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Abstract

This thesis aims to investigate long-term condition monitoring of power substa-
tion assets with thermal imaging techniques. Due to limited inspections and
measurement techniques which are very susceptible to noise from environmental
factors and human error, the inspection process can fail to detect fault pre-cursors
in equipment. This thesis aims to contribute to this problem by monitoring
equipment continuously, which collecting data on the electrical load and weather
conditions that influence the measurements, in order to characterise the thermal
response of equipment using LSTM modelling techniques.

Two scenarios are presented in the form of two experiments, comprising of
electrically loaded overhead lines and cable terminations. These are energised for
multiple day periods with realistic load patterns, with wind effects emulated by an
industrial fan, while thermal images, electrical load and environmental conditions
are collected. The data are used as input to linear regression and LSTM recurrent
neural networks.

The work contributes the use of multiple low-cost non-calibrated thermal
imaging sensors for data collection, and the novel application of LSTM recur-
rent neural network modelling methods to produce accurate time-series models
of the thermal output of points of interest on substation equipment in a labora-
tory environment. It also contributes a large-scale experimental rig facilitating
the long-term monitoring of high voltage power equipment at high currents in
laboratory environments, enabling multi-directional thermal imaging monitoring.
Lastly it provides a case study into the thermal behaviour of 66 kV cable-sealing
ends when energised long-term.

Recommendations for further work are outlined, including extending data col-

lection for longer periods, conducting long-term monitoring outdoors and utilising

the generated models in implementing fault-detection methods.
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Chapter 1

Introduction

1.1 Background

Air-insulated power substations, such as that shown in Figure 1.1 are facilities

for the distribution and management of electrical power. There are over 300

substations in the UK and inspecting them requires specialist knowledge of their

operation. They vary in size and function but are invariably hazardous environ-

ments. High load on substation componentry means that accelerated degradation

can cause equipment failures. Other risks include lethal electric shock. Inspec-

tion engineers survey the facilities with sensors, taking measurements as they go.

They then use these measurements and the context within which they are taken

to make subjective judgements on the health of the asset. Often engineers rely on

comparisons between the three phases to determine if a fault might be present.

The specialist knowledge and access to the equipment means that there are only

a small number of engineers qualified to make these judgements and due to this,

and the large number of facilities, inspections are generally completed on a three-

monthly basis in the UK. This limitation on when inspections may be completed

means that there is no way to control the environmental or load conditions the

measurements are taken in.

There are 3 main sensing modalities used in evaluating asset health during

inspection: thermal, partial discharge and gas in oil measurements. Of these, the

former two are passive measurements and are both dependent on the environ-

mental conditions. Thermal inspections are the only consideration for this work

though there is potential for future expansion into other modalities, using similar

data analysis techniques.
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Figure 1.1: A National Grid Substation in North-West England

Thermography, or thermal imaging, is the practice of generating images which

display an indication of the thermal output of the items in scene, rather than a

representation of the physically visible features. Generally, this is completed

by measuring infrared radiation emitted from a surface, as every surface with a

temperature above 0 K emits infra-red radiation [31].

Thermal imaging has a multitude of applications. It is commonly used in

security, hunting, maintenance and surveying, to present a non-exhaustive list.

In maintenance and condition monitoring, it has been established as a standard

measurement technique, due in part to the fact that hot-spots are a common pre-

cursor to the occurrence of a fault. This is especially true within power equipment

maintenance, where a hot-spot caused by a loose connection or faulty insulation

can clearly indicate a problem.

Thermal images convey only the surface temperature of equipment to inspec-

tion engineers. This is affected by various conditions, including the equipment

load, environmental conditions and emmissivity. Hot-spots, a common precur-

sor to faults, are most visible under heavy electrical load. A piece of equipment

under heavy load, in cold and windy conditions may not appear to be heat-

ing significantly when thermally inspected, for example, therefore increasing the

chance that a false-negative occurs. Long-term monitoring of equipment in var-

ied environmental conditions should mitigate against this effect and allow better

judgements of asset health to be made.
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1.2 Motivation

The primary drivers of thermal output of electrical power equipment within sub-

stations are: electrical load, wind speed and direction, ambient temperature solar

radiation, and precipitation. Due to the large range in size of equipment present

in a typical substation, there is also a large range in thermal capacity between, for

example, a bus-bar conductor and a circuit breaker. This means that the effects

of the thermally influencing factors can take many hours to be visible to a sensor,

and an understanding of the conditions at a given instance in time is therefore

insufficient to understand the thermal output at that instance. Inspections are

typically conducted as snapshots - the engineer will capture a small time period of

sensor readings for a particular piece of equipment. Aging infrastructure means

that access to live or recent electrical load data for a given circuit is difficult to

secure at the time of inspection, and even with portable weather station equip-

ment, it is difficult to accurately interpret the influence of both the electrical and

environmental conditions for an inspection engineer. It is also impossible to con-

duct inspections in similar conditions to previous inspections, limiting the ability

of the engineer to compare sensor readings to those of previous site visits.

Figure 1.2 shows a circuit breaker, a substation asset with high thermal ca-

pacity, appearing hot under the influence of solar radiation. Figure 1.3 shows

a set of three cable terminations, with comparatively low thermal capacity, dis-

playing hot areas corresponding to the cable conductors entering the underside

of the termination units. These figures provide a demonstration of the variety of

scenarios encountered by inspection engineers.

The combination of short-term inspections, long-term thermal influences, the

variation in conditions in which inspections are undertaken and the imprecise

nature of thermal imaging inspections mean that the inspection process can fail

to detect fault-precursors. This incurs a monetary cost, as faults are more devel-

oped when they are finally detected, requiring downtime to diagnose and repair.

Furthermore it is dangerous, as undetected faults may lead to equipment fail-

ure, causing further damage to infrastructure, property and potentially harming

humans.

The intention of this work is therefore to investigate the utility of a continu-

ous, long-term monitoring approach to thermal inspections of substations. This

approach will allow the long-term effects of thermally influencing factors to be

captured by the monitoring system, thereby allowing the thermal output to be
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Figure 1.2: A circuit-breaker, as observed by a thermal camera, in a National
Grid Substation

Figure 1.3: A set of three cable terminations, as observed by a thermal camera,
in a National Grid Substation
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modelled and understood. This will provide a baseline to use in the detection of

fault-precursors in the case of data which do not fit the model output.

1.3 Aims

The specific aims of the project are as follows:

• gain understanding of the effects of environmental data on thermal images;

• to develop well-performing multivariate statistical models of thermal output

from thermal cameras;

• to characterise directional or asymmetrical heating and environmental ef-

fects in power engineering assets.

The project objectives set in order to achieve these aims are:

• specify and implement experimental procedures in order to gather long-term

thermal and environmental monitoring data;

• investigate and select statistical time-series modelling techniques;

• critically analyse laboratory data to inform modelling process;

• create models based on laboratory data.

Given the prospect of future long-term thermography monitoring, the high

performance of LSTM recurrent neural network technology in time-series mod-

elling, and the potential to frame the thermal output of substation equipment as

multivariate time-series systems, it is proposed to:

• generate long-term continuous time-series thermographic data of electrically

loaded power equipment;

• gather appropriate electrical and environmental conditions;

• create LSTM recurrent neural network time-series models with the data.

This would constitute a contribution to knowledge, exploring the use of modern

time-series modelling techniques on long-term thermal, electrical and environ-

mental data.

The delivery of these aims and objectives is presented in this thesis.
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1.4 Contribution

The work presented in this thesis is funded by an EPSRC iCase studentship in col-

laboration with National Grid. It therefore comprises an academic contribution

to knowledge, and industrial contributions to the sponsor.

In the academic context, the project comprises multiple contributions. Long

short-term memory (LSTM) recurrent neural networks are applied to long-term,

multivariate, environmental and electrical loading laboratory data, to create sta-

tistical time-series models. This method of time-series modelling on multivariate

thermal image and environmental data is not found in the literature, and where

other methods are used, the LSTM recurrent neural network models typically

outperform them. Furthermore, the work models the directional effects of an

environmental factor, specifically wind. It is additionally novel that this work

utilises low-cost, non-calibrated equipment.

Previously undocumented insights are gained into the temperature profile of a

pair of specific 66 kV cable-sealing ends at high current load, before and after one

of the assets under-went an accelerated aging process. Differences are detected

between the two thermal output of the cable-sealing ends afterwards, implying

such aging processes generate measurable differences in output.

In the industrial context, the project supports National Grid in the develop-

ment of new condition monitoring practices. With the advent of Industry 4.0,

big-data, the Internet of Things and robotic inspection, continuous multivari-

ate data collection in substation environments is inevitable. Specific benefits of

automated continuous monitoring include:

• removal of the requirement for engineers to enter the hazardous environment

for inspections;

• extra capacity for specialised inspection engineers to focus their attention

on high-importance cases;

• repeatability of measurements;

• capability for data-fusion with environmental data;

• earlier warning of deviations from ‘normal’ output;

• enhanced consistency between different substations.
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Determining a potentially useful application for data gathered in such a man-

ner is valuable to the sponsor, as increasingly affordable thermal cameras facilitate

extensive monitoring coverage of substations. Additionally, complex modelling

solutions are increasingly accessible through open-source APIs and GPU com-

putation. Furthermore, there are inherent difficulties with condition monitoring

using thermal imaging. The methods presented in this work can result in costly

false-positives and false-negatives, depending on the load and environmental con-

text, and the work presented here assists in mitigating against that.

1.5 Scope

The scope of this project is to analyse the potential of the application of LSTM

recurrent networks in modelling time-series data acquired in a laboratory setting.

There is no analysis on data acquired from live assets in in-service substation en-

vironments. The project explores the performance of a single modelling method,

which is compared to a traditional method in the early stages of the project.

Due to their inherent high price, and prioritising features such as resolution,

over absolute temperature measurement, the scope of the work is limited to non-

calibrated thermal cameras. Full justification of this choice is made in Chapter 3.

No attempt is made to present a comprehensive review of time-series modelling

methods, though the justification for the choice of the LSTM recurrent neural

network method is present in Chapter 3. Furthermore, the work does not include

a comprehensive exploration of LSTM methods, instead it focuses on finding an

implementation which produces satisfactory results given the context of model-

based fault detection.

1.6 Thesis Outline

The thesis is arranged in five chapters excluding this introduction. First, the

literature relevant to the work is reviewed and summarised, before placing this

work in the context of that literature.

Chapter 3 presents the equipment and software used throughout the thesis,

before detailing an exploratory experiment, consisting of two overhead line (OHL)

conductors in circuit with a high-current DC power supply, an industrial fan, a

single un-calibrated thermal camera, environmental weather station sensor and a
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controller unit. This work was presented at Thermosense XLI 2019 [55].

Chapters 3, 4 and 5 contain the technical contribution of the thesis. Chap-

ter 3 details an exploratory experiment, consisting of two overhead line (OHL)

conductors in circuit with a high-current DC power supply, an industrial fan, a

single un-calibrated thermal camera, environmental weather station sensor and a

controller unit. This work was presented at Thermosense XLI 2019 [55]. Chap-

ter 4 presents a development of the concepts presented in Chapter 3. A pair of

66 kV cable sealing-ends in a current loop, electrically loaded by a high-current

transformer, are observed from all angles in the horizontal plane by two sets of

four un-calibrated thermal cameras, providing the opportunity to observe any

asymmetric heating and environmental effects. Chapter 5 presents a case study,

exploring the utility of the non-calibrated cameras within the context of condition

monitoring of a 66 kV cable sealing end. The chapter, utilising data-sets captured

for Chapter 4, presents analysis of the heating profile of the cable sealing ends

under load.

The final chapter of the thesis consolidates the discussion presented in the

technical chapters, placing each within the wider context of the thesis. It sum-

marises the contributions made, detailing how they constitute a development of

the current literature. Finally, recommendations are made for future work that

could further advance the work presented here.



Chapter 2

Literature Review

2.1 Introduction

This chapter presents the literature review conducted in the context of the work.

This literature review primarily seeks to establish the state of the art in infra-

red thermography, or thermal imaging, condition monitoring and fault detection,

specifically in the context of power equipment and outdoor, air-insulated substa-

tions.

Section 2.2 provides a review of the condition monitoring strategies in place

in substations. Section 2.3 presents an overview of thermal imaging broadly,

while Section 2.4 presents a review of the use of analysis techniques with regards

to thermal imaging both in the context of substation condition monitoring and

otherwise.

Given the review completed, an area of possible work is identified.

2.2 Substation Condition Monitoring

Electrical substations operate at high voltages and currents, so when failure oc-

curs it can be catastrophic. Predictive and Preventative Monitoring (PPM) [9]

and Condition Based Monitoring (CBM) [48] are the two most prominent pre-

ventative monitoring and maintenance methodologies. In the UK, maintenance

and monitoring in National Grid facilities is condition-based [22] [14], with reg-

ular inspections providing data on equipment condition and inform maintenance

strategy. Han and Song [15] present a review of conditioning monitoring strategies

commonly utilised in the electrical context.
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This project aims to investigate long-term monitoring as a method of condition

monitoring. Due to the nature of working in high-voltage environments, clearance

from live equipment is a requirement [47] Three main monitoring modalities in

power transformers are identified – hot spots, gas in oil, and PD. Hot spots

and PD, can be remotely monitored through thermography and antenna arrays

respectively – they require no physical contact with the device. Issues with hot

spot monitoring via thermography are identified as requiring internal sensors for

internal equipment temperatures, or alternatively a good model of the equipment

to predict the external thermal radiation. PD monitoring research has been

focused on identifying the symptomatic signals from interference, and localising

the source of the signals. On-line calibration of sensors has been identified as key

for successful on-line monitoring, regardless of the sensor type.

A potential cause of the apparent lack of long-term or constant thermal mon-

itoring in substation environments is simply the lack of infrastructure. Many

substations are decades old, can be very large and include many assets. With

thermal cameras remaining expensive, sufficient coverage could be prohibitively

expensive. There is evidence of on-line monitoring in substations that does not

yet include thermal imaging [30]. However, the emergence of internet-of-things,

‘Industry 4.0’, smart-grid and substation-specific standards on automation (IEC

61850) [38] [46] have led to work detailing plans for system architecture for such a

thermography installation [61]. This provides clear motivation for exploring both

low-cost thermal camera technology and long-term condition monitoring.

Robotic implementations of continuous monitoring exist, for example, Wang

et al. [64] developed the SmartGuard robotic inspection system with the Shan-

dong Electric Power Institute. The institute is a leader in the field of substation

robotics, with numerous robots installed in active duty in substations throughout

China. SmartGuard features autonomous navigation, autonomous battery charg-

ing and autonomous equipment recognition. SMP robotics offer the S3 Electrical

Substation Robot [51]. The product features autonomous control and naviga-

tion, a Wi-Fi communications link and a data-acquisition platform consisting of

a thermal camera and a visible-light camera on a 360 degree pan-tilt platform.
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2.3 Thermal Imaging

Thermal imaging is a key aspect of substation inspection. Initial work in the

field was focused around manual inspections by trained professionals, providing

guidance on effective use of equipment and interpretation of the data collected.[11]

[18].

Quantitative analysis is possible with radiometric thermography equipment

but prohibitively high costs mean that most analysis is qualitative. [11]. This

is partially because the sensors used in infra-red cameras (which are the most

common type of thermograph) are sensitive to environmental conditions such as

temperature. Generally two forms of thermal camera are available: calibrated

and non-calibrated. In long-wave infra-red thermal cameras, the most common

form of sensor array is a VOx micro-bolometer, these are typically used for sub-

station inspection. These sensors respond to thermal flux incident on the sensor

array, which is proportional both to the temperature of the imaged surface and

the temperature of the sensor. A calibrated camera has undergone a procedure

to characterise the output of the sensor at a given range of usable operating

temperatures. A non-calibrated camera has output which fluctuates with sensor

temperature.

An aspect of thermography into which there has been a lot of research is the

effects of external factors on the readings provided by the sensors. As substations

are often outdoors and exposed to weather, these effects can mask issues [11]

and cause false negatives. Particularly, work has been carried out focusing on

modelling the effect wind [3] and the equipment’s electrical loading [4] on thermal

images. Emissivity has also been found to be key in thermography. Small errors

in the calculation of emissivity have been found to lead to large measurement

errors [53]. Another paper has found a near-logarithmic relationship between

emmissivity and temperature reading [60]. Findings have shown that an accurate

emmissivity estimation for the characteristics (wavelength) of the camera in order

to get accurate readings between targets with different finishes [39].
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2.4 Thermal Image Processing and Modelling

2.4.1 Thermal Imaging Image Processing

Bagavathiappan et al. [1] present a review of applications of infra-red thermogra-

phy in condition monitoring. This covers the technology, application domains, the

relevant standards used as reference for qualitative analysis, and various analysis

techniques used to extract information from the images. Consideration is given

to both active and passive thermography. Given the presence of live high-voltage

equipment in the context of substation monitoring, only passive thermography is

relevant to this work.

Jadin and Taib present a further summary [26], Usamentiaga presents another

in the context of non-destructive testing [61] Consistent with their findings, it has

been discovered that the literature covers the image processing techniques used to

segment thermal images into regions of interest, or background/foreground. Jadin

and Taib [26] acknowledge that qualitative measurement can be sufficient for

successful condition monitoring, suggesting that lower-cost non-calibrated sensors

may be utilised. They also state that automated fault detection in the field of

electrical power applications is still in the early stages, providing justification

for this work. As thermal intensity is represented by pixel intensity, standard

thresholding operations are common for this application [45] [8] [27] [25].

Duarte et al. provide a summary of these techniques in a medical context,

which is also relevant here [10]. Much work has been undertaken to computerise

the processing of the raw thermography data as captured by the sensor. A com-

mon first step is to ‘segment’ the thermal image using the otsu threshold [45].

This is an adaptive threshold, and is used to flexibly remove unwanted data from

an image. [8]. Jung [27] uses an thresholding method in their work superimpos-

ing thermal images on-top of visible light images, while Jadin [25] [24] presents a

brief investigation of thresholding techniques, and their own bespoke solution.

2.4.2 Fault Detection Analysis Techniques

Modern machine learning techniques can be broadly separated into two categories:

image (matrix) analysis using convolutional neural networks and sequence (text,

speech or time-series) analysis using recurrent neural networks. This section seeks

to establish the state of the art in both with regards to applications in condition



2.4. THERMAL IMAGE PROCESSING AND MODELLING 29

monitoring.

As image segmentation can be framed well as a classification task, machine

learning techniques and deep neural networks are commonly used to identify re-

gions of interest. Li [34] uses a support vector machine (SVM) to recognise the

equipment in-frame. Zhao [68] uses a SVM to detect insulator strings in images,

albeit after a pre-processing method they have termed as Binary Feature Pool-

ing. Attempts have been made at automating the interpretation of thermography

data since 1997. Moja [42] attempted this using statistical and neural network

techniques, correctly identifying the problem with simply comparing a thermal

image with a reference image. There are many examples of using machine learning

techniques to classify potential faults in thermal images of substation equipment

[59] [58] [12] [37] [49] [19]. These methods typically consider individual frames

of scenes, extracting features and performing statistical analysis to determine

whether a fault is present in the scene. Limitations of this work include avail-

ability of data and consideration of environmental factors influencing the images.

These methods have made significant progress in automating the process of iden-

tifying faults in good thermal images, however do not necessarily improve the

ability to extract information from images in difficult conditions. Furthermore,

the utility of the methods presented is limited to snapshots in time, and does

not consider the potential of long-term monitoring in order to detect less obvious

faults. It is clear from this survey of the literature that the ‘classification’ task is

widely studied with regards to thermal imaging fault detection.

