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Abstract

Developing metrics for prioritisation of candidate disease genes using

genetic variation databases

Nikita Abramovs

A thesis submitted to The University of Manchester for the degree of

Doctor of Philosophy in the Faculty of Science and Engineering, 2021

Each human exome contains thousands of protein-altering variants located in more than 
19,000 genes. Humans typically have two copies of a gene, and variants that affect one 
or both gene copies are called heterozygous and homozygous, respectively. If one gene 
copy is affected by deleterious heterozygous variation and cannot produce normal 
protein, this could result in a dominant disease. However, some genes can tolerate 
disruption of one copy, but deleterious homozygous or two heterozygous variants in 
different copies could still result in a recessive disease. Finally, humans can tolerate the 
inactivation or deletion of both copies of some genes without developing diseases. 
Because studied diseases’ inheritance patterns are frequently known (e.g. if one of the 
parents and a child both have a disease, the inheritance pattern is likely to be dominant),
clinical researchers want to know a candidate disease-causing variant inheritance pattern
to prioritise candidate disease genes for laboratory validation. Although inheritance 
pattern is a property of disease causing variants, it can be predicted using gene-level 
properties. The aim of this study was to develop gene-level computational metrics that 
can be used for this task, and recently created large variant population databases such as
Genome Aggregation Database (gnomAD, >137,000 individual exomes/genomes) 
provided novel data for such studies.

This thesis is written in the journal format and consists of three paper-style result 
chapters. In the first paper, we analysed deviations from Hardy-Weinberg Equilibrium 
of rare variants in gnomAD to detect potential disease-causing and heterozygous 
advantageous variants based on homozygous deficiency in the healthy populations. The 
second paper developed a gene variation intolerance ranking (GeVIR) system by 
measuring how unevenly variants in gnomAD were distributed in a gene relative to 
other genes. Finally, in the third paper, we developed multiple supervised machine 
learning models based on various gene properties (including GeVIR) and combined 
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them into a single continuous gene ranking metric that can be used to measure gene 
predisposition to disease inheritance patterns (DIP).

In conclusion, this thesis contributed to the understanding of variant population data and
the application of supervised ML methods to classify candidate disease genes in the 
context of disease inheritance patterns. The primary outcome of this research was the 
development of two continuous gene metrics, GeVIR and DIP (available for 19,361 and 
15,794 protein-coding genes, respectively), both of which can be used to distinguish 
dominant, recessive and non-disease genes. We anticipate that these metrics will aid 
clinical researchers in the prioritisation of candidate disease genes.
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Chapter 1  

Introduction and background

1.1 Introduction

The Discovery of Mendelian disease (MD) causing variants and consequently mapping 

MD phenotypes with genes enables researchers to understand the functions of the 

latter1. This knowledge is essential for developing testing, preventative and treatment 

methods for rare diseases1. Previously, this research was done using a positional cloning

technique that required prior knowledge of gene location and function1. However, the 

development of the next-generation sequencing technologies (NGS) in 2010, which did 

not have these limitations, revolutionised the field and significantly sped up the disease 

gene discovery1. The average number of novel MD gene reports was ~168 and 261 

based on five-year statistics before and after NGS development, respectively1. However,

NGS brought new challenges2 and based on various estimations the majority of the MD 

genes (6,000-13,000) are not discovered yet1,3.

Each human exome contains about 149-182 loss-of-function (LoF) and 10,000-12,000 

amino acid altering (missense) nucleotide differences (variants)4 located in more than 

19,000 protein coding genes5. To identify a new disease causing gene, researchers have 
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to analyse variant data in a number of affected and control individuals, select genes that 

contain potentially deleterious variants, and then validate the effect of the variants on 

protein function by laboratory experiments, which are expensive and time consuming6. 

The larger the list of candidate variants, the more laboratory work is required, but 

measures have to be taken to avoid excluding the real disease causing variants at this 

stage. Therefore, computational methods which can prioritise genes and variants are 

crucial for success.

There are many tools that can predict the effect of variants on human proteins (e.g. 

Grimm et al.7 compared ten such tools), some of which (e.g. Sorting Intolerant From 

Tolerant (SIFT)8) were developed more than a decade ago. Although these tools show 

good results on benchmark datasets, their performance on research data is hard to 

estimate. For example, a recent study modelled all possible missense variants in the 

gene TP53 in yeast, and found that 42% of the variants predicted to be deleterious by 

PolyPhen-29 were false positives10. Large apparently healthy population databases, such 

as the genome aggregation database (gnomAD11), are used to exclude variants that are 

too frequent to be disease causing12. However, more than half of the missense and LoF 

variants in the gnomAD database were observed only once in 141,456 individuals12. 

Therefore, even after applying these filters, the studied disease cohort could still contain

hundreds of candidate variants that need investigating. To reduce the list further, 

researchers have to investigate variants at a gene level. 

Humans typically have two copies of a gene13. Variants that affect one or both gene 

copies are called heterozygous and homozygous, respectively. If one copy is deleted or 

inactivated by a pathogenic heterozygous variant and another copy cannot produce 

enough protein for normal organism function, then a disease phenotype is developed14. 

These genes are called haploinsufficient (HI), whereas all other genes that can tolerate a 

inactivation or deletion of one copy are called haplosufficient (HS)15. However, a 

pathogenic heterozygous variant that does not result in gene inactivation or deletion 

might still cause a dominant disease by other molecular mechanisms16. For example, 

pathogenic variant can result in dominant negative effects, increased gene dosage or the 

production of abnormal proteins with new functions16. Recessive diseases develop when
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both gene copies are affected by one homozygous or two different (compound) 

pathogenic heterozygous variants13. Note that since different pathogenic variants in the 

same gene can have different effects, a single gene can be associated with both 

dominant and recessive diseases17. Finally, some genes are known to contain 

homozygous loss-of-function (LoF) variants in healthy individuals and are generally 

considered unlikely disease candidates (e.g. many olfactory genes fall into this 

category)18. 

Although diseases are caused by variants and inheritance is a property of a variant, not a

gene, disease inheritance correlates with various gene-level properties (e.g. variation 

intolerance, protein-protein interactions), and, consequently, it could be analysed and 

predicted on a gene level17. From this perspective, we suggest that genes can be 

classified into three categories based on the number of copies required to be unaffected 

by pathogenic variants for normal organism function: both (dominant genes), one 

(recessive genes) and none (non-single-gene disease genes). However, since different 

pathogenic variants in the same gene can have different effects, a single gene can be 

associated with both dominant and recessive diseases17. Consequently, the first two 

categories (dominant and recessive) are not mutually exclusive. Therefore, by 

classifying genes as dominant, recessive and non-disease, in the context of this thesis, 

we only estimate the predisposition of variants in these genes to be disease-causing and 

their inheritance pattern based on gene-level properties. However, genes associated with

diseases can have benign variants, so gene-level metrics have to be used in combination 

with variant effect predictors (that are out of the scope of this study) and other evidence 

(e.g. literature review, variant frequency in population databases) to prioritise candidate 

disease-causing variants6. Nevertheless, because studied disease inheritance patterns are 

frequently known (e.g. if one of the parents and a child both have a disease, the 

inheritance pattern is likely to be dominant), knowledge of gene predisposition to 

dominant or recessive inheritance patterns would be beneficial for candidate disease 

gene prioritisation. 

Gene essentiality represents the severity of consequences of not maintaining the 

required number of functional gene copies on organism function19. Genes essential and 
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non-essential for cell survival were identified in CRISPR/Cas studies by their 

inactivation in laboratory settings20, but it is known that consequences in real organisms 

could be different19. Moreover, these experiments were typically performed by 

inactivation of both gene copies21, consequently, subsets of heterozygous and 

homozygous essential genes from these experiments are unknown11. Pengelly et al.22 

suggested dividing the essentiality scale into three categories: non-disease essential 

(NDE, i.e. lethal), human disease (HD) and non-disease non-essential (NDNE). 

However, the severity of human diseases can vary dramatically, is difficult to measure 

systematically, and can include significant lifespan reduction23. For example, Dawes et 

al.24 stringently curated known human disease genes in the Online Mendelian 

Inheritance in Man (OMIM) database and categorised ~11% of them as 

prenatal/infantile lethal. Finally, although some genes are homozygously inactivated in a

generally healthy population, it is hard to confidently state that loss of this gene does not

affect human health (i.e. categorise them as NDNE)3. Consequently, although the 

consequences of losing gene copies can be categorised (for example, as lethal, 

pathogenic, and viable), we argue that in the context of all genes, essentiality is 

probably more linear than categorical property. Nevertheless, estimation of gene 

essentiality can be used by clinical researchers to prioritise candidate disease genes 

since they know the severity of their patients' phenotypes.

A number of computational metrics were developed based on analyses of gene-level 

properties to estimate the severity of having pathogenic variants in a gene (i.e. gene 

essentiality) and their inheritance pattern25. The two common approaches were 

estimation of gene, or its regions, variation intolerance (also called constraint) using 

statistical methods based on data from large population variant databases12,26–33 and 

developing machine learning models based on various gene properties3,15,17,18,34–38 (often 

including variation intolerance metrics3,17,35–37). Machine learning allows researchers to 

analyse and interpret large, complex datasets and is widely used in genetics and 

genomics39. Previous studies predominantly used supervised machine learning methods 

to estimate gene predisposition to various disease inheritance mechanisms and 

essentiality3,15,17,18,34–38, although semi-supervised and unsupervised methods were also 

tried12,40. In supervised learning, a model is created by training a machine learning 

algorithm on a subset of labelled examples (e.g. genes) to understand correlations 
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between their features (e.g. variation intolerance, protein-protein interactions) and labels

(e.g. association with dominant/recessive diseases)17,39. The model is then evaluated on 

another subset of labelled examples to estimate its performance17,39. Often, this is done 

using the cross-validation technique when the labelled dataset is divided into n equal 

chunks (usually ten), and the model is trained using all chunks except one 

(90%)3,15,17,18,34–38. The remaining chunk (10%) is used for testing, and the procedure is 

repeated until the model is tested on each chunk3,15,17,18,34–38. The variability caused by 

random partitioning can be reduced by using average results of numerous cross-

validation procedure repetitions15. Finally, the model is used to predict labels of new 

examples (e.g. classify all unlabelled genes as dominant/recessive)17,39. Considering the 

existence of curated disease gene databases (e.g. OMIM41) that can be used for training, 

supervised machine learning seems to be an appropriate choice for such tasks.

Gene variation intolerance studies often produce a metric that ranks all studied genes (or

their regions) based on the defined statistical formula. However, some studies also 

applied machine learning on top of it12,28. In contrast, metrics produced by machine 

learning methods reported a gene’s probability of belonging to the studied groups (e.g. 

HI15,35,37,38). The efficiency of a gene metric’s ability to prioritise novel disease genes is 

measured based on their performance on known disease genes. Gene variation 

intolerance metrics were often calculated without investigating the properties of known 

genes and, therefore, evaluated on all available genes from the studied groups, whereas 

supervised machine learning studies used subsets of known genes to train the models. 

Consequently, gene variation intolerance metrics can be used, to some degree, for 

prioritisation of various gene groups, whereas machine learning based metrics are 

specifically developed to prioritise some and often only one group of genes.

Although disease inheritance patterns and essentiality are two different concepts, in the 

context of computational metrics for disease gene prioritisation, these gene 

characteristics are often interdependent19. For example, gene probability of loss-of-

function intolerance (pLI) was developed to predict novel haploinsufficient genes based 

on variant data in 60,706 individuals12. However, the set of genes predicted to be highly 

likely to be haploinsufficient (pLI> 0.9, n = 3,230) contained 90% and 50% of known 
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HI genes with severe and mild phenotypes, respectively12. Cassa et al.28 developed an 

alternative method (Shet) to measure gene intolerance to loss-of-function (LoF) variants 

using the same data. Evaluation of their metrics showed that both dominant and 

recessive genes associated with deafness phenotypes were equally intolerant to LoF 

variants28. Therefore, Fuller et al.42 argued that metrics such as pLI and Shet, actually 

represent strength of selection against heterozygous LoF variants that correlates with 

phenotype severity, but not haploinsufficiency. Most of the supervised machine learning

models were developed to categorise genes by inheritance patterns and were often not 

evaluated in context of essentiality. However, predictions of a model developed by He 

et al.3, that was trained to prioritise single-disease genes (regardless of inheritance 

patterns), also correlated with phenotype severity. Considering that some of the gene 

features used by these models are known to be correlating with essentiality (e.g. 

variation intolerance metrics), we suppose that predictions of other models might also, 

to some extent, be biased by disease phenotype severity. Schematically, we visualised 

this hypothesised correlation between computational gene-level metrics, genes’ 

associated disease inheritance patterns, and degree of essentiality in Figure 1.1 (note 

that the sizes of elements that represented groups of genes are arbitrary and might not 

correlate with the actual number of genes in the groups).
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Illustration of a hypothetical correlation between computational gene scores (e.g. 

variation intolerance metrics), disease inheritance patterns, and disease severity. The 

gene group element sizes used are arbitrary.

The scope of this study is computational metrics that can be used for the prioritisation of

candidate disease genes, specifically, methods of measurement of gene variation 

intolerance and classification by inheritance patterns using supervised machine learning 

models. Since the former are used as features in the latter, enhancement of the variation 

intolerance metrics can also improve supervised machine learning model performance. 

Both types of metrics are widely used by researchers working on human genome 

sequencing projects in a clinical setting and, therefore, have a high impact in the field of
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genome analysis and disease gene discovery (e.g. Huang et al. (2010)15 470+ citations, 

Petrovski et al. (2013)26 690+ citations according to Dimensions data in August 202143). 

Next, we provide a brief introduction to Next Generation Sequencing (NGS) technology

that led to the creation of variant population databases, and review previous variation 

intolerance and supervised gene classification methods to highlight under-researched 

areas studied in this thesis.

1.2 Next generation sequencing technology

Sequencing the first human genome required ~4 years, was completed in 2003, and by 

different estimates cost from a half to 1 billion dollars44. Nowadays, Next Generation 

Sequencing (NGS) technology allows coding regions (exomes) of the human genome to

be sequenced within a day for less than 1000 dollars45,46. This is achieved by dividing 

DNA into millions of small pieces (sequencing reads), that are sequenced and mapped 

to the reference genome in parallel45. Comparisons with the reference genome allows 

the discovery of nucleotide differences (variants) in an analysed genome, whereas the 

balance between reference and alternative alleles allows the  identification of variant 

zygosity47. However, due to the small size of sequenced reads, and the parallel nature of 

the process, they sometimes might be mapped to wrong parts of the reference genome 

that can result in incorrect variant calls, especially in repetitive and GC-rich regions45. 

To reduce these errors, each DNA region is sequenced multiple times and the number of

stacked sequence reads at each DNA position is called “sequencing depth” or 

“coverage” of this position45. Higher read depth results in more accurate variant calls, 

but also increases the cost of the process45. Since whole genome sequencing (WGS) is 

expensive and investigation of some or all protein coding parts of the genome (exomes) 

is often sufficient for a required analysis, whole exome sequencing (WES; ~1% of the 

genome) is widely used5,48. However, it has now been shown that WGS can be more 

accurate than WES, even with lower read depth (mean coverage of 39 and 73 was 

investigated, respectively), especially in the detection of structural variants that affect 

large parts of the genome49. 

Human genome sequencing is an essential part in the study of genetic diseases as it 

allows the discovery of novel pathogenic variants45. The analysis normally requires 
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comparison of WGS or WES of a group of affected and unaffected (i.e. control) 

individuals50. Candidate pathogenic variants are expected to be absent or significantly 

less frequently seen in controls50. These variants are further filtered by literature analysis

and laboratory investigations50.Variant datasets of individual genomes are available in 

databases such as dbGaP, but access to these data at an individual level is often 

restricted for the general public51. However, comparisons between affected and control 

genomes can be performed at a population level using aggregated, and consequently 

anonymous, WGS and WES datasets with calculated variant frequencies and 

heterozygous/homozygous numbers11,12. The larger the population, the more unique 

variants it contains, thus allowing the more precise comparison of affected (disease) and

unaffected individual genomes to be performed11,12. Since the same control datasets can 

be reused in multiple disease studies, a large and publicly available dataset of healthy 

individuals was required to advance the field in the NGS era. 

1.3 Variant population databases

One of the first such population level datasets was the US National Institutes of Health 

Heart, Lung and Blood Institute (NHLBI) Exome Sequencing Project (ESP) that 

consisted of 6,515 WES of European and African American control individuals from 

heart, lung and blood disorder studies52(p515) (Table 1.1 sumarises the main variant 

population databases). However, the ESP database could not be used for the analysis of 

non-coding variants and for filtration of benign variants specific to other populations. 

This limitation was addressed by the 1000 Genomes project that aimed to collect WGS 

data of healthy individuals from various ethnicities4,53,54. The final release of this dataset 

contained 2,504 individuals from 26 populations of European, African, American, South

Asian, and East Asian ancestries4. Although the 1000 Genomes population was smaller 

than the ESP one, its size was sufficient to detect 99% of the known variants with allele 

frequency greater than 1%4. However, a larger dataset was still required to allow 

filtration of possibly benign rare variants. Thus, the Exome Aggregation Consortium 

(ExAC) project was launched in 2014 that aimed to aggregate control datasets from 

multiple studies12. The first release of the ExAC dataset consisted of 60,706 WES of 

individuals from various ethnicities and included both the 1000 Genomes and the 

majority of the cohorts used to create the ESP datasets12. Currently, the largest publicly 

available database is the genome aggregation database (gnomAD) v2.1.1, that is a 
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continuation of the ExAC project, and consists of 125,748 WES and 15,708 WGS11. 

However, the largest WGS dataset is gnomAD v3.1.1 (76,156 individuals), that also 

contains a larger number of African American individuals than gnomAD v2.1.1 (20,744 

and 8,128 individuals, respectively)11,55. Overall, the size of publicly available large 

population databases is rapidly increasing and, since sequencing costs are decreasing, 

WGS is becoming the preferred method for sequencing new human genomes in both a 

research and clinical setting.

Table 1.1: Summary of variant population databases.

Used abbreviations: Whole Exome Sequencing (WES), Whole Genome Sequencing 

(WGS), The US National Institutes of Health  Heart, Lung and Blood Institute 

(NHLBI), African/African American (AFR), Latino (AMR), East Asian (EAS), 

Europeans (EUR), Finnish (FIN), Non-Finnish European (NFE), South Asian (SAS), 

Ashkenazi Jewish (ASJ), Other (OTH).

Name Individuals Major Populations Reference

NHLBI Exome
Sequencing Project

(ESP5400)

5,363 (WES) 1,864 (AFR) and 3,499
(EUR).

Exome Variant
Server (2011)56

1000 Genomes
Project (1000G

Phase 1)

1,092
(combination of
WES with low

coverage WGS)

185 (AFR), 242 (AMR),
286 (EAS), and 379

(EUR).

The 1000
Genomes
Project

Consortium
(2012)54

NHLBI Exome
Sequencing Project

(ESP6500)

6,515 (WES) 2,217 (AFR), and 4,298
(EUR).

Fu et al.
(2013)52(p515)

1000 Genomes
Project (1000G

Phase 3)

2,504
(combination of
WES with low

coverage WGS)

661 (AFR), 347 (AMR),
504 (EAS), 503 (EUR),

489 (SAS).

The 1000
Genomes
Project

Consortium
(2015)4

Exome Aggregation
Consortium

(ExAC)

60,706 (WES) 5,203 (AFR), 5,789
(AMR), 4,327 (EAS),

3,307 (FIN), 33,370 (NFE),
8,256 (SAS), and 454

(OTH).

Lek et al.
(2016)12
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Genome
Aggregation

Database (gnomAD
v2.1.1)

125,748 (WES),
15,708 (WGS)

WES: 8,128 (AFR), 17,296
(AMR), 5,040 (ASJ), 9,197

(EAS), 10,824 (FIN),
56,885 (NFE), 15,308
(SAS), 3,070 (OTH);

WGS: 4,359 (AFR), 424
(AMR), 145 (ASJ), 780

(EAS), 1,738 (FIN), 7,718
(NFE), and 544 (OTH).

Francioli et al.
(2018)57

Karczewski et
al. (2020)11

Genome
Aggregation

Database (gnomAD
v3.1.1)

76,156 (WGS) 20,744 (AFR), 7,647
(AMR), 1,736 (ASJ), 2,604
(EAS), 5,316 (FIN), 34,029

(NFE), 2,419 (SAS), and
1,661 (OTH).

Francioli et al.
(2019)58

Although large population variant databases are widely used as control datasets for NGS

analysis, it is important to note that they are not free of disease causing variants, as 

highlighted by a few studies59–61. In fact, ExAC and gnomAD databases were created by 

combining both affected and control cohorts (only ~42.5% of individuals in gnomAD 

v2.1.1 were controls), but individuals with known severe paediatric disorders, as well as

their parents, siblings and children, were not included in the dataset11,12. However, even 

apparently healthy control individuals might harbour disease causing variants for the 

following reasons. Firstly, they might carry recessive disease causing variants in a 

heterozygous state59. Secondly, young healthy individuals might carry variants that 

cause late onset diseases (e.g. Breast-ovarian cancer, familial 1(MIM:604370) and 2 

(MIM:612555))59. Thirdly, some variants result in disease only in a proportion of 

carriers62. This phenomenon is called incomplete penetrance and is widely observed 

among cancer variants62. Finally, even highly penetrant disease causing variants might 

be tolerated due to some unknown compensatory mechanisms (e.g. other protective 

variants), although very rarely63. An analysis of 874 known disease genes in 589,306 

genomes found only 13 individuals who somehow tolerated pathogenic variants for 8 

diseases63. Therefore, unless a variant is expected to cause a severe early onset disease, 

it might be present in large population databases, but its allele frequency is expected to 

be very low59. Whiffin et al.64 attempted to estimate maximum allele frequency from 

which variants could be filtered as non-disease-causing in the ExAC datasets. However, 

their statistical framework required statistics of disease penetrance that can be hard to 

precisely estimate for all genes, and is not available for many diseases64. According to 
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the American College of Medical Genetics (ACMG) standards and guidelines, all 

variants with allele frequency greater than 5% in large population databases should be 

classified as benign, whereas a frequency that is greater than expected is one out of two 

required factors for such classification65. Nevertheless, data from variant population 

databases is widely used for calculation of gene variation intolerance metrics.

1.4 Gene variation intolerance metrics

Traditionally, variation intolerant genes were identified using phylogenetic statistical 

methods that examined ratios of non-synonymous and synonymous substitution rates 

(dN/dS) in homologues genes of closely related species66, for example humans and 

chimpanzees67. However, the creation of large population databases (Table 1.1) resulted 

in the development of methods that were based mostly on using human data, which 

outperformed phylogenetic approaches (Table 1.2)27. 

Table 1.2: Summary of methods used to measure variation intolerance of genes or 
their sub-regions.

Name Data Method summary Reference

Residual
variation

intolerance
score (RVIS)

ESP6500,
ExAC,

gnomAD
v2.0

Studentized residuals calculated on ratios
between numbers of common missense and
loss-of-function variants (allele frequency
(AF) > 0.001) and all variants (including

synonymous) in genes.

Petrovski
et al.

(2013)26

Missense z-
score

ESP6500,
ExAC,

gnomAD
v2.1

Z-scores calculated on ratios between
numbers of observed and expected

(estimated based on codons mutability) rare
(AF < 0.001) missense variants in genes. 

Samocha
et al.

(2014)27

Gene damage
index (GDI)

1000G
(phase 1)

Sum of products of gene variants allele
counts (AF < 0.5) multiplied by their

combined annotation dependent depletion
(CADD)68 scores with each variant score
normalised by median CADD score of
variants with similar AF in all genes.

Itan et al.
(2015)31

The probability
of being loss-of-
function (LoF)
intolerant (pLI)

ExAC,
gnomAD

v2.1

Expectation-maximisation algorithm applied
on observed (filtered with loss-of-function
transcript effect estimator (LOFTEE)11) and
expected (calculated with Samocha et al.27

framework) rare (AF < 0.001) LoF variants
to cluster genes into three groups

(haploinsufficient (pLI), recessive (pRec),
and LoF tolerant (pNull)).

Lek et al.
(2016)12
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Sub-region
residual
variation

intolerance
score (subRVIS)

ESP6500 Petrovski et al.26 RVIS method was applied
on functionally important gene regions

(protein domains).

Gussow et
al. (2016)30

Selective effects
of heterozygous

protein-
truncating

variants (Shet)

ExAC Bayesian approach was used for estimation
loss-of-function intolerance based on

cumulative allele frequency of rare (AF <
0.001) loss-of-function variants in genes.

Cassa et al.
(2017)28

Regional
missense
constraint

ExAC Samocha et al.27 framework was used to
divide genes into regions with different
missense intolerance relatively to other

regions in the same genes. 

Samocha
et al.

(2017)29

Constraint
coding regions

(CCRs)

gnomAD
v2.0

Genes were divided into regions completely
free of missense and loss-of-function
variants sorted based on their length

measured in nucleotides.

Havrilla et
al. (2018)33

Loss-of-
function

observed/expect
ed upper bound

fraction
(LOEUF)

gnomAD
v2.1

Upper bound fraction of 90% confidence
interval calculated on observed/expected
loss-of-function variant ratio calculated

using LOFTEE and Samocha et al.27

framework similarly to pLI study12.

Karczewski
et al.

(2020)11

1.4.1 Functional variation intolerance metrics

The first two methods were developed by Petrovski et al.26 and Samocha et al.27 and 

were based on “orthogonal” ideas, as the studies hypothesised that genes with fewer 

common and rare functional variants should be more intolerant to variation, 

respectively. Both studies analysed variant data from the ESP database and used 0.001 

minor allele frequency (MAF) as a threshold to separate rare and common variants26,27. 

However, the studies used different methods for statistical calculations, variant 

categorisation, and normalisation for gene length26,27. 

Petrovski et al.26 grouped common missense and LoF variants together in each gene, 

regressed them on the number of all protein coding variants (including synonymous) to 

normalise for gene length and used studentized residuals as a metric named Residual 
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Variation Intolerance Score (RVIS). Samocha et al27 analysed rare synonymous, 

missense and LoF variants separately in each gene, compared the number of observed 

variants with estimated expected number of variants of each type to normalise for gene 

length, and used z-score statistics as a metric. The number of expected variants in each 

gene was estimated as the sum of all sequence codons probabilities to mutate to other 

codons grouped by variation types (e.g. missense)27. Codon mutation rates were 

estimated by analysis of orthologous intergenic regions between humans and 

chimpanzees27. The expected variant numbers were also adjusted based on local 

coverage and divergence between human and macaques in each gene27.

Although Samocha et al.27 calculated z-scores for three large variant type groups (LoF, 

missense, and synonymous), most of the genes did not show significant difference 

between expected and observed number of synonymous and LoF variants. In the case of

synonymous variants, this result was expected as they generally do not have an impact 

on proteins and, therefore, should not be under strong selection 27. However, the lack of 

LoF intolerant genes was a result of insufficient sample size (ESP database contained 

6,503 individual exomes), since LoF variants occur less frequently than synonymous or 

missense ones27. Consequently, the missense z-score metric was the main outcome of 

the study27. Comparison of missense z-scores and RVIS scores showed a similar 

performance in the context of prioritisation of known haploinsufficient genes and genes 

with de novo LoF variants in individuals with diagnosed autism spectrum disorders27.

Different LoF variants in a protein are generally expected to have the same deleterious 

effect on it due to the nonsense-mediated decay mechanism, which targets mRNAs 

containing premature termination codons for degradation to avoid the production of 

abnormal proteins that could be damaging18. However, the consequences of missense 

variants may vary from being completely benign to “as damaging as LoF”29. Various 

tools were developed to predict pathogenic missense variants, most of which rely to 

varying degrees on evolutionary conservation that varies within proteins, in particular 

some regions that encode functional domains are known to be more conserved30. 

Therefore, several studies attempted to incorporate predictions provided by variant 

prioritisation methods into gene scores31, or detect gene regions that were more 
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intolerant to variation and, consequently, more likely to harbour pathogenic variants to 

complement these methods29,30,33.

Itan et al.31 hypothesised that genes with fewer damaging variants in a healthy 

population were more likely to be disease causing. They analysed missense and LoF 

variants together and developed gene damaging index (GDI) scores based on variant 

frequencies in the 1000 Genomes database and their deleteriousness estimated with the 

combined annotation dependent depletion (CADD) scores68. GDI outperformed RVIS 

and missense z-scores at prioritising known disease genes, which showed that 

incorporation of variant damage prediction scores into gene variation intolerance 

metrics calculations could improve the performance of the latter31.

1.4.2 Loss-of-function variation intolerance metrics

Estimation of LoF intolerant genes became possible with the creation of the ExAC 

database, that contained 60,706 individual exomes12. The database was released with 

missense and synonymous z-scores calculated using the Samocha et al.27 framework, 

and a novel metric developed to measure gene probability of LoF intolerance (pLI). 

Briefly, pLI scores were calculated as follows. First, Loss-Of-Function Transcript Effect

Estimator (LOFTEE) was used to exclude low-confidence LoF variants that might be 

tolerated for various reasons (e.g. located close to the end of a transcript). Then, ratios 

of observed to expected numbers of rare (at an allele frequency AF < 0.001) LoF 

variants in each gene were calculated using the Samocha et al framework27. Finally, 

expectation-maximisation algorithm was used to cluster genes into three groups based 

on observed/expected ratios: haploinsufficient (pLI), recessive (pRec), and tolerant 

(pNull). The clustering was performed with the assumption that observed/expected 

ratios in haploinsufficient, recessive, and tolerant genes should be ≤0.1, ≤0.5 and ~1, 

respectively. Note that in the case of the haploinsufficient and recessive groups, the rate 

of expected deficiency of LoF variants was based on observed mean ratios in known 

disease gene lists (Clinical Genome dosage sensitvity map69 and Blekhman et al.70 

studies, respectively). Although the analysis produced three metrics (pLI, pRec, and 

pNull), the authors stated that only pLI was “valuable” and suggested the use of a 

threshold of 0.9 to select extremely LoF intolerant and, therefore, likely 

haploinsufficient genes (3,230/18,225 genes analysed). This subset contained nearly all 
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known severe haploinsufficient genes, but less than half of the dominant disease genes. 

Nevertheless, the majority of these genes (72%) were not linked with known disease 

phenotypes and could be of clinical interest.

Note that pLI was calculated by assigning equal weights to all variants with AF < 

0.00112. Cassa et al.28 suggested that since multiple rare variants were expected to have 

the same effect on the population as one relatively frequent variant, they should be 

weighted respectively. They developed an alternative score to measure heterozygous 

intolerance to LoF variation (Shet), which was based on cumulative frequency of LoF 

variants. However, since they also used the Samocha et al.27 framework to estimate 

expected number of LoF that was designed for rare variants, they had to exclude genes 

with a high cumulative frequency of LoF variants. Consequently, they analysed a lower 

number of genes than in the pLI study (15,998 and 18,225, respectively), but reported a 

similar number of constraint (Shet>0.1) genes (2,984 and 3,230, respectively). They 

demonstrated in various assays that Shet gene scores could be effectively used to 

distinguish autosomal dominant and recessive genes, with up to 96% positive predictive

value when a binary threshold of Shet>0.04 was used on a dataset of 504 clinical exomes.

Although the authors developing the Shet were advised by the pLI authors, a direct 

comparison of these methods was not performed. 

The ExAC database evolved into a larger database named gnomAD (60,706 and 

141,456 individuals, respectively) that was released with novel variation intolerance 

scores, in addition to previously used missense z-scores and pLI11. These novel scores 

were calculated as 90% confidence intervals on expected/observed values calculated 

similarly to the previous scores12. The upper confidence interval was suggested to be 

used as an intolerance metric named LoF observed/expected upper bound fraction 

(LOEUF)11. The evaluation of LOEUF showed that: (i) genes with low scores were 

enriched with known haploinsufficient and cell essential genes (~5.5 and ~2.5 fold-

enrichment in the first decile, respectively); (ii) genes with high scores were enriched 

with olfactory and cell non-essential genes (~4.8 and ~2.5 fold-enrichment in the last 

decile, respectively); (iii) genes with middle scores were to some extent enriched with 

known autosomal recessive genes (~1.7 fold-enrichment in the fifth and sixth deciles)11. 
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Although the same method was used to calculate missense observed/expected upper 

bound fraction scores (i.e. MOEUF), missense metrics were not evaluated in the study11.

Karczewski et al.11 acknowledged some important limitations of their metric, especially 

that usage of the LOEUF metric alone for estimation of LoF intolerance of short genes 

(~30% of all analysed protein coding genes) could be misleading, since the gnomAD 

database was not large enough to confidently state that lack of LoF variants in these 

genes was not a random event (i.e. short genes even with zero observed LoF variants in 

gnomAD were classified as LoF tolerant by LOEUF). Nevertheless, the Karczewski et 

al.11 study demonstrated that a single-value metric can be developed and used to 

prioritise not only haploinsufficient genes, but to some extent also to distinguish 

recessive and non-disease gene groups. 

1.4.3 Regional variation intolerance metrics

Both RVIS and missense z-score frameworks were used to develop regional variation 

intolerance scores29,30. Gussow et al.30 attempted to divide genes by exon and protein 

domain boundaries, and used the RVIS method to measure variation intolerance of the 

regions, but discovered that only division of the gene by protein domains was effective. 

