysis followed swiftly by interpretation of results, assignment of 

responsibility for any actions, and recording of actions6. Ultimately, actions may be initiated in real-

time, following every new data item recorded. The concept of a LHS is often applied to help improve 

clinical decision-making. Indeed, healthcare research uses the experiences of past patients to build 

understanding and learning for the future. A large area of work in this space is being able to build 

models that use the experiences of past patients (i.e. past data) to make predictions about the 

prognosis (or diagnosis) of similar patients in the future – a concept commonly referred to as 

predictive modelling. 

1.3 Clinical prediction models 

1.3.1 Background 

Prognosis research is the investigation of the relationship between future outcomes among people 

with a given baseline health state in order to improve health7. The PROGnosis RESearch Strategy 

(PROGRESS) series8–11 proposes a framework of research themes where the third10 is the development, 

validation and impact of statistical models that predict individual risk of a future outcome, known as 

prognostic model research. These models are referred to as Clinical prediction models (CPMs). 

CPMs have become fundamental to clinical decision support systems over recent years. They are 

tools/models/algorithms that compute the risk of an outcome (either in the future for prognosis, or 

in the past for diagnosis) given a set of patient characteristics12,13. Diagnostic CPMs calculate the 

probability that a patient currently has this outcome of interest, while prognostic CPMs calculate 

patient’s risk of experiencing the outcome of interest at some timepoint in the future10,14. They are 

typically based on multivariable regression models, derived by analysing historical, routine healthcare 

data and have numerous uses across healthcare. Uses include disease prevention and management, 

https://www.ncbi.nlm.nih.gov/pubmed/26395036
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treatment decision-making, manging supply chains and precision medicine. The Leicester diabetes risk 

score15 is an example of a CPM used in clinical practice. The score is used to identify individuals at risk 

of developing type 2 diabetes and included in NICE guidelines for prevention of type 2 diabetes16. 

CPMs can also be used for auditing and quality assessment and the Percutaneous coronary 

intervention (PCI) mortality model17 is currently used for this purpose. This model predicts 30-day 

mortality following PCI (a coronary revascularisation procedure) and is used for benchmarking and 

auditing of hospitals (i.e. predictions of the expected mortality within each hospital are calculated and 

then compared to the hospitals observed mortality). 

Arising from the desire to move health systems away from cure to preventative medicine, CPMs have 

become popular and have now been routinely used over the past 2 decades. A recent systematic 

review showed that over 300 CPMs have been developed for cardiovascular disease alone18. This 

included two well established CPMs, the Framingham19 and QRISK20 models, used to compute an 

individual’s risk of developing cardiovascular disease over the next 10 years. QRISK is included in 

clinical guidelines21 and EHR systems in the UK now have QRISK222 embedded. Namely, if an individual 

has a risk above 10% they would be considered for statins and given lifestyle advice on how to reduce 

their risk. In response to this rise in CPM use across the health system, a guide on how to present 

clinical prediction models for use in clinical settings has been publication in the British Medical 

Journal23. 

1.3.2 Development and validation 

Traditionally, cohort studies are used in the development of CPMs. Prospective cohort studies require 

patient recruitment and assessment of patients upon study entry. Individuals are then followed up 

and observed for outcomes of interest in the future. CPMs are usually developed using prospective 

studies but retrospective studies can also be used. Retrospective studies identify individuals who have 

experienced (or not experienced) an outcome of interest and then look back in their records or are 

interviewed about their medical history. EHRs are often a source for this data and are increasingly 

being used for CPM development as they become increasingly available for research and contain vast 

quantities of data. This is important as the more data used to develop the model, the less likely you 

are to observe overfitting, a problem that arises when the model captures idiosyncrasies in the 

development data. Riley et al24 recently proposed how to calculate the minimum required sample size 

for developing a CPM and that large sample sizes are needed to ensure precise estimates. 

Once the data has been collected, regression analysis is applied using a prespecified list of candidate 

predictors. These should be identified from previous research and clinical guidance. The final model 

will include a subset of predictors from the candidate predictors chosen based on statistical 

significance and clinical importance. Methods and best practice for the development of prediction 

models have been widely documented25,26 and an MRC partnership, the MRC PROGRESS Partnership 

(www.progress-partnership.org), has developed guidelines and training for prognosis research9–11,14.  

The purpose of a prediction model is to provide outcome predictions for new patients. For CPMs to 

be used and accepted in practice we need to build trust in them and their predictive accuracy. 

Therefore, validation is an important aspect of prediction models that ensures the models are 

accurate, generalizable (to settings they would be applied to) and clinically credible. Validation can be 

performed internally, using data similar to the development data, and externally, using an 

independent (separate) dataset. Internal validation techniques include bootstrap, split-sample and 
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cross validation; however, bootstrap validation is preferred as it leads to more accurate estimates of 

model performance27. Bootstrap validation involves sampling data, with replacement, from the raw 

(original) data to create a bootstrap sample. A CPM is then developed in the bootstrap data, following 

the same model development procedure as the CPM being validated, and then validated in both the 

bootstrap and original dataset. The difference in the performance between the original and bootstrap 

data gives what is known as the optimism. This is repeated many times, often 1000, and the average 

optimism across the bootstrap samples is calculated. Finally, the CPM developed on the original data 

is validated within the original data and the averaged optimism is subtracted from this to obtain the 

bootstrapped validation measure. The key metrics for model validation are calibration and 

discrimination. Calibration measures how well the model predictions match the observed data and 

discrimination refers to the models ability to distinguish between those with and without the 

outcome28,29.  

Calibration measures include calibration-in-the-large, calibration slope and ratio of expected and 

observed number of events30,31. Historically, the Hosmer-Lemeshow test statistic has also been used 

but it has limited statistical power, is sensitive to sample size and does not produce direction or 

magnitude of miscalibration32. It is therefore no longer advised for validating a CPM. Calibration-in-

the-large, also known as calibration intercept, assesses the mean calibration of the model by 

comparing the average predicted risk with the average outcome. The target value of this measure is 0 

and values below or above 0 indicate that predictions are systematically too high or too low, 

respectively. The calibration slope, however, has a target value of 1 and evaluates the spread of the 

estimated risks. If the calibration slope is less than 1, the model is overfitted, meaning the predictions 

are too extreme (too high for high risk and too low for low risk individuals). A slope greater than 1 

means the model is underfitted and predictions are not varied enough (too high for low risk and too 

low for high risk individuals). The expected-observed ratio is calculated as the mean expected 

(predicted) outcome divided by the mean observed outcome. A value of 1 represents prefect 

calibration and this measure is related to the calibration-in-the-large, such that when expected-

observed ratio is less than 1 the calibration-in-the-large will be greater than 0. In addition to 

calibration, discrimination is typically calculated using the (concordance) C-statistic, which is the 

proportion of concordant pairs of individuals, or D-statistic for time to event outcomes. The C-statistic 

bounded between 0 and 1 where a C-statistic of 1 indicates perfect discrimination but a C-statistic of 

0.5 indicates the model has no discrimination and is no better than predicting the outcome randomly. 

1.4 Calibration drift 

1.4.1 Background 

Currently CPM coefficients/parameters are estimated in such a way that they are time-invariant; 

hereto called static models. Hence, once a model has been developed the model and its coefficients 

remain fixed. Static models ignore the fact that the demographics of the population, disease 

prevalence and health policies may change over time. As a result, predictions based on static models 

quickly become ‘outdated’ and therefore do not provide accurate risk estimates33. Consequently, it is 

not uncommon for the agreement between the observed and predicted event rates (i.e. calibration) 

to worsen over time. This is known as calibration drift34 and is one of the major pitfalls in using CPMs 

in practice. Calibration drift not only occurs over time but can also be present when a model is used 

in a population that it was not developed in and does not generalise well to the population it is being 

used to predict. This thesis does not consider these situations but instead focuses on calibration drift 
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over time. Figure 1.2 illustrates calibration drift over time, from a fictional model on simulated data, 

where the models predicted mortality (Black line) diverges from the observed mortality (blue line) 

with increasing time. 

 

Figure 1.2 - Plot illustrating calibration drift using simulated data of a fictional model 

Hickey et al33 highlights this issue in the logistic EuroSCORE model, which is used to predict in-hospital 

mortality following cardiac surgery. They show that the EuroSCORE model over-predicts mortality, 

which thereby leads to a worsening of prediction accuracy over time. To address this issue, EuroSCORE 

II has been developed using more recent data. QRISK is another model that is updated yearly for this 

reason22. Calster et el30 have also highlighted the need to improve efforts to avoid poor calibration 

when developing and validating prediction models. They describe the importance in calibration and 

the lack of attention it currently receives in the field of predictive analytics. 

1.4.2 Model updating 

Current practice to address calibration drift is to develop a new model, apply model updating to an 

existing CPM35,36 or to aggregate existing models37,38. Traditionally, once calibration drift has been 

identified (or indeed any reduction in predictive performance of an existing CPM observed) new 

models would be developed de novo. However, over recent years, model updating and aggregation 

have become the preferred methods as they are do not discard data or existing knowledge39,40.  

Model updating uses data from more recent time points or data from a different setting to which the 

model was developed and regresses the original model’s linear predictor against the outcome in the 

new data. This is known as model recalibration and provides an updated model intercept as well as a 

calibration slope which is a scalar value for the beta coefficients in the original model. Model revision 

is another updating technique which re-estimates the model coefficients to best fit the new data. 

Model revision can also be extended to allow additional predictors to be included in the model and is 

referred to as model extension25,41. Steyerberg et al40 describes the approaches of model updating 

determines a hierarchy of complexity from model intercept adjustment, the simplest model 

recalibration method, to the more complex model revision methods.  

Although these techniques do recalibrate models, calibration drift can still occur between updates, 

because model updating requires manual intervention by analysts. This means that the data-action 
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latency period is often too long. For example, if a model is updated yearly on the first of January but 

clinical guidelines change on the first of February, then this could impact model calibration and cause 

calibration drift. Seasonal effects could also impact calibration. For example, a model might be well 

calibrated overall, but if it is being used to predict hospital admission for phneumonia then it is likely 

to under predict in the winter and over predict in the summer months. In addition to this, many models 

are never updated and those that do are often updated at arbitrary time points. For example, 

QRISK20,22,42 is updated yearly and EuroSCORE43,44 has only been updated once since it was originally 

developed in 1999. Arbitrary updating is suboptimal and is not sufficient to ensure our CPMs remain 

accurate over time. 

In addition to this, we have recently experienced a global pandemic as a result of the SARS-CoV-2 virus, 

known as COVID-19. This had huge impact on healthcare services and patient populations, thus 

demonstrating the need to decrease the data-action latency and respond to global or regional changes 

that occur in the future. Hence, the healthcare system and disease populations are constantly evolving 

but our models remain static and are not evolving at the same rate. Therefore, there is a need to 

advance these approaches by ensuring a CPM is always as accurate as possible. For this to be achieved, 

we need to remove the latency period between observing calibration drift and updating a model.  

1.4.3 Opportunity to improve model updating 

The increase in data collection and sharing, along with acceptability of new statistical methods to 

analyse health data provides opportunity to use CPMs across healthcare and build new methodology 

and systems to improve patient care and outcomes. This opportunity had already resulted in the 

growing number of CPMs described above and has aided the growth of statistical modelling in 

healthcare. Therefore, this opportunity could be used to expand the CPM methodology and combine 

CPMs with the LHS to help address calibration drift and provide a data driven approach to model 

updating. 

1.5 Dynamic models 

1.5.1 Background 

Dynamic prediction models have been developed as a potential solution to calibration drift and 

synergise with the learning health system framework45. They are clinical prediction models that 

estimate parameters that allow them to be time varying and not fixed values. Dynamic prediction 

models can therefore evolve over time with the collection of new data, continuously provide updated 

information and acknowledge the temporal nature of health data – thus reducing the data-action 

latency compared to static models or classic model updating. A dynamic model is often formulated 

and fitted within the Bayesian modelling framework and the model coefficients are updated as each 

new observation is recorded in the data. Dynamic models allow us to: 1) utilise historical data and 

models effectively, 2) tailor models to local populations, 3) reduce data-action latency, and 4) allow 

models to adapt over time. The term ‘dynamic modelling’ in this thesis is distinct to the use of the 

term in longitudinal data analysis46, where updated prediction are made about an individual following 

new repeated measures about them. 

1.5.2 Challenges 

Hickey et al47 has implemented a dynamic prediction model and compared the model to the standard 

model updating techniques discussed above. This study highlights the danger of calibration drift 

because it can “provide misleading indications of risk to support patient-level decision making” as well 
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as provide “false reassurance to providers about quality of care”. The study also illustrates the 

potential for dynamic prediction models in healthcare but outlines some potential challenges with 

dynamic modelling approaches. The current challenges they highlight are: 1) difficulty in identifying 

model performance, 2) lack of model development and tools, 3) model complexity and 4) the 

arbitrariness in how to select/choose a number of hyperparameters in such models. Currently, 

dynamic models have limited exposure to healthcare and beyond the papers by Raftery et al45 and 

Hickey et al47 there has been little progression. McCormick et al48 expands the dynamic modelling 

method from Raftery to allow for prediction of binary responses and produced the dma package49 in 

R. Beyond this, there has been no methodological development and only a small number of studies 

have implemented dynamic modelling in healthcare. 

Dynamic prediction modelling has huge potential within healthcare, and it is essential to increase our 

understanding of these models and how they can be developed to better facilitate healthcare by 

providing more accurate and precise predictions. This PhD thesis explores this field of work and some 

of these issues and problems that arise within the dynamic modelling framework. Section 1.6 outlines 

the aims and objectives for this thesis. 

1.6 Aims and Thesis structure 
This PhD project has three primary aims. First, to provide a comprehensive overview of the 

methodology available to develop dynamic prediction models, including the challenges associated 

with each; second to compare the model’s predictive performance; and third to develop a method to 

address the problem of arbitrary updating 

These aims will be achieved by following the objectives: 

1. Perform a literature review to identify existing methods that could be used for dynamic 

predictive modelling. 

2. Determine the methodological challenges related to dynamic predictive modelling 

3. Apply the identified dynamic modelling methods and compare their predictive performance 

to static CPMs using both real-world and synthetic health data. 

4. Propose a method to address the problem of arbitrary updating and investigate the method 

under different magnitudes of miscalibration in synthetic health data. 

This thesis is structured in “journal format”, as a series of papers which are previously accepted in, or 

about to be submitted to, peer-review journals. As recommended in the University of Manchester 

thesis guidelines, author contributions to each paper/chapter are described in section 1.6.1. The 

papers have been arranged thematically, following the chronological order of the objectives. Chapters 

2 and 3 address objectives 1 and 2, while chapters 4 and 5 address objective 3 and chapter 6 addresses 

objective 4. 

1.6.1 Author contributions 

Chapter 2: Dynamic models to predict health outcomes: current status and methodological challenges. 

Diagnostic and Prognostic Research, 2018. DOI: 10.1186/s41512-018-0045-2 

- David A. Jenkins, Matthew Sperrin, Glen P. Martin and Niels Peek designed the study. David 

A. Jenkins conducted the analysis and interpreted the findings in discussion with Matthew 

Sperrin, Glen P. Martin and Niels Peek. David A. Jenkins wrote the initial draft of the 

https://doi.org/10.1186/s41512-018-0045-2
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manuscript which was then critically reviewed for important intellectual content by all authors 

of the manuscript. 

Chapter 3: Continual updating and monitoring of clinical prediction models: time for dynamic 

prediction systems? Diagnostic and Prognostic Research, 2021. DOI: 10.1186/s41512-020-00090-3 

- David A. Jenkins conceived the commentary idea and then conceptualised it in discussion with 

Glen P. Martin, Matthew Sperrin and Niels Peek. David A. Jenkins wrote the initial draft of the 

manuscript which was then critically reviewed for important intellectual content by all 

authors. 

Chapter 4: Development and validation of clinical prediction models in the presence of temporal 

trends: A simulation study comparing static and dynamic models. In preparation for submission 

- David A. Jenkins, Matthew Sperrin, GPM, Thomas Debray, Mamas Mamas and Niels Peek 

designed the study. David A. Jenkins conducted the analysis and interpreted the findings in 

discussion with Matthew Sperrin, Glen P. Martin, Camilla Sammut-Powell, Mamas Mamas and 

Niels Peek. David A. Jenkins wrote the initial draft of the manuscript. All listed authors helped 

interpret the results and we plan to prepare this for submission to Statistics in Medicine.  

Chapter 5: Comparing predictive performance of time invariant and time variant clinical prediction 

models in a UK cardiac surgery dataset. In preparation for submission 

- David A. Jenkins, Matthew Sperrin, Glen P. Martin and Niels Peek designed the study. David 

A. Jenkins conducted the analysis and interpreted the findings in discussion with Matthew 

Sperrin, Glen P. Martin, Niels Peek, Benjamin Brown and Stuart Grant. David A. Jenkins wrote 

the initial draft of the manuscript. We plan to prepare this for submission to the Journal of the 

American Medical Informatics Association.  

Chapter 6: Use of statistical process control to monitor the performance of a clinical prediction model.  

- David A. Jenkins, Matthew Sperrin and Glen P. Martin designed the study. David A. Jenkins 

conducted the analysis and interpreted the findings in discussion with Matthew Sperrin and 

Glen P. Martin. David A. Jenkins wrote the initial draft of the manuscript. There are currently 

no plans for submission of this study. 
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Chapter 2 Dynamic models to predict health 
outcomes: current status and methodological 
challenges 

David A. Jenkins; Matthew Sperrin; Glen P. Martin; Niels Peek 

Diagnostic and Prognostic Research 2, 23 (2018). DOI: 10.1186/s41512-018-0045-2 

2.1 Abstract 

2.1.1 Background 

Disease populations, clinical practice, and healthcare systems are constantly evolving. This can result 

in clinical prediction models quickly becoming outdated and less accurate over time. A potential 

solution is to develop 'dynamic' prediction models capable of retaining accuracy by evolving over time 

in response to observed changes. Our aim was to review the literature in this area to understand the 

current state-of-the-art in dynamic prediction modelling and identify unresolved methodological 

challenges.   

2.1.2 Methods 

MEDLINE, Embase and Web of Science were searched for papers which used or developed dynamic 

clinical prediction models. Information was extracted on: methods for model updating, choice of 

update windows and decay factors, and validation of models. We also extracted reported limitations 

of methods and recommendations for future research. 

2.1.3 Results 

We identified eleven papers that discussed seven dynamic clinical prediction modelling methods 

which split into three categories. The first category uses frequentist methods to update models in 

discrete steps, the second uses Bayesian methods for continuous updating and the third, based on 

varying coefficients, explicitly describes the relationship between predictors and outcome variable as 

a function of calendar time. These methods have been applied to a limited number of healthcare 

problems and few empirical comparisons between them have been made. 

2.1.4 Conclusion 

Dynamic prediction models are not well established but they overcome one of the major issues with 

static clinical prediction models, calibration drift. However, there are challenges in choosing decay 

factors and in dealing with sudden changes. The validation of dynamic prediction models is still largely 

unexplored terrain. 
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2.3 Introduction 
Healthcare systems have limited resources and their budgets are being reduced50, while there are 

increasing numbers of people living with one or more long term conditions51,52. This can have a 

negative effect on health outcomes53, and systems therefore need to be more efficient. One way to 

improve efficiency is by implementing preventative measures which delay or prevent onset of disease 

and increase the overall health of the population. Increased data collection in healthcare systems, and 

availability of large scale data sources provide an opportunity to effectively target care and resources 

in a data-driven way. This could also be used to guide health policies, assist in healthcare auditing and 

select appropriate therapies in individual patient management, along with other uses54 to improve the 

healthcare system as a whole. 

Clinical prediction models (CPMs) are used for diagnosis or prediction of future outcomes for 

individuals10,55, and thus have the potential to be used for decision making and effective targeting of 

resources. CPMs use information about an individual at a given time, to compute the risk/probability 

of a future outcome; they have been increasingly used over the past 2 decades. CPMs are currently 

used to support various decisions. For example, QRISK20 computes an individual’s risk of developing 

cardiovascular disease over the next 10 years and if the individual’s risk is above 10% then they would 

be considered for statins.  

Over time, population demographics, prevalence of disease, clinical practice, and the healthcare 

system as a whole may change, meaning that predictions based on static data can become outdated 

and hence no longer accurate. This is known as calibration drift34 and is one of the major pitfalls in 

using CPMs in practice33. It can lead to over or under prescribing of treatment and, if the model is used 

for audit purposes, it can provide misleading results because it does not correctly adjust for case mix. 