While it is common for individual thermal image frames to be used to extract

information, there is merit in using thermal cameras to capture multiple frames

in order to observe thermal changes with time. The work by Bortoni et al. [3]

[4] considers sequences of thermal images, extracting values and framing them as

time-series in order to perform regression analysis. This work provides a basis for

exploring long-term monitoring of equipment using thermal imaging, framed as

a time-series problem, however has limitations in lacking a thorough exploration

of the accuracy of the models and the consideration of multi-directional environ-

mental effects. This type of time-series analysis of thermal images is common in

active thermography, where a material’s response in time to a thermal impulse

determines the outcome of the experiment, and is frequently used in building

inspection [6] [7] [13]. This method is also commonly found in medical appli-

cations, which are reviewed by by Lahiri et al. [32]. There are well-performing
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examples of recurrent neural network technology being utilised with time-series

data from thermal cameras. Fang and Maldague [12] present a recurrent deep-

learning based method for quantifying defect depth in carbon fiber reinforced

polymer while Wang et al. [65] present the use of thermal images as time series,

fed through LSTM recurrent neural networks, suggests that the memory func-

tion of the long short-term memory (LSTM) [17] type allows it to learn signal

characteristics. Li et al. [34] present a LSTM based method with 99% accuracy

at anomaly fault detection. These pieces of work suggest that there is merit in

exploring LSTM based modelling techniques in the condition monitoring context,

developing the work of Bortoni et. al. to develop accurate models with modern

techniques. However, it is notable that the fields of medical analysis and building

inspection concern controlled environments, where external environmental influ-

ences on the sensor equipment are minimal. Furthermore the equipment is often

highly specified in order to be able to detect rapid thermal transients. This draws

into question the applicability of these methods when using low-cost thermal cam-

eras in less-controlled environments. There is no published literature concerning

the application of LSTM neural network techniques to thermal imaging in the

condition monitoring context, providing a clear gap in the current knowledge.

2.5 Summary and Determination of Contribu-

tion

It has been found that extensive research into the application of thermography has

been completed. A large body of literature exists with regards to the application

of thermography in a substation monitoring context, and there are many other

applications. The nature of the research differs between application areas, with a

focus on classification of faults and image segmentation in the substation context.

Limitations to thermography have been explored, highlighting emissivity and

the influence of environmental factors as key problems, including the aspect of

human error in determining the extent of the effect of each. Long-term thermal

monitoring is uncommon to find in practice, however proposals, standards and

architecture are published detailing the form this may take.



Chapter 3

Modelling of an Overhead Line

3.1 Introduction

This chapter presents the details of the sensors and software selected for use

throughout the work, in Sections 3.2, 3.3 and 3.4. An experimental scenario

regarding the monitoring and modelling of an electrically loaded overhead-line

conductor is introduced and discussed. The experiment design is described in

Section 3.5, the output datasets in Section 3.6 with results and analysis presented

in Section 3.7. Discussion of the results is presented in Section 3.8.

This chapter presents the results obtained using data from the first of two

completed experiments over the course of the work. Raw data output is presented

and described, with notable features highlighted. Example images from data

points selected at random are presented in detail. A detailed description of the

configuration of the modelling techniques utilised is provided.

The aim of the work is to evaluate whether good auto-regressive and LSTM

models can be created based on data of this type from these sensors. The success-

ful creation of such models would support the viability of the modelling work and

provide a foundation from which more complex electrical power systems could

be modelled, If model performance is satisfactory, it would suggest that such

methods could be employed in an industrial setting, where model-based fault de-

tection techniques could be used in order to detect potential faults in equipment

autonomously, and potentially earlier than currently used methods achieve.
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3.2 Sensors: Thermal Imaging

3.2.1 Thermal Imaging

This section will provide a functional overview of typical thermal imaging tech-

nology, focused on areas relevant tp the context of the usage of thermal imaging

over the course of the work.

3.2.1.1 Microbolometer

A bolometer is a device used to measure electro-magnetic radiation incident on

itself using temperature-dependent electrical resistance. A microbolometer, the

primary sensor type for uncooled thermal imaging cameras, is an array of small

bolometer sensor elements, sensitive in the 7-14 µm frequency range. Typically

radiation from the environment is focused onto the sensor plane using infrared-

transmitting optics, typically germanium. The incident radiation causes small

changes in the resistance of the sensor elements it hits. Sensor elements are chosen

due to their high coefficients of thermal resistance. Lower-cost long-wave infrared

(LWIR) thermal cameras utilise vanadium oxide (VOx) or amorpous silicon sensor

elements. Sensors made from these materials do not require active cooling for

operation, resulting in lower cost. At higher price-points, actively cooled medium-

wave infrared (MWIR) and short-wave infrared (SWIR) cameras are available,

commonly used for gas-leak inspection and very long distance (>10 km) thermal

detection through smog and/or clouds respectively. LWIR thermal cameras are

most frequently used for industrial inspection and other similar applications. [21]

Measurement circuitry detects the changes in resistance of the sensor, allowing

the signals to be digitised and to enter the image pipeline of the device. Typi-

cally at this stage the image undergoes a sequence of processing stages with two

purposes: to correct the image (for bad pixels, lens distortion and non-uniform ar-

eas), apply gain (for enhancing visible contrast). Finally, any annotations, zoom

and colourisation procedures are performed on the image and it is output to the

user, via direct display, a communication interface, or both.

Images are output as a matrix of values proportional to the thermal radiation

incident on the sensor elements. This quantity is referred to as ’digital counts’

of thermal radiation. Digital counts are measured per pixel, allowing variations

in the number of digital counts incident on the sensor from across a physical

scene, to be displayed as an image of varying thermal intensity. When multiple
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images are captured of a scene over time, both the spatial and temporal thermal

variations can be measured.

3.2.1.2 Sensor output

The raw sensor output is proportional to thermal flux incident upon itself. Heat

flux in 1-D, φq, at the position x, is defined as:

φq(x) = −kdT (x)

dx
, (3.1)

where T is the absolute temperature. More specifically, the equation for radiative

heat transfer between two objects (a with temperature Ta and b with temperature

Tb) is defined as:

φq = εσF (T 4
a − T 4

b ) (3.2)

where ε is emissivity factor, σ is the Stefan-Boltzmann constant, F is the view

factor between the two surfaces and T is absolute temperature.

As flux is proportional to the difference in temperature between the two

surfaces, it can be inferred that thermal cameras are not only sensitive to the

temperature of that which they are measuring, they are sensitive to the sensor

temperature. Provided the imaged scene maintained a stable temperature, if the

temperature of the sensor increases, the flux incident on the sensor would de-

crease, resulting in a lower apparent scene temperature. This is an especially

important consideration for thermal cameras mounted in assemblies with other

electronics, especially if dissipating a large amount of power, or in otherwise

thermally volatile environments. Thermal camera manufacturers correct for this

effect varying amounts, further details are provided in Section 3.2.1.3.

Referring back to Equation 3.2, the other primary influencing factor is emissiv-

ity, ε. Emissivity is defined as the efficiency at which a surface will emit thermal

radiation. An ideal emitter, a blackbody, has an emissivity ε = 1.0, while all real

materials have emissivities 0.0< ε < 1.0, given by the ratio of radiation emitted

from that surface to radiation emitted from a blackbody of equal size, as given by

the Stefan-Boltzmann law. Emissivity is influenced by both the surface material

and the surface finish. Given two objects of equal temperature, size, shape and

material, if one is polished and another has a rough finish, the emissivity will

differ markedly. For example, polished copper has an emissivity of ∼ 0.04, while

oxidised copper has a value of ∼ 0.87 [44]. Emissivity is non-trivial to measure,
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requiring controlled experiments to determine a value for a material. Generally,

in the context of thermal imaging, emissivity is estimated for objects in scene us-

ing a table of reference of typical emissivity values for materials. For this reason,

it can be a large source of error in the measurement of temperature using thermal

imaging [40].

Objects are reflective at infra-red wavelengths in a similar manner to at visible

wavelengths. This provides another important consideration for thermal imaging

applications, as particularly reflective objects in a scene can appear to be hotter

than they are due to being surrounded by other hot objects emitting thermal

radiation onto them. This can be particularly problematic in outdoor settings

where the infrared radiation from the sun being reflected from surfaces can cause

significant differences in apparent temperatures.

Further factors which influence the sensor output due to an effect on infrared

transmission include:

• humidity;

• precipitation;

• view distance;

• geometry of imaged scene.

Of this list, humidity, precipitation and view distance pertain to the environment

through which the thermal radiation must travel between the imaged object and

the sensor. Any particles present in the path between the object and the sensor

contribute to both scattering and absorption of thermal radiation. As humidity

and precipitation increase, the number of particles in that environment increases,

resulting in an equivalent increase in absorption and scattering. The effect of

these variables is proportional to the view distance. The geometry of the scene

influences the apparent thermal output, firstly due to the fact that complex ge-

ometries with many heated components can cause large numbers of thermal re-

flections to occur. Secondly, geometry must be considered due to the effect it has

on the view factor between the sensor and the imaged scene. As the quantity

of radiation emitted from a surface changes markedly with angle [41], both the

geometry of the scene and the position of the region of interest (ROI) within the

sensors field-of-view (FOV) can impact the appearance of the scene.
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In interpreting thermal images, it is important to consider the numerous ther-

mal influences on the imaged scene, especially when the intention is to interpret

the level of thermal output from an object in a scene. The following environ-

mental variables can have a significant direct influence on the temperature of an

imaged object:

• wind speed and direction;

• ambient temperature;

• precipitation;

• solar radiation;

• in-scene active heating.

These factors change the temperature of the imaged scene rather than influencing

how the temperature appears to the sensor, however, it may be the case that

they impact an assessment of a thermal image. Particularly important is solar

radiation, as this is susceptible to directly impacting the temperature of objects

while also creating adverse reflection effects.

3.2.1.3 Calibration

Thermal cameras are available from manufacturers with varying levels of calibra-

tion. The most basic, low-cost cameras are have minimal calibration completed

before shipping, while more expensive products have extensive in-factory calibra-

tion completed. For example, FLIR Systems, one of the larger manufacturers

of thermal cameras, generally provides, what it refers to as ’radiometric’ and

’non-radiometric’ cameras. Calibration is a procedure involving capturing ther-

mal images of a device with known temperature and emissivity (a black-body

source) with the sensor at a known temperature to determine the relationship

between the sensor core and the output digital count value. Once this relation-

ship is quantified, it can be applied to raw output thermal images, allowing the

surface temperature of the viewed scene to be estimated from the measured in-

cidental flux on the sensor. After radiometric calibration, thermal cameras offer

a temperature accuracy of ±2.5 K. They require user input of measurements or

estimates of ‘scene emissivity, atmospheric temperature and transmission, back-

ground temperature, and parameters to account for the recommended window
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included on a fully integrated system’ [57] in order to reach such accuracy. Each

of the user-provided quantities is a potential source for further error. Calibrated

cameras vary in whether every pixel is calibrated for, or they have a central area

which can be used for temperature measurement in the centre of the frame, called

a spot-meter.

Non-calibrated thermal cameras typically provide only a digital count value

per pixel to the user as output. As detailed in Section 3.2.1.2 there are a number of

factors that can influence this digital count value, making it difficult to accurately

estimate a scene temperature value from it.

3.2.2 Camera Choice: FLIR Boson

3.2.2.1 Core Choice

Thermal camera core choice was made based upon the following factors:

• affordable enough to buy on the project budget;

• availability of sensor through official university suppliers.

• prior expertise with FLIR sensors in research group;

• sensor resolution;

• access to the image pipeline - providing the raw sensor data to the user

before gain is applied.

The methodology employed by inspection engineers to extract a spot-temperature

reading from a thermal imaging device includes making a number of assumptions.

A typical inspection camera, for example a FLIR T620, requires inputs from the

user regarding relative humidity, ambient temperature, emmissivity of the equip-

ment and distance to the equipment. Further factors influence the appearance of

a thermal image: angle of surface to sensor and thermal reflections, for example.

The potential error in determining each of these factors, especially emmissivity,

which is difficult to estimate accurately, introduces uncertainty in the final tem-

perature output of the camera. The experimental set up allows the above factors

to be assumed as constant or measurable between sequential images, and as the

primary focus of the experiment is thermal response over time, this is consid-

ered satisfactory. A summary of the features and capabilities of the two types of

cameras is displayed in Table 3.1.
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Table 3.1: Camera Features of the consumer-level FLIR T620 and OEM FLIR
Boson

Spec T620 Boson

FOV (◦) 15x11 50 (horizontal)
Resolution 640x480 320x256
Temp Range (◦C) -40 to +150 to +140
Thermal Sensitivity/
NETD (mK)

40 @30◦ 60

Atmospheric transmis-
sion correction

Automatic, based on in-
puts for distance, atmo-
spheric temperature and
relative humidity

None

Emissivity Correction Variable from 0.01 to 1.0
or selected from materi-
als list

None

Automatic Image Ad-
justment

Continuous, histogram
based

User configurable

Cost (£) 17,548.00 1,325.00
Radiometric Yes No

3.2.3 Usage: Pre-processing, Normalisation and Image

Display

Due to lack of provision of telemetry (which provides access to camera core tem-

perature) on the USB channel of the FLIR Boson communication interface, mea-

sures were introduced to mitigate against temperature transients that the cameras

may undergo during operation.

Potential temperature transients include: self-heating, experimental forced

environmental conditions (wind), ambient temperature change, direct heating

from the laboratory climate control and heating from the experiment conductor.

The laboratory within which the overhead-line experiments were conducted

was found experimentally to have relatively stable environmental conditions (see

Section 3.6, therefore the direct environmental influence on the camera itself was

assumed to be negligible for the purposes of these experiments.

Figure 3.1 shows the FLIR Boson camera within it’s 3D printed mount, along-

side prototypes of the mount.

FLIR Boson camera cores have an automatic histogram equalisation function-

ality (Automatic Gain Control or AGC in FLIR terminology) [56], designed to

increase visibility of thermal features in-scene. This is computed based on the
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Figure 3.1: FLIR Boson thermal camera core in custom mount, alongside proto-
type mounts.

range of thermal intensities per frame. Examples of images with and without

the equalisation process applied are presented in Figure 3.2, with significantly

more features visible for human inspection in the equalised image. Correspond-

ing histograms of the images are presented in Figure 3.3. Due to the desire to

compare sequences of frames of thermal images in the experiments presented here,

all images were retrieved before AGC was applied in the image pipeline.

3.3 Additional Sensors

This section provides details on the equipment employed to collect data other

than thermal images over the course of the project.

3.3.1 Weather and Environmental Data

A Vaisala WXT520 [62] weather station was used to collect data about the en-

vironmental conditions in which the experiments were completed. The weather

station can collect air temperature, humidity, pressure, wind speed and direction

and precipitation data. For the purposes of this project, all data but precipitation

were collected. Data sample rates were as default for the sensor unit.

Data are output via a USB serial link to a controller device. The controller

device, when required to record the data, called a blocking routine awaiting the

most recent data from the sensor device, recording it when received.

This weather station was selected as it is of a good standard and representative
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Figure 3.2: Top: a grid of eight non-normalised thermal images; Bottom: a grid
of 8 normalised thermal images.
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Figure 3.3: Left: histogram of a non-normalised sample thermal image; right:
histogram of an independently normalised thermal image.

Table 3.2: Data output units for Vaisala WXT520 weather station
Data type Unit

Air Temperature ◦C
Humidity %
Pressure Bar

Wind speed m/s
Wind direction ◦

Telemetry N/A

of what may be used in industry to collect environmental data where required.

Output data units are detailed in Table 3.2.

3.3.2 Current

Measurement of current over the course of the OHL experiment was completed

by a Magna Power [23] MSA16-2700 high current power supply. The controller

single-board computer (SBC), a Raspberry Pi, interfaced with the power supply

using an RS-232 serial link. The power supply’s communication interface provides

functionality for the current to be read on demand by a device, using the

ser.write(”MEAS : CURR?\r\n”)

command.

The communication interface is used in order to both control and monitor the

electrical load.
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3.3.3 Temperature

A full complement of k-type thermo-couples were utilised. These were positioned

in a range of positions, with particular care to cover the hottest areas of each

experiment, using kapton tape when attached directly to a loaded conductor. The

purpose of the thermo-couples was to provide a thermal safety cut-out switch, if

temperatures around the experiment exceeded particular thresholds. The thermo-

couples were interfaced with over USB via a PicoScope TC-08 data acquisition

unit. The thermo-couple data was not utilised during the modelling process as

surface contact measurements are not representative of what may be found in

service in substations.

3.4 Modelling, Machine Learning and Software

Decisions on the modelling methods utilised during the course of the work were

made based on the findings of the literature review (Chapter 2), on the form of

the data being modelled and on the proposed future application context of the

methods proposed.

Since thermal systems inherently take finite time to respond, and electrical

power equipment is often large and has high thermal-mass, it can take an extended

period of time for the influence of input variables to take their final effect on the

output of the system. This characteristic of the physical systems determined that

any modelling technique to be used should consider inputs at prior time-steps as

well as the present input.

The proposed methods are defined for use in extended continuous monitoring

applications, and the experiments have been designed to collect data in this man-

ner. Continuous monitoring provides a significant benefit over a single sample,

as previous values of the output variable may be used to form the model. While

there may be merit in modelling precisely the impact of the input variables on

the output, it is true that the extent the output can change by in the period of

a time-step is finite, so must be a function of the output at the previous time

step. Due to this intended application context, modelling methods that consider

prior values of output as system inputs, namely auto-regressive methods, are

considered.
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The work of Bortoni et al [3] [4] [2] and Santos et al [52], which also con-

siders thermal output extracted from thermal cameras as time-series, used auto-

regression methods. For this reason multivariate-auto-regression (MAR), a vari-

ant of linear regression modelling, was selected as the initial modelling technique

to be utilised in the work.

Elsewhere, success has been reported in recent literature utilising LSTM re-

current neural network technology in time-series modelling. This method was

selected due to widespread usage, reported success and platform support in the

early stages of the work. Temporal convolutional networks (TCNs) [63] have

widely reported excellent multivariate time-series performance [33] [16] since the

project commenced. These are not explored here but remain an area of explo-

ration with regards to the modelling challenges of the project.

Note: a link to API developed during the course of this work is provided in

Appendix A.

3.4.1 Linear Regression Modelling

A multivariate auto-regressive linear regression model equates the output of a

system to some combination of coefficients and vectors of inputs. M is the model

order (number of lagged values considered), N is the number of causal variables,

with N+1 variables contributing to the output, due to the auto-regressive aspect.

Equations 3.3 to 3.7 describe the model form in summed and matrix forms. y is

the output variable, x is the input, θ is a vector of trainable parameters, and φ

is a bias term.

yt =
M∑
j=1

(yt−jθ0j) +
N∑
i=1

( M∑
j=1

(xi(t−j)θij)
)

+ φ (3.3)

In matrix notation:

yt = φ+ yprevθ0 +
N∑
i=1

xiθi + φ (3.4)

Where

yprev =
[
yt−1, yt−2, . . . , yt−M

]
, (3.5)
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xi =
[
xi(t−1), xi(t−2), . . . , xi(t−M)

]
, (3.6)

θi =


θi1

θi2
...

θiM

 (3.7)

The order of the model is determined experimentally in the course of this work,

by sweeping through candidate values and evaluating the effect on the output.

The model is optimised using gradient descent with a mean-squared error

cost function. The learning rate and epochs are selected experimentally. The

multivariate lagged values forming the inputs allow the regression to model more

complex time-dependant systems than simple linear regression.

3.4.2 LSTM Techniques

Long short-term memory (LSTM) neural networks are a form of recurrent neural

network (RNN) proposed in 1997 by Hochreiter [17]. LSTM networks utilise a

data pipeline in their recurrent layer, which allows data to be maintained for long

time periods in the dataset. This enhances their ability to ‘learn’ long term causal

relationships between data points, without falling victim to exploding or vanishing

gradients in the training process, a problem commonly faced by simpler recurrent

neural networks, especially when dealing with longer series of data (more lags). A

result of these characteristics is that LSTM networks are suitable for the problem

of time-series prediction. Furthermore, being artificial neural networks, they are

suitable for scaling up to large numbers of features.

ft =σ(Wfxt + Ufht−1 + bf ) (3.8)

it =σ(Wixt + Uiht−1 + bi) (3.9)

c̃t =tanh(Wcxt + Ucht−1 + bc) (3.10)

ct =ft · ct−1 + it · c̃t (3.11)

ot =σ(Woxt + Uoht−1 + bo) (3.12)

ht =ot · tanh(ct) (3.13)
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Figure 3.4: A graphical representation of an LSTM unit

The equations dictating the weights and their corresponding activation functions

for an LSTM unit are presented in Equations 3.8 to 3.13, where x is input, h is

hypothesis output, ct is the cell state, f is the forget gate value, i is the input

gate value and c̃t is the candidate value for the next cell state. There are two

weight matrices for an LSTM cell: W and U . W contains the weights applied

to input values, while U contains the weights applied to the previous prediction

value from the previous cell (ht−1). b is a vector of bias values. These are included

in the LSTM implementation utilised for this work but are not a requirement.

The units these weights correspond to are shown in Figure 3.4. Referring

to the figure, the capability of this type of recurrent neural network to retain

information over many timesteps, is conferred by the horizontal data pipeline for

ct and the corresponding ‘forget gate’.