Samocha et al.29 attempted to use the missense z-score method to find new boundaries 

that would result in a significant deficiency of missense variants in some regions 

relative to others within the same gene. Scores developed by both studies only partially 

covered the human exome29,30. Domain information used to calculate regional RVIS was

available for 41.5% of the coding sequence of 16,611 genes30, whereas a statistically 

significant difference of missense z-scores in various parts of a gene was detected only 

in 2,700 genes29. Almost in all cases, the Samocha et al.29 method resulted in genes 

being divided into two or three regions. Nevertheless, both studies reported that known 

pathogenic variants were significantly more frequently observed in detected variation 

intolerant regions, and showed that the developed methods would complement existing 

variant prediction scores29,30.

Havrilla et al.33 took the idea that functionally important gene regions should contain 

less variation than others to the extreme and hypothesised that the most constrained 

gene regions should not contain any variation in the general population. Briefly, they 

used missense and LoF variants in the gnomAD database as boundaries to divide genes 
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into functional variant free regions and developed a map of constrained coding regions 

(CCR). The resulting regions were sorted by length, and they suggested that 95th or 99th 

percentile thresholds should be used to distinguish constrained regions. Although they 

analysed all regions in 17,639 genes, only 6,909 (39.2%) and 1,415 (8.0%) of them 

contained at least one region ranked above the 95th and 99th percentile, respectively. 

Similarly to the previous studies of regional intolerance29,30, they showed that the known

pathogenic variants were enriched in predicted constraint regions (CCR ≥ 95th 

percentile). Moreover, CCR surpassed existing variant effect prediction methods in an 

assay of prioritisation of de novo variants observed in individuals with 

neurodevelopmental disorders. They also suggested that the CCR map could be 

converted into gene scores for a limited number of genes (6,909) by ranking them based

on numbers of constrained regions. Comparison of these gene-level scores with pLI, 

missense z-scores and RVIS showed that CCR prioritised different genes, but their 

performance in the context of prioritisation of known disease causing genes was not 

performed. Moreover, we note that the difference in performance between the metrics 

could be partially caused by bias towards longer genes, as they by definition were more 

likely to contain more constrained regions, and normalisation of scores according to 

gene length was not performed. Havrilla et al.33 also acknowledged that the CCR map 

might be ineffective if genuine constrained regions were affected by sparse benign or 

pathogenic variants in the general population, in particular with recessive disease 

causing variants, that could be present in the general population in a heterozygous state. 

Nevertheless, their study showed that variation intolerance could be measured by using 

much smaller regions than in previous studies29,30.

1.4.4 Summary and under-researched areas

We reviewed nine studies that used variant population data to develop genes or their 

sub-regions variation intolerance metrics11,12,26–31,33. The majority of the metrics were 

calculated based on rare (AF < 0.001) variant data11,12,27–29, and none considered variant 

zygosity. Consequently, existing metrics primarily measured gene heterozygous 

intolerance (i.e. can be used to prioritise candidate HI/dominant genes), although 

recessive genes were also reported to be more intolerant than unknown or non-essential 

genes in multiple studies11,26,31. Variant population databases such as gnomAD consisted 

of predominately healthy individuals11, so we hypothesise that the balance between 
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heterozygous and homozygous individuals in the case of recessive disease-causing 

variants might be shifted towards excess heterozygous due to the presence of unaffected

carriers (heterozygous) and absence of affected individuals (homozygous). Therefore, 

incorporating variant heterozygous excess status into variation intolerance metric 

calculations might improve its ability to prioritise recessive disease genes. Variants with

heterozygous excess can be detected with Hardy-Weinberg equilibrium that previously 

was used to detect sequencing errors in variant population databases71,72. However, no 

attempt was made to use Hardy-Weinberg equilibrium to analyse genuine variants with 

heterozygous excess caused by natural selection and exclusion of individuals with 

severe childhood diseases in large population databases.

The methods for variation intolerance metrics calculations varied depending on the used

variant types. Three metrics (pLI12, Shet
28, and LOEUF11) measured gene intolerance to 

LoF variants. However, LoF variants are rare, and existing variant population databases 

are not large enough to confidently measure LoF intolerance of genes with short coding 

sequences11. Three metrics (RVIS26, missense z-score27, and GDI31) were calculated 

using missense or missense and LoF variants. Since missense variants are observed 

~55-80 times more frequently than LoF in a typical individual4, these metrics mainly 

depended on missense variant data. However, unlike LoF variants, most of which are 

expected to trigger nonsense-mediated decay mechanisms18, the consequences of 

missense variants can vary dramatically depending on their location in a gene29. 

Therefore, three remaining metrics (subRVIS30, regional missense constraint29, and 

CCRs33) were developed to detect gene regions that were more intolerant to variation 

than others (e.g. located in functionally important domains30). However, little effort was 

made to aggregate information of regional intolerance on a gene level (e.g. CCRs were 

counted on a gene level but not normalised by gene length33). Therefore, incorporating 

variant distribution information (i.e. how unevenly variants are located in genes) into 

variation intolerance metric calculations might improve their performance if missense 

variant data is used.
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1.5 Supervised machine learning models used for gene
categorisation 

The fundamental assumption of supervised machine learning (ML) is that a subset of 

data used to train a model represents the final data on which the model will be applied39.

Previous studies used various gene subsets to train the models depending on the gene 

categorisation task (Table 1.3). However, all existing models were binary and eventually

applied on all genes with enough known properties (features), used by models to make 

predictions, to detect a maximum number of candidate genes for the studied categories 

(i.e. all studies analysed most of the known protein-coding genes)3,15,17,18,34–38. Therefore, 

the final gene dataset could contain genes from categories that were not adequately 

represented or completely missing in the subsets used to train the models. Although the 

performance of supervised ML models could be affected due to misclassification of 

these genes, most studies ignored some gene categories. For this review, existing 

models were divided into three groups based on their approach to gene categorisation: 

haploinsufficient (HI)/haplosufficient (HS), pathogenic/non-pathogenic, and autosomal 

dominant (AD)/recessive (AR). Note that Hsu et al.36 and He et al.3 developed multiple 

independent models (Table 1.3).

Table 1.3: Summary of supervised machine learning methods developed for gene 
categorisation.

Used abbreviations: Protein-Protein Interactions (PPI), Haploinsufficient (HI), 

Haplosufficient (HS), Loss-of-function tolerant (LoF-tolerant), Autosomal Dominant 

(AD), Autosomal Recessive (AR), X-linked (XL), Mendelian Disease (MD), Cross-

validation (CV), Area Under the Curve (AUC), Linear Discriminant Analysis (LDA), 

Logistic Regression (LR), Support Vector Machine (SVM), Gradient boosting machine 

(GBM), Random Forest (RF), Genomic Evolutionary Rate Profiling (GERP).

Name Training,
validation
and testing

genes

Class
ifier

Main features AUC
(CV*)

Reference

Probability
of being

haploinsuffic
ient

( p(HI) )

287 HI, 679
HS

LDA dN/dS between human and
macaque; promoter

conservation (GERP);
embryonic expression;

network proximity to HI
genes.

0.83* Huang et
al.

(2010)15
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Probability
of being
recessive
( p(rec) )

213 LoF-
tolerant, 858

AR

LDA dN/dS between human and
macaque; PPI network

proximity to recessive disease
genes.

0.81* MacArthur
et al.

(2012)18

Functional
indispensabil

ity score
(FIS)

140 LoF-
tolerant, 115

essential

LR dN/dS between human and
chimp; a number of networks

in which gene is present;
degree of centrality in various

gene networks; average
heterozygous AF of missense

and synonymous variants
(separately) in the 1000

Genomes pilot data
populations.

0.91* Khurana
et al.

(2013)34

Genome-
wide

haploinsuffic
iency score

(GHIS)

297 HI, 297
HS

SVM dN/dS between human and
macaque; distance to HI
genes (20 highest link

weights were used) in co-
expression networks; a ratio
of the number of common
(AF > 0.1%) and rare non-
synonymous variants from
ESP data; a ratio of gene

expression in foetal to adult
tissue.

0.67* Steinberg
et al.

(2015)35

Inheritance-
mode

specific
pathogenicity
prioritization

(ISPP)
AD/AR/XL

score

876 AD,
1500 AR,

182 XL and
100,000
random
selected

control sets
of genes

RF 14 genomic, variation and
functional gene properties;
predictions from existing

supervised machine learning
models: p(HI), p(rec), FIS;

existing variation intolerance
gene scores: RVIS, GDI,

missense z-scores.

0.75*
(AD),
0.73*
(AR),
0.85*
(XL)

Hsu et al.
(2016)36

DOMINO 291 AD, 694
AR

(training,
CV); 26 AD,

73 AR
(validation)

LDA Numbers of direct PPI with
AD genes; variation

intolerance scores (ExAC):
p(Rec), missense z-scores, a

ratio of splice LoF and
synonymous variants;
promoter conservation
(PhyloP); mRNA half-

life>10h. 

0.91*,
0.92

(validat
ion)

Quinodoz
et al.

(2017)17

HIPred 298 HI, 
386 LoF-
tolerant

GBM dN/dS ratios between human
and various species; cell-

type-specific interactomes;
variation intolerance scores
(ExAC): missense z-scores,

synonymous z-scores. 

0.89* Shihab et
al.

(2017)37
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Episcore 287 HI, 574
HS

RF Epigenomic data from
various tissues. 

0.88* Han et al.
(2018)38

Gene
pathogenicity
/dominance/

recessive
prediction

(GPP, GDP,
GRP)

GPP: 630
(850) MD,
630 (850)

LoF-tolerant
(testing); 

GDP: 1,243
AD+

“AD,AR”,
1,584 AR;

GRP: 1,985
AR+

“AD,AR”,
842 AD 

RF Custom gene variation
intolerance scores; variant
damage prediction scores

(calculated based on
aggregated numbers of
variants predicted to be

pathogenic in population
databases (mostly ExAC) by

various tools); protein-protein
interactions in STRING. 201,

183 and 183 features were
used to build GPP, GDP and
GRP models, respectively. 

0.87
(GPP),
0.81*

(GDP),
0.81*
(GRP)

He et al.
(2019)3

1.5.1 Models that classify genes as haploinsufficient and 
haplosufficient

The HI/HS approach was used in the probability of being haploinsufficient (p(HI))15, 

genome-wide haploinsufficiency score (GHIS)35, HIPred37, and Episcore38 studies. The 

HI and HS training genes were selected based on the annotation in disease databases 

and deleterious variants in control populations, respectively 15,35,37,38. Three out of four 

studies (p(HI), GHIS, Episcore) considered genes affected by disruptive 

heterozygous/homozygous structural variants in the control population to be HS15,35,38. 

However, Hsu et al.36 argued that such a set of HS genes could not be considered 

representative, as it did not include profiles of genes unaffected by structural variants. 

Shihab et al.37 used homozygous LoF variants instead of structural variants to define HS

genes, but we argue that such a set also cannot be considered representative, since it 

does not include recessive disease genes that are also HS.

Moreover, Quinodoz et al.17 insisted that models trained only on HI genes might be less 

effective in predicting genes associated with other types of dominant phenotypes (e.g. 

gain-of-function). None of the studies that used the HI/HS categorisation approach 

claimed that their models could distinguish between HI and other dominant 

phenotypes15,35,37,38. Moreover, in two studies (p(HI) and GHIS), AD genes were used as 
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positive samples to test the models15,35. Therefore, we consider that the HI/HS gene 

categorisation approach is unsuitable for supervised ML since the HS set of genes by 

definition is extremely non-homogeneous and includes dominant, recessive and non-

disease genes.

1.5.2 Models that classify genes as pathogenic and non-pathogenic

The pathogenic/non-pathogenic approach was used in the probability of being recessive 

(p(rec))18, functional indispensability score (FIS)34, and gene pathogenicity prediction 

(GPP)3 studies. Non-pathogenic genes were selected based on homozygous LoF variants

in control individuals, whereas pathogenic gene sets varied in different studies3,18,34. 

MacArthur et al.18 used recessive disease genes (p(rec)), Khurana et al.34 used essential 

genes in which homozygous LoF variants result in lethal or infertility phenotypes (FIS),

He et al.3 used Mendelian disease genes with various inheritance patterns (GPP). 

However, several subsequent studies highlighted that p(rec) and FIS scores were similar

or more effective than p(HI) scores in their ability to prioritise HI and AD genes35–37. 

Therefore, although these studies aimed to prioritise different groups of genes (essential,

recessive and all Mendelian disease genes, respectively), technically, all of these models

were trained to distinguish non-pathogenic (LoF-tolerant) from some subset of 

pathogenic genes. From this perspective, GPP was trained on the most representative set

of pathogenic genes. Moreover, although the GPP model performance was not 

compared with p(rec) and FIS models, considering the 6-7 year interval between these 

studies, it is likely to be the most effective due to the more up-to-date features and 

training data.

1.5.3 Models that classify genes as autosomal dominant and recessive

The AD/AR classification approach was used in Inheritance-mode specific 

pathogenicity prioritisation (ISPP)36, DOMINO17 and GPP3 studies. Similarly to HI/HS 

metrics, DOMINO used a single ML model to distinguish dominant and recessive 

genes17, whereas ISPP and GPP studies developed independent models to produce 

dominant and recessive scores3,36. These studies provide a potential solution for the 

prioritisation of at least one major group of genes (AD) and, therefore, will be reviewed 

separately.
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Hsu et al.36 proposed a novel approach to classify genes by inheritance modes instead of

haploinsufficiency. They developed three models to predict AD, AR and X-linked (XL) 

disease genes. The procedure used to create ML models was not clearly described in 

their paper, but it included extensive feature tuning and usage of 100,000 random 

selected control sets of genes. However, the number of genes predicted (probability ≥ 

0.5) to be AD (867), AR (1,479) and XL (179) in the whole gene dataset (18,859) was 

suspiciously similar to the number of genes used to train the models (876, 1,500, 182, 

respectively). Moreover, there were sudden drops in probability values right after 0.5 

thresholds in all gene lists (e.g. AD genes ranked 867 and 868 had AD probabilities 0.51

and 0.34, respectively). Hsu et al.36 did not provide specific lists of AD, AR and XL 

genes used to train the models, but stated that they used gene annotations from Clinical 

Genomic Database (CGD)73. Since then, this database was updated and contained 1,259 

AD, 2,177 AR, and 230 XL genes on March 2021. Consequently, a thorough check of 

whether the genes used to train the models and those predicted were the same was 

impossible. In our study, we performed an analysis using a more up-to-date version of 

the CGD database, and most of the genes predicted to be AD, AR and XL by ISPP were 

known disease genes (94.0%, 94.1% and 96.6%, respectively). Therefore, ISPP models 

are probably extremely over-fitted and basically predicts only genes from the training 

dataset to be disease causing with probability ≥ 0.5.

Hsu et al.36 computed AD, AR and XL gene ranks by sorting genes by predicted 

probabilities and suggested estimating gene inheritance based on the highest rank. To 

further validate the ISPP models performance, they demonstrated that ISPP AD and AR 

scores were statistically significantly (P ≤ 2.206E-5) different in several recessive gene 

sets (n = 128, n = 107, n = 206) not used in cross-validation. They also demonstrated the

applicability of this approach on a small set of preselected novel disease genes (5 AD, 5 

AR, and 13 XL). Although such evaluation did show that ISPP scores had some 

predictive power, we argue that it was not sufficient to understand their usefulness, 

especially considering that the performance of other metrics on these datasets was not 

shown.
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Quinodoz et al.17 developed a model (DOMINO) that can be used to prioritise AD 

dominant genes by training it on a manually curated subset of AD and AR genes. The 

training set consisted of genes associated exclusively with AD or AR non-cancer clinical

phenotypes reported in two or more pedigrees. Genes associated with both AD and AR 

diseases (n = 78) were excluded from the training dataset. However, the evaluation of 

DOMINO scores on the final gene dataset (n = 17,998) showed that these genes were 

almost equally likely to be predicted as AD (55.1%) and AR (44.9%), which was 

considered to be evidence of the absence of an artifactual bias in the model. The 

evaluation also showed that almost all of the genes from a set of “well-known false 

positives for rare conditions in genome-wide screens”74 (i.e. non-pathogenic) had less 

than 0.2 probability of being AD based on DOMINO model predictions17. However, we 

note that more than half of the genes from the final dataset (n = 10,198, 56.7%) were 

assigned AD probability less than 0.217. We state that it would be reasonable to assume 

that, generally, non-pathogenic gene properties should have more extreme values than 

AR genes (e.g. more tolerant to LoF variation, have fewer network interactions). 

Therefore, AR genes should be predicted more likely to be AD than non-pathogenic 

genes. However, this might not be true for some of the features used in the DOMINO 

model.

For example, the second most informative feature (weight = 19.2%) used in the 

DOMINO model was one of the three interdependent ExAC LoF intolerance metrics 

(i.e. all three metric values sum to 1 for each gene), that represented gene probability of 

being recessive12,17. Quinodoz et al.17 considered using the other two ExAC metrics that 

represented gene probability of being haploinsufficient and null (i.e. non-pathogenic), 

but they were filtered out by the feature selection procedure. The training dataset 

consisted of AD and AR genes with average ExAC probabilities of being recessive of 

0.297 and 0.689, respectively. Therefore, the model was trained that genes with low 

metric values were more likely to be AD. 

However, the final dataset also contained non-pathogenic genes that, similarly to AD 

genes, could have low ExAC probabilities of being recessive and high probabilities of 

being null12, that were not considered by the model17. Moreover, three features of the 
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DOMINO model with a cumulative weight of 47.5% were based on the number of gene 

protein-protein interactions (PPI) with AD genes in various PPI sub-networks in the 

STRING database75. Although it is known that non-pathogenic genes have significantly 

less PPI than AR genes18,34, the degree to which non-pathogenic genes had less PPI with 

AD genes than AR genes, was not assessed in this or previous studies. Therefore, 

although the DOMINO model could be used to prioritise candidate AD genes, its ability

to distinguish AR and non-pathogenic genes was not evaluated and could be low since 

model features were selected for a different task.

He et al.3 developed the gene dominance prediction (GDP) and gene recessive 

prediction (GRP) models that were supposed to be used in combination with the gene 

pathogenicity prediction (GPP) model to identify gene inheritance. All models were 

developed using the same ML algorithm (random forest), but with different feature sets. 

However, while the GPP model was trained and tested on different datasets, GDP and 

GRP models were developed using four-fold cross-validation called “cross-testing”. The

final models were trained on the best performing subset of the training genes (i.e. 75% 

of the training data). Disease genes used to train GDP and GRP models were not 

provided and, since the models were independent, these could be two different subsets. 

Considering that the training dataset consisted of most genes with well-known disease 

inheritance patterns (n = 2,827), this approach made GDP and GRP scores practically 

incomparable for future studies due to the lack of known disease genes that were not 

used to train the models and can be used for testing. Moreover, in the training of both 

models, genes associated with both inheritance types (AD, AR) were used as negative 

samples. We find this approach controversial for two reasons.

First, Quinodoz et al.17 showed that genes associated with both inheritance types were 

almost equally likely to have properties of each class. Therefore, incorporating these 

genes into the negative training set might be similar to labelling some of the positive 

samples as negatives. Second, predictions of the independent models are harder to 

interpret since they do not sum to one in each gene. He et al.3 suggested that GPP scores

should be given higher priority than GDP and GRP. However, ~43% (2,116/4,942) of 

the genes predicted to be dominant were also predicted to be recessive (GPP ≥ 0.5 and 
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GDP ≥ 0.5 and GRP ≥ 0.5). Although the more likely mode of inheritance can be chosen

by comparing GDP and GRP probabilities in each gene, the effectiveness of this 

approach was not evaluated in the original study3. For example, this might be suitable 

for genes with a high probability of being dominant or recessive, since only ~11% 

(117/1,091) of the genes predicted to be dominant with probability ≥ 0.8 were also 

predicted to be recessive with the same probability threshold. However, ~35% 

(553/1,559) of the genes that were predicted to be pathogenic (GPP ≥ 0.5) and had GDP 

≥ 0.5 and < 0.6, also had GRP probabilities in the same range. Moreover, GDP and GRP

model performance was not compared with previous solutions, although He et al.3 

reused DOMINO model features to solve the same gene classification problem 

(AD/AR). Therefore, the effectiveness of GDP and GRP models is unclear and hard to 

verify due to the lack of sufficient number of disease genes that were not used to train 

the models.

1.5.4 Machine learning algorithms used to build the models

The choice of machine learning algorithm depends on various factors of a task, 

including but not limited to the size of available training data, number of features, 

sensitivity to over-fitting, ability to handle sparse/missing/various types of data, and the 

importance of explainability of results76. The gene classification models discussed were 

built using various ML algorithms (Table 1.3)3,15,17,18,34–38, but the most commonly used 

ones were linear discriminant analysis (LDA)15,17,18 and random forest (RF)3,36,38, each of 

which was used in three studies. In five studies (p(rec), FIS, GHIS, ISPP, Episcore), 

methodological reasons for selection of the used ML algorithms (LDA, logistic 

regression (LR), support vector machine (SVM), RF, RF, respectively) were not 

explained18,34–36,38. Three studies (p(HI), HIPred, DOMINO) highlighted that they 

selected ML algorithms (LDA, gradient boosting machines (GBM), LDA, respectively) 

due to their ability to estimate relative feature weights15,17,37. Shihab et al.37 (GHIS) and 

He et al.3 (GPP) stated that they selected GBM and RF, respectively, due to their ability 

to handle heterogeneous features and samples with missing feature values.

In five studies (p(rec), FIS, ISPP, DOMINO, GPP), the performance of alternative 

algorithms on the same feature data was not evaluated3,17,18,34,36. Huang et al.15 (p(HI)) 

compared LDA and SVM algorithms performance. They observed similar performance, 
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and selected LDA as a more straightforward solution. Steinberg et al.35 (GHIS) 

compared linear and radical SVM kernels performance. Radical kernel performed 

significantly better on the training data (well-studied genes) and significantly worse on 

the testing data (candidate disease genes) than a more simplistic linear kernel. 

Therefore, the latter was used in the final GHIS model. Shihab et al.37 investigated three

approaches: 1) train GBM directly on all features; 2) use the various base kernel for 

different feature groups and then train SVM on a composite kernel (i.e. multiple kernel 

learning); 3) select the best algorithm for each feature group (complete list of 

considered ML classifiers was not specified, but it included naive Bayes, RF, and SVM)

and then LR on their predictions (i.e. stacking). Parameters of individual classifiers in 

all cases were optimised via 10-fold cross-validation (CV). The first and the simplest 

approach (also used by all other studies3,15,17,18,34–36,38) performed the best. Han et al.38 

(Episcore) compared RF and two SVM algorithms, and selected the former due to its 

superior performance. Considering that the simplest solution was often the best, or the 

only one investigated/reported, we concluded that the development of supervised ML 

methods for gene classification was driven by improvements of feature and training 

data. Therefore, any ML algorithm that fits the feature data used and provides feature 

weights can be used in future studies.

1.5.5 Features used to build the models

In the early studies (p(HI), p(rec), FIS)15,18,34, network-based features were the most 

influencial (p(HI), FIS) or, in the case of p(rec), one of two features used for gene 

classification. Various approaches were used to convert network interaction data into 

gene-level features. Huang et al.15 and MacArthur et al.18 measured proximity to known 

positive samples (HI and recessive genes, respectively). Khurana et al.34 analysed gene 

interactions in various networks and used a degree of centrality in regulatory genetic 

and metabolic networks, and a total number of networks in which the gene was present, 

as features. Steinberg et al.35 measured distance to positive samples (HI), but counted 

only 20 links with the highest weights. Quinodoz et al.17 counted direct interactions with

positive samples (AD) in three protein-protein interaction sub-networks (based on 

combined, experimental, and text-mining evidence of interaction) and also used upper 

limits (8, 3, 3, respectively).
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Interestingly, in all studies where gene labels from the training data were used to 

construct features15,17,18,35, only interactions with positive samples were analysed. Hsu et 

al.36 model evaluation showed that p(rec) was more effective at prioritising HI genes 

than p(HI), although the former analysed interactions with recessive genes18. Therefore, 

analysing the difference between gene interactions with positive and negative samples 

(e.g. AD/HI and AR) is an unexplored and potentially fruitful area for further work.

Despite the informativeness of network-based features for gene classification, their 

usage was also criticised35. Steinberg et al.35 showed that known disease genes were 

more studied based on the number of mentions in PubMed papers. Consequently, these 

genes were also represented in more gene networks and had many interactions in 

manually constructed networks. Their evaluation of previous models, that were heavily 

influenced by network-based features (p(HI) and FIS), highlighted that they were less 

effective for the prediction of less-studied genes (e.g. candidate disease genes with de 

novo variants in Autism cohorts). Steinberg et al.35 suggested limiting usage of gene 

networks to those based on co-expression data that they found to be unbiased. Steinberg

et al.35 did not provide feature weight distribution in their model (GHIS), but in a Shihab

et al.37 model (HIPred), features based on variant data in a large population database 

(ExAC) cumulatively were ~2 times more influential than those based on cell-type 

specific interactomes.

Nevertheless, non-co-expression network-based features were still used in gene 

classification models (DOMINO17, GPP3) developed after the Steinberg et al.35 study. 

For example, in the DOMINO model, the cumulative weight of features based on 

protein-protein interaction data was 47.5%17. To demonstrate that their model can 

effectively predict less-studied genes, Quinodoz et al.17 constructed a validation dataset 

consisting of disease genes discovered after the PPI network data used was released75. 

The model showed excellent performance on this dataset of 0.92 AUC. DOMINO also 

could effectively predict candidate disease genes with two or more protein-altering 

variants in different individuals in cohorts with intellectual disability and epilepsy. 

These genes were statistically significantly enriched in genes with a high probability 

(≥0.95) of being AD, with 18.9 and 43.1 enrichment scores respectively17. Therefore, it 
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could be possible to develop unbiased models using various gene network data by 

limiting the influence of the number of interactions on feature values (e.g. usage of 

upper limits as in the Quinodoz et al.17 study).

Features based on variant data in large population databases were not used or had minor

significance in the early studies (p(HI), p(rec), FIS)15,18,34 because population databases 

were not large enough at that time. However, in most models developed after the release

of large population databases (e.g. ESP56, ExAC12), and the development of self-

sufficient gene variation intolerance metrics (e.g. RVIS26, missense z-scores27, ExAC 

p(LI)/p(Rec)12), this group of features became one of the most influential3,17,35–37. For 

example, in the DOMINO model, these features had a cumulative weight of 37.8% and 

were outperformed only by network-based features with a cumulative weight of 

47.5%17. However, in the HIPred model, which used only co-expression network data, 

this group was the most influential with a cumulative weight of at least 45% based on 

the top ten features, and missense z-score was the most informative feature with a 

weight of 34% (the second-best feature weight was only 9%)37. Authors of supervised 

ML models also tried to develop custom features based on this data3,17,35–37, but they 

were usually less effective than self-contained gene variation intolerance metrics 

published as independent studies. For example, the DOMINO model used the ratio of 

splice donor to synonymous variants (weight = 5.7%)17 in addition to the ExAC p(Rec) 

metric (weight = 19.2%), that was based on splice acceptor/donor and stop gained 

variant data12. Hsu et al.36 (ISPP) and Shihab et al.37 (HIPred) also reported that a 

number of variants of various types (e.g. missense) were informative features, but we 

argue that these values must not be used as features since they, by design, are biased by 

gene coding sequence length. A notable exception could be the non-synonymous 

variation depletion score ("NoVaDs") developed by Steinberg et al.35 as a feature for the

GHIS model that outperformed the RVIS metric. NoVaDs was based on a similar 

principle as RVIS, calculated as a ratio between common non-synonymous and all 

variants (including synonymous) in each gene26. However, NoVaDs used the same 

numerator with a number of rare non-synonymous variants as a denominator and, 

therefore, was not affected by codon usage differences between genes35. Overall, the 

development of novel gene variation intolerance metrics can be a fruitful area for future 
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research since they are free from study bias and can be used both by themselves and as 

features in ML models to prioritise candidate disease genes.

Features based on evolutionary data, such as ratio of non-synonymous and synonymous 

substitution rates (dN/dS) in homologues genes between humans and other species67 

(primarily primates) and promoter conservation scores (measured by average 

GERP77/PhyloP78 scores), played a significant role in early studies (p(HI), p(rec))15,18. In 

the p(HI) model (based on four features, Table 1.3), the cumulative contribution of dN/

dS and promoter conservation (GERP) features was similar to a network-based feature, 

whereas15, in the p(rec) model (based on two features), the dN/dS feature contribution 

was higher than a network-based one18. The dN/dS features were used by most models 

(p(HI), p(rec), FIS, GHIS, ISPP (indirectly by using other model scores as features), 

HIPred, GPP)3,15,18,34–37. However, their weights in more recent models decreased37, 

probably due to the usage of variant based features (e.g. missense z-scores) that were 

superior in prioritisation of disease genes27. In the HIPred model, two dN/dS features 

were among the top ten features, but their cumulative weight was more than three times 

lower than the missense z-score37. In the DOMINO model, which also used missense z-

score as a feature, dN/dS features did not survive the feature selection procedure17. 

However, DOMINO, similarly to the p(HI) model, used promoter conservation (PhyloP)

as a feature (weight = 11.4%)17, possibly because features based on variant data did not 

represent constraint of non-coding gene regions. Although protein-coding evolutionary 

data was less informative than variant data for prioritising disease genes27, these two 

sources could still complement each other in combined features3. For example, in the 

GPP model, 4 out of 10 top features were calculated based on damage prediction of 

variants in the ExAC database by various tools that used evolutionary conservation 

data3.

Features based on network, variant, and evolutionary data had the largest contribution in

most models (e.g. 96.7% in DOMINO17), but other data sources were also used to 

construct features. For example, the Episcore model was developed using only 

epigenomic data to construct features38. However, the Episcore model performance was 

not compared with any other reviewed model, all of which used features from various 
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data sources. Moreover, the studies used different feature selection procedures (e.g. 

Huang et al.15 aimed not to use features from the same data sources if possible) and, 

consequently, the number of features used could differ dramatically in various models. 

For example, GPP and GDP models used 201 and 183 features, respectively, to 

prioritise pathogenic and AD genes3, whereas p(rec) and DOMINO models used only 2 

and 8 features, respectively, for the same tasks17,18. Considering that some features could

be biased, interpretability of model predictions is essential, and predictions of models 

developed with fewer features are easier to explain. Therefore, future research should 

primarily focus on improving the most influential features based on network, variant 

and evolutionary data.

1.5.6 Challenges in evaluation of model effectiveness

The evaluation and comparison of various ML models developed for gene classification 

is a difficult task for the following four reasons. 

First, studies used different gene categorisation approaches (Table 1.3), and it is unclear 

to what extent it is fair to evaluate model performance on gene categories that they were

not trained to predict. For example, Quinodoz et al.17 proposed the novel AD/AR gene 

categorisation approach, and DOMINO model performance was not compared with 

previous models trained to predict HI genes (p(HI) and GHIS).

Second, models were trained on various gene sets (Table 1.3), and in some studies, 

genes used to train the final models were not reported (p(HI), GDP, GRP, ISPP)3,15,36. 

These genes have to be excluded from any fair comparison, since models can perform 

exceptionally well on their training data. For example, the Episcore model predicted 286

of 287 HI genes from the training dataset to be HI with probability > 0.638. Moreover, 

we previously showed that ISPP models were probably extremely over-fitted to their 

training data. Therefore, fair and simultaneous comparison of multiple models is often 

impossible, or can be performed only on small sets of known disease genes unseen by 

all models.
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Third, almost all models were evaluated using the cross-validation (CV) method (Table 

1.3, note that GPP was trained and tested on different sets3), but these results must be 

interpreted with caution because training sets were often different, and these genes were

also used to select features or tune model parameters. All studies used 10-fold 

CV15,17,18,34–38, except He et al.3 who used 4-fold CV to evaluate the GDP and GRP 

models. The analysis was repeated analysis multiple times (e.g. 30 times15,18,37) to reduce

variability in results, and average Receiver Operating Characteristic (ROC) Area Under 

the Curve (AUC) scores were reported3,15,17,18,34–38. Note that Quinodoz et al.17 and He et 

al.3 stated that they used CV to test their models (DOMINO, GDP, GRP). However, we 

argue that they misused ML terms as testing set by definition can only be used to assess 

the performance of the final model79, whereas they also used this data for feature 

selection3,17. In studies where the comparison with other models was performed at this 

stage, the novel model always outperformed all competitors36,37. Nevertheless, since it 

was the most common evaluation technique used in all studies, we reported these results

in Table 1.3.

