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EGF  Epidermal growth factor 

EHD1  EH domain-containing protein 1 
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ELISA  Enzyme-linked immunosorbent assay 

Emax  Maximum drug effect 

ESI  Electrospray ionisation 

ESR  Erythrocyte sedimentation rate 

EQ-5D  EuroQol Five-Dimension Scale 

eQTL  Expression quantitative trait locus/loci 
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F12  Coagulation factor XII 

FcγR  Fc-gamma receptor 

FcRn  Neonatal Fc receptor 

FDA  United States Food and Drug Administration 

FDR  False discovery rate 
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FLNB  Filamin-B 
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GC  Gas chromatography 
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GM-CSF Granulocyte-macrophage colony-stimulating factor 
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GRB7  Growth factor receptor-bound protein 7 

GRP78  78 kDa glucose-regulated protein 
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HADS  Hospital Anxiety and Depression Scale 

HAPLN1 Hyaluronan and proteoglycan link protein 1 

HAQ  Health Assessment Questionnaire 
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HDGF  Hepatoma-derived growth factor 
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HPX  Haemopexin 
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HSP  Heat shock protein 
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MCI  Mild cognitive impairment 
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MINPP Multiple inositol polyphosphate phosphatase 1 
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PADI  Protein-arginine deiminase 
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PF4  Platelet factor 4 
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PHIP  PH-interacting protein 
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popPK  Population pharmacokinetic 
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PPV  Positive predictive value 
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RBP4  Retinol-binding protein 4 

RCT  Randomised clinical trial 
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REC  Research ethics committee 
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RIA  Radioimmunoassay 
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RRBP1 Ribosome-binding protein 1 
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S100A9 Protein S100-A9 

S100A12 Protein S100-A12 

SAA  Serum amyloid A protein 
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SBDC  Stoller Biomarker Discovery Centre 
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SCFD1 Sec1 family domain-containing protein 1 

SCX  Strong cation exchange 

SD  Standard deviation 

SDS  Sodium dodecyl sulfate 

SE  Standard error 

SEPP1  Selenoprotein P 

SF-36  Medical Outcomes Survey 36-item Short Form 

SHH  Sonic hedgehog protein 

SLC4A1 Band 3 anion transport protein 

SLE  Systemic lupus erythematosus 

SMOTE Synthetic minority oversampling technique 

SNP  Single-nucleotide polymorphism 

SOD  Superoxide dismutase 

SpA  Spondyloarthritis 

SRM  Selected reaction monitoring 

SSc  Systemic sclerosis 

STUB1 E3 ubiquitin-protein ligase CHIP, also known as CO7 

SWATH-MS Sequential window acquisition of all theoretical mass spectra 

t1/2  Half-life 

TAGLN2 Transgelin-2 

TBG  Thyroxine-binding globulin 

TCPH  T-complex protein 1 subunit η, also known as CCT7 

TFRC  Transferrin receptor protein 1 

TGF  Transforming growth factor 
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TLR  Toll-like receptor 

TMDD  Target-mediated drug disposition 

TNC  Tenascin 

TNF  Tumour necrosis factor 

TNFi  Tumour necrosis factor inhibitor 

TNFRSR1A Tumour necrosis factor receptor superfamily member 1A 

TOF  Time-of-flight 

TPM3  Tropomyosin α-3 chain 

TPP2  Tripeptidyl-peptidase 2 

tsDMARD Targeted small molecule disease-modifying anti-rheumatic drug 

TTR  Transthyretin 

UBE2E1 Ubiquitin-conjugating enzyme E2 E1 

UGGT1 UDP-gluocose:glycoprotein glycosyltransferase 1 

UK  United Kingdom 

UniProt Universal Protein Resource 

USA  United States of America 

V/VD  Volume of distribution 

VAS  Visual analogue scale 

VCL  Vinculin 

VDBP  Vitamin D binding protein 

VGFR1 Vascular endothelial growth factor receptor 1 

VIM  Vimentin 

VPC  Visual predictive check 

v/v  Volume per volume 

VWF  von Willebrand factor 

WHO  World Health Organisation 

w/v  Weight per volume 

XML  Extensible markup language 

XRCC  X-ray repair cross-complementing protein 

YWHAH 14-3-3 protein η 

ZNF169 Zinc finger protein 169 
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Abstract 

Background 

The disease course of rheumatoid arthritis (RA) varies widely between patients, and various 

therapeutic options are available. However, none are universally effective, all have a risk of 

side-effects and currently, all are prescribed on a “trial and error” basis, based on escalating 

cost and not precision medicine targeted to patient endotype. Previous work has shown that 

circulating drug concentration levels of tumour necrosis factor inhibitors (TNFi, a class of 

drug used to treat RA and other autoimmune conditions) are associated with response to 

treatment. This thesis hypothesised that biological factors, such as protein expression, 

contribute to variability in circulating drug levels and treatment response to biologic agents 

in patients with RA. 

 

Methods 

A population pharmacokinetic (popPK) study was carried out in patients with RA starting 

either Amgevita or Benepali, which are biosimilar agents for the TNFi agents adalimumab 

and etanercept, respectively. Model parameter estimates from the popPK study were used to 

simulate altered dosing intervals of these drugs. Proteomics data was obtained on all patients 

in the popPK study, as well as an additional cohort of patients with RA starting etanercept, 

using Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS). 

Protein expression was regressed against RA clinical outcome measures to determine any 

associations between protein expression and treatment response. Protein expression was also 

analysed alongside paired genotype data to determine whether any protein quantitative trait 

loci (pQTLs) existed. Significant pQTLs were then used to construct a polygenic risk score 

(PRS) for treatment non-response. 

 

Results 

16 patients were recruited to the popPK study; PK parameters were successfully estimated 

and used to simulate the effect of altered dosing intervals. SWATH-MS was used to generate 

proteomics data in serum samples from 180 selected patients commencing etanercept 

recruited to the Biologics in RA Genetics and Genomics Study Syndicate, a prospective 

multi-centre UK-based observational cohort. Proteomics analysis identified 52 proteins 

associated with RA clinical outcome measures. A pQTL analysis was carried out using 147 

patients from the etanercept sub-cohort. 104 pQTLs were identified, 14 of which overlapped 

with significant proteins from the regression analysis. A PRS was generated using significant 

pQTLs, but was not found to be statistically significantly predictive of poor treatment 

response. 

 

Conclusions 

The popPK study has provided proof-of-concept for future personalised dosing trials in 

patients with RA starting TNFi. This thesis has identified several proteins associated with 

RA clinical outcome measures that also have a genetic basis. Findings require external 

validation with replication studies in an independent cohort, but once confirmed, this could 

pave the way for future biomarker and/or drug target development. 
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Lay abstract 

Rheumatoid arthritis (RA) is a long-term disease affecting the joints. It causes pain, stiffness 

and swelling. In severe cases, it can damage joints and, if not treated in a timely and effective 

manner, can lead to lasting disability. 

 

Patients with active RA can be treated with drugs called tumour necrosis factor inhibitors 

(TNFi). These work well in up to 60 – 70% of patients. However, TNFi are expensive and 

incur significant cost to the National Health Service (NHS). The aim of this work is to better 

select patients more likely to respond to TNFi and avoid over-treating patients unlikely to 

respond. 

 

Two types of TNFi drug are being studied in this thesis: adalimumab (also known as 

Amgevita) and etanercept (also known as Benepali). All patients receive the same dose: an 

injection under the skin every 14 or 7 days, respectively. Previous research has shown that 

after receiving these drugs, the amount detected in the blood varies amongst patients. 

Patients with lower levels of drug in their blood are less likely to respond to treatment. 

 

The relationship between the level of drug found in each patient’s blood and their response 

to treatment has not been thoroughly explored. It is possible that changing the frequency of 

injections could influence drug levels in the blood and hence, the likelihood of a patient 

responding to treatment. 

 

As part of the work for this thesis, I measured levels of Amgevita and Benepali in the blood 

of patients first starting these drugs. I then used statistical methods to analyse the change in 

drug levels over time. Using this information, I developed a formula to predict how other 

patients will hypothetically respond to treatment using different injection frequencies of 

Amgevita and Benepali. In future, this will allow the frequency and dose of the drug given 

to patients to be tailored to treat their arthritis as quickly and effectively as possible, while 

also reducing the risk of side-effects. 

 

I also investigated factors that might cause drug levels to vary between patients. I measured 

the amounts of naturally-occurring proteins in the blood of patients with RA. Proteins in the 

blood can bind drugs and reduce their effectiveness, and this could explain why different 

patients respond differently after being given the same dose of a drug. I used mathematical 

techniques to determine whether a link exists between any of these proteins and a patient’s 

response to a drug. 

 

I hope that as a result of this research, it will be possible to individualise the frequency that 

each patient receives their drug, but this will first need to be tested in clinical trials. It may 

also be possible to predict whether a patient is likely to respond to a specific drug, based on 

the levels of different proteins measured in their blood. If they are unlikely to respond, they 

can instead be better treated with an alternative. 

 

TNFi are prescribed in many long-term conditions, not just RA. The findings of this thesis 

could allow patients with a range of conditions to be treated more effectively. By tailoring 

each patient’s treatment, their time in hospital will be reduced and their outcomes improved. 

At the same time, the financial and time pressure on the NHS will be reduced, freeing up 

capacity that will benefit patients elsewhere in the healthcare system. 
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CHAPTER ONE: INTRODUCTION 

 

 

 

Rheumatoid arthritis (RA) is a chronic autoimmune arthritis that also has multisystem 

involvement. Active disease of the joint is mediated by inflammation at the synovium; the 

aim of pharmacological therapy is to control this inflammation before joint damage and 

subsequent irreversible disability occurs1. There is a wide variability in disease course 

between individual patients with RA, and whilst various different therapeutic agents exist to 

treat active inflammation, none are effective in all patients, all have risk of side-effects and 

currently, are all prescribed on a “trial and error” basis in clinical rheumatology practice2. 

Treatment is usually initiated with conventional synthetic disease-modifying anti-rheumatic 

drugs (csDMARDs), with patients who do not respond to these agents who have moderate-

to-high disease activity being escalated onto more costly biologic medications (biologics, 

bDMARDs) or targeted synthetic medications (tsDMARDs)3 4. 

 

Biologics are prescribed in several chronic autoimmune conditions, as well as in RA, and 

prescription of these agents pose a significant cost burden on the National Health Service 

(NHS) in England5. Adalimumab and etanercept are tumour necrosis factor inhibitors (TNFi, 

a class of bDMARD) commonly used in the treatment of RA; they are the first and third 

agents, respectively, costing the most to the NHS in England, albeit for all indications, not 

just RA. In 2017/8, the total cost of adalimumab to the NHS in England was £494.5m and 

the total cost of etanercept was £219.8m5. By the following financial year 2018/19, £109.7m 

and £36.1m had been saved by switching to biosimilar versions of these respective 
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medications, but these agents still represent a significant cost to the NHS6. Biosimilar 

medicines are biological agents with similar properties to an originator medicine which has 

come off patent; these properties include biological activity, efficacy, safety and quality7. 

Biosimilars tend to be at a lower cost than the originator drug, and prescription of biologic 

agents is anticipated to increase as reduced cost will make access to these drugs less 

prohibitive. In fact, guidance from the United Kingdom (UK)-based National Institute for 

Health and Care Excellence (NICE) has recently been updated to lower the disease activity 

threshold at which bDMARDs can be commenced in patients with RA8, which reflects the 

lower cost of biosimilar versions of these agents. 

 

Patients receive a standardised dosing regimen of biologics such as adalimumab and 

etanercept, yet in up to 40% of patients with RA, inflammation remains inadequately 

controlled, either due to primary inefficacy or loss of response9 10. There is large variability 

in circulating drug levels between patients, and it has previously been reported that drug 

levels correlate with subsequent clinical improvement11. Some of this effect is accounted for 

by the presence of neutralising anti-drug antibodies (ADAbs), which occur with monoclonal 

TNFis such as adalimumab. However, the presence of ADAbs does not entirely explain poor 

response to a drug or variation in drug levels observed. Furthermore, no neutralising 

monoclonal antibodies have yet been reported with etanercept, so other factors must 

contribute to variability in drug levels. 

 

Multiple factors are likely to influence TNFi pharmacokinetic (PK) parameters, such as drug 

clearance (CL), including disease/treatment-related variables, heritable factors and 

potentially other demographic patient-specific variables. Improved knowledge of the 

contribution of additional factors underpinning drug level differences and disease activity 

will be required to better understand the dose-concentration-response relationship in patients 

with inflammatory conditions such as RA that are treated with adalimumab and etanercept. 

Ultimately, a better understanding of the variables determining drug concentration could 

lead to a greater personalisation of dosing to optimise efficacy. 

 

All TNFi agents are administered at a set dose and a set interval between doses. Given that 

patients respond heterogeneously to TNFis, it could be hypothesised that different patients 

might require higher or lower doses to achieve therapeutic levels at initiation of drug. 

Analysis of drug levels over time in a set of real-world RA patients can be used to develop 

a population (pop)PK model, which will aid understanding of how patients respond to drugs 
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at initiation. This popPK model can be used to simulate alternative dosing intervals, which 

could eventually lead to a clinical trial of personalised dosing intervals in the future. Patients 

receiving their drug at wider time intervals have obvious cost-saving benefits for the NHS. 

In addition, patients who require narrower dosing intervals may also benefit, as they might 

be less likely to experience disease flares and further encounters with healthcare services 

prior to achieving disease control following the introduction of a bDMARD; this also holds 

the potential for NHS cost savings. Finally, higher drug levels of TNFi agents have been 

shown to increase the risk of infection in patients with RA12, so personalised dosing intervals 

could potentially minimise exposure and reduce this risk. 

 

This work centres on the exploration of factors underpinning drug CL and treatment 

response, as well as whether these factors can be integrated into popPK modelling and 

simulation of personalised dosing intervals. The future aim is to maximise both treatment 

response to bDMARD agents, as well as their cost-effectiveness. 

 

1.1. Clinical features of RA 

RA is a chronic autoinflammatory condition associated with autoantibodies to 

immunoglobulin (Ig) G (i.e. rheumatoid factor, RF) and citrullinated proteins (i.e. anti-

citrullinated protein antibodies, ACPA)13. Both disease pathogenesis and manifestations are 

heterogeneous. The disease predominantly affects the joints, hence its nomenclature as an 

arthritis, but the condition also has systemic manifestations. In addition, a proportion of 

patients with RA will be seronegative for the above autoantibodies, introducing another 

element of heterogeneity to the patient population. Furthermore, previous studies have 

demonstrated that patients with similar clinical phenotypes of RA have varied infiltrates and 

cytokine/gene profile expression at the synovium14-16. This disease heterogeneity means that 

RA patients can be classified into different endotypes; a disease endotype represents a 

subtype of a condition that can be defined by distinct functional and/or physiological 

mechanisms. Karsdal et al proposed that different RA endotypes are likely to respond in 

different ways to therapies with varying modes of action, lending RA to a precision medicine 

approach17. However, current RA treatment is not targeted by endotype, which could account 

for varied treatment response in this patient cohort. 

 

Diagnosis of the condition is led by the rheumatologist and no set diagnostic criteria exist; 

instead, classification criteria can inform clinical diagnosis and aid stratification of patients 

with similar characteristics for the purpose of clinical research. Classification criteria have 
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evolved over several years, moving from those defined by the American College of 

Rheumatology (ACR) in 198718 to the joint ACR/European League Against Rheumatism 

(EULAR) criteria 201019 in more recent years. 

 

The cardinal clinical feature of RA is synovial inflammation causing joint swelling, usually 

accompanied by early morning joint stiffness and tenderness on palpation. The pattern of 

joints affected by RA is different to those of other inflammatory arthritides; these include: 

the metacarpophalangeal and proximal interphalangeal joints of the hands and feet, the 

wrists, the elbows, the shoulders, the knees and the hips20. Whilst these joints include those 

in the periphery, RA is striking in its avoidance of the distal interphalangeal joints and the 

axial skeleton, with the exception of the atlanto-axial joint in the cervical spine. RA is 

aggressive in its destruction of joints, with subsequent inflammatory breakdown of cartilage 

and damage to articular and periarticular bone if left untreated. 

 

Extra-articular manifestations of RA occur alongside systemic and articular inflammatory 

response. Active disease within the joints and beyond is associated with an increased acute-

phase response and raised inflammatory markers such as erythrocyte sedimentation rate 

(ESR) and C-reactive protein (CRP)20. Systemic inflammation can manifest in the eyes, 

lungs, heart and other organs, as well as rheumatoid nodules, vasculitis and secondary 

Sjögren’s syndrome. In addition, RA is associated with increased cardiovascular mortality 

and morbidity21, as well as with interstitial lung disease22. The aetiology of extra-articular 

manifestations is unknown, although there is an association with high RF titres23, smoking24, 

early disability24, age25 and comorbidity25. The frequency of extra-articular manifestations 

of RA do appear to have decreased in incidence over time26, and this could be related to 

modern practices of treating RA in a timely manner in order to control disease activity as 

quickly as possible. However, while extra-articular manifestations have declined, the 

incidence and prevalence of RA remain stable26. 

 

 1.2. RA prognosis and the role of autoantibody measurement 

Multiple concurrent processes are involved in RA pathogenesis, including T cell 

autoreactivity and formation of autoantibodies27. Two of these autoantibodies are the 

aforementioned RF and ACPA; both are almost ubiquitously tested in clinical practice as 

they aid both diagnosis and determining prognosis, and as such, testing of both form part of 

both European and British guidelines for management of RA28 29. When considered in the 

healthy population, ACPA was found to be measured as positive in 0.8% of a Dutch 
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population of 40,136 people30. RF has been estimated as more prevalent than ACPA, ranging 

from positive in 5% of healthy 50-year-olds to 10-25% of healthy 70-year-olds31. 

 

Seropositivity for both ACPA and/or RF is associated with a poorer prognosis in the long-

term in patients with RA32, and this fits in with the finding that increased RF titres are 

associated with extra-articular manifestations as well23. A primary care inception cohort of 

inflammatory arthritis patients recruited between 1990 and 1994 demonstrated that treatment 

was not as beneficial in ACPA-positive patients versus seronegative patients33. Furthermore, 

RF and ACPA seropositivity are also associated with reduced response to TNFi34. Given this 

association with worse long-term disease outcomes and more difficulty in achieving disease 

control, it is vital to treat seropositive RA patients as quickly as possible with rapid escalation 

of treatment to prevent adverse sequelae. 

 

Whilst ACPA and RF are known to correlate with long-term outcomes in RA, conflicting 

evidence also exists in the literature. In a UK-based multi-centre study involving both early 

and established RA patients, ACPA seropositivity was found to be associated with improved 

treatment response and with reduced odds of poor treatment response35. A subsequent larger 

study within the same cohort found that patients defined as having “poor prognosis” prior to 

commencing treatment on bDMARDs (defined as ACPA ± RF seropositivity in the presence 

of radiographic erosions) had lower disease activity after treatment36. One explanation for 

these findings could be that patients with known ACPA/RF seropositivity are treated more 

aggressively because of prior knowledge of these poor prognostic indicators. 

 

Understandably, ACPA and RF are the most investigated autoantibodies in RA, and are even 

included in classification criteria to aid diagnosis. However, various other autoantibodies 

have been identified, and some even are associated with prognosis. For example, anti-

carbamylated (anti-CarP) antibodies have been found to be associated with increased disease 

severity in RA patients seronegative for ACPA37. The search for predictors of prognosis 

and/or treatment response in RA patients is ongoing, and of particular interest would be in 

patients who are ACPA/RF seronegative. Many other autoantibodies exist, both citrullinated 

and non-citrullinated, yet their role in RA, its subtypes and correlation with treatment 

response have not yet been explored. Most published work has utilised the commercially-

available CCP2 ELISA to determine ACPA seropositivity, but this excludes other 

citrullinated autoantibodies not detected by the assay. The first generation ACPA assay, 

CCP1, contained only citrullinated peptides derived from human filaggrin; the second 
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generation CCP2 assay also includes further epitopes that mimic true conformational 

epitopes, selected from pre-existing libraries generated of citrullinated peptides38. Therefore, 

by no means do either CCP1 or CCP2 assays cover the full spectrum of citrullinated peptides 

that could potentially be expressed in patients with RA. Third generation CCP3 assays 

provide further citrullinated peptide coverage still, but the use of these assays is currently 

not as widespread as CCP2. 

 

 1.3. Measures of treatment response in RA 

As mentioned previously, the principles of RA treatment centre on controlling RA-

associated inflammation to prevent joint damage and other sequelae of the disease. The aim 

is to achieve clinical remission or low disease activity; this section outlines some of the 

methods used to measure disease activity and hence, treatment response to RA medication. 

If a patient is deemed not to have responded to a drug, treatment is escalated from 

csDMARD(s) to bDMARD or tsDMARD in order to “treat to target,” the target being a 

measure of RA disease activity that is below a pre-defined level. One such measure of 

disease activity that is commonly employed in the UK is the Disease Activity Score (DAS)39. 

 

Prior to the development and implementation of the DAS, initiation of medication for RA 

was largely based on individual clinicians’ assessment of disease activity, and this was 

shown to have a wide variation between rheumatologists40. In an attempt to formalise disease 

activity assessment as well as provide a standardised tool to compare efficacy across clinical 

trials, van der Heijde et al developed the DAS from a prospective cohort of 113 patients, and 

this was based on the decisions made by each patient’s treating physician on treatment 

escalation in order to achieve disease control39. Treatment escalation in this study from 1990 

reflected available csDMARD therapeutic options at that time: 

 Step one: hydroxychloroquine or sulfasalazine. 

 Step two: intramuscular (IM) gold. 

 Step three: D-penicillamine, azathioprine or methotrexate. 

 

Prescribing practices have significantly evolved, particularly since the development and 

introduction of bDMARDs and tsDMARDs into common prescribing practices, yet 

treatment decisions continue to be made using the DAS. The DAS was developed as a multi-

variable score as the authors attributed multiple variables to contribute to active RA, and the 

final variables selected were: the Ritchie articular index (a measure of joint tenderness)41, 44 

swollen joint count (indicating active synovial inflammation, synovitis), ESR (indicating 
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systemic inflammation) and patients’ assessment of global health using a visual analogue 

scale (VAS), in order of descending importance. 

 

The DAS has been further simplified to 28 joint counts (DAS28, both tender and swollen 

joints) for clinical utility, and was found to be as valid as the more extensive 44-joint DAS42. 

Subsequent definitions have substituted CRP for ESR43 or have shown that VAS may be 

omitted42, although different definitions cannot be used interchangeably44-46. 

 

However, the DAS has been shown to have limitations. DAS28 remission (DAS28 < 2.6) is 

the recommended primary outcome for trials of agents other than non-steroidal anti-

inflammatory drugs (NSAIDs)47, yet Cohen et al reported that a proportion of patients in 

sustained DAS remission studied over 5 years demonstrated evidence of radiographic 

progression, indicating ongoing disease activity48. Data from the Norfolk Arthritis Register 

(NOAR), a primary care inception cohort study, showed that HLA-DRB1 risk haplotypes 

for RA (defined by amino acids at positions 11, 71 and 74) were predictive of radiographic 

damage49. A valine amino acid at position 11 was found to be associated with the SJC and 

acute phase reactant components of the DAS28, but not tender joint count (TJC; VAS was 

not assessed in this study)50; these findings were validated in the independent Early RA 

Study cohort. Similarly, Baker et al reported that of the original DAS components, only 

swollen joint count (SJC) and acute-phase reactant (CRP/ESR), were independently 

associated with synovitis detected using magnetic resonance imaging (MRI)51 i.e. only the 

objective components of the DAS were related to radiographic evidence of synovitis. 

 

TJC is a subjective measure of disease activity as it is based on patient reporting during 

examination and can be falsely raised in conditions such as osteoarthritis and fibromyalgia 

(i.e. not caused by an underlying inflammatory condition), but it is given the strongest 

weighting in the composite DAS28. Hensor et al sought to overcome this subjective element 

by re-weighting the DAS28 to include only SJC and CRP; this was based on ultrasound 

synovitis data from multiple RA cohorts and was validated in the independent NOAR 

cohort52. This two-component DAS28 (2C-DAS28) showed superior association with both 

acute radiographic synovitis, as well as long-term radiographic damage, when compared to 

the conventional four-component DAS28. 

 

Despite these limitations, the DAS28 remains the mainstay of clinical decisions regarding 

dose and treatment escalation. Other disease activity assessment scores have been developed 
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(such as the Simplified Disease Activity Index, SDAI53, and the Clinical Disease Activity 

Index, CDAI54), but criteria determining treatment response, such as those developed by 

EULAR55 56, utilise the DAS28.  

 

The DAS28 provides a contemporaneous measure of a patient’s disease activity at any one 

time, but response criteria have been developed to assess the effectiveness of medication 

over time. The EULAR response criteria55 56 are summarised in Table 1.1. This measure was 

developed for use in medication trials to determine efficacy of the studied agent, and not for 

routine clinical decision-making. Another commonly used set of criteria for measuring 

treatment response in trials are the ACR improvement criteria57. 

 

Table 1.1. The EULAR response criteria using the DAS28 (adapted from Fransen and van 

Riel58). 

DAS28 at endpoint Improvement in DAS28 from baseline 

≥1.2 >0.6 and ≤1.2 ≤0.6 

≤3.2 Good   

>3.2 and ≤5.1  Moderate  

>5.1   None 

 

It is important to measure response to treatment in patients with RA to decide whether to 

escalate therapy or not, particularly given the high cost of many second-line and beyond 

agents. However, measurement of disease activity (and subsequently treatment response) is 

imperfect and may not reflect underlying inflammation and biological processes. Disease 

activity measurements also have an element of subjectivity, due to interpretation by both 

patient and assessor. Unfortunately, it is not practical to utilise more objective measurements 

of synovitis in the day-to-day clinic; time pressures preclude routine ultrasound scanning of 

all patients having a disease activity assessment, and magnetic resonance imaging (MRI) 

scanning patients regularly would be costly and time-consuming. While currently used 

disease activity measures are imperfect for correlation with active synovitis, they provide 

the best approximation of disease course and treatment response to the physician. 

 

This is not the only imperfect facet of the treatment and management of RA: as mentioned 

in the previous section, the prediction of prognosis and treatment response has not been fully 

explored or optimised. Testing of ACPA and RF is well-documented and researched, but 

measurement does not result in all patients being streamlined onto the most appropriate 
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treatment. Up to 40% of patients starting bDMARDs for RA still have uncontrolled disease 

(due to both primary and secondary inefficacy)9 10, so there is clearly a disconnect between 

known prognostic markers and personalisation of treatment. However, it should be noted 

that ACPA/RF seropositivity were not included as covariates in the trial conducted by 

Weinblatt et al9, and only RF seropositivity (and not ACPA) was included as a covariate in 

the analysis of the study by Finckh et al10, so serology may not have contributed to treatment 

non-response. 

 

Given that prior knowledge accepts that RF, ACPA and anti-CarP antibody seropositivity is 

associated with different RA endotypes, it is reasonable to hypothesise that there could be 

other serological markers that could predict disease prognosis and/or treatment response to 

certain therapeutic agents. Along with more representative measurement of disease activity 

and hence, treatment response, a better understanding of the utility of precision medicine in 

RA also requires development. 

 

 1.4. Predictors of treatment response in RA 

Just as prognostic markers have been identified in RA patients, so too have clinical and 

serological predictors of treatment response to bDMARDs. 