QRISK22 is updated yearly for this reason. However, this provides periodic updates, and although this 

is a step in the right direction, it is problematic because patients’ calculated risk changes abruptly 

when updates are applied, while patients’ actual outcomes do not.  

It would be advantageous if models could be produced that would continuously update over time as 

more information is collected and made available, thus providing accurate risk predictions that 

respond rapidly to new information. This could reduce the use of outdated models and avoid multiple 

models being produced and used, reducing both time and effort. This approach is known as dynamic 

prediction modelling. We define dynamic models (DMs) as those which acknowledge the real time of 

each point, are designed to evolve over time and address the problem of calibration drift. The model 

could, in principle, change after a single new observation, which could be a structural change or a 

coefficient change.  Models can evolve over time and an individual’s risk can also change over time. 

Here we focus on models evolving over time as opposed to the alternative where we observe repeated 

measures for an individual and observe time varying coefficients. 

Our aim was to review methods for developing and validating dynamic prediction models, in order to 

understand the current state-of-the-art in this field and identify unresolved methodological 

challenges. 

2.4 Methods 

2.4.1 Search strategy 
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The literature search was conducted in three electronic databases, Medline, Embase and Web of 

Science. OVID was used to search the former two databases, and searches were restricted to English 

language because of limited translation resources but were not restricted by publication year. The 

Medline search terms comprise terms the authors considered to best describe dynamic prediction 

modelling (Table 2.1). The search was tailored to each database and supplemented with relevant 

papers that were identified from the reference list of the included papers. Further snowballing, using 

Google Scholar, was also performed by conducting a citation search which identified papers 

referencing our initial relevant paper list. 

Table 2.1 - Ovid search terms 

1 dynamic model*.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, fx, nm, kf, px, rx, ui, sy] 

2 dynamic prediction*.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, fx, nm, kf, px, rx, ui, sy] 

3 clinical prediction model*.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, fx, nm, kf, px, rx, ui, sy] 

4 dynamic model* prediction.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, fx, nm, kf, px, rx, ui, sy] 

5 dynamic regression.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, fx, nm, kf, px, rx, ui, sy] 

6 dynamic logistic regression.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, fx, nm, kf, px, rx, ui, sy] 

7 model updating.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, fx, nm, kf, px, rx, ui, sy] 

8 clinical prediction.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, fx, nm, kf, px, rx, ui, sy] 

9 (dynamic model* and updat*).af. 

10 dynamic prediction model*.af. 

11 model revision.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, fx, nm, kf, px, rx, ui, sy] 

12 model recalibration.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, fx, nm, kf, px, rx, ui, sy] 

13 1 or 2 or 4 or 5 or 6 or 9 or 10 

14 3 or 8 

15 13 and 14 

16 7 or 11 or 12 

17 15 or 16 

18 dynamic.mp. [mp=ti, ab, hw, tn, ot, dm, mf, dv, kw, fx, nm, kf, px, rx, an, ui, sy] 

19 14 and 18 

20 17 or 19 

 

2.4.2 Selection of studies 

A two-stage screening process was conducted by one author (DJ) to assess the relevance of studies 

and was applied after the initial search and again after the two snowballing approaches. The first stage 

consisted of screening the titles and abstracts of citations to exclude articles that did not meet the 

inclusion criteria. The eligible criteria for inclusion were original methodological peer reviewed journal 

articles which considered: 1) dynamic prediction models (DPMs); 2) model updating methods that 

could be performed in real time; or 3) model coefficients as functions of time. Exclusion criteria were 

determined in advance and included: conference proceedings, papers with methods that could not 

change over time or update in real time, static prediction models and models that only consider a 

single time point (eg models for cross sectional data). Dynamic survival models were also excluded 

because they do not fall under our definition of dynamic prediction. Applied research, without any 

methodological work, was excluded because our interest was around the current state-of-the-art and 

methodology in the area. 
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2.4.3 Extraction 

We evaluated papers on two general domains: modelling methods, and validation and evaluation. We 

extracted each method we considered to meet, or have the potential to meet, our definition of 

dynamic modelling. For validation we extracted how the models implemented were evaluated. For all 

the methods found during the search, we also extracted any modelling challenges and further work 

discussed by the authors and provide our suggestions for the future work needed in the area. 

No specific study measures or synthesis were calculated across studies. 

2.5 Results 
Our initial search resulted in 1034 papers, with 61 considered potentially relevant after abstract and 

title screening. After full article screening 8 were identified for which information was extracted and 

snowballing was taken place. An additional 14 papers were then considered relevant but after title 

and abstract screening only 3 were included for which information was extracted. Hence, in total, 11 

papers were deemed relevant for final inclusion (see figure 2.1).  

 

Figure 2.1 - PRISMA diagram of included studies 

Seven methods were reported across 11 papers which could be used to deal with calibration drift in 

prediction models (see table 2.2). These can be split into three categories: discrete model updating, 

Bayesian model updating and varying coefficient modelling.  
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Table 2.2 - Tick table of methods included in each paper 

  Modelling methods 

  Discrete model updating Bayesian model updating 
Varying 

coefficient 

Author 
Intercept 

update 

Overall slope 

update 

Individual slopes 

update 

Model 

revision 

Bayesian dynamic 

modelling 

Bayesian model 

averaging 
modelling 

Fan             

Finkelman              

Hickey             

Hoover             

Janssen           

McCormick             

Raftery             

Siregar           

Steyerberg           

Su         

Van 

Houwelingen 
        
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To illustrate the approaches, we will focus on prognosis and consider a regression model with either 

a continuous or binary end point at a fixed point in time. A response 𝑦𝑡 is observed for an individual 

at a time 𝑡 = (𝑡1, … , 𝑡𝑛), and a vector of predictors 𝑥𝑡 = (𝑥𝑡𝑘: 𝑘 = 1, … , 𝐾) such that:  

 𝑔(𝐸(𝑦𝑡)) =  𝛽0(𝑡) + 𝛽𝐾(𝑡)𝑥𝑡 , (1) 

for link g, where 𝛽0(𝑡) is the intercept and 𝛽𝐾(𝑡) is a vector of the regression coefficients for the K 

predictors at time t. 

Equation 1 is a general form of a dynamic prediction model, but the methods described in the 

literature vary on how to estimate the coefficient functions 𝛽0(𝑡) and 𝛽𝐾(𝑡) and update the model. 

Below we outline each of the methods found in the literature, followed by a discussion of the various 

challenges highlighted within the papers. 

2.5.1 Modelling methods 

2.5.1.1 Discrete model updating – Model recalibration and revision 

Discrete model updating methods use new data over time to update the model. Using a single 

observation or small group of observations can result in an unstable and less accurate model. Hence, 

these methods are updated in batches at set times, for example, each month or year, to ensure a 

sufficient amount of data is collected and used for the update. We denote these batch times as 𝑇𝑗 =

(𝑇1, … , 𝑇𝐵) where 𝐵 ≪ 𝑛. 

Four discrete updating methods are explained/used in the final included papers. All four methods 

consider a frequentist approach. ‘Intercept update’, ’overall slope update’, ’individual slopes update’, 

and ’model revision’.  

The ‘intercept update’ method36,40,56,57 fits a regression model to the new data, at updating batch time 

𝑇𝑗, using the linear predictor of Equation 1 as an offset. This recalculates a new intercept, 𝛽0(𝑇𝑗) with 

𝛽𝐾(𝑇𝑗) =  𝛽𝐾 remaining constant over time. 

‘Overall slope update’36,40,56,57 re-estimates both the intercept and an overall slope 𝛼(𝑇𝑗) for each 

update time 𝑇𝑗. This factor is used to proportionally adjust the original coefficients and thus creates a 

new predictor-outcome association 𝛽𝐾(𝑇𝑗) =  𝛼(𝑇𝑗)𝛽𝐾(𝑇𝑗−1)  and a new intercept, 𝛽0(𝑇𝑗). 

‘Individual slopes update’36,40,57,58 is a two-step method where the overall slope updating is first used 

and then a subset of the coefficients, which are statistically different in the new data compared with 

the historic data, are re-estimated. Thus, 𝛽𝐾(𝑇𝑗) = 𝛼(𝑇𝑗)𝛽𝐾(𝑇𝑗−1) + 𝛾𝐾(𝑇𝑗) where 𝛾𝐾(𝑇𝑗) is a vector 

of length k which has zeros located in the elements corresponding to the parameter estimates that 

are not re-estimated. The choice of which variable coefficients to re-estimate can be decided by a 

likelihood ratio test, stepwise variable selection or obtaining expert opinion. A special case36,40,47,56–58  

would be to update all model coefficients and not only those that are statistically different. Hence, all 

prognostic effects are updated and the original CPM is only used to select the covariates included in 

the updated model.  After revision, shrinkage can be conducted, where the coefficient estimates are 

shrunk towards the recalibration estimates36,40,57. This can be done, for example, using ridge 

regression59,60. 
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‘Model revision’40,57 considers adding predictors into the model. This method re-estimates existing 

coefficients as in the above approaches, but also tests if any additional predictors now have a 

statistically significant effect in model fit by performing likelihood ratio tests in a forward stepwise 

variable selection manner. This builds a new model  

 𝑔(𝐸(𝑦𝑡)) =  𝛽0(𝑇) +  𝛽𝐿(𝑇) 𝑥𝑡 (2) 

Where L is the total number of predictors in the updated model at time 𝑇𝑗, such that, 𝐿 ≥ 𝐾 and 𝐿 −

 𝐾 is the number of additional predictors added to the model at time 𝑇𝑗. This model is applied for 

individuals 𝑡 such that 𝑇𝑗 ≤ 𝑡 < 𝑇𝑗+1. 

2.5.1.2 Continuous model updating - Bayesian updating 

Two continuous updating methods are discussed in five of the final included papers45,47,48,56,57,61. The 

first method is known as Bayesian dynamic modelling and the second, known as dynamic model 

averaging, is a generalisation of the first. In both methods, the information obtained from past data is 

used as prior information and combined with the new data to obtain updated estimates. Thus, the 

updating (posterior) equation is proportional to the product of the likelihood (at time t) and the prior 

(prediction equation at time t-1), 

 p( 𝛽𝐾(𝑡) | 𝑌𝑡) ∝ p( 𝛽𝐾(𝑡) |  𝑌𝑡−1)p( 𝑦𝑡| 𝛽𝐾(𝑡) ) ∝ Prior x Likelihood (3) 

Where the prediction equation (Prior) is obtained through Kalman filtering by supposing 

 p(β(t − 1)|  Yt−1)~N(β̂(t − 1), 𝜑𝑡−1), where  Yt−1 = {y1, … , yt−1}. This results in the prediction 

equation 

 p(𝛽𝐾(𝑡) |𝑌𝑡−1)~N(β̂𝐾(t − 1), Rt); Rt = 𝜑𝑡−1 + 𝑊𝑡 , (4) 

where Wt represents the covariance matrix. 

We can also introduce a forgetting factor, λt, such that Rt =
𝜑𝑡−1

λt
⁄ . This down weights (or decays) 

historical observations so they have less influence/weight than new data by essentially inflating the 

variance of the prior. Typically, λt is constant over time, and close to 1. In principle the forgetting 

factor could change over time, but this has yet to be done in practice. A forgetting factor of 0.99 was 

used in one study48, while another57 performed sensitivity analysis using different values for the 

forgetting factor. Su et al57 suggests that 𝜆𝑡 can be selected using an auto tuning procedure at each 

time point which could result in a time varying forgetting factor. However, this would result in a much 

higher computation load. 

Two advantages are discussed in using the forgetting factor. The first is that the model becomes less 

computationally demanding than when forgetting is not applied, which can make the dynamic model 

more feasible to use in practice. The second is that the model relies less on the historical data. If the 

model coefficients are changing over time then giving a lot of weight to past data may decrease 

prediction accuracy. Also, the historical data used for the prior could anchor the results and provide 

inaccurate predictions.  

The first method described is for a single model case, but if there exist multiple models M1, … , Mm 

implemented at the same times then the above approach can be applied simultaneously to each 

model. We can then combine each of the m models together to create one final model, thus resulting 

in dynamic model averaging (DMA). In DMA a weighted average of models is used at each time point, 
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where the ‘better’ models contribute more weight in the final model and the weights can vary over 

time. One major advantage of this approach is that it allows parameters to be down 

weighted/excluded and emerging factors to become present over time. Hence, there is extra flexibility 

in this approach that the others do not have and forgetting can also be applied within DMA. 

All of the above methods, both continuous and discrete, are two-step approaches in which the initial 

CPM is computed using the first batch of data and that model is subsequently updated in light of new 

data. The initial model will generally fix which parameters are included within the model, although, as 

described above, there is discussion in the literature41 about adding or deleting predictors during the 

updating. The majority of studies set a specific time interval where all the data within that window 

would be used for the next update. One study48 had data to perform monthly updates but another56 

only considered updating yearly, and one33 considered updating models on either a monthly, yearly 

or 2 yearly basis. Finckleman et al61 was the only paper to consider the batch as observation numbers 

and not length of time. They considered 250, 500, 1000 and 5000 for the updating batch numbers and 

concluded the results were “fairly insensitive to changes” in the size of the update. Some papers33,61 

have suggested, for the discrete methods, that a sufficient number of new data are needed in each 

batch to ensure enough is obtained for accurate and stable predictions. Step one of these models will 

not always consider the same time period as step two (model updating). For example, one of the 

models Hickey et al47 conducts, uses a first step of 12 months to create the initial CPM but then uses 

monthly updates for step two.  

Some of the studies also compared which of the methods performed best. However, not all methods 

were included in each paper. Raftery45 used mean square error (MSE) and maximum absolute error 

(MAE) to compare the Bayesian models. After 200 sample updates, the models become stable and 

differences between models become smaller than in the initial sample updates where the DMA 

performs better because “it’s more adaptive”. Finkelman also used MAE to compare models, but to 

improve interpretability computed the ‘relative improvement’, which is the improvement of the 

current model compared with the intercept-only model. McCormick on the other hand, used the Brier 

score to compare model performance. 

2.5.1.3 Varying coefficient model 

Varying coefficient models62 (also known as functional response models) were developed to explore 

dynamic patterns in data. These are particularly useful when we encounter multiple data from the 

same individuals over time, known as longitudinal data, and/or have data changing over time, known 

as functional data. Varying coefficient models are often used to model longitudinal data, for example,  

risk of HIV after birth63 and 𝛽𝐾(𝑡) is modelled as a function of time from birth. We can also use it as 

an approach to dynamic modelling in which the relationship between predictors and outcome variable 

is described as a function of calendar time. This approach has been used in other areas, such as 

economics, but not yet in healthcare. 

Following the form of Equation 1, in this case we have β0(𝑡) and 𝛽𝐾(𝑡)  = (β1(𝑡), … , β𝐾(t)) as 

functions of time which are assumed to be smooth. Hoover et al63 presents three ways the coefficients 

can be estimated: kernel, polynomial and smoothing splines.  

A special case of this method is where only the intercept is dependent on time. Equation 1 would then 

become 
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𝑔(𝐸(𝑦𝑡)) =  𝛽0 + 𝛽𝐾𝑥𝑡 +  𝛽𝑡𝑖𝑚𝑒𝑡, 

where the betas are no longer functions of time and 𝛽𝑡𝑖𝑚𝑒 adjust the intercept for observed calibration 

drift in the development dataset, i.e 𝛽0(𝑡) =  𝛽0 +  𝛽𝑡𝑖𝑚𝑒𝑡 . This is arguably the simplest approach to 

overcome the problem of calibration drift but to the best of our knowledge it has not been applied in 

healthcare settings to improve calibration. Compared with the previous methods, the varying 

coefficient model does not regularly update at each time but rather attempts to estimate the 

complete function of the coefficients over time given data up to a certain time point. Hence, this 

method does not view data as a stream but rather assumes all data are available over time and then 

estimates 𝛽𝐾(𝑡). No study considering varying coefficient models also considered discrete or 

continuous updating approaches. A comparison between the different methods has yet to be 

explored. 

All included papers discuss dynamic models as a way of using all the data available to create models 

that are evolving over time and have the flexibility of adapting to a changing landscape over time. The 

discrete and continuous updating models use current/new data to update past knowledge, rather 

than using a static time frame and assuming the prediction model remains the same over time. 

However, the weight applied to the historic data varies. On the one hand, all data, historic and new, 

is used equally. On the other hand, the historic data may be given no weight in the update, so only the 

new data is used to update the model. These are just two extremes and dynamic model updating can 

be anywhere within this space. The functional varying coefficient models differ because they are not 

updating over time. These models use the complete data available to estimate the coefficient function 

over time in order to provide future predictions. However, they have the potential to be updated using 

discrete updating but this has yet to be explored. 

2.5.2 Model Validation 

Once a model has been computed and selection of appropriate predictors has taken place, it is not 

sufficient to assume the model is accurate and predicts well. We therefore need to formally validate 

our models. For static CPMs, cross-validation and bootstrap validation are the recommended methods 

over split sample or external sample validation56, but validation is more complex when it comes to 

DPMs. The literature around validating a dynamic CPM is much less established, meaning that it was 

not possible to identify different validation techniques for each of the dynamic modelling methods 

separately. 

Siregar et al56 and Su et al57 assess calibration and discrimination in all of their models. Both validate 

their models in subsequent years (after model updating has stopped) but in reality the model would 

continue updating and so a way is needed to validate in this framework to provide real time validation 

without using the same data that is then used for the model. Su et al57 also note that because 

validation is conducted at a separate time to the model, then their validation constitutes 

transportability rather than validation. Split sampling could be performed, where part of the sample 

at each update is used to validate the updated model, but this was not explored in any of the papers 

and would need doing in a dynamic way which could add to the computational aspect of the models. 

Van Houweingen58 conducts a split sample validation on the original CPM and uses this to determine 

if an update is needed as the new data is collected, however, validation of the updating model was 

not undertaken. There would also be a lag time from determining if a model is valid, such that, the 

model would possibly have been updated many more times. McCormick64 on the other hand, designed 
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their model for a setting when data is not stored and so validating can be an issue here. They suggest 

maximizing the average one-step-ahead prediction by updating a tuning parameter, but not through 

numerical optimisation because of computational infeasibility. Using an Occams window65 approach 

was also discussed as a possible solution to computational problems.  This would consider a smaller 

model space at each time (after time 1) by using a subset of all possible models based on a cut off 

value for each models weight contribution at the previous time. However, none of these methods 

have been formally implemented in any of the included papers or across healthcare, although this has 

been applied within economics43. 

Hickey et al33 produced time series plots of the beta values to obtain inferences of the association 

between the outcome and risk factor. This allowed for comparison of methods, as well as the ability 

to visually detect any abrupt changes. Although this provides a better understanding of how the 

models are working, it is not a formal way in which to validate, test or compare models. Hickey et al33 

acknowledge that not performing validation was a limitation of the study and suggests that to do so 

one would need to compute and monitor the models discrimination over time, in a continuous way. 

Conducting time series on the coefficients could potentially be used to detect patterns in the 

coefficient estimate over time or even be used as a way to predict future beta estimates which could 

then be compared to the DM predictions, but either has yet to be explored.  

Therefore, validation is a clear issue in this area and was only used in a small number of studies which 

mainly considered the discrete approaches. 

2.5.3 Other challenges 

All of the methods described above assume a steady change in the model coefficients over time. 

However, sudden large changes are possible and could result in poor model performance. These 

changes can occur for many reasons, such as, a change in policy, introduction of new interventions, a 

change in data collection, or the introduction of clinical decision support that is based on the CPM. An 

example of a step change in clinical practice is the introduction of less invasive coronary surgery33. This 

change in surgery, along with a change in the case-mix of the population undergoing cardiac surgery 

resulted in the EUROSCORE CPM66 largely over predicting patient risk55. One way to model these 

changes in a CPM would be to include a time factor but it has yet to be discussed in the literature how 

well dynamic models react to these changes and which models provide the most accurate predictions 

and should be used in these circumstances. However, this assumes that a step change is anticipated 

for a known reason. However, in practice it is not always anticipated or known. Therefore, it would 

also be advantageous to account for, and model, unexpected step changes. McCormick et al48 suggests 

that when these occur, a smaller forgetting factor should be chosen to allow for these changes. 