Finally, the models were often tested on gene categories that were not used to train the 

models (e.g. p(HI) was developed to predict HI genes, but tested on AD and AR gene 

sets15) or on candidate disease genes that could be false positives37. The latter 

assessment was critical since many models relied on gene network data in which well-

known disease genes were over-represented and could, consequently, be less effective at

predicting novel disease genes35. Orthological mouse genes in which heterozygous 

knockout result in severe/lethal phenotypes, was often considered as candidate HI/AD 

disease genes (p(HI), GHIS, HIPred)15,35,37, but it is important to note that human and 

mouse phenotypes might not be identical80. Moreover, Shihab et al.37 showed that 

although mouse orthologue datasets could consist of less-studied genes based on the 

median number of publications in PubMed, at least in their study, the difference was not

statistically significant. Another group of less-studied genes used to test the models 

were genes affected by de novo variants in disease cohorts (e.g. developmental disorders

or epilepsy (GHIS, DOMINO, HIPred, Episcore))17,35,37,38. However, these gene sets 

were often small and expected to contain false-positive disease genes (e.g. 

approximately half of de novo LoF variants in Autism cohorts is expected to be 

benign81) and, therefore, might be unreliable for model effectiveness estimation. For 
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example, in the Steinberg et al.35 study, GHIS model outperformed RVIS by ~0.07 and 

~0.10 AUC on 50 and 49 candidate disease gene sets, respectively. However, in the 

Shihab et al.37 study, RVIS outperformed the GHIS model by ~0.17 and ~0.06 AUC on 

55 and 61 candidate disease gene sets, respectively. Both studies selected candidate 

disease genes based on LoF de novo variants in autism cohorts from various studies and 

tested models on similar-sized datasets, but the results were dramatically different35,37. 

Therefore, tests on small gene sets must be interpreted with caution, but especially when

less studied candidate disease gene sets were used.

1.5.7 Summary and under-researched areas

We reviewed nine studies that developed supervised ML models for gene 

categorisation3,15,17,18,34–38. Four studies used the HI/HS categorisation approach (p(HI), 

GHIS, HIPred, Episcore)15,35,37,38 that was criticised for the usage of non-representative 

training data (e.g. in three studies the HS set did not include profiles of genes unaffected

by structural variants)36. Moreover, considering that HI was a subset of dominant genes, 

three more recent studies (ISPP, DOMINO, GPP) argued that genes should be 

categorised based on inheritance patterns (AD/AR)3,17,36. However, we showed that the 

ISPP study models were probably extremely over-fitted, whereas the GPP study models 

(GDP and GRP) results were not tested (only validated using cross-validation) and were

hard to interpret. Moreover, in both the ISPP and GPP studies, the exact gene list used to

train the inheritance specific models were not reported3,36, making them incomparable 

for future studies. The DOMINO model was trained on a manually curated set of AD 

and AR genes that can be reused in future studies and validated/tested on various other 

known or candidate dominant genes17. However, the DOMINO model was built with the

assumption that all genes had to be categorised as AD or AR (i.e. ignored the existence 

of non-pathogenic genes)17 and, consequently, we argue that it might not be effective at 

distinguishing AR and non-pathogenic genes. Previously, MacArthur et al.18 tried to 

develop such a model (p(rec)), but a subsequent study showed that it could not 

distinguish between AD and AR genes36 and, therefore, was classifying genes as 

pathogenic and non-pathogenic. This categorisation approach was also used in the 

remaining two studies (FIS and GPP)3,34, where the GPP model was trained on a more 

representative and larger set of pathogenic genes. Therefore, with the existing models, 

categorisation of genes into three major groups (AD, AR, non-pathogenic) can be 
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performed by first using the GPP model to distinguish pathogenic and non-pathogenic 

genes, and then using the DOMINO model to classify pathogenic genes as AD or AR. 

However, it is unknown how these two types of gene categorisation models work 

together, especially their ability to distinguish AR genes from other groups.

Therefore, further studies need to either develop a single model or combine predictions 

from multiple models that can classify genes into three major groups by assessing the 

likelihood of a gene harbouring AD, AR and non-pathogenic variants. Developing and 

combining two binary models (AD/AR and pathogenic/non-pathogenic) can be more 

feasible as it will allow direct comparison with existing binary models (DOMINO and 

GPP, respectively), where training datasets can be re-used. Future models have to be 

evaluated on various groups of genes from the final gene list, including those that 

models were not trained to distinguish between (e.g. AD/AR models also have to be 

evaluated on non-pathogenic genes). The development of advanced gene features can 

improve future model performance. Specifically, future AD/AR models might benefit 

from novel network-based features that will be based on the difference between 

numbers of interactions with positive (AD) and negative (AR) samples (previous studies

analysed interactions only with positive samples15,17,18). Considering that most of the top 

features in the GPP model were based on variant data from large populations (some in 

combination with evolutionary data)3, future pathogenic/non-pathogenic models might 

benefit from novel gene variation intolerance metrics. These metrics usually can be used

on their own to prioritise disease genes and as features in future AD/AR models. 

Therefore, in this study we will consider developing novel features as steps towards the 

creation of more efficient gene classification models that have to be able to categorise 

genes as AD, AR, and non-pathogenic.

1.6 Aim and objectives

One of the reasons why the identification of novel human Mendelian disease genes is a 

challenging task is that many genes can tolerate deleterious variants in one or even both 

copies without developing pathogenic phenotypes. The aim of this study was to develop

computational metrics that can be used to prioritise candidate Mendelian disease genes 

(i.e. classify genes as disease and non-disease) and distinguish them by probable 
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inheritance patterns (i.e. classify disease genes as dominant and recessive). The review 

of existing methods highlighted several under-researched areas. Specifically, metrics 

based on variation data from large population databases were calculated without 

considering variant zygosity and their location within genes. Moreover, all existing 

supervised machine learning models were developed to prioritise candidate disease 

genes from only one out of three groups (dominant, recessive, or non-disease). For 

example, several models that used protein-protein interaction data considered 

interactions only with one group of genes (e.g. only dominant) to classify genes, and 

very little attention has been paid to how models trained to predict genes from various 

groups work together. Based on these gaps in previous studies, we defined the following

objectives whose accomplishment could result in the development of improved metrics 

for candidate disease genes prioritisation:

1. Examine whether rare variants with deficiency of homozygous cases in a large 

population are more frequently observed in known recessive disease genes and, 

consequently, can be used as a feature for detection of novel recessive disease 

genes (addressed in Chapter 2).

2. Develop metric(s) that measure the randomness of variant distribution within 

genes and investigate its correlation with disease gene inheritance patterns 

(addressed in Chapter 3).

3. Develop metric(s) that can predict novel dominant and recessive disease genes 

by simultaneous analysis of protein-protein interactions with known genes from 

both groups (addressed in Chapter 4).

4. Combine features/metrics developed and proved to be effective in previous 

objectives with other gene biological properties to develop the novel supervised 

model(s) for gene classification that can be used to categorise genes into three 

classes: dominant, recessive and non-disease (addressed in Chapter 4).
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1.7 Thesis structure

This thesis is written in the journal format since the fulfilment of the objectives resulted 

in three self-contained studies with little content overlap, two of which were published 

at the time of submission. The rest of this thesis is structured as follows:

Chapter 2 measured deviations from Hardy-Weinberg Equilibrium for relatively rare 

variants (AF<0.05) in gnomAD to understand if variants with heterozygote excess are 

enriched in known recessive disease genes and, consequently, can be used to predict 

novel recessive disease genes. This study is published, and the thesis version has only 

minor stylistic differences.

Chapter 3 developed a gene variation intolerance ranking (GeVIR) system by measuring

how unevenly variants were distributed in a gene relative to other genes. This study is 

published in a short letter format with supplementary methods and notes, and the thesis 

version was re-written in a regular journal article format. The results in both versions 

are the same, but they are described in more detail in the thesis version.

Chapter 4 first developed multiple supervised machine learning models based on gene 

protein-protein interactions with known dominant, recessive disease genes, and 

candidate disease genes based on variation intolerant scores. Then predictions from 

these models and various other gene properties (including GeVIR scores) were used as 

features to develop two supervised machine learning models that classified genes as 

pathogenic/non-pathogenic and dominant/recessive. Finally, predictions from these two 

models were combined into a single continuous gene ranking metric that can be used to 

measure gene predisposition to disease inheritance patterns (DIP). This study is 

unpublished but is formatted as a journal article and is ready for publication.

Chapter 5 summarises research contributions, provides directions for future work and 

makes concluding remarks.
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1.8 Publications and presentations

The work presented in this thesis has resulted into two publication:

• Abramovs, N., Brass, A., and Tassabehji, M. (2020). Hardy-Weinberg 

Equilibrium in the Large Scale Genomic Sequencing Era. Front. Genet. 11. 

doi:10.3389/fgene.2020.00210.

• Abramovs, N., Brass, A., and Tassabehji, M. (2020). GeVIR is a continuous 

gene-level metric that uses variant distribution patterns to prioritize disease 

candidate genes. Nat. Genet. 52, 35–39. doi:10.1038/s41588-019-0560-2.

Both papers were co-authored by my supervisors May Tassabehji and Andrew Brass. 

NA, MT, and AB conceived and designed the research. NA executed the analysis. NA 

and MT performed the primary writing. MT and AB supervised all aspects of the 

research, reviewed, and edited the manuscript.

In addition, the work described in Chapter 3 was also presented at:

• Abramovs N. Gene Variation Intolerance Rank – an in silico approach to 

prioritise disease candidate genes. Research Symposium. 2019. At The 

University of Manchester, School of Computer Science.

• Abramovs N. and Tassabehji M. GeVIR is a continuous gene-level metric that 

uses variant distribution patterns to prioritize disease candidate genes. Video 

Call. Feb 20, 2020. At The National Human Genome Research Institute Genome

Sequencing Program Methods Working Group (chaired by Monkol Lek).
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Chapter 2  

Hardy-Weinberg equilibrium in the large

scale genomic sequencing era

2.1 Abstract

Hardy-Weinberg Equilibrium (HWE) is used to estimate the number of homozygous 

and heterozygous variant carriers based on its allele frequency in populations that are 

not evolving. Deviations from HWE in large population databases have been used to 

detect genotyping errors, which can result in extreme heterozygote excess (HetExc). 

However, HetExc might also be a sign of natural selection since recessive disease 

causing variants should occur less frequently in a homozygous state in the population, 

but may reach high allele frequency in a heterozygous state, especially if they are 

advantageous. We developed a filtering strategy to detect these variants and applied it 

on genome data from 137,842 individuals. The main limitations of this approach were 

quality of genotype calls and insufficient population sizes, whereas population structure 

and inbreeding can reduce sensitivity, but not precision, in certain populations. 

Nevertheless, we identified 161 HetExc variants in 149 genes, most of which were 

specific to African/African American populations ( 79.5%). Although the majority of ∼79.5%). Although the majority of 

them were not associated with known diseases, or were classified as clinically “benign”,
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they were enriched in genes associated with autosomal recessive diseases. The resulting 

dataset also contained two known recessive disease causing variants with evidence of 

heterozygote advantage in the sickle-cell anemia (HBB) and cystic fibrosis (CFTR). 

Finally, we provide supporting in silico evidence of a novel heterozygote advantageous 

variant in the chromodomain helicase DNA binding protein 6 gene (CHD6; involved in 

influenza virus replication). We anticipate that our approach will aid the detection of 

rare recessive disease causing variants in the future.

2.2 Introduction

The Hardy-Weinberg Equilibrium (HWE) is an important fundamental principle of 

population genetics, which states that “genotype frequencies in a population remain 

constant between generations in the absence of disturbance by outside factors”82. 

According to HWE, for a locus with two alleles A and a with corresponding frequencies

p and q, three genotypes are possible AA, Aa, and aa with expected frequencies p2 , 2pq,

q2 , respectively71. However, various factors, including mutation, natural selection, non-

random mating, genetic drift, and gene flow can cause deviations from HWE71. Positive 

and negative assertive mating might result in deviations from HWE due to heterozygote 

deficiency or excess respectively, although the latter is more rarely observed in 

humans83. Non-random mating due to geographical location might be a common cause 

of deviations from HWE due to heterozygous deficiency in large populations of 

different ethnicities84. If a population consists of several sub-populations and individuals

randomly mate within, but not between sub-populations, then homozygous alleles in the

overall population will be observed more frequently than expected by HWE (“Wahlund 

effect”)85. A technical cause of deviations from HWE, sometimes observed in population

studies, is sequencing errors71,72. Previous studies found that variants deviated from 

HWE mainly due to heterozygote excess (60– 69% of the cases)71,72 and deviations were

11 times more frequently observed in unstable genomic regions such as segmental 

duplications and simple tandem repeats71, that are prone to sequencing errors. These 

issues were addressed in the Genome Aggregation Database (gnomAD v2.1.1)11, 

currently the largest publicly available population variant database (137,842 

predominantly healthy individuals from seven ethnic populations). Variants with 

extreme heterozygote excess in the database were excluded by gnomAD, whereas those 

located in repeat regions were marked as dubious.
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A factor causing deviations from HWE that has not been investigated on a large scale, is

natural selection. Although individuals with known severe pediatric diseases were 

excluded from gnomAD11, some disease causing variants persisted60. For example, the 

African specific ( 91% of the carriers) ENST00000335295.4:c.20A>T (rs334, note that∼79.5%). Although the majority of 

variants of the same type that are located at the same position share the same rs number 

in dbSNP86) variant in HBB gene, is a known recessive pathogenic variant which causes 

sickle-cell disease (MIM:603903)87, but it is present in four African individuals (who 

could have sickle-cell disease) in a homozygous state in gnomAD. Moreover, this 

variant is present in a heterozygous state in 9% (1,113/12,482) of African individuals ∼79.5%). Although the majority of 

(i.e., unaffected carriers), which is significantly more ( 2.5 times) than the expected ∼79.5%). Although the majority of 

number ( 439 individuals) according to HWE (∼79.5%). Although the majority of P = 1.38E-07), for that number of 

homozygous individuals. The presence of a recessive disease causing variant at a high 

frequency in populations may also be due to over-dominant selection, i.e., a 

heterozygous variant provides some advantage to carriers88, as is the case for 

ENST00000335295.4:c.20A>T variant in HBB gene, which provides carriers protection 

from malaria (MIM:611162)89. This example illustrates that variants deviating from 

HWE due to heterozygote excess may also be recessive disease causing and possibly 

heterozygote advantageous. Here we developed a variant filtering strategy to detect 

novel potential disease causing variants that might deviate from HWE due to natural 

selection, and applied it to population data from gnomAD.

2.3 Methods

2.3.1 Collecting Gene and Variant Datasets

The gene dataset, with disease phenotype and inheritance data from Online Mendelian 

Inheritance in Man (OMIM) database41, was obtained from Gene Discovery Informatics 

Toolkit (GDIT)24 and consisted of 19,196 protein coding genes. Population variant data 

with clinical annotation (ClinVar)90 was obtained from gnomAD11 via API 

(https://gnomad.broadinstitute.org/api, accessed January 2020). The database consisted 

of 137,842 individuals from seven populations: Non-Finnish European (NFE, n = 

64,603), Latino/Admixed American (AMR, n = 17,720), South Asian (SAS, n = 
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15,308), Finnish (FIN, n = 12,562), African/African American (AFR, n = 12,487), East 

Asian (EAS, n = 9,977), and Ashkenazi Jewish (ASJ, n = 5,185)11. The initial variant 

dataset consisted of more than 17 million unique variants in 18,214 genes whose 

symbols in the GDIT dataset were found in gnomAD. At the time of the analysis 

performed in this chapter (January 2020), gnomAD did not store Ensembl transcript 

versions, which is an issue since they are required to report variants in HGVS-compliant

format91. The transcript versions were later added to the gnomAD, and we updated 

variant transcript information via gnomAD API (accessed April 2022). There should be 

no inconsistency since the gnomAD database, and Ensembl Variant Effect Predictor 

(VEP)92 versions were the same (2.1.1 and 85, respectively). Still, we note that 

everything except transcript versions is reported as it was at the time of the original 

analysis (January 2020).

2.3.2 Filtering Initial Variant Dataset

Variants which satisfied the following criteria were selected for initial analysis of 

deviations from HWE: (i) Variant is located in the canonical transcript [as defined in 

gnomAD who used GENCODE93 v19 annotation]; (ii) Variant is located on an 

autosomal chromosome; (iii) Variant is protein coding, i.e., has one of the following 

Variant Effect Predictor (VEP)92 version 85 consequences: “transcript_ablation”, 

“splice_acceptor_variant”, “splice_donor_variant”, “stop_gained”,  

“frameshift_variant”, “stop_lost”, “start_lost”, “transcript_amplification”, 

“inframe_insertion”, “inframe_deletion”, “missense_variant”, 

“protein_altering_variant”,  “splice_region_variant”, 

“incomplete_terminal_codon_variant”, “start_retained_variant”, 

“stop_retained_variant”, “synonymous_variant”; (iv) Variant Allele Frequency (AF) is 

>0.001 in at least one population; (v) Variant site is covered in ≥80% of the individuals 

in each seven populations; (vi) Variant is “PASS” quality in exome and genome datasets

(if present in both); (vii) Variant site does not contain frequent alternative variants that 

could compromise statistical results of the biallelic HWE test (sum of AFs of all 

alternative variants seen at the same chromosomal position in the same population must 

be <0.001).
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2.3.3 Statistics and Measuring Deviations From HWE

The original code to measure statistical significance of variant deviation from HWE, 

developed by Wigginton et al.94, calculated P (two-sided) as the probability of observed 

sample plus the sum of all probabilities of more extreme cases. However, Graffelman 

and Moreno95 later showed that mid P, calculated by adding only half of the probability 

of observed sample to the sum of all probabilities of more extreme cases, was less 

conservative (i.e., mid P is always smaller than two-sided P) and showed better 

potential for testing deviations from HWE of rare variants. Therefore to create a python 

implementation of Graffelman and Moreno95 method, we modified Wigginton et al.94 

code to return mid P. Variants deviating from HWE with mid P ≤ 0.05 were considered 

to be statically significant. For all other cases two-sided Fisher’s exact test was used 

(SciPy python package96), and the results were reported as P and fold-enrichment (FE), 

defined as the ratio of the two proportions.

2.3.4 Selecting Candidate Disease/Heterozygote Advantageous 
Variants

Variants that satisfied the following criteria were selected into a final dataset of 

candidate disease/heterozygote advantageous variants: (i) Variant AF is ≤0.05 in each of

the ethnic populations [more common variants are classified as “benign” according to 

American College of Medical Genetics and Genomics (ACMG) guidelines65; and are 

more likely to deviate from HWE due to genotyping errors97]; (ii) Variant has 

statistically significant (P ≤ 0.05) excess of heterozygotes in at least one ethnic 

population; (iii) Variant has excess of heterozygotes in each population (not required to 

be statically significant). This filter was added as variants with heterozygote excess in 

one ethnic population but not in the others, might be a result of gene flow; (iv) Variant is

not located in a segmental duplication98 or tandem repeat region99 (loci obtained from 

UCSC Genome Browser71,100; (v) 50% of heterozygote variant carriers in the overall 

population have allele balance (AB), defined as the proportion of reads that support the 

minor allelea, between 0.4 and 0.55 (AB thresholds are justified in the Results section). 

After applying these filters the resulting dataset consisted of 299 variants located in 267 

genes.

a https://gatk.broadinstitute.org/hc/en-us/articles/360036479772-FilterVcf-Picard-  
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A recent investigation of the deviation from HWE of the CCR5-Δ32 (rs333, 

ENST00000343801.4:c.554_585del) allele in gnomAD showed that excess of 

heterozygotes can be caused by misclassification of homozygous individuals as 

heterozygous with high AB97. To minimize the number of false positive candidate 

disease/heterozygote advantageous variants, HWE statistics for them were recalculated 

considering heterozygous individuals with AB > 0.8 as homozygous, which is a more 

conservative than the 0.9 AB threshold used in the original study97. AB data was not 

available for each ethnic population, so an assumption was made that novel 

homozygous individuals were distributed among populations in the same proportions as 

heterozygotes. After excluding variants that were no longer deviating from HWE due to 

heterozygote excess, the final dataset consisted of 161 variants located in 149 genes 

(Appendix Table A.1). HWE statistics of these variants was recalculated using gnomAD

v358 data (71,702 whole genome samples mapped to build GRCh38), which contained a 

larger AFR population ( 1.7 times larger; 21,042 individuals, all other populations ∼79.5%). Although the majority of 

were smaller than in gnomAD v2.1.1). Chromosome coordinates were mapped with 

LiftOver100.

2.4 Results

After applying initial filters on variant data from seven ethnic populations (Figure 2.1a),

the resulting dataset consisted of 382,506 unique variants (803,584 if counted in each 

population separately, Figure 2.1b) located in 16,871 genes. Exclusion of rare variants 

(AF < 0.001) from the analysis reduced the possible impact of population size (Figure 

2.1a) on the number of variants analyzed (Figure 2.1b). For example, the Finnish (FIN) 

populations was 5 times smaller than the Non-Finnish European (NFE) population ∼79.5%). Although the majority of 

(12,562 and 64,603 individuals, respectively), but had a similar number of unique 

variants (85,553 and 92,458 variants, respectively). However, population size had a 

significant effect on the ability of the HWE test to detect Heterozygote Excess (HetExc)

deviation of rare variants: the larger the population, the smaller the AF threshold after 

which statically significant HetExc can be reported. The minimal HetExc AF thresholds 

(i.e., assuming complete absence of homozygotes) are shown on Figure 2.1c, note the 

negative correlation with population sizes shown in Figure 2.1a.
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Another factor that could affect detection of HetExc variants, was the degree to which 

HWE assumptions were satisfied in each population. For example the “random mating” 

assumption would be violated in populations with a high degree of consanguineous 

marriages or consisting of individuals from several countries, and would result in a 

higher proportion of variants deviating from HWE due to heterozygote deficiency 

(HetDef) (i.e., “Wahlund effect”). To some degree, all populations deviated more 

frequently from HWE due to HetDef than HetExc (Figure 2.1d,e). The largest 

proportion of HetDef variants were observed in South Asian (SAS) and Latino/Admixed
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Figure 2.1: Deviations from Hardy-Weinberg Equilibrium (HWE) in 7 ethnic 
gnomAD populations.



American (AMR) populations, 45.8% and 21.0%, respectively. Consequently, these 

populations also had the lowest proportion of HetExc variants, 0.3% and 0.5%, 

respectively. The lowest proportion of HetDef variants was observed in the Ashkenazi 

Jewish (ASJ) population. However, even in this population, variants deviated from 

HWE due to HetDef 4 times more frequently than due to HetExc, 4.2% and 1.0%, ∼79.5%). Although the majority of 

respectively. Interestingly, the African/African American (AFR) population had the 

second lowest percentage of HetDef variants (6.0%), which outscored the FIN 

population (8.0%), considered as a homogeneous isolate. The largest proportion of 

HetExc variants was in the NFE population (1.7%, 1,574 variants), which had the 

smallest AF threshold for HetExc detection (AF = 0.0072, Figure 2.1c). Despite this, the

AFR population still had the largest absolute number of HetExc variants (1,829). 

Therefore, overall population variant shift from HWE toward HetDef (i.e., the majority 

of the variants have higher than expected homozygous AF) decreased the number of 

statistically significant HetExc variants (especially in SAS and AMR), which can also 

be seen in Figure 2.2 for relatively rare variants (AF < 0.1).Number of (a) individuals 

and (b) variants in each populaton. c) Minimum variant allele frequency (AF) required 

for statistically significant heterozygote excess according to HWE, in the absence of 

homozygous individuals in each population. Percentage of variants (raw numbers are 

shown in b) deviating from HWE due to (d) heterozygote deficiency or (e) heterozygote

excess in each population.
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Populations: Non-Finnish European (a, NFE), Latino/Admixed American (b, AMR), 

South Asian (c, SAS), Finnish (d, FIN), African/African American (e, AFR), East Asian 

(f, EAS), and Ashkenazi Jewish (g, ASJ). Black line represents expected ratio between 

AF and expected homozygous AF according to HWE. Variants where deviation from 

HWE are not significant (P > 0.05) are shown in grey, whereas those that deviate from 

HWE due to heterozygote deficiency or excess are shown in orange and blue 

63

Figure 2.2: Comparison of observed ratio between variant Allele Frequency (AF) 
and homozygous AF with expected ratio according to Hardy-Weinberg 
Equilibrium (HWE) in 7 ethnic gnomAD populations.



respectively. Only variants with 0.001 ≤ AF ≤ 0.05 and homozygous AF ≤ 0.005 are 

shown.

This initial analysis has been performed on variants that remained following the 

gnomAD sequence quality filtering process and might therefore be assumed to be real. 

However, variant databases are known to contain errors that could give a significant 

HetExc signal. To explore this we developed a set of more stringent filters. In particular,

variant properties that could produce a false positive HetExc signal were investigated. 

For this analysis, variants present in multiple populations were counted once, and 

variants with AF > 0.05 in at least one population were excluded. At this stage, only 

variants that had an excess of heterozygotes in all populations, and were statistically 

significant in at least one population were classified as HetExc.

Firstly, to investigate the correlation between HetExc and chromosomal regions prone to

sequencing errors, variants were divided into three groups: (i) “segmental duplication” 

(2,676), (ii) “tandem repeat” (1,182), and (iii) all others named “Ref ” (40,801). HetExc 

variants were significantly more frequent in the “segmental duplication” (FE = 2.5, ∼79.5%). Although the majority of P 

= 2.0E-08) group than in the “Ref ” group, whereas the proportion of HetExc variants in

the “tandem repeat” and “Ref ” groups were almost the same (Figure 2.3a and Appendix

Table A.2). Therefore, HetExc of variants located in segmental duplications might be a 

result of genotyping errors.
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a) Percentage of variants deviating from HWE due to HetExc that are located in tandem

repeat, segmental duplication regions or the reference (“Ref,” all other regions) group. 

b) Distribution of allele balance (AB) between variant carriers in variants from “Ref” 

group (error bars indicate standard deviation). For each variant these statistics are 

aggregated into a single metric that represents cumulative percentage of Variant Carriers

with Normal (0.4–0.55) Allele Balance (VCNAB, e.g., 20.0% + 23.4% + 23.0% = 

66.4%). c) Distribution of variants with various VCNAB percentages in “Segmental 

duplication”, “Tandem repeat” and “Ref” groups. d) Percentage of variants with 

VCNAB < 50% in the whole “Ref” group and a subset of variants with statistically 

significant excess of heterozygotes in “Ref” group. Indicates statistical ∗∗∗∗

significance of p ≤ 0.0001.
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the probability of variant deviation from Hardy-Weinberg Equilibrium (HWE) 
due to heterozygote excess (HetExc).



Secondly, to investigate the correlation between HetExc and allele balance (AB), which 

is a known indicator of systematic genotyping errors101, the AB profile of an average 

gnomAD variant was required. In gnomAD, variant AB data is stored as a number of 

variant carriers (converted to percentages here) in 20 AB groupings (from 0 to 1, 0.05 

group size). Figure 2.3b shows the distribution of AB between variant carriers in 

variants from the “Ref ” group. For an average variant, the majority of variant carriers 

(66.4%) had an AB between 0.4 and 0.55 and were named “Normal” here, because it 

was close to the expected normal 0.5 ratio for heterozygous variants. To aggregate 

variant AB data from 20 groups into a single numeric metric, it was measured as 

percentage of variant carriers with “normal” allele balance (VCNAB), calculated as the 

number of heterozygote variant carriers with AB 0.4-0.55 divided by the total number of

heterozygote variant carriers. Both “segmental duplication” and “tandem repeat” groups

had more variants with high and low VCNAB [80% Confidence Interval (CI) = 33.9-

79.6% and 41.9-81.4%, respectively] than the “Ref ” group (80% CI = 55.6-77.0%), 

which indicates that variants in these regions are more prone to genotyping errors and 

were excluded from further analysis (Figure 2.3c). The minimal VCNAB threshold for 

“PASS” quality variants was defined by a lower bound fraction of 95% CI calculated for

variants from the “Ref ” group (CI = 49.3-82.2%), rounded to 50% (i.e., half of the 

variant carriers must have AB in the range 0.4-0.55). Only 2.9% of variants in the “Ref 

” group would not pass this filter, but the fail rate among HetExc variants would be 

4.9 times higher (∼79.5%). Although the majority of P = 1.9E-17, Figure 2.3d and Appendix Table A.3). Therefore, 

variants with low AB (VCNAB < 50%) might be enriched with genotyping errors and 

were also excluded from further analysis.

Finally, HWE statistics for HetExc variants that were not located in segmental 

duplication or tandem repeat regions and had VCNAB ≥ 50% (299 variants in 267 

genes) were recalculated considering heterozygous individuals with AB > 0.8 as 

homozygous. 161 variants in 149 genes that were still HetExc according to the updated 

HWE statistics were selected as candidate recessive disease causing genes (Appendix 

Table A.1). These HetExc variants were then compared with a group of variants that 

survived the same filtering process, but did not have an excess of heterozygotes 

(HetExc-). The HetExc- and HetExc groups consisted of 39,430 and 161 variants 

(50,365 and 161 if counted in seven ethnic populations separately, Figure 2.4a) in 
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11,842 and 149 genes, respectively. Most of the HetExc variants were present in 

African/African American populations (128/161, 79.5%), which was significantly ∼79.5%). Although the majority of 

more than expected (FE = ~1.7, P = 3.0E-05) based on the proportion in the HetExc- 

group (18,957/39,430), whereas all other populations had significantly less than 

expected HetExc variants (P ≤ 0.001) except EAS and ASJ (Appendix Table A.4). Both 

HetExc- and HetExc groups contained a similar proportion of missense and 

synonymous variants (Figure 2.4b and Appendix Table A.5).

a) Distribution of variants deviating and not deviating from HWE due to excess of 

heterozygotes (HetExc and HetExc-, respectively) in 7 ethnic gnomAD populations. b) 

Proportions of missense, synonymous and other protein coding variants in HetExc and 

HetExc- datasets. c) ClinVar status (e.g., pathogenic/benign) of HetExc variants. d) 

Known disease associated genes with at least one variant in HetExc and HetExc- 
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Figure 2.4: Potential recessive disease causing variants identified by deviation from
Hardy-Weinberg Equilibrium (HWE) due to excess of heterozygotes (HetExc).



datasets grouped by inheritance pattern: autosomal dominant (AD), autosomal recessive

(AR) or both. Indicates statistical significance of p ≤ 0.05.∗

To determine which of the HetExc candidate recessive disease causing variants were 

already known, their clinical significance in the disease variant database (ClinVar90) was

analyzed. The majority of HetExc variants (125/161, ~77.6%) were not present in 

ClinVar, whereas the majority of those that were present in ClinVar (31/36, ~86.1%) had

a “Benign” or “Likely benign” status (Figure 2.4c). The only two variants with 

“Pathogenic” status were ENST00000335295.4:c.20A>T (rs334) in HBB (causes 

recessive sickle cell disease MIM:603903; carriers are protection from malaria, 

MIM:611162) and ENST00000003084.6:c.1521_1523delCTT (rs1801178) in CFTR 

[causes recessive cystic fibrosis disease, MIM:219700; hypothesized to be protective 

from cholera102 or tuberculosis103]. However, genes with at least one HetExc variant 

were significantly more frequently associated with known autosomal recessive (AR) 

diseases than genes containing only HetExc- variants (FE = 1.6, ∼79.5%). Although the majority of P = 0.02, Figure ∼79.5%). Although the majority of 

2.4d and Appendix Table A.6). HetExc variant enrichment in known AR genes adds 

evidence that some of the selected variants might deviate from HWE due to natural 

selection and could have some disease association. However, only seven ( 5.5%) of ∼79.5%). Although the majority of 

these variants were also HetExc in gnomAD v3: ENST00000335295.4:c.20A>T (rs334)

in HBB, ENST00000373233.3:c.7210G>C (rs61292917) in CHD6, 

ENST00000267622.4:c.3118A>G (rs34805848) in TRIP11, 

ENST00000374695.3:c.9540G>A (rs62642506) in HSPG2, 

ENST00000246186.6:c.1691G>A (rs751887) in MMP24, 

ENST00000298317.4:c.626C>T (rs35157957) in RPUSD4 and 

ENST00000359486.3:c.441C>T (rs73887968) in TCF20. Note that 3/7 ( 42.9%; ∼79.5%). Although the majority of HBB,

TRIP11, and HSPG2) genes are associated with known recessive diseases (Appendix 

Table A.1). Since gnomAD v3 mostly consisted of individuals that were not present in 

gnomAD v2.1.1, this adds evidence that these seven variants are not deviating from 

HWE by chance.
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2.5 Discussion

Analysis of deviations from the HWE on a large genomic dataset has shown that all 

populations, but especially South Asian (SAS) and Latino/Ad-mixed American (AMR), 

were more frequently deviating due to heterozygote deficiency (HetDef) than 

heterozygote excess (HetExc). A higher rate of HetDef variants in SAS and AMR 

populations is in line with previous reports72,104, possibly due to the large number of 

consanguineous marriages in these regions [e.g., 38% of SAS population in the Exome 

Aggregation Consortium (ExAC)12]. However, our findings that HetDef is a major cause

of deviations from HWE in all populations is contrary to previous studies (Chen et al.72 

and Graffelman et al.71, which used more strict P thresholds (0.001 and 0.0001, 

respectively) and reported that deviations from HWE were more frequently observed 

due to HetExc. However, previous studies focused on error detection in older and 

smaller datasets, some of which were corrected in gnomAD. Graffelman et al.71 

analyzed 104 Japanese individuals in the 1000 Genomes database4, where the minimal 

statistically significant HetExc AF threshold (0 homozygous and P < 0.001) was 

0.23∼79.5%). Although the majority of 71. Only 11/382,506 variants analyzed in our study were that frequent and had no 

homozygous individuals reported, nine of which were located in segmental duplication 

or tandem repeat regions. We observed a higher rate of HetExc variants in these regions,

as well as those that had low allele balance, which correlates with previous work71,101. 