 

1.4.1. Clinical predictors of treatment response 

Clinical predictors of treatment response can include patient characteristics, behaviours and 

modifiable risk factors. Some of these modifiable risk factors have been demonstrated to be 

associated with treatment response. For example, cigarette smoking has been established as 

a risk factor for developing RA59, and it has also been shown to affect response to 

bDMARDs. Results from a Swedish registry of bDMARD use in RA patients found that 

current smoking status was a negative predictive factor for achieving EULAR response 

(although it is not clear whether this includes good response, or both moderate and good 

response)60. The same study also found that current smoking status was associated with 

poorest drug survival in the cohort studied. 

 

A large multi-centre observational UK-based study using the British Society for 

Rheumatology Biologics Register for RA (BSRBR-RA) examined RA patients refractory to 

bDMARDs, which the authors defined as switching to a third class of bDMARD61. Patient-

related factors at baseline associated with disease refractory to bDMARDs included female 

gender, younger age, shorter disease duration, higher patient VAS, higher Health 
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Assessment Questionnaire (HAQ) score, current smoking status, obesity and worse social 

deprivation. Furthermore, another study from the BSRBR-RA found that symptoms of 

depression (as identified from patient reporting of a history of depression or baseline 

questionnaires, being either the Medical Outcomes Survey 36-item Short Form (SF-36) or 

the EuroQol five-dimension scale (EQ-5D)) with reduced odds of achieving good EULAR 

response after 12 months of treatment62. 

 

One mechanism for reduced treatment response that has been explored is adherence to 

medication. The World Health Organisation (WHO) defines adherence as: “The extent to 

which the patient’s behaviour… [for example] taking medication… corresponds with agreed 

recommendations from a health-care provider”63. Hence, one could make the assumption 

that reduced adherence to drug could result in reduced treatment response. Bluett et al found 

that in a prospective cohort of 392 patients with RA on a mixture of bDMARDs, 27% self-

reported non-adherence to medication; non-adherence was associated with worse treatment 

outcomes at 6 months64. Furthermore, in a systematic review of RA patients on methotrexate 

(a csDMARD), non-adherence to drug as defined through patient self-reporting was 

associated with reduced treatment response, as well as radiographic evidence of joint 

erosions65. 

 

On a similar note, Jani et al found that after 3 months of treatment with adalimumab, both 

ADAbs and low drug levels were significant predictors of poor EULAR response at 12 

months11. In the same study, etanercept levels were not associated with EULAR response 

following adjustment for population covariates. A subsequent study of RA patients starting 

certolizumab (a bDMARD) found that drug levels were associated with achieving EULAR 

response at 12 months, and the presence of ADAbs was significantly associated with reduced 

drug levels over a 12-month follow-up period66. Following adjustment for confounders, 

ADAb levels and patient self-reporting of adherence to drug were associated with 

certolizumab drug levels. 

 

1.4.2. Serological predictors of treatment response 

Whilst ACPA and RF are known prognostic indicators in RA, they have also been reported 

to be predictive of treatment response in several studies. For example, seropositivity for RF 

and ACPA have been found to be associated with reduced response to TNFi drugs34. 

Conversely, RF seronegativity was associated with non-response to methotrexate in a cohort 

of bDMARD-naïve patients67. However, there is evidence that autoantibody reactivity exists 
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in seronegative RA patients as well. Vordenbäumen et al identified reactivity to three 

autoantibodies in two independent cohorts, being N-acetylglucosamine-1-phosphate 

transferase, gamma subunit (GNPTG), heterogeneous nuclear ribonucleoprotein A1-like 1 

(HNRNPA1) and insulin-like growth factor binding protein 2 (IGFBP2)68; although these 

autoantibody reactivities were not compared to treatment outcome measures, this 

demonstrates proof-of-concept of the wide scope for autoantibody discovery beyond ACPA 

and RF. 

 

As part of preliminary work to this thesis, in a cohort of 286 RA patients starting either 

adalimumab or methotrexate, a proportion of ACPA-negative patients were found to be 

seropositive for citrullinated autoantibodies that were not otherwise detected on a 

commercial CCP2 assay (Axis-Shield Diagnostics Ltd, Dundee, UK)35. This assay is used 

to determine whether patients are seropositive for ACPA. Autoantibodies to citrullinated 

cleavage and polyadenylation specificity factor subunit 6 (CPSF6) were associated with 

worsening DAS28 at three and six months after initiation of treatment; CPSF6 is involved 

in the maturation of pre-mRNA into functional mRNA69. Conversely, autoantibodies to 

citrullinated DnaJ homologue subfamily B member 1 (DNAJB1) were associated with 

improved DAS28 at three and six months; DNAJB1 is involved in the heat shock response 

and interacts with heat shock protein (HSP) 7070. Citrullination is a post-translational 

modification constituting the conversion of the amino acid arginine to citrulline, and the 

citrullinated forms of autoantibodies described above may represent finer specificities of 

ACPA outwith the scope of commercial assays, such as CCP2. These finer ACPA 

specificities appear to be associated with treatment response, and suggest that discovery 

studies may identify other antibodies or proteins that may predict response to certain 

therapeutic agents. 

 

Proteomic analysis of samples can be carried out using a variety of detection and analysis 

techniques, which will be detailed in Section 1.5. Each strategy has its strengths and 

weaknesses and can be applied in a variety of situations, as appropriate. Rapid development 

of mass spectrometry (MS) technology in the last two decades has been instrumental in a 

plethora of protein studies that have been published, meaning that studies to identify protein 

biomarkers of treatment response in RA are still a developing field, given how recently some 

MS techniques have been developed and validated. Discovery proteomics studies for 

biomarkers of treatment response are attractive, given that proteins are stable and easily 

quantifiable, they can be measured in a variety of biological components (e.g. blood and its 
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components, synovial fluid, saliva, cerebrospinal fluid etc), and many established NHS 

laboratory techniques routinely use proteomics methods such as enzyme-linked 

immunosorbent assays (ELISAs) to guide clinical management. Additionally, proteins 

capture post-translational modifications (PTMs), giving an advantage over other methods, 

such as genetics or transcriptomics. The next section will address the relative advantages 

and disadvantages of various proteomics techniques, in order to then outline the state of 

research in biomarkers of treatment response in patients with RA. 

 

 1.5. Proteomics as a discipline for biomarker discovery 

The term “proteomics” was originally coined in 1997 as a portmanteau of the words 

“protein” and “genomics”71. The discipline of proteomics is concerned with identification of 

the components of the proteome and the function of each form of a protein. The field has 

developed exponentially due to advances in both laboratory techniques and technologies, as 

well as methods of bioinformatics data analysis72. 

 

Methods such as ELISAs and multiplexed immunoarrays (e.g. Luminex) are widely 

employed in proteomics studies. These methods rely on candidate protein studies with 

targets that have been pre-identified either through hypothesis-driven selection or a 

discovery study. Because only a limited number of proteins can be tested for during any one 

ELISA experiment and the focus of this PhD is on high-throughput discovery proteomics, 

only these latter techniques will be outlined here. However, the ELISA method has been 

briefly mentioned here because many shotgun proteomics studies subsequently use ELISAs 

and similar assays in the validation of the most associated proteins identified from MS. 

Further downstream, as previously alluded to, ELISAs may also play a role in measurement 

of biomarkers in patients prior to commencing a therapeutic agent, or early on in treatment, 

in order to predict future efficacy. 

 

Strategies for large-scale proteomics analyses can be divided into “bottom-up,” “top-down” 

and “middle-down” methods72. The bottom-up approach is concerned with lysed protein 

peptides, whereas intact proteins are measured in top-down proteomics. Middle-down 

methods are a combination of top-down and bottom-up methods: larger peptides are 

analysed than in bottom-up methods as a result of limited proteolysis or more selective 

proteases. These strategies are summarised in Figure 1.1. 
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Figure 1.1. Proteomics strategies: bottom-up versus middle-down versus top-down. Adapted 

from Zhang et al72 
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database searching. 

 

1.5.1. Top-down proteomics 

Top-down proteomics is concerned with the analysis of whole, intact proteins, so it is suited 

to detecting PTMs and determining protein isoforms. PTMs are crucial in the function and 
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be associated with increased antibody reactivity in patients with RA75, and as previously 

discussed, ACPAs are almost universally tested to confirm diagnosis and inform prognosis 

of RA76. 

 

Top-down proteomics has proved successful in quantifying proteins to over 200kDa in 

size77. For example, Tran et al were able to identify more than 3,000 protein species created 

by PTMs, ribonucleic acid (RNA) splicing and proteolysis using a four-dimensional 

separation system78. However, the top-down approach does have limitations in comparison 

with bottom-up methods, as the workflow for fractionation, ionisation and gas-phase 

fragmentation can be complicated and time-consuming, leading to a lower throughput than 

bottom-up methods72. These methods are essential for ensuring accurate quantification of 

proteins, but limit the capacity of sample analysis. 

 

 1.5.2. Multiplexed protein quantification techniques 

A form of top-down proteomics exists that does not rely on MS technology, namely 

proprietary multiplexed protein quantification techniques. These techniques rely on binding 

to whole proteins and subsequent quantification via various technologies. Protein 

quantification can be as accurate as using an ELISA, and multiplexing means that sometimes 

thousands of known proteins can be measured at once in a single sample. 

 

SomaLogic, a biotechnology company based in Boulder, Colorado in the United States of 

America (USA), has developed the SomaScan® Platform, a highly multiplexed platform for 

protein quantification, aimed at discovery proteomics79. To date, the current version of the 

SomaScan® Assay can measure around 7,000 human protein analytes. The technology is 

based on a new class of modified aptamer, Slow Off-rate Modified Aptamer (SOMAmer), 

which allows the development of high-affinity aptamers for most known protein targets80. 

In short, proteins in complex biological substances, such as plasma, are bound to SOMAmers 

via a series of reactions. Due to the unique nucleotide sequences assigned to each 

SOMAmer, subsequent binding with specific hybridisation probes leads to corresponding 

deoxyribonucleic acid (DNA) aptamer concentrations that can be very accurately quantified 

on a DNA microarray, with highly reproducible results. While not ubiquitous, uptake has 

been high, with over 300 peer-reviewed papers written using the SomaScan® Platform81. 

The platform remains proprietary, and sample processing is only conducted by SomaLogic 

in the USA. 
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Olink Proteomics, based in Uppsala, Sweden, also provide a range of proprietary 

multiplexed platforms for human protein biomarker discovery; Olink platforms have been 

utilised for almost 600 peer-reviewed publications82. Samples can be sent for processing in 

either Uppsala, Leeds, UK, or Boston, Massachusetts, USA. Up to 1,536 unique human 

proteins can be quantified, but more targeted panels of as few as 48 proteins can be 

processed. Olink platforms rely on Proximity Extension Assay (PEA) technology, where 

two paired antibodies bind to the target protein simultaneously, leading to hybridisation of 

the matching DNA oligonucleotides83. Once double-stranded DNA has been formed 

following antibody binding to the protein of interest, this can then by amplified via 

polymerase chain reaction (PCR) and then quantified. Because of this additional 

amplification step, the readout signal is strong, giving assay sensitivity similar to an ELISA. 

Olink platforms are comparable to SomaScan®, with good intra-sample reproducibility 

between assays carried out in a validation study of 4,998 healthy controls (HCs)84. 

 

While both SomaScan® and Olink platforms provide excellent and reproducible protein 

quantification, they remain costly and can only be carried out in a handful of proprietary 

laboratories. Furthermore, protein quantification is relative, as opposed to absolute, so 

comparisons can only be made between proteins quantified using the same proprietary 

platform. As such, MS likely represents a more accessible means of quantitative proteomics, 

as mass spectrometers are readily available for use in the majority of biomedical research 

institutions. However, it should be noted that MS also does not provide absolute protein 

quantification, although this could be achieved if robust internal standards are employed for 

quantification of specific proteins of interest. Furthermore, only the proteins specifically 

selected in each biomarker discovery panel are quantified, rather than all proteins in a 

sample, which theoretically could lead to missing measurements. Therefore, bottom-up 

proteomics methods, which will be discussed in Section 1.5.3, are still likely to represent a 

more comprehensive means of mapping the human proteome as part of discovery studies. A 

number of other proprietary multiplexed platforms exist, for example, based on bead 

technology (e.g. FLEX® [Millipore Corporation, Billerica, Massachusetts, USA], 

MagPlex™ microspheres, xMAP® [both Luminex Corporation, Austin, Texas, USA]), and 

these also have similar benefits and drawbacks as the SomaScan® and Olink platforms, but 

are not as widely used in proteomics studies. 
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1.5.3. Bottom-up proteomics 

Bottom-up proteomics relies on the identification of the peptide products of proteolysis. 

Peptide fragments can be fractionated, ionised and fragmented more easily than whole, intact 

proteins, so mass spectra generated from peptide fragments are more practical and accurate 

to interpret. Ultimately, peptides give an indirect measurement of proteins in a sample, but 

this information can then be used to infer protein quantification. 

 

When bottom-up methods are employed on a mixture of proteins (as opposed to purified 

samples), they are termed “shotgun proteomics,” a term derived from shotgun DNA 

sequencing85. Typically, shotgun proteomics techniques begin with the enzymatic digestion 

of proteins in a mixture, followed by separation via either liquid chromatography (LC), gel 

electrophoresis or isoelectric focusing (IEF). Finally, identification of peptides is carried out 

via tandem MS, a process by which peptide ions undergo two or more stages of MS, 

separated either by time or space86. An optional additional step prior to MS is peptide 

fractionation e.g. using strong-cation exchange (SCX) or IEF. By comparing the tandem 

mass spectra with theoretical mass spectra from an in silico protein library, peptides can be 

identified and proteins inferred by the assignment of peptide sequences to proteins72. 

However, redundant and homologous peptide sequences may lead to misidentification, as in 

many instances, a set of peptides may represent multiple proteins (known as degenerate 

peptides), the so-called “protein inference problem”87. 

 

Stable isotope labelling can be employed alongside shotgun proteomics techniques88. Whilst 

labelling leads to more precise and accurate quantitation in comparison to label-free 

strategies, labelling procedures are costly and convoluted. Sample numbers are limited when 

isotope labelling techniques are used, and these techniques are not compatible with all 

experimental designs. Label-free methods are more commonly used; they are easy to apply 

with no sample limitations, although precision and accuracy are reduced in comparison to 

isotope labelling methods. 

 

Shotgun proteomics is termed an “untargeted” strategy for proteomic analysis; “targeted” 

approaches (such as selected reaction monitoring, SRM, plural multiple reaction monitoring, 

MRM) rely on manual selection of target peptides and their corresponding transition ions89. 

In MRM, peptide fragments undergo electrospray ionisation during a first stage of MS 

(MS1), where selection of the intact analyte (parent ion) takes place90. The parent ion is then 

fragmented with gas ions during a second MS stage (MS2), where a specific fragment of the 
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parent ion is then selected. MS1 and 2 comprise an SRM assay. The detection of a parent (or 

precursor)-ion and product-ion pair is termed a “transition,” and various methods aim to 

detect multiple transitions. This process relies on both pre-selection of specific peptides of 

interest for detection during the MS experiment, as well as knowledge of product-ion 

characteristics, and this can be carried out either in silico or from previous MS experiments. 

MRM is considered to possess superior quantification accuracy and dynamic range in 

comparison to conventional label-free methods91, but throughput is substantially limited by 

the workflow because all transition ions must be individually queued for measurement. The 

optimum balance in an MS experiment consists of a long ion dwell time (i.e. the time spent 

acquiring each transition during MS cycling) with a short cycle time (i.e. the time spent 

acquiring data points across the LC peak). MRM’s utility is when there are only a limited 

number of targeted proteins of interest, but MRM is considered the gold standard protein 

quantification method due its accuracy and enhanced dynamic range. 

 

 1.5.3.1. SWATH-MS 

Sequential window acquisition of all theoretical mass spectra (SWATH-MS) is a technique 

developed by Gillet et al that provides an alternative data-independent strategy for 

interrogating proteomic samples92. SWATH-MS enables the detection and measurement of 

any protein of interest in a sample by comparing fragment ion spectral libraries to complete 

fragment ion maps obtained via data-independent acquisition (DIA). Conventional tandem 

MS techniques (i.e. conventional shotgun proteomics) rely on data-dependent acquisition 

(DDA), where an initial survey identifies specific peptide ions to take forward to a second 

phase of MS. However, with DIA, all ions within a pre-specified mass-to-charge (m/z) region 

are processed in the second step of MS93. 

 

SWATH-MS relies on the establishment of a spectral library before analysis commences so 

that targeted data extraction can be carried out. This is usually generated via DDA shotgun 

proteomics, and ideally, on the same machine used for SWATH acquisition, in order to 

obtain accurate peptide retention times94. Predicted fraction ion spectra can also be 

calculated using computational methods, although these are not preferred as they are thought 

not to match as well as spectra generated using DDA95. There are also online repositories of 

consensus spectral libraries with readily available data online, such as the SWATHAtlas 

database96. 
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In the original Gillet experiment, a fast, high-resolution quadrupole-quadrupole time-of-

flight (TOF) mass spectrometer was used to acquire data. 32 isolation windows of 25-Da 

were predefined, then samples were subjected to repeated cycling through each window 

during MS; these windows were defined as “swaths”92. In each swath, ionised peptides are 

fragmented systemically and in an unbiased fashion. In this initial experiment with SWATH-

MS, every analyte in a single sample injection with a pre-determined composition was 

detected. 

 

Other established shotgun proteomics techniques tend not to capture all peptide fragments 

in an experiment, due to a combination of more abundant peptides suppressing the signal of 

the less abundant, and due to the vast quantities of different peptides in any given sample. 

This demonstrates the utility of SWATH-MS, in that it creates a record of all peptides in a 

sample, which can then be re-analysed again and again in silico, for example, using a 

different peptide spectral reference library. In addition, extracted fragment ions in the Gillet 

study were specific enough to identify peptides over a dynamic range of four orders of 

magnitude, mitigating some of the issues of the protein inference problem92. 

 

In comparison to MRM, SWATH-MS techniques were shown to be comparable in terms of 

reproducibility and accuracy, but with superior proteome coverage and throughput92. 

Furthermore, SWATH-MS spectral maps constitute a permanent fragment ion spectral 

record for all precursors within specific acquisition settings for each sample i.e. mass, 

hydrophobicity. This enables re-examination of data sets in silico at a future date for any 

new proteins of interest following a first-pass biological review of the data. Huang et al have 

subsequently shown that SWATH-MS techniques can be applied on a whole-proteome 

scale97. Using a complex mouse cell lysate sample, 3,600 proteins were identified and 

quantified without sample pre-fractionation. 

 

More recent studies have demonstrated the utility of SWATH-MS in analysis of clinical 

samples, and not just in animal and HC studies. For example, Harrison et al were able to use 

SWATH-MS data to identify biomarkers in plasma samples predictive of aortic diameter 

and future aortic aneurysm risk in patients with bicuspid aortic valve (BAV)98. In 8 BAV 

patients with aortic aneurysm and 7 BAV patients without, 4 plasma proteins were identified 

as potential biomarkers for monitoring maximum aortic diameter and 12 as potential 

biomarkers for future aneurysm risk in non-aneurysmal BAV patients. Despite the limited 

sample size, these 16 proteins were found to be significantly predictive of clinical outcomes, 
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meaning that a more focused validation study can be carried out in the future. Another study 

investigated the plasma proteome of patients with gray platelet syndrome (GPS), a 

haematological disorder that has been difficult to study due to its rarity. 51 proteins had 

altered expression in 11 patients with GPS compared with 13 HCs, and gene ontology 

analysis determined that these proteins had a pro-inflammatory and hepatic signature, which 

had not been hitherto seen99. 

 

However, given that proteomics techniques rely on the quantification of large numbers of 

peptides/proteins at any given time, these techniques can be very prone to missing data. A 

review of gel-based proteomics methods estimated missing values in between 10-50% of 

samples, with the proportion of peptides/proteins with at least one missing value ranging 

between 70-90%100. As with all proteomics techniques, SWATH-MS is not immune to this, 

but it does have a lower proportion of missing values compared with DDA methods101. 

However, this can be mitigated somewhat by statistical imputation of missing values, 

although this process has not been standardised within the field of proteomics102. 

 

SWATH-MS appears to be a good strategy for potential biomarker discovery, given its 

accuracy, dynamic range and ability for acquired data to be re-interrogated in silico. In 

addition, the technique can be used with multiple biological fluids, such as serum, plasma 

and synovial fluid. Furthermore, given that theoretically all peptides that are present in a 

biological sample are captured in SWATH proteome maps, this method represents excellent 

value for money, as sample processing costs are comparable to commercially-available 

multiplexed methods with more limited proteome coverage than SWATH (previously 

discussed in Section 1.5.2). SWATH’s performance against other bottom-up proteomic 

techniques is summarised in Figure 1.2. 
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Figure 1.2. Technical performance of MS-based bottom-up proteomics methods, comparing 

proteome coverage, accuracy, dynamic range, protein throughput (sample X multiplex) and 

reproducibility. Adapted from Shao et al103. 

ABBREVIATIONS: Enzyme-linked immunosorbent assay (ELISA), selected/multiple reaction monitoring 

(S/MRM), sequential window acquisition of all theoretical mass spectra (SWATH-MS), two-dimensional gel 

electrophoresis (2-DE). 

LEGEND: Axes represent the magnitude of each variable. All comparisons are qualitative. 

 

1.5.4. Middle-down proteomics 

As previously discussed, both top-down and bottom-up strategies of proteomic analysis have 

strengths and limitations. Wu et al proposed a hybrid approach based on peptides sized up 

to 20kDa, which they termed “middle-down” proteomics104. Middle-down proteomics relies 

on size-dependent protein fractionation using methods such as continuous tube-gel 

electrophoresis, coupled with restricted proteolysis using outer membrane protease T 

(OmpT) as a protease. The authors were able to identify 3,697 unique peptides from 1,038 

high-mass HeLa proteins. Additionally, they were able to separate closely-related protein 

isoforms and detect numerous PTMs using this strategy. Middle-down approaches are likely 

to be utilised increasingly, given their ability to detect PTMs from larger fragments without 

the technical considerations of top-down analysis of whole proteins. However, middle-down 
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techniques are not currently in wider use as workflows are still being optimised and 

validated; in particular, techniques are still under development to digest proteins down to 

peptides to the optimal size of 3.5-10kDa105. 

 

1.5.5. Bioinformatics considerations and identification of proteins from peptide 

fragments 

Given that proteomics analyses are increasingly generating more and more complex and 

comprehensive datasets, bioinformatics plays a crucial role in accurate and rational 

interpretation of studies. Once peptide spectra have been identified, they have traditionally 

been matched to sequences in a database using four basic approaches: descriptive, 

interpretative, stochastic and probability-based matching106. These are referred to as 

“spectrum-centric” analyses. 

 

Descriptive models (e.g. using the SEQUEST program107) compare a mechanistic prediction 

of peptide fragmentation in a tandem mass spectrometer with an experimental mass 

spectrum; statistical techniques such as correlation analysis can be used to determine the 

degree of agreement. Interpretative models (e.g. using the Peptide Search program108) 

involve the use of either a manual or automated interpretation of a partial peptide sequence 

from a tandem mass spectrum for a database search. In stochastic modelling (e.g. using the 

SCOPE program109), basic probabilities of fragment ion matches are generated from training 

sets of spectra with known sequence identity; statistical limits are applied to the 

measurement and fragmentation process to determine the likelihood that the match is correct. 

The relationship between tandem mass spectra and peptide sequences are determined in 

statistical and probability models (e.g. using the Mascot program110), then the probability 

and significance of peptide identification can be extracted. 

 

Peptide sequences from tandem mass spectra can be identified accurately by most database 

searching algorithms (such as the examples given above), but spectra of poorer quality, 

spectra containing inconsistent fragmentation processes or spectra with peptides of low-

abundance proteins prove more demanding to analyse106. One strategy could be to remove 

poor-quality spectra and eliminate duplicates to reduce the volume of peptides analysed and 

create a pool of unique spectra111-113. It has been suggested that spectra should be searched 

with at least two different algorithms to account for differing selectivities (e.g. SEQUEST 

and Mascot). Unassigned spectra can be searched for modified amino acids, analysed by 

automated or manual sequence tagging, and automated or manual de novo analysis can 
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finally be used for any residual unassigned spectra106. Furthermore, several algorithms have 

been developed to assess peptide database searches, utilising both filtering and statistical 

methodology114-117. 

 

Methods have also been developed to solve the protein inference problem. Earlier algorithms 

relied on simple heuristics to assign proteins containing a specified number of known peptide 

sequences116. Ma et al were able to refine this process by deriving a minimum protein list 

from peptide sequences filtered to a specified false discovery rate; this highly discriminant 

protein filtration algorithm was thus more stringent in detecting false-positive proteins118. 

The method most commonly used is pseudo-probabilistic: degenerate peptides are divided 

amongst all corresponding proteins, then a minimum protein list that can account for all 

peptide assignments is generated using the expectation-maximisation algorithm119. More 

recently, in the last decade or so, others have developed algorithms to counter the protein 

inference problem using meticulous probabilistic modelling120. 

 

 Since the more widespread uptake of high-throughput high-sensitivity techniques such as 

SWATH-MS, “peptide-centric” techniques of protein identification and quantification have 

been developed. These analyses test directly for the presence and absence of query 

peptides121, and can be carried out using a wide range of software, for example, 

OpenSWATH, SWATH 2.0, Skyline and Spectronaut122. In addition, DIA-Umpire software 

combines both peptide- and spectrum- centric protein analysis in a hybrid approach123. All 

five of these software packages were compared in a benchmarking exercise, which 

demonstrated very similar protein identification and reproducible quantification, 

demonstrating that all the packages tested are equally reliable122. This further demonstrates 

the benefit of label-free data-independent techniques such as SWATH-MS, given the utility 

and availability of protein analysis software to be used in conjunction with MS data 

acquisition. 

 

Bioinformatics considerations are less of an issue when using multiplexed methods, such as 

the SomaScan® and Olink platforms, as these have been incorporated during assay 

development. 
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 1.6. Proteins associated with treatment response to biologic agents in patients with RA: 

findings from previous studies 

Proteomic analysis of samples can be carried out using a variety of detection and analysis 

techniques, as outlined above. Each strategy has its strengths and weaknesses and can be 

applied in a variety of situations, as appropriate. The rapid development of MS technology 

in the last decade or so has been instrumental in the burst of protein studies that have been 

published. However, given the evolving nature of MS studies, research to identify protein 

biomarkers of treatment response in RA are still a developing field. 

 

1.6.1. Proteomic studies of treatment response to infliximab 

Infliximab was one of the first TNFi agents to be developed and approved for treatment of 

RA in the UK. It is administered every 8 weeks by intravenous infusion, but since the 

development of subcutaneous (SC) biologic agents that can be self-administered by patients 

in their own homes, it has been prescribed less frequently for RA in the UK. Nevertheless, 

insights into treatment response to this agent may be applicable to other members of the 

TNFi class that are in more popular usage. In addition, infliximab remains widely prescribed 

in the treatment of inflammatory bowel disease (IBD)124 125. 