In the case presented here, a single continuous output value is required for a

sequence of inputs. The output of the LSTM layer of the network is fed to a single

neuron, through a dropout layer, in order to minimise the risk of over-fitting. The

dropout layer sets a proportion of weights to zero. This is particularly useful in

ensuring the network does not train to a persistence model, as is a common issue

in auto-regressive processes.

Due to the nature of the application of the generated models, L1 and L2



3.4. MODELLING, MACHINE LEARNING AND SOFTWARE 45

bias regularisation values are configured into the LSTM layer. The regularisation

should assist in ensuring there is minimal bias in the model output, increasing

the chances of a model residual with a mean of zero.

The model is trained on mean absolute error, with the ‘Adam’ [29] optimiser.

Data is shuffled in training. Further configuration of the training process is

detailed in Chapter 4, Section 4.5.2.1.

3.4.2.1 Input Shaping

This section describes the manner in which the input variables are manipulated

specifically for input into the Keras LSTM layer. This input shaping dictates the

patterns that may be learned by the recurrent neural network.

The dataset is first framed as as an input/output pairing. The output is y(t).

The inputs, as in the linear regression model case, are:

yprev =
[
yt−1, yt−2, . . . , yt−M

]
, (3.14)

xi =
[
xi(t−1), xi(t−2), . . . , xi(t−M)

]
, (3.15)

where M is the number of lags. The dataset is initially shaped as [rows, columns],

designated as [samples, variables]. A shuffling process is used such that each

lagged time variable is a column of data. This is depicted with dummy data in

Figure 3.5. In the provided example, there are three causal variables: x1, x2

and x3 and a single output variable: y. New columns are created with lagged

values of the causal and output variables. In this format, each row of the dataset

table forms an input/output pairing. After the shifting has been completed, the

dataset is split into train and test sets, as denoted by the labels and the shading.

Finally, the data is reshaped into a 3-dimensional data structure of shape: [data

length, number of lags, number of variables], effectively grouping the variable

types together. The Keras LSTM layer then receives sequences of length equal

to the data set length.

3.4.3 Data Pre-processing

Environmental, electrical and camera casing temperature sensor data are output

from the experiment in .csv files.
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Figure 3.5: Representation of the organisation of data into inputs, output, test-set
and training-set. On the left, data pre-shifting. On the right, data post-shifting.

In order that all data was evenly sampled, and at the same time-base, a

resampling procedure was required. First, all text was stripped from data fields.

Data was up-sampled to a 1 Hz frequency using linear interpolation, then down-

sampled to a sample period of 60 seconds. After all files were re-sampled, the

data can be consolidated into a single .csv file. Image data was similarly stored

on the host experiment controller Raspberry Pi.

Typically an image was selected for normalisation and manually inspected.

This normalisation process was critical to be capable of correctly selecting ROIs/POIs

in the images, as it enabled the identification of physical features of the monitored

equipment in the scene as in Figure 3.6.

To ready the images for input into modelling processes, they must be re-

sampled to an exact frequency, as the time-series methods used assume this to be

true. Images are re-sampled using the same method as the sensor data .csv files,

treating pixels as time series. For the purposes of the CSE experiments, software

reads each image in the sequence in turn, extracting the mean value of a 3x3 kernel

around the POI pixel, appending it to a data structure and storing in a file, ready

for modelling. For the purposes of the overhead line experiments, an ROI mask is

generated, providing a region of interest encapsulating the energised overhead line

conductor, by using a combined threshold and connected-components operation.
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Figure 3.6: The thermal image pre-preocessing workflow for the overhead line
scenario.

The sequence of images is then masked using a pixel-wise binary AND operation

This masked image is unrolled into a 1D array, zeroes are discarded and the mean

value of the array is taken. This average pixel value is taken as the thermal output

of the system. This image pre-processing pipeline is depicted in Figure 3.6.

All data are normalised by scaling between 0 and 1, per variable, before input

into modelling processes. This scaling ensures that all variables cover an equal

numerical range, so there is no bias for or against any variable when assigning

coefficients or weights to the variables during the process of fitting the regression

or training the recurrent neural network. Particularly in the case of the recurrent

neural network, this important for the training process. The non-linear nature

of the activation functions used in the neural network mean that variables of

different orders of magnitude can lead to large or small weights, in turn leading

to increased or decreased sensitivity to certain inputs.

3.4.4 Recursive Predictions

Referring to Section 3.4.2.1, it is clear that care must be taken when inspecting

the output of models generated using data of this form. While a plot of the test-

set portion of a dataset, showing observed values and model output values, may

appear to be a long-term time-series prediction, it is rather a series of single-step

predictions, plotted in sequence.
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Table 3.3: Software libraries and APIs used in the work
Library Description
CUDA Low level (close to the metal) framework for en-

abling matrix operations on NVidia GPUs. Pro-
vides potential significant speed-up

TensorFlow Machine and deep learning library used for build-
ing, training and testing machine learning mod-
els

Keras Interface with deep learning libraries such as
TensorFlow

SciPy/SkLearn Python Machine learning and data analysis pack-
age

Pandas Python data analysis and manipulation package
Numpy Python mathematical library
OpenCV Open-source image processing library

For visualisation purposes, recursive predictions (or forecasts) are used at var-

ious points in the thesis. Figure 3.5 shows a sequence of dummy data. When

computing recursive predictions, the model output is computed for time t, for

example. This generates model output ŷt. In order to make the recursive predic-

tion for time t+ 1, ŷt is shuffled back into the row of inputs that are fed into the

model, in the column corresponding to yt−1. From this new row of input data,

the model output can be generated for ŷt+1.

3.4.5 Implementation

This section will provide a brief overview of the software technologies used in

implementing the methods described in this chapter.

3.4.5.1 Python

Python is a widely used, open-source interpreted programming language. There

are numerous scientific and numerical libraries available for use and software can

be written for use in console sessions (in a similar manner to MatLab), in scripts,

or in full-size programs. This flexibility and utility make it ideal for data analysis

in a research setting. The Python version used over the course of this project is

3.7.

Table 3.3 lists the libraries frequently used during the course of this work.
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3.5 Experiment Design and Data Collection

3.5.1 Context

Based on the findings in the literature review (Chapter 2), and the resulting

potential contribution, a set of requirements were compiled for an experiment

that would provide the means to acquire the data on which models would be

created (see Section 3.4). The requirements are as follows. The experiment must:

1. Generate time-series data

2. Comprise of genuine power-engineering equipment

3. Utilise electrical loading representative of in-service equipment

4. Comprise some form of measurable environmental variation

5. Record a sequence of thermal images

6. Record environmental data

7. Be autonomous and safe, for long-term usage

The justification for this experiment is that it provides real laboratory data

from sensors akin to those used in condition monitoring practice, with which to

investigate the utility of modelling the thermal output of equipment. This will

serve as a simplified test-case in order to determine whether the concept of using

the selected cameras and modelling methods is valid and useful. Using simple

aluminium conductors as the test-object maintains a simple relationship between

the input and output of the system, while still being genuine power equipment

that could be found in an in-service substation environment.

3.5.2 Experiment Design

In order to collect data to facilitate the creation of models as described in Chap-

ter 2 the overhead line experiment was devised. A current loop comprising of

two Rubus type ([5]) all-aluminium-alloy (AAC) overhead line conductors termi-

nated by custom crimps, a Magna Power high-current power supply [23] and a

conducting block of aluminium was created. A FLIR Boson OEM thermal cam-

era core (see Section 3.2.2) was selected and acquired. Software was adapted to
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extract individual files from the camera, at the appropriate point in the image

pipeline. A Vaisala WXT520 (Section 3.3) weather station was selected, acquired

and software was written to read appropriate data from it’s serial interface. A

large industrial fan was sourced within the university. A high-current relay-based

control box was developed to allow the fan to be autonomously controlled. A

weather-proof, power-over-ethernet (POE), visible light security camera was in-

tegrated into the system, to provide potential utility for future experiments, but

was ultimately unused. Safety provision was provided by setting appropriate

over-current and over-voltage fault limits on the power supply, and with an over-

temperature fault condition using thermo-couples, as described in Section 3.3.3.

Environmental and electrical data was stored in human-readable .csv files, with a

matching sequence of 16-bit resolution ‘.png’ image files from the thermal camera.

Experiments were controlled and data was logged by a Raspberry Pi SBC. A

Python program scheduled events, as defined by input files with load and wind

patterns, which prompted changes in current, wind-fan state (on or off) and

scheduled data capture events, during which it triggered thermal image capture,

environmental data capture and recorded current and voltage values as reported

by the high-current power supply. The FLIR Boson camera was positioned in

order that the majority of the length of the conductor loop was within its field

of view. A suitable position for this was on top of the power supply unit. The

wind-fan was positioned such that it blew air at a portion of the conductors

which were within the field of view of the camera, in order that its effects could

be characterised.

The resistance of the conductor loop was found experimentally to be r ≈
0.01 Ω. A current range of 0 A ≤ I ≤ 800 A was selected to provide heating

of P ≤ 6400 W . Further testing showed this current range to provide sufficient

heating for the experiments while remaining under the safe operation temperature

threshold of 90 ◦C, as recommended by the laboratory operators.

Based on these requirements a pair of experiments were carried out. These

are presented in further detail in Chapter 3.

To perform an input and output validation check on the experiment a step-test

was performed. The load and wind profiles for this test can be seen in Chapter 3,

Figure 3.9. The thermal time constant was found to be τ ≈ 20 min during this

test.

To approximate real-world conditions, National Grid national loading data
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Figure 3.7: The overhead line experimental setup, including power supply, con-
ductors, fan and weather station.
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Figure 3.8: Conceptual diagram of the data collection and modelling system. On
the left is the physical experiment, which is perceived by sensors in the centre,
which contribute data to the model, which produces digital count pixel value
outputs.

was normalised to within safe experimental levels and used to define the load

pattern for the ‘realistic’ test. The load pattern time period was determined to

be approximately four days, due to laboratory constraints. The test was run

from 2018-07-19 12:56 to 2018-07-23 13:56, encompassing four varied high-load

periods, corresponding to day-time in the national load figures, and four low-load

periods, corresponding to night-time. The load pattern peaks were aligned with

the times at which the real world data would peak, attempting to capture as

much realism as possible, in the case of environment cooling in the laboratory

overnight. The industrial fan was enabled in a binary pattern of a differing

frequency to the loading data. Models were created based upon these datasets

in order to predict the average pixel value of the region of interest based on the

load and environmental conditions. The setup can be seen in Figure 3.7.

A diagram depicting the conceptual layout of the system is shown in Fig-

ure 3.8. This figure describes the relationship between the physical system, the

sensors that observe the system and the model that attempts to encapsulate the

effects of the system on pixel output of a given pixel of a thermal camera. As

discussed in Section 3.4, the model takes data from prior time-steps as input.

In the condition monitoring context, the model output of a pixel intensity (pro-

portional to thermal output) serves as a baseline for how a piece of equipment

appears during normal operation. Given a sufficiently general model, when the

observed pixel output diverges from the model output, it can be taken as a signal

that the thermal output is not normal and therefore warrants investigation as a

potential fault-precursor.
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Table 3.4: Overhead line system output and inputs. * indicates variables unused
in the step-test experiment.

System output System inputs

Digital counts

Wind speed*
Current

Air temperature
Humidity

3.6 Datasets

This section presents the data collected over the course of the experiment. The

raw, unprocessed results of the two tests can be seen in Figure 3.9. The data

have been scaled for readability. The data variables are presented in Table 3.4.

3.7 Results and Analysis

3.7.1 System Step-response Experiment

This section presents the results from the step-test characterisation experiment.

The expectation is that the simple input patterns will allow the system and it’s

behaviour to be understood, while also providing a test-bed for creating a multi-

variate model based on this form of data.

3.7.1.1 Preliminary Analysis

A number of primary findings were made from initial analysis of the output data

set.

Firstly, it was found that the system output corresponding to the cable con-

ductors temperature exhibits a first-order step response, as would be expected

for a thermal system. This finding is significant to the work as it demonstrates

that fundamentally the camera can provide a valid indication of the heating and

cooling in a given scene over time.

The second observation made is that the wind measurement is noisy compared

to the other variables in the system. The fan runs at constant speed when enabled.

Two potential sources of the noisy signal have been identified. Firstly, the weather

station sensor is near to a wall, potentially causing turbulence in the air-flow as

it changes direction on impact with the wall. Secondly, it may be a function of

the internal configuration of the weather station. This measurement noise flags
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Figure 3.9: Data from; top: overhead lines ystem step-response test experiment;
bottom: overhead line realistic experiment. All series are scaled in order to fit
visibly on the same axis.
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the variable for consideration for smoothing post-processing before input into

learning algorithms in order to minimise the potential impact of the sensor noise

on the model output, however this is dependent on the performance of models

using the raw wind data. It is expected that a coarse indication that wind is

present would be sufficient.

Significantly, the impact of the wind on the system output can be observed.

When the fan is enabled in the latter half of the experiment run, the average

output digital count value peak is 84% than that in the first half of the experiment.

Furthermore the average output digital count value drops to a lower value in the

trough. This impact is as expected for the forced convection cooling effect [50]

on the OHLs and evidence of it in the output data validates the approach.

It can be observed that the ambient air temperature is relatively steady

throughout the course of the test, from 25.6 to 27.8 ◦C, a range of only 2.2 ◦C

From Figure 3.9, it is clear the ambient temperature changes correlate with the

hot and cool periods of the output, suggesting the electrically loaded OHLs are

contributing to the temperature of the laboratory. Referring to Figure 3.10, the

effects of the minor fluctuations in ambient temperature can be seen in the plot

for the background pixel. The fluctuation of 250 digital counts over the period of

operation is considered small enough to be negligible for this test. This plot also

highlights the self-heating effect [28] present in the FLIR Boson thermal camera:

as the camera heats up in the initial period of operation the output for a given

background pixel is impacted significantly. However referring to the ROI pixels in

the remaining two plots it is clear that the self-heating effect is minimal compared

to the observed changes in thermal output in the scene. The effects of heating

and cooling the cameras are further explored in Chapter 4. For the purposed

of the Overhead Line experiment the effects are treated as negligible due to the

relatively consistent ambient temperature. Figure 3.10 shows that the influence

of the wind can be clearly detected by the thermal camera. The wind influenced

pixel exhibits a clear difference in the maximum number of output digital counts,

along with a decreased rate of increase. With the fan enabled, the minimum

value at the end of the test is lower than the midpoint, without the fan enabled.

The non-wind-influenced pixel displays a closer similarity between the first and

second halves of the experiment. The initial rate of increase is similar between

the two halves. There is some difference in the manner in which the digital counts

settle. This is likely attributed to the change in temperature in different parts of
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Figure 3.10: System step response of three distinct pixels; top: background pixel
(outside of region of interest); middle: wind-influenced pixel, at opposite end to
power supply; bottom: non-wind-influenced pixel, close to power supply. Note x
axis is datetime, format ‘mm-dd hh’.



3.7. RESULTS AND ANALYSIS 57

Figure 3.11: Left: Thermal image of overhead lines pre-normalisation; Right:
Thermal image of overhead lines post-normalisation

the cable causing differences in effective resistance across the length of the cable.

Finally, it can be determined that the thermal time constant of the system

output is approximately 20 minutes. Determining this value allows the load pat-

terns for other experiment runs to be set at appropriate levels for detectable

output changes. Inspection of the thermal step-response of the system provides

some insight into how it may be modelled in terms of an electrical equivalent

circuit. It is clear the overhead lines have significant thermal capacity given the

time constant. Inspection of the normalised thermal images of the overhead lines

in Figures 3.11 and 3.12 demonstrates the low thermal resistance of the system.

This is confirmed in comparing the wind-influenced pixel and non-wind-influenced

pixel in Figure 3.10: the heating effects are immediately apparent in both plots.

While the thermal resistance is low, it’s effect can be witnessed in that the wind-

influenced pixel (nearest the power-supply) gets closer to steady-state than the

non-wind-influenced pixel in the first cycle of the test, when thee fan is disabled.

Though the ambient temperature remains stable during the course of the ex-

periments, it requires consideration as an environmental factor. In terms of the

equivalent electrical circuit, as the ambient temperature increases, it decreases the

thermal difference between the heated conductor and the environment, therefore

decreasing the thermal gradient.

As generating models is not the primary focus of the step-test experiment,

the analysis performed is brief, and is included in the Section 3.7.1.2.
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Figure 3.12: Left: Binary region of interest mask; Right: Thermal image of
overhead lines with binary mask applied

3.7.1.2 Analysis

The step-test experiment, as described, was intended to provide familiarity with

the experimental set-up, and to aid understanding of the system inputs and out-

puts. It also provided an opportunity to explore the modelling techniques on the

sensor data acquired from this type of experiment. The expectation was, given

that the dataset is so limited, the model performance would be poor, especially

if a model was created on a training/test split.

The test was a success. Insights were gained into the output of the non-

calibrated FLIR Boson thermal camera. Inspection of the camera output, both

in terms of a region-of-interest and in terms of individual pixel values over time,

revealed that the camera can be used to understand how the thermal output of

objects in a scene changes over time. It was revealed that there is a warm-up

period when the camera is initially powered-on, matching the findings in UAV

surveying literature [28], informing strategy for future testing. The effect of the

ambient temperature on the camera output, through changes in the cameras

own temperature, was revealed by inspecting pixels corresponding to areas of

the scene that are not actively heated. It was confirmed that the industrial fan

effectively cools the electrically loaded overhead-lines, and that this change in

thermal output is visible in the thermal camera output.

3.7.2 Realistic Load Experiment

This section presents the results of the experiment and load pattern detailed in

Section 3.5. Some initial manual data analysis is performed, providing insight into
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the structure of the data. Modelling results as obtained using the linear regression

method (detailed in Section3.4.1) are presented for a selected set of possible

hyper-parameters. Modelling results as obtained using the LSTM method are

then presented with discussion of the effects of various hyper-parameters.

3.7.2.1 Preliminary Analysis

On manual inspection the realistic load pattern dataset reveals features that

comprise a logical progression from the findings of the step test load pattern.

Firstly, it is confirmed that the primary driver of the output is the current

input. A visual correlation between the two variables is clear.

As in the step test load pattern experiment, the ambient air temperature

stays consistent for the period of the test, with a range of only 1.6 ◦C. This

provides assurance that there is only minimal environmental influence on the

thermal camera, and therefore that the output can be treated as approximately

stable throughout the test period. The minimal ambient temperature variation

is also a limitation of the dataset: the overhead line system does not experience

much environmental thermal fluctuation, which could feasibly impact the thermal

output of the loaded conductor. The effects of ambient temperature fluctuations

are further explored in Chapters 4 and 5.

Manual inspection confirms that a suitable range of operating conditions are

experienced over the course of the experiment. There are clear periods of high

electrical load while the fan is turned both on and off, and there are periods

of low electrical load while the fan is turned both on and off. As described in

Section 3.5, the experiment inputs were designed for this to be the case.

It is clear that there is a slight lag between the changes in the electrical

current through the system and the changes in the system output. This matches

the expectation for thermal systems.

It is confirmed that the system output matches intuition for this type of

thermal system. In particular, that the system output is lowest when the electrical

load is minimal and the wind fan is enabled: effectively when the heating effect

is minimal and the cooling effect is maximal.

Finally, it is noted that there is a visible hot-spot in the output images of

the system. This provides a potential opportunity for manipulation of the data

to determine whether it is possible to detect such hot spots using this data and

modelling method.
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Figure 3.13: Realistic Test, MAR Linear Regression Model. Data-points of the
test-set, prediction vs actual value scatter graph. The line indicating a prediction
equal to the actual value is shown on the diagonal.

3.7.2.2 Linear Regression Model

This section details the multivariate auto-regression linear regression models of

the realistic load pattern test of the overhead line experiment. The selected

configuration for the modelling is provided in Table 3.5. This configuration was

selected based on the approximate thermal time constant for the system and on

an investigative parameter sweep.

Table 3.5: Selected MAR linear regression configuration for overhead line, realistic
test

Parameter Configuration

Epochs 7000
Learning rate 0.002

Lags 20

Figure 3.17 shows the model output as formed by the linear regression model.

This result was obtained by including 20 lagged input values in the model. An

r2 score of 0.995 was obtained. While the score appears to suggest an accurate

model with low error, it is apparent from inspection of both the model output and

the residuals that the model fails to capture the influence of all inputs correctly.