Chen et al.72 analyzed “open reading frame” genes and selected only one variant per 

gene where AF was closer to 0.50 (584 variants in total) in ExAC (60,706 individuals). 

However, this approach resulted in the exclusion of rare variants that were analyzed in 

this study and might be more affected by the Wahlund effect (i.e., more likely to be 

HetDef). Moreover, some of the HetExc variants detected in previous studies were 

marked as non-pass quality or were no longer HetExc in gnomAD, possibly due to 

differences in variant filtering and genotype calling procedures. For example, 

ENST00000369356.4:c.1801C>T (rs1778112) variant in PDE4DIP was present in the 

heterozygous state in 91% of individuals in the 1000 genomes database, but was ∼79.5%). Although the majority of 

never observed as homozygous and was assigned “non-pass” quality in gnomAD. 

Another example, the BRSK2 variant ENST00000382179.1:c.551+6delG (rs61002819) 

was HetExc in ExAC (P = 1.9E-15), but not in gnomAD (P = 0.13). Therefore, a higher

rate of HetDef variants in our study could be explained by a larger population size and a
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different variant dataset, as well as improvements in variant filtering and genotype 

calling procedures.

Analysis of HetExc variants (Appendix Table A.1), selected as recessive disease 

causing candidates, led to somewhat contradictory results, which should be interpreted 

with caution. Enrichment of HetExc variants in the African/African American (AFR) 

population was unexpected, and might indicate more extensive natural selection or be a 

sign of systematic genotype errors in this population. Enrichment of HetExc variants 

(32/161) in genes associated with known autosomal recessive diseases supports the 

hypothesis that some of these variants could be causing recessive diseases, whereas the 

presence of a large proportion of synonymous variants (11/32) and the assigned 

“Benign” or “Likely benign” status of the majority of the known variants (21/32 in 

CinVar, 17/21 were “Benign” or “Likely benign”) in this group provides evidence 

against it. Moreover, despite applying our extensive filtering strategies, many of the 

HetExc variants might still be deviating from HWE due to genotype errors or by chance

due to insufficient population size. The latter might be an explanation for some AFR 

variants that were HetExc in gnomAD v2.1.1, but not in the new v3 release, which had a

larger AFR population. However, the ENST00000003084.6:c.1521_1523delCTT 

(rs1801178) variant in CFTR also was not HetExc in gnomAD v3 and was observed as 

homozygous in 4 out of 32,299 NFE individuals (and 2 heterozygotes with AB > 0.8), 

whereas in v2.1.1 only 1 out of 64,603 NFE individuals was homozygous. Therefore, 

the difference between the number of homozygote in gnomAD v2.1.1 and v3 might also

be explained by other factors, such as differences between genotype calling procedures 

for exome and genome data.

Nevertheless, the presence of known pathogenic and heterozygote advantageous 

variants such as ENST00000335295.4:c.20A>T (rs334) in HBB and 

ENST00000003084.6:c.1521_1523delCTT (rs1801178) in CFTR suggests that some of 

the other 161 HetExc variants might also be functionally significant. Especially, the 

ENST00000373233.3:c.7210G>C (rs61292917) variant in CHD6 gene variant, which 

was HetExc in both versions of the gnomAD database and was predicted to be 

deleterious by in silico tools (SIFT8 = 0; PolyPhen-29 = 0.961). Moreover, it was more 
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frequently (FE = ~5.21, P = 1.19E-04) seen in African than African American 

populations in the 1000 genomes database (Appendix Table A.7), similar to the 

ENST00000335295.4:c.20A>T (rs334) variant in HBB (FE = ~3.42, P = 1.49E-05), 

which suggests that these variants might be under purifying selection in populations that

moved out of Africa (i.e., they might be disease causing, but advantageous only in 

Africa, which is known in the case of the  ENST00000335295.4:c.20A>T (rs334) 

variant in HBB). CHD6 is associated with the rare Hallermann-Streiff syndrome (HSS, 

MIM:234100)105, and is known to act as transcriptional repressor of different viruses 

including influenza and papiloma virus106,107. Interestingly, 

ENST00000373233.3:c.7210G>C (rs61292917) variant has a much lower AF in the 

African population (AF = 0.066), than ENST00000335295.4:c.20A>T (rs334) variant 

(AF = 0.120) in the 1000 genomes database. Considering CHD6 is extremely intolerant 

to variation (missense z-score27 = 4; LOEUF11 = 0.07), 

ENST00000373233.3:c.7210G>C (rs61292917) variant is more enriched in the African 

population compared with ENST00000335295.4:c.20A>T (rs334) (i.e., possibly due to 

stronger purifying selection), which suggests that ENST00000373233.3:c.7210G>C 

(rs61292917) might be disease causing even in the heterozygous state.

Our study highlighted that the ability of HWE to detect candidate recessive disease 

causing variants is mainly limited by both the quality of genotype calls and the size of 

available exome/genome variant data, whereas absence of information about sub-

populations (e.g., Africans and African Americans) and a high level of inbreeding (e.g., 

SAS) could reduce sensitivity, but not precision, of the approach in certain populations. 

We anticipate that improvements in sequencing technologies and variant filtering 

software should reduce the number of false positive HetExc variants in the future. In 

fact, false positive HetExc variants that survived our strict quality filters, might aid the 

development of more efficient sequencing filtering strategies by helping to understand 

new patterns of genotype errors. The size of the largest population analyzed in this study

(NFE = 64,603 individuals) allowed us to detect statistically significant HetExc only 

amongst variants with AF ≥ 0.0072 ( 33% of 61,077 variants with AF = 0.001–0.05).∼79.5%). Although the majority of ∼79.5%). Although the majority of 

Consequently, some common recessive disease causing variants were missed even if 

homozygous individuals were completely absent in the population. For example, 

HetExc of the ENST00000374855.4:c.448G>C (rs1800546) variant in ALDOB [causes 
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recessive hereditary fructose intolerance, MIM:229600108] was not statistical significant 

(P = 0.3), despite being observed in the heterozygous state in 627 NFE individuals ∼79.5%). Although the majority of 

(AF = 0.005). As the number of sequenced exomes and genomes is rapidly growing, ∼79.5%). Although the majority of 

this problem may soon be addressed. Indeed, the United Kingdom National Health 

Service is planning to sequence 1 million genomes by October 2023 with a wider 

ambition to increase this number to 5 million109. If the NFE population was 1 million, 

then the AF threshold would drop to 0.0018 ( 73% of 61,077 variants with AF = ∼79.5%). Although the majority of ∼79.5%). Although the majority of 

0.001–0.01), whereas with 5 million individuals it would be possible to detect 

statistically significant HetExc in all variants with AF ≥ 0.0008. Therefore, it might be∼79.5%). Although the majority of 

possible to use HWE strategies to detect rare recessive disease causing variants in the 

near future.

In this study, we explored the use of HWE to identify potential recessive disease 

causing variants in a large mainly healthy population database by developing a bespoke 

filtering strategy to detect variants where an excess of heterozygotes in a population 

could be a result of natural selection. Overall, this approach showed potential, especially

for the AFR population, successfully identifying some variants in recessive diseases that

are known to be heterozygote advantageous, and providing novel candidates for further 

investigation. A natural progression of this work would be validation of genotype calls 

of HetExc variants to understand possible causes of genotype errors and analysis of the 

biological effect of true positive HetExc variants to determine their potential health 

implications. We also anticipate that this approach will become more robust in the 

future as the size and quality of available genomic data increases.
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Chapter 3  

GeVIR is a continuous gene-level metric 

that uses variant distribution patterns to 

prioritize disease candidate genes

3.1 Abstract

With large scale population sequencing projects gathering pace there is a need for 

strategies that progress disease gene prioritisation. Metrics that provide information 

about a gene and its ability to tolerate protein altering variation can aid clinical 

interpretation of human genomes and advance disease gene discovery. Previous 

methods analysed total variant load in a gene, but not their distribution pattern within a 

gene. Utilising data from 138,632 exome/genome sequences, we developed Gene 

Variation Intolerance Rank (GeVIR), to produce a continuous gene level metric for 

19,361 genes that is able to prioritise both dominant and recessive Mendelian disease 

genes, outperforming missense constraint metrics and comparable, but complementary, 

to loss-of-function constraint metrics. GeVIR is also able to prioritise short genes, for 
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which loss-of-function constraint cannot be confidently estimated. The majority of the 

most intolerant genes identified here have no defined phenotype and are candidates for 

severe dominant disorders. 

3.2 Introduction

Large databases of human genetic variation from large-scale genome sequencing 

projects such as gnomAD (Genome Aggregation Database containing 138,632 

individuals)11 are an essential resource in genomic medicine to help prioritise disease 

causing variants, which are expected to be rare or not present at all in healthy 

individuals60. Consequently, variant load varies greatly between genes and a deficiency 

of variants could be a sign of intolerance, probably due to the process of selective 

constraint, therefore this feature could be used to identify new disease genes. Residual 

Variation Intolerance Score (RVIS) was one of the first attempts to measure variant load

by assuming that genes with a smaller proportion of common missense and loss-of-

function (LoF) variants, could be more intolerant to variation26. A more recent approach 

used gene codon mutability to estimate the expected number of LoF or missense 

variants within a gene, and compare it with the observed number within large 

populations (Exome Aggregation Consortium (ExAC) containing 60,706 individuals)27. 

These ratios were used to calculate gene constraint metrics, missense z-score and 

probability of LoF Intolerance (pLI), which have been used to prioritise genes intolerant

to deleterious heterozygous LoF or missense variation12. Both methods were also used 

to detect regions within a gene which showed greater intolerance to variation than the 

whole gene, by using functional domains and exon boundaries30, or measuring statistical

significance of variant deficiency to define region borders29. GnomAD v2.1 (released in 

October 201857) contains new gene LoF and missense constraint metrics based on 

confidence intervals (CI) of observed over expected variants in genes, together with 

recalculated pLI and missense z-scores11. The authors suggest the use of loss-of-function

observed/expected upper bound fraction (LOEUF) instead of pLI as a metric for LoF 

intolerant genes and provided, but did not evaluate, the same metric based on missense 

variant data, referred to here as MOEUF, by analogy with LOEUF11.
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The increasing size of publicly available variant databases from large predominantly 

healthy populations of different ethnicities, provides us with an intriguing opportunity to

analyse relatively small gene coding regions devoid of variants, as an alternative to 

existing methods that measure variant deficiency at a gene level or within large coding 

regions. Since some disease causing variants are dominant, highly penetrant, and tend to

cluster in functionally important coding regions110, it is reasonable to hypothesise that 

genes important for human development might have regions that are so sensitive to 

variation they are never observed in healthy individuals. A recent study investigating 

regions between non-synonymous protein coding variants, referred to as Constrained 

Coding Regions (CCRs), in a large healthy population gnomAD (v2.0.1) found that 

CCRs are enriched with known pathogenic variants and could complement existing 

gene intolerance metrics33. However, only the longest CCRs that were present in a 

limited set of genes (6,909) were considered to be descriptive enough for gene 

prioritisation, and gene level metrics were not developed.

Here we propose an alternative approach to measure gene intolerance to variation and 

produce ranking scores, Gene Variation Intolerance Rank (GeVIR), which is based on 

analysing the length, evolutionary conservation and number of Variant Intolerant 

Regions (VIRs). Similar to CCR we define VIR as a region between non-synonymous 

protein coding variants in gnomAD (v2.0.1)111, but process them differently to develop a

more useful continuous gene level metric, which considers all VIRs within a gene and 

therefore provides scores for a much larger set of genes (19,361). We evaluate our 

GeVIR method by comparing it with gnomAD gene constraint metrics57 on genes 

associated with Mendelian diseases41, null genes identified in apparently healthy 

individuals112, mouse113,114 and cell essential genes20.

3.3 Methods

3.3.1 Protein coding gene list

The gnomAD database (version 2.0.1) that was used (https://github.com/macarthur-lab/

gnomad_browser) contained gene annotation from GENCODE (v19). Gene nucleotide 

and peptide sequences were obtained from Ensembl Biomart (human assembly GRCh37
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or hg19, v93) (http://grch37.ensembl.org/biomart/martview/, accessed September 2018) 

and gene constraint metrics from gnomAD (https://gnomad.broadinstitute.org/, accessed

October 2018). Only genes with canonical transcripts that start with methonine, end 

with a stop codon, with protein coding nucleotide sequence divisible by three, and 

without reported issues in gnomAD gene constrain metrics were used. The gene list 

consisted of 19,361 genes (18,326 were linked with HUGO Gene Nomenclature 

Committee (HGNC)115 approved symbols (accessed November 2019) by Ensembl IDs), 

1,009 of which were marked as outliers (e.g. “too many missense variants”) in the 

gnomAD gene constraint metrics study11.

3.3.2 Variant Intolerant Regions (VIRs)

Variants in canonical transcripts of 19,361 genes were analysed by looking at regions 

between two variants (referred to here as start and stop of a VIR) predicted by Variant 

Effect Predictor (VEP, v85) to affect the amino acid sequence of a protein, namely: 

“stop_gained”, “frameshift_variant”, “stop_lost”, “start_lost”, “inframe_insertion”, 

“inframe_deletion”, and “missense_variant”. Only variants with filter status “PASS”, 

“LCR” (low-complexity) or “SEGDUP” (segmental duplication) were analysed. If start 

and stop variants were located in different exons, protein-coding nucleotides from 

multiple exons were concatenated into a single region. To take into account regions 

between a start codon and the first variant or the last variant and a stop codon in a gene, 

extra “fake” variants were added at the start and stop codons of all transcripts that were 

analysed. We excluded 24,276 regions in which start or stop variant consequence 

predicted by VEP were inconsistent with transcript exon chromosome location (e.g. 

“missense” variant outside exon boundaries). The remaining dataset contained 

4,323,481 regions which we called Variant Intolerant Regions (VIRs). 

3.3.3 VIR properties

We measured three properties of VIR: length, mean coverage (gnomAD exomes) and 

conservation (GERP++77) (Figure 3.1). VIR length and conservation were measured at 

the amino acid level. Regions between variants in two adjacent amino acids were 

included in the analysis, but had zero length and conservation score. VIR coverage was 

measured as the mean exome coverage of nucleotides including those affected by region

start and stop variants. Exome rather than genome coverage was measured because the 
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majority of samples in gnomAD were exome sequenced (123,136/138,632), and exome 

coverage tends to be less stable and hence could better highlight potential bias in the 

variant load. As variant absence may be a consequence of low coverage, strict filters 

were used to separate high- and low- covered VIRs. Autosomes, on average, had higher 

coverage than allosomes and different coverage thresholds were used to mark 

approximately 80% of the VIRs in both groups as high coverage: ≥50 for autosomes 

(3,427,010/4,221,872, ~81.17%) and ≥45 for allosomes (82,033/101,609, ~80.73%). 

Note that 1,570,941 VIRs were formed by variants in adjacent amino acids and 

therefore had zero length.

3.3.4 Pathogenic variants and evolutionary conservation of VIRs

Variants with known disease association status (e.g. “Pathogenic”, “Likely pathogenic” 

or “Pathogenic/Likely pathogenic”) were downloaded from ClinVar90 (accessed August 

2018) and re-annotated with Ensembl VEP (v90). Only variants predicted by VEP to be 

“missense_variant” (29,433), “stop_gained” (15,991) or “frameshift_variant” (21,471), 

and that were located in 19,361 genes with mapped VIR loci were analysed. First, 

26,291 pathogenic variants were excluded as they were located in VIRs with low 

coverage or in VIRs with zero length (that is, regions between two variants in adjacent 

codons), as the latter had an evolutionary conservation score of zero. Then all VIRs with

high coverage in 2,935 genes with at least one pathogenic variant were grouped by their 

length in five bins (1-5, 6-10, 11-15, 16-20, 21 or more amino acids), and the number 

and proportion of pathogenic variants that were located in VIRs in each bin were 

counted. Missense and loss-of-function (LoF) variants were analysed separately because

the LoF variant effect on a protein was expected to be less dependent on its location in 

the protein sequence. To compare the pathogenic variant load in VIRs of different 

lengths, a “pathogenic variants per amino acid” metric was produced by dividing the 
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number of pathogenic variants observed in VIRs in each bin by the summed length of 

all VIRs in that bin. To calculate 95% confidence intervals for “pathogenic variants per 

amino acid” metric, the analysis was repeated 10,000 times on a randomly generated set

of 50% of the 2,935 genes containing pathogenic variants (that is, bootstrapping) using 

the resample method from Python scikit-learn module116. To measure correlation 

between VIR length and evolutionary conservation, we grouped VIRs with high 

coverage in 5 bins (containing 1-5, 6-10, 11-15, 16-20, 21 or more amino acids; 

1,938,102 VIRs in 18,491 genes in total) and displayed the distribution of VIR 

conservation scores using boxplots.

3.3.5 Gene Variation Intolerance Rank (GeVIR) calculation

To develop a gene level metric based on VIRs, relative weights of VIRs based on their 

length were first calculated. It was assumed that longer VIRs should have larger 

weights, as they might be less likely to be caused by random variant distribution. The 

number of VIRs (with high coverage) of each length were calculated and sorted based 

on length, in ascending order. We then calculated the weight (W) of each length (l) 

based on the ratio between all VIRs and the number of VIRs with length l or longer:

W l=

∑
i=0

lmax

VIRi

∑
i=l

lmax

VIRi

For the number and weights of VIRs of each length, see Appendix Tables B.1 and B.2 

for autosomes and allosomes, respectively.

A score for each gene (GeneiScore) was calculated as the sum of its high covered VIR 

weights (Wj) adjusted by their conservation (GERPj) and normalised by the total 

number of regions in a gene including low covered regions (Nregionsi). GERP++ scores

between -1 and 1, but not 0 (that is, adjacent variants or no evolutionary conservation 

data), were rounded to 1 or -1 to avoid extreme penalties in VIR weight (W) adjustment 

due to multiplication:
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GERP={
1 , if 0<GERP<1
−1 , if −1<GERP<0
GERP , otherwise

Genei Score=∑
j

(W j∗GERP j)/Nregions i

VIRs with low coverage were counted in normalisation (Nregionsi), to avoid genes with 

a large proportion of VIRs with low coverage receiving high GeneScores owing to the 

presence of a few highly covered VIRs with large weights. GeVIR workflow is 

explained by example in Figure 3.2.

a) Two genes (A and B) containing a total of five variants (orange boxes), which divide 

genes A and B into four and three VIRs, respectively, six of which are valid (five shown 

in green and one (VIR4) with zero length). In gene B, VIR2 has low mean sequence 

coverage (48, shown in white) and is classified as non-valid. b) Calculation of valid 

region length weights based on their frequency in all genes (longer regions are rare and 

have a greater weight) *VIRs with mean coverage <50 (45 for X and Y chromosomes, 

analyzed separately) are not counted. **Weight is calculated as the total number of 

VIRs divided by the number of VIRs with this length or less. c) Gene score calculations 

for A and B; each valid region weight in a gene is multiplied by its GERP++ score, and 

their sum is divided by the total number of regions in the gene (valid and non-valid). 
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GeVIR ranking is based on these gene scores sorted in descending order. According to 

GeVIR, gene A is more intolerant to variants than is gene B.

All 19,361 genes were sorted based on their GeneScores in descending order and 

percentiles calculated to generate a Gene Variation Intolerance Rank (GeVIR), where a 

lower rank indicates higher intolerance to variation (Appendix Table B.3).

3.3.6 Disease and null and essential genes

Disease associated genes were downloaded from the Online Mendelian Inheritance in 

Man (OMIM) database41 (accessed November 2018). Only associations with confident 

phenotype mapping number (3) were included. Only genes which were associated 

exclusively with dominant (phenotype keywords: “autosomal dominant”) or recessive 

(phenotype keywords: “autosomal recessive”) diseases were labeled as “AD” (n = 790) 

and “AR” (n = 1,585), respectively. Phenotypes that were marked as unconfirmed – “?”,

non-diseases – “[]” or susceptibility – “{}”  were excluded, as were genes that were 

associated with both AD and AR diseases. A set of genes with at least two different 

high-confidence LoF variants found in a homozygous state in at least one individual in 

Exome Aggregation Consortium (ExAC) data set (“null”, n = 328)12, as well as cell 

essential (n = 663) and non-essential (n = 865) gene lists, according to CRISPR/Cas 

studies20, were obtained from the MacArthur laboratory GitHub repository 

(https://github.com/macarthur-lab/gene_lists, accessed February 2019). Mouse essential 

genes were obtained from the MGI database via MouseMine113,114 website 

(http://mousemine.org/, accessed February 2019). All genes from heterozygous mouse 

models with a phenotype term containing the word “lethal” and that were linked to 

human orthologs 

(http://www.informatics.jax.org/downloads/reports/HMD_HumanPhenotype.rpt,  

accessed February 2019) were exported (n = 388). Note that genes which were not 

present in our list of 19,361 protein coding genes were excluded from all gene data sets.

3.3.7 GeVIR comparison with gnomAD gene constraint metrics

GeVIR performance was compared with three gnomAD gene constraint metrics: loss-

of-function observed/expected upper bound fraction (LOEUF)11, missense 
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observed/expected upper bound fraction (referred to here as MOEUF, by analogy with 

LOEUF) and missense z-score27. LOEUF, MOEUF and missense z-scores for the 

19,361 genes were obtained from gnomAD 

(https://gnomad.broadinstitute.org/downloads, accessed October 2018). To convert 

constraint metrics into ranked lists, gene lists were sorted (LOEUF, MOEUF in 

ascending, missense z-score in descending order) and gene “weak” percentiles were 

computed, so that the most variation intolerant genes have low percentiles. To 

investigate possible complementarity of GeVIR and LOEUF metrics a “combined” 

ranked list (VIRLoF) was created, in which GeVIR and LOEUF ranks were summed for

each gene, the list was re-sorted and percentiles were recalculated. We evaluated ranked 

lists on six datasets:  AD, mouse heterozygous lethal, cell essential, AR, cell non-

essential, and null. The Area Under the Curve (AUC) method from the Python scikit-

learn116 module was used to measure performance on AD, mouse heterozygous lethal, 

cell essential, cell non-essential and null gene datasets. Genes from the AR data set were

expected to be enriched in the middle of the ranked lists. To investigate this, we divided 

gene ranked lists into deciles and calculated ratios between AR genes in each decile and 

all AR genes. As a “good” ranked gene list should prioritise AD over AR genes we 

evaluated balance between AD and AR genes at each cumulative percentile X. We 

considered AD genes with percentiles ≤X as true positives (TP), AR genes with 

percentiles ≤X as false positives (FP) and AD genes with percentiles >X as false 

negatives (FN). Based on these values we calculated precision, recall and F1 score for 

the AD gene class:

precision=
TP

TP+FP
 recall=

TP
TP+FN

 F 1=2∗
precision∗recall
precision+recall

The F1 score could be used as a representative metric only for approximately the first 

third of the genes because, after some unknown threshold, AR genes had to be 

prioritised over null genes, which would result in higher numbers of false positives and 

thus lower precision and F1 scores. Therefore, the peak F1 score was used for gene 

ranking method comparisons. Performance was measured using F1 score of AD genes 

instead of accuracy or AUC, because there were ~2 times fewer AD than AR genes in 

the data set. Similarity between GeVIR and other ranked gene lists was investigated by 

calculating the proportion of genes prioritised by both GeVIR and each other method at 

each cumulative percentile. The relationship between gene ranks and protein length 
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(based on the canonical transcript) was investigated by measuring Spearman’s rank 

correlation coefficient (SciPy96 package) and the median protein length comparison at 

each decile for all ranked gene lists.

Note that the evaluation was performed on a data set that included 1,009 genes 

containing extremely large or small numbers of variants (that is, outliers) according to 

gnomAD gene constraint metrics11, and genes without constraint metrics received the 

lowest ranks (1 gene in missense z-score and 482 genes in LOEUF lists). However, we 

included outlier genes in GeVIR score calculations to provide metrics for a greater 

number of genes, as some of them are well known disease genes (for example, the 

CFTR gene that is associated with cystic fibrosis) and their presence did not decrease 

the performance of GeVIR. Evaluation of gene scores on a data set excluding outliers 

(18,352 genes) was also carried out and showed the same overall trends.

3.3.8 GeVIR and LOEUF comparison of most variation intolerant 
genes

We selected 2,989/19,361 genes (~15%) that had LOEUF <0.35 (a hard threshold 

suggested by the authors for most LoF intolerant genes at 

https://macarthurlab.org/2018/10/17/gnomad-v2-1/) and the same number of genes 

ranked at the top of the lists obtained by GeVIR and VIRLoF. Overlapping genes were 

investigated by using Venn diagrams to compare all genes, AD and AR genes in the sets.

To compare “prioritised gene similarity” with “method performance” we also calculated

the precision, recall, and F1 score for the AD gene class. We then selected 1,317 genes 

present only in the GeVIR set, 1,317 genes present only in the LOEUF set, and 1,672 

genes present in both sets, which were analysed by DAVID 6.8117,118 (accessed May 

2019) for functional enrichment in gene ontology (GO) terms (such as biological 

process, cellular component, molecular function) and biological pathways (KEGG).

3.3.9 GeVIR comparison with Constrained Coding Regions (CCRs)

Although no gene level metric was provided by the CCR study33, the authors compared 

it with gene constraint metrics by sorting genes based on the number of CCRs at the 95th

or greater percentile content within them. CCR data was downloaded from https://s3.us-
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east-2.amazonaws.com/ccrs/ccr.html (accessed December 2018), and genes present in 

our study with at least one CCR at the 95th percentile were selected (7,000 genes) and 

sorted, based on the number of CCRs, to create a ranked gene list. The same number of 

genes ranked at the top by GeVIR were selected; the cumulative number of AD and AR 

genes as well as cumulative F1 score for the AD gene class and protein length of 

prioritised genes, were compared.

3.4 Results

A scoring method to measure and rank gene intolerance, GeVIR, was developed by 

systematically analysing the coding sequence of 19,361 genes to determine the length, 

number, and evolutionary conservation of VIRs. In total ~3.5 millions VIRs with high 

sequence coverage were identified and used to generate gene ranking scores. To 

illustrate the hypothesis behind GeVIR, that disease genes might harbour VIRs 

containing no variation in healthy individuals, we analysed the distribution of 

pathogenic variants from ClinVar90 and control variants from gnomAD in all the genes. 

Examples of variant distribution patterns in four disease genes with different modes of 

inheritance are demonstrated in Figure 3.3. Note that in TCF4 and LITAF (both 

associated with autosomal dominant (AD) diseases), the majority of pathogenic 

missense variants, as expected, reside inside or close to relatively long VIRs, whereas in

ARSA (associated with an autosomal recessive (AR) disease) VIRs are shorter and their 

location does not correlate with pathogenic variants. However, not all AD disease genes 

follow this pattern. For example, there are clearly visible long VIRs in TARDBP, but all 

known pathogenic variants are clustered outside them, which highlights that VIRs might

be used to prioritise the AD gene, even when they cannot be used to prioritise all 

pathogenic variants in the gene.
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Comparison of distribution of pathogenic missense, stop gained and frameshift variants from ClinVar with non-synonymous protein coding variants 

from gnomAD in 4 genes TCF4, LITAF, ARSA and TARDBP associated with Mendelian diseases. Variant Intolerant Regions (VIR) can be seen as 

“gaps” in the genes (VIRs with length ≥10 amino acids are marked with green rectangles).
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Figure 3.3:  Examples of variant distribution patterns in four disease genes.



To test our hypothesis on a genome-wide scale, we first analysed the location of 66,895 

known pathogenic variants (missense, stop gain and frameshift) from ClinVar in 19,361 

genes with valid canonical transcripts and no reported variant calling issues in 

gnomAD11. Only 2,935 of the genes contained at least one pathogenic variant inside 

VIRs (40,604 ClinVar variants were located in regions which contained no non-

synonymous variants in gnomAD), and were further analysed. Although ~91% of the 

VIRs were small (between 1 to 5 amino acids), only ~53% of pathogenic missense 

variants were located within them (Figure 3.4a,b). Moreover, pathogenic missense 

variants were observed ~3.7 times (two-sided Fisher’s exact test P < 2.23E-308, 

Appendix Table B.4) more often inside the largest VIRs (length > 20 amino acids) 

(Figure 3.4c). In contrast, pathogenic stop gained and frameshift variants, expected to 

cause loss-of-function regardless of their location within a gene, were observed ~1.56 

times (two-sided Fisher’s exact test P < 2.93E-29, Appendix Table B.4) more often in 

the smallest VIRs than in the largest VIRs (Figure 3.4c). There was also a positive linear

correlation between VIR length and evolutionary conservation, measured by mean 

GERP++ score77 (Figure 3.4d). Overall our results show that long conserved regions 

depleted of variation are potentially a marker for some disease causing genes.
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Figure 3.4: Correlation between length of variant intolerant regions (VIRs), 
location of pathogenic variants, and evolutionary conservation.



a) Distances in amino acids between two non-synonymous variants (i.e. VIRs) from 

gnomAD in n = 2,935 genes containing at least one missense or LoF (stop gained or 

frameshift) pathogenic variant. b,c) Distribution of pathogenic missense and LoF 

variants (b) inside VIRs and (c) normalised by cumulative region length. In (c) the 

central values represent pathogenic variants per amino acid ratio computed on n = 2,935

genes, whereas error bars represent 95% confidence interval from bootstapping (n = 

10,000 iterations of resampling with replacement on 50% of 2,935 genes  (i.e. n = 

1,467), each iteration result is shown on overlaid dot plots). d) Correlation between VIR

length and evolutionary conservation (GERP++ scores) of 1,938,102 VIRs with high 

coverage in 18,491 genes.

We developed a method to calculate gene scores based on length, conservation and 

number of VIRs. Briefly, we counted the number of VIRs of each length (only with high

coverage) in the canonical transcripts of all genes analysed (19,361), and calculated the 

weight of each VIR length based on its frequency. A score for each gene was calculated 

as a sum of all its VIR weights, adjusted by average GERP++ score, and divided by the 

total number of VIRs in a gene (including those with low coverage). VIR weights were 

adjusted by GERP++ scores to increase the impact of regions in which absence of 

variation was supported by evolutionary conservation (Appendix Figure B.1 shows the 

distribution of VIR GERP++ scores) as well as to penalise those where lack of variation

could be a result of sequencing or variant filtering errors (i.e. VIR weight is subtracted 

from the overall gene score). GERP scores between -1 and 1, but not 0 (i.e. adjacent 

variants or no evolutionary conservation data), were rounded to 1 or -1 to avoid extreme

penalties from multiplication. Finally, genes were sorted using this score to create a 

Gene Variation Intolerance Rank (GeVIR).

To evaluate our ranking method, we considered its performance on three groups of 

genes with potentially high, medium and low intolerance to variation (Table 3.1, 

Appendix Figure B.2a-e). Genes associated exclusively with Autosomal Dominant (AD)

(n = 790) and Autosomal Recessive (AR) (n = 1,585) diseases in OMIM41 were used for 

high and medium variant intolerant groups, respectively. The least intolerant group 

(null) consisted of genes with at least two different high-confidence homozygous LoF 
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variants which were observed in healthy population studies (n = 328)12. It is important 

to note that some apparently healthy individuals in gnomAD might be affected by some 

less severe disorders (e.g. cataracts), or older age onset ones, or display no/mild 

phenotypes in disorders with variable penetrance. GeVIR scores were also evaluated on 

three further groups: human orthologs of mouse heterozygous lethal knockouts (n = 

388)113,114, human cell essential (n = 663) and non-essential (n = 865) genes according to

CRISPR/Cas studies20. GeVIR scores were compared with recently released gnomAD 

gene constraint scores (missense z-score, MOEUF and LOEUF)11.

Table 3.1: Comparison of GeVIR gene ranking with gnomAD constraint metrics 
on 19,361 genes. 

Autosomal Dominant (AD) and Autosomal Recessive (AR) gene groups consisted of 

genes associated with diseases with only one mode of inheritance in OMIM41. Human 

cell essential and non-essential gene groups were based on CRISPR/Cas screens20. 

Metrics performance was measured with Area Under the Curve (AUC). Assays in which

lower AUC indicates better performance are marked with *. In the AD/AR classification

assay, AD class F1 score is calculated at each percentile (cumulative) considering AD 

genes as true positives and AR genes as false positives and performance is reported as 

peak F1 score with gene percentile in brackets. Results of metrics which outperformed 

others were highlighted in bold. If VIRLoF showed the best results, then the second best

performing metric was also highlighted in bold.