However, the windowed approach in Hickey et al47 is used to dampen any abrupt changes. Step 

changes have the potential to impact model accuracy and being able to identify them, as well as, 

knowing how to deal with them could have great benefit. There is currently little work discussing what 

to do when they occur and how to detect or define a true step change. Analysing the impact of these 

changes (with various magnitudes and frequency) on model performance and understanding how best 

to weight past data (if at all) when they occur would be largely beneficial for future work. Also, ability 

to detect step changes would be valuable and could be used to either identify when models need to 

be updated or inform the user a change has occurred and investigation into the data in needed.  
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Finally, computational complexity was discussed as a limitation of DMs but only two papers45,61 

formally considered computation time. Finkelman et al61 discuses that computation time linearly 

increased with the number of updates, but around the same number of subjects were included in each 

update and computation time could vary if the numbers varied across iterations. Raftery et al45 

discusses that although DMs and DMA does increase computation time, they are still well within a 

range for practical application. In a large system when updating is to be applied when each new data 

point is collected, then this could be problematic if the computation time associated with updates 

exceeds the time between subsequent data points. Continuous model updating is then not feasible.  

Software is available to perform dynamic modelling, the dma49 and fda67 packages in R can be used 

for the continuous updating and the varying coefficient methods, respectively. To our knowledge, no 

package is available for discrete updating, but it can easily be programmed manually in many software 

packages. Extension of these, along with user friendly tutorials, would aid widespread implementation 

into the clinical setting.  

2.6 Discussion 
In this study, we conducted a literature review which has identified three main types of dynamic 

modelling, with the main differences between the methods emerging in relation to how the 

coefficients are estimated. Our review has enabled us to draw together all the methods within one 

paper and highlight gaps in the literature for future research. Discrete and continuous updating have 

been used a small number of times within the healthcare setting to address the issue of calibration 

drift. These methods update the model over time, which provides the dynamic aspect of these models. 

We have also identified an additional method, varying coefficient modelling, that could be used in 

healthcare but has yet to be implemented for dynamic prediction in this setting. This method differs 

in comparison to the others as it does not update but uses the data up to time t to estimate the 

function for each coefficient in the model over time. The continuous updating and varying coefficient 

methods both assume a smooth function over time and discrete updating differs by assuming discrete 

changes. These dynamic prediction models have the potential to be extremely useful but currently 

have limited exposure to healthcare problems and validation of these models in practice is 

challenging. Further work is needed to develop ways to validate these models and assess how these 

models perform under different healthcare settings and scenarios.  

To our knowledge, only two other studies have performed a review of dynamic modelling methods. 

Su et al57 describes both the discrete and continuous updating methods and then applies them to a 

clinical data set, updating on a monthly basis. Comparisons of model performance and accuracy of 

future predictions were then made. Siregar et al56 also describes the discrete and continuous updating 

methods, excluding dynamic model averaging. The methods were then applied to a cardiac data set 

by updating the EUROSCORE model and comparing model discrimination across all methods. Overall, 

our work is consistent with these two papers but extends the findings by conducting an up to date 

literature search and includes the use of varying coefficient modelling as a possible method to 

maintain model performance over time. Comparisons of the intercept updating method with different 

updating times and population size were compared with the standard continuous updating method 

by Hickey et al47. This work compares the methods in a real-world situation and discusses limitations 

of the methods, but it is not a complete review of dynamic modelling. Our review draws together all 

methods in the literature and identifies gaps in the literature but does not provide practical examples 

and direct comparisons of all the methods found. 
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The most pressing problem to address, which we have highlighted in this study, is that of validation. 

The purpose of any model validation is collected incremental evidence that the model works 

satisfactorily in populations where it is applied – thus provided trust among its potential users and 

enabling adoption68,69. Many well-established (static) prognostic models, such as the Apache IV 

model70 for predicting mortality in critically ill patients, were validated in numerous studies before 

they were broadly adopted in clinical practice. Because dynamic prediction models are moving targets, 

it is fundamentally impossible to follow the same approach. We can validate each of the individual 

iterations, but by the time that users have taken notice of the validation results, the model will have 

already progressed to a next iteration and those results might be outdated. So, to enable a similar 

mechanism that instills trust and fosters adoption, validation methods are needed that can provide 

evidence of good performance of the entire dynamic ‘system’. These methods should convince us that 

both the initial model and all its future iterations have good performance, regardless of the new data 

points that are used for updating. 

Future work would also benefit from assessing the impact of step changes, as well as the impact size 

and frequency of updates could have on predictions. A close test procedure has previously been used71 

to select which discrete updating method should be used when updating your model. However, this 

has only been used for transportability to a new population, opposed to updating regularly over time. 

Exploring this method to address calibration drift, as well as, extending the method to include 

Bayesian updating and decide when/if updating should occur would be extremely useful and increase 

the utility of the approach. Testing and comparing these dynamic models in more complex data 

structures, such as clustered data, would also be beneficial. This could be done with the use of random 

effects or generalised estimating equations, as previously suggested61,63. Also, only a small number of 

studies have applied and considered these dynamic modelling methods for use within healthcare, with 

the majority of applications only considering the discrete updating methods72 and focusing on 

transportability for models to different populations73,74 rather than using the methods discussed to 

address temporal changes over time. Therefore, more practical examples and comparisons of the 

methods found are warranted for further work. This would help aid the broader adoption of these 

methods into clinical practice, which is a current issue with CPMs as a whole. While this is not confined 

to dynamic prediction models, this is a common problem with prediction models and refinements, 

such as, improved reporting and better use of existing CPMs (e.g. a focus on external validation rather 

than de novo development) could improve the adoption of CPMs in clinical practice. Also, 

incorporating models into hand-held technology (e.g. mobile apps to allow calculation of complex 

models a patient’s bedside) and extending the methods into software with user friendly tutorials 

would be of value. 

Because dynamic prediction models are an emerging field and not a well-established concept, 

different authors may have used different terminologies to describe dynamic prediction models; 

further, there are currently no MeSH terms for these methods and this could have resulted in some 

studies not being captured within our search. Our search focussed on the methodological papers and 

it was not possible to go through all of the applied work. This may have resulted in some methods, or 

adaptations of existing methods, not being captured within our search. Nevertheless, we believe that 

we have identified the main methodological approaches to dynamic model development, updating, 

and validation. 
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Although the focus of this review was in methods accounting for temporal differences over time, some 

of the methods and issues raised would apply to geographic or contextual updating, for example, 

where a model is to be used in a different population to which it was originally developed. Also, 

although we restrict our attention to prognostic models, the findings are generalizable to diagnostic 

modelling. 

2.7 Conclusion 
Several statistical methods for creating dynamic prediction models have been described in the 

literature. These methods are well developed but their application to real-world clinical prediction 

problems is sparse and no dynamic prediction models have been deployed in clinical practice. 

Validation of dynamic prediction models is an unresolved issue that needs to be addressed urgently. 
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3.1 Abstract 

Clinical prediction models (CPMs) have become fundamental for risk stratification across healthcare. 

The CPM pipeline (development, validation, deployment and impact assessment) is commonly viewed 

as a one-time activity, with model updating rarely considered and done in a somewhat ad-hoc manner. 

This fails to address the fact that the performance of a CPMs worsen over time as natural changes in 

populations and care pathways occur. CPMs need constant surveillance to maintain adequate 

predictive performance. Rather than reactively updating a developed CPM once evidence of 

deteriorated performance accumulates, it is possible to proactively adapt CPMs whenever new data 

becomes available. Approaches for validation then need to be changed accordingly, making validation 

a continuous rather than a discrete effort. As such, “living” (dynamic) CPMs represent a paradigm 

shift, where the analytical methods dynamically generate updated versions of a model through time; 

one then needs to validate the system rather than each subsequent model revision.  
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3.2 Background 
Clinical prediction models (CPMs) are tools that compute the risk of an outcome given a set of patient 

characteristics (‘predictors’), and can be used for informing diagnosis or prognosis in individuals10,14. 

They are typically based on multivariable regression models, for example as derived by analysing 

historical cohort data or routinely collected healthcare data. Arising from the desire to move health 

systems away from managing or curing disease towards preventative medicine, CPMs have become 

popular and several are now embedded in clinical practice (e.g. QRISK375 and the Leicester diabetes 

risk score15).  

Commonly, the process of developing a CPM equation is a one-time activity, with estimates of model 

parameters obtained from a single Dataset ignoring time.  Once a model has been developed, usually 

the model equation remains fixed until a revision is conducted. However, revisions are rare and usually 

undertaken at an arbitrary time, or following an external validation that suggests the model is 

miscalibrated. Model validation is an important aspect of the CPM pipeline, and aims to evaluate 

whether model predictions are accurate (in settings they would be applied to in practice). Similarly to 

model development, validation is often a one-time activity. Commonly, the literature refers to CPMs 

as being “validated”, but this may create a false impression that no more model testing needs to be 

performed. In this paper, we propose moving away from one-time model development and validation, 

and rather embed CPM development, validation and updating into a dynamic system that reflects an 

evolving healthcare service. For example, the current covid-19 pandemic represents a situation where 

this would be particularly useful, given how quickly healthcare processes have changed, meaning that 

any prediction models for covid-19 need to be updated rapidly76,77 . For example, in the future, 

vaccinations, immunity build up and virus mutation may affect the strength of predictor effects over 

time. 

3.3 Calibration drift prediction problem 
CPM production pipelines are built on the assumption that once produced and verified, evidence can 

be translated into practice ad infinitum. But the distribution of patient characteristics, disease 

prevalence and health policies change over time. When these changes occur, the estimated CPM 

parameters and corresponding predictions may no longer be valid7833. Consequently, the agreement 

between the observed and predicted event rates worsens over time79: so called calibration drift34. 

Hickey et al33 highlights this issue in the logistic EuroSCORE model43, which quickly became outdated 

as improvements in patient outcomes were rapid. Therefore, there is evidence that model coefficients 

need to change through time, as illustrated with EuroSCORE. In addition, Luijken et al80 observed that 

changing predictor measurement procedures induced miscalibration in nine real-world examples. 

Traditional practice to address this is to develop another CPM de novo.  However, alternative 

approaches such as updating35,36 aggregating existing CPMs37,39, or meta-analysis of individual 

participant data81,82, are preferable because they do not discard historical data and previous research 

efforts38. For example, models such as QRISK are now updated yearly20,75 using contemporary data 

and also revised to include additional predictors (such as the revision of QRISK283 into QRISK375). 

Nonetheless, this updating (recalibration) is still relatively uncommon, often occurs a substantial time 

after model development, is often undertaken at arbitrary time points and is typically dependent on 

funding. For example, EuroSCORE II44 was developed in 2012, some 13 years after the original model, 

and it is unclear when this will be updated again. The problem with this approach to model validation 

and revision is that predictive performance of a CPM may only be investigated many years after the 

https://www.thieme-connect.de/products/ejournals/abstract/10.3414/ME15-01-0064
https://www.thieme-connect.de/products/ejournals/abstract/10.3414/ME15-01-0064
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model has been developed. Although this can subsequently result in the CPM being updated, incorrect 

decisions may have already been made as a result of the mis-calibrated model and harm already 

caused.  

Typically, a model is developed or updated under the assumption that the data are well described by 

a fixed underlying model where the coefficients are constant across the observation period used to 

develop the model. If the prevalence of an outcome is increasing at a steady rate during a 5 year 

window of data collection and then used to develop the model, the CPM will be calibrated to the 

middle of the window and not the most recent data. The overarching issue here, for both development 

and validation, is that the data generating process could change through time. While frequent model 

updating will mitigate these issues, it does not eliminate the problem since commonly used methods 

do not acknowledge temporal changes. Rather, we propose embedding prediction models in practice 

to ensure development, validation and updating is a continual process. We now discuss how this might 

be implemented and the challenges involved. 

3.4 Possible solution and challenges  
The healthcare system and disease populations are constantly changing but the CPMs we deploy are 

not updating at the same rate. Therefore, we need to ensure a CPM is maintained on a continual 

(rather than an ad hoc) basis. For this to be achieved we need to reduce the latency period between 

observing calibration drift and updating a model. Thus, moving towards a service that constantly 

monitors a model, and has an embedded feedback loop where the monitoring information is then 

relayed back to the model, and used to modify and maintain it. 

3.4.1 Dynamic models 

Dynamic prediction models have been proposed as a potential solution to calibration drift and to allow 

prediction models to evolve simultaneously with the healthcare system45,84. They are a collection of 

analytical methods that allow CPMs to continuously adapt as data on new patients arises– thus 

reducing the data-action latency compared with traditional methods of developing CPMs at a single 

point in time. By dynamic model we mean models that update over calendar time as data on new 

individuals arises, not models that update predictions for individuals as new data on them arises. A 

dynamic model is formulated to account for the calendar time that a prediction is made, that is the 

calendar time predictors are recorded for each individual (e.g. date of GP appointment), and is 

designed to evolve over time, such that the parameter estimates are not constrained to remain fixed 

as (calendar) time evolves. Thus, given a fixed set of patient characteristics, a dynamic model could 

produce different predicted risks at different times of prediction, for example, if two individuals with 

the same predictor values are observed at different times then the model could produce different 

predicted risks.  

The simplest approach to develop a dynamic CPM is to include (calendar) time as a predictor62,63. 

Alternatively, the Bayesian dynamic model could be implemented, where information obtained from 

past data is used as prior information and combined with new data to obtain updated estimates, 

thereby updating with new observations in real-time45,48,84. More weight can also be given to the most 

recent data by ‘forgetting’ past data at a given rate. For more detail on these methods see the reviews 

by Jenkins et al84 and Su et al57.In summary, dynamic models allow us: 1) to utilise historical data and 

models more effectively, 2) to reduce data-action latency (time between changes in the data and 

reacting to them), and 3) to “automatically” adapt model parameters over time. Hickey et al47 
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illustrates the use of dynamic modelling in EuroSCORE and shows how the coefficients change over 

time. 

Although there is much potential in dynamic models, they are rarely used in healthcare. There are 

both methodological and practical reasons why this is so. Methodological reasons include: 1) a lack of 

methods on how to validate dynamic prediction models84; 2) uncertainty on when to include new or 

exclude existing predictors; 3) deciding how much to discount historical data; 4) uncertainty around 

when to update the model; 5) the potential lack of model transparency; and 6) inconsistent outputs 

over time (e.g. a patient with the stable risk factors could have changing predicted risks because the 

model has changed). Practical considerations include: 1) lack of robust and suitable new data to be 

able to update the models continuously; 2) complexity of the dynamic modelling approach; 3) lack of 

software implementations; 4) lack of requisite expertise by those developing the model; and 5) lack 

of infrastructure and funding. However, many of these problems are not specific to dynamic CPMs, 

for example, the problem of how to handle historical data in traditional CPMs is often ignored but a 

problem is still present. When updating CPMs we often append the new data to past data or use only 

the recent data to perform the update. This is an arbitrary choice by the researcher performing the 

update and neither is likely to be optimal. Raftery et al45 attempted to address this in dynamic 

modelling by using an approach to choose how to discount past data at each update by optimising the 

predictive performance over past samples, but this is computationally expensive. More of these 

challenges have also attempted to be addressed in statistical literature, for example, use of the time 

dependent AUC85, but have yet to be applied to continual prognostic modelling. Other theoretical 

methods to address these challenges also exist, but their application in prognostic model research is 

generally lacking and it remains unclear how this would and should affect prediction model research. 

3.4.2 Model surveillance  

If a dynamic model evolves with every new data point, then there is only ever the next data point in 

which to validate each evolution of the model. Furthermore, validation at a given time point is only a 

single snapshot in time. It does not follow that if a CPM, dynamic or otherwise, has high performance 

at a given point in time that it will always perform well. However, as we continue to make predictions 

for new patients, we can record and monitor the accuracy, essentially continuously monitoring and 

testing for calibration drift (prequential testing86). This leads to the idea of model surveillance, where 

the CPM monitoring could be performed after every new data point or at given intervals. Prequential 

testing approaches have a long history in the statistical literature and have been used in areas such as 

economic forecasting. However, they have yet to be transported and used in prediction model 

research. Lenert et al87 discuss the notion of having surveillance of models used in practice as the 

models themselves can directly impact the data and subsequently their own performance. They 

explain that without surveillance, models will have limited effectiveness and can become hazardous. 

We propose prequential testing as a potential solution to these issues but further research is required.  

3.4.3 Feedback loop 

Model surveillance, and the use of prequential testing, could also allow us to address some of the 

issues discussed above. However, continuous monitoring of performance will not address all of these 

problems. The results of continuous monitoring need to be transported back into the model providing 

a feedback loop, which allows the model to learn and ensures the model continually provides accurate 

predictions (Figure 3.1). Ideally this would be conducted in a timely manner to reduce the data-action 

latency, which is a key metric of the learning health system (LHS)5, a system that improves itself by 
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learning from new data through cyclic processes that mobilise data to create new knowledge and then 

use that knowledge to improve. We therefore need a system approach, where one encompasses 

clinical prediction modelling into a learning health system, thus resulting in a learning prediction 

system. This system could improve itself by learning from data, continually and in real time and would 

take place through cyclical processes (Figure 3.1). 

 

Figure 3.1 - Illustration of the current CPM pipeline (top) and the proposed learning prediction system 
(bottom) 

Minimizing the data-action latency, and doing so efficiently, requires concerted data capture, 

aggregation, and analysis followed swiftly by interpretation of results, assignment of responsibility for 

any actions, and recording of actions. Not only can a learning prediction system allow a model to 

evolve over time, but it could also decide when and how to evolve each iteration of the cycle. This is 

achievable in LHSs that are supported by infrastructures that enable these processes to take place 

routinely and with efficiency of scale and scope. Dynamic methods (updating and/or monitoring) offer 

a flexible solution, requiring less manual labour, but need the infrastructure and sustained resources 

in place to implement them. Adibi et al88 discusses an integrated infrastructure for CPMs and highlights 

that much of the technology is available, but not yet fully utilised in healthcare. For dynamic updating 

to work, a system is needed where patient data is automatically collected and stored in a database 

and subsequently used to update parameter estimates.  

3.4.4 Further considerations 

We acknowledge that continual updating a CPM might not always be needed. For example, 

comparative audit requires a standardised method to adjust for case-mix differences, so dynamic 

methods might not be appropriate. Also, updating all of the coefficients in a model may not always be 

a good idea. Booth et al89 recently proposed temporal recalibration in settings where survival is 

improving over time. This approach develops a model using all the available data but then recalibrates 
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the baseline survival function using a subset of the data from a recent time window. Vergouwe et al71 

described a closed test procedure to select methods for updating prediction models, something which 

could be embedded into the learning prediction system. This study also found that model revision, 

updating all model coefficients, can be chosen over intercept-only-updating, even in small sample 

sizes. Further supporting the need for a continual system. Although we could redevelop or update 

traditional models on a daily basis, the use of dynamic methods may offer a more flexible solution. 

Both traditional and dynamic approaches to CPM development/updating have their advantages and 

disadvantages (see Table 3.1), but ultimately all CPMs need their performance to be monitored 

regularly and thus require a continual flow of data.  
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Table 3.1 - Summary of the characteristics and pros and cons for different modelling approaches 

Models Characteristics Advantages Disadvantages 

Existing approaches    

Fixed model never updated • Model and coefficients fixed 

• Never updated 
 

• Cheap (funding available) 

• Low complexity and easy to 
communicate 

• Can become miscalibrated quickly 

• Dethroned by new model likely 
developed in future 

• Ends up as research waste 

• Loss of information 

Model with ad hoc updating 
(e.g. EuroSCORE) 

• Updated when opportunity allows 

• Fixed coefficients between 
updates 

• Easy to maintain 

• Cheap (funding available) 

• Low complexity 

• Little manual labour 

• Advantageous over developing a 
completely new model  

• Non responsive to calibration drift 

• Long data-action latency 

Models that get periodically 
updated (e.g. QRISK) 

• Fixed regular updates 

• Set time period between updates 
 

• Lower chance of miscalibration than 
above 

• Allows predictors to be 
included/excluded from the model 

• Relatively low complexity 

• Funding required 

• Can still observe calibration drift 
between updates 

• Increased maintenance 

• Requires more than manual labour 
to maintain 

• Uncertainty on length of time 
needed between updates 

Proposed approaches    

Models with discrete 
updating and continual 
validation/monitoring 
(learning prediction system 
with discrete updating and 
continual monitoring) 

• Updated when opportunity allows 

• Continuously monitors new data 

• Updated as a result of the 
monitoring 

• Feeds back information to the 
model on how and when to 
update 

• Monitoring informs updates 

• Only update when required 

• Reactive to changes 

• Transports well across settings and 
populations 

• Funding and infrastructure required 

• Update does not immediately 
follow after suggestion from 
monitoring  

• Requires some manual labour to 
maintain 



 

53 
 

Complete dynamic system 
(continual model update 
with continual 
validation/monitoring) 
(learning prediction system 
with continual updating and 
monitoring) 

• Dynamic model 

• Continuously monitors new data 

• Feeds back information to the 
model  
 

• Efficient  

• Potential to be more accurate 

• Provides less miscalibrated results 

• ‘Reacts’ quicker to change 
(responsive) 

• Possible to automate 

• Less manual labour to maintain 

• Transports well across settings and 
populations 

• Do not need to store the data 

• Requires access to an appropriate 
“living” data source that is linked to 
the relevant outcomes. 