From Figure 3.17 in conjunction with Figure 3.13 and Figure 3.14 it is clear

that the predicted output is consistently higher than the actual output until it

drops significantly (at approximately 1200 minutes), from when the predicted

output is lower than the actual output. Inspection of the residuals (Figures 3.13

and 3.15) of the test dataset provides some insight into the deficiencies of the
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Figure 3.14: Realistic Test, MAR Linear Regression Model. Residuals: real value
- predicted value for the time period forming the test-set portion of the dataset.
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Figure 3.15: Realistic Test, MAR Linear Regression Model. Histogram plot of
the residual values.
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Figure 3.16: Realistic Test, MAR Linear Regression Model. Actual output and
predicted (hypothesis) output for train-set portion of the dataset.
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Figure 3.17: Realistic Test, MAR Linear Regression Model. Actual output for
train-set, and actual and predicted (hypothesis) output for test-set portion of the
dataset.

model. The residuals are widely spread and do not follow a normal distribution,

exhibiting a clear positive skew, suggesting the model may be unsuitable for use

in a fault-detection context. The standard deviation of the residuals, as detailed

in Table 3.6 provide a further indicator of this. While there is apparent positive

bias of the model during the test portion of the dataset, when the model output is

plotted against the real output for the train portion of the data set (Figure 3.16)

it is clear there is no consistent bias in the model output.

Table 3.6: Standard Deviation of residuals, for MAR linear regression model of
the overhead line experiment, realistic test

Data Standard Deviation of residuals

Train-set 134
Test-set 207

Combined 152

3.7.2.3 LSTM Model

The hyper-parameter sweep process used in order to determine a suitable config-

uration of the LSTM recurrent neural network is detailed in Section 3.4.2. The

configuration selected following the hyper-parameter sweep is shown in Table 3.7.

This configuration results in loss scores that descend gradually, converging on

a common point. This is shown in Figure 3.18. The convergence to a common

value suggests that the model has not over-fit to the training dataset and is

generalised across both portions of the dataset. Bias regularisation and dropout

are used to help ensure the model does not over-fit.
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Table 3.7: Selected LSTM configuration for overhead line, realistic test
Parameter Configuration

LSTM Units 300
Lags 20

Dropout 50%
L1 Regularisation 0.01
L2 Regularisation 0.01

Inspecting the residuals of the model, as presented in Figures 3.18, 3.19 and

3.20 it is clear the model has captured the influence of the inputs on the system.

The residuals are centred around 0, and have a relatively narrow distribution.

The standard deviation of the distribution of the residuals for each portion of the

dataset is provided in Table 3.8. The low standard deviation here means that

predictions can be made using the generated model and that the predictions will

have relatively narrow 95% prediction intervals. The zero-mean residuals with a

relatively small spread suggest the model may be suitable for use in model-based

fault detection methods.

Performing visual inspection of the model output in Figure 3.21 confirms the

accuracy of the model. The plot on the left shows the model output and real

output values for the test portion of the dataset. The plot portrays the output of

the model as it is configured to generate it: using Very small deviations from the

real output can be seen but generally the model output tracks the real output

closely.

Due to the closeness of the model to the real output, and the narrow distri-

bution of the residuals, recursive one-step predictions can be made, as shown in

Figure 3.22. The process for making these predictions is detailed in Section 3.4.4.

The predictions made track the true system output closely, while being based on

previous predictions. This demonstrates that the model has applied appropriate

weight to the influence of especially the current, this being the main driver of the

output for this portion of the test. 95% prediction intervals are presented in this

plot, but but these were calculated as if the forecast was a naive forecast, and as

such are only useful as an indication of the spread of the residuals.

3.7.2.4 Analysis

The realistic test experiment was intended to create a long-term dataset, with

an electrical loading pattern that is representative of in-service equipment and
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Figure 3.18: Realistic Test, LSTM Model. Data-points of the test-set, prediction
vs actual value scatter graph. The line indicating a prediction equal to the actual
value is shown on the diagonal.
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Figure 3.19: Realistic Test, LSTM Model. Real value - predicted value for the
time period forming the test-set portion of the dataset.
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Figure 3.20: Realistic Test, LSTM Model. Histogram plot of the residual values.
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Figure 3.21: Realistic Test, LSTM Model. Actual output for train-set, and actual
and predicted (hypothesis) output for test-set portion of the dataset.
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Figure 3.22: Realistic Test, LSTM Model. Rolling predictions with 95% predic-
tion intervals.
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Table 3.8: Standard Deviation of residuals, for LSTM model of the overhead line
experiment, realistic test

Data Standard Deviation of residuals

Train 28.851
Test rate 43.352
Combined 34.405

more varied environmental conditions, and to apply the methods used in the

step-test experiment to model the system output. A dataset consisting of 8732

samples spanning 97 hours was created, with a load pattern based on national

electrical power usage, scaled for the cable’s operational current rating. A periodic

wind profile was applied, at a non-matching frequency to the load pattern. Only

limited variation of ambient temperature was possible in the laboratory in which

the experiment was housed.

Models were created based on the data using both multivariate auto-regression

and LSTM recurrent neural networks. The multivariate auto-regression model

appeared to have partially captured the relationship between the system inputs

and the output. Despite considerable configuration changes and adjustments

to the number of lagged input values considered, the best performing model

achieved is presented in Section 3.7.2.2. The training score suggests that the

model has converged well, with low (normalised) error, but significant issues exist

with regards to the distribution of the residuals. While the model output does

trace the observed output well, the bias and wide spread of the residuals render

the model unusable in the context of model-based fault detection.

The LSTM recurrent neural network results were very encouraging. As de-

scribed in Section 3.7.2.3, visually the model output tracks the observed output

very well, and inspection of the mean and distribution of the residuals reveal a

well-performing model. Furthermore, the training score for both the training-

set and the validation (test) set converge at similar rates and to similar values,

suggesting a model that is not under or over-fit. Other than a single anomalous

residual value, the spread of the residuals is narrow and centred close to zero.

While there are limitations to the study, as detailed in Section 3.8, the result

is determined to perform well enough to warrant further investigation into it’s

usage as a modelling tool in the context of time-series data of electrically loaded

substation equipment.
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3.8 Discussion

While the application of modelling techniques to data generated in the overhead

line experiment has been successful, there are limitations present. Firstly, the

output of the system, in terms of modelling, is defined as the average pixel value

of the region of interest. This has a dampening effect on the data: the average

pixel value does not rise and fall as much as, for example, the pixels with the most

thermal output. It also has limited functionality as a fault-detection output, as

the averaging process may mean that a potential hot spot only results in a small

increase in the average pixel value. A recommendation for further work, based

on this limitation, is that specific points of interest are used as outputs of the

model, providing a more granular impression of the system behaviour.

The modelling process was repeated multiple times in order to find an LSTM

configuration resulting in an accurate model. Accurate models were created dur-

ing this process, but the specific differences of the parameters are not recorded,

nor is average performance over multiple runs of the same configuration. This

limitation is accepted as the work is presented as a proof of concept for more

complex modelling context, however a thorough investigation would confirm the

performance of the utilised method.

The experiment is inherently two-dimensional, while environmental effects are

not. Due to the small size of the overhead line conductors, this does not present

a significant problem with this experiment, but if moving to larger equipment,

a single observation perspective may limit the ability to garner a general un-

derstanding of the impact of current loading and environmental effects. This is

addressed with additional sensors configured in a novel manner in Chapter 4.

The experiment only provides limited environmental variation. While it is

useful to prove that the effect of the wind can be modelled, there are a multitude

of environmental factors which influence the output of thermal cameras and this

experiment does not explore these. It is recommended that future experiments

include more types of environmental variation, though it is accepted that this

can be difficult experimentally and furthermore presents potential problems when

using non-calibrated thermal cameras.

While the experiment is a proof of concept, there is value in performing ad-

ditional analysis on the dataset. Due to the fact that there is an area of high

impedance at the connection between the two conductors, there is an area of

localised heating present in the thermal images. Generating models based on
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areas of conductor exhibiting typical levels of heating, and utilising data from

the hottest area, treating is as ‘faulty’ data, and implementing model-based fault

detection using it, could be a valuable experiment in evaluating the utility of the

theme of the thesis.

It is noteworthy that, while the LSTM recurrent neural network produced

more accurate models than the linear regression method, the LSTM method is

highly non-linear, with multiple non-linear activation functions per LSTM unit in

the network. There is scope for improving the regression analysis by introducing

non-linear elements, while avoiding the inherent complexity, computational cost

and abstraction of a recurrent neural network.

Given that the experiment is controllable, an investigation into formal system

identification methods could provide value. This is not explored here as common

input stimulation used in system identification practice is not representative of

what may be experienced by in-service substations, and the opportunity to stim-

ulate assets in substations with such load patterns are very rare. Nevertheless,

a comparison between these formal methods and the modelling techniques pre-

sented, in this context, would provide insight into the LSTM and multivariate

auto-regression methods performance, and provide a useful benchmark. Fur-

thermore, rigorous system identification methods would allow the influence of

individual inputs to be extracted from the model, which would be valuable to

the project sponsor. It is not trivial to determine how well a system identifica-

tion process completed in a laboratory environment would translate to in-service

equipment, however.

3.9 Summary

In this chapter, initial findings regarding the output of the selected experiment

sensors are presented. It is confirmed that the output of the non-calibrated FLIR

Boson thermal camera provides a high-resolution indication of the heating effects

of electrical loading on genuine power equipment, by grouping subsequent images

into a set and treating pixels as time-series. It is found that the movement of air

as caused by a large industrial fan in a laboratory environment can be measured

by a Vaisala WXT520 weather station sensor array, and that the cooling effect

this wind has on the electrically loaded conductors can be detected by inspection

of pixels corresponding to conductor at which the fan is pointed.
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It is found that the output of the thermal system, defined as an average pixel

value (in units of digital counts of thermal flux) can be modelled using multivari-

ate linear regression and LSTM recurrent neural network methods. A long-term

pseudo-realistic dataset was captured and is presented in order to facilitate this

finding. The LSTM method was found to consistently outperform the multi-

variate auto-regression method, and provided indications that the model output

could be suitable for use in a fault-detection context.

The chapter presents data, equipment and sensors designed to emulate a long-

term thermal and environmental monitoring system envisioned in a substation,

observing a simple, electrically-loaded conductor. It advocates for the use of

such long-term monitoring by indicating that good time-series models can be

created from the multi-variate data, and that these models include the impact

of a simplified set of environmental factors. This contributes towards addressing

some general limitations of condition monitoring using thermal cameras, reduc-

ing environmentally caused false-negatives and providing indications of potential

developing faults. This chapter contributes a development of the work presented

by Bortoni et. al. in replicating the time-series analysis approach to thermal con-

dition monitoring of substation power equipment, using LSTM recurrent neural

network techniques and low-cost sensors in the laboratory environment.



Chapter 4

Modelling of a Pair of Cable

Sealing Ends

4.1 Introduction

This chapter presents a development of the experiment and modelling techniques

detailed in Chapter 3, using large and comparatively complex cable terminations

observed by multiple thermal cameras. The experiment and it’s justification are

detailed in Section 4.2, with information about how the methodology differs from

that presented in Chapter 3. Two datasets are presented in Section 4.3, compris-

ing a system step-response experiment, and a long-term 11 day long experiment

utilising a realistic load pattern and pseudo-random wind-pattern. Section 4.4

contains preliminary analysis and exploratory LSTM-based modelling of the sys-

tem step-response experiment, while Section 4.5 contains preliminary analysis

and LSTM modelling of the realistic 11 day experiment. Analysis and discussion

are presented in Section 4.5.3.

The aim of this chapter is to prove that the methods presented in Chapter 3

are applicable to more sophisticated equipment that may be found in a substa-

tion environment, and that the methods are capable of modelling outputs under

the influence of more input variables, namely the camera temperature and the

direction of any wind.

70
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4.1.1 Context

The application context is the same as previously presented in the Chapter 3,

that is, to use these machine learning methods to create a multi-variate model of

the thermal camera output under a range of normal operating conditions. The

intention is that these models, if they prove to perform suitably, could be used

to implement model-based fault detection methods, as described in Chapter 3,

Section 4.2.3. Successful models created in this way will capture the effects of

the changes in the environment in the laboratory, the electrical loading present

in the assets, and the effects of the direct environmental influence (the wind).

The successful creation of models from laboratory data could be assumed to be

a suitable proof of concept, providing a solid basis for a potential data-collection

scheme to be implemented in an operational outdoor substation. An installation

in a substation environment would expose the system to the true range of envi-

ronmental conditions experienced by equipment, and would be the ultimate test

of whether the thermal output of equipment could be modelled by the proposed

methods.

Due to the performance of the LSTM recurrent neural network compared

to the multi-variate auto-regression in Chapter 3, only the LSTM method is

considered here.

4.1.1.1 Description of Cable Sealing End Function

This section provides a brief description of cable sealing ends, for context through-

out the thesis.

Ye et al. [66] provide a review of HVDC cable terminations for reference. A

cable sealing end is a form of high voltage termination, typically used when a

high voltage underground cable requires connection to an asset above ground,

such as a substation. Underground high voltage cables typically comprise of a

conductor core, surrounded by an insulator and covered by an earthed sheath.

When connecting such a cable to external assets, the sheath is required to be

stripped back from the cable, leaving only the conductor. Cable sealing ends

house the point at which the cable sheath and insulation is stripped back from

the cable assembly. The fully housed cable enters the bottom of the cable sealing

end, and only electrical conductor emerges from the top.

Due to the potential difference between the conductor core, and the earthed

sheath, there is an inherent area of high electric field between the sheath and
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Figure 4.1: A 66 kV cable sealing end with and without outer sheath.

conductor. When the sheath is stripped from the conductor it is housed in a

rubber cone, in order to minimise the sharp edges and resultant areas of very

high field. This assembly is commonly housed in a cylinder filled with insulating

oil. The cylinder is sealed from the environment, has polymer, porcelain or epoxy

insulating sheds on its surface and is topped with a corona shield. Images of a

cable sealing end with and without its outer sheath are displayed in Figure 4.1

The cable sealing ends utilised in the course of the work presented here are

66 kV cable terminations, with polymer sheds.

4.1.2 Justification

One of the aims of this chapter is to extend the methodology presented in the

previous chapter to more sophisticated equipment. This should prove the utility

of the method as a general tool for predictive maintenance in substations. It

would prove that the modelling techniques work on both simple and complicated

equipment. The optical coverage of the cable-sealing ends from 360◦ in the hori-

zontal plane, provides an opportunity to investigate the capability of the adopted
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Figure 4.2: A cable-sealing end in the B23 high-voltage laboratory, as seen from
the approximate perspective of camera 8.

methods to model a more complete thermal profile of a device. Additionally, it

provides an opportunity to stimulate a spatially varied thermal profile on the

cable sealing end, by blowing air across it at different angles. This comprises

a suitable increase in complexity, between that of the overhead line experiment,

and data from an in-service experiment, further proving the utility of the method.

Significantly, a cable-sealing end is representative of what is commonly found

in substation environments: a high-voltage conductor housed in a substantial

amount of insulating material, with a connection to a different type of conduc-

tor. The insulating material is designed as an electrical insulator, but provides

significant thermal insulation too. This means that any internal thermal changes

will take longer to present on the surface of the equipment, than if the whole unit

were an electrical conductor, as in the case of the overhead line. This may con-

tribute towards a thermal system which is more difficult to model. The insulator

in the case of the model of CSE used in this experiment (see Figure 4.2) consists

of the oil contained within the CSE, the thick rubber sheds on the exterior and

within the lower half of the CSE, the sheath housing around the cable. A further

factor that contributes to the CSE representing a progression from the Overhead

Line experiment, is the external geometry of the units. The insulating sheds are

arranged in spiralling helix shapes down the length of the CSE cylinder, alternat-

ing between two diameters. The CSE is capped by metallic units, consisting of

a core, bolts, and supporting fins. Both this cylindrical geometry, with extended

sheds, and the simpler conductor geometry, are typical of what may be found in

substations. The added complexity of the CSE increases the difficulty of selecting

points of interest, introduces a greater variation in angles between the thermal
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camera and the infrared emitting surface and that any effects of external heating

or cooling are less trivial to quantify. The multiple materials the CSE consists

of means there are varying emissivities within the thermal imaging field-of-view,

potentially contributing to a less physically representative initial thermal image,

a further consideration.

The CSE experiment is mounted on a large scaffold, meaning it is restricted to

the largest high-voltage laboratory in the university, Laboratory B23. B23 houses

the large high-voltage equipment, such as a DC test-set and an impulse generator.

The size of these pieces of equipment necessitates a high ceiling, meaning the

laboratory contains a large volume of air and therefore is costly to heat. For

this reason, the laboratory climate control is configured to only activate when

the temperature falls below a threshold, above which value the temperature may

fluctuate freely, warming during the day and cooling at night. Additionally, there

is a large cargo door, which is used for deliveries, contributing further to the

thermal volatility of the laboratory space. This volatility, while not equivalent

to real-world outdoor environmental conditions, is still added complexity when

compared to the stable air temperature of the overhead line experiment.

In order to manage the additional complexity of the different environment and

equipment, the FLIR Boson cameras have been supplemented with additional

equipment. The approach was to quantify and dampen the environmental effects

on the cameras. A temperature sensor was affixed to the outer body of the camera

and interfaced with the controller Raspberry Pi of that particular camera. This

camera and sensor assembly was then enclosed in a polystyrene container, with an

opening for the lens, to insulate it. This allowed the temperature of the camera

body to be measured and recorded, while protecting the camera units from any

extreme thermal gradients present in the laboratory.

The additional complexities listed in this section constitute justification for a

second experiment, as it iterates on the work completed modelling the overhead

line, making it more representative of in-service substation equipment monitoring.

Complementing this work, some additional analysis regarding the heating

profiles of cable-sealing end assets over time and space has been completed and

is presented in Chapter 5.
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4.2 Experiment Design and Data Collection

This section describes the specification, design and implementation of the exper-

imental setup used to acquire data for the purposes of Chapters 4 and 5.

4.2.1 Context

The specification of a second experimental setup was a result of the success of

modelling work completed on data acquired using the overhead line experiment.

The requirements from the overhead experiment remained:

1. Generate time-series data

2. Comprise of genuine power-engineering equipment

3. Utilise electrical loading representative of in-service equipment

4. Comprise some form of measurable environmental variation

5. Record a sequence of thermal images

6. Record environmental data

7. Be autonomous and safe, for long-term usage

The following requirements were added, in order to comprise a substantial devel-

opment of the findings from the overhead experiment and form a contribution to

the field. The experiment must:

8. Thermally observe equipment from multiple perspectives

9. Comprise of power-engineering equipment more thermally complex than a

simple conductor

10. Comprise of power-engineering equipment with more complex physical ge-

ometry

11. Include a form a directional environmental variation

A partnership between the University of Manchester and National Grid, the

project sponsor, was beginning an investigation into cable-sealing ends during

the period in which the second experiment was being specified. A National Grid
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Figure 4.3: Conceptual diagram of the data collection and modelling system. On
the left is the physical experiment, which is perceived by sensors in the centre,
which contribute data to the model, which produces digital count pixel value
outputs. Eight thermal cameras are shown, with a model for each.

Electricity Transmission (NGET) Innovation Award was applied for and granted,

securing £50,000 of funding to support the development of this experiment with

equipment and expertise.

A diagram depicting the conceptual layout of the system is shown in Fig-

ure 4.3. Note that the scenario is fundamentally the same as that presented in

Chapter 3, other than there being multiple thermal cameras and corresponding

models for the pixels of these cameras. This development in the concept provides

a foundation for understanding the differences in environmental effects in space

around a substation asset.

4.2.2 Experiment Design

As part of the National Grid and University of Manchester investigation, the

high-voltage laboratories at the university housed a large scaffold assembly con-

sisting of two cable sealing ends in a current loop. The two CSEs were connected

at the bottom by a length of sheathed high voltage conductor, and at the top by

a section of aluminium bus-bar. The current loop was capable of being electri-

cally loaded by a 0 - 3000 A cable loading transformer. The primary coil of the

loading transformer was connected to a motorised variac (variable transformer),

allowing the current through the current loop to be controlled. Electronic control

of the motorised variac was possible using digital logic inputs. The assembly was

positioned in a corner of the laboratory, with the CSE nearest the corner denoted

as CSE1, and the other CSE2.
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Figure 4.4: five wind fan positions, relative to the cable sealing end experiment
rig

An experiment was devised which met the requirements detailed in Sec-

tion 4.2.1, while utilising the National Grid cable sealing end energising assembly.