Assay
Gene

number
GeVIR

GeVIR 
(without

GERP++)

Missense 
z-scores

MOEUF LOEUF VIRLoF

AD 790 73.54 72.80 68.72 68.21 72.40 74.38

Mouse het
lethal knockout

388 74.92 74.10 69.71 69.45 76.03 77.18

Cell essential 663 72.62 69.97 66.81 68.22 68.70 72.13

Nulls* 328 27.10 32.88 24.69 27.89 31.18 27.38

Cell non-
essential*

865 29.61 37.07 27.26 27.61 27.92 27.08

AD/AR
classification

790 AD, 
1,585 AR

62.34
(29.94)

61.48
(25.44)

59.13
(35.40)

60.27
(32.82)

64.15
(27.17)

65.74
(25.84)

First, GeVIR score performance on the most and least intolerance groups was measured 

using Area Under the Curve (AUC). High AUC means that genes from a group are 

located closer to the top in the ranked list, whereas low AUC represents the opposite 

trend. GeVIR outperformed both missense metrics (missense Z score and MOEUF) at 
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prioritising AD (AUC = 73.54%), mouse heterozygous lethal (AUC = 74.92%) and cell 

essential genes (AUC = 72.62%), by ~4-6% AUC, whereas LOEUF showed a similar 

performance to GeVIR on AD (AUC = 72.40%) and mouse heterozygous lethal genes 

(AUC = 76.03%), but was worse at prioritising cell essential genes (AUC = 68.70%). 

GeVIR also showed  good performance at deprioritising null genes (AUC = 27.10%) 

and was outperformed only by missense z-scores (AUC = 24.69%), due to better 

ranking in the second half of the gene list. Interestingly, LOEUF was the worst in this 

assay despite being based on LoF variant data (AUC = 31.18%). However, GeVIR was 

also slightly outperformed by the other metrics at deprioritising cell non-essential genes 

(AUC = 29.61%), with missense z-scores showing the best results (AUC = 27.26%). 

These results should be interpreted with caution since some of the genes in null and cell 

non-essential groups can still be associated with disease. In fact, despite opposite trends 

in ranking cell essential and non-essential genes, there was no statistically significant 

enrichment or depletion of AD or AR genes (two-sided Fisher’s exact test P > 0.05, 

Appendix Table B.5) in both groups when compared to overall proportions (AD = 

~4.1%, AR = ~8.2%). In comparison, there was ~6 fold enrichment of AD genes in 

mouse heterozygous lethal genes (P = 1.95E-37), and no enrichment of AR genes (P = 

0.22). Surprisingly, the Null gene group was depleted for AR (P = ~0.0005), but not AD

genes (P = 0.78). This shows that gene essential/non-essential status deduced from in 

vitro cell culture assays20 might indicate the severity of a possible phenotype, but not its 

inheritance pattern, probably because CRISPR/Cas experiments are typically performed 

to generate complete (homozygous in diploids, null in haploids) gene knockouts21. 

Moreover, CRISPR/Cas experiments do not investigate the broad effect of gene loss on 

the health of a whole organism, or possible gain of function mechanisms, which might 

be another cause of AD diseases in genes tolerant to homozygous LoF variants.

Second, GeVIR performance at distinguishing AD from AR genes was evaluated. To do 

this, AD genes were considered as true positives, AR genes as false positives and an F1 

score for AD class was calculated cumulatively at each percentile (i.e. consider all genes

with ≤ percentile rank), which would represent the balance between the number of 

correctly prioritised AD and incorrectly prioritised AR genes (Table 3.1, Appendix 

Figure B.2g). In the first quartile, GeVIR and LOEUF performed similarly and 

surpassed both missense scores. In the second quartile, LOEUF showed slightly better 
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results with a peak F1 score of 64.15% at the 27th percentile, whereas for GeVIR the 

peak F1 score was 62.34% at the 30th percentile. After the 40th percentile, MOEUF had 

higher F1 scores, because it did not prioritise AR genes after AD genes. Therefore, 

LOEUF performed slightly better than GeVIR at distinguishing AD from AR genes, 

however, GeVIR score is based on all protein altering variants, the majority of which 

are missense, and GeVIR performed better than both missense scores.

Third, since AR genes are expected to be less intolerant than AD genes, they should be 

enriched in the middle of the ranked gene list. To assess this, AR gene distribution was 

analysed in deciles (Figure 3.5a, Appendix Table B.6), since the ideal threshold which 

would separate them from most and least intolerant genes is not known. The null 

hypothesis is that each decile of all genes analysed (~1,936) should contain 

approximately 10% of all AR genes (~158). Our results showed that up to the 3rd decile 

all scoring methods performed similarly (percent content of AR genes was increasing), 

but after this threshold the trends were different. GeVIR and LOEUF, prioritised AR 

genes with on average ~1.77 (two-sided Fisher’s exact test P = 1.61E-34) and ~1.72 (P 

= 2.99E-31) fold enrichment at the 40th - 60th percentiles, respectively, whereas missense

z-score and MOEUF fold enrichment was only ~1.14 (P = 0.015) and 1.28 (P = 8.86E-

7). In the last 30 percentiles, GeVIR and LOEUF had on average ~2.2 (P = 9.74E-32) 

and ~1.9 (P = 1.79E-22) times fewer AR genes than expected, respectively, whereas 

missense z-score and MOEUF had around the expected number of AR genes (P > 0.05),

but MOEUF had ~1.7 (P = 5.34E-7) less than the expected in the last decile. Regarding 

GeVIR performance on null genes, this analysis showed that GeVIR performed best at 

distinguishing them from AR genes (i.e. AR genes were ranked closer to the middle), 

whereas existing missense metrics cannot be used to effectively rank AR genes.
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a) Percentage of genes associated exclusively with Autosomal Recessive (AR) diseases 

out of all AR genes in OMIM (n = 1,585) in each rank decile. b) Median protein length 

(amino acids) in each rank decile. Correlation between protein length and gene rank was

measured with Spearman’s rank correlation coefficient.

Fourth, all gene scoring methods, to some extent, tend to prioritise longer genes and an 

analysis of protein length of the ranked genes showed that LOEUF was the most biased 

towards longer genes (Spearman r = -0.54), especially in the first decile where median 

protein length was ~1.91 times longer than overall median (425 amino acids) (Figure 

3.5a, Appendix Figure B.3 represents this data with notched boxplots). Overall GeVIR 

was the least biased method (r = -0.26), with genes in the first decile being ~1.15 times 

longer than expected. Note that the evaluation was performed on a dataset which 

included 1,009 genes containing extremely large or small numbers of variants (i.e. 

outliers) according to gnomAD gene constraint metrics11, and genes without constraint 

metrics received the lowest ranks (1 gene in missense z-score and 482 genes in LOEUF 

lists). However, we included outlier genes in GeVIR score calculations to provide 

metrics for a larger number of genes, since some of them are well known disease genes 

(e.g. CFTR associated with cystic fibrosis) and their presence did not decrease the 

performance of GeVIR. Evaluation of gene scores on a dataset excluding outliers 

(18,352 genes) was also carried out and showed the same overall trends (Appendix 

Figure B.4).

90

Figure 3.5: Comparison of GeVIR gene ranking with gnomAD constraint metrics 
on 19,361 genes.



Fifth, to investigate the impact of evolutionary conservation on GeVIR ranks, a metric 

without GERP++ adjustments was computed and evaluated in the same assays (Table 

3.1, Appendix Figure B.2). Exclusion of GERP++ weights had a minor impact on 

prioritising AD and mouse heterozygous lethal genes (<1% AUC difference) and, 

despite decrease in prioritising cell essential genes (-2.65% AUC), it still slightly 

outperformed all existing methods in this assay (~1-3% AUC). Although, GeVIR 

without GERP++ performed worse at deprioritisation of Null (+5.78 AUC) and cell 

non-essential genes (+7.46 AUC), it still had an enrichment of AR genes at the 40th - 60th

percentiles (~1.5 times, P = 2.27E-19, Figure 3.5a). Finally, it performed slightly better 

at AD/AR gene classification than missense metrics (~+1-2% F1 score) and was less 

biased by gene length than all other metrics except GeVIR (with GERP++) (Figure 

3.5b). Null and cell non-essential genes probably had shorter VIRs in general due to 

larger number of variants and consequently their weights relied more on GERP++ 

adjustments. Another reason for decreased performance were genes in which lack of 

variation were probably caused by sequencing or variant filtering errors. Overall, 

evolutionary conservation adjustments are an important part of our GeVIR method, but 

nevertheless, it still works well without it and is superior to existing methods which 

estimate expected number of missense variants (MOEUF, missense z-score).

Finally, since GeVIR was predominately based on missense variants data and, unlike 

other missense scores, ranked AR genes similarly to LOEUF with an enrichment at the 

40th - 60th percentiles, we investigated whether combination of GeVIR and LOEUF 

result in a more optimal gene ranking. The combined metric (VIRLoF) was created by 

adding GeVIR and LOEUF ranks for each gene and resorting the resulting ranked list. 

The combined ranking outperformed both GeVIR and LOEUF at priorotising AD, 

mouse heterozygous lethal, and Null genes (Table 3.1, Appendix Figure B.2a,b,d). 

Moreover, VIRLoF prioritised AR genes closer to the middle of the list than either 

GeVIR or LOEUF (Figure 3.5a) and, consequently, was the most efficient at 

distinguishing between AD and AR genes (peak F1 score of 65.74% at the 26th 

percentile Table 3.1, Appendix Figure B.2g). This shows that GeVIR could be used with

LOEUF to improve disease gene prioritisation.
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The combined rank of GeVIR and LOEUF (VIRLoF) outperformed all other variant 

based gene constraint metrics in most assays, however GeVIR and LOEUF had the 

lowest proportion of genes in common amongst the top ranked genes (Appendix Figure

B.2h). To investigate this difference we selected 2,989 genes (~15%) with the lowest 

LOEUF (< 0.35; a recommended hard threshold for most intolerant genes57), and the 

same number of genes ranked as the most intolerant by GeVIR and VIRLoF. At this 

threshold, only 1,637/4,306 (~38.8%) of the genes prioritised by GeVIR or LOEUF 

were in common (Figure 3.6a). The two methods agree more on AD genes (250/452, 

55.3%) (Figure 3.6b), than on AR genes (35/168, 20.8%) (Figure 3.6c). This explains 

why the combined method (VIRLoF) showed a better performance with ~82% precision

and ~48% recall, despite GeVIR and LOEUF having nearly identical performance with 

~77-78% precision and ~44-45% recall (Figure 3.6d). Therefore, genes considered 

highly intolerant to variation by GeVIR were different from those prioritised by 

LOEUF.

2,989/19,361 genes (~15%) with upper observed/expected Loss-of-Function (LOEUF) 

scores < 0.35 (blue), the same number of genes with the highest GeVIR (orange) and 

VIRLoF (green) scores. Venn diagrams show overlaps between (a) all 2,989 genes, (b) 

genes exclusively associated with Autosomal Dominant (AD), or (c) Recessive (AR) 
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variant intolerant genes.



OMIM genes. d) Method performance is compared, considering AD genes as True 

Positives and AR genes as False Positives, using precision, recall and F1 metrics of AD 

class.

To understand which categories of genes were prioritised by GeVIR compared with 

LOEUF,  “functional annotation term” enrichment analysis was performed using 

DAVID v6.8117,118 on 3 gene lists: 1,317 genes prioritised only by GeVIR, 1,317 genes 

prioritised only by LOEUF and 1,672 genes prioritised by both (Figure 3.6a). Table 3.2 

presents the most significantly enriched Gene Ontology (GO) biological process terms 

and KEGG pathways (see Appendix Table B.7 for all results). Genes prioritised only by 

GeVIR were involved in mRNA processing, positive regulation of macromolecular 

metabolic processes, and MAPK signaling pathways, whereas genes prioritised only by 

LOEUF were involved in multicellular organism development, especially neuron 

development. Genes prioritised by both GeVIR and LOEUF, similar to GeVIR alone, 

were involved in regulation of macromolecular metabolic processes, various RNA 

related processes, and MAPK signaling pathways. These latter genes were also involved

in histone modification and dopaminergic synapse, a trend not observed with genes 

prioritised by either GeVIR or LOEUF alone. Genes prioritised only by GeVIR were 

generally shorter than those prioritised by both GeVIR and LOEUF (Table 3.2), even if 

they were involved in the same biological pathways (e.g. spliceosome – only GeVIR: 42

genes, median length = 221 (amino acids); GeVIR and LOEUF: 51 genes, median 

length = 559), whereas genes prioritised only by LOEUF were the longest (e.g. 

multicellular organism development – 506 genes, median length = 966). Therefore, 

GeVIR might prioritise potentially important short genes for which LOEUF might not 

be confidently estimated due to an insufficient gnomAD population size (an 

acknowledged limitation of LOEUF11). Mouse heterozygous lethal (MHL) and cell 

essential (CE) genes were significantly more enriched in genes prioritised by both 

GeVIR and LOEUF (MHL: Genes = 121/1,672, Fold Enrichment (FE) = 3.6, two-sided 

Fisher’s exact test P = 7.42E-27. CE: Genes = 162/1,672, FE = 2.8, P = 3.07E-25), than 

in genes prioritised only by GeVIR (MHL: Genes = 52/1,317, FE = 2.0, P = 3.13E-5. 

CE: Genes = 100/1,317, FE = 2.2, P = 5.07E-11) or LOEUF (MHL: Genes = 59/1,317, 

FE = 2.2, P = 2.82E-7. CE: Genes = 62/1,317, FE = 1.4, P = 2.52E-2), when compared 

to expected proportions in the 19,361 studied genes (388 MHL and 663 CE genes). This
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result shows that genes intolerant to both LoF and missense variants are more likely to 

be essential, and confirms that GeVIR and LOEUF metrics complement each other. 

Table 3.2: The most significantly enriched Gene Ontology (GO) terms (Biological 
Process) and KEGG pathways in genes prioritised by GeVIR, LOEUF or both. 

The functional enrichment analysis was performed using DAVID 6.8, statistical 

significance was reported by False Discovery Rate (FDR). Genes (%) is a number and 

proportion of genes from the analysed list found in DAVID and associated with 

corresponding GO term or KEGG pathway. Mean, median and standard deviation (SD) 

of protein length were calculated separately (see Appendix Table B.7 for full report).

Gene
group

Source Term
Genes
(%)

Fold
enrich
ment

FDR
Protein length 
(amino acids)

Mean Median SD

Only
GeVIR

GO
mRNA metabolic

process
130

(10.0)
2.72 6.36E-23 300 223 240

Only
GeVIR

GO
Positive regulation
of macromolecule
metabolic process

333
(25.6)

1.64 2.77E-19 400 355 280

Only
GeVIR

GO
Protein targeting to

membrane
57

(4.4)
4.21 1.63E-17 241 151 224

Only
GeVIR

KEGG Spliceosome
42

(3.2)
3.64 1.66E-10 295 221 253

Only
GeVIR

KEGG Ribosome
38

(2.9)
3.22 1.64E-07 144 137 62

Only
GeVIR

KEGG
MAPK signaling

pathway
48

(3.7)
2.19 3.75E-04 358 339 180

Only
LOEUF

GO
Multicellular

organism
development

506
(38.8)

1.48 1.09E-22 1,228 966 1,749

Only
LOEUF

GO
Neuron projection

morphogenesis
99

(7.6)
2.59 2.87E-15 1,234 986 772

Only
LOEUF

KEGG Axon guidance
27

(2.1)
3.09 4.43E-04 1,106 1,030 360

Only
LOEUF

KEGG Focal adhesion
34

(2.6)
2.40 4.50E-03 1,450 1,360 708

GeVIR
&

LOEUF
GO

Regulation of
macromolecule

metabolic process

928
(55.9)

1.72 2.34E-95 829 630 631

GeVIR
&

LOEUF
GO

Cellular
macromolecule

metabolic process

1,166
(70.2)

1.50 8.82E-95 832 640 644
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GeVIR
&

LOEUF
GO

Histone
modification

152
(9.2)

3.72 5.35E-46 1,130 805 917

GeVIR
&

LOEUF
GO RNA splicing

126
(7.6)

3.39 8.21E-33 687 568 406

GeVIR
&

LOEUF
KEGG

Dopaminergic
synapse

53
(3.2)

3.52 4.31E-14 805 525 619

GeVIR
&

LOEUF
KEGG Spliceosome

51
(3.1)

3.26 9.09E-12 713 559 460

GeVIR
&

LOEUF
KEGG

mRNA
surveillance

pathway

40
(2.4)

3.73 6.13E-11 738 583 571

GeVIR
&

LOEUF
KEGG

MAPK signaling
pathway

73
(4.4)

2.45 2.09E-10 896 697 617

To compare GeVIR with recently published CCRs33 at a gene level, we first excluded 

genes not analysed in the CCR study (18,012 genes remained). Although, no gene level 

metrics were produced, the authors compared their method with other gene constraint 

metrics (pLI and missense z-score) by ranking their genes based on the number of CCRs

at ≥95th percentile33. We used the same approach and compared the top 7,000 genes 

with CCRs ≥ 95% with the same number of genes with the highest GeVIR scores to 

understand which metric is more efficient at prioritising AD genes. Although GeVIR 

and CCR methods both initially prioritised a similar number of AD genes, GeVIR 

started outperforming CCR after the first ~3,500 genes (Figure 3.7a). Moreover, GeVIR

prioritised fewer AR genes, considered as false positives in this analysis (Figure 3.7b). 

Consequently, GeVIR also had a higher peak F1 score of 62.38% at the 32th percentile 

compared with a CCR peak F1 score of 57.25% at the 38th percentile (Figure 3.7c). 

Note that GeVIR also prioritised AR genes over Null genes after the 40th percentile of 

the full list of 19,361 ranked genes (Figure 3.5a), which explains the decrease in F1 

score observed after the 28th percentile. The remaining 11,012 genes in common (i.e. 

~61%) contain only CCRs below the 95th percentile, and a method to rank them was 

not provided by the authors33, which makes the CCR ranking approach less universal 

than GeVIR. Moreover, CCR ranking was significantly biased towards longer genes 

since the suggested approach of counting the number of CCRs does not involve 

normalisation by gene length (Figure 3.7d). In this assay, the difference in performance 
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between GeVIR with and without GERP++ adjustments were minor (e.g. 0.7% F1 score

decrease Figure 3.7c), which highlights that GeVIR is a novel approach of using variant 

distribution data to assess gene constraint. Therefore, GeVIR outperforms CCRs at 

prioritising the most intolerant genes, and provides ranks for a much larger list of genes 

with less size bias.

a) Cumulative number of genes associated exclusively with AD diseases in OMIM (n = 

770). b) Cumulative number of genes associated exclusively with AR diseases in 

OMIM (n = 1,553). c) AD class F1 score calculated at each subset of top genes 

(cumulative) considering AD genes as true positives and AR genes as false positives. d) 

Gene canonical transcript protein length in each thousand ranked genes (that is 1–1,000,

1,001–2,000 ... 6,001–7,000). Standard notations are used for elements of the box plot 

(that is, upper or lower hinges: 75th or 25th percentiles; inner segment: median, notches 

are calculated using a Gaussian-based asymptotic approximation; and upper or lower 

whiskers: extension of the hinges to the largest or smallest value at most 1.5 times of 

interquartile range). Outliers are not shown due to the presence of genes with extreme 

protein length (for example TTN, ~36,000 amino acids) in the data set, which would 

distort the figure. Correlation between protein length and gene rank was measured with 

Spearman’s rank correlation coefficient.
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3.5 Discussion

Large-scale genome analysis has shown that genes in the human genome differ in their 

ability to tolerate disruptive genetic variation, and identifying those involved in disease 

is not a trivial task. Different methodologies have been used to classify genes based on 

their mutation intolerance, many are frequently used to aid interpretation of patient 

genome sequencing data, for example ExAC pLI and missense z scores. In this study we

present an alternative method, GeVIR, to measure gene variation intolerance based on 

analysing variant distribution in large populations obtained from the gnomAD database, 

and show that it outperforms existing missense constraint metrics. Incorporation of 

evolutionary conservation data (GERP++) into GeVIR significantly improved the 

model, especially its ability to rank less variation intolerant genes (e.g. AR and null 

groups). In fact, GeVIR performance was comparable to existing LoF constraint 

metrics, but since these methods prioritised substantially different genes, we found that 

they were complementary and could be combined to produce a more efficient score 

(VIRLoF) for ranking genes according to their intolerance to variation. Comparisons 

with other commonly used methods also revealed that GeVIR and LOEUF were best at 

ranking AR genes closer to the middle of the gene list, distinguishing them from AD and

null genes. Thus, these metrics allow genes to be prioritised in general, not only to 

separate the most intolerant genes from all others, thereby producing a spectrum of 

intolerance.

Although GeVIR is based on the same principles as the CCR method33, published 

during preparation of data for this study, GeVIR can be used to rank a larger list of 

genes since it takes into account variant distribution patterns in the whole gene and, 

consequently, is able to some extent to prioritise AR over null genes. Moreover, GeVIR 

prioritises the most intolerant genes more precisely, so fewer AR genes reside amongst 

top ranked genes, which suggests that GeVIR detects fewer false positive “important” 

regions (i.e. those due to low coverage or sequencing issues) than the CCR method. An 

explanation for this might be the different methods used to analyse the regions, which, 

in GeVIR, include higher coverage thresholds, exclusion of non-canonical transcripts, 

evolutionary conservation adjustments and normalisation by total number of regions in 

a gene. Our analyses show that it is important to differentiate between gene (e.g. 
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GeVIR, LOEUF) and variant (e.g. CCR) prioritisation methods. Approximately half of 

the ClinVar pathogenic missense variants studied were located in short regions (1-5 

amino acids), however, gene variation intolerance metrics can still be used to prioritise 

these disease genes. Moreover, as seen with the gene TARDBP (GeVIR = ~1%; Figure 

3.3), even in genes with multiple long VIRs all known disease causing variants could be

located outside them. We could speculate that deleterious changes inside such regions 

might result in more severe or even lethal phenotypes, a hypothesis that warrants further

investigation in conditions such as AD amyotrophic lateral sclerosis. This highlights that

VIRs might be used to prioritise AD genes, even when they cannot be used to prioritise 

all pathogenic variants in the gene, and the overall pattern of distribution should also be 

taken into account. Therefore, candidate missense variants located inside long 

VIRs/CCRs might be interpreted as deleterious, but the opposite assumption should not 

be made.

Existing gene scores based on exome LoF variant data (pLI) are biased towards longer 

genes38, which was also confirmed in this study for the more recent constraint metric 

LOEUF11. However, GeVIR showed a potential to prioritise short genes, which might 

have important biological functions (e.g. mRNA metabolic processes). Similar to other 

constraint metrics based on variant data, GeVIR is not biased towards more studied 

genes, a criticism known to be associated with gene scores that rely on gene networks35. 

Previously, ExAC pLI scores were created using unsupervised clustering algorithms 

based on three major gene categories: haploinsufficient, recessive, and null12. Although 

GeVIR and LOEUF  did not use any prior knowledge about gene classes, and therefore 

might result in a more “natural” gene ranking, both methods supported this assumption. 

However, there are currently no supervised gene classification models that can classify 

genes into these three categories. In the future, GeVIR and LOEUF might be used as 

features for such models, as we have demonstrated their applicability for this task and 

ability to complement each other by combining them into one metric, VIRLoF. 

The key assumption of GeVIR is that the longer the region devoid of any protein 

altering variants within a gene, the more intolerant it is, however, there are limitations to

this assumption. Although we considered VIR coverage and evolutionary conservation 
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in GeVIR calculations, some of the well covered and conserved VIRs might still be a 

result of sequencing errors. Even the presence of a single sufficiently long VIR in a 

gene might be enough for GeVIR to predict it as highly intolerant to variation (i.e. false 

positive). Improvements in sequencing technologies and variant filtering software 

should reduce these issues in the future. GeVIR might underestimate intolerance of 

genes associated with phenotypes which could be present in gnomAD population (e.g. 

old-age onset, cancer)59, the same as other gene constraint metrics derived from the 

same data11. Since, long unaffected regions (e.g. >20 amino acids; 3,389 VIRs detected 

in this study) are significantly less common than medium length regions (e.g. 8-12 

amino acids; 56,117 such VIRs detected here), they have a much larger impact on 

GeVIR scores. Therefore, GeVIR might underestimate intolerance of functionally 

important genes with rare and sparse variants in healthy individuals (i.e. false negative). 

This limitation might be overcome in future by more rigorous selection of "healthy" 

individuals in exome and genome sequencing population databases. 

The number of sequenced exomes and genomes is rapidly growing, but the effect of 

sample size on our method is hard to predict. We expect that VIRs in a larger database 

will be smaller due to the larger number of variants, some of which might occur in 

important regions due to reduced penetrance or presence of some affected individuals in

the population. However, region length weights used to calculate GeVIR are relative 

and we also expect that in a larger database all regions between variants will be smaller 

and thus relative weights might not change significantly. Nevertheless, in the future our 

method might require some adjustments to region weights based on bordering variant 

allele frequencies (AF) or exclusion of singletons, if a population is sufficiently large. 

However, this limitation is also true, to some extent, for other gene or regional variation 

intolerance metrics, which utilise missense variant data and, at the moment, do not 

account for variant AF27,33. Regardless, our study shows that the analysis of variant 

distribution patterns allows better estimation of gene intolerance than variant load in the

case of missense variants.

In conclusion, we show that GeVIR can be used to prioritise candidate genes intolerant 

to missense variants, especially if they are short. For example LITAF, a short protein 
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coding gene (162 amino acids) associated with the AD Charcot-Marie-Tooth disease 

type 1C caused by missense variants (Figure 3.3), is ranked ~35% by GeVIR, which is 

~2 times closer to the top most intolerant genes than any of the current gnomAD gene 

constraint metric rankings (missense z-score = ~67%, MOEUF = ~72%, LOEUF = 

~72%). The LoF metric LOEUF is recommended to prioritise candidate genes intolerant

to LoF variants, especially if they are large, although, GeVIR might be more useful 

when investigating LoF in short genes. VIRLoF can be used when a single metric is 

required, as it shows the best performance of all the variant-based gene constraint 

metrics assessed. In fact, the top 10% most intolerant genes according to VIRLoF 

(1,936 genes) contain ~37% (291/790) of known AD genes, and only ~2.5% (39/1585) 

of known AR genes (two-sided Fisher’s exact test  FE = ~15, P = 3.52E-84). This 

suggests that heterozygous de novo deleterious variants in these genes are likely to 

result in pathogenic phenotypes. Although ~70% of these genes (1,357/1,936) are not 

yet linked to any phenotype in OMIM, they are significantly enriched (FE = ~4.1, P = 

4.74E-12) with mouse heterozygous lethal genes (43/1,357), compared with unknown 

genes in the remaining 90% of the genes (108/13,981). We hypothesise that genes which

are intolerant to both missense and LoF variants, are crucial for human development and

that deleterious variants in them may result in severe dominant disorders or embryonic 

lethality. The availability of a continuous gene variation intolerance ranking system 

based on variant distribution should aid interpretation of genome sequencing data in a 

clinical setting, and progress human disease gene discovery.
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Chapter 4  

DIP: using machine learning to classify 

genes across the spectrum of disease 

inheritance patterns

4.1 Abstract

Metrics that predict whether loss or disruption of one or both gene copies can cause 

disease are useful to aid the discovery of novel autosomal dominant (AD) and recessive 

(AR) diseases and associated genes. Recent gene constraint studies showed that gene 

intolerance to variation continuously correlated with associated disease inheritance 

patterns, but the most tolerant genes were deficient in genes associated with dominant or

recessive diseases and, therefore, could be segregated into a third “non-disease” causing

gene group. However, existing supervised machine learning solutions to this problem 

were built on the assumption that genes had to be classified into two groups (e.g. 

AD/AR or haploinsufficient/haplosufficient), and predictions were difficult to interpret 

in ambiguous cases with no clear mode of inheritance. Here, we present a novel gene 

level metric that continuously ranks 15,794 autosomal genes by Disease Inheritance 

Patterns (DIP), which was developed by combining multiple supervised machine 
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learning models with gene variation intolerance metrics. DIP performance was 

comparable with existing metrics in distinguishing AD from AR genes. However, it 

more effectively prioritised disease genes in general, resulting in a more optimal 

ranking of genes across the spectrum of disease inheritance patterns. The first and last 

five percentiles were significantly enriched with AD and cell non-essential genes 

(approximately 4.6 and 4.2 times, respectively), whereas AR genes were 3 times more 

frequently seen in the middle ranks (41-51%). Although, perfect categorical 

classification of genes by mode of inheritance might not be possible, continuous metrics

can provide a better estimation of a gene’s predisposition to certain modes of 

inheritance, especially in ambiguous cases.

4.2 Introduction

The large amount of data produced by next generation sequencing technologies gave 

impetus to the development of computational methods that could facilitate its 

interpretation and aid discovery of novel disease genes. Initially, the research was 

focused on the development of methods that could prioritise candidate pathogenic 

variants amongst the thousands of rare variants observed in every individual119,120. 

However most of these methods were predicting variant deleteriousness regardless of 

disease mode of inheritance (i.e. dominant or recessive) and, therefore, additional 

metrics were required to further prioritise candidate pathogenic variants to facilitate 

discovery of novel disease genes17. Although inheritance pattern is a property of disease-

causing variants, it can be predicted using gene-level properties17. Consequently, genes 

can be classified as dominant/recessive, which indicates the predisposition of candidate 

pathogenic variants in these genes to these inheritance patterns17.

Recent statistical methods, that measured gene intolerance to variation using data from a

large population database, has shown that genes can be ranked continuously and 

highlighted the existence of at least three major groups of genes: dominant (including 

haploinsufficient genes), recessive, and tolerant genes (i.e. unlikely to be associated 

with diseases, e.g. olfactory genes)11,121. An alternative three-group gene classification 

strategy was suggested by Pengelly et al.22 who hypothesised that disease genes might 

have medium essentiality, whereas the most and the least essential genes might not be 
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associated with diseases since deleterious variants in them might be lethal and tolerated,

respectively. However, previous studies that used supervised machine learning methods 

for gene classification aimed to classify all genes into only two groups (e.g. 

haploinsufficient and haplosufficient or autosomal dominant and recessive)3,15,17,35–38, and

were reviewed elsewhere25. Some studies developed separate models to prioritise genes 

with different disease inheritance patterns, but these scores were not integrated into a 

single continuous metric3,36. Moreover, until recently, potentially non-disease genes 

were not analysed as a separate class3. Although methods to prioritise haploinsufficient 

or dominant genes might to some extent assign lower scores to non-disease genes rather 

than recessive genes, this behaviour should not be assumed since the models were not 

optimised for this task. Therefore, metrics provided by existing supervised machine 

learning gene classification methods could be used to distinguish one group of genes 

from all others but, unlike statistical variation intolerance metrics, they might not be 

continuous.

Here, we show that continuous gene ranking by Disease Inheritance Patterns (DIP) can 

be achieved by combining two supervised models trained to distinguish autosomal 

dominant from recessive genes (ADR), and disease from non-disease genes (DND). DIP

scores were compared with existing supervised machine learning methods developed to 

prioritise autosomal dominant and Mendelian disease genes, DOMINO17 and Gene 

Pathogenicity Prediction (GPP)3 scores, respectively. Finally, we discuss the issues 

highlighted by comparison of supervised machine learning models with statistical gene 

variation intolerance metrics (VIRLoF11,121), that led to our decision to use the latter to 

resort genes predicted to be AD by ADR by DIP gene ranking.

4.3 Methods

4.3.1 Gene datasets

The list of autosomal protein-coding genes was obtained from the DOMINO study (n = 

17,898, obtained from https://wwwfbm.unil.ch/domino/download.php, version February

2019, accessed March 2020)17 and mapped to the official gene symbols according to 

HUGO Gene Nomenclature Committee (HGNC, accessed March 2020)122. Gene 
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symbols that were not found in HGNC (official, alias and previous symbols were 

checked) or those that could be mapped to multiple official symbols were excluded (n = 

17,857 genes remained, termed the “main” gene dataset). Genes in the main dataset 

were annotated with labels from the following sources.

The model developed to distinguish disease from non-disease genes (DND) was trained 

on the disease (n = 588) and non-disease (i.e. loss-of-function tolerant, n = 587) genes 

from the Gene Pathogenicity Prediction (GPP) training dataset3. The model developed 

to distinguish autosomal dominant from recessive genes (ADR) was trained and 

validated on the sets of autosomal dominant (AD, n = 291 and 26, respectively) and 

autosomal recessive (AR, n = 693 and 73, respectively) from the DOMINO training and

validation datasets17. Disease Inheritance Patterns (DIP) scores were calculated for 

genes in the main set, that were not used to train or validate DND and ADR models (n =

15,794, termed the “evaluation” gene dataset). However, when DIP performance was 

compared with DOMINO, GPP and VIRLoF, only genes from the evaluation dataset 

that were present in all metric lists were used (n = 15,278, termed the “common 

evaluation” gene dataset).