 

In a study of RA patients commencing infliximab, Sekigawa et al used 2D LC-tandem MS 

to identify 21 proteins with increased expression in serum or plasma following infliximab 

treatment, and one protein (desmocollin-3, DSC3) with reduced expression126. Identified 

proteins were related to the tumour necrosis factor (TNF)-mediated pathway for nuclear 

factor (NF)-κB activation, as well as relating to articular cartilage metabolism and 

regeneration. However, this study only included 10 patients, and the comparison in protein 

levels was within-subject, before and after treatment. A similar study of serum from 33 

patients with RA using isobaric tag for relative and absolute quantitation (iTRAQ) labelling 

and nano-LC-tandem MS identified 71 differentially expressed proteins in RA patients pre- 

and post-treatment with infliximab127. Leucine-rich α-2 glycoprotein (LRG) was identified 

as a biomarker of disease activity and was proposed for use in monitoring of treatment 

response. Again, these findings were within-subject, with no control group. 

 

Another study identified apolipoprotein A-I (APOA1) and platelet factor 4 (PF4) as 

biomarkers for infliximab response, using a combination of sodium dodecyl sulfate (SDS)-

polyacrylamide gel electrophoresis (PAGE, a technique for peptide and protein separation) 

and surface enhanced laser desorption/ionisation (SELDI)-TOF MS (a technique of MS)128. 
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This study had improved power, included 60 patients, and comparisons were made between 

two groups of responders versus non-responders to treatment, providing more robust 

findings than previous studies. These two proteins were significantly associated with 

treatment response to infliximab, and findings were confirmed following further purification 

and analysis of these proteins using SDS-PAGE. 

 

1.6.2. Proteomic studies of treatment response to etanercept 

A small number of proteomic studies of treatment response to etanercept in RA patients have 

been carried out. High serum levels of monocyte chemoattractant protein (MCP)-1 and 

epidermal growth factor (EGF) were associated with response to etanercept in a study of 33 

French patients, in whom 12 cytokines were measured using a commercially available 

proteomic array129. Treatment response was defined within-subject, pre- and post-treatment. 

Hueber et al used a similar approach on RA patient serum with antigen microarrays, ELISAs 

and a multiplex bead assay (FLEX®)130. Patients starting etanercept were recruited from 

three cohorts based in the USA, Sweden and Japan and a signature consisting of 24 protein 

biomarkers were found to correctly predict both treatment response and non-response to 

etanercept in all three cohorts, again based on within-subject pre- and post-treatment 

findings. This was based on model development in a training cohort, followed by validation 

in a holdout cohort. Biomarkers were biologically feasible, as they had already been pre-

selected due to their previously known roles in immunity and in RA. A later study using 

SDS-PAGE and nano-LC-MS identified two proteins in serum, vitamin K-dependent protein 

S (PROS) and E3 ubiquitin-protein ligase CHIP (CHIP), as predictive of treatment response 

to etanercept (within-subject) at 6 months in a cohort of 22 RA patients; this was validated 

in an independent cohort of 16 RA patients using targeted ELISA131. 

 

These studies have all been on a small scale and only one of the above studies used a 

validation cohort to replicate findings. No comparisons were made between RA patients and 

HC or other disease controls, so it is difficult to ascertain whether protein expression was 

specific to the RA disease state, or a physiological finding that could also be found in HC. 

Nonetheless, these could still represent biomarkers of therapeutic response. 

 

1.6.3. Proteomic studies of treatment response to other biologic agents 

There have been a limited number of proteomic studies on RA patients established on other 

bDMARD agents, in addition to infliximab and etanercept. Fabre et al sought to identify 

biomarkers predictive of treatment response to rituximab (a bDMARD that acts as an anti-
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cluster of differentiation (CD) 20 antibody that causes B cell depletion) at pre-treatment 

using a commercially available protein biochip array (Investigator Evidence array, Randox, 

Montpellier, France) to test the sera of 46 patients with RA132. They were unable to find any 

baseline features predictive of response at 3 months within subjects, but responders and non-

responders did have unique cytokine profiles at 90 days, which led the authors to suggest 

that these cytokine profiles might be useful in monitoring rituximab therapy 

contemporaneously, given that rituximab can take up to 16 weeks to show effect. In a study 

of patients with RA who had failed TNFi and been escalated to rituximab, Nguyen et al used 

nano-LC tandem MS to identify 43 proteins enriched in sera of responders to rituximab and 

15 proteins enriched in sera of non-responders133. Following validation with ELISA, 

haptoglobin, calprotectin (S100A8/9), lipoprotein a (Lp(a)), C4b-binding protein (C4BP) 

and serum amyloid A protein (SAA) were found to have lower concentrations in treatment 

responders, whereas alpha-2-HS glycoprotein (AHSG, also known as fetuin-A) and 

thyroxine-binding globulin (TBG) had increased expression in responders. 

 

Murota et al identified 33 proteins elevated in the serum of 28 patients with RA when 

compared to HCs using the SomaScan® assay, measuring 1,128 serum proteins134. Analysis 

focused on proteins associated with matrix metalloproteinase (MMP) 3, as this is known to 

have a role in degradation of cartilage in the joints of patients with RA135. Interleukin (IL)-

16 was identified as being the MMP3-associated protein most correlated with treatment 

response. Validation with ELISA was carried out in a cohort of patients on a mixture of 

either methotrexate or of either of the biologics tocilizumab (a humanised monoclonal 

antibody against interleukin IL-6R), abatacept (a fusion protein that causes T cell inhibition) 

or infliximab, and decreasing IL-16 levels were found to be an effective clinical parameter 

for predicting treatment response. Patients receiving abatacept and tocilizumab were pooled 

together in analysis, although patients on methotrexate monotherapy and infliximab were 

analysed separately. Similarly, Tesitsma et al used a multiplexed immunoassay (xMAP®) 

to measure 85 proteins in the sera of patients with RA commencing either methotrexate or 

tocilizumab monotherapy or tocilizumab plus methotrexate as part of the U-Act-Early 

trial136. C-C motif chemokine (CCL) 18, CCL20 and soluble IL-2 receptor α were associated 

with achieving sustained drug-free remission in the tocilizumab + methotrexate arm, but 

there were no other significant protein associations in the other arm. No HCs were used to 

determine differential expression of proteins from patients with RA. 
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In a study of 250 Dutch RA patients on the TNFi agents adalimumab, etanercept, 

golimumab, infliximab and certolizumab, Cuppen et al utilised the xMAP® platform and 

were unable to identify any proteomic predictors of treatment response, although 12 proteins 

were differentially expressed in the discovery cohort of 65 patients137. This lack of a 

significant biomarker or biomarker panel may be due to a reduction in power caused by 

pooled analysis of patients on different TNFi treatments to one another in an already 

modestly-sized cohort. Furthermore, proteins with non-parametrically distributed expression 

were excluded from analysis, as a single partial least squares model was chosen, so this could 

have excluded potential biomarkers even prior to analysis in order to use data that fit with 

the chosen modelling technique; instead, a statistical method that can be used with non-

parametric data or even normalisation of protein expression during pre-processing could 

have been used. 

 

 1.7. Multi-omics approaches to assessment of treatment response to bDMARDS in 

patients with RA 

Current studies are now moving towards a multi-omic approach to addressing disease 

pathophysiology and assessing disease outcomes i.e. the integration of genetic, genomic, 

proteomic, metabolomic and lipidomic etc. data in order to achieve more granular 

understanding of a disease state. For example, Sun et al incorporated protein expression data 

and genetic data from 3,301 healthy blood donors to demonstrate protein quantitative trait 

loci (pQTL) overlapping with both gene expression quantitative trait loci (eQTL) and loci 

associated with specific diseases84. This study in a large number of healthy patients has 

paved the way for more integrative multi-omics studies in disease states, and such studies 

have started to populate the field in RA. 

 

One such study in RA patients was carried out by Tasaki et al, and studied the effect of 

treatment with either methotrexate, infliximab or tocilizumab in 49 patients with RA, with a 

HC comparator group of 42 participants138. Using a combination of transcriptomic, 

proteomic (SOMAScan™) and immunophenotyping methods, the authors were able to 

demonstrate that treatment altered the molecular profile of RA cases versus HCs. 

Furthermore, molecular profiling was able to identify patients with a phenotype associated 

with long-term remission from RA. 255 serum proteins were identified that were associated 

with drug-naïve status in patients with RA, including up-regulation of CRP and complement 

component 3 (C3). However, despite RA patients being on three different medications, each 

with different modes of action, RA patients were pooled together heterogeneously for the 
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purposes of measurement and analysis. Furthermore, statistical modelling to derive an RA 

diagnostic model was carried out using a heterogeneous set of patients with modest numbers, 

namely 45 patients with RA, 30 patients with primary Sjögren’s syndrome and 35 HCs. 

 

Similarly, Farutin et al integrated whole-blood mRNA, plasma protein, glycopeptide and 

cell type-specific measurements in order to define a molecular signature to define response 

to treatment response to MTX plus either of the TNFi adalimumab or infliximab139. Despite 

interrogation of multiple types of biological samples from the same 76 patients, the most 

significant findings were that innate immune cells were increased at baseline in treatment 

responders and adaptive immune cells were increased in non-responders. Again, patients on 

different treatments were pooled, although all treatment consisted of TNFi. No HCs were 

included. 

 

More recently, multi-omic studies have also included analysis that applies machine learning 

algorithms in order to derive meaningful clinical applications from the complicated, large 

biological datasets generated. Mellors et al carried out a study integrating clinical data, gene 

expression data in whole blood and RA-associated single-nucleotide polymorphism (SNP) 

transcriptions in 143 RA patients starting either adalimumab, certolizumab, etanercept, 

golimumab or infliximab recruited from the CERTAIN trial140. Gene expression biomarkers 

of treatment non-response to etanercept, adalimumab and infliximab were first derived using 

a discovery cohort of 58 female RA patients from two study cohorts (Autoimmune 

Biomarkers Collaborative Network, ABCoN, and the Brigham and Women’s Hospital RA 

Sequential Study, BRASS). A random forest algorithm was used to develop a model 

predictive of treatment response and then validated in a further 175 patients with a positive 

predictive value (PPV) of 89.7% and specificity of 86.8%. Of note, no other machine 

learning algorithms apart from random forest were trained and validated, so it is unclear 

whether optimum model performance was achieved. Members of the same group 

subsequently used 345 RA patients from the prospective CERTAIN study and 146 patients 

from the prospective NETWORK-004 study, both based in the USA, in order to also define 

a molecular signature of treatment response to various different TNFi: adalimumab, 

etanercept, infliximab, certolizumab and golimumab141. A random forest machine learning 

algorithm was used to rank protein-coding RNA transcripts, which were then mapped to 

known proteins from a previously defined RA interactome. It is unclear whether patients 

from the first study by Mellors et al140 were included in this new analysis, and could lead to 

potential bias due to data leakage from reuse of the same patients.  
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Tao et al studied 80 RA patients starting adalimumab or etanercept, and carried out 

differential gene expression and methylation analyses between patients who responded to 

treatment and those who did not142. Profiling was carried out on peripheral blood 

mononuclear cells (PBMCs), monocytes and CD4+ T cells. Once transcription and 

epigenetic signatures of treatment response were defined, a random forest algorithm was 

used to train separate machine learning models for adalimumab and etanercept in order to 

define treatment response; no other machine learning algorithms apart from random forest 

were utilised and compared, so it is unclear if optimum models have truly been derived from 

the data available. However, models were externally validated with nine patients who 

originally did not achieve treatment response and were switched to the other agent, and 

models were able to predict treatment response to an accuracy of 77.8% in the epigenetic 

model and 88.9% in the transcriptomic model. 

 

Luque-Tevar et al measured a proprietary panel of 27 cytokines known to be associated with 

a systemic inflammatory response (Bio-Plex), oxidative stress parameters, NET-osis-derived 

products and microRNA in 104 RA patients starting a combination of the TNFi infliximab, 

etanercept, adalimumab, golimumab and certolizumab, as well as in 29 HCs143. Amongst 

several analyses, three different regularised logistic regression machine learning algorithms 

were used to train models predictive of treatment response, and a combined model utilising 

both clinical and molecular predictors was shown to have a superior area under the curve 

(AUC) in receiver operating characteristic (ROC) curve analysis compared to clinical or 

molecular models alone. Again, treatment response was defined from heterogeneous 

treatment groups in both training and validation cohorts of patients. However, a mixed 

clinical and molecular model demonstrated an impressive AUC of 0.909, but this needs to 

be validated, preferably in a prospective clinical cohort, independent from the cohort from 

which model training and validation was carried out in. 

 

These multi-faceted studies are starting to generate more in-depth understanding of the 

systemic interactome during the active RA disease state, but as yet, there is little intra-study 

reproducibility. This could likely be due to many factors, such as timing of blood sampling, 

sample processing, heterogeneity of RA treatment and deviations in machine learning 

analyses. Clearly, a multi-omic approach will lead to more comprehensive indicators of 

treatment response, but current studies are only in their infancy at present. 
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 1.8. Summary of proteomics studies in RA 

Bottom-up proteomics studies and multi-omics studies of treatment response in patients with 

RA are scarce and are largely small-scale, with fewer than 100 participants. Some of these 

studies have been carried out with expensive proprietary assay-based methods, such as 

SomaScan® and xMAP®, and may be difficult to reproduce. Furthermore, some findings 

have relied on pooled analysis of patients receiving treatment with different therapeutic 

agents, which may weaken associations or even generate spurious ones. Of the studies 

discussed, very few utilised HCs in order to first separate out proteins associated with the 

active RA disease state. There is still a huge amount of scope for future discovery studies in 

patients with RA to attempt to identify biomarkers of treatment response. 

 

Progress has been slower than anticipated in predicting treatment response to therapeutic 

agents in RA using biomarkers, and this could be because most studies have tried to 

demonstrate correlation between biomarker levels and clinical outcome measures, including 

subjective measures, such as the DAS28 (which includes subjective patient-reported 

components). However, more progress has been made in identifying predictive biomarkers 

in other fields, where the outcome is also a biological measure, such as the genetic 

determinants of treatment response to warfarin loading144. Previously, the measurement of 

drug levels in the sera of patients with RA on bDMARDs has shown that drug levels within 

a known therapeutic range are associated with achieving treatment response11. However, 

circulating drug levels vary widely between patients with similar disease activity who are 

starting the same drugs, but it has not been fully ascertained what underpins this variability 

(some of this variability is explained by the pharmacokinetic properties of bDMARDs). 

Given that drug levels vary between individuals, as well as correlating with clinical 

outcomes, are objectively measured and are biological measures, then research to identify 

predictors of drug levels and explore causes of variability between individuals is a potentially 

useful area of research. Analysis to first generate a model of how drug levels vary on 

initiation of treatment, which could then also incorporate proteomic data, could be a 

powerful tool in understanding why some patients achieve therapeutic efficacy and why 

others do not. 

 

 1.9. Basic pharmacology of bDMARDs 

Some of the variability in circulating bDMARD levels can be explained by an understanding 

of the basic pharmacology of these drugs. bDMARD agents are costly, yet demonstrate 

superior efficacy over csDMARDs alone145. These agents are more usually prescribed long-
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term for several years in the treatment of chronic conditions and a series of escalating 

treatment options with combinations of csDMARDs must fail in patients before qualifying 

for bDMARDs or tsDMARDs in the UK8 146-149. It is important to note, however, that the 

majority of patients respond to csDMARDs and do not require escalation to bDMARD or 

tsDMARD therapy in the long term. 

 

This next section will highlight some of the basic properties of bDMARD agents, in order 

to explain some of the variability in treatment response to these agents. 

 

1.9.1. The structure of bDMARDs 

Most TNFis (the class of bDMARD being studied in this thesis), bar etanercept, are 

monoclonal antibodies (mAbs). mAbs are antibodies specific to a single antigen that are 

produced by immune cells which are clones of an originator parent cell150. Of the bDMARDs 

licensed for use in RA, these drugs target TNF (i.e. the agents infliximab, etanercept, 

adalimumab, golimumab and certolizumab), T-cells (i.e. abatacept), CD20 (i.e. rituximab) 

and IL-6 (i.e. tocilizumab). Not all of the above listed agents are mAbs, but of those listed 

above (apart from certolizumab, which will be discussed later, and infliximab, which is 

chimeric mouse-human) have the structure of human Ig of the G isotype (IgG), and 

specifically, derive from IgG1151. IgG1 is a large molecular weight (150 kDa) hydrophilic 

protein, and consists of paired, identical heavy and light variable chains (Figure 1.3.) The 

Fab domain constitutes the antigen-binding site of the protein. The variable portions (or 

complementarity-determining regions, CDRs) establish the binding site of each IgG1 protein 

by forming a complementary structure to the target antigen; variations are caused by changes 

in the amino acid sequences in each CDR. The crystallisable Fc portion dictates each 

antibody’s effector function, and Fc portions are different in each IgG subtype. The structure 

of certolizumab differs in that it consists of a Fab fragment conjugated to two polyethylene 

glycol (PEG) chains (Figure 1.4). 
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Figure 1.3. Simplified structure of an IgG1protein. 

 

 

Figure 1.4. Simplified structure of certolizumab. 

 

ABBREVIATION: Polyethylene glycol (PEG). 

 

The Fc portion binds to two different receptors in order to enact its various functions. Firstly, 

via Fcγ receptors (such as FcγIIIA on the surface of natural killer cells), the Fc portion binds 

to effector systems. It also binds to neonatal Fc receptor (FcRn); this receptor facilitates 

protection against natural IgG breakdown inside cells, and hence, is involved in the clearance 

of both natural IgGs and mAbs containing an Fc portion152. These properties are vital in 

understanding the variability in the PK of mAbs, and why certolizumab behaves differently 

from other mAbs in the same TNFi class, given its absence of an Fc portion. 
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1.9.2. Basic PK characteristics of bDMARDs 

In order to better understand the pharmacological properties of bDMARDs, some basic PK 

terms will first be defined. PK processes can be considered using the acronym “ADME,” 

which represents absorption, distribution, metabolism and excretion153. A simplified 

diagram of these processes is outlined in Figure 1.5. Absorption constitutes the transfer of a 

drug from its site of administration (e.g. oral, SC) to systemic circulation; drug levels (which 

constitute the measurement of unchanged administered compound) can then be measured in 

blood or plasma. Absorption is measured in terms of its rate and extent, which can be affected 

by various factors, such as adequate time at absorption site and blood flow. Bioavailability 

is a component of absorption, and refers to the fraction of the administered dose that proceeds 

unaltered from the site of administration to systemic circulation. Distribution refers to the 

reversible transfer of a drug between blood and tissues, and can be affected by both plasma 

protein binding and tissue binding. Protein binding of a drug is mostly reversible, and bound 

and unbound drug fractions are always in a state of dynamic equilibrium. Drug metabolism 

is a process that is more relevant to small molecule drugs (as opposed to bDMARDs) and is 

also known as biotransformation; enzymatic processes (mostly in the liver, but also in the 

gut wall) break down drug molecules to facilitate elimination of the drug from the body. 

Excretion describes removal of the unchanged drug from the body. The two major routes of 

drug excretion are the kidneys and in bile, but minor routes include in saliva, sweat, tears, 

expired air and breast milk. The term “elimination” is used to cover the processes of 

metabolism and excretion combined, and the term “disposition” covers all the processes 

involved in distribution, metabolism and excretion. 
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Figure 1.5. An overview of PK processes (ADME; absorption, distribution, metabolism, 

elimination). 

 

 

bDMARD agents are large molecules, originally designed for intravenous (IV) 

administration. However, agents are now overwhelmingly formulated to be administered by 

the SC route, as these can be self-administered by patients in the community, without 

requiring a hospital visit for every IV infusion. Despite the majority of bDMARDs now 

being developed and prescribed via the SC route, the mechanism of systemic absorption via 

this route has not been fully elucidated. It is thought that absorption predominantly occurs 

via a combination of diffusion across blood capillary beds and convection through lymphatic 

vessels154. The absorption of bDMARDs via the SC route is often assumed to be first-order 

i.e. a fixed fraction of drug is absorbed per unit time, and bioavailability ranges between 50-

80%155 156. In zero-order drug kinetics, a fixed amount (as opposed to fraction) of a drug is 

absorbed or eliminated per unit time, and the rate of drug absorption/elimination is 

independent of the available amount or concentration (as opposed to first-order kinetics, 

where the rate is proportional to the available amount or concentration). 

 

The volume of distribution (V or VD) is a PK parameter that gives an indirect indication of 

the degree of tissue distribution of a given drug; the VDs of TNFi are modest, ranging 

between a minimum of 4.5L for infliximab157 and a maximum of 26.3L for golimumab158. 

The VD is calculated by dividing the amount of drug in the body by its measured plasma 

concentration, so this low VD of bDMARDs can be explained by their large, hydrophilic 

structure. Theoretically, this causes low tissue penetration and confinement to capillaries and 
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lymphatic vessels, but mAbs are able to enter cells via two mechanisms: firstly, by fluid 

phase endocytosis, which tends to take place in endothelial cells, and secondly, by FcγR-

mediated endocytosis; FcγRs are proteins expressed on the surface of various immune cells, 

as well as platelets154. 

 

Pharmacological models to explain the disposition of mAbs are wide-ranging in complexity 

and have no consensus; pharmacological models will be discussed in more detail in the next 

section. However, Fronton et al used a pharmacological modelling technique, 

physiologically-based pharmacokinetic (PBPK) modelling, in order to demonstrate that the 

disposition of mAbs can be considered on a whole-body level, with tissue distribution being 

rate-limited by extravasation, and elimination taking place from a variety of tissues as well 

as plasma159. They also found that when common data such as plasma or plasma plus tissue 

drug levels were utilised, it was not possible to determine which tissues were eliminating the 

drug, so models cannot simply be based on measured data. 

 

Due to their large size, immunoglobulins and most proteins cannot be eliminated from the 

body by conventional small molecule methods of excretion i.e. renal and biliary, nor can 

they be broken down by hepatic metabolism. IgG is eliminated via two pathways: 

intracellular elimination, which is non-specific, and target-mediated elimination, which is 

specific to IgG. CL is a steady-state concept, and represents the apparent volume of plasma 

(or blood or plasma water etc.) that is completely cleared of drug per unit time. It is defined 

by the rate of elimination divided by the plasma concentration of a drug. Therefore, the total 

CL of a given mAb is the combination of non-specific (linear) and target-mediated (non-

linear) CLs151. 

 

It is not fully understood how mAbs are cleared from systemic circulation, although it is 

known that IgG are cleared via intracellular catabolism following uptake into cells, and this 

constitutes the majority of IgG elimination160. IgG enters cells via a range of mechanisms, 

including endocytosis, internalisation upon Fab-antigen binding at the target cell surface and 

Fc-FcγR binding at immune cells161. If a cell contains FcRn, the Fc portion of a mAb will 

bind to it at pH <6.5, gaining protection from lysosomal degradation. At neutral pH (7.4), 

the mAb is released back into systemic circulation or extracellular fluid. This FcRn salvage 

prolongs the half-life (t1/2) of IgGs to approximately 21 days, which is longer than other 

comparable protein molecules. FcRn saturation is possible, but only when IgG concentration 
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is high e.g. during treatment with polyclonal Ig162, but usual therapeutic mAb doses do not 

cause this to occur. Therefore, non-specific elimination of mAbs is a linear process. 

 

Target-mediated drug disposition (TMDD) pertains to high-affinity binding of a drug (such 

as a mAb) to its pharmacological target (i.e. the corresponding antigen of the mAb), leading 

to non-linear drug elimination163. In the case of mAbs, binding with its target antigen leads 

to the formation of a mAb-target complex, which is then eliminated by the immune system; 

the full mechanism of elimination has not yet been determined, but can be described using a 

TMDD model164. Multiple factors affect target-mediated mAb elimination, such as antigen 

turnover, saturable and reversible mAb-antigen binding and mAb-antigen complex 

elimination rates. TMDD increases with the amount of available antigen, but antigen 

turnover is often unknown. In this instance, the TMDD model can be approximated using 

PK models that incorporate both linear and non-linear CL (termed Michaelis-Menten 

kinetics)165. 

 

Given that understanding of the behaviour of mAbs in the body has not been fully achieved, 

for example, due to lack of studies of subcutaneously administered bDMARDs, or due to 

variations in bDMARD disposition, pharmacological understanding of these drugs remains 

an area of unmet need. 

 

1.9.3. Concepts in pharmacological modelling 

While the PK of drugs in the physiological conditions of the body is complicated, 

pharmacological modelling seeks to generate a simplified explanation of PK processes. 

Pharmacological models are concise representations of an overall “system” (i.e. the body) 

that aim to confer knowledge or understanding of a specific drug in that system166. As with 

other mathematical models to explain complex systems, pharmacological models are best 

assessed on their “fitness for purpose,” as opposed to how “correct” or “true” they are. This 

is summarised in the famous George Box quote: “Essentially, all models are wrong, but some 

are useful”167. 

 

In the discipline of clinical pharmacology, modelling and subsequent simulation are 

established methods for amalgamation of collected data, pre-existing knowledge and known 

drug mechanisms, which enables ensuing decisions to be made on drug prescribing and 
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development. Determining the correct dose of a therapeutic agent is essential; as Paracelsus* 

stated in the early 16th Century: “All things are poison and not without poison; only the dose 

makes a thing not a poison”. This concept has always held true in clinical pharmacology; 

appropriate selection of dosage and dosing regimen are the cornerstones of ensuring that 

drugs behave as therapeutic agents, and not as pathological poisons168. An example of this 

is the concept that the therapeutic benefit of bDMARDs in controlling the inflammation of 

RA must be balanced against the risk of infection from immunosuppression. 

 

There is variability in circulating drug levels of bDMARD agents between patients; this is 

an example of between-subject variability (BSV) in drug exposure. BSV occurs with all 

drugs, and also exists in drug response, as well as exposure, such as in the heterogeneous 

treatment response to bDMARDs166. Multiple factors can account for BSV, such as age, 

biological sex, body weight, genotype, renal and hepatic function and concomitant 

medications. Through modelling of study subjects, the effect of these covariates on the PK 

of a drug can be determined and dosing recommendations can be made, thus improving drug 

safety and efficacy via mitigation of variability in drug exposure. 

 

PK models seek to describe how drug concentrations vary over time. Many PK models 

incorporate components called “compartments,” which each represent a region of the body 

in which the drug of study is well-mixed and kinetically homogeneous; this means that the 

drug can be described with respect to a single representative concentration at any given time 

point169. Compartment choice and connection can deeply influence differences between 

models. Human models tend to employ a central compartment (representing plasma), 

interlinked with one or two peripheral compartments via rate constants (e.g. k12 and k21)
170. 

ka represents the single elimination rate constant in a one compartment model. A 

compartment can correspond to an actual physiological space in the body (such as blood or 

extracellular fluid), but compartments tend to be more abstract concepts that do not map to 

a physical region in the body. 

 

Whilst PK explains the behaviour of a drug inside the body, pharmacodynamics (PD) 

explains the effect of the drug on the body and incorporates treatment response outcomes. 

One example of pharmacological modelling that incorporates both PK and PD is PK/PD (or 

PKPD) modelling, which can relate the PK of a drug to clinical outcomes166. The relationship 

                                                           
 

* Philippus Aureolus Theophrastus Bombastus von Hohenheim, also known as Paracelcus (c.1493-1541). 
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between drug concentration and effect can be described as a continuous function (e.g. linear, 

Emax i.e. the maximum effect of the drug, sigmoid Emax). PKPD models can also instead take 

on an exposure-response format, where instead of using concentration as the independent 

variable, steady-state drug exposure is instead adopted. It is also possible to adopt such 

models to utilise other measures of exposure, such as AUC and peak plasma concentration, 

(Cmax). An example of pharmacological modelling that assesses PK data alone over time is 

popPK modelling, which will be discussed in the next section. 