The Vaisala WXT 520 weather station, used in the overhead line experiment,

was again utilised here, positioned near cable-sealing end 1. The larger labo-

ratory where the CSE assembly was housed was found to have a more volatile

environmental temperature than the small lab where the overhead line experi-

ment was housed, serving to provide a desired aspect of environmental variation.

The large wind-fan used in the overhead line experiment was re-purposed for use

in this experiment. In order that the wind could be effectively measured, the fan

was aimed at only one of the cable sealing ends, near the position of the weather

station. For the purposes of this experiment, the fan speed was also varied. The

five wind-fan positions used during the course of the experiment are shown in

Figure 4.4 in a top-down diagram view of the experiment. The fan is typically

mounted low, tilted slightly upwards towards the CSE body. Presence of air

disturbances was physically checked for each position.

A set of eight FLIR Boson thermal camera cores with 4.3mm lenses were
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Figure 4.5: The full cable sealing end experimental rig

acquired, allowing a 50◦ horizontal field of view. This configuration allows full

vertical coverage of the 1.3 m tall CSE at a 1.4 m clearance. Wooden arm-mounts

for the cameras were designed and manufactured, positioning the cameras around

the cable sealing ends at 90◦ intervals. The length of the arms and lens choice

were chosen in order that the entire length of the cable sealing end appear in the

frame of each of the cameras. Each camera was specified with it’s own Rasberry

Pi host, in order to avoid issues synchronously capturing images from eight USB

thermal cameras on single low-power SBC. The Raspberry Pis were powered and

networked using POE, allowing a single cable connection to each. Software was

written such that broadcast messages were sent on the Ethernet network request-

ing an image capture event when required. The Raspberry Pi internal clocks were

synchronised to a ‘parent’ Raspberry Pi device housed on a base station using

network-time-protocol. The parent Raspberry Pi device controlled the exper-

iment, triggering image and environmental data capture events, and controlling

the input current and wind. The Raspberry Pi controlled current by sending a

target set-point to a micro-controller capable of controlling the motorised variac

control relays. It received current feedback utilising a FLUKE i2000 current
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Figure 4.6: Top left: image of a camera supporting arm, with a thermal camera
visible at the top; top right: image of the top conducting bus-bar spanning to the
second CSE; bottom: image showing CSE and two of the four camera supporting
arms.
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Figure 4.7: Stitched thermal images, with camera labels

clamp, which output it’s values to a serial-enabled digital multimeter, which then

output the values to the Raspberry Pi.

Safety measures included: software-based over-current triggers, a high-current

relay between the variac and cable loading transformer, and temperature moni-

toring with thermocouples.

Images of the described experimental setup can be seen in Figure 4.5 and

Figure 4.6.

Output images, arranged into a grid with corresponding camera labels, are

depicted in Figure 4.7.

Various experiments were run on the setup, including two primary research

experiments. The first of these was a 40 hour step test. During this experiment

current was stepped to 300 A, and maintained at that level for 40 hours, with data

samples every minute. The second primary research test was a realistic loading

test. During this experiment the cable sealing ends were loaded with a realistic

load pattern based on national energy usage, scaled to fit within the operating

current range of the assets, for 11 days. The load pattern was simplified for the

weekend periods, minimising changes of current using the motorised variac during

extended periods during which the laboratory was un-occupied. During various

periods of the experiment the wind-fan was enabled and disabled. Four wind

positions were selected and used, and the fan speed level was selected at random.
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Table 4.1: Point of interest pixel location reference. All pixels are listed in
(row,column) format.

CSE Camera POI Pixel CSE Camera POI Pixel

1 1 1 (021,127) 2 5 1 (368,123)
1 1 2 (058,128) 2 5 2 (405,120)
1 1 3 (107,126) 2 5 3 (449,122)
1 1 4 (167,128) 2 5 4 (514,124)
1 1 5 (238,128) 2 5 5 (571,126)
1 1 6 (265,130) 2 5 6 (609,133)
1 2 1 (041,371) 2 6 1 (349,378)
1 2 2 (078,376) 2 6 2 (384,385)
1 2 3 (123,378) 2 6 3 (433,383)
1 2 4 (197,380) 2 6 4 (491,386)
1 2 5 (254,382) 2 6 5 (564,390)
1 2 6 (285,387) 2 6 6 (591,394)
1 3 1 (055,630) 2 7 1 (380,633)
1 3 2 (092,630) 2 7 2 (415,635)
1 3 3 (145,636) 2 7 3 (460,636)
1 3 4 (211,635) 2 7 4 (533,637)
1 3 5 (282,640) 2 7 5 (591,639)
1 3 6 (300,643) 2 7 6 (623,641)
1 4 1 (042,918) 2 8 1 (367,890)
1 4 2 (083,916) 2 8 2 (402,888)
1 4 3 (129,918) 2 8 3 (452,891)
1 4 4 (195,920) 2 8 4 (518,886)
1 4 5 (253,924) 2 8 5 (576,893)
1 4 6 (290,927) 2 8 6 (608,897)

These two primary research experiment runs are further detailed in Chapter 4.

Points of interest were selected for each camera perspective, corresponding to

condition monitoring strategy (see Chapter 5). The points of interest selected

are listed in Table 4.1 and depicted in Figure 4.8.

4.2.2.1 Thermal Camera

In order to minimise the potential negative effects on camera output due to ther-

mal transients [56], the impact of changes in temperature were both minimised

and quantified. In order to achieve this, external temperature sensors were fit-

ted to the outer casing of the camera body. The camera and sensor assembly

was then placed inside an insulated enclosure, with an opening for the optical
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Figure 4.8: Stitched thermal images, with POI markers and POI labels on Camera
1 perspective

lens, intended to insulate the camera from thermal transients. The camera in the

enclosure, with temperature sensor attached is depicted in Figure 4.9.

The temperature sensor used for this was the DS18B20. The sensor operates

on a 1-wire interface, allowing easy integration into the Raspberry Pi based system

(see Sections 3.5 and 4.2). The sensor can measure temperatures from -10 ◦C to

85 ◦C with ±0.5 ◦C accuracy (and extended temperature range at lower accuracy)

with 12-bit digital resolution.

It is notable that there is a difference in the smoothness of the output of the

Boson used in Chapter 3 and the Bosons used in Chapters 4 and 5. FLIR were

contacted regarding this difference, and provided assurances that the difference

was due to updated flat-field correction provision in the firmware of the later

models used in Chapters 4 and 5.

Thermal cameras are susceptible to environmental conditions. As previously

mentioned, a number of factors are acknowledged to influence perceived temper-

ature of an observed object. The Unmanned Aircraft Systems community has

studied this extensively, as the environmental factors influencing thermal images

are exaggerated somewhat when the camera is subject to wind-speed from moving

aircraft and inevitably high view-distance (due to an effort to maximise coverage

per flight and battery charge).
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Figure 4.9: Left: FLIR Boson in custom mount enclosed in insulated case; right:
external temperature sensor attached to camera housing inside insulated case

Kelly et al. [28] published a comprehensive paper on considerations for using

a camera similar to the FLIR Boson chosen for this work. A summary of the

recommendations made relevant to this work is:

• allow 15 minutes of stabilisation time;

• enable frequent NUC;

• shelter camera from wind;

• correct for temperature drift post-flight.

The listed points all pertain to controlling and correcting for external temper-

ature influence on the thermal camera. This is applicable to the CSE laboratory

tests.

4.2.2.2 Current

A current measurement device was required for the CSE experiment, as, unlike

the OHL experiment, the cable conductor was loaded by a series of transformers

with no direct measurement functionality. A Fluke i2000 current measurement

clamp was used to take the initial measurement. The i2000 output a voltage

waveform at an amplitude of 1mV/A. This was output directly to a digital

multimeter with serial communication functionality, allowing the amplitude of

the voltage waveform to be transmitted to the controller computer, where the

value could be converted back to Amps.
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4.2.3 Modelling and Fault Detection

One aim of the project is to investigate the viability for these methods of inspec-

tion for modelling thermal output. This means the effectiveness of the model

needs to be evaluated. There are three metrics that can be used to evaluate the

initial model skill: r2 score, Root Mean-Squared Error (RMSE) and mean abso-

lute error. These provide a method of evaluating whether the model is a good

fit, and whether the model is overtrained for the training-set or is a more general

model. They provide little insight into whether the dynamics of the system have

been captured by the model. To evaluate the capability of the model to cap-

ture the dynamics of the system, methods from classical regression analysis are

utilised. The residuals of the model are calculated. The standard deviation of the

residuals is calculated. If the standard deviation of the residuals is not centred

around 0, the model is effectively discarded - the model created by the network

has a DC gain or bias and as such has skewed residuals. If the standard deviation

of the residuals is roughly centred around zero and has approximately ’normal’

distribution, the model is accepted. The creation of models to characterise the

system is deemed to be useful in the context of fault detection in control theory

as presented by Hwang et al [20]. The concept presented is that a healthy system

should be characterised by a model with zero-mean residuals. Following this,

fault detection can be achieved by ‘using statistical methods to test if the resid-

uals have significantly deviated from zero’. While implementation of this type of

fault detection is out of the scope of the project, it forms a significant part of the

justification for the attempts to generate models of the power equipment thermal

output.

4.3 Datasets

This section presents the datasets used for the modelling discussed in this chapter,

with pertinent features highlighted and discussed. The sensors and variables

used for the modelling process described in this chapter are presented in detail

in Chapter 3. The variables selected for the modelling process are presented in

Table 4.2.
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Table 4.2: CSE Experiment system output and inputs. * indicates variables
unused in the step-test experiment.

System output System inputs

Digital counts

Wind speed*
Wind direction*

Current
Air temperature

Humidity
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Figure 4.10: Cable sealing end characterisation step-test response experiment,
input data time series. Note x-axis labels are in the datetime format ‘mm-dd hh’.
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Figure 4.11: Cable sealing end characterisation step-test response experiment,
output data time series. Note x-axis labels are in the datetime format ‘mm-dd
hh’.
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4.3.1 System Step-response Test

Figures 4.10 and 4.11 show the inputs and outputs of the characterisation step-

test respectively.

The test runs over a 36 hour period, allowing time for the current-driven out-

put to settle and to observe the effects of the daily fluctuations in laboratory

temperature. This fluctuation is clear for points of interest 3, 4, 5 and 6. In-

specting the system inputs in Figure 4.10, it is clear the apparent thermal output

responds inversely to the camera core temperature, which is fluctuating due to the

change in ambient temperature. This matches the expectation, on the principle

of the camera measuring incident thermal flux. Points of interest 1 and 2 respond

differently to 3-6. Point of interest 1, corresponding to the bus-bar clamp, heats

a significant amount more than the rest of the cable-sealing end assembly. The

greater magnitude of the heating effect means that the fluctuations in output

due to momentary drops in input current are more visible than those of other

points of interest. The impact of the air temperature changes is present, a peak

following ’08-12 04:00’ matches the peak of the other points of interest, with the

exception of point of interest 2. Point of interest 2 corresponds to the rubber bulb

surrounding the conductor as it emerges from the top of the cable sealing end.

The response of this point in unique within the set of 6 points of interest. After

the initial period of current-driven heating, the apparent thermal output drops,

while the others continue to rise. Potential causes of this discrepancy include: a

different thermal time-constant of the insulator, the difference in emissivity due

to the colour of the rubber. The data still shows a similar fluctuation, with a

magnitude of approximately 250 digital counts, but in this case it peaks when

the other points of interest trough. The different time-constant could cause the

different two heating effects of the input current and the lab temperature to in-

teract, causing the change in output. Wind is not included in the descriptive

figures, as it was not used for this test.

4.3.2 Long Realistic Test

Figure 4.13 presents the output values of the CSE points of interest as observed

from the perspective of thermal camera 1. Table 4.3 presents the minimum and

maximum numerical values of digital counts for each point of interest during the

experiment. Referring to Figures 4.12 and 4.13, initial exploratory analysis can be
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Table 4.3: Minimum and maximum numerical values for output ‘Digital Count’
of each point of interest during the cable sealing end realistic experiment.

Cam. POI min max range Cam. POI min max range

1 1 20448 25084 4636 5 1 20422 21614 1193
1 2 20463 22006 1543 5 2 20419 20898 479
1 3 20445 22120 1676 5 3 20410 21050 640
1 4 20297 21391 1094 5 4 20381 20917 536
1 5 20217 21208 991 5 5 20332 20830 498
1 6 20216 21191 975 5 6 20338 20813 475
2 1 20705 24729 4024 6 1 20918 21927 1008
2 2 20764 21847 1084 6 2 20930 21372 442
2 3 20714 22054 1341 6 3 20914 21491 577
2 4 20677 21250 573 6 4 20887 21342 455
2 5 20631 21183 552 6 5 20870 21235 365
2 6 20655 21182 527 6 6 20913 21225 313
3 1 21085 23736 2652 7 1 20653 21235 582
3 2 21127 22086 959 7 2 20607 21062 455
3 3 21042 22217 1175 7 3 20554 21068 514
3 4 20999 21467 468 7 4 20506 20853 348
3 5 20964 21393 429 7 5 20475 20724 249
3 6 21019 21421 403 7 6 20458 20801 343
4 1 20331 23257 2926 8 1 20654 21356 701
4 2 20284 21817 1534 8 2 20656 21015 359
4 3 20258 21802 1544 8 3 20551 21122 572
4 4 20200 21031 831 8 4 20513 20939 426
4 5 20135 20926 791 8 5 20497 20857 360
4 6 20127 20917 790 8 6 20499 20837 338

completed. It is clear from inspection that there are two primary output drivers.

Firstly, it can be seen that current effects the thermal output. This can be most

clearly seen for the pixels corresponding to points of interest high up on the cable

sealing end unit, or on the bare conductor of the busbar clamp. The current

influence is present on the lower pixels, but to a lesser extent. The second of the

two main output drivers is the wind. The impact of the wind on the output is

less intuitive than that of the current, because there are two effects of the wind.

Firstly, there is a cooling effect on the cable sealing end. This is a desirable facet

of the experiment, as it provides a real-world environmental effect to model with

the data.

The second, more significant effect of the wind, is the effect it has on the
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Figure 4.12: Cable sealing end realistic experiment; input data time series. Note
x-axis labels are in the date format ‘yyyy-mm-dd’.
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Figure 4.13: Cable sealing end realistic experiment; output data time series. For
clarity, the 6 pixels are shown in two graphs. Note x-axis labels are in the date
format ‘yyyy-mm-dd’.
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camera temperatures. ’Camera 1’ is mounted to monitor ’CSE 1’ and due to being

near to the CSE, is in the path of the cooling effect of the wind. As described in

Section 3.2, the camera cores are sensitive to their temperature. In Figure 4.13,

particularly the lower axes, some periods of relatively high output fluctuation

are present. With reference to Figure 4.12 it is clear that the fluctuation is a

result of the wind input. The camera temperature These fluctuations in output

are present on the upper plot, corresponding to the higher points of interest too,

however due to the larger range in the axes, they appear less prevalent. It is

clear the wind has a significant impact on the output, and while the net impact

is not representative of what a calibrated camera would present in a real-world

situation, there remains merit in modelling the influence as it allows the feasibility

of using this type of un-calibrated camera to be evaluated. Furthermore it still

provides a temporally aligned input-output relationship to model.

The final observation is that the heating effect is relatively small, especially

when compared with the overhead line experiments in Chapter 3 The outputs

from this camera are typical of what is seen from each of the camera perspectives,

though due to the positioning of the wind fan at different points in the test, the

wind impact on the output at each perspective differs slightly. The output from

Cameras 5-8 is not impacted by the wind as the fan was pointed exclusively as

CSE1: it was decided to focus the wind-influence study on a single cable sealing

end.

4.4 System Step-response Experiment

4.4.1 Preliminary Analysis

The manual analysis for the step-test on the cable sealing end experiment is

intended to confirm that the system behaves as expected under electrical load

and establish an understanding of the influencing factors when considering data

from multiple un-calibrated thermal cameras. Figure 4.11 is a plot of a number

of different pixels from the same perspective, Figures 4.14 and 4.15 are plots of a

matching points of interest viewed from different camera perspectives.

On inspection of Figure 4.11, it can be determined that there is an approx-

imate first order step response to the input current, as expected from thermal

behaviour. The time constant varies between the points of interest, with notable
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Figure 4.14: POI3 for the duration of the step-response test, from camera per-
spectives 1, 2, 3 and 4. Note x-axis labels are in the datetime format ‘mm-dd
hh’.
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Figure 4.15: POI4 for the duration of the step-response test, from camera per-
spectives 1, 2, 3 and 4. Note x-axis labels are in the datetime format ‘mm-dd
hh’.
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differences between the points of interest corresponding to loaded conductors

(POI1) and those corresponding to components insulated from the conductor

(POI2, 3, 4, 5, 6). Clearly, POI1 displays the largest change in output, due to

the busbar:cable-sealing end being an area of high resistance relative to the rest of

the conductor loop. Notably, POI1 is one of only two metallic points of interest,

the other being the base, POI6. These two points of interest differ in that POI1

is the electrical conductor, while POI6 is part of the insulated cable-sealing end

shell.

POIs 3,4 and 5 represent three points down the length of the rubber sheds

of the cable-sealing end body. There is a temperature gradient present on the

CSE, with the hottest portion of the unit corresponding to the top, getting cooler

down the length. This is confirmed inspecting image data from the test, as per

Figure 4.8.

POI 2 corresponds to the top bulb of the CSE, a rubber dome surrounding

the conductor protruding from the top. This is notable for it’s similar material

to POI2 but darker colour, potentially causing a difference in emissivity and

therefore apparent thermal output.

While the digital count output corresponding to the overhead line experiment

was smooth, displaying little in the way of high frequency fluctuations, these are

present in the cable-sealing end data output. The FLIR Boson camera module

used for the overhead line experiment was purchased 18 months prior to those used

in the cable sealing end experiment. As such, they were shipped with different

firmware versions. The fluctuations occur at a frequency of 0.2 Hz, matching the

maximum period between ‘Flat Field Corrections’ of the FLIR Boson.

Largely the plots match well between perspectives. There is some bias inherent

in the cameras, which is expected for un-calibrated thermal cameras (this will be

explored more in Chapter 5). This manifests itself as a steady state difference in

the plots. There are some instances where there is a fluctuation in the output of

a subset of all of the cameras. It is expected that these occur due to localised

environmental conditions in the laboratory. For example, if the cargo door of the

laboratory is opened for a period, cameras closest to the door may experience

a thermal transient. The higher frequency fluctuations are present in every one

of the camera perspectives, but the extent of the fluctuations varies between

cameras.
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Table 4.4: Hyper-parameter selection for cable sealing end step-response test
Hyper-parameter Value

L1 Regularisation 0.01
L2 Regularisation 0.01

Dropout Layer Rate 20%
Shuffle True

Batch size 1000
Train:test ratio 85:15

No. observations 2396

4.4.2 LSTM Analysis

This section presents initial attempts made to model the data from CSE exper-

iments. The intention is to prove that the LSTM time-series modelling method

is capable of modelling the pixel output in a similar manner to that of the over-

head line experiments. The significance of this is that, as described in Section

4.1 the cable sealing end is a more sophisticated system in a more complex envi-

ronment. Proving that the method can model the pixel output of a simple test,

given these factors, proves the concept, preceding attempts to model a longer,

more complicated dataset.

In order to do this, two points of interest were selected. The first is POI1,

from the perspective of Camera1, as it corresponds to a part of the test object

which is a simple metallic conductor. This is effectively the point of the cable-

sealing end system that is most similar to the simple conductor of the overhead

line experiment, while being a legitimate point of interest for inspection engineers.

The second point of interest selected is POI3 from the same camera perspective.

This point corresponds to the upper end of the sheds on the cable sealing end

body, which has a higher thermal mass than a simple conductor and more complex

physical geometry.

The results pertaining to POI1 are presented in Figures 4.16, 4.17, 4.18 and 4.19

and those pertaining to POI3 are presented in Figures 4.20, 4.21, 4.22 and Fig-

ure 4.23. The hyper-parameter configuration for these tests is consistent between

the two, and is presented in Table 4.4. Plots of the input and output data are

presented in Figures 4.10 and 4.11.