The performance of all metrics on the evaluation gene dataset was analysed based on 

the distribution of the genes from the following groups (the number of genes that were 

present in the common evaluation dataset is reported in square brackets): (i) OMIM 

disease genes (AD, n = 465 [447], AR, n = 696 [686], “AD and AR”, n = 224 [222], and

all Mendelian Disease (MD) genes with clinically relevant phenotypes, n = 1,587 

[1,556]) as annotated in Gene Discovery Informatics Toolkit (GDIT)24,41; (ii) Cell 

essential (n = 598 [581]) and cell non-essential (n = 691 [667]) genes according to 

CRISPR–Cas studies20 (obtained from the MacArthur Lab GitHub repository: 

https://github.com/macarthur-lab/gene_lists, accessed February 2020); (iii) Severe 

haploinsufficient (HI) genes from the regional missense constrained study (n = 28 

[26])29; (iv) Genes with statistically significant enrichment (false discovery rate ≤ 0.05) 

of de novo mutations in individuals with diagnosed autism spectrum disorder, epileptic 

encephalopathy or intellectual disability from the gene4denovo database (referenced as 

“ASD, EE or ID de novo”, n = 160 [157])123; (v) Genes linked to lethal phenotypes with
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heterozygous (n = 109 [104]) and homozygous (n = 2,912 [2,847]) knock-out mice from

the Mouse Genome Informatics (MGI)124 or International Mouse Phenotype Consortium

(IMPC)125,126 databases as annotated in GDIT; (vi) Olfactory genes (n = 289 [279], 

obtained from the MacArthur Lab GitHub repository)127. 

4.3.2 Genomic and evolutionary features

DIP scores were created using a diverse set of genomic and evolutionary features, the 

majority of which were obtained from the previous studies11,17,121,128,129. Gene intolerance 

to loss-of-function (LoF) was represented by four features: (i) loss-of-function 

observed/expected upper bound fraction (LOEUF)11; (ii) Ratio between splice donor and

synonymous variants (Donor/Syn)17; (iii) Ratio between cumulative length of exons 

affected by splice acceptor variants and total length of gene canonical transcript 

(Acceptor/Length, single exon transcripts were ignored) in gnomAD (v2.0.1)11; (iv) 

Cumulative allele frequency of structural variants expected to result in LoF in the 

gnomAD control population (SV-LoF, obtained from https://gnomad.broadinstitute.org/

downloads, accessed June 2020)128. Gene intolerance to missense variation was 

represented by gene variation intolerance rank (GeVIR)121 and unified inference of 

variant effects and gene constraints (UNEECON)129 metrics. Both GeVIR and 

UNEECON also used evolutionary conservation data in combination with variant data 

from gnomAD, but GeVIR was mostly influenced by variation distribution patterns in 

gnomAD. A separate evolutionary based feature was used to measure conservation near 

transcription start site (+/- 500 bp)17. Finally, a binary feature was used to distinguish 

genes with shorter mRNA half-life (≤10 hours) in mouse embryonic stem cells, that 

were shown to be more often associated with AD diseases17. Apart from 

Acceptor/Length and SV-LoF, all features were obtained from the referenced studies 

and median feature values were used for the missing genes.

4.3.3 Protein-protein interaction network-based features

Four features were calculated on protein-protein interaction (PPI) data from the 

STRING v10 database75 (accessed December 2019), three of which were used by the 

autosomal dominant from recessive model (ADR) and one by the disease from non-

disease model (DND). ENSEMBL protein IDs used in the STRING database were 

mapped to HGNC gene IDs using mapping file obtained from ENSEMBL BioMart130 
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and interactions with genes outside the  main gene dataset (G) were excluded. STRING 

PPIs were grouped into 27 subsets based on the interaction source (s  ∈ 

{“combined_score”, “experimental”, “textmining”}) and confidence score (examined 

range: {≥100c | c  [1,2,…,9]}). ∈ The performance of each feature was assessed on all 

PPI subsets, and final feature values for each g  G∈  were calculated on the PPI subset 

with the best results.

Both PPI-N1 and PPI-N2  (used by ADR model) features were probabilities of genes 

being AD predicted by two models (named the same as features). Each of the models 

used K nearest neighbour (KNN) classifier116, which was trained on two features that 

represented gene interactions with AD and AR genes from the ADR training dataset. 

The PPI-N1 model was based on the idea that if a gene interacts more with known AD 

than AR genes, then the gene itself is more likely to be AD than AR. For each g  G, ∈ 

PPI-N1 features (N1) were calculated as the proportion of known AD or AR genes (two 

separate features) from the training dataset (T) in the set of genes with which g interacts 

(Gg):

N1
(g)=

|Gg∩T|

|Gg|

The PPI-N2 model was based on the idea that if a gene interacts more with genes that, 

regardless of their own status (e.g. AD, AR, unknown etc.), interacts more with known 

AD than AR genes, then the gene itself is more likely to be AD than AR. For each g  ∈ 

G, PPI-N2 features (N2) were calculated as the sum of the PPI-N1 features (N1) of all 

genes with which g interacts (Gg):

N2
(g)=∑

g1

Gg

N1
(g1

)

The PPI-N1 and PPI-N2 model were evaluated with various numbers of nearest 

neighbours (KNN classifier parameters, the examined range: {k  [1,2,…,150]}) ∈ and 

average performance in a 10x10 cross-validation scenario (F1 score of the minor (AD) 

class) was measured to select the optimal k and PPI subsets. Both PPI-N1 and PPI-N2 

models showed the best performance on the same PPI subsets (s = “textmining”, c = 5) 

with k = 22 and 50, respectively. Final PPI-N1 and PPI-N2 features were created by 

training the models on the whole training dataset, so AD predicted probabilities for 
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training genes were replaced with the averaged probabilities from the 10x10 cross-

validation evaluation.

PPI-V-ADR and PPI-V-DND features (used by ADR and DND models, respectively) 

were based on the assumption that if a gene had many direct interactions with genes that

could be AD or disease causing according to VIRLoF (i.e. intolerant to both missense 

and LoF variation), then the gene itself is more likely to be AD or disease causing, 

respectively. For each g  G, ∈ PPI-V (V) features were calculated as the number of genes

with VIRLoF less than a certain threshold (Gv) in the set of genes with which g interacts

(Gg):

V (g)=|G g∩G v|

The optimal VIRLoF thresholds (examined range: {5v | v  [1,2,…,20]}∈ ) and PPI 

subsets for candidate PPI-V-ADR (s = “textmining”, c = 6, v = 2) and PPI-V-DND (s = 

“textmining”, c = 5, v = 17)  features were selected by measuring mutual information on

ADR and DND training datasets, respectively. The procedure for calculating DIP 

ranking is summarised in Figure 4.1.
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a) General workflow. PPI-N1 and PPI-N2 models were built with K nearest neighbour 

classifiers (KNN). DND and ADR models were built with random forest (RF) 

classifiers, their features and parameters were selected simultaneously with recursive 

feature elimination and cross-validation (RFECV) method. b) Example of gene network

based features calculation. PPI-N features are used in PPI-N1 and PPI-N2 models which

predictions are then used in ADR model, whereas PPI-V features are directly used in 

ADR and DND models. Percentages in brackets are VIRLoF scores. c) Feature weights 

in DND and ADR models.

4.3.4 Calculation of DIP scores 

Both DND and ADR models were based on a random forest (RF) classifier116. The 

feature selection and RF parameter tuning was performed simultaneously with the 

scikit-learn recursive feature elimination and cross-validation (RFECV) method116. All 

non-network based features and model specific network based features were examined 

with all combinations of the following RF parameters: (i) The number of trees ({t  ∈ 
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[100, 200, 300, 400, 500]}); (ii) The maximum number of features ({f  [‘auto’, ∈ 

None]}); (iii) The maximum depth of the tree ({d  [2, 4, 6, None]}∈ ); (iv) The pair of 

dependent parameters representing the minimum numbers of samples required to be the 

internal and leaf nodes ({n  [(2, 1), (4, 2), (8, 4), (16, 8)]}∈ ); (v) Bootstrap method of 

tree creation (i.e. partial usage of the dataset for tree creation) on/off ({b  [True, ∈ 

False]}). The optimal RF parameters for DND (t = 200, f = None, d = 6, n = (4, 2), b =

True) and ADR (t = 100, f = ‘auto’, d = None, n =  (4, 2), b = True) models were 

selected based on the F1 score of the less represented class (non-disease and AD genes, 

respectively). The best performing models were built using all features except “mRNA 

half-life ≤10 hours” and “SV-LoF” in DND and ADR, respectively. The final DND and 

ADR models were trained on the whole training datasets and used to calculate non-

disease and AD probabilities for all genes studied (n = 15,794). Probabilities for training

genes were replaced with the averaged probabilities obtained from the 10x10 cross-

validation evaluation. 

The DIP ranking of 15,794 genes, that were not used to train or validate DND and ADR 

models, was calculated by first sorting all genes based on the DND model predicted 

probabilities of genes being non-disease (ascending), and then resorting the first half 

based on the ADR model predicted probabilities of genes being AD (descending). DND 

model predictions were prioritised over ADR, since DND was trained on the more 

representative dataset (i.e. both disease genes with various inheritance patterns and non-

disease genes), whereas ADR was built on the assumption that all genes had to be 

associated with AD or AR disease. The top ranked genes predicted to be AD by the 

ADR model (probability ≥ 0.5) were resorted based on their VIRLoF scores, which 

were not biased by training data and therefore might better represent ranking of the most

important genes. To facilitate interpretation of DIP ranks, fold enrichment of known 

AD, AD and AR, and AR genes was calculated for each gene using the same parameters

employed in our GeVIR study (i.e. in a range up to ±5% ranks, the first and last ranked 

genes were calculated only on 0-5% and 95-100% ranges, respectively)121.
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4.4 Results

Disease Inheritance Pattern (DIP) gene ranking was created by combining predictions 

from two models (both based on random forest classifiers), that were trained to 

distinguish disease from non-disease (DND) genes and autosomal dominant from 

recessive (ADR) genes, but the highest ranked genes (predicted to be AD by ADR) were

sorted based on VIRLoF scores. ADR and DND were developed as alternatives to 

DOMINO and GPP models, respectively. ADR features included predictions from two 

other models (both based on K nearest neighbour classifiers), that were trained to 

distinguish AD and AR genes using protein-protein interaction (PPI) network data by 

analysing the first and the second level neighbours, named PPI-N1 and PPI-N2, 

respectively. These models were compared with the approach used in DOMINO for 

calculating network-based features. ADR performance was compared with DOMINO on

the training and validation datasets, common for both models, and tested on the highest 

ranked genes (first decile and quartile, i.e. expected to be AD) from the common 

evaluation dataset that included all genes for which all compared metrics (ADR, DND, 

DOMINO, GPP and VIRLoF) had scores. In the latter case, ADR and DND predictions 

and were combined and used for ranking the first and the last half of the genes, 

respectively. DND had priority over ADR in conflict cases and was compared with GPP 

on the least ranked genes (last quartile, i.e. expected to be non-disease genes). Finally, 

DIP (i.e. combination of ADR, DND and VIRLoF scores) was compared with other 

metrics in the context of their ability to continuously rank genes by inheritance patterns.

PPI-N1 and PPI-N2 models, that predicted AD probabilities, were used as features in 

the ADR model, and were compared with the approach for the “network-based features”

calculation used in DOMINO (i.e. counting direct interactions with AD genes from the 

training dataset with some upper limits)17. The most important DOMINO feature was 

calculated by counting PPIs with STRING combined confidence ≥50017. We found that 

the maximum achievable performance of this method on the training data was 64.95% 

F1 score when all genes with ≥4 AD PPIs were predicted as AD. This result could be 

achieved when all AD gene interactions were counted and all training genes were 

analysed to find the optimal threshold. However, the PPI-N1 and PPI-N2 model average

performance in a 10x10 cross-validation scenario (i.e. 90% of the known AD and AR 
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genes were used to train the models) on the same data were 66.54% and 65.52% F1 

scores, respectively. Moreover, both PPI-N1 and PPI-N2 models showed the best 

performance of 67.50% and 66.44% F1 scores, when PPIs with STRING textmining 

confidence ≥500 was used. Based on the average predicted AD probabilities, PPI-N1 

and PPI-N2 models agreed more on correctly predicted AD genes (161/220, 73.18%), 

than on misclassified AR genes (43/127, 33.86%), which explains why both features 

were beneficial for the ADR model (i.e. survived the feature selection procedure). It 

should be noted that the DOMINO model used three network-based features (based on 

combined, textmining, and experimental STRING data) where parameters (confidence 

thresholds and upper limits) were optimised to work effectively with other features17, 

and consequently might not perform the best on their own. Nevertheless, this evaluation

showed that our method for network-based features calculation could be more efficient 

for AD gene prediction than the one used by DOMINO.

ADR model performance was compared with DOMINO on the training (average results 

from 10x10 cross validation) and validation datasets using metrics for the AD class that 

was less represented in both datasets (29.57% and 26.26%, respectively). On the 

training dataset, ADR and DOMINO models achieved similar F1 scores (76.26% and 

75.84%, respectively), but the ADR model was more precise (82.55% and 74.10%, 

respectively), whereas DOMINO had higher recall (71.38% and 77.66%, respectively). 

On the validation dataset, ADR and DOMINO models had the same recall (88.46%), but

the ADR model was again more precise than DOMINO (76.67% and 65.71%, 

respectively) and, therefore, also had higher F1 scores (82.14% and 75.41%, 

respectively). However, it should be noted that the validation dataset consisted of only 

99 genes and contained AD genes (n = 26) that were significantly (P=0.011, two-sided 

Mann-Whitney U test with continuity correction) more intolerant to variation than AD 

genes (n = 291) in the larger training dataset (median VIRLoF 7.73% and 13.38%, 

respectively). Therefore, the performance of both models on the validation dataset could

be affected by selection of more severe, and consequently easier to predict, AD genes 

(i.e. it should not be assumed that both models can predict 88.5% of all AD genes). 

Nevertheless, evaluation on the validation dataset confirmed the observation made on 

the training dataset, that the ADR model could be more precise than DOMINO. Also on 

both training and validation datasets the ADR model obtained higher ROC AUC 
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(93.05% and 93.07%, respectively) than DOMINO (91.15% and 92.04%, respectively), 

which suggests that ADR model probabilities predicted might result in a slightly better 

gene ranking in general.

Genes from the evaluation dataset (n = 15,794) were ranked by both ADR (first half) 

and DND (second half) model probabilities, that predicted 23.05% (n = 3,641) and 

42.41% (n = 6,699) of these genes to be AD and non-disease (probability ≥0.5), 

respectively. These groups were expected to represent genes from the opposite sides of 

the spectrum, but they overlapped and 9.26% (n = 337) of the genes predicted to be AD 

by ADR were also predicted to be non-disease by DND. This group of genes, as 

expected, was significantly deficient in AR genes (fold enrichment (FE) = 0.07, two-

sided Fisher’s exact test96 P = 2.07E-05), but was not enriched with AD genes (FE = 

0.81, P = 7.42E-01), and was significantly enriched with cell non-essential genes (FE = 

1.76, P = 1.15E-02). Note that while the DND model was trained to distinguish disease 

genes with any mode of inheritance from potentially non-disease genes, the ADR model

was trained with a naive assumption that all genes had to be AD or AR. Consequently, 

when the ADR model was used to classify all genes, it might to some extent also 

prioritise non-important genes over strong AR candidates. Therefore, although some of 

these genes could be AD, others could be non-disease and a decision was made to rely 

on the DND model in conflict cases to more precisely prioritise disease genes in 

general.

The performance of the ADR model performance was compared with other metrics on 

the first quartile of genes (n = 3,820/15,278) from the common evaluation dataset (Table

4.1), which was close to the number of genes predicted to be AD by DOMINO (n = 

3,807, 24.92%). In the context of AD and AR gene classification, ADR performed 

slightly better (precision = 70.39%, recall = 60.63%, F1 = 65.14%) than DOMINO 

(precision = 69.11%, recall = 59.06%, F1 = 63.69%) and VIRLoF (precision = 69.54%, 

recall = 54.14%, F1 = 60.88%), but much better than GPP (precision = 45.06%, recall = 

53.02%, F1 = 48.72%). The latter showed that models that are designed to distinguish 

disease from non-disease genes, such as GPP, may not be effective in prioritising AD 

over AR genes. Note that the performance of both ADR and DOMINO on this dataset 
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(F1 = 65.14% and 63.69%, respectively) was lower than on the training (F1 = 76.26% 

and 75.84%, respectively) and validation (F1 = 82.14% and 75.41%, respectively) 

datasets. This could be because AD genes in the evaluation dataset were significantly 

more tolerant to variation (P=0.002, two-sided Mann-Whitney U test with continuity 

correction96; median VIRLoF = 19.69%), compared with those used to train the model 

(median VIRLoF = 13.38%). However, both ADR and DOMINO successfully 

prioritised 92.31% and 100% of the genes from the severe haploinsufficient (HI) group 

(n = 26) respectively, which were much more intolerant to variation (median VIRLoF = 

2.65%). Although, ADR and DOMINO performance at this threshold was similar, only 

76.47% (n = 2921) of the genes prioritised by ADR and DOMINO were in common. 

The genes prioritised exclusively by ADR (n = 899, 23.53%) were more intolerant to 

variation (median VIRLoF = 21.44%) than those prioritised exclusively by DOMINO 

(median VIRLoF = 35.67%), but had fewer protein-protein interactions (STRING 

combined score >= 500 median number of interactions were 38 and 50, respectively). 

ADR also prioritised genes essential in cell culture assays (n = 289, 49.74%), those 

linked to lethal phenotypes in heterozygous (n = 66, 63.46%) and homozygous (n = 

1480, 51.98%) knock-out mice, and especially those enriched with de novo mutations in

individuals with diagnosed autism spectrum disorder (ASD), epileptic encephalopathy 

(EE), or intellectual disability (ID) disorder (n = 116, 73.89%). In contrast, there was a 

deficiency of cell non essential genes (n = 66, 9.90%), and no olfactory receptor genes 

resided in the first quartile. However, it should be noted that the difference between 

ADR and DOMINO or VIRLoF was not significant in all gene groups examined (Table 

4.1), except for cell non-essential genes (two-sided Fisher’s exact test P = 1.13E-02), a 

gene group not prioritised by VIRLoF (n = 39, 5.85%).
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Table 4.1: Number and percentage of genes from various groups in the first 
quartile (n = 3,820) of the evaluation dataset (n = 15,278) sorted by DND, 
DOMINO, GPP and VIRLoF metrics.

The proportion of genes in the ADR group was compared with other metrics using a 

two-sided Fisher’s exact test (P indicates statistical significance; n = number). Used 

abbreviations: autosomal dominant (AD), autosomal recessive (AR), Mendelian disease 

(MD), autism spectrum disorder (ASD), epileptic encephalopathy (EE), intellectual 

disability (ID), haploinsufficient (HI).

Gene
Group\
Metric

ADR DOMINO GPP VIRLoF

n % n % P n % P n % P

AD 271 60.63 264 59.06
8.27E

-01
237 53.02

2.43E
-01

242 54.14
3.19E

-01

“AD and
AR”

84 37.84 95 42.79
5.35E

-01
125 56.31

2.31E
-02

70 31.53
3.50E

-01

AR 114 16.62 118 17.20
8.32E

-01
289 42.13

6.23E
-15

106 15.45
6.63E

-01

MD 525 33.74 536 34.45
7.76E

-01
731 46.98

1.01E
-06

473 30.40
1.56E

-01
ASD, EE or

ID 
de novo

116 73.89 113 71.97
9.31E

-01
78 49.68

3.52E
-02

115 73.25
1.00E
+00

Severe HI 24 92.31 26 100.00
8.46E

-01
13 50.00

1.97E
-01

24 92.31
1.00E
+00

Cell
essential

289 49.74 289 49.74
1.00E
+00

261 44.92
3.51E

-01
273 46.99

6.07E
-01

Cell non-
essential

66 9.90 72 10.79
6.55E

-01
46 6.90

7.66E
-02

39 5.85
1.13E

-02
Mouse Het

Lethal
66 63.46 68 65.38

9.12E
-01

43 41.35
7.68E

-02
56 53.85

4.95E
-01

Mouse Hom
Lethal

1480 51.98 1483 52.09
9.82E

-01
1355 47.59

5.64E
-02

1422 49.95
3.86E

-01

Olfactory 0 0.00 1 0.36
1.00E
+00

0 0.00
1.00E
+00

0 0.00
1.00E
+00

The same analysis was carried out on the first decile (n = 1,528/15,278) to evaluate the 

performance of the metrics at prioritising the most important / likely AD genes (Table 

4.2). At this threshold, ADR prioritised fewer AD genes  (n = 158, 35.35%) than 

DOMINO (n = 177, 39.60%), but more than VIRLoF (n = 146, 32.66%). However, the 

VIRLoF decile contained fewer AR (n = 25, 3.64%) and cell non-essential (n =11, 
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1.65%) genes than ADR (n = 33, 4.81% and n = 16, 2.40%, respectively) and DOMINO

(n = 44, 6.41% and n = 25, 3.75%, respectively). Moreover, VIRLoF also prioritised 

slightly more genes enriched with de novo mutations in individuals with diagnosed 

ASD, EE and ID disorders (n = 95, 60.51%), than ADR (n = 90, 57.32%) and DOMINO

(n = 84, 53.50%). All three metrics prioritised the same number of severe HI genes (n = 

21, 80.77%). Note that ADR and DOMINO predicted 20.62% (n = 3151) and 24.92% (n

= 3807) of the genes to be AD, respectively. Consequently, all known AD genes should 

not be expected to be ranked in the first 10% and, therefore, prioritisation of known AD 

genes might result in deprioritisation of unknown AD genes (i.e. those that have yet to 

be associated with an AD disease). Moreover, the most important genes might be 

dominant lethal and, consequently, not associated with documented diagnosed diseases. 

Therefore, at this threshold, metrics had to be evaluated mainly based on precision, 

which was higher in VIRLoF (85.38%) than ADR (82.72%) and DOMINO (80.09%). 

Moreover, VIRLoF also prioritised fewer genes associated with both “AD and AR” (n =

19, 8.56%) diseases than ADR (n = 35, 15.77%) and DOMINO (n = 44, 19.82%). If 

these genes were counted as false positives together with AR genes, then VIRLoF 

would be even more precise (76.84%) than ADR (69.91%) and DOMINO (66.79%). 

Consequently, VIRLoF might be more efficient than ADR and DOMINO at ranking the 

most important genes. However, it should be noted that the difference between ADR 

and VIRLoF was not significant in all examined gene groups (Table 4.2), except for 

genes associated with both “AD and AR” diseases (P = 4.39E-02). Nevertheless, genes 

predicted to be AD by ADR were subsequently sorted based on their VIRLoF scores in 

the final DIP gene ranking process (n = 3,212/15,794, 21.02%).

115



Table 4.2: Number and percentage of genes from various groups in the first decile 
(n = 1,528) of the evaluation dataset (n = 15,278) sorted by DND, DOMINO, GPP 
and VIRLoF metrics. 

The proportion of genes in the ADR group was compared with other metrics using a 

two-sided Fisher’s exact test (P indicates statistical significance; n = number). Used 

abbreviations: autosomal dominant (AD), autosomal recessive (AR), Mendelian disease 

(MD), autism spectrum disorder (ASD), epileptic encephalopathy (EE), intellectual 

disability (ID), haploinsufficient (HI).

Gene Group\
Metric

ADR DOMINO GPP VIRLoF
n % n % P n % P n % P

AD 158 35.35 177 39.60
4.05E

-01
124 27.74

8.75E
-02

146 32.66
5.95E

-01

“AD and AR” 35 15.77 44 19.82
3.93E

-01
73 32.88

1.19E
-03

19 8.56
4.39E

-02

AR 33 4.81 44 6.41
2.42E

-01
141 20.55

1.23E
-15

25 3.64
3.49E

-01

MD 251 16.13 294 18.89
9.46E

-02
380 24.42

2.84E
-06

211 13.56
9.00E

-02

ASD, EE or ID
de novo

90 57.32 84 53.50
7.77E

-01
28 17.83

7.30E
-07

95 60.51
7.82E

-01

Severe HI 21 80.77 21 80.77
1.00E
+00

8 30.77
6.23E

-02
21 80.77

1.00E
+00

Cell essential 150 25.82 156 26.85
7.97E

-01
98 16.87

3.23E
-03

149 25.65
1.00E
+00

Cell non-
essential

16 2.40 25 3.75
2.05E

-01
6 0.90

5.07E
-02

11 1.65
4.38E

-01

Mouse Het
Lethal

41 39.42 42 40.38
1.00E
+00

24 23.08
8.71E

-02
30 28.85

2.74E
-01

Mouse Hom
Lethal

726 25.50 783 27.50
1.93E

-01
641 22.51

4.05E
-02

701 24.62
5.74E

-01

Olfactory 0 0.00 0 0.00
1.00E
+00

0 0.00
1.00E
+00

0 0.00
1.00E
+00

The performance of the DND model was compared with other metrics on the last 

quartile of genes (n = 3,820/15,278) from the common evaluation dataset (Table 4.3), 

which was close to the number of genes predicted to be non-disease by GPP (n = 3,855, 

25.23%). In the context of continuous gene ranking, this group of genes was expected to

be deficient in known disease genes, and enriched with unlikely disease (e.g. olfactory) 

or possibly less important genes (e.g. cell non-essential). The DND group contained a 

smaller or similar number of known or potentially disease genes (e.g. cell essential, 
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mouse knock-out lethal) compared with other metrics (significance was measured with 

a two-sided Fisher’s exact test). Specifically, the number of known Mendelian disease 

(MD) genes in the DND group (n = 80, 5.14%) was significantly smaller than in GPP (n

= 145, 9.32%, P = 3.13E-05), VIRLoF (n = 171, 10.99%, P = 2.73E-08) and DOMINO 

(n = 308, 19.79%, P = 2.08E-29) groups. Although the GPP group contained the largest 

number of olfactory (n = 279, 100%) and cell non-essential (n = 423, 63.42%) genes, 

the difference was not significant compared with the DND group (n = 275, 98.57% and 

n = 403, 60.42%, respectively). Therefore, the DND model performed the best at 

deprioritising non-disease and possibly non-important genes.

Note that only the DOMINO group contained a similar percentage of AR (n = 217, 

31.63%) and cell non-essential genes (n = 220, 32.98%). Moreover, it contained only 

27.24% (n = 76) of olfactory genes, whereas all the other metrics contained 90-100% of 

them in the last quartile. This shows that models designed to distinguish AD from AR 

genes, such as DOMINO, may not be able to effectively prioritise AR over non-disease 

genes, and that this behavior should not be assumed by default.
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Table 4.3: Number and percentage of genes from various groups in the last quartile
(n = 3,820) of the evaluation dataset (n = 15,278) sorted by DND, DOMINO, GPP 
and VIRLoF metrics.

The proportion of genes in DND group was compared with other metrics using a two-

sided Fisher’s exact test (P indicates statistical significance; n = number). Used 

abbreviations: autosomal dominant (AD), autosomal recessive (AR), Mendelian disease 

(MD), autism spectrum disorder (ASD), epileptic encephalopathy (EE), intellectual 

disability (ID), haploinsufficient (HI).

Gene Group\
Metric

DND DOMINO GPP VIRLoF
n % n % P n % P n % P

AD 19 4.25 33 7.38
6.43E

-02
37 8.28

2.67E
-02

38 8.50
1.95E

-02

“AD and AR” 5 2.25 18 8.11
9.46E

-03
20 9.01

3.59E
-03

23 10.36
8.10E

-04

AR 39 5.69 217 31.63
4.71E

-27
59 8.60

5.95E
-02

67 9.77
8.82E

-03

MD 80 5.14 308 19.79
2.08E

-29
145 9.32

3.13E
-05

171 10.99
2.73E

-08

ASD, EE or ID
de novo

8 5.10 13 8.28
3.69E

-01
6 3.82

7.86E
-01

9 5.73
1.00E
+00

Severe HI 0 0.00 0 0.00
1.00E
+00

1 3.85
1.00E
+00

0 0.00
1.00E
+00

Cell essential 17 2.93 84 14.46
3.26E

-11
17 2.93

1.00E
+00

29 4.99
9.80E

-02
Cell non-
essential

403 60.42 220 32.98
1.04E

-09
423 63.42

5.95E
-01

412 61.77
8.24E

-01

Mouse Het
Lethal

2 1.92 10 9.62
3.50E

-02
10 9.62

3.50E
-02

7 6.73
1.72E

-01
Mouse Hom

Lethal
136 4.78 358 12.57

1.86E
-22

137 4.81
1.00E
+00

152 5.34
3.65E

-01

Olfactory 275 98.57 76 27.24
4.43E

-18
279 100.00

9.05E
-01

252 90.32
5.04E

-01

Finally, to analyse overall trends of gene distribution among DIP ranks and facilitate 

their interpretation, we used the same approach described in our GeVIR study121 and 

calculated fold enrichment (FE) of AD, “AD and AR”, AR, and cell non-essential genes 

in a range up to ±5% for each gene (Appendix Table C.1; statistical significance was 

measured with a two-sided Fisher’s exact test). To compare DIP with other metrics, the 

same analysis was performed on the evaluation dataset (Figure 4.2), but the trends 

observed were the same in both cases (Figure 4.2 and Appendix Table C.1). 
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Genes were ranked based on (a) DIP, (b) VIRLoF, (c) DOMINO and (d) GPP scores. 

For each gene (n = 15,278), fold enrichment was calculated by analysing genes with 

similar ranking scores (up to ±5 percentiles) and comparing the proportion of known 

AD (n = 447), AD&AR (n = 222), AR (n = 686) and cell non-essential (n = 667) genes.

AD and cell non-essential genes were enriched among the highest and the lowest ~5% 

of DIP ranks with peaks of FE equal 4.55 (P = 1.21E-30) and 4.19 (P = 1.13E-36) 

respectively. The AR gene enrichment peak (FE = 3.04, P = 2.27E-34) was in the middle

ranks (41-51%), whereas the “AD and AR” gene enrichment peak (FE = 2.34, P = 

4.91E-07) was between AD and AR peaks (22-32%, Figure 4.2a). VIRLoF showed 
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gene in the common evaluation dataset.



similar trends, but had a smaller peak enrichment of AR genes (FE = 1.92, P = 5.98E-

10) in the middle ranks (41-51%), mostly due to less effective segregation of AR and 

cell non-essential genes (Figure 4.2b). However, DOMINO and GPP did not effectively 

distinguish AR from cell non-essential (Figure 4.2c) and disease genes by mode of 

inheritance (Figure 4.2d), respectively. Therefore, overall DIP showed the highest trend 

to continuously rank genes by mode of disease inheritance.

4.5 Discussion

The overall aim of this study was to develop a continuous gene metric that could be 

used to prioritise genes by Disease Inheritance Patterns (DIP), more effectively than 

statistical variation intolerance metrics (e.g. GeVIR, LOEUF). To some extent, this was 

achieved by developing and combining predictions from two supervised machine 

learning models, which were trained to distinguish disease from non-disease (DND) 

genes, and AD from AR (ADR) genes. ADR and DND models were trained on the same

datasets as DOMINO and GPP respectively, so that their performance could be tested on

the maximum number of known disease genes that were unseen by all methods.

We have shown that existing models that were trained to classify genes into two groups 

produced mostly dichotomous, but not continuous, metrics. DOMINO was able to 

prioritise AD genes, but could not distinguish AR from non-disease genes, whereas GPP

could prioritises disease over non-disease genes, but could not distinguish genes with 

different inheritance patterns. It should be noted that the GPP study also developed 

separate metrics for prioritisation of AD and AR genes3, but these metrics were not 

evaluated here since the genes used to train the final models were not reported by the 

authors. The DND model performed significantly better than other metrics at 

prioritising disease genes, and its combination with ADR in DIP resulted in a peak of 

AR genes in the middle ranks, not seen in GPP or DOMINO and more pronounced than 

in VIRLoF. 

Overall, ADR performance in the context of AD and AR gene classification was 

comparable with DOMINO and VIRLoF, but assessment of candidate AD gene ranking 

(i.e. top ranked genes predicted to be AD) showed ambiguous results. In the first decile, 
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DOMINO had the highest recall, VIRLoF was the most precise (especially if “AD and 

AR” genes were considered as false positives), whereas ADR was the second best in the

both cases. Although the probability for a gene to be AD predicted by ADR and 

DOMINO tends to correlate with disease severity, similar to VIRLoF, both models were

not trained for this. Moreover, considering that the most important genes could be 

dominant lethal and, therefore, incompatible with life so largely unknown, supervised 

methods might not be suitable for this task. Although high precision could also be 

achieved by prioritising unknown non-disease genes over AR genes, VIRLoF had 

slightly less cell non-essential genes in the first decile and significantly less in the first 

quartile than ADR or DOMINO. Consequently, VIRLoF might actually perform best at 

ranking the most important genes despite prioritising less known AD genes, but this 

could not be assessed since the majority of these genes are still not linked to disease 

phenotypes. As a compromise, ADR was used to predict candidate AD genes, but 

VIRLoF was used to rank them.

The quality of the DIP metric is limited by several factors. Firstly, DIP was created 

using predictions from the supervised machine learning models whose performance 

depended on the degree to which genes in the training datasets represented all analysed 

genes39. To allow fair comparisons with existing methods, we reused the training 

datasets from the previous studies3,17 despite their limitations. Since a dataset of 

confirmed non-disease genes did not exist, the least important genes, used to train the 

DND model, were selected based on the presence of deleterious LoF variation in 

population databases12,131, however they could still be associated with some unknown 

mild or late onset disease3. Both ADR and DND models were trained on subsets of 

established known disease genes, which might disproportionally represent the variety of

known phenotypes (i.e. selection bias). Nevertheless, distribution of the genes from 

various examined groups in the evaluation dataset, including those that were not used in

the training process (e.g. cell non-essential), has shown that ADR and DND model 

predictions were generalizable and often better than other metrics (DOMINO and GPP).