• Uncertainty on how one should 
validate dynamic prediction models  

• Uncertainty on when to 
include/exclude predictors  

• Deciding how much to discount 
historical data 

• Uncertainty around when to update 
the model 

• Lack of software packages 

• Complexity of approach 

• Lack of requisite expertise by those 
developing the model 

• Lack of transparency 

• Inconsistent outputs from day to 
day 

• Funding 
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Dynamic CPMs requires a continual flow of data. These are typically provided by routine data sources 

such as audit data, registries and electronic health records. Dynamic CPMs also offer opportunity in 

remote monitoring data, such as wearable device or app data, which provides large quantities of data 

in real time that is otherwise challenging to analyse. However, continuous data flows are usually not 

supported by epidemiological studies and clinical trials. This could raise concerns about the quality of 

dynamic CPMs because routine data sources tend to have poorer data quality and higher levels of 

missingness than study datasets. A possible solution is to develop CPMs using high quality study data 

(e.g. from a prospective observational study) and dynamically revise and monitor them using the 

routine data. However, quality checks and comparisons between the datasets would still be required.  

Throughout this article we have focused on the temporal aspect of miscalibration, however, 

miscalibration can also occur when CPMs are transferred to different settings and/or populations68,79. 

It may be possible to generalise the concept of dynamic CPMs to address this type of calibration 

variation in space. For example, dynamic approaches could be used to tailor a model to a local 

population or transfer a model to a different setting. This is an area that requires further research.  

3.5 Conclusion 
Static CPMs are at risk of being always one step behind on reality. Through an alliance between 

information technology and statistics, clinical prediction can be progressed to a continual service that 

minimizes the data-action latency in preventative medicine. 
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4.1 Abstract 

4.1.1 Background 

Clinical prediction models (CPMs) are used across the healthcare system, specifically in preventative 

medicine and to support clinical decision making. However, healthcare and populations change 

through time. Most CPMs are developed using methods where the model coefficients remain static 

with time, thereby frequently leading to worsening predictive performance over time, due to the 

temporal changes in healthcare and the population. Dynamic prediction models, CPMs developed 

using methods that allow coefficients to be a function of time, have been proposed as a solution. 

However, the improvement in predictive performance of these methods, if any, over time-invariant 

CPMs has received little attention and varying coefficient models have yet to be evaluated in this 

context. Therefore, we aimed to assess performance of traditional and dynamic CPMs under a variety 

of temporal trend scenarios.  

4.1.2 Methods 

We simulated continuous and binary outcome data under a variety of scenarios where the data-

generating predictor-outcome associations and intercept were changing over time. Traditional 

regression models and two dynamic modelling approaches: varying coefficient and Bayesian 

continuous updating models, were fitted to the data and predictive performance was assessed. We 

also applied the methods, and compared the performance of the resulting models, in a cardiac 

dataset. 

4.1.3 Results 

The Bayesian continuous updating model either outperforming or performed as well as the time-

invariant model. In the cardiac data, the Bayesian model had a calibration-in-the-large of -0.018 (95% 

confidence interval: -0.039 - 0.002) and was the only calibration-in-the-large confidence interval to 

include 1. However, the varying coefficient model outperformed the other models in the simulation 

study but performed similar to the time-invariant model in the real-world example. Both the 

simulation study and real-world example show that dynamic prediction models retain accuracy over 

time. 

4.1.4 Conclusion 

How we acknowledge time in predictive modelling impacts model performance. Dynamic models offer 

a solution to model coefficient drift and also perform as well as time-invariant CPMs when there are 

little to no temporal changes. 
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4.2 Introduction 
The desire to move health systems away from treatment/management to preventative medicine has 

resulted in the pervasiveness of clinical prediction models (CPMs) throughout healthcare. CPMs are 

statistical models/algorithms that compute the risk of an outcome given a set of patient characteristics 

and are typically developed using multivariable regression25. Classically, the methods used to develop 

CPMs mean that, once developed, the model coefficients remain fixed for the duration of its use (i.e. 

the coefficients are not a function of time). Thus, CPMs are often implemented under the implicit 

assumption that the processes that generated the data are constant, and evidence can be 

implemented into practice indefinitely. However, in practice healthcare is constantly evolving and the 

demographics of the population, disease prevalence and health policies may also change over time. 

As a result, the predictive performance of models that remain fixed with time can decrease and 

therefore not provide accurate risk estimates33. Consequently, it is not uncommon for the agreement 

between the observed and predicted event rates (i.e. calibration) to worsen over time. This is known 

as calibration drift34 and is one of the major pitfalls in using CPMs in practice. Also, when the effect of 

multiple covariates change over time, discrimination can diminish.  

Discrete model updating36, using new batches of data at arbitrary time points to recalibrate the model, 

is currently used to tackle this and models such as QRISK and EuroSCORE have been updated and 

successfully deployed in practice42,44. This is where the existing model is revised using more recent 

data and following the update, model coefficients remain fixed. However, this is often done at 

arbitrary times, often creating a large data-action latency between calibration drift occurring and 

action being taken to correct it. This has been observed with EuroSCORE33. Jenkins et al also discuss 

that it does not stop drift occurring again in the future and it is only a temporary fix90. 

Dynamic models are a collection of analytical methods that allow model parameters to evolve over 

time and continually provide updated information as new data arrive84. Specifically, these methods 

acknowledge the time of each data point and are formulated such that the parameter estimates are 

not constrained to remain fixed over time. Therefore, these models have the potential to address 

diminishing performance of CPMs over time. Jenkins et al84 recently conducted a review of these 

methods and found little use of dynamic models in healthcare. They also identified a method, varying 

coefficient modelling, yet to be used in this setting. Before application of these methods in practice, 

research is needed to assess the potential utility of varying coefficient models in this area and to 

explore the properties of the dynamic methods, under a range of temporal changes, compared to 

time-invariant CPMs.  

This study aims to compare the predictive performance of time-invariant CPMs and dynamic 

prediction models under a range of temporal changes through the use of simulation and a real-world 

example in cardiovascular disease. Therefore, this study seeks to investigate the added value (if any) 

in predictive performance of dynamic modelling methods compared to time-invariant CPMs, and 

when dynamic models would be preferred to time-invariant CPMs. 

The paper is structured as follows. In Section 4.3 we introduce the simulation study, including the 

aims, data-generating mechanisms, and methods. In Section 4.4, we present the results of our 

simulations. In Sections 4.5, we compare the different models using real data from a study on 

percutaneous coronary intervention. Finally, we conclude this paper in Section 4.6 with a discussion. 
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4.3 Simulation study 

4.3.1 Aims 

The primary aim of this simulation study is to assess and compare the predictive performance of 

dynamic modelling approaches and time-invariant CPMs under a variety of temporal change scenarios 

in which baseline-risk and predictor-outcome associations may change over time. 

4.3.2 Data-generating mechanisms 

We generate two continuous predictor variables observed at discrete times t = (1,2, … , T) derived 

from a standard normal distribution, thus  

𝑋𝑗,𝑡~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1) for 𝑗 = 1,2 

At each time 𝑡, we allow for there to be multiple individuals (batches of data) and we denote the 
number of individuals at time 𝑡 to be 𝑛𝑡; we also allow 𝑛𝑡 = 1 such that data are arriving in real-time. 
We chose to simulate data such that 𝑛𝑡 =1, 10, 25 or 100 data points at each time t. In this study we 
only consider situations where 𝑛𝑡 is fixed for all t, though in practice this could vary at each time point. 
If there are multiple individuals,  𝑋𝑗,𝑡 is a vector of size 𝑛𝑡. In either case, we assume that each 

individual had either a continuous or binary outcome, 𝑦𝑡, (depending on simulation scenario), which 
is observed for an individual a short time after 𝑡, which we index by t for convenience. We generated 
these outcomes such that:  

  𝑔(𝐸(𝑌𝑡)) =  β0
0

(𝑡) +  β0
1

(𝑡)𝑥1,𝑡  +  β0
2𝑥2,𝑡, (1) 

for a suitable link-function g, and where β0
0

(𝑡) is the time-dependent intercept and β0
1

(𝑡) is the 

time-dependent regression coefficient for the predictor, 𝑥1, at time t.  β0
2 was chosen to remain fixed 

across all simulations, β0
2  = −1, as this enables the risk order to change over time and hence the 

discrimination. To clarify, we consider situations where each individual is observed only once in the 

dataset; that is, we do not consider longitudinal data for a given individual. 

We assume a temporal development and internal validation process, where we define the 

development data (available to derive the models) to include all observations made between time 𝑡 =

1 𝑎𝑛𝑑 𝑡 = 𝑑  and the validation data (to test predictive performance) to include all observations made 

between time 𝑡 = 𝑑 + 1 𝑎𝑛𝑑 𝑡 = 𝑇 𝑤ℎ𝑒𝑟𝑒 𝑑 < 𝑇. For all scenarios we chose 𝑑 = 365 and 𝑇 = 730. 

Hence, the sample sizes for model development were 365, 3650, 9125 and 36500 respectively. Note, 

observing 10 data points at each timepoint is also equivalent to observing one observation at each 

time t and updating every 10th time point over a time period ten times longer. Therefore, we did not 

choose to vary time across simulations. 

Across all simulations β0
0

(𝑡) 𝑎𝑛𝑑 β0
1

(𝑡) were varied in three different scenarios such that the 

underlying functions were:  

1. Fixed with no change over time (i.e. β0
0

(𝑡) = β0
0 or β0

1
(𝑡) = β0

1)  

2. Linearly increasing over time such that,  

β0
𝑝

(𝑡) = β0
𝑝

(1) + 𝛼𝑡 , 𝑓𝑜𝑟 𝑝 = 0,1 𝑤ℎ𝑒𝑟𝑒 𝛼𝑡 = 𝛼 𝑡
𝑇⁄  

 

3. Static until a given time 𝑠, where 𝑠 <  𝑇 when a step/sudden change occurred. Specifically, 
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β0
𝑝

(𝑡) =  {
β0

𝑝(1) 𝑖𝑓 𝑡 < 𝑠

β0
𝑝(1) + 𝛼 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

For 𝑝 = 0,1.  

In the above scenarios, 2 and 3, 𝛼 controls the magnitude of the change in the coefficients over time. 

In this study, we considered five values of α which were, 0, 0.2, 0.5, 1 and 2. For the linear model, this 

corresponds to a standard deviation change of 0, 1, 2.5, 5 and 10 for 𝑦𝑡 between 𝑡 = 1 and 𝑡 = 𝑇. 

Additionally, for the choice of s, the time of a step change, we chose 3 times; 1) midway in the 

development data (𝑡 = 183), 2) three quarters of the way through the development data (𝑡 = 274) 

and 3) early in the validation data (𝑡 = 395). 

The outcome was simulated for each set of possible combinations of the fixed, linear and step change 

scenarios (and for each 𝑝 = 0,1), under the data generating model shown in equation 1. In simulation 

scenarios where we simulate a continuous outcome, 𝑌𝑡 was generated as 

𝑌𝑡 ∼ 𝑁(β0
0

(𝑡) + β0
1

(𝑡)𝑥1,𝑡 +  β0
2𝑥2,𝑡, 0.22) 

We choose 0.2 as the error standard deviation to ensure random variation between iterations. 

Without loss of generality, we fixed the standard error of the outcome generation to be 0.2; this was 

chosen to fix the signal-noise ratio across scenarios. A higher standard deviation would simply change 

the absolute value of resulting performance, but this would be the same across all methods such that 

conclusions would not change. For simulation scenarios where we simulate a binary outcome, 𝑦𝑡 was 

simulated as follows, 

𝑌𝑡  ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(
exp (𝐿𝑃)

1 + exp (𝐿𝑃)
) 

𝑤ℎ𝑒𝑟𝑒 𝐿𝑃 = β0
0

(𝑡) +  β0
1

(𝑡)𝑥1,𝑡 +  β0
2𝑥2,𝑡 

Sample size needs to be considered during model development and Riley et al24 recently proposed an 

approach for sample size in both linear and logistic CPMs. Rearranging the calculation, for the logistic 

model, we calculated that for a sample size of 365 when two parameters are to be considered in the 

model, the prevalence of the outcome needs to be less than 0.39 or above 0.61. Taking the prevalence 

of 0.39, the linear predictor therefore needs to be below -0.447 because 𝐸(𝑦) =
exp (𝐿𝑃)

1+exp (𝐿𝑃)
, so solving 

0.39 =
exp (𝐿𝑃)

1+exp (𝐿𝑃)
 gives 𝐿𝑃 = −0.447. As a result, we chose 𝛽0(1) = −0.5. We chose arbitrary values 

for the other betas such that 𝛽1(1) = 1 𝑎𝑛𝑑 𝛽2 = 1. The minimum sample size required for the linear 

model with the same parameter choices was 237, less than the 365 in the smallest simulation, so the 

same parameter choices were applied in the linear model.  

Table 4.1 displays all parameter choices and for each unique combination of parameters we simulated 

1000 datasets. The results were then averaged over the 1000 simulations for each scenario. A total of 

1600 unique parameter choices (simulation scenarios) were considered but we focus on a subset of 

them in the results. Specifically, we present the results from the linear and logistic models where we 

observe a single observation at each time point from scenarios when alpha = 0, 0.5 and 1 and both 

β0
0  and β0

1 have the same rate of change over time. We also present the results for one of the step 
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changes, where t=274, but the focus in the results is on linear changes as they are more common in 

clinical practice. For example, prevalence of a disease is often changing gradually rather than suddenly.  

Table 4.1 - Parameter choices for each simulation 

Parameter Model 

Outcome Linear Logistic 

Beta change (α) 0, 0.2, 0.5, 1, 2 0, 0.2, 0.5, 1, 2 

How beta changes across all 
combinations of p=0,1 

Linear 
Step change at t=s 

Linear 
Step change at t=s 

Error SD 0.2 NA 

Observations at each 
timepoint 

1, 10, 25, 100 1, 10, 25, 100 

Time of step change in beta (s) 183, 274, 395 183, 274, 395 

𝜷𝟎(𝒕 = 𝟏) -0.5 -0.5 

𝜷𝟏(𝒕 = 𝟏) 1 1 

𝜷𝟐 1 1 

 

4.3.3 Modelling approaches 

This study compared three modelling approaches, a time-fixed CPM approach, to represent how 

models are currently derived and used in practice, as well as two dynamic modelling approaches: 

Bayesian updating and varying coefficient modelling. 

4.3.3.1 Linear and logistic regression 

Within each simulation, we fit either a linear or logistic model (depending on the outcome being 

simulated for that simulation scenario), where the coefficients are derived using the complete 

development data set, with no acknowledgment of time included in the model. The coefficients, 

estimated through maximum likelihood estimation, therefore remain fixed throughout the validation 

data. Specifically, we fit the following model to the development data, 

𝑔(𝐸(𝑦)) =  β0 +  β1𝑥1  +  β2𝑥2 

4.3.3.2 Varying coefficient model 

The varying coefficient model estimates the betas as smooth functions of time62,63. This approach uses 

all the development data set to estimate beta as a function of time. In the simulation we consider two 

varying coefficient models. The first, and most simplistic, is where only the intercept is dependent on 

time and we assume the functional form is linear. Specifically, 

𝑔(𝐸(𝑦𝑡)) = β0(t) + β1𝑥1  +  β2𝑥2 =  𝛽0 +  𝛽3𝑡 + 𝛽1𝑥1 +  β2𝑥2, 

Where 𝛽0(𝑡) =  𝛽0 + 𝛽3𝑡. The second varying coefficient model considers all coefficients as linear 

functions of time such that, 

𝑔(𝐸(𝑦𝑡)) = β0(t) +  β1(𝑡)𝑥1  +  β2(𝑡)𝑥2 
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=  𝛽0 +  𝛽3𝑡 + 𝛽1𝑥1 + 𝛽4𝑡𝑥1  +  β2𝑥2 + 𝛽5𝑡𝑥2, 

Where,  

𝛽0(𝑡)  =  𝛽0 + 𝛽3𝑡 

𝛽1(𝑡)  =  𝛽1 + 𝛽4𝑡  

𝛽2(𝑡)  =  β2 + 𝛽5𝑡 

When predicting using these models, one may extrapolate the functions to the time of the prediction 
or fix time to be the last time of the development data, t=d. The latter is similar to the approach 
described by Booth et al89 for survival models. We consider both in the simulation and therefore have 
4 varying-coefficient models. 

4.3.3.3 Bayesian updating model 

The Bayesian updating model continually updates at each time point where the information obtained 

from past data is used as prior information and combined with the new data to obtain updated 

estimates. Thus, the updating (posterior) equation is proportional to the product of the likelihood (at 

time t) and the prior (prediction equation at time t-1)45,91.  

p( 𝛽𝐾(𝑡) | 𝑌𝑡) ∝ p( 𝛽𝐾(𝑡) |  𝑌𝑡−1)p( 𝑦𝑡| 𝛽𝐾(𝑡) ) ∝ Prior x Likelihood 

Where the prediction equation (Prior) is obtained through Kalman filtering by supposing 

 p(β(t − 1)|  Yt−1)~N(β̂(t − 1), 𝜑𝑡−1), where  Yt−1 = {y1, … , yt−1}. This results in the prediction 

equation 

p(𝛽𝐾(𝑡) |𝑌𝑡−1)~N(β̂𝐾(t − 1), Rt); Rt =
𝜑𝑡−1

λ⁄  

The forgetting factor, λ, down-weights (or decays) historical data so they have less influence/weight 

than new data and was used to down weighted at a constant rate over time. Previous research 

suggests  λ should be between 0.9 and 147,48. However, this does not guarantee the sample size at 

each time, t, will be sufficient. Minimum sample size criteria have recently been developed for clinical 

prediction models. Therefore, λ should be chosen to ensure adequate sample size. Forgetting is 

comparable to windowing where the effective window size is ℎ =
1

1−𝜆
 and the data from the last h 

time points are used for estimation and equally weighted. Therefore, when updating at each 

observation, h should be at least the minimum required sample size, minsamp, based on Riley et al24, 

such that ℎ ≥  𝑚𝑖𝑛𝑠𝑎𝑚𝑝. Hence, we suggest λ should be 

𝑚𝑖𝑛𝑠𝑎𝑚𝑝 − 1
𝑚𝑖𝑛𝑠𝑎𝑚𝑝⁄ ≤ 𝜆 ≤ 1 

For each scenario in our study, we use the minimum lambda to allow the model more flexibility to 

change over time. Hence, if we have a linear model with 2 candidate variables to consider in the model 

then the minimum require sample size is 237. If we then observe one observation at each timepoint, 
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λ would be 237 − 1
237⁄ = 0.9958. If multiple observations are observed at each timepoint then λ 

needs to be adapted such that  

𝜆 =
𝑚𝑖𝑛𝑠𝑎𝑚𝑝

𝑜𝑏𝑠
−1

𝑚𝑖𝑛𝑠𝑎𝑚𝑝
𝑜𝑏𝑠

⁄  

Where obs is the number of observations at each time, t. Hence with 5 observations at each update 

and a minimum sample size of 237,  λ = 0.979. 

We include two Bayesian updating models in our study, the first updates at each time t in the 

development data set, and the coefficients remain fixed during the validation data. The second model 

continues to update during the validation data.  

4.3.4 Performance measure 

The performance measure of interest was predictive accuracy. To compare models in each scenario, 

we calculated calibration slope, calibration-in-the-large and mean square error (MSE). For the logistic 

models, we also computed discrimination. 