 

 1.9.3.1. PopPK modelling 

Individual PK studies employ detailed drug concentration-time data (measurement over 

many time points), typically using non-compartmental methods. By contrast, popPK 

modelling (also known as mixed-effects modelling) employs concentration-time data from 

multiple individuals and does not require rich or balanced drug concentration sampling. 

Methods devised by Sheiner et al in 1972 enable pooling of sparse sampling data from 

multiple participants for estimation of population mean parameters, BSV and the effects of 

any possible covariates on BSV, as well as parameter precision measurement via calculation 

of standard errors (SE)171. In essence, popPK modelling represents a PK study, but carried 

out in a group of individuals, and it can be used to analyse sparse data, where the standard 

approach of non-compartmental analysis cannot be used. 

 

PopPK modelling relies on detailed and accurate information on dosing, drug concentration 

and population covariates166. This form of modelling is based on three components: 

structural models, stochastic models and covariate models. Structural models can be 

expressed as either algebraic or differential equations. Algebraic equations are the simplest 

representation of a PK model, and explain the relationship between drug concentration and 

time. However, some PK systems cannot be summarised in algebraic equations due to their 

complexity, but instead, they can be stated as differential equations that describe the rate of 

change of a variable. Stochastic models explain both the variability between subjects, as well 

as between drug concentration and different time points. Covariate models incorporate pre-

identified covariates into popPK models to explain observed differences in parameter 

estimates between individuals. Model-based approaches for both drug development and 

maximising therapeutic utility of pre-existing drugs continues to evolve and gain importance 

in clinical practice. 
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 1.9.3.2. Pharmacological modelling of TNFi drugs in patients with RA 

A number of popPK studies have previously been carried out in patients with RA receiving 

TNFi agents. One of the more commonly studied TNFi agents is etanercept, which is not 

surprising, given its frequency of prescription due to its early licensing date (1998) and SC 

form of administration. Lee et al studied administration of etanercept 25mg SC twice-weekly 

in 25 participants and etanercept 50mg once-weekly in 77 participants in a popPK and PD 

modelling study172. Using a one-compartment popPK model, they identified sex and race as 

significant covariates. Zhou et al carried out a popPK analysis using data from a phase 3 trial 

in RA patients and HCs receiving etanercept 25mg SC twice-weekly, and compared two 

groups, one receiving MTX and one without MTX173. They found that a two-compartment 

model with first-order elimination and either zero-order input (IV) or first-order absorption 

(SC) demonstrated superiority over a one-compartment model. Age and body weight were 

found to affect CL and race affected VD in the central compartment. However, this study 

included IV data and etanercept was not dosed using the dosing regimen that is now most 

commonly employed (50mg SC weekly), so may not reflect current clinical practice. An 

integrated popPK study using HC and patients with RA, ankylosing spondylitis (AS) and 

juvenile idiopathic arthritis (JIA) used a two-compartment model to demonstrate that age 

and body weight affected CL in paediatric subjects, but that no covariates affected the model 

in adult patients174. The study subjects were deliberately heterogeneous, and dosing regimens 

varied between IV and SC at a range of different doses (but not 50mg SC weekly). Shennak 

et al carried out a PK study comparing Enbrel, the proprietary originator compound of 

etanercept, with a new etanercept biosimilar YLB113, and they used non-compartmental 

analysis to carry out PK estimates of a study population of 52 biologically male subjects175. 

This study demonstrated a similar PK profile between patients receiving Enbrel or YLB113. 

 

Using a PK-PD approach, Hsu and Huang used DAS28 as a clinical endpoint in a meta-

analysis of multiple published pharmacological studies176. They found that a one-

compartment model with first-order absorption and elimination best represented their 

etanercept plasma concentration-time data and an inhibitory Emax model was used to 

characterise the relationship between predicted etanercept cumulative AUC and DAS28. 

They were also able to simulate a number of alternative dosing regimens which were equally 

effective to etanercept 25mg twice-weekly in alternative dosing scenarios. 

 

A number of pharmacological studies have also been carried out on adalimumab, the other 

bDMARD of interest in this thesis. Prior to licensing, the United States Food and Drug 
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Administration (FDA) carried out a review of adalimumab studies177. Interesting findings 

were that MTX decreases adalimumab CL, and that a popPK study demonstrated that 

adalimumab increased the CL of MTX by 40%. Body weight > 82kg was found to increase 

CL, and increasing age was associated with reduced CL. However, a subsequent phase 1 

trial demonstrated that repeated administration of adalimumab IV did not have a significant 

effect on MTX PK and concluded that MTX dose adjustments were not necessary178. 

Ducourau et al carried out a PKPD study in 127 samples from 30 RA patients receiving 

adalimumab 40mg every two weeks SC, which demonstrated both large BSV in response to 

adalimumab, as well as that the target adalimumab concentration was associated with 

individual disease activity measured using DAS28179. Another PKPD study by the same 

group studied RA patients receiving adalimumab 40mg SC every two weeks, and they found 

that a one-compartment first-order absorption model best described the data180. Maximal 

response to the drug was measured in terms of improvement in DAS28 and CRP levels, and 

simulations showed that a one-off loading dose of 160mg resulted in increased adalimumab 

concentrations, with maximal response being reached before the second injection. 

 

Other studies have been carried out in RA patients receiving certolizumab181 182, 

infliximab183-185, abatacept186 187 and golimumab188-190, with not dissimilar results to those 

described for etanercept and adalimumab above. All of the studies discussed in this section 

largely employ trial data, and not real-world drug administration and concentration data, and 

none have been carried out in biosimilar versions of either etanercept or adalimumab, which 

are the predominant formulations that are currently prescribed in UK clinical practice. 

Furthermore, none have simulated alterations in dosing intervals (as these medications are 

usually prescribed in pre-filled syringes with a set dosage), although some have simulated 

altered loading doses, which are not currently recommended for patients with RA. Further 

popPK studies, particularly in biosimilar versions, will lead to improved understanding of 

these drugs’ PK parameters in patients with RA, and will add further to the body of 

knowledge. 

 

1.10. Chapter summary 

Treatment response to therapeutic intervention in patients with RA is heterogeneous and can 

be measured using a range of different outcomes. Some predictors of prognosis and 

treatment response have been previously determined, but these factors do not entirely explain 

this heterogeneity. Various antibodies (such as ACPA and anti-CarP) have been shown to 

be associated with RA prognosis, so biomarker discovery studies searching for other 
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antibodies or proteins may fill in some of the knowledge gaps. Studies linking these proteins 

back to a patient’s underlying genetics may additionally aid understanding of disease 

pathogenesis, as well as contributing to personalisation of therapeutic prescribing in RA. 

Whilst proteomic studies give a dynamic snapshot of a patient’s physiology at the time of 

study, genetics are more stable and may represent a more practical means of patient 

classification in the clinic room. Furthermore, PK properties of bDMARD medications used 

in the treatment of RA have not been comprehensively studied in a real-world environment, 

and in particular, this has not been carried out in the now more widely-prescribed biosimilar 

versions of bDMARDs. The remainder of this thesis will seek to address some of the 

knowledge gaps that have been identified here. 

  



64 
 

CHAPTER TWO: HYPOTHESIS AND AIMS 

Hypothesis: 

Biological factors, such as protein expression, contribute to variability in circulating drug 

levels and treatment response to biologic agents in patients with RA. 

 

Aims: 

To identify factors underpinning adalimumab and etanercept PK and clinical response. 

 

Objectives: 

1. Define popPK models in patients with RA starting either adalimumab or etanercept 

biosimilars (Amgevita and Benepali, respectively). 

2. Use this model to simulate alterations in dosing intervals in order to achieve maximal 

effect and/or steady state at an accelerated time point. 

3. Carry out detailed protein mapping using SWATH-MS in these patients to ascertain 

whether any serum protein levels or objective measures of inflammation are 

predictive of drug concentration. 

4. Carry out a discovery SWATH-MS proteomics study in extant samples from patients 

with RA who have received etanercept as a first-line bDMARD to develop a protein-

based classification model of treatment non-response. 

5. Carry out pQTL analysis to determine whether serum protein levels are predicted by 

genetics. 

6. Determine whether genetic markers that are correlated with protein levels are 

predictive of treatment response. 
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CHAPTER THREE: METHODS 

 

3.1. PopPK study of RA patients starting Amgevita or Benepali: the Biologics in 

Rheumatoid Arthritis Genetics and Genomics Study Syndicate Personalised Dosing 

sub-study 

3.1.1. Ethical approval 

Study participants were recruited as part of a sub-study of a pre-existing study: the Biologics 

in Rheumatoid Arthritis Genetics and Genomics Study Syndicate (BRAGGSS). The popPK 

study conducted for this thesis was carried out under the BRAGGSS Personalised Dosing 

(BRAGGSS-PD) sub-study. Both BRAGGSS and BRAGGSS-PD received favourable 

ethical approval (Research Ethics Committee, REC, reference: 04/Q1403/37). Following an 

application for a substantial amendment written by the author and supported by the senior 

study coordinator for BRAGGSS, Sarah Ashton, the BRAGGSS-PD sub-study was 

approved under Substantial Amendment 17a in November 2018. As part of the ethics 

application, a new study protocol was written by the author, and new patient information 

sheets and consent forms were written by the author and Sarah Ashton. As the study 

progressed, a further substantial amendment was submitted in order to incorporate combined 

patient information sheets and consent forms (written by the author and Sarah Ashton) for 

both BRAGGSS and BRAGGSS-PD, in order to rationalise paperwork; these were approved 

under substantial amendment 17b in November 2020. All the above documentation is 

provided in Appendix 1. 

 

As part of the protocol, the first visit necessitated a patient home visit in most cases, as the 

majority of patients required education on use of their auto-injection device by a nurse 

employed by the medication provider (Healthcare at Home Limited) and blood samples were 

taken before and after the administration of a patient’s first biologic dose. Hence, additional 

lone worker training and approvals were obtained by the author from the University of 

Manchester. A full risk assessment was carried out by the author and Sarah Ashton. Details 

of the lone worker risk assessment and policy for the BRAGGSS-PD sub-study are provided 

in Appendix 2. 

Summary of chapter contents: 

3.1. PopPK study of RA patients starting Amgevita/Benepali 

3.2. Discovery proteomics: proteomic predictors of treatment response 

3.3. Genetics of protein expression in patients with RA 

3.4. Chapter summary 
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3.1.2. Study setting and funding 

The sponsor for this study was The University of Manchester. This study was funded by the 

National Institute for Health Research (NIHR) Manchester Biomedical Research Centre, 

both via a fellowship to the author and through consumable funding, as well as by Versus 

Arthritis as part of a core programme grant that covered BRAGGSS oversight. 

 

BRAGGSS is a long-term multi-centre prospective observational study based in the UK. Its 

aim is to collect genetic, serological, clinical and psychological information from patients 

with RA commencing bDMARD and tsDMARD therapy in order to determine how these 

factors influence treatment response. The aim of the BRAGGSS-PD sub-study was to carry 

out a popPK study in patients with RA commencing either Amgevita (adalimumab 

biosimilar) or Benepali (etanercept biosimilar); patients underwent repeated serum drug 

level sampling over the first 12 weeks of treatment – this will be described in more detail in 

Section 3.1.5. 

 

BRAGGSS-PD initially opened recruitment at one site in November 2018: Manchester 

Royal Infirmary, part of Manchester University NHS Foundation Trust. Apart from Visit 

One (in most patients’ cases – this will be detailed in Section 3.1.6), all study visits took 

place at the NIHR Manchester Clinical Research Facility. However, recruitment was 

monitored throughout the study, and due to recruitment challenges, a second centre was 

opened at Bolton One (part of Bolton NHS Foundation Trust) in June 2019. All visits apart 

from Visit One were carried out at Bolton One. 

 

Recruitment to BRAGGSS-PD was closed between March 2020 and September 2020, due 

to a combination of national lockdown due to the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) pandemic, and the redeployment of the author from PhD 

studies to work full-time on frontline NHS services to support the SARS-CoV-2 response. 

Manchester Royal Infirmary re-opened recruitment in September 2020 and Bolton One re-

opened recruitment in October 2020, following confirmation of capacity and capability. 

Furthermore, because recruitment targets were further impaired due to the SARS-CoV-2 

pandemic, a further recruitment centre was opened at Tameside General Hospital, part of 

Tameside and Glossop Integrated Care NHS Trust in October 2020. Further approvals from 

the University of Manchester’s research governance department were obtained so that 

following resumption of BRAGGSS-PD after lockdown, all visits could be carried out as 
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patient home visits in order to avoid multiple hospital attendances for patients who were 

likely to be shielding. 

 

Finally, in order to include participants from more diverse social and ethnic backgrounds, 

further approvals were gained from Health and Safety within the University of Manchester 

so that patients with inactive, previous infection with hepatitis B and C could be recruited. 

A new biological Control of Substances Hazardous to Health Regulations (BioCOSHH) 

form was written and submitted by the author, and the author attended a panel to discuss this 

new protocol and gained approval in April 2021. The new BioCOSHH form is included in 

Appendix 3. 

 

Sample processing and storage was carried out at the Centre for Musculoskeletal Research 

(CfMR), the University of Manchester, UK. 

 

3.1.3. BRAGGSS-PD study participants 

Participants in the popPK study were recruited to the BRAGGSS-PD sub-study. Patients 

with RA starting either Amgevita or Benepali at the rheumatology departments of 

Manchester Royal Infirmary, Bolton One and Tameside General Hospital were informed 

about the study by local clinical staff and invited to participate. Following either a face-to-

face or telephone initial visit by the author, patients were then invited to give consent to 

participate. Recruited patients provided written informed consent in compliance with Good 

Clinical Practice (GCP) and the Declaration of Helsinki. In-date GCP certification was held 

by the author throughout the course of this PhD (Appendix 4). All patients were prescribed 

either Amgevita 40mg SC every 2 weeks or Benepali 50mg SC every week throughout the 

duration of the study, in accordance with the licensed indications and dosages of these 

medications. 

 

The inclusion and exclusion criteria were as follows: 

 

Inclusion criteria 

 bDMARD-naïve patients who were due to commence either adalimumab or 

etanercept biosimilars. 

 Patients with a diagnosis of RA according to the ACR 1987 or ACR/EULAR 2010 

criteria who were willing and able to participate in the study (including follow-up 

visits) after providing informed consent. 
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 Patients had to have a DAS28 greater than or equal to 5.1; this score had to be taken 

at the point of consent, or up to one calendar month prior to the date of consent. 

 

Exclusion criteria 

 Patients either unwilling or unable to donate a blood sample, provide informed 

consent or to participate in follow-up. 

 Patients who received injectable steroids for 4 weeks prior to the last DAS28 

measurement before starting the study. If a patient was on long-term steroids (4 

weeks or longer) and then required a bDMARD because their DAS28 was ≥5.1, they 

could be recruited, as any improvement could be confirmed to be due to their 

bDMARD, and not their steroid. 

 Patients who had not had a DAS28 within the last calendar month at the point of 

consent. 

 Patients who were not able to attend for their clinical follow-up visits. 

 Patients who were not willing to provide study blood samples either at the point of 

consent, or at another point prior to their treatment start date. 

 

For popPK studies, it has previously been demonstrated that to achieve a power of at least 

80% in the estimation of PK parameters (i.e. CL, volume, absorption rate), a sample size of 

20-30 individuals is sufficient191. Therefore, a target sample size of at least 20 patients on 

any one drug (Amgevita or Benepali) was selected for this study; ethical approval was 

obtained for a total of 30 patients on each drug. Separate popPK models were developed for 

each agent. Recruitment was not restricted to any one agent for pragmatic reasons. 

 

3.1.4. Clinical assessments 

Baseline clinical and demographic data were collected via a case report form (CRF) using 

data from each patient’s case notes both prior to bDMARD commencement. CRFs were 

completed by staff at each participating clinical site, including the author at Bolton One and 

Tameside General Hospital. Patient data was collected from a self-reported questionnaire 

that each patient was asked to complete. The following data were collected: 

 Demographic data: 

o Age. 

o Sex. 

o Height. 

o Weight. 
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o Smoking status (current/ex/never). 

 Clinical data: 

o Year of diagnosis. 

o Joint replacement. 

o Components of ACR 1987 and ACR/EULAR 2010 criteria. 

o DAS28 and its components. 

o Current medications, including non-rheumatological medications. 

o Previous bDMARD/tsDMARD/csDMARD therapy. 

o Recent steroid use. 

o Tuberculosis screening information. 

o Herpes zoster immunity. 

o ACPA status. 

o Co-morbidities. 

 Patient data: 

o Marital status. 

o Ethnicity. 

o Place of birth. 

o Employment status and occupational information. 

o Alcohol consumption. 

o Visual analogue scales (VAS) for pain, fatigue and overall health state. 

o HAQ and its components. 

o EQ-5D and its components. 

o The General Self-Efficacy Scale. 

o Hospital Anxiety and Depression Scale (HADS) and its components. 

o Illness Perception Questionnaire (IPQ) regarding RA. 

 

After three months of bDMARD therapy, the following data were collected: 

 Demographic: 

o Weight. 

o Patient vital status. 

 Clinical: 

o Any changes to bDMARD/tsDMARD/csDMARD medications. 

o Adverse events to bDMARDs. 

o DAS28 and its components. 

 Patient data: as for baseline collection. 
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3.1.5. Sampling schedules 

Optimal sampling time intervals for Amgevita and Benepali were proposed by Dr Adam 

Darwich and Dr Kayode Ogungbenro, respectively, using previously defined popPK models 

from the literature in PopDes software, an application software that can be utilised for 

determining optimal sampling times or windows for PK and popPK studies192. All samples 

were collected by the author, and all doses given at study visits were witnessed by the author. 

 

For Amgevita, a previous PK model derived for adalimumab by Ternant et al 180 was used 

to simulate multiple dosing interval models. The optimal sampling design for Amgevita was 

deemed to be at: baseline (pre-treatment), 1 hour post-first dose, then 2, 4, 6 and 12 weeks 

post-first dose. Doses of Amgevita were witnessed immediately after all samples had been 

obtained to ensure: 1) a true trough drug level; and 2) true patient adherence on initiation of 

drug. The sampling schedule is summarised in Figure 3.1. 

 

For Benepali, previous PK models derived for etanercept by Lee et al172, Yim et al193 and 

Zhou et al174 were utilised for simulation of multiple dosing interval models. The optimal 

sampling design for Benepali was deemed to be at: baseline, 1 hour post-first dose, 6 days 

post-first dose, then 2, 4, 6 and 12 weeks post-first dose. Again, administration of Benepali 

was witnessed immediately after all sampling, except after the Day 6 sample. The time for 

the second dose (Day 7) was contemporaneously communicated via text message 

immediately after the dose was administered. The sampling schedule is summarised in 

Figure 3.2. 

 

3.1.6. Study protocol 

Initial pre-treatment visit 

The pre-treatment visit could either be carried out in person, when patients were attending 

drug education clinics at their parent rheumatology department, or via telephone, after 

suitable patients were identified by their parent rheumatology department. The patient 

information sheet (PIS) was discussed with each patient and if the visit was in person, 

patients would be invited to sign a hard-copy informed consent form (ICF). If the visit was 

conducted via telephone, patients would be invited to sign a consent form at Visit One. 
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Visit One 

Prior to visit one, the author liaised with each patient to find out when their delivery of drug 

was due. Visit one was conducted using one of two methods, depending on whether a patient 

required auto-injectable device training from the medication provider, Healthcare at Home 

Limited. 

 

When device training was not required, the visit initially consisted of: 

 Signing the consent form (if not already completed). 

 Baseline (pre-treatment) blood sample. 

 Witnessed administration of drug. 

 Further blood sampling one hour after first dose of drug. 

 End of visit. 

 

When device training was required, the visit had to be carried out as a patient home visit in 

order to coincide with attendance by a nurse provided by Healthcare at Home. The visit was 

conducted as described below: 

 Signing of consent form (if not already completed). 

 Baseline (pre-treatment) blood sample. 

 Nurse attendance for device training. 

 Witnessed administration of drug. 

 Further blood sampling one hour after first dose of drug. 

 End of visit. 

 

Subsequent visits 

Subsequent visits had a simplified form, as no one-hour blood sample was required: 

 Trough blood sampling. 

 Witnessed administration of drug. 

 End of visit. 
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Figure 3.1. Amgevita sampling schedule overlaid on example PK profile of drug. DNA for genotyping and routine clinical blood sampling are routine samples 

for BRAGGSS. Drug levels and protein mapping are additional serum samples for the BRAGGSS-PD sub-study. 
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Figure 3.2. Benepali sampling schedule overlaid on example PK profile of drug. DNA for genotyping and routine clinical blood sampling are routine samples 

for BRAGGSS. Drug levels and protein mapping are additional serum samples for the BRAGGSS-PD sub-study. 
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3.1.7. Sample processing 

Serum samples were collected from patients according to the sampling intervals detailed in 

Section 3.1.4. Additional samples of serum, RNA, plasma and PBMCs were collected at pre-

treatment and 12 weeks, as per the pre-existing BRAGGSS protocol. All patient samples 

collected were processed and stored at the CfMR and were processed by CfMR laboratory 

staff. All sample blood tubes were spun at 1,720g for 10 minutes, then extracted into aliquots. 

Serum, plasma and RNA samples were stored in -80oC freezers and PBMC samples were 

stored in -150oC freezers. 

 

3.1.8. Measurement of drug levels 

Drug level measurements were carried out by CfMR laboratory staff using commercially-

available ELISA-based test kits produced by Grifols International, SA (Barcelona, Spain). 

The Promonitor®-ADL-1DV kit was used to measure Amgevita levels, and the 

Promonitor®-ETN-1DV kit was used to measure Benepali levels. Standard laboratory 

equipment and a spectrophotometer (SpectraMax® Plus 384 Microplate Reader, Molecular 

Devices, LLC, San Jose, California, USA) were used during the experimental procedure. 

Samples were defrosted for two hours at room temperature, prior to thorough mixing before 

the experimental procedure. 

 

Serum drug levels were measured using 96-microwell ELISA plates, which were pre-coated 

with anti-adalimumab and anti-etanercept human monocolonal antibody, according to which 

drug was being measured (Amgevita and Benepali, respectively). Patient samples were 

diluted to 1:50 concentration using a dilution buffer and were transferred to separate wells. 

Pre-diluted calibration samples and positive and negative controls were also included for 

purposes of quantification of results and quality control; these were also transferred to 

separate wells. Any drug present in the patient samples, calibration samples and controls 

became bound to the immobilised anti-drug antibodies during an incubation period of one 

hour at room temperature. Following incubation, any unbound material was removed by 

washing the wells with a 20X wash buffer containing phosphate-buffered saline and tween-

20. Each well was then loaded with a second horseradish peroxidase-labelled anti-drug 

monoclonal antibody to form a sandwich complex. The plate was incubated for a further 

hour at room temperature to allow the labelled antibody to bind to the drug attached to the 

microwells. Unbound enzyme-labelled antibody was again washed away with wash buffer, 

and a substrate of pre-diluted stabilised tetramethylbenzidine was added to measure enzyme 

activity. After 15 minutes, a stop reagent of pre-diluted sulfuric acid solution was added to 
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halt the reaction. Colour intensity as a result of the enzymatic reaction was measured in 

triplicate using a spectrophotometer at wavelength 450nm. The generated optical density 

values were proportional to the drug concentration in each sample. 

 

Softmax Pro 7 software (compatible with the SpectraMax® Plus 384 Microplate Reader, 

Molecular Devices, LLC, San Jose, California, USA) was used to interpolate the optical 

density values and determine drug level concentrations. Interpolated values were multiplied 

by the dilution factor (x50) to obtain drug levels in patient samples. 

 

3.1.9. PopPK analysis 

All data cleaning and formatting and statistical analysis in this section was carried out by the 

author. 

 

3.1.9.1. Software 

PK data were analysed using a population approach with Monolix v.2019R2 software 

(Lixoft, Antony, France). This is a non-linear mixed-effects modelling software package 

based on the stochastic approximation expectation maximisation (SAEM) algorithm which 

optimises maximum likelihood without any approximation. SAEM convergence has been 

proven to be robust and reliable194. Monolix works by optimising the maximum likelihood 

in order to produce optimal population parameter values; final estimates maximise the 

likelihood of the data, given the model. Maximisation of likelihood is equivalent to 

minimisation of minus two times the logarithm of the likelihood (-2LL) of the data, given 

the model. Both positive and negative values of -2LL are possible following model 

development, and no special value is assigned to direction. The default simulated annealing 

option for SAEM was used in order to maintain a larger parameter space for a prolonged 

period of time (in comparison to without simulated annealing); this enables the escape of 

local maximum values and improves convergence towards a global maximum. A maximum 

of 500 iterations was set in order to ensure best possible convergence. For medication doses 

that were self-administered by patients outside of study visits, the nominal dose timings were 

used for the purpose of modelling. 

 

3.1.9.2. Structural models 

For each drug studied, one, two- or three-compartment mammillary models assuming first-

order absorption and elimination were tested. Estimated PK parameters were given as 

apparent values, due to extravascular administration via the SC route. PK parameters were 
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parameterised as clearance (CL) and volume of distribution (VD). Structural models were 

compared using the Akaike information criterion (AIC), which is defined as: 

 

𝐴𝐼𝐶 =  −2𝐿𝐿 + 2𝑝 

 

where p is the total number of model parameters to be estimated. For each drug, the model 

with the lowest AIC value with the most parsimonious combination of estimates, covariates 

and correlations was selected over competing models. 

 

3.1.9.3. Between-subject variability and unexplained residual error models 

BSV in PK parameters was described using an exponential model, defined as: 

 

𝜃𝑖 =  𝜃𝑇𝑉  ×  exp (η
𝑖
) 

 

where θi is the estimated individual parameter, θTV is the typical individual value of the 

parameter and ηi is the random effect for the ith patient i.e. the ith patient’s deviation from 

the typical value, θTV. Values of ηi were assumed to be normally distributed, with a mean of 

zero and a variance of ω2. For parameters where BSV could not be estimated, this was 

removed from the analysis and therefore, only typical individual values were estimated. 

Correlations between parameters were also tested during model development. Additive, 

proportional or combined additive and proportional models were tested for residual 

unexplained variability (RUV) during model development. This represents the error 

difference between the model prediction at each time point between an individual and the 

observed data. 

 

3.1.9.4. Covariate model development 

Due to a limited number of patients, three covariates were tested in the analysis: age, body 

weight (continuous covariates) and biological sex (binary covariate). Covariate models were 

compared using both -2LL and AIC. Models with the lowest significant -2LL value (assessed 

using a likelihood ratio χ2 test, LRT) and the lowest AIC, with the simplest combination of 

covariates and between-variable correlations were selected. The effect of each covariate on 

each PK parameter was tested using an LRT with α = 0.05. The most significant covariates 

were kept in the final model if shown to usefully improve model fit whilst maintaining the 

simplest possible structural model, given the low number of study subjects. Stepwise 
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forwards/backwards selection was not required, due to the low number of pre-selected 

covariates. 

 

3.1.9.5. Model goodness of fit and evaluation 

The goodness of fit for each model was visually assessed using plots of: 

 Population-predicted (PRED) and individual-predicted (IPRED) measurements 

versus observed measurements. 

 IPRED and observed concentrations (DV) versus time. 