On inspection of the results for POI1, it can be determined that the modelling

was successful. The model output (hypothesis) closely tracks the real output
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Figure 4.16: CSE, POI1, step-response test, LSTM model. Training score plotted
for training time of 300 epochs, for both test-set and train-set data.
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Figure 4.17: CSE, POI1, step-response test, LSTM model. Real value - predicted
value for the time period forming the test-set portion of the dataset.
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Figure 4.18: CSE, POI1, step-response test, LSTM model. Data-points of the
test-set, prediction vs actual value scatter graph.
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Figure 4.19: CSE, POI1, step-response test, LSTM model. Training score plotted
for training time of 300 epochs, for both test-set and train-set data.

throughout the time-series. Both the high and low frequency fluctuations of the

output signal are able to be modelled. The high frequency fluctuation represents

the response of the output to the changes in the input current, causing the most

significant visible changes in the output signal. The low frequency fluctuation

shows the response of the output to the changes in air temperature in the lab

environment. This can be seen clearly at the trough in the output signal at ’08-12

16:00’ and the peak at ’08-13 04:00’. The laboratory cools down in the evening,

causing a drop in the temperature of the camera and a corresponding increase

in the flux incident on the camera. Figure 4.19 shows that the model is not

overfit to the training dataset, as the costs fall at similar rates, settling at similar

values. Inspection of the plots before and after ’08-13 02:00’ confirms that the

model performs similarly both before and after the train/test dataset split. This

is particularly good in the context of a small dataset like this one, where it may

be expected that there are not enough data to allow the model to generalise well.

The residuals of the model do imply that with adjustments to the method, the

model could be improved, however for the purposes of proving that the method

can successfully model the output of the cable-sealing end experiment, the model

is deemed sufficient.

The results of the modelling of POI3 are similarly successful. The timeseries

plot of the output is similar in terms of the high-frequency response. There is a

large first-order step response at the beginning of the test, with some fluctuations

as the current controller adjusts the input during the test. However, the low-

frequency response differs from the response shown by POI1. At ’08-12 16:00’

there is a peak in the data, while in the POI1 test this was a trough. The

cause of this discrepancy between the two tests is suggested to be the increased
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Figure 4.20: CSE, POI3, step-response test, LSTM model. Training score plotted
for training time of 300 epochs, for both test-set and train-set data.
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Figure 4.21: CSE, POI3, step-response test, LSTM model. Real value - predicted
value for the time period forming the test-set portion of the dataset.
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Figure 4.22: CSE, POI3, step-response test, LSTM model. Data-points of the
test-set, prediction vs actual value scatter graph.
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Figure 4.23: CSE, POI3, step-response test, LSTM model. Training score plotted
for training time of 300 epochs, for both test-set and train-set data.

thermal mass of the cable-sealing end body increasing the time constant of the

system significantly, causing a delay in the presence of the heating effects of

the air temperature in the output. This observation affirms the assertion that

the cable-sealing end provides a more challenging system to model. Otherwise,

the LSTM modelling is successful, as in POI1, the model hypothesis output is

similar to the true output. Again, inspection of the cost scores suggests the

model is generalised across the entire dataset and that the residuals suggest there

are possible improvements that could be made to the model, but that these

improvements are out of scope for the experiment.

There are limitations to this shorter test dataset. Most prominently, that

there is no wind input to the system, meaning that the system response cannot be

observed. It is predicted that, since thermal imaging allows surface temperature

to be measured, and cooling by convection as in the case of wind primarily effects

the surface temperature, there will not be any unexpected effects detected at the

output. An improvement of the test would be if there were a significant drop

in the current, as in the first set of overhead line experiments. However, since

the current controller of the experimental rig is only able to coarsely control the

current, there are smaller scale drops in the input current present. The drops in

output pixels due to these smaller drops in current are observable, especially in

the more responsive case of POI1.

Note there are no attempts made to predict pixel outputs due to the fact that

this will be investigated as part of the larger realistic load pattern.
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Figure 4.24: CSE, realistic data set, POI3, realistic test. Output plots from
cameras 1, 2, 3 and 4.

4.5 Long Realistic Test

4.5.1 Preliminary Analysis

This section details the manual analysis performed in order to gain an under-

standing of the long realistic dataset. A more detailed analysis of both the cam-

era outputs and the investigation into the thermal output of the cable-sealing end

are located in Chapter 5.

Figure 4.25 shows a subset of pixel output time-series, from the four different

camera perspectives around CSE1. There are two inputs that primarily drive

the surface temperature of the imaged units: the current and the wind. The

current directly influences the pixel output, it heats the conductor through the

cable-sealing end, and this is visible on the unit surface. The wind influences the

output pixel values in two distinct ways. Firstly it has a convective cooling effect

on the surface of the objects in the field of view of the camera. Secondly, it has

the same convective cooling effect on the cameras positioned nearby the path of

the wind. The fact that these two influences occur at the same time may make it

difficult to separate the individual impact of each, however it is not anticipated

that this will cause additional difficulties when modelling the system.

On inspection of Figures 4.24 and 4.25, it is clear that the camera temperature

has a significant impact on the output. The temperature of camera 3 is most

stable for the duration of the test, and the corresponding output (pixel (211,635))

is the most stable of the four. Due to the fact that this relationship is frequently

experienced through the datasets and that the camera temperature is recorded,

it is anticipated that the machine learning method will succeed in modelling it. A
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Figure 4.25: CSE, realistic data set, POI3, realistic test. Camera temperatures
from cameras 1, 2, 3 and 4.

result of this analysis is to ensure that when models are created from data from

a particular camera, only the temperature data corresponding to that camera is

included as an input, while temperatures from other cameras are disregarded.

This should assist in the training of the network, as an aspect of feature selection

is removed.

4.5.2 LSTM Analysis

This chapter describes the generation of models based on the LSTM recurrent

neural-network technique, using time series data from laboratory experiments.

The hyper-parameter sweep used to select the neural-network configuration is

detailed. The results obtained using the selected configuration are presented,

with illustrative subset of examples provided.

4.5.2.1 Parameter Selection

An exploratory initial analysis of model performance was completed. Each point

of interest has a unique output time-series to model. Combined with the stochas-

tic nature of neural-network based machine learning methods, this means that

the networks for each point of interest take varying numbers of epochs to train,

and ultimately train to different final validation scores. Simply picking a large

quantity of epochs is not viable. Besides being time consuming and inefficient, it

carries the risk of resulting in over-trained models, which do not generalise well

to data not available to the network in training.

Keras provides the functionality to provide a validation score at which to
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stop the training of the neural network: stop score. In order to determine the

validation score at which to stop training in each case, a large batch of exploratory

learning runs was completed, using a large number of epochs to train.

The learning curve of each run was evaluated to determine a point in training

at which a model may produce satisfactory output, and is not over-trained or

under-trained. Generally, this is achieved by selecting a point at which the vali-

dation metric (in this case, test-set mean-absolute-error) is at it’s minimum for

the learning run. Another consideration is whether the error scores for the test-

set and training-set are similar (the output solution is well generalised). Due to

the stochastic nature of the training process, there is no guarantee that a future

training run would match the performance of the exploratory run. Equally, it may

surpass the performance. Due to the large number of learning runs required to

infer that a result is not an outlier, time spent per run must be considered. There-

fore, in a trade-off between learning time and ultimate training performance, a

constant is added to the stop score determined by the described process, ensur-

ing that if future training runs do not achieve the equivalent performance, they

do not over-train. The number of epochs is capped at the point at which the

exploratory run reached the goal stop score, again with a small constant added,

further mitigating against over-training.

For all learning runs for this experiment, a batch size of 1000 is used. Larger

batch sizes such as this cause the learning process to take more epochs, with

smaller changes in error per epoch. This allows the network and training process

to be tuned for performance, as the smaller updates in network weights allow

increased precision in selecting when to stop training. Large batches also allows

the software to better utilise the 8 GB GPU memory, with less loading of data in

and out of memory per epoch. Batches are shuffled between epochs, helping to

ensure the network can interpret different sets of data-points per epoch, providing

a more general solution. Large batches mean there are less weight updates to

complete per epoch, resulting in the short execution time of a single epoch.

In the process of modelling the data generated by the over-head line exper-

iment (Chapter 3), it was determined that the number of lags provided to the

network has a significant effect on the model performance and training time. For

this reason, the large-epoch exploratory modelling runs were completed for a set

of candidate numbers of lags: 1, 10, 30 or 60. Qualitative inspection of a number

of performance metrics including residual spread, visual model fit and minimum
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Table 4.5: Hyper-parameter selection for cable sealing end realistic test
Hyper-parameter Value

L1 Regularisation 0.01
L2 Regularisation 0.01

Dropout Layer Rate 20%
Shuffle True

Batch size 1000
Train:test ratio 70:30

No. observations 15669

validation cost-score informed the final choice of number of lagged values for fu-

ture modelling attempts. The selected value based on these metrics was 30. A

further investigation into the performance of 120 lagged values, corresponding

to two hours and therefore hypothetically encapsulating long-term effects, was

intended. Considering the strong performance of the models with less lagged

inputs, and the significant increase in training time, this was not completed.

Insights gained during the overhead line experiment were used to inform the

selection of a number of the hyper-parameters. The hyper-parameters used to

counter over-fitting (dropout layer)[54] was given particular attention, due to the

increased risk of an over-fit model due to the auto-regressive nature of the input

data. Models occasionally train to become effectively persistence models:

y(t+1) = x(t) (4.1)

which have very good apparent performance scores, when over-fitting is not pre-

vented. These measures each force weights in the network to small values during

the training process, so selecting them well involves balancing final model per-

formance, training time and consistency of model performance between test and

training sets. The values presented in Table 4.5 were selected using qualitative

evaluation of these metrics, and were used across all final learning runs.

L1 and L2 bias regularisation [43] were used in order to ensure bias was

minimal in the network.
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Table 4.6: Performance metrics used to evaluate models from the realistic test
Performance
metric

Description

r2
Coefficient of determina-
tion score as evaluated on
the test-set

RMSE
Root mean-squared error
as evaluated on the test-
set

Pred. RMSE
Root mean-squared error
as evaluated after 30 step
rolling predictions

4.5.2.2 Model Performance

Model performance is presented in terms of metrics described in Table 4.6. These

metrics are selected to provide an indication of how well the model performs pri-

marily on the test-set portion of the dataset and on the recursive predictions.

Generally, performance on the training-set portion can be assumed to be equiv-

alent or better, though this is not included as it is the metric on which the

network is trained. Model generation for each point of interest, for every camera,

was repeated thirty times, in order to determine typical performance.

The coefficient of determination (r2) is used as it gives a unit-less indicator of

the model skill. This is accompanied by the root mean-squared error, in the units

of the experiment output: digital counts, which is proportional to the thermal flux

incident on the sensor. The number of epochs used to train the presented model

is provided as an indicator of the training time for that particular model. Since

all models have equal number of training points and batch sizes, the epochs ap-

proximately equal amounts of time, with variations due to other operations being

performed on the PC, so the quantities of epochs are approximately proportional

to the training time.

Thirty time-step recursive predictions are made for each model. The root

mean-squared error of the predicted output compared to the observed output is

presented, providing an insight into the limitations of the model and how this

increases with time.

The mean value of the residuals, e is provided, giving an indication of any

skew in the residuals of the model. The standard deviation of the residuals is the
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final metric, quantifying the spread of the error between the model and reality.

Full tables of results are presented in Tables 4.7 and 4.8.

The number of epochs taken to train the network varies significantly. The

minimum value is 121 and the maximum is 1676, representing over ten times

the training time. There is a trend towards a longer training time for points of

interest with more thermal fluctuation, with the shortest training time generally

corresponding to POI6 on the base of the CSE, a point at which the camera

output does not vary significantly. Table 4.3 shows POI6 fluctuating from 338

digital counts for camera 8 to 975 for camera 1. In comparison, POI1 fluctuates

up to 4636 digital counts.

The model performance as measured by the r2 score is consistently high. The

lowest r2 score is 0.8524, corresponding to POI6 of camera5. There are two other

POIs that report scores below 0.9. The score tends to decrease as the point

of interest moves down the length of the CSE. For CSE2, the best scores are

consistently POI1. For CSE1, the scores follow the same trend, with the most

thermally volatile points achieving the best performance, however POI1, 2 and 3

all score similarly for this CSE. The mean performance for CSE1 is 0.9884 and

for CSE2 is 0.9618. Examples of well-performing and over-fit model outputs can

be found in Figure 4.30

Root mean-squared error is highest for POI1 and lowest for POI6 for CSE1

generally. This trend is visible for CSE2, with a small number of outliers, namely

camera 7, POI5, which is higher than expected and camera 8 POI1, which is

lower. Camera 5 displays high RMSE for all models compared to the other

cameras around CSE2, but in the context of all 8 cameras, the errors are not

significantly large. However, the error for camera 5 POI6 is the largest of the

entire experiment.

The root mean-squared error after a 30 time step recursive prediction is con-

sistently higher than that for the test-set portion of the dataset. This metric

varies a large amount, the largest value being 132 (to 0 d.p.) for camera 2 POI1,

with the smallest being 8 (to 0 d.p.) for camera 3 POI4. There are significant

differences in the performance of different models for each POI. For the worst

case (camera 2 POI1) the worst performing prediction has a large error of 471

(to 0 d.p.), while the minimum is 24 (to 0 d.p.). In the best case (camera 3

POI4) the range of error is smaller: from 12 to 6. These results are presented

in Figure 4.26. Examples of successful and unsuccessful recursive predictions are
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Table 4.7: Results summary from Cameras 1, 2, 3 and 4 (CSE1) for the realistic
test. Values are the mean of the metrics for repeated experiments for each point
of interest. Predictions refers to recursive predictions, made for 30 1 minute
timesteps.

Camera POI Epochs r2 RMSE Pred. RMSE e std(e)

1 1 738 0.9969 14.8427 36.3187 -4.491 13.539
1 2 825 0.9986 10.7793 25.9383 -0.786 10.47
1 3 838 0.9986 10.6576 29.3457 -1.136 10.162
1 4 748 0.9898 11.5597 27.6798 -5.791 10.259
1 5 942 0.9887 11.5932 26.5290 -6.099 9.45
1 6 569 0.9880 11.7266 24.6368 -5.812 10.003
2 1 1224 0.9996 17.6487 132.5584 0.320 17.466
2 2 800 0.9983 15.4099 81.5186 0.442 12.739
2 3 845 0.9982 14.1582 65.0181 -0.486 11.512
2 4 521 0.9905 13.5777 53.4443 -2.994 11.247
2 5 475 0.9762 13.4080 47.1655 -5.400 11.139
2 6 517 0.9644 13.0213 42.7473 -2.273 10.642
3 1 1676 0.9694 13.2660 52.5335 3.467 14.027
3 2 970 0.9984 8.8238 31.9435 0.946 8.671
3 3 1002 0.9991 7.4288 25.8071 0.498 7.349
3 4 451 0.9930 5.6432 7.9028 -0.070 5.623
3 5 427 0.9802 5.2290 8.6100 -0.734 5.150
3 6 322 0.9471 5.6891 10.3444 -0.917 5.598
4 1 759 0.9995 15.5548 95.1908 -1.054 15.316
4 2 604 0.9984 10.2925 26.8027 -0.887 10.222
4 3 842 0.9991 7.6109 35.9655 0.102 7.53
4 4 597 0.9880 6.9937 14.2902 -0.934 6.841
4 5 309 0.9831 7.8320 15.3449 -1.758 7.565
4 6 121 0.9791 8.5639 18.1597 -1.457 8.380
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Table 4.8: Results summary from Cameras 5, 6, 7 and 8 (CSE2) for the realistic
test. Values are the mean of the metrics for repeated experiments for each point
of interest. Predictions refers to recursive predictions.

Camera POI Epochs r2 RMSE Pred. RMSE e std(e)

5 1 837 0.9964 16.1685 28.9700 0.861 16.067
5 2 529 0.9260 14.6723 25.0377 -0.011 14.644
5 3 550 0.9625 12.2019 24.6910 -0.770 12.082
5 4 658 0.9155 18.4741 22.7646 -1.426 18.244
5 5 689 0.9119 19.9217 23.1933 2.141 19.528
5 6 825 0.8524 21.6324 23.7487 2.150 21.195
6 1 928 0.9987 8.3697 26.1546 -0.158 8.288
6 2 493 0.9922 6.3609 21.4047 -0.231 6.336
6 3 710 0.9862 8.0636 19.0216 -1.008 7.784
6 4 204 0.9687 8.8590 19.3145 -3.506 7.624
6 5 131 0.9728 7.0830 11.7606 -1.531 6.894
6 6 392 0.9683 6.5039 14.4698 -1.592 6.189
7 1 1300 0.9984 6.1873 14.5579 0.396 6.072
7 2 687 0.9943 5.9928 10.5519 -0.527 5.959
7 3 963 0.9886 6.8740 9.3681 -0.911 6.782
7 4 710 0.9859 7.3426 9.0375 -2.925 6.558
7 5 1392 0.8965 14.1571 13.0904 -3.182 13.652
7 6 521 0.9726 5.6756 11.525 -0.037 5.649
8 1 1148 0.9970 8.1489 16.1593 -0.688 8.034
8 2 1048 0.8753 15.5751 9.7097 -0.584 15.530
8 3 491 0.9724 9.2762 9.9648 -0.898 9.165
8 4 660 0.9854 9.1916 13.7150 -1.730 8.869
8 5 572 0.9835 8.3510 11.5178 -0.923 8.249
8 6 646 0.9818 7.7689 12.9193 -0.454 7.694
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Figure 4.26: Left: RMSE for recursive predictions made for camera 2 POI 1
(worst case) for the realistic test; right: camera 3 POI 4 (best case)

depicted in Figure 4.27

The modulus of the mean value of the residuals of the models is consistently

less than 7 for the entire experiment. The mean is generally closer to zero for

CSE2 than for CSE1, with the largest absolute value for CSE2 being close to

3.5. Five of 24 of the the mean residual values for CSE1 exceed this, with four

of them corresponding to models from camera 1. The majority of deviation from

zero happens in the negative direction. There are only three values greater than

1 in the experiment, while there are eighteen values less than -1. Examples of

histograms of model normalised residuals are presented in Figure 4.28, plotted

with a normal distribution with zero-mean.

The distribution of the residuals is wider for the more thermally volatile points

of interest, in most cases. Particular exceptions are camera 5, where the standard

deviation of the residuals is both generally larger than for other camera perspec-

tives, and also increases for the less thermally volatile points of interest. Another

exception is camera 7, which exhibits large standard deviation for POI5. The

standard deviation is generally low: frequently less than 10 and only greater than

20 in one case.

4.5.3 Analysis and Discussion

This section presents the findings of the work based on the chosen performance

metrics as described in Section 4.5.2.2. The performance of models from data
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Figure 4.27: Examples of recursive predictions. Top plot is an example of a
poor result (camera 2, POI 1, run 3, rolling RMSE 148), bottom plot is an
example of a good result (camera 3, POI4, run 9, rolling RMSE 12). Note the
prediction intervals are calculated as per a naive forecast and are therefore only
for visualisation.
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Figure 4.28: Normalised residuals with zero-mean normal distribution. Top plot
is an example of a good result (camera 1, POI1), bottom plot is a poor result
(camera 2, POI4)
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from various perspectives is analysed and placed in the context of the wider aim

of the project. The perceived limitations of the method and results are presented

and discussed.

4.5.3.1 Performance

Regarding the epochs taken to train each network, it can be determined that a

greater level of thermal fluctuation results in a longer training time. Since more

thermally variable points of interest in the scene are effectively under greater

influence from a larger number of variables, it is intuitive that it would take

more time to properly converge the weights on values that will capture the large

changes. The gradient of the cost-score over the course of the training indicates

that there is a point after which in training, the improvements in performance are

significantly diminished. This can be observed in Figure 4.29. This characteristic

could be exploited if the method were applied in an industrial setting, whereby

analysis into the difference in performance could be evaluated: for each of the

selected metrics, firstly at the beginning of the diminished returns period of train-

ing, and at another reasonable stopping point. Since the process of selecting the

number of training epochs and the stop score is qualitative and considers each

model exclusively individually, caution should be used when attempting to gain

insight about the method by comparing the train time for various models. It is

a limitation of the method that despite the otherwise identical neural network

configuration and data-types, so much tuning for training time is required. Dur-

ing the process of determining training time, severely over-fit models with large

fluctuations above and below the true output were encountered, highlighting the

need to ensure the training time is well selected. This effect could be mitigated by

selecting a more sophisticated metric to configure the neural network to train on.

Examples of well-fit and over-fit model outputs are provided in Figure 4.30. The

over-fit model demonstrates one of the potential effects of over-training a model.