Each performance measure was computed over the complete validation data to provide an average 

measure of performance for each model over the validation data. This was chosen as it represents 

current practice for validation where performance is evaluated over the complete validation. 

Currently it is challenging to validate the continuously updating Bayesian model in clinical practice but 

prequential testing86,90 is a solution whereby we evaluate the model at time t using the data up to time 

t-1. Here we illustrate its potential use in practice.   

4.3.5 Coding and execution 

We used R92 version 3.6.2 to generate the data, fit all the models and run the simulations. The 

simulation code can be found at https://github.com/David-A-Jenkins/Thesis. The Bayesian updating 

model was implemented using a modified version of the DMA package49. The current package only 

enabled updating at each single observation. We extended the package to allow updates to occur with 

more than one observation at a given time point and to only update at given times. The modified code 

can be found on github (https://github.com/David-A-Jenkins/Thesis). 

4.4 Results 
Among the 1600 simulated scenarios, we select a subset of them to focus on here. Specifically, we 

select a subset of choices for the drift in 𝛽0(𝑡) and 𝛽1(𝑡) and present the results (in section 4.4.1) 

where we observe one observation at each time point. Section 4.4.2 provides an overview of the 

results for the other scenarios not presented in section 4.4.1. 

4.4.1 Predictive performance of selected scenarios 

The predictive performance of the selected scenarios for the continuous and logistic outcomes are 

presented in figures 4.1 and 4.2. For the continuous outcomes, the varying coefficient models had the 

best predictive performance for all measures. For the linear change over time the varying coefficient 

model extrapolated using prediction time in the validation data had a calibration-in-the-large closest 

to 0, a calibration slope close to 1 and lowest mean-squared error. However, note that in this scenario 

the model is correctly specified with respect to the data generating model. When there is a step 

change in the betas of the data-generating model, these models no longer perform ‘perfect’. The 

https://github.com/David-A-Jenkins/Thesis
https://github.com/David-A-Jenkins/Thesis


 

69 
 

continuously updating Bayesian model calibration-in-the-large was closer to 0 than the linear model 

and the Bayesian model which stopped updating at the end of the development data. The 

continuously updated model, on average, also had a calibration slope closer to 1 and mean-squared 

error closer to 0 compared to the linear model and Bayesian model updated only in development data. 

However, the varying coefficient models outperformed all of the models with respect to calibration-

in-the-large and mean-squared error. For the calibration slope the varying coefficient models where 

all betas were function of time were closest to one out of all the models and the varying coefficient 

models with only the intercept as a function of time had a calibration slope similar to the Bayesian 

models. 

For the logistic outcome, little differences were seen between the predictive performance of the 

models (figure 4. 2) except for the confidence intervals. The performance measure confidence 

intervals of the varying coefficient models were much wider than the other models and the 

continuously updated Bayesian model had the narrowest confidence interval for all performance 

measures in each scenario (figure 4.2). Little differences were seen between models in discrimination 

and mean-squared error. The largest differences between models were observed in the calibration-

in-the-large and the varying coefficient models calibration-in-the-large were closest to zero. 

Specifically, the varying coefficient model with all betas as functions of time and extrapolated in the 

validation data had the best calibration-in-the-large, but it also had the widest confidence interval of 

any model. The time-invariant model was the worst performing model, except when there was no 

change over time and all models performed very well. 
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Figure 4.1 - Predictive performance averaged over the full validation data for each model separately for each 
of the selected scenarios for continuous outcomes. Model 2 refers to the model updating in the validation 

data (for the Bayesian model) and the model extrapolated to the validation time (varying coefficient model). 
The circles represent median values across the 1000 iterations and vertical lines represent the 95% 

quantiles. 
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Figure 4.2 - Predictive performance averaged over the full validation data for each model separately for each 
of the selected scenarios for binary outcomes. Model 2 refers to the model updating in the validation data 

(for the Bayesian model) and the model extrapolated to the validation time (for the varying coefficient 
model). The circles represent median values across the 1000 iterations and vertical lines represent the 95% 

quantiles. 

4.4.2 Overview of predictive performance for the other scenarios 

For each combination of parameter choices, the results were similar when multiple observations were 

observed at each time point. The number of observations impacted the confidence intervals but did 

not impact the conclusions or the ordering of which models performed best for each performance 

measure. For the other combinations of drift that are not shown above, when both 𝛽0(𝑡) and 𝛽1(𝑡) 

are changing over time in the same manner the ordering of the models does not change. Only the 
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magnitude of the performance value is affected by the values of drift chosen. When 𝛽1(𝑡) changed 

over time but 𝛽0(𝑡) was static, the calibration-in-the-large for all models was approximately zero 

(supplementary figure S4.1) but the calibration slope values were not effected, compared to the 

results above. The MSE values were also lower than the above results, but the ordering of the models 

remained the same. Conversely, when 𝛽1(𝑡) was static and 𝛽0(𝑡) was not static, the calibration slope 

was always approximately 1 except for the varying coefficient models extrapolated using prediction 

time in the validation data. These models were misscalibrated and had calibration slope below 1. The 

larger the change in 𝛽0(𝑡) the more miscalibrated these models were (supplementary figure S4.2). 

Also, when 𝛽1(𝑡) was static the calibration-in-the-large was similar to the above results, except for 

narrower confidence intervals, and the ordering of the best performing models did not change. The 

MSEs were also, on average, lower but the ordering of the models remained the same.  

Hence, changes in 𝛽0(𝑡) over time impacted the magnitude of the calibration-in-the-large and MSE 

for all models but only impacted the calibration slope results for the varying coefficient model 

extracted using validation data. Changes in 𝛽1(𝑡) over time impacted the magnitude of the calibration 

slope and MSE values for all the models but it did not impact the ordering of which models had the 

best calibration. Ordering of the models for each performance value was the same for all parameter 

choices except for when 𝛽0(𝑡) or 𝛽1(𝑡)  was static 

4.5 Empirical Study of Percutaneous Coronary Intervention  
Percutaneous coronary intervention (PCI) is a procedure that uses a catheter to insert a stent to open 

up blood vessels. It is used to improve blood flow and used to reduce symptoms of coronary heart 

disease or reduce damage after a heart attack. 

Since 2005 The British Cardiovascular Intervention Society (BCIS), has incorporated patient data into 

annual audits for PCI in the UK and developed a registry collecting data on all PCI procedures. The 

audits are used for benchmarking and use 30-day mortality following PCI as one of the outcomes. In 

2016, McAllister et al17 developed a CPM to predict the risk of 30-day mortality after PCI, which is 

currently used in clinical practice for said benchmarking. The model was developed using a logistic 

regression model within the BCIS registry data from 2007 to 2011. Model validation was performed 

using the 2012 BCIS data and showed the model was well calibrated. This registry now has available 

data on all PCI procedures until March 2018 but now only records in-hospital mortality. Here we apply 

the models described in the simulation study to this cardiovascular data set and follow the data 

cleaning and model building outlined by McAllister to compare the performance of each model in the 

new data. 

4.5.1 Study Population and BCIS Registry 

The BCIS registry collects data on every PCI procedure performed in the UK through a Web-based 

interface provided by the National Institute of Cardiovascular Outcomes Research. This study included 

data on all PCI procedures between January 2007 and March 2018. The registry includes 113 variables 

which contain information on patient baseline demographics, risk factors for intervention, procedural 

details and patient outcomes, including discharge status. Time of each PCI procedure was recorded as 

the date and time the procedure took place.  

4.5.2 Data pre-processing 

Data pre-processing steps and exclusion criteria were applied to match those described by McAllister 

et al17 as closely as possible. Individuals were excluded if they: 1) were not between the ages of 18 
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and 100 years, 2) were ventilated pre-operatively, 3) had fractional flow ultrasound without PCI, or 4) 

had missing outcome data. An indication-urgency variable was created as a five-group classification 

by combining clinical indication and urgency of the procedure to avoid collinearity. Indication group 1 

was used as the reference group and were individuals with stable condition attending for a scheduled 

procedure. Groups increased in severity with group 5 including individuals with acute coronary 

syndrome who had PCI as an emergency procedure.  See McAllister et al. paper for specific details17. 

The renal function, creatinine level and dialysis variables were combined to create one renal function 

variable as per McAllister et al17. Individuals who were on dialysis were assigned to the ‘Renal (dialysis)’ 

group. If they were not on dialysis but creatinine levels were above 200 μmol/l individuals were 

assigned to the ‘Renal (creatinine)’ group. All other patients were assigned to the no renal impairment 

group, including those with functioning transplants. 

4.5.3 Statistical Analysis 

Four models were developed and validated in the data. All models included mostly the same 

predictors that were in the model developed by McAlister et al17. However, renal function and the 

indication-shock interaction were excluded from the models due to their rarity (<1%) and thus issues 

with estimation in the data. The first model was a Logistic regression fitted to the BCIS data collected 

between 2007 and 2011. The second was a logistic regression model updated yearly. Again, this used 

the 2007 to 2011 data to develop the model but was then subsequently recalibrated at the start of 

each year between 2012 and 2018 by fitting a logistic regression model and using the linear predictor 

of the model as the only covariate. Hence, the coefficients remained fixed throughout each year, but 

are revised between years. This was chosen as it represents how some models in clinical practice, for 

example QRISK, are currently updated. The third model was a continuously updated Bayesian dynamic 

model, updated at each new observation. We applied the sample size calculation by Riley et al24. and 

derived the minimum forgetting factor that would ensure adequate sample size (as described in 

section 4.3.3.3 earlier). Finally, a varying coefficient model developed using the data between 2007 

and 2011. Only the intercept term was dependent on time and the functional form was assumed to 

be linear. 

The models were then validated in the data collected between January 2012 and March 2018. For 

each model, we calculated the calibration-in-the-large, calibration slope, discrimination and the mean-

squared error. We computed the validation measures over the full validation data and for each month 

between January 2012 and March 2018. The mean and standard deviation of the monthly 

performance measures were also calculated for each model. Prequential testing was used to validate 

the continuously updated dynamic model. 

All analyses are performed using R (version 3.6.2) and the dynamic models were fitted using functions 

adapted from the dma package49. 

4.5.4 PCI Results 

After data cleaning, the final data comprised of 1,038,978 procedures and a total of 17,057 (1.64%) 

patients died in hospital following PCI procedure. 434,561 procedures were undertaken before 2012 

and 5,368 (1.24%) of those died in hospital following PCI procedure. The minimum sample size 

required for model development was approximately 3500, resulting in a minimum forgetting factor of 

0.9998.  

4.5.4.1 Model performance 
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Table 4.2 displays the validation results for each model in the data between 2012 and 2018. The 

Bayesian updating model had a calibration-in-the-large closest to 0, -0.018 (95% CI: -0.039 – 0.002), 

but was the only model where the confidence interval for calibration slope did not include 1. The 

yearly updated logistic model had a calibration slope closest to 1, 0.995 (95% CI: 0.984 – 1.006). Over 

the entire validation data, no differences in discrimination or mean-squared error were observed 

between the models (Table 4.2). 

Table 4.2 - Performance measures for each of the models validated on the complete validation data 
between January 2012 and March 2018 

Models Calibration-in-the-large Calibration slope Discrimination Mean-squared error 

Logistic model 0.158 (0.137 - 0.178) 1.016 (1.005 - 1.028) 0.904 (0.901 - 0.907) 0.015 (0.015 - 0.016) 

Yearly updated 
logistic model 

0.027 (0.006 - 0.047) 0.995 (0.984 - 1.006) 0.904 (0.901 - 0.907) 0.015 (0.015 - 0.016) 

Bayesian updating 
model 

-0.018 (-0.039 - 0.002) 0.971 (0.960 - 0.982) 0.903 (0.900 - 0.906) 0.015 (0.015 - 0.016) 

Varying-coefficient 
model 

0.158 (0.137 - 0.178) 1.016 (1.005 - 1.028) 0.904 (0.901 - 0.907) 0.015 (0.015 - 0.016) 

 

Figure 4.3 displays each of the models’ performances in the data computed monthly between 2012 

and 2018. No difference in model discrimination was observed between any of the models. This was 

also observed for the calibration slope, but the dynamic model estimates fluctuated less and estimates 

more consistently close to 1 than the other models (figure 4.3). The standard deviation of the 

calibration slope in the monthly estimates was 0.034 compared to 0.051 in the logistic and varying 

coefficient models and 0.053 in the yearly updated logistic model (supplementary table S4.3). The 

largest difference between the model performances for the monthly validation was observed in the 

calibration-in-the-large. The dynamic model calibration-in-the-large remained stable around 0 and 1 

respectively. The logistic regression and varying-coefficient model calibration-in-the-large was 

significantly above 0 for most of 2012 and all 3 months of the 2018 data. The yearly updated logistic 

model calibration-in-the-large was significantly higher than 0 for most 2012 and then was consistently 

below 0 in 2013. However, the calibration-in-the-large then remained stable and did not significantly 

differ, except for one month, between 2014 and 2018. The standard deviation of calibration-in-the-

large for the dynamic model was 0.036 compared to 0.098, 0.123 and 0.101 observed in the logistic 
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regression, yearly updated logistic and varying-coefficient models respectively (supplementary table 

S4.3) 

Figure 4.3 - Monthly performance measure for each model between 2012 and 2018 

4.6 Discussion 
In this study, we have compared the predictive performance of dynamic prediction modelling methods 

and traditional CPMs under a variety of simulated scenarios and a real-world data set. We found the 

Bayesian updating model either outperformed or performed as well as the time-invariant methods in 

all scenarios for the linear outcome. The varying coefficient models had good predictive performance, 

especially when the changes over time were linear, and the model was correctly specified. In the 

simulations, the varying coefficient model was the model with the best predictive performance, but 

for the binary outcome, the confidence intervals were much wider than the Bayesian and logistic 

regression models, indicating reduced stability93. The Bayesian model consistently had the narrowest 

confidence intervals in the simulation and in the real-world dataset had the best predictive 

performance, and lowest variability over time, in the calibration-in-the-large. However, the Bayesian 

model also had the worst calibration slope in the real-world data set. The yearly updated logistic 

model had the closest calibration slope to one out of all models, 0.995 (95% CI: 0.984 - 1.006), and 

had better calibration-in-the-large, closer to 0, than the varying coefficient and logistic models.  

Although the best performing in the simulation model was the varying coefficient model when we 

observe linear changes over time, they are less promising when we observe step changes. Needing to 

correctly specify the functional form of the model with respect to time makes the varying coefficient 
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model less desirable than the Bayesian model because we do not know the ground truth of any 

changes over time in practice. However, the Bayesian model is capable of reacting to changes and the 

larger the data, the quicker the response. We therefore advise the use of Bayesian models in the 

presence of temporal changes in the data, but if using varying coefficient models, take caution in 

extrapolating into the future as performance is more volatile and consider fixing the time when making 

predictions to the last time in the development data (or a time soon after the development data). 

We have shown Dynamic prediction modelling can reduce the impact of calibration drift; it is therefore 

essential to increase our understanding of these models and how they can be developed to better 

facilitate healthcare by providing more stable and precise predictions. Ignoring temporal changes in 

the data could decrease the predictive performance of a prediction model over time. Hence, when 

developing and validating prediction models, one should investigate temporal trends in the data. In 

addition, models used in practice can directly impact the data because users respond to predictions, 

and this can change distributions of the outcomes and characteristics recorded in the data. For 

example, a clinician may prescribe a treatment after using the model and this could impact the 

outcome. Previous work87,90,94 has suggested continuous surveillance and updating of models may 

overcome these problems. Our study supports this, showing continuous updating improved 

performance. However, we do not consider all possible scenarios, rather a set of simplistic simulated 

scenarios that may not be representative of data in clinical practice.  

Furthermore, there are considerable difficulties in implementing dynamic models in practice: 

including technical and conceptual difficulties.  These models would need a continuous flow of data, 

or at least receive regular data batches, to update. Hence, they require a complex infrastructure to 

support this data collection and model updating. Also, these approaches are not trivial to understand 

and the fact a patient’s predicted risk from the model can change over time, may make the decision 

making more challenging and difficult to explain. 

4.6.1 Previous literature 

Limited research has been conducted in the area of dynamic clinical prediction models84 and only a 

small subset of those have compared dynamic Bayesian models to time-invariant models47,57. These 

all compare regression models with Bayesian model updating in cardiac datasets. They showed that 

dynamic models retain good performance over time and observed improvement in the calibration-in-

the-large. However, they found no differences in the discrimination or calibration slope. Our results 

support their findings. Siregar et al56 also compared dynamic Bayesian models to time-invariant 

models and concluded that dynamic models are preferred. However, none of these studies included 

varying coefficient models or consider choosing forgetting based upon sample size. 

Raftery et al and McCormick et al apply Bayesian model updating in a simulation considering a 

continuous and binary outcome, respectively. A limited number of scenarios are simulated, for 

example, Raftery et al simulates 3 unique scenarios. Neither of these studies consider the models in 

the context of clinical prediction and as a result the predictive performance of the models are not 

evaluated. 

4.6.2 Strengths and limitations 

The main strength of this work is that we perform a simulation study under a range of scenarios and 

consider multiple performance measures, thereby allowing a comprehensive and systematic 

examination of modelling approaches. To our knowledge we are the first to compare time-invariant 
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models, varying coefficient and Bayesian updating models. We are also first to consider sample size 

and we have shown a way to choose the forgetting factor to satisfy a required sample size. Future 

applications in dynamic models should consider sample size and the choice of forgetting factor. 

Conversely, the main limitation is that we simulate only a crude reflection of the real world and a 

limited number of possible scenarios. It was not possible to consider the infinite possibilities of reality. 

However, we evaluated the methods in a real-world dataset and illustrate the use of prequential 

testing that could be used to monitor the predictive performance of models in numerous scenarios 

otherwise considered here. Other limitations include: 1) only considering two predictors in the 

simulation; 2) penalisation was not considered; and 3) we do not address the issue of censoring, or 

delayed outcome availability, which would require extension to the method.  

Although we have outlined an appropriate way to choose a forgetting factor, we only considered one 

option. This was not the aim of the study but it is likely an influential component in the performance 

of prediction models. When the healthcare system is changing rapidly, forgetting more quickly could 

help improve/retain the models performance. Further methodological work is required to optimise 

this ‘forgetting’ element of prediction models and devise a way to select the optimal forgetting when 

developing prediction models to increase performance. Indeed the optimum way to forget data over 

time might not be by choosing a single value but rather allowing data to be down weighted in a 

dynamic manner through some data driven optimisation. 

4.7 Conclusion 
How we acknowledge time in predictive modelling impacts model performance. Dynamic models offer 

a solution to model coefficient drift and also perform as well as time-invariant CPMs when there are 

little to no temporal changes. However, further methodological research is needed as well as research 

to increase utility of these models and implement them for healthcare use. We recommend the use 

of dynamic prediction models over time-invariant models. Specifically, the use of Bayesian model 

updating with forgetting and frequent updating, if continual updating is not possible.  
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4.9 Supplementary material

 

Supplementary Figure S4.1 - Predictive performance averaged over the full validation data for each linear 
model separately and for scenarios when 𝜷𝟎(𝒕) is static and 𝜷𝟏(𝒕) is the same as the selected scenarios. 

Model 2 refers to the model updating in the validation data (for the Bayesian model) and the model 
extrapolated to the validation time (for the varying coefficient model). The circles represent median values 

across the 1000 iterations and vertical lines represent the 95% quantiles. 
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Supplementary Figure S4.2 - Predictive performance averaged over the full validation data for each linear 
model separately and for scenarios when 𝜷𝟎(𝒕) is the same as the selected scenarios and 𝜷𝟏(𝒕) is static. 

Model 2 refers to the model updating in the validation data (for the Bayesian model) and the model 
extrapolated to the validation time (for the varying coefficient model). The circles represent median values 

across the 1000 iterations and vertical lines represent the 95% quantiles. 