 Residuals, represented in plots of: 

o Population weighted residual distributions (PWRES). 

o Individual weighted residual distributions (IWRES). 

o Normalised prediction distribution errors (NPDE). 

 

NPDE is expected to have a normal distribution, therefore, distribution was tested using the 

Shapiro Wilk test at a level of α = 0.05; NPDE was deemed to be non-normally distributed 

if p < 0.05. 

 

3.1.9.6. Simulation of altered dosing intervals 

Using model parameters estimated from the final popPK model for each drug, simulations 

of altered dosing intervals were then carried out. Simulations were carried out in R v.4.0.5195. 

The mvrnorm function from the MASS196 package was used in order to simulate random 

distributions of each of the model parameters, and the ggplot2197 package was used to 

visualise simulations. All other analyses were performed using the base R package. For each 

drug, a total of 10,000 patients were simulated to receive doses over the first 12 weeks of 

treatment, as per the BRAGGSS-PD study protocol. Simulations for the median, 5th 

percentile and 95th percentiles of the population were plotted to show population trend and 

variability in the population. 

 

Simulations of altered dosing intervals (with the same dose of pre-filled syringe as usually 

prescribed) were also carried out using the same methods. For Amgevita, dosing intervals of 

7 days, 14 days (usual dosing interval) and 21 days were simulated. For Benepali, dosing 

intervals of 5 days, 7 days (usual dosing interval) and 10 days were simulated. 
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3.1.9.7. Simulation of drug response 

For Amgevita patients, further PD simulation was able to be performed using parameters 

defined by Ternant et al from trial data of RA patients commencing adalimumab (the 

originator medication of Amgevita)180. Changes in CRP and DAS28 as the outcome 

measures linked to changes in Amgevita concentrations were simulated. CRP was described 

with an indirect response model with inhibition of CRP input by Amgevita plasma 

concentration. A direct Emax inhibitory model was used to describe the relationship between 

DAS28 as an outcome measure and Amgevita serum concentrations. These relationships are 

summarised in Figure 3.3. 

 

For the Amgevita model, input parameters for Kin and Kout (rate constants for synthesis and 

degradation, respectively) for the CRP model were taken from Ternant et al180, as were the 

values for population baseline DAS28 (DAS0) and the Amgevita concentration leading to a 

50% decrease of baseline DAS28 (IC50). Therefore, Kin was set at 22 mg/L/day, Kout was set 

at 0.875/day, DAS0 was set at 5.5 and IC50 was set at 11.0 mg/L. The remaining parameters 

were based on the final popPK model for Amgevita developed in Monolix using BRAGGSS-

PD subject data, as described in previous sections. CRP and DAS28 values were simulated 

using dosing intervals of 7, 14 and 21 days for Amgevita.  

 

For Benepali patients, further PD simulation was carried out using parameters defined by 

Hsu and Huang from a meta-analysis of RA patients commencing etanercept (the originator 

medication of Benepali)176. Only changes in DAS28 as the outcome measure linked to 

Benepali concentrations were simulated; a model for CRP was not available in the reference 

paper. A simple inhibitory Emax model was used to describe the relationship between DAS28 

as an outcome measure and Benepali serum concentrations. This relationship is summarised 

in Figure 3.4. 

 

For the Benepali model, input parameters for E0 (population baseline DAS28), Emax, and the 

cumulative AUC that produced half of Emax (AUC50) for the DAS28 model were taken from 

Hsu and Huang176. Therefore, E0 was set at 6.22, Emax was set at 2.89 and AUC50 was set at 

2,440 μg*hr/ml. The remaining parameters were based on the final popPK model for 

Benepali developed in Monolix using BRAGGSS-PD subject data, as described in previous 

sections. DAS28 values were simulated using dosing intervals of 5, 7 and 10 days for 

Benepali. 
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Simulations were carried out in R v.4.0.2. The RxODE198 package was used to implement 

the ordinary differential equations (ODEs) for these models using various dosing schedules. 

This package was used for convenience of simulation in the Benepali models, as ODEs were 

not required, but it was used to implement ODEs in the Amgevita model. Cumulative AUC 

(Figure 3.4) was calculated at each time point in the Benepali model using the cumtrapz 

function of the pracma199 package. Visualisations were carried out using the ggplot2 

package. 

 

Figure 3.3. PK and PD models describing serum Amgevita concentrations in RA patients, 

adapted from Ternant et al180. 

 

 

Figure 3.4. PK and PD models describing serum Benepali concentrations in RA patients.

 

 

3.2. Discovery proteomics: proteomic predictors of treatment response 

3.2.1. Study participants 

One cohort of participants consisted of all patients recruited to the BRAGGSS-PD sub-study 

– please see Section 3.1.2 for more details. Serum protein mapping was carried out at all 

sampling time points in the BRAGGSS-PD sub-study. In a second cohort, further samples 
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were selected from pre-existing participants to the prospective arm of BRAGGSS who were 

commencing etanercept or an etanercept biosimilar from across all 60 participating sites. 

Serum samples were obtained at baseline (pre-treatment) and after three months of treatment 

for all participants, and also at six months for 82 participants. In addition, HCs were recruited 

from the National Repository Study (REC reference 99/8/084), a study consisting of healthy 

volunteers to provide samples for comparison cohorts and protocol, technique and method 

development. Samples for HCs were only available at one time point. Inclusion and 

exclusion criteria were as detailed in Section 3.1.2. Clinical assessments were as detailed in 

Section 3.1.3. Samples were processed as detailed in Section 3.1.5. 

 

Data cleaning was carried out by the author. For any missing clinical variables (e.g. patients 

not seen at follow-up for a particular time point, patient did not return questionnaire by post), 

values were imputed at each time point using a random forest algorithm, implemented in the 

R package MissForest200. Please see Section 3.2.5 for a description of methods used to 

compare the accuracy of imputation techniques. A random forest algorithm was chosen for 

imputation as it had the best accuracy of imputation of proteomic data, and this method was 

also chosen for imputation of clinical variables for consistency. 

 

3.2.2. Sample preparation 

Sample preparation and SWATH-MS for discovery proteomics was carried out at the Stoller 

Biomarker Discovery Centre (SBDC), the University of Manchester, UK. Two datasets of 

MS data were generated by SBDC: 

1. A longitudinal dataset of protein expression over the first 12 weeks of treatment with 

either Amgevita (adalimumab biosimilar) or Benepali (etanercept biosimilar) in 

patients recruited to the BRAGGSS-PD sub-study; this was processed in two batches. 

2. A dataset of extant samples from patients treated with etanercept/etanercept 

biosimilars from the wider BRAGGSS cohort; this was processed in three batches. 

The third batch was processed at the same time as some of the BRAGGSS-PD 

samples. 

 

Samples were transferred from CfMR to SBDC on dry ice. Following thorough thawing, 

serum samples were depleted of abundant proteins (e.g. albumin, IgA, IgG, IgM). Within 

each batch, all samples were plated in a random order and control samples were used at the 

beginning, during and at the end of MS runs in order to detect run-order effects. The 

BRAGGSS-PD and third batch of etanercept cohort samples were depleted of the top 14 
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most abundant proteins using commercially-available HighSelect™ Top14 Abundant 

Protein Depletion Mini Spin Columns (Thermo Fisher Scientific, Waltham, MA, USA), 

according to the manufacturer’s methods. The remaining BRAGGSS etanercept samples 

were depleted of the top 12 most abundant proteins using commercially-available Top-12 

kits (Pierce, Thermo, Loughborough, UK), according to the manufacturer’s methods. 

Different immunodepletion kits were used as the SBDC protocol had been updated before 

the later batches of samples were processed. 

 

Protein amount was then assayed in the resultant solution using a Bradford reagent (Bio-

Rad, Watford, UK). Solution containing 40μg of protein was subsequently processed further. 

The BRAGGSS-PD and third batch of etanercept cohort samples were reduced, alkylated 

and digested by using S-trap columns prior to lyophilisation. For the remaining etanercept 

cohort samples, samples were reduced using 60 mM tris (2-carboxyethyl) phosphine at 60oC 

for 60 minutes, and then were alkylated using 10 mM iodoacetamide for 30 minutes in the 

dark. Protein digestion was carried out overnight using trypsin (Promega, Southampton, UK) 

at 37oC in a 10:1 ratio of protein-to-enzyme. 

 

For all samples, once digested, peptides were cleaned using a SepPak (Waters, Wilmslow, 

UK) 96-well plate solid-phase extraction system. Following digestion, gel electrophoresis 

was then carried out in order to assess the efficiency of immunodepletion and digestion, and 

to identify any discrepancies or handling errors during prior sample processing. Each gel 

was run using a Mini Gel Tank containing Bolt 4 – 12% Bis-Tris gel and SDS Running 

Buffer (all Thermo Fisher Scientific, Waltham, MA, USA). Tanks were supplied with a 

PowerEase® 90W Power Supply (also Thermo Fisher). Gels were assessed for adequacy of 

digestion: digested proteins should be small enough to run to the end of the gel. 

 

3.2.3. Bespoke RA protein library generation 

A library of proteins associated with RA as determined from previous studies was generated 

following a detailed literature search and review by the author. The Ovid MEDLINE 

database was searched from 1946 until October week 5 2018 using the following search 

terms: 

 “Rheumatoid arthritis” as a keyword; “Arthritis, Rheumatoid” as a subject heading 

(all subheadings included) – search 1. 

 “Proteomics” as a keyword; “Proteomics” as a subject heading (all subheadings 

included) – search 2. 
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 “Proteins” as a keyword (all subheadings included) – search 3. 

 Combine searches 2 OR 3 – search 4. 

 Combine searches 1 AND 4 – search 5. 

 

Studies were included if they were carried out in human participants with RA, with at least 

10 participants in each comparison group. The full text of each manuscript had to be 

available via the University of Manchester Library. In addition, only proteins that were 

specifically identified were included; spectral peaks alone were excluded. Review articles, 

studies utilising only cell lines, clinical trials and studies of DNA and RNA were also 

excluded. A library of proteins from the remaining included studies was compiled, and 

identifier (ID) numbers were allocated following a search of the Universal Protein Resource 

(UniProt)201 database. 

 

In addition to proteins identified from the above literature search, proteins involved in the 

TNF pathway according to the Kyoto Encyclopedia of Genes and Genomes (KEGG)202 were 

included. 

 

3.2.4. SWATH-MS analysis 

Samples were analysed by SWATH-MS with a micro-flow LC-MS system, comprising an 

Eksigent nanoLC 400 autosampler and an Eksigent nanoLC 425 pump, coupled to a SCIEX 

6600 TripleTOF mass spectrometer (all equipment listed: SCIEX, Framingham, MA, USA). 

The LC method consisted of a 120-minute gradient between a buffer A of 98% water, 2% 

(volume per volume, v/v) acetonitrile and 0.1% (weight per volume, w/v) formic acid, and a 

buffer B of 80% acetonitrile, 20% water and 0.1% formic acid. Samples were injected in 

duplicate. Spectra were acquired with the mass spectrometer in SWATH mode, using the 

100 variable window method, with MS2 windows ranging from 399.5 to 1,249.5 m/z, with 

optimised collision energy equations. The MS1 mass range was from 100 to 1,500 m/z, with 

an accumulation time of 0.05 seconds and a cycle time of 2.6 seconds. 

 

Spectral data files were then converted using wiffconverter (SCIEX, Framingham, MA, 

USA) to mzML format, an open extensible markup language (XML) format that has been 

collaboratively developed specifically for use in MS data output files203. A protein library 

search was then carried out using OpenSWATH v.2.0.0204 against both a publically available 

twin plasma library205 (version published 5th January 2015) and a bespoke library of proteins 

associated with RA (as detailed in Section 3.2.3). OpenSWATH results files were then 
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processed using PyProphet206, an algorithm developed for targeted proteomics, particularly 

large-scale data generated from OpenSWATH or DIANA206 (an alternative set of 

bioinformatics tools for analysis of SWATH data). Following processing with PyProphet, 

files were then aligned using the feature alignment script from the MS Proteomics Tools207 

online repository of bioinformatics tools developed to aid analysis of proteomic MS data. A 

target false discovery rate (FDR) was set at 0.01 at the peptide-spectrum match (PSM) level. 

 

Further data pre-processing was carried out using R v.3.4.1, using Bioconductor v.3.5208 

packages MSstats209 and SWATH2Stats210 for downstream processing. Coefficients of 

variation (CV) were calculated between technical replicates; any samples with a median CV 

of ≥ 20% were re-run. Data were filtered by m-score (also known as q-value; this constitutes 

the minimum FDR acceptable in samples). m-scores were generated using the 

filter_mscore_fdr function in the SWATH2stats package; the overall protein FDR 

target was set at 0.02 and the upper overall peptide FDR limit was set to 0.05. Data were 

then converted from a feature alignment input to MSstats input using the 

convert4MSstats function in SWATH2stats. MSstats was then used to normalise and 

summarise protein intensity data, using the dataprocess function with default 

arguments. Protein intensity readings were then log2-transformed and centred and scaled, so 

that all coefficients were scaled within each batch that was processed. All sample processing 

and bioinformatics processing was carried out in-house by SBDC up until this point, but all 

further analysis in subsequent sections was carried out by the author. 

 

3.2.5. Quality control of proteomics data 

Further quality control (QC) of proteomics data was carried out in R v.4.0.2, primarily in the 

dataset generated from extant samples drawn from the wider BRAGGSS collection. Firstly, 

data readouts from both plasma and bespoke RA libraries were merged for each study 

participant and duplicate proteins removed, using the tidyverse211 package. Proteins with 

near-zero variance across all participants were removed using the caret212 package. Density 

plots were generated in order to visually compare mean expression of proteins versus levels 

of protein missingness i.e. <25% missing, 25-50% missing, 50-75% missing, >75% missing. 

Heatmaps were generated using the ComplexHeatmap213 package to visually inspect for any 

patterns of protein missingness e.g. by time point or treatment response. 

 

Once it had been ascertained that missing proteins were likely missing at random (for 

example, due to not being captured in a particular SWATH window at a given time point), 
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missing proteins were imputed. Prior to imputation, accuracy of various imputation methods 

was carried out on a subset of complete data with no missing values. The simIm function 

of the imputeR214 package was used to randomly spike 30% missing values into the data 

subset, before several different methods of imputation were compared for accuracy: 

 Lasso regression, a form of linear regression where data values are shrunk towards a 

central point, such as the mean. This method favours more sparse models with fewer 

parameters. The lassoR function was used in the imputeR package. 

 Partial least squares regression, another form of linear regression that is similar to 

principal components analysis (PCA), where predicted and observed variables are 

projected into a new theoretical space. The plsR function was used in the imputeR 

package. 

 K-nearest neighbours, a machine learning algorithm that assumes similarity of data 

points in close proximity. The knn.impute function was used in the bnstruct215 

package. 

 Multiple imputation by chained equations (MICE), a multiple imputation method 

that assumes that data is missing at random, with prediction of new data based on a 

regression model. This was carried out using the mice216 package. 

 Random forest, an ensemble machine learning algorithm that utilises multiple 

decision trees. This was carried out using the MissForest200 package. 

 

The root mean square error (RMSE) was used to determine the most accurate method of 

imputation; the lower the value, the better the accuracy. Using this metric, random forest 

was selected as the imputation method of choice. New datasets were created from the 

original subset of complete data, with values of 25%, 50% and 75% missing data randomly 

spiked in. RMSE of random forest imputation across different levels of protein missingness 

was then compared between these new datasets. 

 

The above random forest algorithm was then used to impute missing values in the wider 

dataset. This was carried out separately in each batch, at each time point. It was hypothesised 

that levels of any given protein would change over time, so imputation was carried out 

separately at each time point in order to increase imputation accuracy; imputed values would 

not then be affected by increased or decreased expression of the same protein at different 

time points. Following imputation, further density plots were created for data pre- and post-

imputation to visually inspect whether imputation altered protein expression densities. 

Hierarchical clustering was used to identify and remove any outlying samples. Then, using 
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the caret package, PCA was carried out to determine whether there was any batch effect in 

protein expression. Finally, the ComBat function in the sva217 package was used in order to 

correct for batch effect in the entire imputed dataset. 

 

In the dataset generated from the BRAGGSS-PD sub-study, QC was carried out with 

imputation using a random forest algorithm as discussed above. Hierarchical clustering was 

performed to identify and remove any outlying samples, then PCA was carried out to identify 

batch effects. The ComBat function was again used to correct for batch effect in the entire 

imputed dataset. 

 

3.2.6. Statistical analysis 

All analyses were carried out in R v.4.0.2. 

 

3.2.6.1. Differentially expressed proteins between cases and controls 

Analysis was carried out in the etanercept sub-cohort drawn from the wider BRAGGSS 

collection. One of three batches processed by SBDC contained HCs, and this batch was used 

to carry out analysis of differential expression of proteins between cases and controls. A 

Welch’s t-test was carried out between RA patients (cases) at baseline (pre-treatment) and 

HCs using the col_t_welch function in the MatrixTests218 package. Proteins with a 

significance of p < 0.05 were retained, meaning that these proteins were significantly 

increased or decreased in cases compared to controls. These proteins were selected for the 

next stage of analysis detailed in later sections, in order to reduce the high dimensionality of 

the dataset by focusing only on proteins that were differentially expressed between patients 

with active RA and HC, who represented a healthy physiological state. 

 

3.2.6.2. Longitudinal analysis of protein expression in the first 12 weeks of treatment 

with Amgevita or Benepali 

Analyses were carried out in the dataset drawn from the BRAGGSS-PD sub-study. Samples 

from patients on each drug (Amgevita and Benepali) were both pooled (for therapeutic drug 

level analysis only) and then analysed separately. In addition to the MS data described above, 

clinical parameters were also included in the analyses, namely, drug concentrations (the 

outcome measure or dependent variable), age at inclusion, biological sex, weight (as this 

could affect CL and hence, drug concentration) and concurrent csDMARD therapy (as this 

is known to reduce the chance of developing ADAbs). Proteins measured using SWATH-

MS were filtered to only significant proteins from the case-control analysis carried out in 
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Section 3.2.6.1, in order to limit analysis to only proteins differentially expressed in RA 

patients compared with HC. Linear mixed effects models were developed to investigate any 

potential associations between measured protein levels and RA disease outcomes. Fixed 

effects were defined as age, biological sex, weight and concurrent csDMARD therapy, and 

independent random effects were defined as each patient’s identifier and each sampling time 

point. 

 

Time can be considered as either a fixed or a random effect in a linear mixed effects model. 

The overall time period of this study is a continuous variable, but proteins have only been 

measured at pre-determined time points. These sampling points are representative of protein 

levels over time as part of a pragmatic study design, but to have protein levels measured at 

every single possible time throughout the study would be unfeasible. Random effects data 

can be considered to be a sample of all possibilities, just as sampling time points are just a 

sample of all possible times in this study. Because there are multiple sampling points for 

each patient included in the study, sampling time point could be considered to be a grouping 

variable (random effects are usually considered to be grouping factors which are trying to 

be controlled), with protein expression values compared between patients at each time point. 

Furthermore, an advantage of assigning sampling time point as a random effect is that it can 

then be determined how much variation in protein expression can be attributable to this 

effect. 

 

Drug concentration levels were chosen as the outcome, as opposed to DAS28, because 

values for this variable were available at all time points, to correspond with protein MS data; 

DAS28 was only measured at baseline and 12 weeks. In addition, drug concentration levels 

may represent a more objective clinical outcome measure than DAS28, as values do not rely 

on subjective, patient-reported outcome measures52. Protein expression was regressed 

against: 

1. Therapeutic drug concentration levels as a dichotomous binary variable, defined as: 

a. Between 5 – 8 mg/L for Amgevita, as per Pouw et al219; this range is based 

on trough drug levels and all samples in the Pouw study were obtained 

immediately before administration of the next adalimumab dose, as in the 

BRAGGSS-PD study. 

b. Between 2.1 – 4.7 mg/L for Benepali, as per Jamnitski et al220; it was not 

explicitly stated whether this range is based on trough or random drug levels 

in the Methods section of the Jamnitsky study. 
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2. Actual drug concentration levels as a continuous linear variable. 

 

An FDR set at a threshold of 5% was used in order to control for type 1 error. Analyses were 

carried out using the lme4221 package. Significance values for each model component were 

obtained using the lmerTest222 package. 

 

3.2.6.3. Analysis of protein expression and association with RA disease outcomes 

following treatment with etanercept 

Analysis was carried out in the wider BRAGGSS etanercept sub-cohort in order to determine 

whether protein expression as determined using SWATH-MS was predictive of RA clinical 

response outcomes. Analysis was carried out in R v.4.0.2. The R base package was used to 

carry out linear regression between expression of each significant protein selected from 

Section 3.2.6.1 and the following continuous RA disease outcomes: 

 Primary outcome measures: 

o DAS28, calculated using high-sensitivity CRP as measured at the CfMR; 

where this was missing, CRP or ESR from each patient’s recruiting centre as 

documented on the CRF was used, and where no value was available at all, 

CRP was imputed statistically as per Section 3.2.1. 

o Change in DAS28 from baseline (ΔDAS28) – only analysed at time points 

after treatment i.e. three and six months. 

 Secondary outcome measures: 

o TJC. 

o SJC. 

o Patient-reported VAS of global health. 

o High-sensitivity CRP, as measured at CfMR using ELISA, and not with 

SWATH-MS. 

 

Logistic regression was carried out between expression of each significant protein from 

Section 3.2.6.1 and the following categorical RA disease outcomes: 

 EULAR response. 

 DAS28 improvement of > -1.2, defined as the minimally clinically important 

difference (MCID). 

 

Both univariate analysis and multivariable analysis (with adjustment for age, biological sex 

and RA disease duration) were carried out for each protein in both linear and logistic 
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regression analyses. Adjustment for FDR due to multiple testing was carried out using the 

Benjamini-Hochberg procedure223. Significant proteins (following multiple testing 

adjustment with p < 0.05) were then added into a multivariable model with one another and 

the above confounding covariates. Proteins at baseline were compared with outcomes at 3 

and 6 months. Proteins at three months were compared with outcomes at three and six 

months. Proteins at six months were compared with outcomes at six months. Linear and 

logistic regression were used, as opposed to linear mixed effects modelling again, because 

random effects were not shown to significantly contribute to the variance of models from 

Section 3.2.6.2, indicating that mixed effects models are unlikely to provide additional 

benefit over conventional linear and logistic regression. 

 

3.2.6.4. Differential expression of proteins over time following treatment with 

etanercept 

Analysis was carried out in the wider BRAGGSS etanercept sub-cohort using R v.4.0.2. This 

analysis aimed to determine whether the overall protein expression profile of the study 

population was altered between time points of interest. While patients were stratified by 

treatment response, this analysis was agnostic to RA clinical response outcomes and focused 

on protein expression levels between specific time points in the study population. 

 

Significant proteins from Section 3.2.6.1 were selected for analysis. The limma224 package 

was used to assess for differential expression of each protein between available time points 

i.e. between baseline and three and six months, and between three months and six months. 

Age at baseline, biological sex, RA disease duration and pre-treatment DAS28 were included 

as confounders in analysis of all dependent variables. The contrasts.fit function was 

used to compute estimated coefficients and standard errors, and the eBayes function was 

used to compute moderated t- and F-statistics and log-odds of differential expression using 

empirical Bayes moderation of the standard errors towards a common value. 

 

3.2.6.5. Machine learning methods to determine proteomic predictors of treatment 

response 

Analyses were carried out in the dataset drawn from the wider BRAGGSS etanercept sub-

cohort. Proteins that were significantly increased or decreased in RA patients compared to 

HCs were retained from the analysis described in Section 3.2.6.1. A number of machine 

learning algorithms were used to determine whether proteins at baseline were predictive of 

treatment response after three months of treatment. The binary classifiers of failure to 
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achieve MCID in DAS28 and poor EULAR response were used to define treatment non-

response. Due to class imbalance in these classification outcomes, a synthetic minority 

oversampling technique (SMOTE) algorithm was used to create synthetic data for the 

minority class. Data were partitioned into completely separate training and validation sets 

using an 80%/20% split, so SMOTE was carried out separately in each training and 

validation set in order to avoid data leakage influencing model development. SMOTE was 

carried out using the package smotefamily225. 

 

Using the mlr226 package, the following machine learning algorithms were used to develop 

classification models predictive of treatment response/non-response to etanercept/etanercept 

biosimilars: 

 Penalised regression: this an umbrella term for a family of regression methods (i.e. 

ridge, lasso, elastic net) that estimate the regression coefficients of a model through 

the minimisation of the residual sum of squares. The tuning parameters consisted of: 

o  α, the elastic net mixing parameter, tuned between zero (ridge regression) 

and one (lasso regression). 

o s, equivalent to the regularisation parameter λ, tuned between zero and one. 

Penalised regression models can demonstrate improved prediction on new data by 

shrinking coefficient size and retaining predictors with coefficients greater than 

zero227. 

 K-nearest neighbours: this method was previously outlined in Section 3.2.5. The 

tuning parameters consisted of: 

o  k, the number of nearest neighbours considered in algorithmic decisions, 

tuned between two and ten. 

o Distance, the Minkowski distance, which is a generalisation of both the 

Euclidean and Manhattan distances, tuned between one and three. 

o Kernel, which allows mapping to a high-dimensional feature space, tuned 

over rectangular, Gaussian, rank and optimal values. 

K-nearest neighbours is an advantageous algorithm, with a quick calculation time, a 

simple algorithm and good predictive accuracy. 

 Random forest: this method was previously outlined in Section 3.2.5. The tuning 

parameters consisted of: 

o mtry, the number of variables to potentially split at each decision tree node, 

tuned between three and five. 

o num.trees, the maximum number of decision trees, which was set at 500. 
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Random forest algorithms have good predictive accuracy due to in-built reduction in 

over-fitting when building decision trees. However, it is computationally and time- 

intensive during model training.  

 Support vector machine: this method is a non-probabilistic binary linear classifier 

that functions by mapping training data to points in space, which maximises the 

distance between two categories. The tuning parameters consisted of: 

o Cost, a function that controls for training errors and margins, tuned between 

0.1 and ten. 

o γ, a parameter required for compatibility with different kernels, tuned 

between 0.1 and ten. 

o Degree, a parameter required for a polynomial kernel, tuned between one and 

four. 

o Kernel, tuned over polynomial, radial and sigmoid values. 

Support vector machine algorithms are effective in high-dimensional spaces, 

particularly when dimensions outnumber samples. However, these algorithms 

struggle when there is not a clear margin of separation between classes. 

 

These different methods all utilise a variety of statistical methods and were chosen to 

represent algorithms based on regression, clustering and decision trees, as well as an 

algorithm based on data segregation by hyperplane formation. By using this ensemble of 

different methods, a broad overview of model training and prediction on the same data could 

be determined. 

 

During model training, algorithms were tuned using nested cross validation. Inner loops 

were tuned using 10 folds of cross-validation. Outer loops were tuned over five repeats of 

10-fold cross-validation. Parameters were tuned over a random tuning grid, with a maximum 

number of iterations of 20. Models developed using each algorithm were compared in a 

benchmarking experiment, and the best model from each benchmarking experiment was 

taken forward and re-trained on the validation data. Model performance was then tested 

using area under the ROC curve, accuracy and mean misclassification error (MMCE). Model 

calibration was assessed via visual inspection of plots generated using the classifierplots228 

and RBPcurve229 packages, as well as by carrying out the Hosmer-Lemeshow goodness-of-

fit test using the hoslem.test function of the ResourceSelection230 package. 
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3.2.6.6. Pathway analysis 

All significant proteins from Sections 3.2.6.2, 3.2.6.3 and 3.2.6.4 were combined into a list 

and searched in the STRING database v. 11.5231 232. The STRING database is an online, 

interactive repository that aims to collect, appraise and amalgamate all publicly-available 

information on protein-protein interactions. UniProt IDs of significant proteins as described 

above were input into the browser-based interface with STRING using the “multiple 

proteins” search function and filtered to only results from Homo sapiens. The resultant 

search returned information on protein interactions and networks, including both known and 

predicted interactions, and interactions derived from other online sources. 