Secondly, DIP, as well as DOMINO and GPP, used protein-protein interactions (PPI) 

networks data, whose usage was criticised since less studied genes were found to have 
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fewer interactions35. To reduce bias towards more studied genes, main network-based 

features of the ADR model (PPI-N1 and PPI-N2) were calculated using proportions 

instead of absolute numbers of interactions. However, this approach also made network-

based predictions less precise, especially in the case of PPI-N1, which had to be 

compensated by other features (Figure 4.1c) in the ADR model and the DND model was

used to filter out unlikely disease genes. We found that 1023/4014 (25.49%) and 

474/3315 (14.30%) of genes predicted to be AD (probability >= 0.5) by PPI-N1 and 

PPI-N2 models had a number of interactions fewer than or equal to the median (n = 9), 

but only 226/1023 (22.09%) and 147/474 (31.01%) of them were also predicted to be 

AD by ADR (with DND filtration), respectively. Note that DIP was created using a 

diverse set of gene properties, and the cumulative weight of network based features in 

the ADR and DND models were only 38.4% (lower than 47.5% in DOMINO17) and 

28.6%, respectively. 

Finally, since ADR and DND models were trained mostly as dichotomous metrics, 

usage of their predicted probabilities for ranking might not be optimal, which was 

highlighted in the evaluation of the highly ranked genes. However, the evaluation also 

showed that they worked well for majority of the genes, and in the final DIP ranking the

top ~21% were resorted based on their VIRLoF scores because it is a more objective 

statistical metric.  

The main advantage of DIP is that it provides a continuous and intuitively 

understandable metric for ranking genes whereby AD and likely non-disease genes are 

enriched at the opposite ends of the spectrum, with AR genes residing in the middle. 

Since the ranking of a gene can also be influenced by disease severity (at least for AD 

genes) and some genes can be associated with multiple diseases with different modes of 

inheritance (i.e. “AD and AR”), the degree to which genes can be confidently 

segregated based on their mode of inheritance is unknown. Consequently, continuity is 

an important characteristic of a metric because it estimates gene predisposition to all 

modes of inheritance, which is especially important in ambiguous cases. Moreover, 

continuous metrics measure the relative importance of genes in general, assuming that 

loss or disruption of less important genes is less likely to result in disease phenotypes.
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Another advantage of DIP is the diverse set of gene properties (e.g. evolutionary, 

variation intolerance and network-based) that were used as features to build the machine

learning models behind it. Although individual features have limitations, to some extent 

they can be negated when features are used together. Previously, this was demonstrated 

by combining two constraint metrics, GeVIR and LOEUF, to generate VIRLoF121, 

whereas in DIP gene ranking was further improved, albeit with some novel limitations, 

by combining these metrics with other features and using supervised machine learning 

methods. Further research of statistical and unsupervised machine learning methods for 

gene classification or ranking is important since they could be less biased by training 

data (or not used it at all) and could improve the performance of current supervised 

methods, such as DIP, which uses them as features. Moreover further development of 

these metrics can also be useful in supervised machine learning research to predict 

candidate genes for specific phenotypes and modes of inheritance (e.g. gene causing AD

developmental conditions). This direction of research was also suggested in the GPP 

study3 and investigated for some disease phenotypes (e.g. neurological disorders132 and 

schizophrenia133).

In conclusion, multiple supervised machine learning models and a statistical gene 

variation intolerance metric (VIRLoF) have been used in this study to continuously rank

autosomal genes by Disease Inheritance Patterns (DIP). Comparisons were made with 

two published supervised machine learning methods (GPP and DOMINO) that were 

developed to classify genes into only two groups (disease/non-disease and AD/AR, 

respectively), and a statistical method to measure gene intolerance to variation 

(VIRLoF) that continuously ranked genes from all three groups (AD, AR and non-

disease). Although it is hard to say which method performed best at ranking candidate 

AD genes (i.e. gene order in the first quartile), overall DIP has shown the greatest trend 

to differentiate between the gene groups and rank genes in the following order: AD, 

“AD and AR”, AR and non-disease. Therefore, when analysing whole genome/exome 

sequencing data, DIP should be used as a gene level metric alongside variant 

prioritisation metrics119,120 to discover novel human disease genes. DIP could be 

particularly useful for prioritising candidate AR disease genes or to filter out genes 

unlikely to cause disease. 
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Chapter 5  

Conclusion

5.1 Summary of results and contributions

This thesis is written in journal format style with three main chapters formatted as 

papers (Chapter 2, 3, and 4). This section summarises the results and contributions of 

these studies. Statistical significance was measured using two-sided Fisher’s exact test 

for all reported results in this chapter, unless stated otherwise.

5.1.1 Chapter 2

In Chapter 2, we analysed deviations from Hardy-Weinberg Equilibrium (HWE)82 in 

gnomAD populations to identify candidate recessive disease-causing and potentially 

heterozygous advantageous variants (Objective 1). We hypothesised that these variants 

might deviate from HWE due to heterozygote excess (HetExc) due to natural selection 

and exclusion of individuals with severe paediatric disorders from the dataset (i.e. 

affected homozygous variant carriers). Initially, we planned to develop a gene variation 

intolerance metric that would incorporate HetExc statistics. However, during our 

analysis, we noticed that many HetExc variants might be deviating from HWE due to 

genotype calling errors. Therefore, we developed a set of strict rules to understand how 
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many potentially genuine HetExc variants were present in the dataset and identified 

only 161 variants in 149 genes. Although these variants were significantly enriched in 

known autosomal recessive genes (FE = ~1.6, P = ~0.02), it became clear that this 

property could not be used to make predictions about disease inheritance patterns of 

more than 19,000 remaining protein-coding genes.

Nevertheless, our final dataset contained two known disease-causing variants in HBB 

and CFTR genes, with evidence of heterozygote advantage in the literature89,102,103 that 

showed that our filtering strategy could detect these types of variants. Surprisingly, most

of the HetExc variants (~79.5%) were detected in African/African American 

populations, statistically significantly more than expected (FE = ~1.7, P = 3.0E-05) 

based on the proportion of non HetExc variants in African/African American (~48.1%). 

This observation is interesting since it might mean that African individuals have more 

heterozygous advantageous variants or are more prone to genotype calling errors. 

Therefore, we decided to present the results of our analysis in the context of 

heterozygote advantage. This type of variant is rare, evidence is often speculative, and 

even one new potential heterozygote advantageous variant could be considered an 

exciting finding.

Approximately half a year before we published a preprint of Chapter 2, Wei and 

Nielsen134 published an article in Nature Medicine where they argued that CCR5-∆32 

could be heterozygous advantageous based on HWE statistics in a variant population 

database. The CCR5-∆32 variant in both homozygous and heterozygous states is known

to protect against HIV135, but is also associated with lower resistance to influenza136. Wei

and Nielsen134 analysed data from the UK Biobank (409,693 individuals) and found that 

individuals with homozygous CCR5-∆32 variants had increased all-cause mortality rate,

whereas heterozygous carriers had the same rate as unaffected individuals. However, ~2

months before we published a preprint, Karczewski et al.97 published a preprint where 

they explained that the deviation from HWE equilibrium of the CCR5-∆32 variant was 

caused by a genotype calling error. Specifically, some individuals had CCR5-∆32 

variants with high allele balance (>0.9) but were misclassified as heterozygous instead 

of homozygous97. Around the same time, Wei and Nielsen137 retracted their publication.
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Based on this, we can make the following conclusions. First, using HWE statistics and 

variant population databases to identify disease and potentially heterozygous 

advantageous variants was a trending topic in the research community. Second, authors, 

reviewers, and editors of the article134 were not aware that deviations from HWE due to 

HetExc, besides natural selection, could also be caused by technical errors still present 

in variant population databases. Third, researchers who developed variant population 

databases were unaware of this type of genotype calling error in their data. After this 

publication, Karczewski et al.97 identified and flagged variants that might be affected by

this error in the gnomAD database. We also recalculated HWE statistics for these 

variants using a more conservative allele balance threshold (>0.8) than suggested by 

Karczewski et al.97 (>0.9) to minimise false-positive HetExc variants in our dataset. 

However, unlike Wei and Nielsen134, we did not make strong claims that variants with 

HetExc in our final dataset were deviating due to natural selection. Instead, we 

presented it as supporting in silico evidence for potential future work that might confirm

it as having a biological role. Moreover, we highlighted that deviation might also be 

caused by unknown genotype calling errors or by chance due to insufficient population 

size in many cases. Therefore, we believe that our work contributed to the research 

community’s understanding of the deviations from HWE in variant population 

databases, even if, in reality, none of the HetExc variants in our dataset were 

heterozygous advantageous.

5.1.2 Chapter 3

In Chapter 3, we analysed variant distribution at a gene level in the gnomAD database 

and developed a novel metric named gene variation intolerance rank (GeVIR), that can 

be used to prioritise candidate disease-causing genes and, to some extent, distinguish 

them by inheritance patterns (dominant and recessive) (Objective 2). We hypothesised 

that some of the gene regions could be so important for their function that they are 

entirely free of functional variants (missense and loss-of-function), and the longer the 

region is, the less likely it is variant-free by chance. We named them variation intolerant

regions (VIRs). This hypothesis was strongly supported by our analysis that showed that

known pathogenic missense variants were extremely statistically significantly (P < 2.2 ×

10−308) more likely (FE = ~3.7) to be present in the long VIRs (>20 amino acids). To 
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calculate a gene-level metric from VIRs (GeVIR), briefly, we assigned each region a 

weight based on how frequently VIRs of each length were observed in all genes, then 

calculated average score of well-covered VIRs for each of the 19,361 protein-coding 

genes, and ranked them based on these scores. However, we found that some VIRs 

might be false positives due to variant calling errors (i.e. VIR reports that region is free 

of variants, but it might not be valid if it contains some non-pass quality variants that 

are real). We assumed that genuine VIRs should also be evolutionary conserved and 

recalculated GeVIR scores with VIR weights multiplied by their average evolutionary 

conservation scores (measured with GERP++). The addition of evolutionary 

conservation scores slightly improved the ability of GeVIR to prioritise and distinguish 

dominant and recessive genes (<1% AUC and F1 scores). However, it also greatly 

improved the overall ability of GeVIR to prioritise disease genes by assigning lower 

ranks to possibly non-disease genes (by 5.8% and 7.5% AUC for Null and cell non-

essential genes, respectively).

When we were working on the GeVIR manuscript, a study of constraint coding regions 

(CCRs)33 and a preprint of novel gnomAD gene LoF intolerance scores (LOEUF)11 were

published, both of which had an impact on our work. Despite some methodological 

differences, CCRs were based on essentially the same principle as VIRs (i.e. the 

distance between functional variants)33. However, Havrilla et al.33 focused on using 

CCRs to prioritise candidate disease variants, whereas we used VIRs to calculate gene-

level variation intolerance scores. Nevertheless, Havrilla et al.33 compared CCRs 

correlation with gene-level variation intolerance metrics (pLI and missense z-scores) by 

ranking genes based on the number of the longest CCRs (top 5%). Although we agreed 

with CCRs usefulness for candidate disease variant prioritisation, we considered their 

approach to calculating and evaluating gene-level metrics derived from the variant-free 

region data incorrect and insufficient, respectively.

First, approximately two-thirds of protein-coding genes (n > 11,000) did not contain 

even one CCR at or above the 95th percentile33 and, consequently, their metric could not

be used to estimate variation intolerance of the majority of the genes. They explicitly 

stated that CCRs were ill-suited to prioritise recessive disease-causing variants since 
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they were expected to be present in gnomAD and, consequently, disrupt variant-free 

regions33. Second, by default, genes with longer protein-coding sequences could contain

more CCRs, and our analysis confirmed that their metric was significantly biased by 

gene length (Spearman r = -0.29). Finally, by measuring only correlation, they showed 

that CCRs and gnomAD gene variation intolerance scores prioritised different genes33, 

but did not show how they performed on known sets of disease genes.

Our study was superior to Havrilla et al.33 based on all the above points in the context of

the gene-level intolerance metric. First, GeVIR scores were calculated for all protein-

coding genes that had gnomAD variation intolerance metrics (n = 19,361 versus n = 

7,000 genes in their study). Moreover, GeVIR performed surprisingly well for 

prioritising known autosomal recessive genes that were enriched ~1.8 times at the 

middle of the ranking (40th–60th percentiles). The enrichment of AR genes at the same 

range was lower for GeVIR without GERP++ adjustments (~1.5 times), but still 

statistically significant (P = 2.27E-19). Second, GeVIR bias by gene length was 

minimal (Spearman r = 0.03) based on the analysis of the same amount of top-ranked 

genes (n = 7,000, different for CCR and GeVIR), although it was still biased when all 

genes were analysed (Spearman r = -0.26). Finally, GeVIR outperformed the CCR gene-

level metric at distinguishing autosomal dominant and recessive genes by a ~5.1% 

(~4.4% for GeVIR without GERP++) F1 score, and was thoroughly compared with 

gnomAD gene variation intolerance metrics (LOEUF, MOEUF, missense z-score) on 

various gene sets. Therefore, although GeVIR is based on the same basic idea as CCRs, 

it is a substantial step forward from the Havrilla et al.33 work.

GeVIR without GERP++ outperformed gnomAD missense intolerance scores (missense

z-score and MOEUF) in prioritising autosomal dominant and distinguishing them from 

autosomal recessive genes by 4.1% AUC and 1.2% F1 scores, respectively. The 

differences in AUC and F1 scores were ~0.7% and ~0.9% higher, respectively, when 

GERP++ evolutionary conservation adjustments were used. Moreover, GeVIR was able 

to prioritise Autosomal Recessive (AR) genes that were statistically significantly (P ≤ 

2.90E-16) deficient in the last 30% of the genes (FE = ~0.45 and ~0.6 for GeVIR with 

and without GERP++ adjustments, respectively). In contrast, gnomAD missense 
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intolerance metrics had an approximately expected number of AR genes in the same 

range. Therefore, even without evolutionary conservation adjustments, GeVIR is 

superior to the state-of-the-art gnomAD missense intolerance methods.

GeVIR and LOEUF had a similar performance (56.4% and 56.6% F1 score, 

respectively) at distinguishing AD and AR genes for approximately the top 15% of the 

genes (threshold suggested by LOEUF authors for the most intolerant genes). However, 

LEOUF had a higher peak F1 score (64.2%) than GeVIR (62.34%) at 27.8 and 29.9 

gene rank percentiles, respectively, despite GeVIR being slightly better at prioritising 

AD genes (by ~1.1% AUC). LOEUF, similarly to GeVIR, had enrichment (FE = ~1.72, 

P = 2.99E-31) and deficiency (FE = ~0.53, P = 1.79E-22) of AR genes in the middle 

and last 30% of the ranked genes, respectively. This correlation is interesting because 

both metrics were calculated using substantially different statistical methods and subsets

of gnomAD variants. The ability to rank all genes across the spectrum of LoF 

intolerance was highlighted as one of the main strengths of LOEUF11, and our study 

added additional evidence that such ranking of AR genes might be natural. Although 

GeVIR and LOEUF showed similar performance in many assays, it is important to note 

that they prioritised substantially different genes. For example, only 55.9% of the most 

LoF intolerant genes, according to LOEUF (among approximately the top 15%), were 

also in the top GeVIR genes. This could be because GeVIR was less biased by gene 

length than LOEUF (Spearman r = -0.26 and r = -0.54, respectively) and was able to 

prioritise potentially important short genes (e.g. known disease genes or those 

performing basic biological functions such as mRNA metabolism), which was a 

limitation of the LOEUF metric, acknowledged by the authors. Therefore, GeVIR 

complements the LOEUF metric, and we showed that their combination (VIRLoF) 

outperformed both metrics in most assays. We recommend using GeVIR to estimate 

gene missense variation intolerance, especially if they are short, and using LOEUF to 

estimate gene LoF intolerance, especially if they are large. VIRLoF can be used when a 

single gene variation intolerance metric is required.

5.1.3 Chapter 4

In Chapter 4, we used supervised machine learning (ML) to develop a metric that can be

used to categorise genes into three groups: autosomal dominant (AD), autosomal 

recessive (AR), and non-disease (Objective 4). Previous studies developed various 
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supervised ML models for gene classification3,15,17,18,34–38, but all of them were trained to 

predict only one group of genes (e.g. haploinsufficient (HI), AD, AR, Mendelian disease

(MD)), and little effort was made to understand how these models work together. 

Therefore, we developed a single metric that continuously ranked genes (i.e. similarly to

GeVIR and LOEUF) based on their Disease Inheritance Patterns (DIP).

First, we developed two supervised ML models using the k-nearest neighbour (KNN) 

algorithm to distinguish AD and AR genes based on their first and second interaction 

partners in protein-protein interaction networks (PPI-N1 and PPI-N2, respectively). 

Both models were trained on the DOMINO training dataset (AD = 291, AR = 693)17. 

We hypothesised that genes that interact more with AD than AR genes were also more 

likely to be AD and vice versa (Objective 3). Our models were compared with the 

DOMINO approach to PPI based features calculation (counting first degree interactions 

with AD genes) on the DOMINO training set using the subset of PPIs that showed the 

best performance in the DOMINO study17. The maximum achievable performance of 

their DOMINO approach was a 65.0% F1 score (i.e. the threshold was assigned based 

on all training data), whereas PPI-N1 and PPI-N2 best 10-fold cross-validation results 

were 66.5% and 65.5% F1 scores, respectively. Moreover, PPI-N1 and PPI-N2 models 

showed their best performance on the text-mining PPI subset, where they achieved 

67.5% and 66.4% F1 scores, respectively. These results supported our hypothesis and 

showed that simultaneous analysis of AD and AR interactions could have higher 

discriminative power than just analysing interactions with positive samples (the 

approach used by DOMINO).

Second, we developed two supervised ML models using the random forest (RF) 

algorithm that was trained to distinguish AD from AR genes (ADR), and disease from 

non-disease (DND) genes. The ADR and DND model used various features (including 

predictions of PPI-N1 and PPI-N2 models and the GeVIR scores developed in Chapter 

3) and were trained on DOMINO and GPP training sets3,17, respectively. The ADR and 

DND models gene predicted probabilities were combined into DIP ranking by first 

ranking all the remaining “unseen” genes (n = 15,794) based on their probability of 

being disease causing, as predicted by DND, and then re-ranking the first half of them 
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based on their probabilities to be AD, predicted by ADR. The DIP performance was 

evaluated and compared with DOMINO, GPP and VIRLoF based on the number of 

genes from various groups (e.g. AD, AR, cell essential/non-essential, olfactory) in the 

first and last quartiles of the ranked gene list. We used quartiles since DOMINO and 

GPP predicted similar number of genes to be AD (n = 3,807, 24.9%) and non-disease (n 

= 3,855, 25.2%), respectively. At this threshold, the ADR model achieved a slightly 

higher F1 score than DOMINO (65.1% and 63.7%, respectively), but there was no 

statistically significant difference in the number of genes in any examined groups. 

However, the DND model had significantly less known disease genes (n = 80 (5.1%)) in

the last quartile than GPP (n = 145 (9.3%), P = 3.13E-05), DOMINO (n = 308 (19.8%), 

P = 2.08E-29), and VIRLoF (n = 171 (11.0%), P = 2.73E-08). Note that GeVIR was the 

most influential feature used by the DND model (weight = 39.4%). Moreover, the 

combination of ADR and DND model probabilities resulted in a significant enrichment 

of AR genes in the middle rank, with a peak of approximately three times more than 

expected AR genes in the 41-51% ranks (P = 2.27E-34). VIRLoF had a smaller peak of 

AR genes (FE = ~1.92, P = 5.98E-10) at the same ranks, whereas DOMINO and GPP 

could not effectively distinguish AR genes from cell non-essential and AD genes, 

respectively. Therefore, while the ADR model might be slightly better than DOMINO 

for prioritising AD genes, the DND model was superior for distinguishing disease and 

non-disease genes than the other metrics. Moreover, their combination resulted in the 

development of the best metric for the prioritisation of AR genes.

Finally, comparing DIP (ADR) and VIRLoF performance on the top 10% (n = 1,528) of 

the ranked gene lists highlighted a possible advantage of variation intolerance methods 

over supervised ML models. Although DIP (ADR) had slightly more AD genes than 

VIRLoF (n = 158 (35.4%) and n = 146 (32.7%), P = 5.95E-01, respectively), the latter 

had statistically significantly (P = 4.39E-02) less genes associated with both AD and AR

diseases (n = 35 (15.8%) and n = 19 (8.6%), respectively), and slightly less AR (n = 33 

(4.8%) and n = 25 (3.6%), respectively) and cell non-essential (n = 16 (2.4%) and n = 

11 (1.7%), respectively). Considering that top-ranked genes were expected to consist of 

the most functionally important dominant genes (e.g. lethal), genes from all these 

categories might be considered false positives. However, the ADR model was trained 

and optimised to effectively distinguish AD from AR genes and not rank AD genes by 
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their importance. Gene functional importance is hard to estimate, but it is expected to be

correlating with variation intolerance19. Therefore, to combine the strengths of both 

metrics, we re-sorted the genes predicted to be AD by ADR with probability ≥ 0.5 (n = 

3,212 (21.02%)) based on their VIRLoF scores in the final DIP ranking list.

5.1.4 Recap of objectives and main contributions

This study aimed to develop computational metrics that can be used to prioritise 

candidate Mendelian disease genes (i.e. classify genes as disease and non-disease) and 

distinguish them by probable inheritance patterns (i.e. classify disease genes as 

dominant and recessive). We planned to achieve this by investigating under-researched 

gene-level properties and developing novel features (Objectives 1, 2, and 3) that can be 

used to create a novel supervised machine learning model for gene classification 

(Objective 4). However, at the beginning of the work, it was unknown which of the 

under-researched gene-level properties would result in novel features and how effective 

they would be at distinguishing dominant, recessive and non-disease genes on their own

or in combination with others.

The analysis of deviations from Hardy-Weinberg equilibrium showed that homozygous 

deficiency is unlikely to be used as a feature with the current size of variant population 

databases and the accuracy of variant genotyping methods for prioritisation of candidate

recessive disease-causing variants and, consequently, genes (Objective 1). Nevertheless,

we decided to publish this research to explain the potential problems of applying Hardy-

Weinberg equilibrium for such tasks to future researchers. Considering the recent 

retraction of Wei and Nielsen's article due to a lack of understanding of genotyping 

errors that can result in homozygous deficiency in the scientific community137, a 

systematic and large scale investigation of this problem was needed. Despite being 

published approximately two years ago (March 2020), our article was viewed and 

downloaded more than 97% (n > 25,000) and 92% (n > 2,200) of all articles from the 

publisher (Frontiers) over more than ten years (accessed April 2022)a. Therefore, 

although the investigation performed for Objective 2 turned out to be not helpful for the 

aim of this thesis, it contributed to the understanding of existing variant population data 

a http://loop-impact.frontiersin.org/impact/article/516957#totalviews/views  
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and can be beneficial for other researchers, as demonstrated by the high number of 

views of the article.

The analysis of variant distribution patterns within genes in the gnomAD database 

resulted in the development of GeVIR (Objective 2), a novel gene constraint metric that 

outperformed existing gnomAD missense constraint metrics (Missense z-scores and 

MOEUF). GeVIR also complemented the LoF constraint metric (LOEUF), owing to its 

ability to estimate intolerance of short genes. It can be used to prioritise candidate 

disease genes or as a feature in machine learning models. The latter was demonstrated 

in Chapter 4, where GeVIR was the most influential feature (weight = 39.4%) in a 

model trained to distinguish candidate disease and non-disease genes. To facilitate the 

usage of GeVIR scores, we developed a website (www.gevirank.org) which, over 

approximately two years (since March 2020), was visited more than 6,900 times from 

49 countries (accessed April 2022)b. We noticed a couple of recurrent visitors from 

Leipzig (Germany) and Hyderabad (India), contributing ~34% and ~24% of the total 

number of visits, respectively. However, considering that the data on the website is also 

available in supplementary materials of the published article121, the actual number of 

GeVIR users is untraceable and could be higher. Nevertheless, these statistics 

demonstrate that some users probably used GeVIR in their everyday analyses.

The simultaneous analysis of protein-protein interactions with known genes associated 

exclusively with AD and AR recessive diseases (Objective 3) was performed as part of 

development of a novel supervised machine learning model (DIP) used to classify genes

as AD, AR, and non-disease (Objective 4). DIP showed comparable performance at 

distinguishing AD and AR genes and was significantly better at distinguishing disease 

and non-disease than existing solutions (DOMINO and GPP, respectively). Moreover, 

unlike existing binary supervised ML models and similarly to GeVIR and LOEUF, DIP 

provides a single and easily interpretable metric that can be used to distinguish three 

studied groups of genes (AD, AR, and non-disease). However, we also showed that DIP 

and other supervised machine learning solutions could be biased by training gene sets, 

and their actual performance is hard to measure since selected testing gene sets might 

b https://www.revolvermaps.com/livestats/56szvr48wyh/  

133

http://www.gevirank.org/
https://www.revolvermaps.com/livestats/56szvr48wyh/


not be representative of all genes whose status these models are trying to predict. In a 

field where performance is a crucial measurement of success, we believe that an open 

discussion about this problem is also a valuable and long required contribution.

Initially, we expected that the solution based on the supervised machine learning 

methods (Objective 4) would be the main contribution of this work, and other objectives

(1, 2, and 3) will be stepping stones to this goal. However, it turned out that GeVIR 

(Objective 2) could potentially be the most impactful contribution to the field due to its 

performance among similar class metrics (gnomAD gene constraint scores) and ability 

to be used as a feature in future machine learning solutions to this or similar gene 

classification tasks. Nevertheless, the results of all objectives contributed to the 

knowledge in the investigated under-researched areas.

5.2 Limitations and future work

The analysis of deviations from Hardy-Weinberg Equilibrium (HWE) presented in 

Chapter 2 showed that gnomAD populations were not large enough to detect 

statistically significant deviations due to heterozygous excess of rare variants (e.g. AF < 

0.0072 for the largest population - Non-Finish European, n = 64,603). Moreover, 

considering that the database was not completely free of known homozygous recessive 

disease-causing variants and genotype errors, this type of research probably should be 

delayed until a substantially more extensive variant population database becomes 

available (e.g. consisting of millions of individuals). Meanwhile, variants with 

heterozygous excess that survived our conservative filtering process, can be examined 

to identify overlooked types of genotype errors. The literature review of biological 

function of the genes with these variants might allow the formulation of speculative 

hypotheses and further narrow down the set of potentially heterozygous advantageous 

variants. Both of these tasks were not beneficial for developing gene classification 

methods and, therefore, were out of the scope of our study.

The main limitation of the GeVIR method, described in Chapter 3, is the requirement of

variation intolerant regions to be completely free of missense and LoF variants. 

Although it worked reasonably well, it is naive to assume that functionally important 
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regions in dominant genes cannot have some non-constrained amino acids.  Moreover, 

recessive genes are expected to accumulate lots of rare disease-causing heterozygous 

variants in functional important regions in genes due to the presence of unaffected 

carriers as the database population size increases. Note that the CCR study had the same

weakness33. Therefore, although the GeVIR study showed that variation distribution 

should be considered in gene variation intolerance estimations, a more sophisticated 

statistical approach that is robust to rare random variants in functionally important 

regions has to be developed to measure it. Possibly, this might require a different 

statistical method, assessment of variant frequencies, and their probabilities to be 

damaging by various other metrics.

The supervised ML gene classification models, such as ADR and DND developed in 

Chapter 4, might benefit from future research that improves their features (e.g. novel 

gene variation intolerance metrics, evolutionary conservation scores, and network 

analysis methods). However, the major limitation of our and previous supervised ML 

models is that they are trained on the gene sets that might not be representative samples 

of all protein-coding genes from the studied groups. We reused training datasets from 

DOMINO and GPP studies3,17 to compare the performance of the models at the training 

stage and simultaneously test them on the maximal amount of genes unseen by all 

models. However, we found that ADR performance was different on training, 

validation, and testing gene sets (76.3%, 82.1%, and 65.1% F1 scores, respectively), and

that AD genes from these sets had different variation intolerance levels based on 

VIRLoF (13.4%, 7.7%, and 19.7% median VIRLoF scores). Although it could be 

because training and validation gene sets were manually curated, it shows that the 

models were trained and validated on the subsets of AD genes with different profiles 

than the remaining known disease genes. Variation intolerance metrics are one of the 

most informative features used by the supervised ML models, and consequently, they 

could not be used to balance the training and testing gene sets. Therefore, future studies 

that will use supervised ML for gene classification based on disease inheritance patterns

might benefit from manually curated and balanced training and testing gene sets based 

on associated disease severity and type (e.g. development, skeletal). However, 

systematic disease severity estimation on a large scale (i.e. across different types of 

diseases) is a substantial task that requires surveying by multiple experts23, and actual 
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proportions of genes associated with different types of diseases are unknown (e.g. lethal

dominant genes are hard to discover). Therefore, it might be reasonable to narrow the 

scope and develop supervised ML models for specific diseases and their inheritance 

modes. This future direction was also suggested by the authors of the GPP model3. 

Alternatively, usage of unsupervised ML methods for this task could be explored.

5.3 Concluding remarks

Human disease gene discovery can be facilitated by computational methods that can 

prioritise candidate disease genes. The recent development of large variant population 

databases provided novel data for computational analysis. The scope of this study was 

metrics that can be used to predict inheritance patterns of candidate disease genes. A 

review of previous work in the literature, showed several under-researched areas that 

were explored in this study. In particular, we studied (1) deviations from Hardy-

Weinberg equilibrium due to heterozygous excess, (2) variant distribution patterns 

within genes, (3) simultaneous analysis of gene interaction partners with different 

inheritance patterns in networks, and (4) combination of predictions from multiple 

supervised ML models, trained to classify different groups of genes, into a continuous 

gene ranking metric.

The results of the research objectives turned out to have different usability from the 

declared aim. However, all the work presented contributed to the understanding of 

variant population data and the application of supervised ML methods to classify 

candidate disease genes in the context of disease inheritance patterns. The main 

outcome of this research was the development of two continuous gene metrics, GeVIR 

and DIP, available for 19,361 and 15,794 protein-coding genes, respectively. Both 

metrics can be used to distinguish dominant, recessive and non-disease genes, and both 

have their strengths, limitations, and applications. Although DIP used GeVIR as one of 

the features and had a superior performance, GeVIR on its own can be reused in future 

ML models that might outperform DIP. We anticipate that both metrics will aid clinical 

researchers in the prioritisation of candidate disease genes.
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A  Supplementary material for Chapter 2

A.1 Data availability

Publicly available datasets were analyzed in this study. This data can be found at the 

following links: 

https://console.cloud.google.com/storage/browser/gnomad-public/release/2.1.1/; 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/.

A.2 Code availability

Code for data analysis and figures can be found at https://github.com/niab/hwe.

A.3 Supplementary tables

Table A.1: Dataset of variants deviating from Hardy-Weinberg Equilibrium due to
heterozygote excess (HetExc).

Please see supplementary Excel document at
https://data.mendeley.com/datasets/f5v5t2kkvm/2

OR
Supplementary Table 1 at

https://www.frontiersin.org/articles/10.3389/fgene.2020.00210/full#supplementary-
material

Table A.2: Statistical comparison of variants deviating from HWE due to HetExc 
that are located in segmental duplication (a) or tandem repeat (b) regions with the 
reference (Ref) group (i.e., all other regions except segmental duplications and 
tandem repeats).

a
HetExc All
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Segmental
Duplication 56 2676

Ref 348 40801

fold-enrichemnt 2.45
P 2.045E-08

b

HetExc All
Tandem Repeat 11 1182

Ref 348 40801
fold-enrichemnt 1.09

P 0.75

Table A.3: Statistical comparison of variants with Variant Carriers with “Normal” 
Allele Balance VCNAB < 50% in the whole Ref group and a subset of variants with
statistically significant excess of heterozygotes (HetExc) in the Ref group.

VCNAB < 50% All
Ref 1181 40801

Ref HetExc 49 348
fold-enrichemnt 4.86

P 1.92E-17

Table A.4: Statistical comparison of proportions of variants deviating and not 
deviating from HWE due to excess of heterozygotes (HetExc and HetExc-, 
respectively) in 7 ethnic gnomAD populations (a–g).

a

NFE
all

populations

HetExc 2 161
HetExc- 11499 39430

fold-enrichemnt 0.04
P 1.54E-15

b

AMR
all

populations
HetExc 1 161

HetExc- 2692 39430
fold-enrichemnt 0.09
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P 5.35E-04

c

SAS
all

populations

HetExc 0 161
HetExc- 5061 39430

fold-enrichemnt 0
P 5.69E-09

d

FIN
all

populations
HetExc 7 161

HetExc- 5914 39430
fold-enrichemnt 0.29

P 1.96E-04

e

AFR
all

populations

HetExc 128 161
HetExc- 18957 39430

fold-enrichemnt 1.65
P 3.01E-05

f

EAS
all

populations
HetExc 18 161

HetExc- 3621 39430
fold-enrichemnt 1.22

P 0.42

g

ASJ
all

populations

HetExc 5 161
HetExc- 2621 39430

154



fold-enrichemnt 0.47
P 0.10

Table A.5: Statistical comparison of missense (a), synonymous (b), and other (c) 
variant proportions in HetExc and HetExc- datasets.

a

Missense All
HetExc 84 161

HetExc- 18808 39430
fold-enrichemnt 0.91

P 0.49

b
Synonymous All

HetExc 63 161
HetExc- 16954 39430

fold-enrichemnt 1.10
P 0.56

c

Other All
HetExc 14 161

HetExc- 3668 39430
fold-enrichemnt 1.07

P 1

Table A.6: Statistical comparison of proportions of “AD” (a), “AR or AR, AD” (b) 
and all genes with at least one variant in HetExc and HetExc- datasets.

a
AD All

HetExc 8 149
HetExc- 617 11842

fold-enrichemnt 1.03
P 0.85

b

AR or AR,AD All
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HetExc 29 149
HetExc- 1418 11842

fold-enrichemnt 1.63
P 0.02

Table A.7: Statistical comparison of Allele Frequencies of heterozygote excess 
(HetExc) variants in HBB and CHD6 genes between African and African American
population in the 1000 Genomes database.