Supplementary Table S4.3 - Mean and standard deviation of the monthly performance values between 2012 
and 2018 for each model 

Models Calibration-in-
the-large 

Calibration 
slope 

Discrimination Mean-squared 
error 

Logistic model 0.107 (0.098) 1.020 (0.051) 0.904 (0.015) 0.015 (0.002) 

Yearly updated logistic model 0.026 (0.123) 1.000 (0.053) 0.904 (0.015) 0.015 (0.002) 

Bayesian updating model -0.019 (0.036) 0.972 (0.034) 0.901 (0.014) 0.016 (0.002) 

Varying-coefficient model 0.154 (0.101) 1.020 (0.051) 0.904 (0.015) 0.015 (0.002) 
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Chapter 5 Comparing predictive performance of 
time invariant and time variant clinical 
prediction models in a UK cardiac surgery 
dataset  
David A Jenkins, Glen P Martin, Matthew Sperrin, Benjamin Brown, Stuart Grant, and Niels Peek 

In preparation for submission 

5.1 Abstract 

5.1.1 Background 

Clinical prediction models (CPMs) are used across healthcare to support clinical decision making. The 

European System for Cardiac Operative Risk Evaluation (EuroSCORE) is one of these models and is 

used to assess risk of mortality after cardiac surgery. Existing CPMs, including EuroSCORE, are time 

invariant: they do not acknowledge temporal changes which can result in worsening of predictive 

performance over time. However, methods are available for time-variant models. We aimed to 

compare the performance of time-invariant with time-variant models in a single-centre cardiac 

surgery dataset over a ten-year period. 

5.1.2 Methods 

We analysed UK National Adult Cardiac Surgery Audit data from Manchester University NHS 

Foundation Trust between 2009 and 2019. We fitted 4 models to the data, a (time-invariant) logistic 

regression model and time-variant logistic regression model with varying coefficients (where the 

intercept is a function of calendar time) to data from 2009-2011 and validated them in the 2012-2019 

data. We also fitted a time-invariant logistic model which was updated every year, validating it in each 

subsequent year. Finally, a continually updating Bayesian logistic model, updating with each new 

observation and down-weighting older observations, was fit to the data and continuously validated. 

We report calibration (observed-expected ratio, calibration-in-the-large and calibration slope) and 

discrimination (C-statistic) over the complete validation cohort and for each year in the validation 

data. 

5.1.3 Results 

The dataset comprised of 10,770 individuals, 3021 in the (initial) development data and 7749 in the 

validation data. The Bayesian model had the best predictive performance over the complete validation 

data for calibration-in-the-large, 0.019 (95% CI: -0.107, 0.14), and discrimination with a C-statistic of 

0.778 (95% CI: 0.747, 0.809). The yearly updated logistic model was also well calibrated-in-the-large 

0.057 (95% CI: -0.059, 0.17) but the varying coefficient and time invariant models consistently had the 

worst performance measures and were miscalibrated with calibration-in-the-large of -0.688 (95% CI: 

-0.849, -0.535) and -0.237 (95% CI: -0.398, -0.083), respectively.  

5.1.4 Conclusion 

The Bayesian and yearly updating models had the best predictive performance throughout the study. 

Therefore, we advise the use of model updating methods, specifically Bayesian model updating. 
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5.2 Background 
Decision making in healthcare is often aided by tools known as clinical prediction models (CPMs)12,25. 

CPMs use information about a patient to provide risk estimates on a certain outcome for the patient, 

for example, risk of developing cardiovascular disease. The European System for Cardiac Operative 

Risk Evaluation43 (EuroSCORE) is a cardiac risk model for predicting mortality after cardiac surgery. 

This model is used to aid the clinician’s decision on whether or not they should perform surgery. The 

information from the model therefore needs to be accurate otherwise incorrect decisions could be 

made, impacting patient care and outcomes. EuroSCORE was published in 1999 and the accuracy of 

the model was shown to diminish over time33. Hickey et al showed the observed-expected ratio of the 

EuroSCORE model in predicting mortality decreased from 0.73 to 0.37 over a 10-year time period. 

Subsequently, an updated version of the model44 (EuroSCORE II) was published in 2012. Degradation 

of CPMs used in clinical practice is often observed and many models experience diminishing predictive 

performance over time. The healthcare system is constantly evolving and patient populations are 

changing while our CPMs remain time-invariant and do not consider this temporal nature of the data.  

Periodic updating is now increasingly being used to recalibrate models and overcome model 

degradation. QRISK20 is an example of such a model, and is updated yearly22,42,83, but few models are 

updated this often, if at all. Recently, other methods, known as dynamic prediction models47,84, have 

been discussed to overcome model degradation, such as continuously updating Bayesian models48 

and varying coefficient models63. In Chapter 4 we compared these two dynamic modelling approaches 

with a time-invariant model and this was through a simulation study that included a cardiac data 

example. In the cardiac data we also compared the methods to yearly recalibration41. As far as we 

know, no other systematic comparisons of all these methods have been conducted.  

In this chapter we aim to investigate the predictive performance of time-variant and time-invariant 

modelling methods using a real-world cardiac dataset. We apply the same four modelling approaches 

as in Chapter 4 to National Adult Cardiac Surgery Audit (NACSA) data collected at Manchester 

University NHS Foundation Trust between 2009 and 2019. The NACSA includes baseline data and 

clinical outcomes on individuals undergoing cardiac surgery. We validate and compare the 

performance of the methods in the data between 2012 and 2019. 

5.3 Methods 

5.3.1 Study Population and NACSA Registry 

The NACSA registry collects data on major heart operations in the UK. The registry includes 

information on patient baseline demographics, risk factors for intervention, procedural details and 

patient outcomes. This study included data on all major heart operations from 1st January 2009 to 30th 

June 2019 from a single hospital. The outcome was discharge status (alive/died) and all predictors 

included in EuroSCORE II, except heart failure classification and creatinine, were available in the data. 

All variables were defined as per EuroSCORE II44, for example, recent myocardial infarction (MI) was 

defined as MI within the 90 days prior to surgery. Missing categorical data were imputed based on an 

assumption that missingness was equal to risk-factor absent, representing a plausible missingness 

mechanism for the registry data95. We choose to use the variables in EuroSCORE because we are 

predicting a very similar outcome and to ensure the study closely represents current CPM practice. 

Also, the aim of the study is to compare performance rather than derive new models. 
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5.3.2 Statistical Analysis 

Four models were developed and validated in the data. The first model was a time-invariant logistic 

regression model fitted to the data collected from 1st January 2009 to 31st December 2011. We applied 

the sample size calculation by Riley et al24 to ensure adequate sample size. The second was a yearly 

updated logistic regression model. This was similar to the first model and used the data between 1st 

January 2009 and 31st December 2011 to develop the model but was then subsequently recalibrated 

at the start of each year96. This was chosen as it represents how some models in clinical practice, for 

example QRISK42, are currently updated. The third model was a Bayesian time-variant model with 

continual updating48. The model was updated at each new observation and we derived the forgetting 

factor as described in chapter 4 and chose to use the size of the development data as the effective 

window size, which resulted in a forgetting factor of 0.9997. This was chosen to ensure that the 

dynamic model weighted individuals over time such that the sample size was comparable to the time-

invariant logistic model. Finally, the fourth model was a time-variant logistic model with varying 

coefficients developed using the data from 1st January 2009 to 31st December 2011. Only the intercept 

term was dependent on time and the functional form was assumed to be linear. This was chosen as it 

is the simplest varying coefficient model and chapter 4 showed no improvement when further 

allowing the other coefficients to be dependent on time. Also, due to the amount of variables in the 

model, if we modelled each of the coefficients as functions of time this would require at least twice 

the sample size, meaning we would require a larger sample than was available between 1st January 

2009 and 31st December 2011. 

The models were then validated in the data collected from 1st January 2012 to 30th June 2019. For 

each model we calculated the calibration-in-the-large (CITL), calibration slope, discrimination (C-

statistic) and the observed-expected (OE) ratio for each year seperatly. Prequential testing86 was used 

to validate the continuously updated Bayesian dynamic model as described in chapter 4. Each 

validation measure was calculated for each year of data in the validation data. Chapter 4 showed that 

the variation in predictive performance varied between models. Therefore, we performed the 

Bartletts test to test for variation in performance over time. In addition to this, we computed each 

performance measure on the data between from 1st January 2012 and 30th June 2019 to quantify each 

model’s overall performance in the data. All analyses were performed using R (version 3.6.2) and the 

dynamic models were fitted using functions adapted from the dma package49. 

5.4 Results 
The final data comprised of 10,770 individuals, 3021 between 1st January 2009 to 31st December 2011, 

and 7749 between 1st January 2012 to 30th June 2019, and a total of 413 (3.83%) patients died 

following surgery (Table 5.1). A higher proportion of patients had experienced a myocardial infarction 

within 90 days prior to surgery in the validation data than the development data, 26.0% vs 17.1%. 

Between 1st January 2009 and 31st December 2011 3% of patients died prior to discharge compared 

to 4.1% between 1st January 2012 and 30th June 2019. 
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Table 5.1 - Baseline data in the development data, from 1st January 2009 to 31st December 2011, and the 
validation data, from 1st January 2012 to 30th June 2019. 

Variable Development data Validation data  
n = 3021 n = 7749 

Age* 65.8 (11.7) 65.2 (12.2) 

Male 2146 (71%) 5629 (72.6%) 

Diabetes 529 (17.5%) 1762 (22.7%) 

History of Pulmonary Disease 428 (14.2%) 1122 (14.5%) 

History of Neurological Dysfunction 101 (3.3%) 236 (3%) 

Angina 82 (2.7%) 296 (3.8%) 

Extracardiac arteriopathy 358 (11.9%) 759 (9.8%) 

Previous surgery 122 (4%) 595 (7.7%) 

Recent MI  518 (17.1%) 2011 (26%) 

Surgery on thoracic aorta 108 (3.6%) 318 (4.1%) 

LV function   
Good 2250 (74.5%) 5017 (64.8%) 

Moderate 562 (18.6%) 1762 (22.7%) 

Poor 199 (6.6%) 516 (6.7%) 

Urgency   
Elective 2133 (70.6%) 4204 (54.3%) 

Emergency 123 (4.1%) 303 (3.9%) 

Urgent 765 (25.3%) 3242 (41.8%) 

Critical preoperative state 140 (4.6%) 792 (10.2%) 

Died 92 (3.0%) 321 (4.1%) 
*mean (standard deviation) 

The minimum sample size required for model development based on 17 candidate predictors, an 

outcome prevalence of 3.8 and r-squared of 0.056 was 2647. This r-squared was chosen as it is 

approximately a fifth the maximum possible r-squared as defined by equation 23 in Riley et al24. 3021 

individuals were observed in data between 2009-2011, showing that the minimum required sample 

size was achieved.  

The coefficients for the logistic regression and varying coefficient model can be found in 

supplementary table S5.1 and the coefficients for each updated version of the yearly updated logistic 

model can be found in supplementary table S5.2. A subset of the Bayesian model coefficients are also 

presented in supplementary material (supplementary table S5.3). The Bayesian model is updated with 

every observation, so we present the coefficients on the 1st January each year in the validation data. 

5.4.1 Model performance 

Figure 5.1 displays each of the model’s performances separate for each year of data from 2012 to 

2019. Evidence of variation in calibration and discrimination over time was observed. The bartlett test 

showed a significant difference in variance between models for calibration-in-the-large, p-value < 

0.001. The p-values for the calibration slope, discrimination and observed-expected ratio from the 

Bartlett test of variance were 0.439, 0.072 and <0.001, respectively. Hence, there was no evidence of 

a difference in variance for the yearly calibration slope measure. The Bayesian model calibration-in-

the-large, calibration slope and observed-expected ratio remained stable over time and the 
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confidence interval for the calibration-in-the-large and observed-expected ratio includes 0 and 1, 

respectively, at all times (Figure 5.1). A reduction in the observed-expected ratio was observed in 2014 

for the logistic model and varying coefficient model but the Bayesian and yearly updated logistic model 

retained good performance. The Bayesian model discrimination increases over time, except for 2019 

where all four models discrimination estimates are approximately 0.7. The Bayesian model 

discrimination increases from 0.72 and 0.68 in 2012 and 2013, respectively, to 0.80 and 0.84 in 2017 

and 2018. In comparison, the other model’s discrimination remained between 0.67 and 0.75 in 2017 

and 2018. There is evidence that the logistic model was miscalibrated in 2014 and the yearly updated 

logistic model was miscalibrated in 2015 as the confidence intervals for the calibration-in the-large do 

not include 0 (Figure 5.1). The calibration-in-the-large confidence interval for the varying coefficient 

model only includes 0 in 2019.  

Figure 5.1 - Yearly performance measure for each model between 2012 and 2019 

Table 5.2 displays each models performance values, including 95% confidence intervals (CIs), when 

validating using all of the validation data from 1st January 2012 to 30th June 2019. The varying 

coefficient model consistently had the worst performance for all validation measures. The confidence 

intervals of the calibration-in-the large, calibration slope and observed-expected ratio did not include 

0, 1 and 1, respectively. The logistic model observed-expected ratio was 0.810 (95% CI: 0.694, 0.935) 

and was therefore miscalibrated as the confidence intervals did not include 1. However, the Bayesian 

model and yearly updated logistic model were well calibrated over the validation data and had 

observed-expected ratios of 1.016 (95% CI: 0.904, 1.134) and 1.054 (95% CI: 0.942, 1.172) over the 

complete validation data, respectively. The Bayesian model had the highest discrimination of the 

models over the complete data with a C-statistic of 0.778 (95% CI: 0.747, 0.809).  
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Table 5.2 – Performance measures and 95% confidence intervals from each model when validating in the 
complete validation data from 1st January 2012 to 30th June 2019. 

Performance measure Model Performance value (95% CI) 

Calibration-in-the-
large 

Logistic model -0.237 (-0.398, -0.083) 

Yearly updated logistic model 0.057 (-0.059, 0.17) 

Bayesian model 0.019 (-0.107, 0.14) 

Varying coefficient model -0.688 (-0.849, -0.535) 

Calibration slope 

Logistic model 0.73 (0.602, 0.856) 

Yearly updated logistic model 0.919 (0.794, 1.044) 

Bayesian model 0.925 (0.837, 1.013) 

Varying coefficient model 0.656 (0.525, 0.785) 

Observed-expected 
ratio 

Logistic model 0.81 (0.694, 0.935) 

Yearly updated logistic model 1.054 (0.942, 1.172) 

Bayesian model 1.016 (0.904, 1.134) 

Varying coefficient model 0.544 (0.466, 0.628) 

Discrimination 

Logistic model 0.709 (0.667, 0.751) 

Yearly updated logistic model 0.694 (0.66, 0.727) 

Bayesian model 0.778 (0.747, 0.809) 

Varying coefficient model 0.686 (0.642, 0.73) 

5.5 Discussion 
In this study we have developed models using four different modelling approaches: logistic regression, 

yearly updating logistic regression, Bayesian updating and varying coefficient models, and compared 

the predictive performance of the approaches. Over the complete validation data, the Bayesian model 

had the best predictive performance for calibration and discrimination, with a calibration-in-the-large 

of 0.019 (95% CI: -0.107, 0.14) and a C-statistic of 0.778 (95% CI: 0.747, 0.809). The Bayesian model 

provided the most stable yearly estimates of calibration-in-the-large and, on average, achieved the 

best discrimination, likely due to the improvement in discrimination between 2015 and 2018. The 

yearly updated logistic model was also well calibrated over the entire validation data and had a better 

calibration-in-the-large than the time-invariant logistic model, 0.057 (95% CI: -0.059, 0.17) vs -0.237 

(95% CI: -0.398, -0.083). However, the yearly updated logistic model discrimination was worse than 

the time-invariant logistic model with a C-statistic of 0.694 (95% CI: 0.66, 0.727) vs 0.709 (95% CI: 

0.667, 0.751). The varying coefficient model was the worst performing model with the lowest C-

statistic of 0.686 (95% CI: 0.642, 0.73) and a calibration-in-the-large value of -0.688 (95% CI: -0.849, -

0.535). Little difference was observed between the Bayesian and yearly updating logistic model for 

the calibration measures, calibration-in-the-large, calibration slope and observed-expected ratio. The 

Bayesian and yearly updating logistic model consistently outperformed the time-invariant logistic 

model and varying coefficient model with respect to calibration but the Bayesian model outperformed 

all models in discrimination 

5.5.1 Implications for practice and research 

Our work supports the idea that accounting for temporal changes in data improve model 

performance, but the more flexible and complex modelling approaches may not always be required 

to ensure models remain calibrated over time. Recalibration is easier to undertake and requires less 

infrastructure than Bayesian modelling, for example, it does not require continuous data streams. If 
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there is sufficient infrastructure in place, then the results suggest Bayesian modelling should be used 

for clinical prediction modelling but if the infrastructure is not available then recalibration is sufficient. 

While recalibration through periodic updating was shown to be sufficient here, there is no guarantee 

that this will be true for all prediction models. Prediction models should continuously be assessed 

when they are used in clinical practice to ensure they remain safe and accurate. For this to be achieved 

a suitable infrastructure need to be in place that allows for regular monitoring of CPMs87,90. Hence, 

there should be further development of the infrastructure which will enable implementation and 

monitoring of prediction models. This will also enable implementation of Bayesian and other more 

complex models to be implemented across healthcare.  

5.5.2 Previous work 

Chapter 4 showed that varying coefficient models outperformed Bayesian updating models and time-

invariant regression models in a simulation study. However, little difference in model performance 

was found when applying the modelling approaches to a clinical data set, except where they showed 

the Bayesian model performance was more stable over time. Our results support the finding of less 

variability in model performance in the Bayesian model. However, the varying coefficient model 

performance was worse than the time-invariant logistic model and the Bayesian and yearly updating 

models were preferred in this study. Hickey et al47 also applied Bayesian modelling to a cardiac data 

set and compared the performance to a time-invariant model. Sample size was not considered when 

choosing a forgetting factor. Instead, five choices of forgetting were arbitrarily chosen, and they 

concluded a forgetting factor of 0.9 was sufficient to yield a smooth model fit. They also compare the 

model coefficients over time but did not perform model validation and noted the extra complexity of 

doing this in a dynamic framework. Our study considers sample size and we ensured adequate sample 

size based upon the criteria outlined by Riley et al24. We have also validated each model using 

prequential validation86. Su et al57 and Siregar et al56 also compare model updating methods, including 

Bayesian model updating, to time-invariant model’s. Su et el57 did not find a single method to 

outperform another but Siregar found model updating to be preferred over time-invariant models. 

However, neither study consider varying coefficient models and other than the study by Jenkins et al 

(chapter 4) this is the only other study to compare Bayesian updating, varying coefficient and time-

invariant logistic models for use in healthcare. 

5.5.3 Strengths and limitations 

Our study has several strengths: 1) we had a large real-world data set currently used to inform clinical 

decisions and closely represent development and validation of the modelling methods in practice; 2) 

we compare the model performances each year and over the complete validation data where most 

studies only consider the latter. 

We acknowledge some limitations of our work: 1) the cohort consists of data from a single hospital 

and this could result in selection bias. We only had access to data from a single hospital and the study 

was designed to compare methods rather than develop generalisable models. However, care needs 

to be taken when interpreting results as it is unclear the effect this could have on generalisability of 

findings; 2) although we consider a forgetting factor for the Bayesian model, this might not be the 

optimum choice. However, we use a novel approach to determine the forgetting factor that meets 

sample size requirements and increasing forgetting closer to 1 would result in performance closer to 

the GLM model by definition. Further methodological work is needed to optimise models with respect 
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to forgetting and 3) we choose to include the variables included in EuroSCORE rather than derive 

models and perform model selection in our data. The models are therefore not likely to be the 

optimum model for each method. However, we did this to ensure the models were comparable and 

closely represent an existing CPM used in clinical practice. 