 

3.3. Genetics of protein expression in patients with RA 

Genotyping was carried out on the same extant BRAGGSS prospective arm etanercept 

samples included in the proteomic analysis, as detailed in Section 3.2.1. Analysis was not 

carried out in the longitudinal samples recruited from the BRAGGSS-PD sub-study. 

 

3.3.1. DNA extraction and genotyping 

Both DNA extraction and genotyping procedures were carried out at the CfMR by the 

laboratory technician team. DNA extraction was carried out via standard phenol-chloroform 

extraction on whole blood, as previously described233. Genotyping was carried out using the 

Illumina Infinium HumanCoreExome 12 BeadChip kit (Illumina, San Diego, California, 

USA). 200 ng of DNA was used, according to the manufacturer’s guidance. Genotype 

calling was carried out using GenomeStudio software (Illumina, San Diego, California, 

USA). 

 

3.3.2. SNP and sample QC and imputation 

Genetic QC and imputation was carried out by Dr Chuan Fu Yap, research associate at 

CfMR. Analysis was conducted using PLINK v.1.9234 235. Samples with unassigned 

chromosomes (i.e. “CHR=0”), Y chromosomes and mitochondrial SNPs were initially 

excluded. Then, samples and SNPs were pre-filtered at a 98% call rate. A threshold of 2% 

was set for SNP missing rate, and SNPs above this threshold were excluded. A threshold for 

low allele frequency was set at 1%, and alleles with a minor allele frequency below this 

threshold were excluded. SNPs that did not fulfil conditions for Hardy-Weinberg 

equilibrium, set at a p-value of 1E-04, were then excluded. Duplicate SNPs, based on 

chromosome and base position, were then removed. Autosomal heterozygosity was 

calculated in order to exclude in-bred, outlier genotypes. Finally, genotype data for the X 
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chromosome was checked for discrepancies in sex data with corresponding pedigree data. 

Sex was initially determined using X chromosome heterozygosity rates, then compared to a 

gender pedigree data file. Mismatched samples were compared with phenotype data, and if 

a discrepancy persisted, samples were excluded. 

 

The resultant dataset was then aligned to a reference genome, namely the Haplotype 

Reference Consortium236; this step is necessary prior to imputation. Samples were checked 

for identity by descent to determine sample relatedness, in order to remove potentially 

identical or duplicate genotype files, as well as related individuals. Because population 

stratification drives spurious association in any final analysis, the genetic ancestry of each 

individual was determined using the HapMap3 reference panel237 by merging the genotype 

data with the reference panel. Areas in high linkage disequilibrium (LD) were excluded, then 

PCA was carried out in R v.3.6.1 in order to identify and remove outliers. The results of the 

PCA were used to ensure that only individuals of European ancestry were retained for 

analysis. Finally, phasing and imputation were carried out on the Michigan Imputation 

Server238: phasing was performed using Eagle v2.4239 and the imputation engine was 

Minimac4240. The HRC241 (Version r1.1 2016) reference panel was used; this panel consists 

of 64,940 haplotypes of predominantly European ancestry. During post-imputation QC, 

duplicate SNPs were removed, as were variants with low-quality scores (R2 < 0.5, indicative 

of poor imputation). 

 

3.3.3. pQTL analysis to determine whether genetic markers are correlated with 

protein levels 

All analyses were carried out by the author using R v.4.0.2. Imputed PLINK files from 

Section 3.3.2 were input into R using the read_plink function of the genio242 package. 

The ensembldb243 package was used to annotate UniProt IDs to genes as documented in the 

Ensembl244 database. Duplicate annotations were dropped. Once proteins had been annotated 

to genes, pQTL analysis was carried out with the Matrix eQTL245 package using a linear 

model. The following variables were included as covariates: age at baseline, RA disease 

duration prior to starting etanercept, biological sex, concurrent csDMARD therapy, BMI and 

seropositivity to either RF or ACPA. A significance level of p < 1E-05 was set for cis pQTLs, 

and of p < 5E-20 for trans pQTLs. The low p-value for trans pQTLs was because the study 

was not designed to be powered to detect trans effects, so this significance level was set to 

limit the number of associations detected. p-values from the pQTL analysis were adjusted 

for FDR using the Benjamini-Hochberg procedure. pQTLs were sought at baseline and after 
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three months of treatment with etanercept. dbSNP was used to identify which chromosome 

each SNP was on246. The most associated SNPs for each protein identified were then input 

into the GTEx Portal247 in order to identify any corresponding tissue-specific eQTL to pQTL. 

SNPs of proteins of interest were input into the STRING database231 to determine whether 

there were any known interactions between these proteins. 

 

3.3.4. Genetic risk score derivation 

Data pre-processing was carried out using R v.4.0.2 by the author. Significant cis pQTLs (as 

derived in Section 3.3.3) at level of p < 1E-05 were selected for analysis to derive a genetic 

risk score for treatment non-response. pQTL results output files from Section 3.3.3 were 

merged with SNP information present in the .bim file generated in 3.3.2 and used as the base 

data. The target data consisted of 1,563 patients with RA recruited to BRAGGSS (but 

independent from patients included in the pQTL analysis in Section 3.3.3) receiving a 

combination of TNFi, including adalimumab, etanercept and infliximab; a detailed 

description of this cohort and genotyping methods have previously been described248. 

Polygenic risk scores (PRS) were calculated using the PRSice249 package. The distance for 

clumping was set to 250kb, the R2 threshold for clumping was set to 0.1 and the p-value 

threshold was set to 1. A logistic regression was then carried out, using the generated PRS 

as a predictor of EULAR non-response after three or six months of treatment as the target 

trait, adjusting for the covariates of biological sex, baseline DAS28 and concurrent 

csDMARD therapy; age at baseline was not available in this dataset. A significance level of 

p < 0.05 was set to determine model fit. 

 

3.4. Chapter summary 

This chapter outlined methodology for the following planned analyses: 

 popPK studies of patients initiating Amgevita or Benepali, with subsequent 

modelling and simulation of altered dosing intervals. 

 Acquisition of proteomics data using SWATH-MS and subsequent data QC. 

 Analysis of proteomics data to determine predictors of treatment response and 

differential expression profiles. 

 pQTL analysis using protein expression data obtained at SWATH-MS combined 

with genotype data from the same patients. 

 Genetic risk score calculation using the results of the pQTL analysis.  
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CHAPTER FOUR: popPK MODELLING AND SIMULATION OF AMGEVITA 

AND BENEPALI 

 

 

4.1. Results 

4.1.1. Development of a popPK model for patients initiating Amgevita 

Ten patients with RA who commenced Amgevita were recruited to the BRAGGSS-PD sub-

study. Nine patients were female and one patient was male. All patients were Caucasian. The 

median age was 50.5 years (interquartile range, IQR, 46 – 61) and the median pre-treatment 

DAS28 was 5.71 (IQR 5.20 – 6.09). Detailed patient characteristics are outlined in Table 

4.1. 

 

Table 4.1. Patient characteristics at baseline, prior to treatment with Amgevita. 

Characteristic Statistic 

Female sex, n (%) 9 (90.00) 

Age (years), median [IQR] 50.5 [46 – 61] 

Body weight (kg), median [IQR] 85.5 [66 – 111] 

Concurrent csDMARD, n (%) 8 (80.00) 

DAS28, median [IQR] 5.71 [5.20 – 6.09] 

 

ABBREVIATIONS: Conventional synthetic disease-modifying anti-rheumatic drug (DMARD), disease 

activity score of 28 joint counts (DAS28), interquartile range (IQR). 

 

A total of 58 serum samples of Amgevita drug concentrations were available for analysis. 

As outlined in Section 3.1.9.2, a one-compartment PK model was found to be sufficient to 

describe the popPK profiles of patients initiating Amgevita recruited from the BRAGGSS-

PD sub-study. A combined additive and proportional model was used to describe the residual 

errors in the data. No covariate was found to be significant in the model, as covariates tested 

only demonstrated a modest improvement in AIC and -2LL, whilst complicating the model 

built from sparse sampling. Furthermore, due to a large residual error from estimation of ka, 

this value was fixed to 0.01167 hour-1 as per Ternant et al180 and the random effect (BSV) 

was not estimated on this parameter. 

Summary of chapter contents: 

4.1. Results 

4.2. Discussion 

4.3. Chapter summary 
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Plots were generated by Monolix of predicted versus observed measurements for Amgevita 

serum concentrations, demonstrating that PK parameters were able to describe the data 

(Figure 4.1). PK parameters estimated are presented in Table 4.2. 

 

Table 4.2. PopPK parameter estimates for Amgevita. 

Parameter 

(units) 

Definition Estimate Relative standard 

error (RSE, %) 

VD (L) Apparent volume of distribution 9.19 12.7 

CL (L/hr) Apparent clearance 0.00283 23.3 

ka (/hr) Rate constant for absorption 0.1167 Fixed 

ωVD (%) Coefficient of variation (CV) of 

between-subject variability (BSV) on 

VD 

15.60 141.0 

ωCL (%) CV of BSV on CL 68.90 24.8 

σprop (%) Standard deviation (SD) of 

proportional residual error 

26.00 15.7 

σadd (mg/L) Standard deviation of additive residual 

error 

10.80 16.0 

 

The relative standard error (RSE, %) was calculated as: RSE = (estimate / standard error) x 100. 

ABBREVIATIONS: Additive error (add), between-subject variability (BSV), clearance (CL), coefficient of 

variation (CV), proportional error (prop), proportional rate constant for absorption (ka), standard deviation 

(SD), volume of distribution (VD). 

 

All diagnostic plots were obtained from the final popPK model for Amgevita. Population 

weighted residuals (PWRES) and individual weighted residuals (IWRES), as well as 

normalised prediction distribution error (NPDE) plots demonstrated no gross model 

misspecification (Figure 4.2). Residuals were shown not to be normally distributed using the 

Shapiro Wilk test, with p-values of 4.08E-05, 1.26E-05 and 2.93E-07 for IWRES, PWRES 

and NPDE, respectively. However, on this basis alone, it is not sufficient to reject a model, 

and estimates from this model had values similar to those obtained by Ternant et al180 and 

relative standard errors (RSE) were mostly satisfactory; the RSE for ω(%) for VD was high, 

but the estimate for the actual value was in-keeping with what was expected from prior 

knowledge. Furthermore, a visual predictive check (VPC) revealed adequate model fit 

(Figure 4.3), with only a very small area of outlying predictions. Therefore, parameter 

estimates from this popPK model were taken forward and utilised in simulations of 
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alternative dosing intervals for Amgevita, as well as simulations of how Amgevita treatment 

might influence CRP and DAS28 values in a typical patient during the first 12 weeks of 

treatment. 

 

4.1.2. Simulation of alternative dosing intervals for Amgevita 

Initially, a simulation of 10,000 individuals was carried out using PK parameters obtained 

from the popPK model derived in Section 4.1.1. Typical individual profiles, the median and 

5th and 95th percentiles were simulated using the usual dosing interval of Amgevita 40mg 

every 14 days. Simulated values were overlaid with measured values from the study subjects 

included in the popPK model, and this demonstrated visually that simulated values agreed 

well with measured values (Figure 4.4). Figure 4.4 differs from Figure 4.3 in that Figure 4.3 

is based on actual dosing history and sampling times of BRAGGSS-PD patients used for the 

modelling. However, Figure 4.4 is based on nominal dosing history (Amgevita 40mg every 

14 days) alongside the sampling times in the observed data. Therefore, Figure 4.3 is a true 

reflection of the data when compared with Figure 4.4. 

 

Once it had been established that simulations agreed with actual measured values, alternative 

dosing regimens were additionally simulated for typical individuals. These alternative 

regimens were Amgevita 40mg administered every 7 or every 21 days, alongside the usual 

dosing regimen of every 14 days (Figure 4.5). Both the usual dose rates of 40mg every 14 

days and the increased dose rate of 40mg every 7 days achieved steady-state drug 

concentrations within the therapeutic window of adalimumab, defined by Pouw et al as 

between 5 – 8 mg/L219. However, the reduced dose rate of 40mg every 21 days from initiation 

of treatment did not achieve steady-state concentrations within this therapeutic window. 

Time to reaching steady-state drug concentrations had negligible difference between the 

administration of Amgevita 40mg every 7 or 14 days.
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Figure 4.1. Observed values of Amgevita concentrations versus population model-predicted values (PRED) and individual predicted values (IPRED). 
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Figure 4.2. Distribution of population (PWRES) and individual weighted residuals (IWRES) versus individual predictions and normalised prediction 

distribution error (NPDE) for Amgevita concentrations. 
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Figure 4.3. Visual predictive check (VPC) of popPK model fit for Amgevita. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTERPRETATION OF VISUAL PREDICTIVE CHECK: The light red zone represents a simulation-based 95% confidence interval (CI) around the median Amgevita concentration for 

the population, which is denoted by the middle solid blue line. The 10th and 90th percentiles are represented by the lower and upper solid blue lines, respectively, and their 95% CI are 

represented by the surrounding light blue areas. Outliers are highlighted with the bright red area. Solid blue circles are the actual Amgevita concentration values of the sample population.
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Figure 4.4. Simulation of Amgevita PK profile for 10,000 individuals using the final popPK model developed for this drug. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LEGEND: Horizontal grey lines represent the Amgevita therapeutic window of 5 – 8 mg/L proposed by Pouw et al219. The dark blue line represents the population median, the light blue line 

represents the 5th percentile and the purple line represents the 95th percentile of the population. The black dots represent actual population drug concentration values.



101 
 

Figure 4.5. Simulated usual and alternative dosing intervals of Amgevita for a typical patient with different dose rates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LEGEND: Horizontal grey lines represent the Amgevita therapeutic window of 5 – 8 mg/L proposed by Pouw et al219. The purple line represents the usual Amgevita dosing interval of 40mg 

every 14 days, the orange line represents a dosing interval of 40mg every 7 days and the pink line represents 40mg every 21 days.
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Figure 4.6. Simulated PD profiles of alternative dosing regimens of Amgevita with CRP as the outcome measure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LEGEND: The yellow line represents the usual dosing regimen of Amgevita 40mg every 14 days, the blue line represents dosing every 7 days and the red line represents dosing every 21 

days.
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Figure 4.7. Simulated PD profiles of alternative dosing regimens of Amgevita with DAS28 as the outcome measure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LEGEND: The yellow line represents the usual dosing regimen of Amgevita 40mg every 14 days, the blue line represents dosing every 7 days and the red line represents dosing every 21 

days. The horizontal dashed grey line represents a DAS28 of 3.2 (low disease activity) and the horizontal solid grey line represents a DAS28 of 2.6 (disease remission).
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4.1.3. Simulation of PD models for patients with RA initiating Amgevita 

An indirect response model of CRP as the outcome measure of response to treatment with 

Amgevita was successfully simulated for the usual dosing regimen of 40mg every 14 days, 

as well as for 40mg every 7 and 21 days; simulations are presented in Figure 4.6. Only a 

regimen of 40mg every 7 days was expected to reduce CRP levels to a level below 5mg/L, 

although improvement was dramatic in the first two weeks of treatment with all three 

regimens. A CRP level of 5mg/L is the lower limit of detection for most clinical CRP 

measurements and, as such, a measurement below this level represents absent systemic 

inflammation. 

 

A direct Emax inhibitory model of DAS28 as the outcome measure of response to treatment 

with Amgevita was successfully simulated for the usual dosing regimen of 40mg every 14 

days, as well as for 40mg every 7 and 21 days; simulations are presented in Figure 4.7. A 

regimen of 40mg every 7 days successfully simulated reaching steady-state DAS28 levels 

that would be classified as remission. A regimen of 40mg every 14 days (the usual dosing 

regimen) reached steady-state DAS28 levels that would be classified as low disease activity, 

but not remission. A regimen of 40mg every 21 days reached steady-state DAS28 levels that 

would be classified as a moderate EULAR response, but still with moderate disease activity, 

indicating ongoing systemic inflammation inadequately controlled by immunosuppressive 

medication. 

 

4.1.4. Development of a popPK model for patients initiating Benepali 

Six patients with RA who commenced Benepali were recruited to the BRAGGSS-PD sub-

study. Four patients were female and the remaining two patients were male. One patient was 

West African and the remaining patients were Caucasian. The median age was 57.5 years 

(IQR 56 – 59) and the median pre-treatment DAS28 was 5.33 (IQR 4.96 – 5.58). Detailed 

patient characteristics are outlined in Table 4.3. 
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Table 4.3. Patient characteristics at baseline, prior to treatment with Benepali. 

Characteristic Statistic 

Female sex, n (%) 4 (66.67) 

Age (years), median [IQR] 57.5 [56 – 59] 

Body weight (kg), median [IQR] 70.5 [69 – 84] 

Concurrent csDMARD, n (%) 4 (100.00) 

[2 missing] 

DAS28, median [IQR] 5.33 [4.96 – 5.58] 

 

ABBREVIATIONS: Conventional synthetic disease-modifying anti-rheumatic drug (DMARD), disease 

activity score of 28 joint counts (DAS28), interquartile range (IQR). 

 

A total of 40 samples of Benepali drug concentrations were available for analysis. As 

outlined in Section 3.1.9.2, a one-compartment PK model was found to be sufficient to 

describe the popPK profiles of patients initiating Benepali recruited from the BRAGGSS-

PD sub-study. A combined additive and proportional model was used to describe the residual 

error in the data during modelling. No covariates were included in the model, as these only 

demonstrated a modest improvement in AIC and -2LL, whilst complicating the model 

developed from only sparse sampling. Furthermore, due to a large residual error from 

estimation of ka, this value was fixed to 0.0396 hour-1 as per Korth-Bradley et al250 and the 

random effect (BSV) was not estimated on this parameter. Additionally, the model had a 

large %RSE for estimated VD, so again, the random effect (BSV) was removed from this 

parameter. Finally, the additive error SD was fixed at 0.0001 in order to ensure model 

stability. 

 

Plots were generated by Monolix of predicted versus observed measurements for Benepali 

serum concentrations, demonstrating that PK parameters were able to describe the data 

(Figure 4.8). PK parameters were estimated and are detailed in Table 4.4.
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Figure 4.8. Observed values of Benepali concentrations versus population model-predicted values (PRED) and individual predicted values (IPRED). 
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Table 4.4. PK parameter estimates for Benepali popPK model. 

Parameter 

(units) 

Definition Estimate Relative standard 

error (RSE, %) 

VD (L) Apparent volume of distribution 7.76 18.2 

CL (L/hr) Apparent clearance 0.0404 10.7 

ka (/hr)  Rate constant for absorption 0.0396 Fixed 

ωCL (%) Coefficient of variation (CV) of between-

subject variability (BSV) on CL 

0.173 61.0 

σprop (%) CV of proportional residual error 0.46 13.6 

 

The relative standard error (RSE, %) was calculated as: RSE = (estimate / standard error) x 100. 

ABBREVIATIONS: Between-subject variability (BSV), clearance (CL), coefficient of variation (CV), 

proportional error (prop), rate constant for absorption (ka), volume of distribution (VD). 

 

All diagnostic plots were obtained from the final popPK model for Benepali. PWRES and 

IWRES, as well as NPDE plots, demonstrated no gross model misspecification (Figure 4.9). 

Residuals for IWRES were shown not to be normally distributed using the Shapiro Wilk test, 

with a p-values of 9.77E-03. However, PWRES and NPDE residuals were normally 

distributed, with non-significant p-values following Shapiro Wilk testing, where the null 

hypothesis assumes a normal distribution. A VPC revealed adequate model fit (Figure 4.10), 

with two very small areas of outlying predictions. Therefore, parameter estimates from this 

popPK model were taken forward and utilised in simulations of alternative dosing intervals 

for Benepali.
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Figure 4.9. Distribution of population (PWRES) and individual weighted residuals (IWRES) versus individual predictions and normalised prediction 

distribution error (NPDE) for Amgevita concentrations. 
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Figure 4.10. VPC of popPK model fit for Benepali. 

INTERPRETATION OF VISUAL PREDICTIVE CHECK: The light red zone represents a simulation-based 95% CI around the median Benepali concentration for the population, which 

is denoted by the middle solid blue line. The 10th and 90th percentiles are represented by the lower and upper solid blue lines, respectively, and their 95% CI are represented by the surrounding 

light blue areas. Outliers are highlighted with the bright red areas. Solid blue circles are the actual Benepali concentration values of the sample population. 
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4.1.5. Simulation of alternative dosing intervals for Benepali 

Initially, a simulation of 10,000 individuals was carried out using PK parameters obtained 

from the final popPK model derived in Section 4.1.4. Typical profiles for the median, 5th 

and 95th percentiles were simulated using the usual dosing interval of Benepali 50mg every 

7 days. Simulated values were overlaid with measured values from the study subjects 

included in the popPK model, and this demonstrated that simulated values correlated well 

with actual measured values (Figure 4.11). Figures 4.10 and 4.11 are different in that 

simulations in Figure 4.10 were based on practical dosing records that were obtained from 

BRAGGSS-PD patients, whereas a nominal dosing record of Benepali 50mg every 7 days 

was used for all patients in Figure 4.11 

 

Once it had been established that simulations agreed with actual measured values, alternative 

dosing regimens were additionally simulated for typical individuals. These alternative 

regimens were Benepali 50mg administered every 5 or every 10 days, alongside the usual 

dosing regimen of every 7 days (Figure 4.12). All simulated doses achieved steady-state 

drug concentrations well above the therapeutic window of etanercept, proposed by Jamnitski 

et al as between 2.1 – 4.7 mg/L220. As expected, time to reaching steady-state drug 

concentrations had negligible difference between the three simulated dosing regimens of 

Benepali.
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Figure 4.11. Simulation of Benepali PK profile for 10,000 individuals using the final popPK model developed for this drug. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LEGEND: Horizontal grey lines represent the Benepali therapeutic window of 2.1 – 4.7 mg/L proposed by Jamnitski et al220. The dark blue line represents the population median, the light 

blue line represents the 5th percentile and the purple line represents the 95th percentile of the population. The black dots represent actual population drug concentration values.
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Figure 4.12. Simulated usual and alternate dosing intervals of Benepali for a typical patient with different dose rates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LEGEND: Horizontal grey lines represent the Benepali therapeutic window of 2.1 – 4.7 mg/L proposed by Jamnitski et al220. The purple line represents the usual Benepali dosing interval of 

50mg every 7 days, the orange line represents a dosing interval of 50mg every 5 days and the pink line represents 50mg every 10 days.
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Figure 4.13. Simulated PD profiles of alternative dosing regiments of Benepali with DAS28 as the outcome measure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LEGEND: The yellow line represents the usual dosing regimen of Benepali every 7 days, the blue line represents dosing every 5 days and the red line represents dosing every 10 days. The 

horizontal grey line represents a DAS28 of 3.2 (low disease activity). 



114 
 

4.1.6. Simulation of PD models for patients with RA initiating Benepali 

A simple inhibitory Emax model of DAS28 as the outcome measure of response to treatment 

with Benepali was successfully simulated for the usual dosing regimen of 50mg every 7 

days, as well as for 50mg every 5 and 10 days; simulations are presented in Figure 4.13. A 

regimen of 50mg every 5 days successfully simulated reaching DAS28 levels below 3.2 (low 

disease activity) at 12 weeks. Regimens of 50mg every 7 days (licensed dose rate) and every 

10 days did not reach DAS28 ≤ 3.2 at 12 weeks, although these dose rates showed a trend 

towards eventual DAS28 ≤ 3.2. Improvement in DAS28 in all three dosing rates was most 

dramatic in the first 30 days of treatment with Benepali. 

 

4.2. Discussion 

4.2.1. Development of a popPK model for patients initiating Amgevita and subsequent 

simulation 

Using 58 drug concentration samples from 10 patients with RA, collected over a 12-week 

period for each patient, a popPK model was developed to describe the study population and 

estimate population PK parameters. These parameter estimates were similar to those from 

previous studies, and this, alongside satisfactory visual checks, meant that model fit was 

determined to be satisfactory. Parameter estimates were then used to simulate drug 

concentrations based on altered dosing intervals, as well as PD responses to altered dosing 

intervals. 

 

A one-compartment popPK model with first-order absorption and elimination for Amgevita 

in the first 12 weeks of treatment was developed using the study population. No covariates 

were included in the final model, as these did not  achieve  dramatic  reductions  in  AIC  or  

-2LL, whilst reducing model stability due to the sparse sampling that the model was built 

on. The value of ka was fixed as per previous findings180 and no BSV was estimated for this 

parameter, due to high residual error in previous iterations of the model. However, diagnostic 

plots were satisfactory and estimated parameters were in-keeping with prior knowledge, so 

these values were used to successfully simulate models in further scenarios: 

1. An Amgevita PK model using the usual dosing interval (40mg every 14 days) as 

proof-of-concept and validity of PK parameter estimates obtained from the popPK 

model, simulated in 10,000 subjects. 

2. An Amgevita PK model illustrating altered dosing intervals compared to usual 

dosing in a typical individual. 
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3. An Amgevita PD indirect response model to describe the relationship between CRP 

as an outcome measure and Amgevita serum concentrations. 

4. An Amgevita PD direct Emax inhibitory model to describe the relationship between 

DAS28 as an outcome and Amgevita serum concentrations. 

 

There is only one other popPK study of subcutaneously administered adalimumab in RA 

patients, carried out by Ternant et al180, and this study was the basis for corroboration of 

estimated PK parameters, as well as utilisation of values for simulation of PD models. The 

Ternant study design was different from the present study, in that it was a post-hoc analysis 

of a single-centre observational study based in France carried out in RA patients over 52 

weeks, whereas this study was a prospective multi-centre study based in the UK carried out 

over 12 weeks. The Ternant study did not mention whether patients included were adherent 

with medication for the full 52 weeks of study. 77% of patients in the Ternant study were 

female, compared to 90% in this study. Furthermore, sparse samples were taken at baseline 

and weeks 6, 12, 24 and 52, compared to baseline, 1 hour and weeks 2, 4, 6 and 12 in the 

current study. However, despite these differences in design, findings in the current study still 

broadly agreed with Ternant et al. 

 

The typical individual VD was estimated at 9.19 L, which is higher than trial data for Humira, 

the proprietary originator form of adalimumab, where in a number of studies using both IV 

and SC administration over a range of doses the VD was estimated at between 2.98 – 7.5 

L251. CL was estimated at 0.0121 L/hr, which falls within the range determined from Humira 

trial data of 0.00676 – 0.0322 L/hr251. Given that CL was not reduced below expected values, 

the estimate of VD may be above expected due to a number of reasons. Nine out of ten 

patients in this study were female, and this may have skewed VD estimates compared to other 

studies with a more even distribution between biological sexes. Sex will affect physical and 

physiological properties, such as body composition, so drug distribution in this patient cohort 

may be altered compared to in other studies, for example, a greater proportion of drug in 

whole blood, and not just confined to plasma. Another possibility is that the population 

estimate is not as accurate as it could have been if a greater number of patients had been 

recruited to the study. However, this limitation has been somewhat mitigated by the use of a 

smarter study design, based on ideal sample timings simulated from previous data. 