In this example, the network continued to return a descending cost-score for the

training-set portion of the dataset during the training process. In order to gain

insight into the model skill from the r2 score (coefficient of determination), it is

considered alongside the RMSE. The r2 score was selected as a metric of perfor-

mance as it is independent of the output unit, and it considers the variance of

the output. As a result, given two models with equal absolute residuals, based

on two datasets with different variance, the model based on the more varied data
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Figure 4.29: Randomly selected learning curves for the realistic experiment. Cam-
era 2, POI3, run 16.
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Figure 4.30: Examples of a well fit model for the realistic experiment (camera 5,
POI 1) and an over-fit model (camera 5, POI 6).
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will achieve the better score. The RMSE conversely is presented in the units of

the output variable and is independent of the variance.

The primary finding on inspection of these two metrics, is that the perfor-

mance is good and accurate models are produced. Even given the limitations of

the r2 score with regards to time series, it does confirm that the fit of the model

is good when compared to the observed output. The RMSE confirms this. That

the RMSE values are all less than 22 digital counts, considering that the range

of some of the output time series is greater than 4000, reinforces that the results

are good. Where the range is lower and the error proportionally large, this is

reflected in the r2 score. As with any system, there is noise present in the exper-

iment. Other than any noise that could be attributed to the individual sensors,

this noise is assumed to be consistent across the whole experiment. Due to the

fact that different points of interest in the scene respond in different magnitudes

to the primary inputs of the system, the noise comprises a more significant part

of the output signal corresponding to the points of interest that heat up less.

This results in the lower performance scores for the cooler POIs, as the noise is

not modelled and in these cases is more prominent.

Given the quantity of scores > 0.9, the distribution of the scores of the three

points of interest with r2 scores < 0.9 are presented in Figure 4.31. These three

points are camera 5 POI6, camera 7 POI 5 and camera 8 POI 2. For comparison,

the distribution of a high-scoring model is included. Camera 5 POI 1 is selected

for this, a result more representative of the rest of the experiment and from a

camera with an anomalously low result. From inspection it can be seen that

these models generally perform well but have outlier results which affect the

mean. Placing this in the context of the wider accurate models, the experiment

is a success. However, to determine the suitability of the models for using for

fault detection, the residuals must be inspected.

There are also valid issues with the naive use of r2 score in the context of time

series models. For this reason, the r2 score should be considered in the context

of the RMSE for the same model.

Frequently the results show a skew to the mean of the residuals, a concern as

many model based fault detection methods are predicated on a zero-mean. There

is a trend towards a negative mean, showing that models often predict values

higher than the true observed values. At the end of the test period, the current

is set to zero and the cable-sealing ends cool. The current is not set to zero for a
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significant period at any point in the training data set, potentially contributing

to the difficulty modelling the test portion of the data set properly. However,

this should not be over-stated, as many model runs achieved good performance

for the test-set, with residual mean very close to zero. This does reinforce the

notion that the model skill is limited by the dataset.

Camera 1 POI 1, camera 1 POI 4, camera 1 POI 6 and camera 2 POI 5 were

each manually investigated due to the large skew to the mean of their residuals.

On inspection of the results, it was found that the skew was not consistent through

each of the thirty modelling runs for each point of interest: particularly poorly

performing models influence the mean result of the thirty runs. It is notable

that camera 1 and camera 2 are significantly effected by the wind during the

experiment, each of the cameras experience thermal transients which influence

the camera output. These transients are fast (relative to temperature changes

in-scene) and the output changes are of similar magnitude of those caused by

the heating of the cable-sealing end. That the neural network converges on zero-

mean residuals less often for more volatile output is a limitation of the approach

of using a single configuration for the whole experiment and infers that further

data may be required. Due to the fact that the distribution and skew of the

residuals is key for fault detection, it is reasonable to presume that if the work

were continued to implement fault detection, a more thorough model selection

procedure could be utilised.

The performance of camera 3 POI 4 and camera 7 POI 6 are notable, the

mean of the residuals for each are close to zero. This performance is consistent

across the thirty models for each of the points of interest, suggesting that very

good performance can be achieved on data such as these. It is an encouraging

result that a point of interest from the perspective of camera 3 models so well, as

the face of the cable-sealing end imaged by camera 3 is under direct influence of

the wind. It also suggests that further tuning of the modelling process is required

for performant models, and that determining what causes the neural network to

perform well on some points of interest and less well on others may be difficult.

The mean residuals results overall demonstrate the volatility of neural network

modelling while also suggesting that accurate models can be acquired if care is

taken to manage this volatility. They also reveal a limitation of the dataset:

despite being a relatively long dataset, the environmental variation present is not

as extensive as desired.
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Considering the spread of the residuals, presented as the standard deviation,

the assertion that good models can be achieved is reinforced. Where there is a

narrow spread, it can be inferred that model-based fault detection would deter-

mine when a systems performance is diverging from what is expected more easily.

Images from camera 5 exhibit a relatively wide spread throughout the points of

interest, suggesting a systemic sensor-specific element to the result. The FFC nor-

malisation process creates large fluctuations in the output for camera 5 and could

be the source of the increased spread of the residuals. This highlights that care

must be taken in viewing each result in the context of the specific sensors used,

especially when considering complex, sensitive devices such as thermal cameras.

Recursive predictions are made. The methodology for these rolling forecasts is

described in Chapter 3, Section 3.4.4. Briefly, the method forecasts at time t+1,

then feeds that forecast back into the model for the following forecast at time

t+2. This provides an indication of the utility of the model as a forecasting tool.

Inspection of the model output for the test-set provides instead only a series of

single step forecasts, which, while providing a good indicator of the model skill,

do not portray the forecasting utility. This is because the input variables of the

test-set of the data set are formed using lagged values of observed output.

When viewed in the context of the other performance metrics presented for

the models, it is clear that forecasting using such models should be approached

with caution. Where models appear to be very good, such as in the case of

camera 2 POI 1 (see Figure 4.27), the recursive prediction for thirty time steps

diverges significantly from the real output. A significant limitation of the LSTM

method used here is that, due to the multiple weights within each LSTM unit

and the different effects they have, it is difficult to quantify where the limitations

of the model lie. There are cases in which the recursive predictions track the

observed output closely, though it is difficult to determine which models produce

this type of output. Two models with similar performance metrics may produce

significantly different recursive predictions provided the same input. The forecast

intervals are presented as if the system was making a naive forecast, not ’correct’

but an indication nonetheless of the confidence as a proportion of the residuals.
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4.6 Summary

This chapter presents findings based on data acquired using a unique experimental

setup, consisting of two electrically loaded cable sealing ends, thermally influenced

by a large industrial fan and observed by a Vaisala WXT520 weather station,

and eight non-calibrated FLIR Boson thermal cameras. It briefly explores factors

that contribute to the challenge of modelling output from such an experiment

and presents samples of data with descriptions of the behaviour exhibited in the

samples.

An 11-day experiment is presented, during which the cable sealing ends expe-

rience an electrical load pattern that is representative of what may be experienced

by a similar asset in commission in a substation. The wind fan is directed at one

of the cable sealing ends from a number of angles and is set to operate at a number

of different intensities over the course of the experiment, constituting a substan-

tial variation of wind conditions, designed to exploit the ability of the equipment

to monitor the cable sealing ends from multiple angles. The laboratory temper-

ature is uncontrolled for the period of the experiment and varies significantly on

day/night cycles and also cools gradually over the course of the 11 days.

Fourty-eight points of interest corresponding to condition monitoring spot

measurement points are selected. Multivariate LSTM recurrent neural network

models are created based on the pixel outputs corresponding to these points of

interest, following a procedure to determine a good general LSTM configuration.

The modelling process is repeated thirty times for each of the fourty-eight points

of interest, resulting in a good indication of model performance for a variety of

data.

The model performance is good throughout the points of interest, with low

root mean-squared error and high r2 scores. Inspection of the residuals of the

models reveals that system dynamics are well captured, as residual mean is close

to zero and generally narrowly distributed. In cases where this is not the case, it

is determined that tweaks to the training process and/or the model configuration

could improve performance further. It is assumed that model accuracy is good

enough for the implementation of model-based fault detection but acknowledged

that this needs to be quantified.

The chapter represents a step-change in complexity relative to Chapter 3, fur-

ther advocating for continuous thermal and environmental monitoring in substa-

tions, by successfully demonstrating that the thermal output of high thermal-mass



118 CHAPTER 4. MODELLING OF CSES

assets with complex exterior geometry can be modelled well, in three dimensions.

This is additionally significant due to the fact that such equipment is targeted for

monitoring in condition monitoring surveys because of the high internal electric

field and fluctuating internal operating temperature potentially contributing to

aging.

These findings suggest that a condition monitoring policy utilising long-term

or constant monitoring, using either static cameras or mobile platforms, could

offer value to the project sponsor in reducing employee risk and reducing cost

due to equipment degradation.



Chapter 5

Case Study: Thermal Cable

Sealing End Condition

Monitoring

5.1 Introduction

This chapter presents a case study, exploring long-term monitoring of 66 kV CSE

assets in a laboratory environment, in order to gather information on the utility

of non-calibrated thermal cameras in this context. Using data captured during

the course of the modelling work presented in Chapter 4, the chapter aims to

determine how the CSEs respond to the heating effects of the electrical loading.

It explores the heating profile of the assets around the circumference and along the

length, and how each of these develop in time with continued electrical loading.

The nature of non-calibrated thermal cameras dictates that each sensor typ-

ically has a differing response to the thermal flux incident on it’s sensor array,

which is non-linear with respect to the camera sensor temperature. This chapter

explores some of the challenges faced in extracting equivalent data from a num-

ber of these different sensors, in order to determine what differences in thermal

intensity are due to asymmetric heating around the region of interest, and what

differences are due to inherent sensor differences.

Finally, the chapter evaluates the thermal output of the two CSEs in relation

to each other. It discusses the operational health of each of the assets, making

suggestions on further investigation to determine what the cause of any differences

may be, and whether or not they constitute a fault precursor.

119
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Section 5.2 presents a overview of some literature relevant to the case study

before the datasets are described in Section 5.3. Sections 5.4, 5.5, 5.6 and 5.7

present the study of the thermal response of the CSEs. Section 5.4 concerns the

thermal profile of the CSEs over time, Section 5.5 concerns the thermal varia-

tion along the length of the CSEs, Section 5.6 the thermal variation around the

circumference of the CSEs and 5.7 concerns the difference between the thermal

profiles of the CSEs.

5.2 Literature

Work investigating the health of CSE assets exists in the literature. Zazachari-

ades et al. [67] investigate the thermal output of a 132 kV CSE, comparing it to

finite element analysis output and establishing an understanding of the temper-

ature profile down the length of the external sheds. Based on their investigation,

and other investigations into the condition assessment of high-voltage cables and

cable terminations [36] [35], there is an additional academic contribution in es-

tablishing an understanding of the thermal output of the 66 kV CSEs housed on

the experimental rig.

5.3 Datasets

Data from the various experiments conducted over the course of this work were

utilised in order to form the investigation presented in this chapter. In order to

establish a general view of the behaviour of the CSE, data from a wide range

of experiments are used. An investigation into aging the stress cone inside the

CSE was completed in January 2020. The two selected datasets at constant

300 A loading offer an opportunity to compare the response of the CSEs in

summer and winter, and to understand if there is any change in the response

as a result of the aging process. Unfortunately, due to safety concerns, the rig

was not able to be energised for a period outside of normal laboratory operating

hours until after the aging process was completed. Nevertheless, data gathered in

August 2019 is included as a reference, as both CSEs were known to be healthy

at this point. Finally, the long-term, realistically loaded experiment is included,

providing insight into ranges of output in normal operating conditions. These are

presented in Table 5.1.
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Table 5.1: Datasets used to investigate CSE heating
Date Electric Loading Duration

30/08/2019 Varying 7 hrs
06/02/2020 300 A 19 hrs
11/08/2020 300 A 40 hrs
21/08/2020 Realistic 11 days

Figure 5.1: Guidance diagram on spot temperature measurement locations

Points of interest taken at various points down the length of the CSEs are

utilised throughout this chapter. These points are introduced in Chapter 4, Sec-

tion 4.3. The POI selection guide (Figure 5.1) and annotated thermal image

(Figure 5.2) are included here for reference too.

5.4 Thermal profile of CSEs over time

5.4.1 Presentation of Data

In order to understand the temperature profile of the CSE in operation, selected

images are taken from various data sets, normalised to exaggerate features, and

inspected.

Three data sets are selected to inform this understanding. Firstly, a short

experiment with a varying load profile, in August 2019. This experiment was

conducted with two healthy CSE assets. The data points selected from this

experiment were the beginning and end of the test, corresponding to the points

with the least and most heating. These are presented in Figure 5.3.

The second experiment is an overnight step-test performed in February 2020.

Again, the data points selected here were the beginning and end of the test. These
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Figure 5.2: Stitched thermal images, with POI markers and POI labels on Camera
1 perspective

are presented in Figure 5.4. This test was performed after modifications were

made to one of the assets and, due to being completed in winter, was performed

in a lower air temperature in the laboratory.

The final test is an extended step-test performed in August 2020, after the

fault has been present in CSE 1 for an extended period. In order to select the

sample points to present here, a plot of a point on the CSE is selected and plotted

against time. As per the previous two experiments, the start and end points are

presented. In addition, a point at which the CSE is heated to approximately 50%

of it’s maximum (at POI3) is presented, alongside a point when the system first

reaches it’s steady state for the experiment current (300 A). These are presented

in Figure 5.5 and 5.6.

5.4.2 Qualitative Findings

Heating is visible down the entire length of the CSE. At the end of each of the

experiments there is clear visible heating at the top of the asset, and after the

extended step-test, the heating is visible in the lower part of the CSE body,

between the sheds. The heating profile is a pronounced gradient, hottest at the
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Figure 5.3: Thermal images from a six hour cable sealing end experiment. Varying
input current. Left to right: camera 1, test start; camera 1, test end; camera 5,
test start; camera 5 test end.

top, with decreasing temperature down the body.

The heating effects are horizontally uniform, with no visible drop in intensity

near the edges of the asset. A drop in intensity may be expected here, due to

the optical effects of the increasing view angle between the camera and the CSE,

however this is countered by the increased surface area corresponding to each

pixel after the cylinder is projected onto pixel plane.

In order to determine how the profile develops over time, Figure 5.5 and 5.6 can

be inspected. These figures present data from the start of the test, after one hour

of loading, after four hours of loading and after 40 hours of loading. Figure 5.7,

a time-series of the digital count output at POI3 on CSE1, is referenced when

selecting these points.

The output for this extended step experiment is unique within those presented

in that there is some heating present at the top of the CSE at the beginning. A

sanity check was performed to ensure this was not a sensor anomaly, confirming

that this mild heating is present from every camera perspective in the test. It is

difficult to determine the cause of this, as there is no data from before the first

thermal images are taken. It is assumed that some testing had occurred prior to

this test, or that there had been a period of low current.

The output of this experiment demonstrates the manner in which the tem-

perature profile develops with time. The upper part of the asset heats first. This

temperature increase spreads down the length of the CSE, while the upper part

continues to increase in temperature at a lower rate with time, before settling.

This suggests that changes in the thermal dynamics of the CSEs would be likely

to be visible near the top first.
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Figure 5.4: Thermal images from a eighteen hour overnight cable sealing end
experiment. 300 A input current. Left to right: camera 1, test start; camera 1,
test end; camera 5, test start; camera 5 test end.

Figure 5.5: Thermal images from a forty hour cable sealing end experiment. 300
A input current. Left to right: Ccmera 1, test start; camera 1, mid-heating end;
camera 1, start of steady-state; camera 1 test end.

Figure 5.6: Thermal images from a forty hour cable sealing end experiment. 300
A input current. Left to right: camera 5, test start; camera 5, mid-heating end;
camera 5, start of steady-state; camera 5 test end.
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Figure 5.7: Camera 1 POI3 timeseries from a forty hour cable sealing end exper-
iment. 300 A input current.
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5.5 Thermal Variation along the length of CSEs

5.5.1 Introduction

An important metric in the condition monitoring process is the temperature dif-

ference along the length of the CSE. Spot temperatures are taken at standard

positions, or POIs along the CSE as defined by the condition monitoring proce-

dure, these can be seen in Figure 5.1. Engineers can use these spot measurements

to inform their evaluation of the condition of the equipment. They may seek to

understand the temperature gradient down the CSE, for example, or to estab-

lish whether the temperatures in these spots are within an expected range. For

this reason, it is useful to establish the range of temperatures experienced by

an electrically loaded CSE in a laboratory environment, as it can inform future

condition monitoring methodologies.

Firstly, it is possible to inform the methodologies by establishing a total ther-

mal range that may be experienced during testing. To accomplish this, the dif-

ferences between the busbar clamp and the CSE base are taken, as these are the

hottest and coolest points within the region of interest in the scene. Because the

base and busbar clamp are each metallic with similar surface finishes, there is a

potential difference in emissivity, which is difficult to determine without empirical

testing. The differences in digital counts output from the camera are presented

in Table 5.2.

It is possible to further inform the condition monitoring strategy with regards

to CSEs by inspecting the range of thermal output for the CSE body, correspond-

ing to the insulator sheds. The volume within the sheds is where the sheath of the

cable conductor is stripped back and terminated, creating an area of high electric

field between the conductor and earthed parts of the CSE. This part of the CSE is

therefore most susceptible to aging and could be a potential source of additional

generated heat. Due to the presence of the stress-cone and cable insulation, the

bottom of a CSE typically experiences the least heating, while the upper parts

heat more due to the cable being un-insulated (though surrounding by oil) and

due to the absence of oil at the highest points of the internal volume. It is useful

to establish an understanding of this temperature gradient under normal loading

conditions in the laboratory in order that it can be understood when the typical

heating profile is deviated from.

This experiment is limited by the use of non-calibrated cameras, as it is only
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able to provide an indication of the temperatures that may be present instead of

a direct temperature. However, there is still insight to be gained by investigating

the differences in output.

5.5.2 Method and Findings

Locations corresponding to positions 1 - 6 in Figure 5.1 were chosen in each

of the 8 output camera frames. These locations are marked on the reference

image and displayed in Figure 5.2. Position 7 is out of the field of view of the

camera for this experiment. Counting from the uppermost point, the points

of interest (POI) correspond to the busbar connection, top bulb, upper middle

and lower CSE body, and bottom housing. The ∆Y between the POIs is kept

as consistent as possible between different images, and an attempt is made to

ensure the POIs are located in positions corresponding to similar surface finished

between images. For example, POI 1 is on the flat surface of the metal of the

joint, away from fittings like nuts and bolts. In order to ensure differences in

features are minimised between images, especially in difficult to interpret areas

at the bottom of the frames, a 3x3 area is taken around the selected pixel and

the mean of the 9 pixels is calculated.

Two datasets are used to extract values for this section. First is the 36 hour

300 A step-test, as presented in Figure 5.5 and 5.6. This test represents the high-

est consistent electrical loading experiment completed. The results are presented

in Table 5.2. Second is the 11 day realistic load pattern test. This test represents

the longest period of continuous operation recorded. The results are presented in

Table 5.3. Both of these tests are undertaken in similar laboratory environmental

conditions, though the realistic load-pattern test includes the use of the wind fan.

Treating each of these results as a standalone tests gives significant range of

the potential difference in thermal output from the busbar to the base of the

CSE. In the step-test, CSE1 shows a range of 2000 digital counts. The difference

from camera 1 is almost 50 % more than that of camera 3. CSE2 shows a similar

pattern of thermal output as each camera perspective is considered around the

CSE. That the cameras in positions 1 and 4 output the highest difference in

intensity, and the cameras in positions 3 and 7 output the lowest difference, with

cameras in positions 2 and 4, for CSE 1, and 6 and 8 for CSE 2 matching the

pattern, suggests some environmental impact. The cameras in positions 1 and
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Table 5.2: Difference in output digital counts between the busbar and base, and
between the uppermost and lowest point on the CSE body; 36 hour step test; 300
A current.

CSE Camera Max. Diff. Busbar/Base Max. Diff. Body
1 1 6593 1770
1 2 5996 1617
1 3 4216 1416
1 4 4584 1673
2 5 821 368
2 6 666 337
2 7 579 377
2 8 646 282

Table 5.3: Difference in output digital counts between the busbar and base, and
between the uppermost and lowest point on the CSE body; 11 day realistic load-
pattern test.

CSE Camera Max. Diff. Busbar/Base Max. Diff. Body
1 1 4569 1259
1 2 3853 1120
1 3 2640 1030
1 4 2819 1228
2 5 1079 392
2 6 888 355
2 7 672 433
2 8 710 362
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5 face out into the large laboratory, with walls behind them. The cameras in

positions 3 and 7 face the walls, with the laboratory behind them. The walls

may be causing thermal reflections, impacting the measurement and causing the

surface of the CSE opposite the walls to appear hotter than the surface opposite

the open space of the laboratory. Another potential contribution to this is that

the busbar clamp is non-uniform and therefore difficult to select a consistent point

of interest for around the various camera perspectives. This highlights a potential

source of measurement error in condition monitoring surveys.