Please see supplementary Excel document at
https://data.mendeley.com/datasets/f5v5t2kkvm/2

OR
Supplementary Table 7 at

https://www.frontiersin.org/articles/10.3389/fgene.2020.00210/full#supplementary-
material
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B  Supplementary material for Chapter 3

B.1 Data availability

The GERP++ file can be found at 

http://mendel.stanford.edu/SidowLab/downloads/gerp/hg19.GERP_scores.tar.gz. 

The ClinVar files can be found at 

ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/variant_summary.txt.gz and 

ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/var_citations.txt. 

The CCR files can be found at 

https://s3.us-east-2.amazonaws.com/ccrs/ccrs/ccrs.autosomes.v2.20180420.bed.gz and 

https://s3.us-east-2.amazonaws.com/ccrs/ccrs/ccrs.xchrom.v2.20180420.bed.gz. 

The OMIM genemap2.txt file can be found, after registration, at 

https://omim.org/downloads. 

The gnomAD gene constraint metric file can be found at https://storage.googleapis.com/

gnomad-public/release/2.1.1/constraint/gnomad.v2.1.1.lof_metrics.by_transcript.txt.bgz.

The gnomAD exomes variants and coverage files can be found at 

https://storage.googleapis.com/gnomad-public/release/2.0.2/vcf/exomes/

gnomad.exomes.r2.0.2.sites.vcf.bgz and https://storage.googleapis.com/gnomad-public/

release/2.0.2/coverage/combined_tars/gnomad.exomes.r2.0.2.coverage.all.tar, 

respectively. 

The gnomAD genomes variants files can be found at 

https://storage.googleapis.com/gnomad-public/release/2.0.2/vcf/genomes/

gnomad.genomes.r2.0.2.sites.coding_only.chr1-22.vcf.bgz and 
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https://storage.googleapis.com/gnomad-public/release/2.0.2/vcf/genomes/

gnomad.genomes.r2.0.2.sites.coding_only.chrX.vcf.bgz. 

The gnomAD genes, transcripts and exons files can be found at http://broadinstitute.org/

~konradk/exac_browser/exac_browser.tar.gz. 

The Ensembl coding and peptide sequences from build GRCh37/hg19 can be found at 

https://grch37.ensembl.org/biomart/martview (data set: Human genes (GRCh37.p13); 

Attributes → Sequences → ‘Coding sequence’ and ‘Peptide’). 

The homozygous LOF tolerant genes (that is, nulls) can be found at https://github.com/

macarthur-lab/gene_lists/blob/master/lists/homozygous_lof_tolerant_twohit.tsv. 

The cell essential and non-essential genes from CRISPR–Cas experiments can be found 

at 

https://github.com/macarthur-lab/gene_lists/blob/master/lists/CEGv2_subset_universe.ts

v and 

https://github.com/macarthur-lab/gene_lists/blob/master/lists/NEGv1_subset_universe.t

sv, respectively. 

The mouse heterozygous lethal genes can be obtained from http://www.mousemine.org/ 

by querying the database with the following search terms: path = 

“OntologyAnnotation.ontologyTerm” type = “MPTerm”; path = 

“OntologyAnnotation.subject” type = “SequenceFeature”; path = 

“OntologyAnnotation.evidence.baseAnnotations.subject” type = “Genotype”; path = 

“OntologyAnnotation.evidence.baseAnnotations.subject.zygosity” op = “=” value = 

“ht” code = “B”; path = “OntologyAnnotation.ontologyTerm. name” op = 

“CONTAINS” value = “lethal”. 

The human–mouse ortholog mapping file can be found at 

http://www.informatics.jax.org/downloads/reports/HMD_HumanPhenotype.rpt. 

The HGNC approved gene symbols can be found at 

https://www.genenames.org/download/statistics-and-files.
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B.2 Code availability

Code for calculating GeVIR/VIRLoF scores, data analysis and figures can be found at 

https://github.com/gevirank/gevir. Computed GeVIR/VIRLoF scores are available in 

Appendix Table B.3.

B.3 Supplementary notes

Evolutionary conservation adjustments

Although GeVIR without evolutionary conservation adjustments (GERP++) performed 

reasonably well (Table 3.1), they are an important part of the method and improve its 

performance, especially at deprioritisation of potentially non-important genes (i.e. nulls 

and cell non-essential). Null and cell non-essential genes probably had shorter VIRs in 

general due to the presence of a larger number of variants and, consequently, their 

weights relied more on GERP++ adjustments. We used the GERP++ metric to measure 

conservation because it had a few important properties which allowed us to easily 

integrate it into our model.

Firstly, GERP++ conservation of each nucleotide is independent from adjacent 

nucleotides, which allowed us to precisely measure evolutionary conservation of a 

region without including data from positions affected by variants on the borders, that 

might be less conserved.

Secondly, GERP++ scores can be negative, which allowed us to penalise genes with 

“suspicious” regions, as we assumed that real variant conserved regions should have at 

least positive evolutionary conservation scores. For example, there were 94 genes with 

GeVIR ranking >70% and GeVIR without GERP++ ranking <30% (i.e. significantly 

shifted from variant tolerant to intolerant ranks when VIR evolutionary conservation 

was not considered). However, none of them belong to the AD group (expected to be 

enriched with GeVIR ranking <30%) and 8 were cell non-essential (expected to be 

enriched with GeVIR ranking >70%). Therefore, these genes might contain long VIRs 

due to variant filtering errors (e.g. real variants were classified as non-pass quality (i.e. 

“false negatives”) and were not considered when VIRs were calculated).
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Finally, we wanted to use evolutionary conservation to support the signal obtained from 

variant distribution and not vice versa. Although GERP++ scores vary from 

approximately -12 to 6, 99% of the VIRs had a mean GERP++ score between -3.62 and 

5.64 (Appendix Figure B.1). Additionally region conservation scores that were less than

1 or -1 were rounded to 1 or -1 (mean 0 conservation scores remained ) to avoid 

extreme penalties from multiplication with region weights (e.g. evolutionary 

conservation of 0.001 would reduce its weight 1000 times). This rounding had a minor 

impact on the gene scores and GeVIR performance is nearly identical without it (data 

not shown), when the scores were computed using gnomAD data. However, it ensured 

that, in general, VIR weights were increased up to ~5.6 times or remained unchanged if 

they had positive evolutionary conservation score. Negative conservation could increase

the weights by up to ~3.6 times, but transform it into a penalty. For example, an 

autosomal VIR with length 5 (weight = 14.90) and maximal evolutionary conservation 

(mean GERP++ = 6.18), would still have lower adjusted weight (14.90 × 6.18 = 

92.082), than any VIR with length 10 (weight = 105.68) and positive evolutionary 

conservation. Therefore, GeVIR scores were mostly driven by variant distribution 

within the genes, whereas evolution adjustments performed smooth correction and 

allowed possible “false positive” long VIRs to be taken into account.

We anticipate that future improvements in variant filtering and sequencing strategies 

will allow us to rely more on variant free regions, but at the moment excluding 

additional evolutionary conservation checks from our GeVIR method would likely 

prioritise ‘false positive’ variant intolerant genes.

Performance comparison of GeVIR, LOEUF and probability of Loss-of-Function 

Intolerance (pLI)

The latest version of gnomAD (v2.1) contains new gene Loss-of-function (LoF) and 

missense constraint metrics based on confidence intervals (CI) of observed over 

expected variants in genes, together with recalculated pLI and missense z-scores. The 

authors suggest the use of loss-of-function observed/expected upper bound fraction 

(LOEUF) instead of pLI as a metric for LoF intolerant genes, because LOEUF scores 
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are continuous and easer to interpretc. Unlike LOEUF, which allows to rank all genes 

based on their intolerance to LoF variation (i.e. a continuous metric like GeVIR), pLI is 

suggested to be used to separate potentially haploinsufficient genes (pLI > 0.9) from the

others (i.e. a non-continuous metric). Interpretation of LoF intolerance of genes with 

low pLI requires the consideration of two accompanying metrics that represent gene 

probability of being Recessive (pRec) or Null (pNull) (sum of pLI, pRec and pNull 

scores of each gene equals 1), but they were recommend to be used with caution by the 

authors. 

Ranking all genes based on pLI scores would be a misuse of the metric since the 

majority of the genes have extremely low pLI (e.g. 10,398 genes have pLI < 0.01) and 

their classification to Recessive and Null groups was not possible without taking into 

account the pRec and pNull scores. Therefore, pLI performance was not assessed 

alongside other metrics in our study due to lack of continuity. However, since pLI is still

a widely used metric we compared GeVIR, LOEUF, and pLI performance in the context

of Autosomal Dominant (AD) and Autosomal Recessive (AR) gene classification. We 

selected 3,129 genes with pLI > 0.9 and the same number of genes ranked the most 

intolerant to variation by GeVIR and LOEUF. Note that we used pLI and LOEUF 

metrics calculated for gene canonical transcripts analysed in this study (19,361 genes). 

The pLI gene set was nearly identical to LOEUF (2,964/3,129, ~95%), and although 

pLI performed slightly better (F1 = 57.5%) than LOEUF (F1 = 57.0%) or GeVIR 

(56.7%) the difference was minor.

Interpretation of GeVIR, LOEUF and VIRLoF metrics on the website

To help interpret GeVIR percentiles (%) for each gene X (n = 19,361) in a list we 

calculated fold enrichment of AD (n = 790) and AR (n = 1,585) genes in a range of up 

to ±5% of gene X (Appendix Figure B.5). Statistical significance of AD or AR gene 

enrichment was measured with two-sided Fisher’s exact test by comparing number of 

AD or AR genes (separately) in the examined range, to the number of AD or AR genes 

in all genes with GeVIR scores. Exact group sizes and numbers of AD and AR genes for

each gene are available in Appendix Table B.3. For example, GeVIR ranks RBBP5, a 

c “Constraint” section in MacArthur Lab blog post: https://macarthurlab.org/2018/10/17/gnomad-v2-1/
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gene not associated with any disease, in the top 2.13%, so the range examined is from 0 

to 7.13% (1,380 genes). Genes in this range are ~4 times more often associated with AD

disease (fold-enrichment (FE) = 4.2, two-sided Fisher’s exact test P = 2.13e-68), and ~4

times less often associated with AR disease (FE = ~0.25, P = 1.63e-21). Therefore, 

based on what is currently known about genes with similar GeVIR %, RBBP5 is more 

likely to be associated with AD than AR disease. Similarly, we calculated AD and AR 

gene enrichment metrics for LOEUF and VIRLoF percentiles. Metrics for all analysed 

genes are available in Appendix Table B.3 and on our GeVIR website 

(www.  gevirank.org  ) which supports batch queries.

B.4 Supplementary figures

N = 1,938,102 VIRs with high coverage and length ≥1 in 18,491 genes, note that 

1,570,941 VIRs with 0 length (i.e. regions between adjacent variants) were assigned 0 

GERP++ score and are not shown on the figure.
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Figure B.1: Evolutionary conservation (GERP++) of Variant Intolerant Regions 
(VIRs) used in GeVIR score calculation.
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Cumulative percentage of: a) genes associated exclusively with Autosomal Dominant 

(AD) diseases in OMIM (n = 790), b) heterozygous lethal genes in mouse (n = 388), c) 

human cell essential based on CRISPR/Cas screens (n = 663), d) human null genes with

at least two different high-confidence homozygous LoF variants observed in healthy 

populations (n = 328) and e) non-essential genes based on CRISPR/Cas screens (n = 

865). f) Percentage of genes associated exclusively with Autosomal Recessive (AR) 

diseases out of all AR genes in OMIM (n = 1,585) in each rank decile (non-cumulative).

g) AD class F1 score calculated at each percentile (cumulative) considering AD genes (n
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Figure B.2: Comparison of GeVIR gene ranking with gnomAD constraint metrics 
on 19,361 genes.



= 790) as True Positives and AR genes (n = 1,585) as False Positives among all 

analysed genes (n = 19,361). h) Cumulative percentage of genes (n = 19,361) prioritised

by other constraint metrics, which are also prioritised by GeVIR at each percentile 

(ranking similarity). i) Median protein length (amino acids) in each rank decile (non-

cumulative) among all analysed genes (n = 19,361). Correlation between protein length 

and gene rank was measured with Spearman’s rank correlation coefficient.

Standard notations are used for elements of the boxplot (i.e. upper/lower hinges: 

75th/25th percentiles; inner-segment: median, notches are calculated using a Gaussian-

based asymptotic approximation; and upper/lower whiskers: extension of the hinges to 

the largest/smallest value at most 1.5 times of interquartile range). Outliers are not 

shown due to the presence of genes with extreme protein length (e.g. TTN ~36,000 

amino acids) in the dataset which would distort the figure. Correlation between protein 

length and gene rank was measured with Spearman’s rank correlation coefficient.
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Figure B.3: 19,361 gene protein length (amino acids) grouped in deciles.



Cumulative percentage of: a) genes associated exclusively with Autosomal Dominant 

(AD) diseases in OMIM (n = 763), b) heterozygous lethal genes in mouse (n = 374), c) 

human cell essential based on CRISPR/Cas screens (n = 644), d) human null genes with

at least two different high-confidence homozygous LoF variants which were observed 

in healthy population study (n = 282) and e) non-essential genes based on CRISPR/Cas 

screens (n = 747). f) Percentage of genes associated exclusively with Autosomal 

Recessive (AR) diseases out of all AR genes in OMIM (n = 1,547) in each rank decile 

(non-cumulative). g) AD class F1 score calculated at each percentile (cumulative) 
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Figure B.4: Comparison of GeVIR gene ranking with gnomAD constraint metrics 
on 18,352 genes with 1,009 outliers excluded.



considering AD genes (n = 763) as True Positives and AR genes (n = 1,547) as False 

Positives among all analysed genes (n = 18,352). h) Cumulative percentage of genes (n 

= 18,352) prioritised by other constraint metrics, which are also prioritised by GeVIR at

each percentile (ranking similarity). i) Median protein length (amino acids) in each rank 

decile (non-cumulative) among all analysed genes (n = 18,352). Correlation between 

protein length and gene rank was measured with Spearman’s rank correlation 

coefficient.

For each gene (n = 19,361), fold enrichment was calculated by analysing genes with 

similar ranking scores (up to ±5 percentiles) and comparing the proportion of known 

AD (n = 790)  (a) and AR (n = 1,585)  (b) disease genes. Exact group sizes and numbers

of AD and AR gene for each gene are available in Appendix Table B.3. Statistical 

significance of AD or AR genes enrichment was measured with two-sided Fisher’s exact

test.
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Figure B.5: Fold enrichment of known autosomal dominant and autosomal 
recessive genes from OMIM for each gene in the ranking lists (GeVIR, LOEUF 
and VIRLoF).



B.5 Supplementary tables

Table B.1: Autosomal chromosome VIR weights.

Length Number
Number of VIRs with
that length or longer

Frequency Weight

0 1545129 3427010 1.00E+00 1.00
1 814582 1881881 5.49E-01 1.82

2 446945 1067299 3.11E-01 3.21
3 248659 620354 1.81E-01 5.52

4 141756 371695 1.08E-01 9.22
5 82840 229939 6.71E-02 14.90

6 50855 147099 4.29E-02 23.30
7 31059 96244 2.81E-02 35.61

8 19756 65185 1.90E-02 52.57
9 13000 45429 1.33E-02 75.44

10 8739 32429 9.46E-03 105.68
11 5861 23690 6.91E-03 144.66

12 4122 17829 5.20E-03 192.22
13 3025 13707 4.00E-03 250.02

14 2260 10682 3.12E-03 320.82
15 1633 8422 2.46E-03 406.91

16 1341 6789 1.98E-03 504.79
17 974 5448 1.59E-03 629.04

18 821 4474 1.31E-03 765.98
19 623 3653 1.07E-03 938.14

20 505 3030 8.84E-04 1131.03
21 396 2525 7.37E-04 1357.23

22 311 2129 6.21E-04 1609.68
23 250 1818 5.30E-04 1885.04

24 221 1568 4.58E-04 2185.59
25 185 1347 3.93E-04 2544.18

26 168 1162 3.39E-04 2949.23
27 127 994 2.90E-04 3447.70

28 109 867 2.53E-04 3952.72
29 89 758 2.21E-04 4521.12

30 68 669 1.95E-04 5122.59
31 73 601 1.75E-04 5702.18

32 53 528 1.54E-04 6490.55
33 51 475 1.39E-04 7214.76

34 54 424 1.24E-04 8082.57
35 43 370 1.08E-04 9262.19

167



36 30 327 9.54E-05 10480.15
37 23 297 8.67E-05 11538.75

38 29 274 8.00E-05 12507.34
39 32 245 7.15E-05 13987.80

40 26 213 6.22E-05 16089.25
41 13 187 5.46E-05 18326.26

42 14 174 5.08E-05 19695.46
43 11 160 4.67E-05 21418.81

44 16 149 4.35E-05 23000.07
45 9 133 3.88E-05 25766.99

46 7 124 3.62E-05 27637.18
47 9 117 3.41E-05 29290.68

48 9 108 3.15E-05 31731.57
49 8 99 2.89E-05 34616.26

50 9 91 2.66E-05 37659.45
51 4 82 2.39E-05 41792.80

52 10 78 2.28E-05 43936.03
53 7 68 1.98E-05 50397.21

54 7 61 1.78E-05 56180.49
55 4 54 1.58E-05 63463.15

56 1 50 1.46E-05 68540.20
57 4 49 1.43E-05 69938.98

58 2 45 1.31E-05 76155.78
59 2 43 1.25E-05 79697.91

60 2 41 1.20E-05 83585.61
61 3 39 1.14E-05 87872.05

62 3 36 1.05E-05 95194.72
63 3 33 9.63E-06 103848.79

64 2 30 8.75E-06 114233.67
67 1 28 8.17E-06 122393.21

70 2 27 7.88E-06 126926.30
71 2 25 7.29E-06 137080.40

73 1 23 6.71E-06 149000.43
74 1 22 6.42E-06 155773.18

75 2 21 6.13E-06 163190.95
76 1 19 5.54E-06 180368.95

77 1 18 5.25E-06 190389.44
79 3 17 4.96E-06 201588.82

80 1 14 4.09E-06 244786.43
84 2 13 3.79E-06 263616.15

85 1 11 3.21E-06 311546.36
92 2 10 2.92E-06 342701.00
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100 3 8 2.33E-06 428376.25
105 1 5 1.46E-06 685402.00

110 1 4 1.17E-06 856752.50
112 1 3 8.75E-07 1142336.67

130 1 2 5.84E-07 1713505.00
165 1 1 2.92E-07 3427010.00

Table B.2: Allosomal VIR weights.

Length Number
Number of VIRs with
that length or longer

Frequency Weight

0 25812 82033 1.00E+00 1.00
1 16274 56221 6.85E-01 1.46

2 11078 39947 4.87E-01 2.05
3 7554 28869 3.52E-01 2.84

4 5257 21315 2.60E-01 3.85
5 3905 16058 1.96E-01 5.11

6 2734 12153 1.48E-01 6.75
7 1999 9419 1.15E-01 8.71

8 1483 7420 9.05E-02 11.06
9 1103 5937 7.24E-02 13.82

10 884 4834 5.89E-02 16.97
11 662 3950 4.82E-02 20.77

12 507 3288 4.01E-02 24.95
13 427 2781 3.39E-02 29.50

14 361 2354 2.87E-02 34.85
15 272 1993 2.43E-02 41.16

16 243 1721 2.10E-02 47.67
17 195 1478 1.80E-02 55.50

18 168 1283 1.56E-02 63.94
19 133 1115 1.36E-02 73.57

20 118 982 1.20E-02 83.54
21 113 864 1.05E-02 94.95

22 82 751 9.15E-03 109.23
23 80 669 8.16E-03 122.62

24 72 589 7.18E-03 139.28
25 68 517 6.30E-03 158.67

26 43 449 5.47E-03 182.70
27 44 406 4.95E-03 202.05

28 35 362 4.41E-03 226.61
29 27 327 3.99E-03 250.87

30 35 300 3.66E-03 273.44
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31 32 265 3.23E-03 309.56
32 11 233 2.84E-03 352.07

33 13 222 2.71E-03 369.52
34 20 209 2.55E-03 392.50

35 14 189 2.30E-03 434.04
36 14 175 2.13E-03 468.76

37 16 161 1.96E-03 509.52
38 11 145 1.77E-03 565.74

39 14 134 1.63E-03 612.19
40 13 120 1.46E-03 683.61

41 7 107 1.30E-03 766.66
42 7 100 1.22E-03 820.33

43 9 93 1.13E-03 882.08
44 6 84 1.02E-03 976.58

45 6 78 9.51E-04 1051.71
46 4 72 8.78E-04 1139.35

47 6 68 8.29E-04 1206.37
48 4 62 7.56E-04 1323.11

49 1 58 7.07E-04 1414.36
50 4 57 6.95E-04 1439.18

51 5 53 6.46E-04 1547.79
53 3 48 5.85E-04 1709.02

54 2 45 5.49E-04 1822.96
55 1 43 5.24E-04 1907.74

56 2 42 5.12E-04 1953.17
57 3 40 4.88E-04 2050.83

58 4 37 4.51E-04 2217.11
59 3 33 4.02E-04 2485.85

60 5 30 3.66E-04 2734.43
61 2 25 3.05E-04 3281.32

62 1 23 2.80E-04 3566.65
63 2 22 2.68E-04 3728.77

64 1 20 2.44E-04 4101.65
65 1 19 2.32E-04 4317.53

67 1 18 2.19E-04 4557.39
69 1 17 2.07E-04 4825.47

70 1 16 1.95E-04 5127.06
72 2 15 1.83E-04 5468.87

75 1 13 1.58E-04 6310.23
76 1 12 1.46E-04 6836.08

82 1 11 1.34E-04 7457.55
83 2 10 1.22E-04 8203.30
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84 1 8 9.75E-05 10254.13
88 1 7 8.53E-05 11719.00

90 2 6 7.31E-05 13672.17
92 1 4 4.88E-05 20508.25

94 1 3 3.66E-05 27344.33
97 1 2 2.44E-05 41016.50

128 1 1 1.22E-05 82033.00

Table B.3: GeVIR, LOEUF and VIRLoF ranks with AD and AR gene enrichment 
statistics for 19,361 genes.

Please see supplementary Excel document at
https://data.mendeley.com/datasets/f5v5t2kkvm/2

OR
Supplementary Table 2 at

https://doi.org/10.1038/s41588-019-0560-2

Table B.4: Statistical comparison of pathogenic variant enrichment in short (1-5 
amino acids length) and long (>20 amino acids length) regions.

Two-sided Fisher Exact Test was used to compare the number of variants (n = 9,650 

missense and n = 16,852 Loss-of-Function) in short regions (presented as summed 

length in amino acids, n = 846,971) with the number of variants (n = 1,906 missense 

and n = 576 Loss-of-Function) in long regions (presented as summed length in amino 

acids n = 45,297).

Group
VIRs
length

group 1

Variants
1

Total
length 1

VIRs
length

group 2

Variants
2

Total
length

2

Fold-
enrichm

ent

p-
value

Missense 1-5 9650 846971 21+ 1906 45297 3.69 0

Loss-of-
Function

1-5 16852 846971 21+ 576 45297 0.64
2.92E-

29

Table B.5: Enrichment of AD and AR genes in mouse heterozygous lethal, cell 
essential, cell non-essential and null gene groups.

Two-sided Fisher Exact Test was used to compare n = number of genes defined in “AD/

AR Genes” columns among n = number of genes in a group (e.g. Mouse het lethal) 

defined in “Genes” column with overall number of AD (n = 790) and AR genes (n = 

1,585) among all analysed genes (n = 19,361).
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Group Name Genes
AD

Genes
AD Fold-

Enrichment
AD 

p-value
AR

Genes
AR Fold-

Enrichment
AR 

p-value
Mouse het

lethal
388

96
(24.7%)

6.06
1.95E-

037
24

(6.2%)
0.76 0.22

Cell essential 663
30

(4.5%)
1.11 0.551

69
(10.4%)

1.27 0.0655

Cell non-
essential

865
26

(3.0%)
0.74 0.155

54
(6.2%)

0.76 0.0631

Null 328
14

(4.3%)
1.05 0.78

10
(3.0%)

0.37 0.00054

Table B.6: Statistical comparison of AR gene enrichment in GeVIR and gnomAD 
constraint metrics ranked list deciles, based on data shown on Figure 3.5a.

Two-sided Fisher Exact Test was used to compare n = number of genes defined in “AR”

columns in among n = number of genes in deciles or ranges in “genes” column with 

overall number of AR genes (n = 1,585) among all analysed genes (n = 19,361).

Decile GeVIR AR GeVIR genes
GeVIR 

Fold-enrichment
GeVIR p-value

1 48 1937 0.30 6.56E-22

2 119 1936 0.75 3.07E-03
3 178 1936 1.12 1.69E-01

4 296 1936 1.87 2.84E-18
5 276 1936 1.74 3.60E-14

6 268 1936 1.69 9.68E-13
7 186 1936 1.17 5.40E-02

8 122 1936 0.77 6.24E-03
9 73 1936 0.46 1.96E-12

10 19 1936 0.12 3.18E-40
1, 2 

(first 20%)
167 3873 0.53 1.18E-16

4, 5, 6 
(mid 30%)

840 5808 1.77 1.61E-34

8, 9, 10
(last 30%)

214 5808 0.45 9.74E-32

Decile
GeVIR 
(without

GERP++) AR

GeVIR 
(without

GERP++)
genes

GeVIR 
(without GERP++) 

Fold-enrichment

GeVIR 
(without GERP++)

p-value

1 47 1937 0.30 2.41E-22
2 128 1936 0.81 2.49E-02

3 206 1936 1.30 1.08E-03
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4 248 1936 1.56 2.96E-09
5 258 1936 1.63 6.28E-11

6 228 1936 1.44 2.45E-06
7 186 1936 1.17 5.40E-02

8 137 1936 0.86 1.15E-01
9 100 1936 0.63 5.24E-06

10 47 1936 0.30 2.39E-22
1, 2 

(first 20%)
175 3873 0.55 7.00E-15

4, 5, 6 
(mid 30%)

734 5808 1.54 2.27E-19

8, 9, 10
(last 30%)

284 5808 0.60 2.90E-16

Decile
Missense z-

score AR
Missense z-
score genes

Missense z-score 
Fold-enrichment

Missense z-score p-
value

1 80 1937 0.50 1.87E-10
2 94 1936 0.59 3.30E-07

3 158 1936 1.00 1.00E+00
4 166 1936 1.05 5.75E-01

5 191 1936 1.21 2.12E-02
6 183 1936 1.15 7.90E-02

7 187 1936 1.18 4.43E-02
8 194 1936 1.22 1.33E-02

9 178 1936 1.12 1.69E-01
10 154 1936 0.97 7.94E-01

1, 2 
(first 20%)

174 3873 0.55 4.04E-15

4, 5, 6 
(mid 30%)

540 5808 1.14 1.50E-02

8, 9, 10
(last 30%)

526 5808 1.11 5.67E-02

Decile MOEUF AR MOEUF genes
MOEUF

Fold-enrichment
MOEUF p-value

1 39 1937 0.25 2.12E-26

2 96 1936 0.61 8.57E-07
3 148 1936 0.93 4.59E-01

4 181 1936 1.14 1.12E-01
5 218 1936 1.38 4.97E-05

6 211 1936 1.33 3.16E-04
7 213 1936 1.34 1.94E-04

8 217 1936 1.37 5.98E-05
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9 167 1936 1.05 5.46E-01
10 95 1936 0.60 5.34E-07

1, 2 
(first 20%)

135 3873 0.43 2.60E-25

4, 5, 6 
(mid 30%)

610 5808 1.28 8.86E-07

8, 9, 10
(last 30%)

479 5808 1.01 8.92E-01

Decile LOEUF AR LOEUF genes
LOEUF

Fold-enrichment
LOEUF p-value

1 50 1937 0.32 6.78E-21

2 101 1936 0.64 8.07E-06
3 167 1936 1.05 5.46E-01

4 249 1936 1.57 2.31E-09
5 312 1936 1.97 6.92E-22

6 258 1936 1.63 6.28E-11
7 196 1936 1.24 8.26E-03

8 147 1936 0.93 4.33E-01
9 72 1936 0.45 9.81E-13

10 33 1936 0.21 4.76E-30
1, 2 

(first 20%)
151 3873 0.48 1.07E-20

4, 5, 6 
(mid 30%)

819 5808 1.72 2.99E-31

8, 9, 10
(last 30%)

252 5808 0.53 1.79E-22

Decile VIRLoF AR VIRLoF genes
VIRLoF

Fold-enrichment
VIRLoF p-value

1 39 1937 0.25 2.12E-26
2 100 1936 0.63 5.24E-06

3 182 1936 1.15 9.45E-02
4 274 1936 1.73 8.96E-14

5 325 1936 2.05 4.47E-25
6 275 1936 1.74 4.90E-14

7 208 1936 1.31 5.95E-04
8 104 1936 0.66 2.33E-05

9 62 1936 0.39 5.39E-16
10 16 1936 0.10 8.11E-43

1, 2 
(first 20%)

139 3873 0.44 5.29E-24

4, 5, 6 
(mid 30%)

874 5808 1.84 5.11E-40
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8, 9, 10
(last 30%)

182 5808 0.38 1.83E-41

Table B.7: Summary of functional enrichment (Gene Ontology and KEGG 
pathways) of the most variant intolerant genes (~15%) ranked by GeVIR, LOEUF 
and VIRLoF. 

Functional enrichment analysis was performed using DAVID 6.8, the statistical 

significance was calculated using one-sided Fisher Exact Test modified for gene-

enrichment analysis and reported by False Discovery Rate (FDR), Bonferroni and 

Benjamini adjusted p-values.

Please see supplementary Excel document at
https://data.mendeley.com/datasets/f5v5t2kkvm/2

OR
Supplementary Table 6 at

https://doi.org/10.1038/s41588-019-0560-2
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C Supplementary material for Chapter 4

C.1 Data availability

The HGNC gene list can be found at https://www.genenames.org/download/statistics-

and-files/

The Gene Discovery Informatics Toolkit can be found in supplementary data at https://

www.nature.com/articles/s41525-019-0081-z

The Ensembl build GRCh37/hg19 gene, transcript, and protein ids to HGNC name and 

id mapping data can be found at https://grch37.ensembl.org/biomart/martview

The STRING data can be found at https://string-db.org/

The GeVIR gene scores can be found in supplementary data at https://www.nature.com/

articles/s41588-019-0560-2

The UNEECON gene scores can be found at 

https://psu.app.box.com/s/wur3td0dawju9qtvu7w8orkxu5ur0oo6/file/517942997406

The DOMINO gene scores and features (final, train, and validation) can be found at 

https://wwwfbm.unil.ch/domino/download.html

The gnomAD genomes variants files can be found at 

https://storage.googleapis.com/gnomad-public/release/2.0.2/vcf/genomes/

gnomad.genomes.r2.0.2.sites.coding_only.chr1-22.vcf.bgz and 

https://storage.googleapis.com/gnomad-public/release/2.0.2/vcf/genomes/

gnomad.genomes.r2.0.2.sites.coding_only.chrX.vcf.bgz. 

The gnomAD genes, transcripts and exons files can be found at http://broadinstitute.org/

~konradk/exac_browser/exac_browser.tar.gz. 
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The gnomAD structural variants data and gene constraint scores can be found at https://

gnomad.broadinstitute.org/downloads

The GPP gene lists can be found in supplementary data at 

https://doi.org/10.1007/s00439-019-02021-9

The Gene4Denovo data can be found at 

https://academic.oup.com/nar/article/48/D1/D913/5603227

The lists of olfactory, cell essential and cell non-essential gene symbols can be found at 

https://github.com/macarthur-lab/gene_lists/

The severe haploinsufficient gene list can be found in supplementary data at 

https://www.biorxiv.org/content/10.1101/148353v1

C.2 Code availability

Code for calculating DIP scores, data analysis and figures can be found at 

https://github.com/  niab/dip  .

C.3 Supplementary tables

Table C.1: ADR and DND predicted probabilities for 17,857 genes and DIP ranks 
for 15,794 genes. 

Please see supplementary Excel document:
https://data.mendeley.com/datasets/f5v5t2kkvm/2
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