 

PK parameter estimates derived from modelling were successfully used to simulate the 

popPK profile of 10,000 subjects. The population median Amgevita concentration PK 
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profile reached steady-state at the upper end/just above the therapeutic window of drug 

concentrations between 5 – 8 mg/L, as previously defined by Pouw et al219. Figure 4.4 

demonstrates the median and 5th and 95th percentiles for the simulated population, and the 

black dots that have been overlaid onto this profile represent actual Amgevita concentrations 

from the BRAGGSS-PD patients used to derive the originating popPK model. These actual 

values agree well with simulated values, so this simulation is proof-of-concept that PK 

parameter estimates from the originator popPK model can be used for simulation of 

alternative dosing intervals, as well as PD model simulation. Of note, the 95th percentile in 

the simulation is estimated as being much higher than actual values, and this could be 

because nominal dosing records instead of actual dosing records were used for this 

simulation. 

 

Simulations for a typical individual were carried out with alternative dosing intervals to the 

usual regimen of Amgevita 40mg SC every 14 days, namely, every 7 or 21 days, and this is 

shown in Figure 4.5. This simulation predicted that the usual dosing regimen of Amgevita, 

based on the final popPK profile developed, reached steady-state concentrations just at the 

lower end of the therapeutic window. This is the optimum range for this medication, as it 

will maximise chances of a patient achieving therapeutic efficacy, whilst also minimising 

the risk of drug toxicity and unwanted adverse effects. The dosing simulation of 40mg every 

7 days reached the therapeutic window more quickly, but took the same amount of time to 

reach steady-state concentrations. Furthermore, the steady-state range was at the upper end 

of and above the therapeutic window, increasing the risk of drug toxicity. The dosing 

simulation of 40mg every 21 days achieved steady-state concentrations at the same time as 

the other two dosage regimen simulations, but the steady-state range was below the 

therapeutic window and would be unlikely to achieve therapeutic efficacy in vivo. 

 

Simulations for a typical individual were performed to predict PD profiles based on the 

established relationship between Amgevita concentration and the disease activity outcome 

measures of CRP and DAS28. CRP and DAS28 scores were not available for patients 

recruited from BRAGGSS-PD at all sampling time points, as repeated assessment of these 

measures had not originally been designed into the study protocol, so instead, values for kin, 

kout, DAS0 and IC50 were taken from the Ternant et al study180. 

 

The PD model for CRP was simulated as an indirect response model for a typical individual 

with alternative dosing intervals alongside the usual regimen of Amgevita 40mg SC every 
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14 days, namely, every 7 or 21 days, and this is shown in Figure 4.6. All three simulated 

dosing regimens predicted a dramatic reduction in CRP in the first week of treatment, but 

reduction plateaued at levels that would indicate ongoing systemic inflammation for both 

dosing at 14 days (usual dose) and 21 days. Only the simulated dosing interval of every 7 

days led to CRP levels being reduced below a clinically meaningful level. The accuracy of 

this prediction would likely have been improved if CRP was measured at all sampling time 

points in the BRAGGSS-PD patients, as values from the Ternant et al study may not have 

been transferable to this patient population. However, results indicate that a dosing regimen 

of Amgevita 40mg every 21 days likely would be unable to control systemic inflammation 

to a level that would correlate with decreased RA disease activity. 

 

The PD model for DAS28 was simulated as a direct Emax inhibitory model for a typical 

individual with alternative dosing intervals alongside the usual regimen of Amgevita 40mg 

SC every 14 days, again, every 7 or 21 days; this is shown in Figure 4.7. All three dosing 

regimens predicted a dramatic reduction in DAS28 in the first week of treatment, but then 

started to diverge. Usual dosage at 40mg every 14 days led to a range of DAS28 around the 

cut-off for low disease activity at ≤3.2, but without reaching complete remission at ≤2.6. A 

dosing interval of every 7 days led to the most dramatic reduction in DAS28 steady-state 

range to around 2, which is below the threshold for clinical disease remission. However, a 

dosing interval of 21 days led to a DAS28 within the moderate disease activity range. Whilst 

this would be enough to ensure continuation of treatment, according to NICE guidance8 146, 

it implies ongoing systemic inflammation and risk of irreversible joint damage due to 

uncontrolled RA disease activity. Therefore, starting with a reduced dosing interval has been 

shown to be unlikely to be beneficial beyond the first few weeks of treatment, as 

demonstrated from simulation of CRP and DAS28 levels using this dosing interval. There 

might be scope in future to reduce to this dosing interval once a significant reduction has 

been achieved with a more frequent dosing interval e.g. every 7 or 14 days. There could be 

an argument for initiating treatment at 40mg every 7 days in patients with very high disease 

activity until steady-state drug concentrations and low PD outcomes are reached, and then 

stepping down to every 21 days as maintenance therapy after the first three months of 

treatment, given what has been demonstrated from simulations. However, simulations were 

not carried out for dosing intervals of varying lengths for a typical patient, and there is scope 

to do this work in the future. 
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This study’s strengths are that it is the first prospective popPK study of patients with RA 

commencing Amgevita; previous studies have been carried out on patients starting Humira 

(the proprietary adalimumab originator compound). The majority of patients in the UK 

commence a biosimilar drug and it is, therefore, important to explore the PK profile of these 

drugs and how this may influence disease outcome. This study was designed specifically for 

this purpose, and was not carried out as part of post-hoc analysis. Furthermore, patients were 

real-world patients managed in NHS rheumatology outpatient clinics, and were not clinical 

trial patients. This means that drug concentrations obtained are likely to be more reflective 

of day-to-day clinical practice. All samples were collected by the author and were 

immediately placed on ice following the blood draw; samples were also delivered to the 

central processing laboratory by the author within 24 hours of the blood draw, ensuring the 

highest possible quality of serum sample. All blood draws and witnessed dose 

administrations were documented to the nearest minute by the author, maximising the 

accuracy of the popPK model. Finally, the witnessing of doses at each study visit ensured 

true trough drug concentrations, as on each occasion, phlebotomy was carried out 

immediately before patient self-administration of each dose. 

 

This study does have a number of weaknesses, however, with recruitment throughout the 

course of the PhD below target. The initial target was to recruit approximately 20 – 30 

patients starting Amgevita, which was felt to be a realistic target prior to the commencement 

of this PhD. However, a number of factors have contributed to low recruitment. Firstly, 

recruitment coincided with the approval of tsDMARD agents in England by NICE147 148. 

While these agents were placed at a similar or increased price point in comparison to 

bDMARD agents at the same stage in the therapeutic escalation pathway, many patients may 

have been commenced on these drugs preferentially if they found the prospect of regular 

injectable medication unacceptable, thus reducing the potential number of recruits. 

 

Initially, patients were only recruited from one centre (Manchester Royal Infirmary), and 

some progress was made towards improving recruitment by opening a second centre at 

Bolton One. However, this had limited impact, because the UK went into national lockdown 

due to the spread of the worldwide 2019 coronavirus disease (COVID-19) pandemic, starting 

in March 2020. All recruitment to clinical studies at the University of Manchester was 

suspended and the author was re-deployed to front-line NHS services for five months. After 

a return to full-time research, recruitment to the BRAGGSS-PD study only re-opened in 

October 2020 due to limited site capacity, although a third centre was opened at Tameside 



119 
 

General Hospital. There was also a reduced number of patients compared to pre-pandemic 

starting bDMARDs, as many appointments were via telephone, and accurate DAS28 

calculation in order to determine the threshold for treatment escalation was unable to be 

carried out. 

 

Undoubtedly, an increased number of patients would have led to a more accurate popPK 

model, particularly if there had been less disparity in the split between male and female 

patients (nine females versus one male). Improved accuracy of modelling would also have 

been achieved if there had been some mechanism to accurately record the precise time and 

date of administration of medication doses given between study visits, instead of using 

nominal administration times during the modelling process. This would be an area of 

development for the future, perhaps by sending reminder text messages to patients just prior 

to the scheduled dosage time and asking them to reply immediately after self-administration 

of medication. 

 

Future work could include further recruitment of patients using the same study protocol in 

order to develop a more robust popPK model. An increased number of patients would also 

mean that a more stable model could be generated if covariates were included, potentially 

leading to a more accurate population model. Another area of development would be to 

include drug response outcome measure collection at each follow-up visit e.g. CRP, DAS28, 

so that a de novo PK-PD model could be generated. In future, patients could then be recruited 

to a personalised dosing trial with sparse serum drug concentration sampling. The specific 

PK profile of a patient could be determined based on prior modelling and the patient’s drug 

concentration in relation to the last time and date of administration of Amgevita, and advice 

could be given regarding further dosing intervals. This would then tailor the dose of drug to 

each individual patient, to ensure a steady-state drug concentration range within the 

therapeutic window, but also minimising the risk of toxicity and adverse events. 

 

In conclusion, a popPK model of patients with RA commencing Amgevita, an adalimumab 

biosimilar, was successfully derived from ten real-world patients. Parameter estimates from 

this model were used to simulate alternative dosing intervals, and how these would behave 

in simulated PD models of treatment response to Amgevita. This work forms the basis for 

future work with larger study numbers and potentially a prospective trial of personalised 

dosing for patients with RA starting Amgevita. Finally, because this study was carried out 

over a period of only 12 weeks, compared to over a period of 52 weeks in the Ternant study, 
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future implications of this could be that sampling need only be carried out in the first few 

months of treatment with Amgevita in order to determine an individual patient’s PK profile 

and whether they are likely to achieve steady-state concentrations within the therapeutic 

window on their current dosing regimen. 

 

4.2.2. Development of a popPK model for patients initiating Benepali and 

subsequent simulation 

Using 40 drug concentration samples from six patients with RA, collected over a 12-week 

period for each patient, a popPK model was developed to describe the study population and 

estimate population PK parameters. These parameter estimates were similar to those from 

previous studies, and this, alongside satisfactory visual checks, meant that model fit was 

determined to be satisfactory. Parameter estimates were then used to simulate drug 

concentrations based on altered dosing intervals, as well as PD responses to altered dosing 

intervals. 

 

A one-compartment popPK model with first-order absorption and elimination for Benepali 

was developed using the study population. This is in-keeping with previous findings176. No 

covariates were included in the final model, as these did not achieve dramatic reductions in 

AIC or -2LL, whilst reducing model stability due to the sparse sampling that the model was 

built on. The value of ka was fixed as per previous findings250 and no BSV was estimated 

for this parameter, due to high %RSE in previous iterations of the model. The random effect 

(BSV) parameter was also not estimated for VD for the same reason. However, diagnostic 

plots were satisfactory and estimated parameters were in-keeping with prior knowledge, so 

these values were used to successfully simulate models in further scenarios: 

1. A Benepali PK model using the usual dosing interval (50mg every 7 days) as proof 

of concept and validity of PK parameter estimates obtained from the popPK model, 

simulated in 10,000 subjects. 

2. A Benepali PK model illustrating altered dosing intervals compared to usual dosing 

in a typical individual. 

3. A Benepali PD inhibitory Emax model to describe the relationship between DAS28 as 

an outcome and Benepali serum concentrations 

 

This is the first popPK study of patients with RA starting the etanercept biosimilar Benepali, 

and furthermore, it is the first using the usual dosage regimen of 50mg SC every 7 days; 

other studies have used mixed dosing regimens with a mixture of IV and SC administration. 
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Another study also used a mixed population of HC and patients with RA, AS and JIA, 

pooling patients with different diagnoses for analysis174. A previous PK-PD study was 

carried out by Hsu and Huang176, but that study used Enbrel, the proprietary etanercept 

originator compound, and not one of the currently more commonly prescribed biosimilar 

versions. In addition, the analysis by Hsu and Huang was a meta-analysis of previously 

published data, as opposed to the prospective approach used in the current study. 

 

Interestingly, findings of the current study agree broadly with those of Korth-Bradley et al250, 

who carried out popPK analysis in a cohort of HC with no RA pathology who received only 

a single dose of etanercept 25mg SC. However, mean CL (0.0446 L/hr) was higher and mean 

VD (7.76 L) was lower in the current study compared to Korth-Bradley et al, which is likely 

reflective of altered PK in study subjects with ongoing inflammation and active RA 

pathology compared to HC. Findings cannot be directly compared with the findings of Zhou 

et al due to their use of a two-compartment model, but their estimate of CL of 0.072 L/hr 

was slightly higher compared with the estimate in the current study. The CL estimate of the 

current study is also lower than the estimate of Shennak et al for Enbrel (0.11 L/hr)175, but 

that study was only carried out in biologically male patients with RA, which could explain 

the increased CL compared to the current study cohort, where four out of six patients were 

female. However, the VD of Enbrel in the Shennak et al study was estimated at 15.04L, 

which is almost double the estimate of the current study. There is no certain cause for these 

discrepancies, but estimates from the current popPK model may have been different with 

improved recruitment and a more equal balance between male and female patients. 

 

PK parameter estimates derived from modelling were successfully used to simulate the 

popPK profile of 10,000 subjects. The population median Benepali concentration PK profile 

reached steady-state at above the therapeutic window of drug concentrations between 2.1 – 

4.7 mg/L, as previously defined by Jamnitski et al220. Figure 4.11 shows the median and 5th 

and 95th percentiles for the simulated population, and the black dots that have been overlaid 

onto this profile represent actual Benepali concentrations from the BRAGGSS-PD patients 

used to derive the originating popPK model. These actual values agree well with simulated 

values, so this simulation is proof-of-concept that PK parameter estimates from the 

originator popPK model can be used for simulation of alternative dosing intervals. 

 

Simulations for a typical individual were carried out with alternative dosing intervals to the 

usual regimen of Benepali 50mg SC every 7 days, namely, every 5 or 10 days, and this is 
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shown in Figure 4.12. This simulation predicted that the usual dosing regimen of Benepali, 

based on the popPK analysis of the originator compound, reached steady-state 

concentrations above the upper limit of the therapeutic window, which could suggest over-

dosing of patients and increased risk of toxicity and dose-related adverse events. The dosing 

simulation of 50mg every 5 days took the same amount of time to reach steady-state 

concentrations, which were also above the therapeutic window, and at an even higher level 

than usual dosing of every 7 days. The simulation of 50mg every 10 days achieved steady-

state concentrations marginally faster than the other two dosing interval simulations, and 

steady-state concentrations were at the upper end/above the therapeutic window. This dosing 

interval could potentially be brought forward into a prospective trial to compare efficacy 

versus the usual dosing interval of every 7 days, as time to steady-state is almost identical, 

and steady-state concentrations are still within the therapeutic range. Reduced dosage of 

Benepali, particularly from initiation of the drug, is likely to represent significant cost-

savings, while also reducing the risk of dose-related adverse events. A future research 

recommendation is to evaluate this approach as part of a clinical trial, with inclusion of health 

economic evaluation. 

 

The PD model for DAS28 was simulated as a simple inhibitory Emax model for a typical 

individual with alternative dosing intervals alongside the usual regimen of Benepali 50mg 

SC every 7 days, namely, every 5 or 10 days; this is shown in Figure 4.13. All three dosing 

regimens demonstrated steep improvement in DAS28 in the first 2 – 4 weeks of treatment, 

but then improvement began to plateau. Improvement was similar for Benepali given every 

5 and 7 days over the first week of treatment, but then began to diverge. Usual dosage of 

50mg every 7 days lead to a DAS28 just above the cut-off for low disease activity of 3.2 

after 12 weeks of treatment, and a reduced dosing rate of every 10 days did not reach this 

target. However, an increased dosing rate of every 5 days reached a DAS28 of below 3.2 at 

approximately 14 weeks, with this simulation indicating that this increased dosing rate may 

be likely to control active RA more rapidly. However, starting Benepali with a reduced 

dosing interval of every 10 days is unlikely to be beneficial beyond the first few weeks of 

treatment. There could potentially be scope in future to reduce this dosing interval once a 

significant reduction had been achieved with a more frequent dosing interval e.g. every 5 or 

7 days. Again, there could be an argument for initiating treatment at the licensed dosing rate 

of 50mg every 5 days in patients with very high disease activity until steady-state drug 

concentrations and low PD outcomes are reached, and then stepping down to every 10 days 

as maintenance therapy after the first three months of treatment, given what has been 



123 
 

demonstrated from simulations. Future work could involve carrying out simulations for 

dosing intervals of varying lengths for the same typical patient. 

 

This study’s strengths are that it is the first prospective popPK study of patients with RA 

commencing Benepali; previous studies have been carried out on patients starting Enbrel 

(the proprietary etanercept originator compound) or alternate biosimilar compounds other 

than Benepali. As with the Amgevita study, participants were real-world patients managed 

in NHS rheumatology outpatient clinics, as opposed to a controlled cohort of clinical trial 

patients. Again, drug concentrations in this study are likely to be more reflective of day-to-

day clinical practice. Furthermore, sample collection, processing and documentation of 

blood draws and dose administration had the same robust procedure as documented for 

Amgevita in Section 4.2.1. 

 

As with the Amgevita popPK study, recruitment was well below the target of 20 – 30 patients 

on Benepali. As well as the reasons outlined for Amgevita recruitment problems, another 

explanation for poor recruitment could be due to the relative costs of Amgevita and Benepali. 

When this PhD commenced, Benepali was the preferred first-line bDMARD agent in the 

Greater Manchester area, where this study was conducted. However, soon after recruitment 

opened, Amgevita became the first-line agent of choice due to availability at a lower price 

point, and Benepali became reserved for patients who were more at risk of serious infections. 

As with the Amgevita study, nominal drug administration times were used for medication 

doses given outside of study visits that were not witnessed by the author; more accurate 

reporting of administration times by patients, as well as increased participant numbers, may 

have led to improved model accuracy, as discussed in Section 4.2.1. 

 

Future work could include additional recruitment of participants in order to improve model 

accuracy, improved recording of medication administration outside of study visits, and a 

potential additional PD study with recording of treatment outcome measures at each study 

visit. The finding of steady-state Benepali concentrations within the therapeutic window in 

the simulation of dosing every 10 days could provide the basis for a multi-dose comparative 

trial of efficacy from initiation of therapy. As with Amgevita, detailed and accurate 

modelling could also form the basis for a future personalised dosing trial, with drug 

concentration sampling leading to determination of a patient’s Benepali PK profile, which 

could then be used to give advice on current dosage. 
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In conclusion, a popPK model of patients with RA commencing Benepali, an etanercept 

biosimilar, was successfully derived from six real-world patients. Parameter estimates from 

this model were used to simulate alternative dosing intervals, and a reduced dose of 50mg 

every 10 days was found to still achieve steady-state drug concentrations within the 

therapeutic window of etanercept. This work forms the basis for future work with larger 

study numbers and inclusion of PD data, and potentially a prospective trial of personalised 

dosing for patients with RA starting Benepali. 

 

4.3. Chapter summary 

PopPK models for the first 12 weeks of treatment with Amgevita or Benepali in a cohort of 

prospectively recruited patients with RA from the BRAGGSS-PD sub-study were 

successfully developed. PK parameter estimates from these models were then used to 

simulate alternative dosing regimens to determine whether these would lead to steady-state 

concentrations within each drug’s previously defined therapeutic window. PD models were 

then simulated for both drugs studied. Findings could form the basis of future personalised 

dosing studies for these two agents in RA patients who are being initiated on these therapies. 
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CHAPTER FIVE: PROTEOMIC PREDICTORS OF TREATMENT RESPONSE TO 

ETANERCEPT IN PATIENTS WITH RHEUMATOID ARTHRITIS - RESULTS 

 

 

5.1. Study participants 

The patients recruited to the BRAGGSS-PD sub-study are detailed in Sections 4.1.1 and 

4.1.4. Their demographic details are summarised in Table 5.1. 

 

A total of 180 patients were included in the etanercept sub-cohort from the wider BRAGGSS 

dataset. 134 patients were female and 46 patients were male. All patients were of Caucasian 

ethnicity. The median age was 57.40 years (IQR 50.02 – 65.09) and the median pre-treatment 

DAS28 was 5.85 (IQR 5.24 – 6.37). Detailed baseline patient characteristics are outlined in 

Table 5.2. 26 values for CRP were imputed at baseline. At three months follow-up, the 

following values were imputed: three values for TJC, three values for SJC, six values for 

VAS of global health and 27 values for CRP. At six months follow-up, the following values 

were imputed: seven values for TJC, seven values for SJC, eight values for VAS of global 

health and 26 values for CRP. 

 

 

Summary of chapter contents: 

5.1. Study participants 

5.2. Protein library generation 

5.3. Proteins acquired via SWATH-MS 

5.4. QC of proteomics data 

5.5. Differential expression of proteins between RA patients and HCs 

5.6. Longitudinal analysis of protein expression in the first 12 weeks of treatment 

with Amgevita or Benepali 

5.7. Analysis of protein expression and association with RA disease outcomes 

following treatment with etanercept 

5.8. Differential expression of proteins over time following treatment with etanercept 

5.9. Machine learning methods to determine proteomic predictors of treatment 

response 
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Table 5.1. Baseline characteristics of patients recruited to the BRAGGSS-PD sub-study. 

Characteristic Statistic 

Female sex, n (%) 13 (81.25%) 

Age (years), median [IQR] 56.00 [49.50, 60.00] 

Disease duration prior to starting bDMARD (years), 

median [IQR] 

4 [2, 6.5] 

Body weight (kg), median [IQR] 76.50 [67.50, 104.50] 

Concurrent csDMARD, n (%) 13 (86.67) 

[1 missing] 

DAS28, median [IQR] 5.42 [5.03, 6.02] 

Drug 

Amgevita, n (%) 

Benepali, n (%) 

 

10 (62.50) 

6 (37.50) 

Patients achieving therapeutic drug levels 

All time points, n/total samples (%) 

Baseline, n (%) 

1 hour, n (%) 

1 week (etanercept only), n (%) 

2 weeks, n (%) 

4 weeks, n (%) 

6 weeks, n (%) 

12 weeks, n (%) 

 

45/91 (49.45) 

0/16 (0.00) 

0/13 (0.00) [3 missing] 

6/6 (100.00)  

6/15 (40.00) [1 missing] 

10/13 (76.92) [3 missing] 

12/15 (80.00) [1 missing] 

11/15 (73.33) [1 missing] 

 

ABBREVIATIONS: Conventional synthetic disease-modifying anti-rheumatic drug (csDMARD), biological 

disease-modifying anti-rheumatic drug (bDMARD), disease activity score of 28 joint counts (DAS28), 

interquartile range (IQR). 
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Table 5.2. Baseline characteristics of patients in the etanercept cohort from the wider 

BRAGGSS dataset. 

Characteristic Statistic Missing, n (%) 

Female sex, n (%) 134 (74.44) 0 (0.00) 

Age (years), median [IQR] 56.90 [49.96, 

64.93] 

0 (0.00) 

Disease duration prior to starting bDMARD 

(years), median [IQR] 

6 [2, 14] 0 (0.00) 

Body mass index (BMI, kg/m2), median [IQR] 27.56 [23.86, 

32.54] 

0 (0.00) 

Concurrent csDMARD, n (%) 147 (81.67) 0 (0.00) 

DAS28, median [IQR] 5.85 [5.25, 6.39] 26 (14.44) 

Ever seropositive (RF and/or ACPA), n (%) 120 (66.67) 0 (0.00) 

HAQ (maximum score: 3), median [IQR] 1.39 [1.00, 1.75] 30 (16.67) 

HADS Anxiety Score (maximum score: 21; 

defined as “Anxiety” if score ≥ 11), median [IQR] 

7.27 [5.00, 9.00] 29 (16.11) 

HADS Depression Score (maximum score: 21; 

defined as “Depression” if score ≥ 11), median 

[IQR] 

6.74 [5.00, 9.00] 23 (12.78) 

 

ABBREVIATIONS: Anti-citrullinated peptide antibody (ACPA), biological disease-modifying anti-

rheumatic drug (bDMARD), body mass index (BMI), conventional synthetic disease-modifying anti-rheumatic 

drug (DMARD), disease activity score of 28 joint counts (DAS28), Health Assessment Questionnaire (HAQ), 

Hospital Anxiety and Depression Score (HADS), interquartile range (IQR), rheumatoid factor (RF). 

 

Finally, 14 HCs were recruited for case-control analysis. 12 of the 14 patients were female 

(85.71%). The median age was 78 years (IQR 73 – 82). 

 

5.2. Protein library generation 

A total of 476 unique proteins were identified from the literature search previously outlined. 

A complete list of individual proteins is included in Appendix Five. Summaries of proteins 

included according to whether a study was based on RA pathogenesis, diagnosis, prognosis 

and treatment response/monitoring are in Tables 5-8, respectively. 
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Table 5.3. Summary of protein studies in RA pathogenesis. 