5.6 Conclusion 
Not considering temporal changes in data when developing a clinical prediction model can lead to 

suboptimal performance. We found Bayesian updating models to be the best performing model 

overall, especially with respect to discrimination, but the less complex periodic model recalibration 

method also outperformed a time-invariant logistic model. Time-variant models should be developed 

for use in healthcare but the infrastructure needs to be available to implement the more complex 

methods into systems.  
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5.8 Supplementary material  
Supplementary Table S5.1 - Model coefficients for the logistic regression and varying coefficient models 

 
Logistic 

regression model 
Varying 

coefficient model 

Intercept -7.292 -7.943 

Age 0.042 0.042 

Sex (Male) 0.218 0.339 

Diabetes -0.262 -0.869 

History of Pulmonary Disease 0.221 0.339 

Neurological Dysfunction 0.563 0.630 

Critical preoperative state 0.663 0.128 

Angina -1.381 -0.982 

Extracardiac arteriopathy 0.729 0.874 

Previous surgery 0.904 1.343 

Extracardiac arteriopathy 0.690 0.494 

LV function (Moderate) 0.180 0.261 

LV function (Poor) 0.254 0.690 

MI < 90 days before surgery -0.122 -0.157 

Urgency (Emergency) 2.582 2.108 

Urgency (Urgent) 0.905 0.857 

Surgery on thoracic aorta 1.051 1.155 

 

Supplementary Table S5.2 - Model coefficients for each version for the yearly updated logistic regression 
model. The column 2013 represents the model updated using data from 1st January 2012 to 31st December 

2012 and was applied to all patients from 1st January 2013 to 31st Dec 

 
2012 2013 2014 2015 2016 2017 2018 2019 

Intercept -7.292 -6.681 -7.361 -8.133 -7.069 -7.966 -7.739 -7.149 

Age 0.042 0.037 -0.237 -0.302 -0.235 -0.292 -0.283 -0.261 

Sex (Male) 0.218 0.193 -0.058 -0.074 -0.057 -0.071 -0.069 -0.064 

Diabetes -0.262 -0.231 -0.546 -0.696 -0.541 -0.672 -0.652 -0.603 

History of Pulmonary Disease 0.221 0.195 -0.055 -0.070 -0.054 -0.067 -0.065 -0.061 

Neurological Dysfunction 0.563 0.497 0.293 0.374 0.291 0.361 0.350 0.324 

Critical preoperative state 0.663 0.585 0.394 0.503 0.391 0.485 0.471 0.435 

Angina -1.381 -1.220 -1.685 -2.149 -1.671 -2.075 -2.013 -1.861 

Extracardiac arteriopathy 0.729 0.644 0.462 0.590 0.458 0.569 0.552 0.510 

Previous surgery 0.904 0.798 0.640 0.816 0.635 0.788 0.764 0.707 

Extracardiac arteriopathy 0.690 0.609 0.422 0.538 0.418 0.520 0.504 0.466 

LV function (Moderate) 0.180 0.159 -0.096 -0.123 -0.096 -0.119 -0.115 -0.106 

LV function (Poor) 0.254 0.224 -0.022 -0.028 -0.022 -0.027 -0.026 -0.024 

MI < 90 days before surgery -0.122 -0.107 -0.404 -0.515 -0.400 -0.497 -0.482 -0.446 

Urgency (Emergency) 2.582 2.2800 2.347 2.993 2.327 2.890 2.803 2.592 

Urgency (Urgent) 0.905 0.799 0.641 0.818 0.636 0.790 0.766 0.708 

Surgery on thoracic aorta 1.051 0.928 0.789 1.006 0.782 0.972 0.942 0.871 
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Supplementary Table S5.3 – Bayesian updating model coefficients on 1st January each year in the validation 
data 

 
2012 2013 2014 2015 2016 2017 2018 2019 

Intercept -7.292 -5.827 -5.582 -4.894 -5.041 -4.92 -5.084 -5.183 

Age 0.042 0.024 0.021 0.014 0.016 0.012 0.017 0.019 

Sex (Male) 0.218 0.571 0.224 0.152 0.024 0.432 0.465 0.623 

Diabetes -0.262 -0.14 -0.057 -0.322 -0.132 -0.164 -0.265 -0.08 

History of Pulmonary Disease 0.221 0.148 0.129 -0.031 -0.1 0.057 -0.036 0.407 

Neurological Dysfunction 0.563 0.194 0.347 0.403 0.236 0.165 0.102 -0.06 

Critical preoperative state 0.663 1.19 1.711 1.865 2.147 2.45 2.343 2.446 

Angina -1.381 -1.9 0.078 -0.155 0.035 0.154 0.29 0.255 

Extracardiac arteriopathy 0.729 0.632 0.484 0.242 0.116 0.11 0.211 0.51 

Previous surgery 0.904 0.566 0.505 0.183 0.725 0.754 0.874 0.824 

Extracardiac arteriopathy 0.69 1.07 0.643 0.441 0.381 0.228 -0.115 -0.083 

LV function (Moderate) 0.18 0.105 0.28 0.103 0.131 0.01 0.175 -0.018 

LV function (Poor) 0.254 0.47 0.502 0.372 0.362 0.225 0.341 0.174 

MI < 90 days before surgery -0.122 -0.132 0.018 -0.3 -0.317 -0.431 -0.244 -0.226 

Urgency (Emergency) 2.582 2.024 1.392 1.337 1.185 0.679 0.573 0.393 

Urgency (Urgent) 0.905 0.55 0.17 0.242 0.238 -0.036 -0.062 -0.066 

Surgery on thoracic aorta 1.051 0.853 0.734 0.87 0.625 0.725 0.533 0.406 

 

  



 

104 
 

Chapter 6 Use of statistical process control to 
monitor the performance of a clinical prediction 
model  

David A Jenkins, Glen P Martin, Niels Peek and Matthew Sperrin 

In preparation for submission 

6.1 Abstract 

6.1.1 Background 

Clinical prediction models (CPMs) are useful tools to diagnose current outcomes or predict future 

outcomes in individuals, based on what is known about that individual and their environment. Once 

developed, a CPM will remain fixed, meaning that its coefficients are time invariant post development. 

CPM updating methods, such as the logistic recalibration framework, are well established but a key 

challenge is that it is unclear when a model should be updated; as such, this is currently done at 

arbitrary time points. However, there is opportunity to address this problem because infrastructure 

now exist to collect data in real-time and this provides opportunity to monitor a CPM and determine 

when it needs updating. 

6.1.2 Methods 

We analytically describe the use of statistical process control (SPC) to continuously monitor a CPM’s 

predictive performance, specifically the sum of the observed minus expected, and generate an alert 

when the performance reaches some predefined threshold (control limit). We performed a simulation 

study based on an existing CPM for 30-day mortality after percutaneous coronary intervention. We 

used the observed covariate data from a real-world dataset, but simulated binary outcomes according 

to a prespecified data generating model. We generated simulated outcomes under varying degrees of 

miscalibration-in-the-large by adding some constant, between 0 and 2, to the model intercept. SPC 

was then used to monitor the model performance, and this was repeated 1000 times, using 

bootstrapping, for each miscalibration scenario. The time of an alert, generated from using 3 and 4 

standard deviations as the control limits, was recorded for each iteration and degree of miscalibration 

before being averaged across iterations. 

6.1.3 Results 

When the intercept of the data generating model was miscalibrated by 0.2 the median and 95% 

quantile for the 3 and 4SD control limits across the 1000 iterations were 7510 (294 – 27136) and 16022 

(1863 – 42160), respectively. Under the scenario when the data generating model was miscalibrated-

in-the-large by 2, the median and 95% quantile for the 3 and 4SD control limits across the 1000 

iterations were 246 (175 – 320) and 246 (175 – 321), respectively 

6.1.4 Conclusion 

Arbitrary updating is suboptimal and continual monitoring of CPMs is needed to ensure decisions are 

not being made based upon a miscalibrated model. SPC is a solution and can provide users an alert 

when miscalibration is detected. 
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6.2 Background 
Clinical prediction models (CPMs) are tools that estimate the risk of an outcome given a set of patient 

characteristics that are available at the time of prediction25. Once deployed into practice, the model 

coefficients usually remain fixed. However, healthcare and patient populations are constantly 

evolving. As a result, predictions based on these models often become less accurate over time. 

Specifically, agreement between the observed and predicted event rates (i.e. calibration) may worsen 

over time33. This is known as calibration drift and is one of the major pitfalls with CPMs34,90. 

While common practice to address this is to develop another CPM de novo, model updating35,36,71,97 

methods are now well established and preferable because they do not discard historical 

data/information and previous research efforts38. Nonetheless, this updating is still relatively 

uncommon, often occurs a substantial time after model development and is often undertaken at 

arbitrary time points90. For example, EuroSCORE II44 was developed 13 years after the original model 

in 2012, and we are still yet to see another updated version or investigation to determine if the 

updated EuroSCORE II has suffered from calibration drift. The problem with this approach is that the 

updates are chosen at arbitrary points in time or performed following a study showing the model has 

become miscalibrated, which means that incorrect decisions may have already been made as a result 

of the mis-calibrated model.  

Conversely, a model may not need updating and could retain good performance over time. Hence, 

rather than updating at fixed time points, updating should be data driven so when there are changes 

in the system updating occurs more frequently, while relatively stable systems (or time periods) can 

afford less regular updates.  

Although model updating methods are established, there remains limited literature on when to 

update a prediction model. Recent articles discuss the notion of model surveillance, whereby models 

are monitored continuously as they continue to make predictions on new data. Jenkins et al.90 

(Chapter 3) proposed the use of prequential testing with a feedback loop to monitor model 

performance in practice and determine when to update a model. However, this has yet to explored 

beyond the postulation of the idea. One possible solution to implement this idea would be through 

the use of statistical process control (SPC)98. SPC is a method that monitors and controls some process 

to ensure quality and efficiency and could be used to ensure a model is accurate and efficient (only 

updating when necessary). The method attempts to distinguish two types of variation: common cause 

variation and special cause variation. The latter indicates the process is out of statistical control while 

the former is intrinsic of the process being monitored and will always be present. Hence, SPC could 

monitor the performance of a prediction model and the feedback loop would be an alert to a user 

notifying them it has detected miscalibration. The user can then act upon this information. 

This study aims to investigate the potential of SPC in clinical prediction modelling as a proof-of-

concept. This will be achieved through the following two objectives. The first is to analytically describe 

the SPC method to monitor the performance of a CPM through time (section 6.3). The second is to 

investigate the behaviour of the SPC against known behaviour in terms of time-to-alert. We will do 

this through a simulation study comparing the amount of time taken to trigger an alert when a model 

is miscalibrated and the number of false positives when there is no miscalibration (section 6.4). 
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6.3 SPC derivation 
For the SPC method to work in real-time, the SPC metric needs to be able to work on each individual 

new observation. Hence, avoiding metrics that rely on batches of data, for example, calibration-in-

the-large, is desirable. We therefore propose to use SPC to monitor the sum of the observed minus 

expected.  

Let 0𝑖 be the observed outcome for an individual i=(1,…,n) and 𝜋𝑖 be the predicted probability for a 

binary outcome 𝑌𝑖, obtained from a prediction model we are monitoring, for individual i=(1,…,n) given 

a set of predictors 𝑋𝑖  for each individual. It follows that for each individual, 0𝑖 is a Bernoulli random 

variable, such that 𝐸[𝑂𝑖] = 𝑝𝑖  and 𝜋𝑖 is a constant. Suppose we want to monitor the sum of the 

observed minus expected,  

∑ 0𝑖 − 𝜋𝑖

𝑛

𝑖=1

, 𝑤ℎ𝑒𝑟𝑒 𝜋𝑖 = 𝑃(𝑌𝑖 = 1 | 𝑋𝑖)  

As we observe a new individual, j, we can derive the sum of the observed minus expected as, 

∑ 0𝑖 − 𝜋𝑖

𝑗

𝑖=1

= (0𝑗 − 𝜋𝑗) +  ∑(0𝑖 − 𝜋𝑖)

𝑗−1

𝑖=1

 𝑤ℎ𝑒𝑟𝑒 0 < 𝑗 < 𝑛 

We continue to do this for each individual we observe over time, thus continuously monitoring 

performance of a prediction model as new data become available. As we do this, the SPC checks if the 

performance measure is within some predefined control limit. Typically, this is chosen to be ±3 

standard deviations away from the process mean. If the performance measure lies outside of this 

control limit, then the user is alerted, otherwise the SPC will do nothing and continue to monitor new 

data as they arrive. 

For each individual 𝑖, the expectation of the observed minus expected equals zero, 𝐸[0𝑖 − 𝜋𝑖] = 0, 

under the hypothesis that the model is calibrated-in-the-large. Hence, the process mean, for the sum 

of the observed minus expected, is 0. Also, 𝑉𝑎𝑟[0𝑖 − 𝜋𝑖] =  𝑉𝑎𝑟[0𝑖] as 𝜋𝑖 is a constant. As 0𝑖 is a 

Bernoulli random variable, such that 𝐸[𝑂𝑖] = 𝑝𝑖, it follows that 𝑉𝑎𝑟[0𝑖] = 𝑝𝑖(1 − 𝑝𝑖). Under the null 

hypothesis that the prediction model we are monitoring in calibrated-in-the-large, 𝑝𝑖 = 𝜋𝑖. Therefore, 

the variance for the 0𝑖 − 𝜋𝑖 for each individual 𝑖 is 𝜋𝑖(1 − 𝜋𝑖). We assume each observation is 

independent conditional on 𝑝𝑖, and therefore the covariances are zero. Hence, the variance is additive 

and it follows that, 

𝑉𝑎𝑟 (∑ 0𝑖 − 𝜋𝑖

𝑛

𝑖=1

) = ∑ 𝜋𝑖

𝑛

𝑖=1

(1 − 𝜋𝑖) 

Using 3 standard deviations as the control limit to trigger an alert we can calculate control limits for 

each observation 𝑖 as 0 ± 3√∑ 𝜋𝑖
𝑛
𝑖=1 (1 − 𝜋𝑖). Note that the control limit is therefore changing as we 

observe new data. 

In addition to this, we propose a burn in period where an alert cannot be triggered. This is to stop 

unnecessary early alerts occurring and reduce the type I error rate. It is well known that the sum of a 

Bernoulli random variable with parameter p is binomial distributed with parameters n and p99. A 
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common rule of thumb is that the normal approximation works well for a binomial approximation 

when 𝑛𝑝 > 5 and 𝑛(1 − 𝑝) > 5. Hence, we suggest waiting until the expected number of events, 

∑ 𝜋𝑖
𝑛
𝑖=1 , exceeds 5 before an alert is allowed to occur as the sum of observed minus expected will be 

approximately normal. Finally, control limits will increase with each new observation and over time 

could result in miscalibration not being detected, particularly if the model performance measure 

remains stable for some period of time. Hence, if there is a change in performance it would not be 

detected for some time, or at all, due to the stability of the model in the past. When the sum of 

observed minus expected is zero, the model is well calibrated on average for all individuals in the 

monitoring data. Therefore, we suggest resetting the control limits, such that you forget all past data 

whenever the sum of observed minus expected crosses zero (sign changes). This will result in the 

expected number of events being below 5 and prevent an alert occurring for some time after the reset. 

To overcome this, we calculate control limits based upon all individuals since a previous reset and only 

using individuals after the reset. Until the expected number of events exceeds 5 after the reset, we 

continue to use the control limits that use data prior to the reset. 

6.4 Simulation 

6.4.1 Simulation setup 

We followed the approach taken by Koetsier et al100, where we sampled covariate data from a real 

world data set and generate outcomes through Monte Carlo simulation. The data set of interest was 

the British Cardiovascular Intervention Society (BCIS) registry which collects data on percutaneous 

coronary interventions (PCIs) undertaken across the UK, as described in chapter 4. There exists a 

model to predict 30-day mortality following PCI, which was developed in the BCIS data, that we used 

to determine covariate values and baseline risk, prior to adding any miscalibration, to ensure our 

simulation represents plausible real-world scenarios17. This model was used to determine the 

predicted risks and we simulated outcomes with varying degrees of miscalibration across simulations. 

For each simulation we recorded when the SPC approach generated an alert. 

Data were randomly sampled with replacement from the PCI dataset and given an observation time 

𝑡 = 1, … , 𝑛, meaning we sequentially indexed individuals by the order of sampling. In this study 

n=1,088,567. The existing BCIS model17 was used to generate the linear predictor for each observation 

at a given time 𝑡, denoted as 𝐿𝑃𝑡. The linear predictor was then used as the predictor to which 

synthetic outcomes were generated using Bernoulli trials. We assume that each observation observed 

at time 𝑡 had a binary outcome, 𝑦𝑡, which is mortality observed 30-days after baseline, which we index 

by t for convenience. We generated these outcomes such that: 

𝑔(𝐸(𝑦𝑡)) =  𝛽0 + 𝛽1𝐿𝑃𝑡  

Where g is the logit link, 𝛽0 is the intercept and 𝛽1 is the regression coefficient for the predictor, LP.  

We fixed 𝛽1 = 1 across all simulation scenarios and varied 𝛽0 across simulation scenarios. The value 

of 𝛽0 represents the degree of miscalibration-in-the-large, corresponding to a change in the 

prevalence of the outcome between the data the model was developed and validated on, and we 

chose to vary this across simulations. The coefficients were chosen to be fixed, and not time 

dependent, for simplicity, making it easier to interpret results. This settup means that a model is either 

miscalibrated-in-the-large (if 𝛽0 ≠ 0) or is well calibrated (if 𝛽0 = 0), and any such miscalibration 

occurs immediately at t=1. Therefore, our primary focus is on the time-until-alert, defined as the time 

difference between when an alert is triggered and time zero (first observation). Across simulations we 
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chose 𝛽0 to vary from 0 to 2 in increments of 0.1. All analysis was conducted in R101 (version 3.6.2) and 

code can be found on Github (https://github.com/David-A-Jenkins/Thesis). 

6.4.2 Simulation results 

The average linear predictor in the raw BCIS data was -4.8, corresponding to an average risk of 0.8%. 

Therefore, when 𝛽0 = 2, the average risk was 5.7%. In the original BCIS data there were 1,088,567 

observations in the data with a median number of observations per year and per month of 88,179 and 

7,348, respectively.  

Figure 6.1 displays the median observation number/time and 95% quantile (shaded region) of when 

the alerts occurred across the 1000 simulations for each level of miscalibration-in-the-large. The figure 

also displays the results using the control limits of 3 and 4 standard deviations (SDs), separately. The 

data used in figure 6.1 is presented in Supplementary table S6.1. The median and 95% quantiles for 

the SPC alert occurred before the time of the final observation in the data for all levels of 

miscalibration except 0.1 and no miscalibration. When there was no miscalibration-in-the-large the 

4SDs control limit SPC provided one alert out of the 1000 iterations compared to 100 of the 1000 

iterations for the 3SDs control limit SPC. We could therefore not obtain median and 95% quantiles for 

the 4SD control limit simulation when there was no miscalibration (𝛽0 = 0), as denoted by the NAs in 

supplementary table S6.1. Only the lower quantile for the 3SD control limit was obtainable when there 

was no miscalibration (𝛽0 = 0). 

The median and 95% quantile for the simulations where miscalibration-in-the-large was above 1.2 

were similar. On average, when miscalibration-in-the-large was below 0.3, the 3SD control limit had a 

wider 95% quantile region and alerted sooner - on average - than the 4SD control limit, but little 

difference was observed in the width of the intervals for large miscalibration-in-the-large. For 

miscalibration-in-the-large of 1.4 of above, the median alert time for both the SPCs, with 3SDs and 

4SDs, were within 6 observations of each other. 

 

https://github.com/David-A-Jenkins/Thesis
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Figure 6.1 - Median and 95% quantile of the observation number an alert was triggered (y-axis) across the 
1000 iterations for each value of miscalibration-in-the-large (x-axis). The left and right plot represent the 

results when the control limit was calculated us 

6.5 Discussion 
In this study we have described an approach to monitor the overall calibration of a CPM by using SPC 

to monitor the sum of observed minus expected and generate an alert when it detects miscalibration. 

We also illustrated the approach in synthetic health data and show the time until an alert for varying 

degrees of miscalibration-in-the-large. When there was no miscalibration-in-the-large the SPC method 

with a 4 standard deviation control limit provided only 1 alert before the end of the dataset out of 

1000 iterations. When miscalibration-in-the-large was high (above 1) the 3 and 4 SD SPC median and 

95% quantiles were below 1000, meaning miscalibration was detected within the first 1000 

observations, which correspond to approximately 5 days in the BCIS data. As miscalibration increased 

to above 1.5, both control limits provided alerts within 400 observations. The 3SD SPC monitoring 

provides alerts earlier than using 4SDs but also provided more alerts when no miscalibration was 

present. Therefore, statistical process control shows promise for monitoring CPMs and alerting users 

of potential miscalibration, providing a data driven approach in place of arbitrary updating, but more 

research is needed to define the control limits.  