Compared with the busbar to base results, the CSE body results are consis-

tent. The pattern around the CSE is present, with the highest differences present

from the perspectives of cameras 1 and 5. The results are relatively consistent

around the diameter of the CSE, with a range of results spanning under 100 dig-

ital counts for CSE2, and under 400 digital counts for CSE1. This consistency

highlights the care that is required in selecting points of interest: where it is

relatively easy to select a point, such as on the CSE body, consistent results can

be achieved. Where it is more difficult to select a consistent point of interest,

such as on the busbar clamp, which has complex geometry, it is more difficult

to get a consistent result from different angles. In order to make the selection of

the points of interest as easy as possible, the images are normalised to enhance

visible features so the points of interest can be properly located. Without this

normalisation, it would be difficult to ensure that a point of interest on the body

of the CSE corresponded to the core cylinder and not instead one of the sheds.

As the sheds heat less than the core of the CSE (see Figures 5.3 - 5.6), this could

lead to erroneous readings.

The differences present on the shorter, higher current test, are larger than

those of the longer, lower average current test. This further informs the findings

of Section 5.4, suggesting that while continued heating allows the base of the

CSE to heat, the highest temperatures are a response to high current, and are

not experienced when extended loading occurs.

An inconsistency in the results is clear with regards to the busbar clamp to

base measurement, when considering both CSEs. Here the short test results in a

higher temperature difference in CSE1, while a higher temperature difference is

present on CSE2 for the 11 day realistic test. The difference between results for

CSE2 is small, but consistent between cameras 5, 6, 7 and 8. This inconsistency

may be a result of the aforementioned difficulties in correctly selecting points of
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interest, or may be a result of the aging process CSE1 has undergone, as discussed

in Section 5.7.

The primary finding of this investigation is insight into the inherent sensitivity

of thermal cameras to non-intuitive factors. Significantly, there is very large

variance in the amount of potential difference present in a scene. Measurement

noise is a large factor in the results, as can be seen in the results pertaining to

the busbar clamp. Where it is relatively simple to correctly select a point of

interest on the CSE (the body), the results are fairly consistent between cameras.

The discrepancies between cameras in this case are, as described, likely due to

environmental differences. However, where it is difficult to consistently choose

the point of interest (on the busbar clamp), there is a very large variation in

results. It is accepted though that without knowing categorically the health of

the CSEs used at this point of the experiment, no definitive conclusions can be

reached about the cause of the output inconsistencies.

5.6 Thermal variation around the circumference

of CSEs

5.6.1 Method I: Utilising Overlapped Pixels

The experiment was designed such that the FOV of each of the camera perspec-

tives would overlap. The arrangement of eight bolts and supportive fins at the

top of each CSE provides a reference point for determining where the overlap

occurs, as can be seen in Figure 5.8. Furthermore the double-helix arrangement

of the sheds can be used as a reference point between frames, specifically the

start point of the helix at the top end and bottom end. The pixels selected to

correspond to these overlapping points are provided in Figure 5.9 and Table 5.4.

The benefit using this kind of overlap calculation is that it guarantees that the

surface emissivity and surface temperature will be approximately equal between

the two camera perspectives. If the pixel location is chosen correctly, the view

angle between the surface of the CSE and each of the cameras should be approx-

imately equal, as the ideal pixel to use as the overlap is equidistant between the

two cameras. The detriment of using this kind of overlap calculation is that it is

difficult to guarantee that the pixel corresponds to the same physical spot in each
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Figure 5.8: Thermal image of the top cap of a CSE, with fins as used for overlap
reference

Figure 5.9: Overlap pixel spot selection overlaid on thermal images of the CSEs

Table 5.4: Overlap pixel locations for overlap analysis
CSE Camera Pair Colour Cam A px(y, x) Cam B px(y, x)
1 1, 2 Green (99, 112) (113, 403)
1 2, 3 Turquoise (113, 370) (104, 640)
1 3, 4 Purple (106, 607) (110, 907)
1 4, 1 Yellow (111, 874) (97, 146)
2 5, 6 Green (435, 99) (422, 401)
2 6, 7 Turquoise (424, 367) (444, 648)
2 7, 8 Purple (444, 614) (420, 895)
2 8, 5 Yellow (424, 859) (437, 134)
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Figure 5.10: Left: overlap pixel intensities from cameras 1, 2 and 3; right: differ-
ence between camera outputs; 36 hour step-test.

of the images. If the pixel location is chosen correctly, the angle of emission of

the IR radiation from the surface to each of the cameras should be approximately

equal, as the ideal pixel to use as the overlap is equidistant between the two

cameras. Using the background radiation as a bias calculator is not as reliable

in this respect - the rig is situated in a busy laboratory, with various equipment

surrounding it, and walls at different distances in every direction.

This section explores the difference in output for different cameras for pixels

corresponding to the same physical location. The aim of this section is to provide

insight into how the different cameras respond differently to equivalent thermal

output.

This may be used in order to provide information about any asymmetric

heating effects present on the assets. To summarise, points with relatively large

thermal variation (near the top) are selected using the physical features visible on

the CSEs. The digital count output corresponding to these points is plotted. For
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Figure 5.11: Left: overlap pixel intensities from cameras 3, 4 and 1; right: differ-
ence between camera outputs; 36 hour step-test.

the purposes of the plots, the digital count output value at time t=0 is subtracted

from the entire time series, to remove bias. The difference between the output

for the two camera perspectives is also plotted.

Figures 5.10 and 5.11 show a plot of the selected pixels over the period of

the 36 hour step-test data set, alongside a plot of the difference between the two

plots. The plots show encouraging results. The difference between the output for

pairs of cameras frequently drops below 100 digital count units, in the context of

the 16-bit resolution of the camera this is a close match. Broadly, the matches

between the eight pairs of cameras are close, and vary in a similar manner. The

plots show that, with the exception of the camera 3 and camera 4 pairing, the

match is closest as the beginning of the test, diverging while the system heats.

One potential cause of this is the selection of the overlap pixel, as all pixels are

likely to be similar values when there is no active heating, though discrepancies

are revealed when the CSE is heated. Another is that the response of each of
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Figure 5.12: Left: overlap pixel intensities from cameras 5, 6 and 7; right: differ-
ence between camera outputs; 36 hour step-test.

the cameras is closest in the warmer periods of the tests (the beginning, mid and

end-points) and responses diverge most when the cameras are coldest during the

night.

In proportion to the total heating effect, the discrepancies between cameras is

more significant for the cameras around CSE2. This is shown in Figures 5.12 and

5.13. CSE2 heats the least of the two, and generally the discrepancies are larger,

with the exception of the pairing of cameras 5 and 8, as shown in Figure 5.13.

Given that CSE2 heats less, it is marginally more difficult to correctly select the

overlap pixels on the images, a potential source of the larger discrepancy.

It is known that each non-calibrated camera will have differing output: the

sensors have slightly different responses to flux at different temperatures and the

calibration procedure corrects for this. This simple investigation into removing

the initial bias suggests that coarse calibration using overlapping pixels may be

possible, in order to calibrate the camera output responses to match each other.



5.6. THERMAL VARIATION AROUND CSES 135

08-12 00:00

08-12 12:00

08-13 00:00

Date/time

0

200

400

C
ou

nt
s

cam7
cam8

08-12 00:00

08-12 12:00

08-13 00:00

Date/time

0

50

100

150

200

C
ou

nt
s

cam7 - cam8

08-12 00:00

08-12 12:00

08-13 00:00

Date/time

0

200

400

C
ou

nt
s

cam8
cam5

08-12 00:00

08-12 12:00

08-13 00:00

Date/time

0

20

40

60

80

C
ou

nt
s

cam8 - cam5

Figure 5.13: Left: overlap pixel intensities from cameras 7, 8 and 5; right: differ-
ence between camera outputs; 36 hour step-test.



136 CHAPTER 5. CSE CONDITION MONITORING

If this were completed in future work, it would provide an opportunity to create

a seamless 3D thermal image of an asset, facilitating ease of inspection.

5.6.2 Method II: Utilising Horizontal Intensity Lines

Lines of pixels around the top of the CSE, from each camera perspective, at

the start and end of the 36 hour step-test, were selected and plotted. These

are presented in Figures 5.14 and 5.15. These plots confirm the findings of the

overlap tests: that the output profile does vary between the perspectives. If

the output effects were identical, the lines would be equidistant for each set of

cameras at each sample point presented, however the distances between the lines

is not consistent. Based on the results of this test and others in this chapters, it

is assumed that a minor factor in this discrepancy is the response of the cameras

(this issue is specific to non-calibrated cameras) and that a more significant factor

is the physical layout of the lab and the walls surrounding the CSE rig. A source

of error in this test is that the pixel lines that are plotted are at in consistent

heights up the CSE in relation to each other, due to the requirement that they

correspond to the hot cable-sealing body and not the cooler shed fins.

Further testing should determine whether this is the case or not, by adjusting

the camera positions around the CSEs to determine the effect it has on the output.

5.7 Difference in Thermal Profile Between CSEs

Throughout this chapter there is evidence of a difference between the two CSEs.

In January 2020 the stress-cone within CSE 1 underwent an expedited aging

process in separate laboratory experiments. Following this process, the CSE was

re-constructed and the experiment rig was re-assembled.

This section aims to demonstrate the extent of the difference between the two

CSEs and briefly discuss the potential causes. Figures 5.16 and 5.17 show clearly

the significant difference in thermal output from February to August 2020. In

February, both CSEs display a similar heating pattern, with CSE2 heating more

than CSE1, but both settling in similar amounts of time. The output in August

is dramatically different. CSE2 heats a moderate amount over the test-period,

with an overall increase in digital counts of nearly 500. While this represents

less heating than the February test, the laboratory was significantly warmer,
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Figure 5.14: Plot of horizontal lines of pixels across the surface of the CSE,
beginning of 36 hour step-test (11/08/2020 16:21).

Figure 5.15: Plot of horizontal lines of pixels across the surface of the CSE,
beginning of 36 hour step-test (13/08/2020 08:28).
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Figure 5.16: POI3 as viewed by cameras 1 and 5, February 2020
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Figure 5.17: POI3 as viewed by cameras 1 and 5, August 2020

so this can be expected. Assuming CSE2 is still in a healthy state, it can be

used as a reference to which the output of CSE1 can be compared. In August,

CSE1 shows an increase of nearly 2500 digital counts. Given the assumption

that a healthy CSE in the summer conditions would heat up less than in the

winter conditions, that the aged CSE heated up significantly more than in winter

suggests that the aging process may have stimulated measurable change in the

system output. However, there are a number of other potential causes for the

extra heating. Firstly, on occasion a small pool of oil was discovered underneath

CSE1, suggesting a light leak. Due to the small size of the pool in comparison to

the volume of oil the CSE holds it seems unlikely that this is the root cause of

the issue, but measurements should be taken with the correct amount of oil for
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a fair comparison.

The differences in heating observed for POI3 are reflected in POI1 (busbar

clamp): POI1 corresponding to CSE1 shows significantly more heating in the

summer test, while POI1 for CSE2 shows a smaller amount of heating. It is

possible that the clamp has become loose, because of poor initial fitting or thermal

cycling. While it seems unlikely to be the root cause of the extra heating observed

in the CSE body, it would be recommended to check the connections are secure

if investigating the potential presence of a fault thoroughly.

5.8 Discussion

This work has provided significant insight into the process of evaluating the out-

put of non-calibrated thermal cameras. While there has been a consistent limi-

tation in the inability to quantify what temperature a given digital count output

corresponds to, insights have seen been gained. The expected output of 66 kV

CSEs under load has been established, with some indication of how this output

should be expected to vary over time and over the surface of the CSE. Further-

more, a CSE deviating from the expected response, following a stimulated aging

process, has been recorded. That CSE1 heats considerably more than previously,

in conditions under which it would be expected to heat less, may be a significant

finding.

Non-calibrated thermal cameras have been found to be sensitive to inconsis-

tencies in measurement. It has been found that, in order to achieve repeatable

results, points of interest must be selected carefully and consistently. In the case

where this has occurred, the output of these cameras can be consistent, and as

described above, used to gain insight into thermal profiles both over space and

time. A further nuance of these thermal cameras is that their high sensitivity can

mean non-intuitive factors influence the output, for example, the hypothesised

impact of the nearby walls and empty space of the laboratory, as described in

Section 5.6.

The investigation reveals similarities in thermal output between the 66 kV

CSE presented here and the 132 kV asset presented in [67]. Firstly, it is found

that there is temperature gradient down the length of the CSE, and secondly, that

minimal heating occurs on the outer edge of the shed surface. While this work has

not quantified these findings into temperature values, it may be of value to know
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that CSEs with different geometry have similar thermal output profiles under

load in laboratory conditions. It is additionally notable, that when the internal

conditions of the 66 kV CSE are changed, the shape of the heating profile does

not appear to change, but the amplitude of the profile does. This is in contrast

with the findings of the 132 kV CSE.

5.9 Summary

This chapter provides an opportunity to investigate the thermal output of 66

kV CSEs, providing valuable insight to the industrial sponsor, while providing

additional contextual knowledge to assist in the modelling process described in

Chapter 4. The manual investigation into the output of the cameras during

various tests is useful when informing the modelling process and provides intuition

with regards to the equipment, assisting in extracting information from it. It

also is an opportunity to expand on existing work into the thermal monitoring

of larger 132 kV CSEs, completed by Zachariades et al., evaluating whether the

responses recorded during testing match what was found for the larger units.

Lastly the creation of the experimental rig, with the ability to energise multiple

assets in different conditions for days uninterrupted, with both high-voltage and

high-current, while capturing a full coverage of thermal images, constitutes a

contribution.

Furthermore, the experiment offers a significant contribution to existing work

on thermal monitoring of oil-filled cable terminations such as CSEs. It expands on

work completed by researchers within the university on 132 kV CSEs, supporting

and supplementing a number of their findings, in the slightly different context of

a 66 kV CSE.
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Conclusions and Future Work

6.1 Conclusions

This thesis presents two sets of experiments, associated data and analysis regard-

ing electrical substation condition monitoring, comprising of four distinct contri-

butions. Firstly, it is demonstrated that electrically loaded substation equipment

can be modelled to a high degree of accuracy, using low-cost sensors, includ-

ing non-calibrated FLIR Boson thermal cameras. The thesis demonstrates that

LSTM recurrent neural networks provide the most accurate models of those that

are utilised as part of the work but acknowledges it is not an exhaustive test

of modelling techniques. The utilisation of LSTM recurrent neural networks in

this context forms the second contribution. It shows that LSTM recurrent neural

networks can provide accurate models for both simple electrical conductors, with

a low thermal mass and fast response, and large cable terminations, comprised of

solid and fluid insulators, with a high thermal mass and resulting slow thermal

response, under the influence of significant environmental variation. The devel-

opment of the large scale experimental rig facilitating the long-term monitoring

of electrically loaded power equipment forms the third contribution. Finally, it

presents a case study into the otherwise thermal output of a specific pair of 66

kV cable sealing ends, providing insight into the manner in which they heat over

time and space, both in healthy condition and after undergoing an accelerated

aging process, concluding that there may be differences in how different types of

CSEs present indications of bad asset-health.

Broadly this thesis demonstrates that time-series modelling of environmental

and electrical load data is a valid methodology for monitoring asset health of

141
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electrically loaded substation equipment, provided sufficient variables and time

are monitored.

In summary, accurate multivariate time series models of the thermal output of

electrically loaded substation equipment under the influence of varying environ-

mental conditions in a laboratory, have been generated. A broad understanding

of the limitations of thermal imaging as a condition monitoring tool has been de-

veloped, and used to inform data collection and processing decisions. The work

contributes an application of a modern, well-performing modelling technique, to a

unique dataset, with results that encourage further investigation, providing value

to the academic community and to the industrial sponsor.

6.2 Future Work

The primary recommendation based on the work presented in the thesis is for

expanded and extended data collection. The significant limitation of the work

presented is the ambiguity regarding it’s genuine utility in significantly more

volatile outdoor substation environments. A comprehensive data collection plat-

form monitoring selected in-service substation assets would provide an oppor-

tunity to test the ability of the adopted methods to characterise the thermal

output of equipment. Such a platform would be capable of capturing all signifi-

cant environmental influences on thermal camera output, including precipitation,

humidity, view distance and angle, solar radiation and shade, air temperature,

wind speed and direction and load. Furthermore, in-service substation assets

would be operating at high voltage in addition to high current, therefore effects

not considered in this work such as localised heating due to partial discharge,

could be modelled. Development of a suitable platform would not be trivial, in-

volving integration of multiple discrete sensors, including a visible light camera

and ideally a calibrated thermal camera. Further envisioned difficulties include

extracting accurate and timely electrical load data, ensuring that the selected

assets were at the desirable level of asset health, and dealing with any variation

in emissivity over time, due to pollution, bird waste or similar. Ideally this mon-

itoring platform would be installed for a period spanning over a year if situated

in the UK, in order to ensure the domain of the time-series model included as

much potential environmental variation as possible.

A secondary recommendation would be to explore the creation of a more
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general LSTM based model. One of the significant benefits of neural network

technologies is the scalability, therefore it is intuitive to extend the modelling

architecture to model multiple point of interest time series simultaneously. The

development of such a model may provide interesting challenges regarding the

encoding of the pixel locations relative to the environmental effects, and provide

a modelling challenge in capturing the difference in extent of environmental and

loading effects at different points on an asset.

A number of potentially beneficial features of LSTM neural networks are not

explored within the work. The cable-sealing end system is framed as consisting

of multiple inputs and a single output, which corresponds to the thermal output

as viewed through a thermal image. It is possible to manipulate the configu-

ration of the neural network in order to receive more inputs and generate more

outputs. The first potential utilisation of this would be to explore modelling mul-

tiple points of interest in a scene with a single model. This would improve the

data pipeline, allow a model to attempt to characterise the different responses of

different temperatures but also conceivably result in a longer training time and

overall worse performance. The second potential utilisation of the technology

would be to generate output sequences, corresponding to multiple-step forecasts,

rather than single step forecasts. This could be useful in specific condition mon-

itoring applications, for example, if a model were generated using data collection

in a substation on a temporary basis, and on inspection, short-term data collec-

tion is completed and used to generate forecasts which are compared to the real

output.

The fact that there are many variables contributing to the model, and that

the influence of these variables is opaque to the user due to the form of the

LSTM neural network, is a limitation. The network configuration selected for

these experiments, with 30 lags of each input and 300 LSTM units, has 371,101

trainable parameters. It is possible to explore the effects of the inputs by generat-

ing artificial data, but this is non-trivial when compared to traditional regression

analysis.

Given that the fault detection operation, that the models generated in this

chapter are generated for, is not completed, it is difficult to interpret whether

the models are suffiecient to be used in this manner. The models appear to

perform well but this cannot be categorically confirmed without extending the

work. Additionally, collecting data from faulty cable-sealing ends is inherently
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difficult, as it is often not known whether a unit is faulty until failure has occurred.

As discussed in Chapter 3, the range of thermal variation in the scenes imaged by

the various cameras could be exploited to provide false ‘faulty’ data, in order to

test the model-based fault detection method implementations, determining their

sensitivity to the data and model performance. This is a strongly recommended

body of future work and is a natural progression of what is presented in this

chapter.

Further recommendations include extensive exploration of multiple time-series

modelling techniques, with wide-ranging configuration testing, using the data

acquired during this work. There are a wide range of available methods and

there may be opportunities to explore modelling the data with greater ability

to deterministically understand the influence of the input variables, for example,

with models with significantly less parameters.

Other supplementary bodies of work could explore the issue of sensor coverage

in large complex substations, analysing the cost and benefit of multiple static

sensors as opposed to a mobile robotic platform. A potentially interesting area

to explore would be how the directional influence of environmental effects should

influence the optimal path planning of such a robotic inspection platform, for

example: should an asset be observed from the north, in shade, for the best

signal to noise ratio?

Finally, the work could be expanded into other condition monitoring sensing

modalities. Partial discharge monitoring is a significant aspect of condition mon-

itoring practise, and may generate useful insight if monitored in the long-term.
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Appendix A

Software API

A.1 GitHub

A link to the API utilised in pre-processing and modelling the data during the

work is provided: https://github.com/astraekr/thermal_preprocess
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