In this study, we use SPC to provide an alert to a user and we are not suggesting SPC alone should be 

used to decide on when to update. Rather the method should be used to alert a user of possible 

miscalibration which will then need to be assessed and a decision made. It is important to note that 

different clinical areas, or uses, of a model in healthcare might have different levels of miscalibration 

they are willing to accept and as seen in the simulation, an alert can still be triggered when no 

calibration is present. Therefore, there needs to be investigation following an alert, that should include 

clinical input, and this could result in the decision to update the model, do nothing or monitor the 

model for longer. 
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In the simulation, there was little difference in using 3 or 4 SDs to define the control limits when 

miscalibration-in-the-large was high. The simulation results show a plateau in the time to alert for 

miscalibration-in-the-large above 1. This is likely due to the burn in period preventing alerts occurring 

earlier. Once the expectation is above 5 a trigger is occurring immediately as the sum of observed 

minus expected has been outside the control limit for some period of time already. This burn in 

prevents unnecessary alerts occurring early but appears to lead to the convergence of the time of an 

alert from the point of miscalibration above 1 and could result in a delay in an alert of miscalibration. 

Under lower levels of miscalibration-in-the-large (less than 0.3), or no miscalibration, the 3SD control 

limit provided wider confidence intervals. Also, on average, the 3SD control limit alerted users earlier 

than using 4SDs. This could cause alert fatigue and there might not be enough resources available to 

keep checking the alerts. Alternatively, increasing the control limit will result in a delay in alerts when 

a model is miscalibrated-in-the-large. Therefore, care needs to be taken when choosing control limits 

to ensure alerts are meaningful and can be managed.  

6.5.1 Previous literature 

SPC has been well established in various healthcare fields, for example, cardiac surgery102–104. Albert 

et al102 used a control chart known as variable life adjusted display (VLAD) for benchmarking and to 

detect unfavourable trend. They use the EuroSCORE model43 as the predicted outcomes and use it to 

monitor net lives saved for individual surgeons. This monitors individual’s surgeon and assumes the 

model is accurate. This is a typical use of SPC in the literature and limited research has used it to 

monitor the prediction models. 

Minnie et al105 used SPC to investigate the discrimination of a model that predicts mortality. They split 

the data into 30 equally sized subsets, computed the c-statistic for each subgroup and used SPC to 

assess if the model is stable. They used two control limits and if the measure fell outside both control 

limits they considered this to be ‘critical’. If the C-statistic was between the two control limits they 

called this the ‘warning’ zone. Other studies using SPC also consider two control limits but these are 

arbitrarily chosen and it is unclear of what to do when in either of these zones. Although Minnie et 

al105 use SPC, they require batches of data and monitoring therefore occurs at arbitrary time points 

compared to our study that continuously monitors performance. In addition to this, they use what is 

known as the PreControl chart where the zones are prespecified and a fixed width is used. This is often 

seen in time-series analysis for monitoring forecast error and detecting change points. SPC methods 

in time-series to detect change points is well established106 and it is common to take a set of 

observations where you assume the process is stable and use this to calculate the control limits/zones. 

However, in our study we calculate the control limit for every observation that enables the control 

limit to vary over time. Fixed width zones are not reasonable because the variance of the cumulative 

sum increases with sample size107.  

Another recent article108 proposed a method for the detection of calibration drift by deriving dynamic 

calibration curves using adaptive sliding windows. Davis et al108 implement their approach in a 

simulation study and apply the method to a real-world data set. They test for a change in calibration 

by comparing a recent window with a previous window and do this continuously as new data arrive, 

whereas we are testing for miscalibration as new data arrive. It is plausible that a model may slowly 

drift and quickly revert back to being recalibrated. In this scenario the Davis approach could trigger an 

update when in fact it is not needed because it is looking for change in calibration rather than deciding 
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to update based upon performance directly. Future work should consider comparing Davis’ approach 

with ours and investigate if the methods differ in when they alert the user that a model update may 

be needed. 

6.5.2 Study limitations 

This study has several limitations. Recently, external validation sample size calculations109 have been 

proposed for CPMs and this was not used. The calculation would almost always result in a longer burn-

in period before an alert could be triggered but would ensure a more precise estimate of calibration 

is used to determine if an alert is triggered. The SPC approach is not intended to provide precise 

estimates of performance and is designed to detect potential miscalibration as soon as possible, hence 

we chose to use the expectation of 5. Another limitation is that we only consider observed minus 

expected. In addition to this, we only consider a limited number of simulated scenarios and all 

scenarios are miscalibrated at the intercept. Although this simulates a change in the prevalence of an 

outcome, the model could be miscalibrated in other ways. We also chose to simulate a step change in 

model intercept at time zero. In practice a model may become miscalibrated gradually over time. We 

chose this as it means we know the time an alert should occur and it is uncertain when an alert should 

occur if miscalibration is gradual. Finally, the simulation had a limited number of observations and the 

SPC did not always trigger an alert. If an alert was not triggered it could have been because there were 

not enough observations. However, this was a large data set that included many years of data and if 

an alert was not triggered then it considered the model to be calibrated for more than 1 million 

patients which in this setting is about 11 years. 

6.5.3 Future work 

Other performance measures, beyond observed minus expected, are also important96 when 

evaluating a clinical prediction model, and depending on the application and clinical setting users may 

want to monitor these other performance measure, for example, calibration slope or discrimination. 

Also, calibration drift is often gradual, rather than a sudden step change33, and does not always occur 

at the model intercept. Therefore, future work should consider investigating the behaviour of the SPC 

approach under other miscalibration scenarios and extending the SPC approach to include monitoring 

of other performance measures. 

6.6 Conclusion 
Statistical process control offers a way to continuously monitor and test for calibration drift in clinical 

prediction models. The approach is able to detect miscalibration in a timely manner and can be used 

to inform users that an update may be unnecessary. However, further work is needed to determine 

the control limit that should be used and to extend the approach to include monitoring of additional 

performance measures.   
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6.8 Supplementary material 
Supplementary Table S6.1 - Median and 95% quantile for the observation number an alert was triggered 

across the 1000 iterations for each value of miscalibration, split by the statistical process control limits of 3 
and 4 standard deviations 

 
3SDs control limit 4SDs control limit 

Miscalibration Median (95% quantile) Median (95% quantile) 

0 NA* (1006 - NA) NA (NA - NA) 

0.1 31847 (494 - NA) NA (9344 - NA) 

0.2 7510 (294 - 27136) 16022 (1863 - 42160) 

0.3 3216 (267 - 11953) 6789 (665 - 18565) 

0.4 1624 (235 - 6613) 3559 (377 - 9103) 

0.5 990 (229 - 3752) 1959 (279 - 5756) 

0.6 662 (216 - 2445) 1273 (253 - 3538) 

0.7 485 (209 - 1715) 878 (234 - 2500) 

0.8 367 (198 - 1225) 629 (219 - 1887) 

0.9 301 (189 - 969) 474 (215 - 1368) 
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1 275 (186 - 761) 360 (203 - 1041) 

1.1 264 (184 - 597) 303 (195 - 842) 

1.2 258 (182 - 523) 278 (187 - 695) 

1.3 253 (180 - 403) 263 (185 - 571) 

1.4 250 (177 - 358) 256 (180 - 458) 

1.5 249 (177 - 330) 253 (178 - 392) 

1.6 248 (176 - 323) 249 (178 - 340) 

1.7 246 (175 - 321) 248 (176 - 325) 

1.8 246 (175 - 321) 247 (175 - 321) 

1.9 246 (175 - 320) 246 (175 - 321) 

2 246 (175 - 320) 246 (175 - 321) 

*NA in the table represents no alert. 
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Chapter 7 General Discussion 
At the end of each chapter there has been a chapter specific discussion and conclusion and not 

everything that has already been said in those sections will be repeated here. Rather, this chapter 

aims to briefly summarize each chapter and relate the findings of the thesis back to the initial research 

objectives (Section 7.1), and discuss unanswered questions and provide ideas of further work (Section 

7.2). 

7.1 Summary of findings 
A representation of the relationship between the chapters and objectives is given in Figure 7.1 and 

discussed in this section. 

 

Figure 7.1 - Pictorial representation of how the chapters link with the research objectives 

7.1.1 Objective 1 - Perform a literature review to identify existing methods that could 

be used for dynamic predictive modelling 

Chapter 2 of this thesis addresses Objective 1 by identifying methods for dynamic prediction modelling 

through a review of the literature. Eleven papers were included after screening and seven modelling 

methods to address calibration drift were identified. These were split into three categories: discrete 

model updating, Bayesian model updating and varying coefficient modelling. Discrete model 

updating35,36,41,110 uses batches of new data to recalibrate or revise the model and four discrete 

modelling methods were identified. Two Bayesian model updating methods45,48 were also found 

where the information obtained from past data is used as prior information and combined with the 

new data to obtain updated estimates. These methods can down weight historical observations and 

either update with every new data point, in an online learning manner, or with batches of data. Finally, 

the varying coefficient modelling63 approach uses the data up to a given time point to estimate the 

relationship between the predictor and outcome as a function of time. This can be simply including 

time into the model so the intercept is time varying or including interactions and non-linear function 

of time to model more complex data structures. 
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Bayesian model updating has been used for dynamic predictive modelling for healthcare in the past 

but varying coefficient models have yet to be explored for this purpose. The review goes beyond solely 

identifying the methods by describing the methods in detail and the current use of the methods in 

healthcare literature. 

7.1.2 Objective 2 - Determine the methodological challenges related to dynamic 

predictive modelling 

As well as identifying methods for dynamic prediction modelling, Chapter 2 also discusses the 

methodological challenges related to dynamic predictive modelling described in the literature84. 

Methodology for validation has not been established for dynamic clinical prediction models (CPMs) 

and it is unclear how past observations should be dealt with over time when developing CPMs. 

Approaches such as windowing or forgetting have been used but the methodological challenge on 

how to handle past observations most appropriately to improve prediction remains. Chapter 3 further 

highlights both of these challenges and suggests that the current approach to static CPM validation is 

also flawed. Once a model has been validated it does not follow that the model will continue to 

perform well in the future and Chapter 3 highlights the need for a dynamic/continuous validation 

approach. In addition to this, uncertainty on when to update a model was another methodological 

challenge discussed in Chapter 390. It may not be possible, or necessary, to continuously update 

prediction models and instead models should be updated via a data driven process and when needed, 

not at arbitrary time points. Model surveillance and the use of prequential testing was proposed as a 

solution to explore this but the methodological advances have yet to be developed and subsequently 

tested. Furthermore, results from the surveillance will need to be transported back to the model to 

enable the model to learn and ensure the model continually provides accurate predictions. This 

resulted in the suggestion of a system based approach that combines the current CPM methods and 

pipeline with the learning health system to generate a learning prediction system90.  

Together, Chapters 2 and 3 determine the methodological challenges related to dynamic prediction 

modelling and propose a solution, dynamic prediction systems, to overcome many of the challenges. 

However, methodological development is still needed to implement this system-based approach. 

7.1.3 Objective 3 - Apply the identified dynamic modelling methods and compare their 

predictive performance to static CPMs using both real-world and synthetic health 

data. 

Chapter 4 was a simulation study comparing the methods identified in Chapter 2 under different 

scenarios for a binary and continuous response variable. The models fitted were: one frequentist time-

invariant model, four frequentist time-variant models with varying coefficients, and two Bayesian 

time-variant models with continual updating. From the varying coefficient models, two only allowed 

the intercept to depend on time and the other two considered all coefficients as linear functions of 

time. For the Bayesian and both types of varying coefficient models we predicted the outcomes using 

the model at the end of the development data and at the time of each prediction. Calibration and 

discrimination (for the logistic outcome) were calculated for each simulation scenario. Following this, 

Chapter 4 also compared the performance of the modelling approaches in a cardiac data set. 

Chapter 5 was a retrospective cohort study that developed dynamic and non-dynamic CPMs in a 

single-centre cardiac surgery data set and compared the performance of the models from 2012 to 

2019. The models developed were a time-invariant logistic regression model, a yearly updated logistic 
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regression model, a time-variant logistic model with varying coefficients and Bayesian time-variant 

model with continual updating. 

The results discussed in Chapters 4 and 5 have shown the benefit of dynamic, compared to static, 

CPMs in terms of predictive performance. In the simulated data the varying coefficient model had the 

best predictive performance, compared to Bayesian updating and static (time-invariant) regression, 

but Bayesian updating had less variability in predictive performance measures for the logistic 

scenarios. In the real-world data, from both chapters, the Bayesian updating models outperformed 

the varying coefficient models and less variability was observed in predictive performance over time. 

Also, the varying coefficient model was the worst performing model, dynamic or otherwise, in the 

National Adult Cardiac Surgery Audit data. Periodic (e.g. yearly) updating was also considered in the 

real-world data sets and outperformed the varying coefficient model and the static (time-invariant) 

regression models. Periodic updating performed as well as Bayesian modelling over the complete 

validation data but was more variable over time. Overall, accounting for temporal changes in data are 

important and how we do this can impact the performance of our models. Hence, Chapters 4 and 5 

have addressed Objective 3 and compared dynamic modelling methods to static CPMs in synthetic 

(simulated) data and two real-world data sets. 

7.1.4 Objective 4 - Propose a method to address the problem of arbitrary updating and 

investigate the method under different magnitudes of miscalibration in synthetic 

health data. 

The uncertainty of when to update a model was discussed as a methodological challenge in Chapter 

3. The use of statistical process control (SPC) to detect calibration drift and trigger an alert is a possible 

solution to address this challenge. Grigg et al.111 previously discussed the potential of SPC using control 

charts for monitoring in medical contexts following the initial proposal by Pagel112. Chapter 6 outlines 

the statistical process control equations for monitoring the cumulative sum of the expected minus 

observed performance. The chapter builds upon the existing literature by proposing a resetting 

process for the control limits that ensure the control limits do not continue to increase while the 

process being monitored remains stable. Thus, ensuring miscalibration is detected in a timely manner 

following a stable process. Alternatively, to decrease type I error and ensure alerts are not falsely 

occurring at the start of monitoring, a threshold was proposed such that alerts could not occur until a 

given condition was met, the expectation of the process mean for the cumulative sum of the observed 

minus expected must be above 5. Following the novel description of this method a simulation study 

was undertaken to demonstrate the feasibility and accuracy of the proposed approach and investigate 

the time to alert under different magnitudes of miscalibration in synthetic health data. 

Beyond derivation and illustration of the method, the results showed the approach was able to detect 

miscalibration in a timely manner but when the magnitude of the miscalibration was small (or zero) 

there was large variation in drift detection which could result in unnecessary updates. As 

miscalibration increased the time to detection plateaued and similar time-to-alert was observed for 

all values when the model was miscalibrated by a shift in the model intercept by 1 or more. Hence, 

Chapter 6 has achieved Objective 4 and SPC is a promising approach to continuously monitor 

prediction models and provide feedback on when a model may need to be updated. 

 

 



 

123 
 

7.2 Unanswered questions and future work 
Although all of the objectives have been achieved, there are elements that have not fully been 

achieved and there remain some unanswered questions that still require further research. Also, while 

this thesis presents important advances in dynamic prediction modelling for healthcare use, by 

addressing the outlined aims and objectives, several areas warrant further investigation. 

Firstly, the thesis focuses on short term outcomes and as a result we consider logistic and linear 

regression throughout the thesis. However, many prediction models consider long term outcomes, 

for example, QRISK20 predicts 10 year risk of cardiovascular disease. Often these models consider the 

outcome as a time-to-event outcome and are developed using survival analysis. Research on dynamic 

survival analysis is sparse. Where “dynamic survival analysis” is mentioned in the literature it typically 

refers to the problem of handling multiple observations per individual rather than updating over time 

as new individuals are observed113,114. However, Booth et al89 recently proposed an approach to 

update survival prediction models over time but this only updated the baseline hazard and updating 

occurs at arbitrary time points. The method proposed in Chapter 6 for determining when to update a 

model could be used for survival models but further work is needed to consider updating of the linear 

predictor (not just the baseline hazard), and how to deal with delay in outcome measures. Temporal 

changes in the data are not observed until the outcome measure has been recorded and so survival 

models are subject to increased latency. Model updating can only go so far to address this and 

extension of methods, such as extrapolation, are needed.  

Second, while this thesis discussed an approach to choose the forgetting factor for dynamic Bayesian 

CPMs based upon sample size criteria, refinement of this approach is needed to optimise the 

performance of dynamic CPMs. The method discussed simply ensures an adequate sample size and 

does not consider optimisation. Further methodological work is required to optimise this ‘forgetting’ 

element of dynamic prediction. Some key areas of development should include: 1) some parts of the 

model adapting to recent data more quickly: e.g. the intercept may need to adapt quicker than 

predictor-outcome relationships (e.g., to ensure that the overall event rate is estimated correctly); 

and 2) the ‘forgetting’ may need to be itself dynamic – e.g. forgetting historical data more quickly 

when the healthcare system is changing rapidly, such as in a pandemic. In addition to Bayesian models, 

‘forgetting’ needs further consideration in all model updating methods. Different methods exist to 

update a model and they all handle past data differently, for example, model recalibration uses only 

the new data available to update, while revision will use a window of data and this could be all of the 

data available, including the data originally used to develop the original model, or only the most recent 

data, say a month. Vergouwe et al71 developed a closed test procedure to determine which discrete 

updating method to use and this is linked to dealing with past data, but there is no research on how 

to weight individuals over time to improve the models. One of the main reasons to update a model is 

calibration drift. So, if we know there are likely changes over time then why do we consider all data 

equal in model development, or at best, only consider a subset of data where we weight all data points 

equally? Further research should consider how to weight observations to optimise CPMs. 

Finally, while Chapter 6 showed promise in a novel method to provide an alert that a CPM may need 

to be updated, this is the first study investigating the method. Rarely, if at all, are new methods 

accepted and adopted by stakeholders without multiple studies, considering different scenarios, to 

instil trust in the method. Investigation of the method in real-word data, and variety of clinical areas, 

is therefore needed. Recently, Davis et al.108 proposed a method for the detection of calibration drift 
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by deriving dynamic calibration curves using adaptive sliding windows. They implement their approach 

in a simulation study and apply the method to a real-world data set, testing for miscalibration by 

comparing a recent window with a previous window and do this continuously as new data arrive. It is 

therefore worth comparing the Davis approach with the proposed method in Chapter 6, for example, 

through a simulation study to compare the time both methods detect calibration drift. In addition to 

this, comparison of both methods impact on the long-term predictive performance of models would 

be worthwhile to investigate. However, before this is to be achieved, further consideration of the 

method proposed in Chapter 6 is needed. The proposed method currently only monitors the observed-

expected value but CPM performance is typically evaluated using discrimination and calibration. 

Although this approach is to monitor a model and not to directly validate the model’s performance, 

monitoring model validation measure could be a more robust approach to monitoring. Expanding the 

method to monitor other performance measures, for example, calibration in the large and 

discrimination would be useful. The point at which the method provides an alert could differ 

depending on the performance measure it is monitoring and different applications, or healthcare 

settings, may consider a different performance measure to be more relevant. Upon doing this, one 

could envisage two uses of the method: 1) the method monitors all performance measures and 

provides feedback to update at the first time point that any measure determines the model needs to 

be updated; or 2) a user could request to only update the models upon certain performance measures 

and thresholds. Regarding thresholds, the thesis considers control limit thresholds of 3 and 4 standard 

deviations as this is whats commonly used in the literature. However, in medical statistics we often 

set a threshold, a significance level, when performing a hypothesis test, known as type I error. When 

using statistical process control for monitoring a model, we are performing hypothesis tests at each 

time point and testing if the sum of the observed minus expected is different to zero. Hence, rather 

than setting a threshold of standard deviation, type I error could be used to ensure the same error 

rate is used over time. This is not elementary as tests are correlated over time and further 

methodological work is needed to advance the method. Therefore, future work should consider 

extension of the method to include other performance measures and to use type I error for 

determining the threshold. Following this, comparison of the method to the dynamic calibration curve 

method by Davis et al108 will be needed. Subsequently, following an alert, the question of how to 

update and down weight past observations in a model update remain. Hence, the second discussion 

point for further work is also linked to this and to achieve the dynamic prediction systems, discussed 

in Chapter 3, more time, funding and research is required. 

7.3 Conclusion 
In conclusion, this thesis has: 1) provided an overview of dynamic modelling methods for developing 

clinical prediction models and compared the methods to non-dynamic (static) models; 2) identified 

challenges associated with dynamic model development and validation; and 3) proposed a novel 

approach to address the problem of arbitrary updating. Generally, the thesis has shown the value of 

dynamic modelling methods for clinical prediction model updating and monitoring for healthcare use 

and illustrated the, existing and newly proposed, methods in real-world and simulated health data.    
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