Study Sample Groups of study Proteomic strategy Proteins identified 

in RA 

Degré 1983252 Synovial 

fluid 

10 RA Folin phenol reagent 

method 

IFN-γ 

Biemond et al 

1984253 

17 RA, 6 OA, 7 

traumatic 

effusions 

Chromatography, 

immunoassay 

CP 

Gysen et al 1985254 15 RA, 18 OA ELISA A1AT, MMP1 

Malyak et al 1993255 16 RA, 18 non-RA 

inflammatory 

arthritis (IA) 

ELISA IL-1RA 

Okano et al 1996256 38 RA, 45 OA, 11 

HC 

RIA PTHrP 

Schäffler et al 

2003257 

24 RA, 29 OA ELISA ADIPOQ, RETN 

Kim et al 2006258 25 RA 2-DE and MALDI-TOF 

MS 

FN1, GRB7 

Tabushi et al 2008259 10 RA MALDI-TOF MS FGA, FN1, VIM 

Katano et al 2009260 16 RA, 13 OA MALDI-TOF-MS 11 proteins 

upregulated 

following stimulation 

of neutrophils with 

GM-CSF 

Baillet et al 2010261 30 RA, 18 IA 

controls 

MALDI-TOF MS S100A8, S100A9, 

S100A12 

Mateos et al 2012262 20 RA, 20 OA Nano-LC and MALDI-

TOF/TOF 

17 differentially 

expressed proteins 

Noh et al 2014263 11 RA, 15 non-RA 2-DE and MALDI-TOF 32 differentially 

expressed proteins 

Yang et al 2015264 25 RA, 10 HC GC-TOF MS 8 differentially 

expressed enzymes 

Meng et al 2016265 34 RA, 24 non-RA 

effusions 

LC-MS/MS 4 histone proteins 

acting as ACPA 

autoantigens 

Firestein et al 

1992266 

Synovial 

tissue 

12 RA, 12 OA In-situ hybridisation IL-1RA 

Yamasaki et al 

2001267 

10 RA, 10 OA Electrophoretic 

mobility shift 

NF-κB 

De Rycke et al 

2005268 

19 RA Immunostaining Intracellular 

citrullinated proteins 

Chang et al 2009269 10 RA, 10 OA, 6 

AS 

2-DE and MALDI-TOF 

MS 

10 differentially 

expressed proteins 

Wang et al 2012270 50 RA, 10 HC 2D nano-ESI LC-

MS/MS 

100 differentially 

expressed proteins in 

RA 

Yan et al 2012271 10 RA, 10 OA, 10 

SpA 

2-DE MALDI-

TOF/TOF MS 

VDBP 

Chang et al 2013272 10 RA, 10 OA 2-DE and MALDI-

TOF/TOF MS 

VDBP 

Doran et al 1995273 Synovial 

mononuclear 

cells 

17 RA Western blotting HAPLN1 

Swedlund et al 

1974274 

Serum 24 RA, 40 HC Radial immune-

diffusion and biuret 

method 

A1AT 

Baskol et al 2006275 57 RA, 25 HC Enzymatic 

spectrophotometry 

 

Increased MPO 

levels in RA 
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Study Sample Groups of study Proteomic strategy Proteins identified 

in RA 

Grazio et al 2013276 Plasma 20 RA, 20 PsA, 20 

OA 

SDS-PAGE and LC-

MS 

13 differentially 

expressed proteins 

Yang et al 2018277 12 RA-MCI, 12 

RA non-MCI, 12 

HC 

2D-LC-MS/MS SHH, TTR 

Schulz et al 2007278 PBMCs 32 RA, 33 HC 2-DE and MALDI-TOF 

MS 

9 differentially 

expressed proteins 

Lu et al 2010279 Monocytes 

and 

macrophages 

 

13 RA, 10 OA ELISA Citrullinated GRP78 

Darrah et al 2017280 CD4+ T cells 11 RA, 5 SSc, 8 

PsA, 2 HC 

Flow cytometry PADI4 

Olszewski et al 

2001281 

Lymphatic 

fluid 

20 RA, 20 HC ELISA Increased levels of 

pro-inflammatory 

cytokines in lymph 

versus blood 

Doroshevskaya et al 

2014282 

Bone marrow 30 RA, 20 OA Immunohistochemistry 

and 

immunocytochemistry 

Reduced MDM2 

 

ABBREVIATIONS: 78 kDa glucose-regulated protein (GRP78), adiponectin (ADIPOQ), alpha-1 antitrypsin 

(A1AT), ankylosing spondylitis (AS), anti-citrullinated protein antibody (ACPA), caeruloplasmin (CP), E3 

ubiquitin-protein ligase Mdm2 (MDM2), electrospray ionisation (ESI), enzyme-linked immunosorbent assay 

(ELISA), fibrinogen alpha chain (FGA), fibronectin (FN1), gas chromatography (GC), granulocyte-

macrophage colony-stimulating factor (GM-CSF), growth factor receptor-bound protein 7 (GRB7), healthy 

controls (HC), hyaluronan and proteoglycan link protein 1 (HAPLN1), IL1 receptor antagonist (IL1-RA), 

interferon (IFN)-γ, inflammatory arthritis (IA), liquid chromatography (LC), mass spectrometry (MS), matrix-

assisted laser desorption/ionisation (MALDI), matrix metalloproteinase 1 (MMP1), mild cognitive impairment 

(MCI), myeloperoxidase (MPO), nuclear factor-κB (NFκB), osteoarthritis (OA), parathyroid hormone-related 

peptide (PTHrP), protein-arginine deiminase type-4 (PADI4), protein S100-A8 (S100A8), protein S100-A9 

(S100A9), protein S100-A12 (S100A12), psoriatic arthritis (PsA), radioimmunoassay (RIA), resistin (RETN), 

rheumatoid arthritis (RA), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), sonic 

hedgehog protein (SHH), spondyloarthritis (SpA), systemic sclerosis (SSc), time-of-flight (TOF), transthyretin 

(TTR), two-dimensional gel electrophoresis (2-DE), vimentin (VIM), vitamin D binding protein (VDBP). 
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Table 5.4. Summary of protein studies in RA diagnosis. 

Study Sample Groups of study Proteomic strategy Proteins 

identified in RA 

Wagatsuma et al 

1996283 

Serum 71 RA, 60 HC Ethanol precipitation, 

PAGE, Western blotting 

EZR, RDX, MSN 

Chandra et al 

2011284 

120 RA, 27 AS, 

28 PsA, 25 HC 

Multiplex and single 

automated assays 

6 differentially 

expressed proteins 

Urbaniak et al 

2017285 

50 RA Elution following 

chromatography with 

mixtures E1 and E2 with 

MALDI-TOF 

E1: panel of 5 

proteins; E2: panel 

of 6 proteins 

Seok et al 2017286 Discovery: 36 

RF+ RA, 18 RF- 

RA; validation: 

40 RF+ RA, 40 

RF- RA, 40 HC 

Discovery: LC-MS/MS; 

validation: ELISA 

SAA4 

Kim et al 2018287 Discovery: 18 

RF+ RA, 18 RF- 

RA; validation: 

20 RF+ RA, 22 

RF- RA, 23 RA 

(RF status not 

defined) 

Discovery: LC-MS/MS; 

validation: ELISA. 

HRG, LBP 

Giusti et al 2010288 Saliva 20 RA, 20 HC 2-DE and MALDI-

TOF/TOF MS 

8 differentially 

expressed proteins 

Siebert et al 

2017289 

Urine 50 RA, 50 PsA, 

50 OA, 50 IBD, 

50 HC 

CE-MS 7 differentially 

expressed proteins 

in RA 

Yang et al 2015290 FLS 44 RA, 15 OA, 15 

AS, 15 HC 

ELISA, Western blotting CEMIP 

 

ABBREVIATIONS: Ankylosing spondylitis (AS), capillary electrophoresis (CE), cell migration-inducing 

and hyaluronan-binding protein (CEMIP), enzyme-linked immunosorbent assay (ELISA), ezrin (EZR), healthy 

control (HC), histidine-rich glycoprotein (HRG), inflammatory bowel disease (IBD),  lipopolysaccharide-

binding protein (LBP), mass spectrometry (MS), matrix-assisted laser desorption/ionisation (MALDI), moeisin 

(MSN), osteoarthritis (OA), polyacrylamide gel electrophoresis (PAGE), psoriatic arthritis (PsA), radixin 

(RDX), rheumatoid arthritis (RA), rheumatoid factor (RF), serum amyloid A4 (SAA4), time-of-flight (TOF). 
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Table 5.5. Summary of protein studies in RA prognosis. 

Study Sample Groups of study Proteomic 

strategy 

Proteins 

identified in RA 

Forslind et al 

200432 

Serum 379 RA ELISA ACPA 

Hueber et al 

2007291 

56 RA, 21 PsA/AS, 19 HC Microarrays and 

commercially 

available cytokine 

assays 

Distinct 

autoantibody 

epitopes associated 

with  increased 

pro-inflammatory 

cytokine levels 

Shi et al 201137 571 RA, 305 HC ELISA Anti-CarP 

antibodies 

Cheng et al 

2014292 

30 RA, 30 HC SDS-PAGE and 

LC-MS/MS 

26 differentially 

expressed proteins 

Hueber et al 

200575 

Synovial 

fluid 

76 RA, 27 other IA/OA, 11 

HC 

Microarrays Distinct 

autoantibody 

epitopes associated 

with prognosis 

Kang et al 2014293 Urine Discovery: 20 RA, 19 OA; 

validation: 30 RA, 30 OA; 

soluble CD14 (sCD14) 

analysis: 274 RA, 120 OA, 

60 SLE 

SDS-PAGE and 

LC-MS/MS 

134 differentially 

expressed proteins 

Park et al 2016294 264 RA, 187 HC ELISA sCD14, ORM1, 

ORM2, GSN 

 

ABBREVIATIONS: Ankylosing spondylitis (AS), anti-carbamylated protein (anti-CarP), anti-citrullinated 

protein antibody (ACPA), cluster of differentiation (CD), enzyme-linked immunosorbent assay (ELISA), 

gelsolin (GSN), healthy control (HC), inflammatory arthritis (IA), liquid chromatography (LC), mass 

spectrometry (MS), orosomucoid (ORM), osteoarthritis (OA), psoriatic arthritis (PsA), rheumatoid arthritis 

(RA), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), soluble CD14 (sCD14), 

systemic lupus erythematosus (SLE). 
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Table 5.6. Summary of protein studies in treatment response to biologic agents in RA. 

Study Biologic 

agent 

Sample Groups of 

study 

Proteomic 

strategy 

Proteins identified in 

RA 

Sekigawa et al 

2008126 

Infliximab Serum/plasma 10 RA 2D LC-

MS/MS 

22 differentially 

expressed proteins before 

and after treatment 

Trocmé et al 

2009128 

Plasma 60 RA SDS-PAGE 

and SELDI-

TOF MS 

8 differentially expressed 

proteins between good 

and non-responders 

Serada et al 

2010127 

Serum 33 RA, 9 

Behçet’s, 

22 

Crohn’s, 

50 HC 

iTRAQ with 

nanoLC-

MS/MS 

71 differentially 

expressed proteins in RA 

Fabre et al 

2008129 

Etanercept 33 RA Protein 

biochip array 

MCP-1 and EGF 

associated with treatment 

response 

Hueber et al 

2009130 

93 RA RA antigen 

microarray, 

FLEX®, 

ELISA 

24-biomarker signature 

associated with treatment 

response 

Obry et al 

2015131 

Discovery: 

22 RA; 

validation: 

16 RA 

SDS-PAGE 

with nanoLC-

MS 

12 biomarkers associated 

with treatment response 

Fabre et al 

2009132 

Rituximab 46 RA Protein 

biochip array 

Cytokine profile 

associated with treatment 

response at 3 months 

Murota et al 

2016134 

Mixture 28 RA, 30 

Sjögren’s, 

30 HC 

SOMAscan® 

assay 

33 differentially 

expressed proteins 

Cuppen et al 

2017137 

Discovery: 

65 RA; 

validation: 

185 RA 

xMAP® 12 differentially 

expressed proteins 

 

ABBREVIATIONS: Epidermal growth factor (EGF), healthy control (HC), isobaric tag for relative and 

absolute quantitation (iTRAQ), liquid chromatography (LC), mass spectrometry (MS), monocyte 

chemoattractant protein (MCP), rheumatoid arthritis (RA), sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE), surface-enhanced laser desorption-ionisation (SELDI), time-of-flight (TOF), 

two-dimensional (2D). 

 

5.3. Proteins acquired via SWATH-MS 

A first batch of 82 patients with RA from the etanercept sub-cohort was processed at SBDC 

in April 2018. These patients had serum samples available for processing collected pre-

treatment and after three and six months of treatment. Although this was before the 

commencement of this PhD, in silico data extraction was carried out using the bespoke RA 

protein library after the library had been curated as part of this PhD. A total of 775 proteins 

were detected using a generic plasma library205 and 397 proteins were detected using the 

bespoke RA library. Following removal of duplicated proteins with the plasma library, 233 

unique proteins remained in the data extraction using the RA library. Therefore, a total of 
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1,008 unique proteins were identified from this first batch. Patients included in this batch 

had proteomics data available at pre-treatment and at three and six months after treatment. 

 

A second batch of 74 RA patients from the etanercept cohort and 14 HCs was processed at 

SBDC in March 2019. These patients had serum samples available for processing collected 

pre-treatment and after 3 months of treatment. A total of 871 proteins were detected using 

the generic plasma library and 430 proteins were detected using the bespoke RA library. 

Some discrepancy in the number of proteins detected between batches is expected, as 

SWATH-MS methods were constantly being developed, optimised and improved 

throughout the collaboration with the SBDC. Following removal of duplicated proteins with 

the plasma library, 240 unique proteins remained in the data extraction using the RA library. 

Therefore, a total of 1,111 unique proteins were identified from this second batch. Patients 

included in this batch had proteomics data available at pre-treatment and three months after 

treatment. HCs only had cross-sectional data at a single time point. 

 

A third batch of 22 RA patients from the etanercept cohort and nine patients from the 

BRAGGSS-PD cohort (receiving either Amgevita or Benepali) was processed at SBDC in 

February 2021. The patients from the etanercept sub-cohort had serum samples available at 

pre-treatment and after three months of treatment. The BRAGGSS-PD patients had serum 

samples available as per Figures 3.1 and 3.2. A total of 668 proteins were detected using the 

generic plasma library and 408 proteins were detected using the bespoke RA library. 

Following removal of duplicated proteins with the plasma library, 271 unique proteins 

remained in the data extraction using the RA library. Therefore, a total of 939 unique proteins 

were identified from this third batch. Patients in this batch from the etanercept cohort had 

proteomics data available at pre-treatment and after three months of treatment. Patients from 

the BRAGGSS-PD cohort had data available at pre-treatment and the following time points 

after treatment: 1 hour, 6/7 days (patients on Benepali only, n = 4), 2 weeks, 4 weeks, 6 

weeks and 12 weeks. 

 

A final batch of seven patients from the BRAGGSS-PD cohort was processed in September 

2021. These patients had serum samples available as per Figures 3.1 and 3.2. A total of 621 

proteins were detected using the generic plasma library and 412 proteins were detected using 

the bespoke RA library. Following removal of duplicated proteins with the plasma library, 

286 unique proteins remained in the data extraction using the RA library. Therefore, a total 

of 907 unique proteins were identified from this fourth batch. Patients in this batch had data 
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available at pre-treatment and the following time points after treatment: 1 hour, 6/7 days 

(patients on Benepali only, n = 2), 2 weeks, 4 weeks, 6 weeks and 12 weeks. 

 

5.4. QC of proteomics data 

QC was initially carried out on patients from the etanercept cohort and HC. A total of 392 

samples were initially quality controlled. Two duplicate samples were removed from the 

second batch to be processed at SBDC, leaving 390 remaining samples. 261 proteins with 

near-zero variance were removed from the first batch, 208 from the second batch and 40 

from the third batch. 

 

5.4.1. Assessment of mean protein expression compared with protein missingness 

Density plots were generated to assess mean protein expression in each batch at each time 

point and at all time points combined according to levels of missingness, defined as: 

 <25% missing values for each protein. 

 25 – 50% missing. 

 50 – 75% missing. 

 >75% missing. 

 

Density plots are shown in Figures 5.1 – 5.5. 
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Figure 5.1. Mean protein expression multi-density plots for the first batch of SWATH-MS 

data to be processed at SBDC, stratified by time point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LEGEND: A) Proteins measured at baseline (pre-treatment). B) Proteins measured after three months of 

treatment. C) Proteins measured after six months of treatment. 
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Figure 5.2. Mean protein expression multi-density plot for the first batch of SWATH-MS 

data to be processed at SBDC, all time points combined. 

 

Figure 5.3. Mean protein expression multi-density plots for the second batch of SWATH-

MS data to be processed at SBDC, stratified by time point. 

 

 

 

 

 

 

 

 

 

 

 

LEGEND: A) Proteins measured at baseline (pre-treatment). B) Proteins measured after three months of 

treatment. 
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Figure 5.4. Mean protein expression multi-density plot for the second batch of SWATH-MS 

data to be processed at SBDC, all time points combined. 

 

 

 

 

 

 

 

 

 

 

 

 

All multi-density plots demonstrate increased mean protein expression with lower levels of 

missingness. This would suggest that missing proteins may simply be caused by a lower 

read-rate at MS. Therefore, a decision was made to impute missing proteins, as it was likely 

that they were missing due to limitations in MS, and not due to physiological reasons. 

 

5.4.2. Assessment of patterns of protein missingness 

Heatmaps were generated for each batch to visualise any potential patterns of protein 

missingness, such as time point or treatment response (i.e. EULAR response); these are 

shown in Figures 5.6 – 5.8. Proteins demonstrated no clear patterns of missingness, neither 

according to time point of measurement nor EULAR response. 
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Figure 5.5. Mean protein expression multi-density plots for the etanercept sub-cohort 

patients from the third batch of SWATH-MS data to be processed at SBDC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LEGEND: A) Proteins measured at baseline (pre-treatment). B) Proteins measured after three months of 

treatment. C) Proteins measured at all time points, combined. 
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Figure 5.6. Heatmap to assess protein missingness, first batch of etanercept sub-cohort 

samples. Samples are listed on the right-hand vertical axis. 

 

 

A high-quality PDF of this figure is available to download at: 

https://github.com/oobergirl/thesis/blob/main/missingness_heatmap_batch_1.pdf  

 

Table 5.7. Comparison of different imputation methods in simulated dataset. 

Imputation method RMSE 

Lasso 0.3259 

Partial least squares 0.3193 

k-nearest neighbours 0.4871 

MICE 0.4587 

Random forest 0.2702 

 

ABBREVIATIONS: Multiple imputation by chained equations (MICE), root mean square error (RMSE). 

  

https://github.com/oobergirl/thesis/blob/main/missingness_heatmap_batch_1.pdf
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Figure 5.7. Heatmap to assess protein missingness, second batch of etanercept sub-cohort 

samples. Samples are listed on the right-hand vertical axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A high-quality PDF of this image is available to download at: 

https://github.com/oobergirl/thesis/blob/main/missingness_heatmap_batch_2.pdf 

 

Table 5.8. Comparison of random forest imputation across simulated datasets with different 

percentage missing values. 

Total % missing values in simulated 

dataset 

RMSE 

25 0.2669 

50 0.2738 

75 0.2899 

 

ABBREVIATIONS: Root mean square error (RMSE). 

  

https://github.com/oobergirl/thesis/blob/main/missingness_heatmap_batch_2.pdf
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Figure 5.8. Heatmap to assess protein missingness, third batch of etanercept sub-cohort 

samples. Samples are listed on the right-hand vertical axis. 

 

 

A high-quality PDF of this image is available to download at: 

https://github.com/oobergirl/thesis/blob/main/missingness_heatmap_batch_3.pdf 

 

5.4.3. Comparison of imputation methods on simulated dataset 

80 patients from the first batch of the etanercept cohort to be processed for SWATH-MS 

were used to create a simulation dataset to compare different methods of imputation. 108 

proteins with no missing values were retained, then 30% missing values were spiked into 

this dataset at random. Following imputation, imputed datasets were then compared to the 

original complete dataset of 108 proteins in 80 patients to determine the accuracy of 

imputation. The results of different imputation methods are shown in Table 5.7. The 

parameter of RMSE was used to compare methods, with a lower value representing 

improved accuracy. With the lowest RMSE of 0.2702, random forest was deemed to be the 

most accurate method of imputation for missing protein values. 

https://github.com/oobergirl/thesis/blob/main/missingness_heatmap_batch_3.pdf
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New datasets were then simulated from the original complete dataset of 80 patients and 108 

proteins, with values of 25%, 50% and 75% missing data randomly spiked in. Accuracy of 

random forest imputation was then compared across these new simulated datasets using 

RMSE, and this is detailed in Table 5.8. RMSE was comparable across all levels of 

percentage missing values, although this parameter increased as percentage missing values 

increased, which was not unexpected. However, because RMSE values were similarly low 

across different levels of missing values, a decision was made to impute all missing values, 

instead of excluding proteins with missing values above a certain threshold e.g. >75%. 

 

5.4.4. Imputation of missing protein values in all patients with SWATH-MS data 

Imputation was carried out in each batch of both the BRAGGSS-PD and etanercept cohorts 

using a random forest algorithm. Imputation was carried out at each time point for each batch 

of the etanercept cohort. Imputation was carried out on all samples from the BRAGGSS-PD 

cohort (all patients at all time points), despite being processed in two batches; this pragmatic 

approach was required due to low sample numbers. Following imputation, density plots were 

created with post-imputation data overlaid on pre-imputation data to visually inspect the 

effect of imputation on protein expression densities. Density plots demonstrate good 

agreement between pre- and post-imputation protein expression densities, and are shown in 

Figures 5.9 – 5.12. 

  



143 
 

Figure 5.9. Overlaid density plot comparing original with imputed data in first batch of 

etanercept sub-cohort. 

 

 

Figure 5.10. Overlaid density plot comparing original with imputed data in second batch of 

etanercept sub-cohort. 
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Figure 5.11. Overlaid density plot comparing original with imputed data in third batch of 

etanercept sub-cohort. 

 

 

Figure 5.12. Overlaid density plot comparing original with imputed data in BRAGGSS-PD 

cohort. 
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5.4.5. Assessment for outliers and batch effect 

Hierarchical clustering was carried out for the etanercept cohort samples at each time point 

and in all BRAGGSS-PD samples combined. Outlying samples were identified and 

removed. The resultant cluster dendrograms are presented in Figures 5.13 – 5.16. As Figure 

5.13 demonstrates, one outlying sample was identified and removed from the etanercept sub-

cohort at baseline; all other samples were retained for analysis. 

 

PCA was then carried out for the etanercept sub-cohort and the BRAGGSS-PD cohort to 

determine whether there was any batch effect; the resultant plots are presented in Figures 

5.17 and 5.18. Both cohorts demonstrated clear separation between batches that were 

processed for SWATH-MS at different times, but no separation by sampling time point. 

Therefore, samples from both cohorts underwent batch correction using a parametric 

empirical Bayes framework. Figures 5.19 and 5.20 show the re-run PCA after batch 

correction, which demonstrate no separation in samples due to batch effect. 
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Figure 5.13. Hierarchical cluster dendrogram to identify outliers, etanercept sub-cohort, 

baseline samples. 

 

 

Figure 5.14. Hierarchical cluster dendrogram to identify outliers, etanercept sub-cohort, 

three month samples. 

 



147 
 

Figure 5.15. Hierarchical cluster dendrogram to identify outliers, etanercept sub-cohort, six 

month samples. 

 

 

Figure 5.16. Hierarchical cluster dendrogram to identify outliers, BRAGGSS-PD cohort, all 

time points. 
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Figure 5.17. PCA plot to assess for batch or sampling time point effect, etanercept cohort. 
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Figure 5.18. PCA plot to assess for batch or sampling time point effect, BRAGGSS-PD cohort. 
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Figure 5.19. PCA plot after batch correction to assess for batch or sampling time point effect, etanercept cohort. 
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Figure 5.20. PCA plot after batch correction to assess for batch or sampling time point effect, BRAGGSS-PD cohort. 
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5.5. Differential expression of proteins between RA cases and HCs 

Analysis was carried out in the second batch processed for SWATH-MS by the SBDC, as 

this batch contained a mixture of 73 patients with RA and 14 HCs. Samples from RA patients 

were filtered to the pre-treatment sampling time point prior to comparison with HCs, in order 

to reflect maximal RA disease activity.  

 

216 proteins were found to be significantly differentially expressed in RA patients when 

compared with HCs. 179 proteins were from the RA protein library and the remaining 37 

proteins were from the plasma protein library. 70 of the 216 proteins were down-regulated 

in RA patients with active disease compared to HCs, and the remaining proteins were all up-

regulated. The full results are presented in Appendix Six. Proteins acquired at SWATH-MS 

for both etanercept and BRAGGSS-PD cohorts were filtered to include only these 216 

significantly differentially expressed proteins for the remainder of analysis in order to focus 

analysis on protein measurements associated with RA, as well as improving power by 

reducing the number of comparisons made. 

 

5.6. Longitudinal analysis of protein expression in the first 12 weeks of treatment with 

Amgevita or Benepali 

16 patients with RA were included in analysis; their baseline characteristics are detailed in 

Tables 4.1 (Amgevita), 4.4 (Benepali) and 5.1 (whole BRAGGSS-PD cohort combined). 

Ten patients commencing Amgevita and six patients commencing Benepali were included. 

Serum proteomics acquired using SWATH-MS was available at the following sampling time 

points: 

 Baseline (pre-treatment). 

 1 hour. 

 6 or 7 days (Benepali patients only). 

 2 weeks. 

 4 weeks. 

 6 weeks. 

 12 weeks. 

 

A total of 188 of the 216 significant proteins from Section 5.1.5 were detectable in the 

BRAGGSS-PD cohort. 
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5.6.1. Linear mixed effects models of protein expression and achievement of 

therapeutic drug levels 

All 16 BRAGGSS-PD patients were pooled for this analysis, as the dichotomous outcome 

variable of therapeutic drug levels made this outcome directly comparable between patients 

on different drugs, unlike the continuous outcome variable of drug concentration levels. 

Therapeutic drug levels were defined as between 5 – 8 mg/L for Amgevita (as per Pouw et 

al219) and between 2.1 – 4.7 mg/L for Benepali (as per Jamnitski et al220). Of the 15 patients 

with available drug concentration levels after 12 weeks of treatment, 11 patients (73.33%) 

had concentrations within the therapeutic ranges as defined above. 

 

Five proteins were found to be significantly associated with therapeutic drug levels, 

following adjustment for age, biological sex, weight, concurrent csDMARD therapy, patient 

ID and sampling time point: 

 CRP (UniProtID P02741), adjusted odds ratio (ORadj) 0.45, 95% CI 0.22 – 0.94, p-

value = 0.0342. 

 Complement C4-B (C4B, UniProt ID P0C0L5), ORadj 7.57, 95% CI 1.36 – 42.23, p-

value = 0.0210. 

 SAA2 (UniProt ID P0DJI9), ORadj 0.23, 95% CI 0.06 – 0.95), p-value = 0.0416. 

 LBP (UniProt ID P18428), ORadj 0.10, 95% CI 0.02 – 0.64, p-value = 0.0145. 

 Baculoviral IAP repeat-containing protein 2 (BIRC2, UniProt ID Q13490), ORadj 

0.18, 95% CI 0.05 – 0.66, p-value = 0.0099. 

 

Full results for these models are detailed in Table 5.9. These five proteins were then placed 

into a multivariable model, detailed in Table 5.10. The only variables that remained 

significant when adjusted for other significant proteins were levels of C4B (ORadj 11.45, 

95% CI 1.42 – 92.60, p-value = 0.0223) and age at baseline (ORadj 1.32, 95% CI 1.03 – 1.70, 

p-value = 0.0303). 
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Table 5.9. Protein levels significantly associated with therapeutic drug levels using linear 

mixed effects models in the BRAGGSS-PD cohort. 

CRP (P02741) 

% missing pre-imputation: 10.51 

Random effects 

Variable Variance (% variance) SD 

Sample ID 0.2652 (3.20) 0.5149 

Time point 8.0140 (96.80) 2.8309 

Fixed effects 

Variable ORadj (95% CI) p-value 

P02741 0.45 (0.22 – 0.94) 0.0342 

Age at baseline 1.15 (1.02 – 1.30) 0.0227 

Female sex 0.96 (0.06 – 14.76) 0.9741 

Weight 0.98 (0.93- 1.04) 0.4822 

Concurrent csDMARD 0.79 (0.03 – 18.35) 0.8833 

C4B (P0C0L5) 

% missing pre-imputation: 6.92 

Random effects 

Variable Variance (% variance) SD 

Sample ID 0.3974 (2.37) 0.6304 

Time point 16.3465 (97.63) 4.0431 

Fixed effects 

Variable ORadj (95% CI) p-value 

P0C0L5 7.57 (1.36 – 42.23) 0.0210 

Age at baseline 1.19 (1.02 – 1.39) 0.0248 

Female sex 12.46 (0.18 – 885.78) 0.2463 

Weight 0.99 (0.93 – 1.05) 0.7630 

Concurrent csDMARD 1.43 (0.02 – 95.47) 0.8661 

SAA2 (P0DJI9) 

% missing pre-imputation: 65.90 

Random effects 

Variable Variance (% variance) SD 

Sample ID 0.3651 (2.93) 0.6042 

Time point 12.0878 (97.07) 3.4768 

Fixed effects 

Variable ORadj (95% CI) p-value 

P0DJI9 0.23 (0.06 – 0.95) 0.0416 

Age at baseline 1.13 (0.99 – 1.28) 0.0703 

Female sex 0.51 (0.03 – 9.02) 0.6429 

Weight 0.97 (0.64 – 1.45) 0.2091 

Concurrent csDMARD 1.69 (0.06 – 43.95) 0.7528 
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LBP (P18428) 

% missing pre-imputation: 0.51 

Random effects 

Variable Variance (% variance) SD 

Sample ID 0.0000 (0.00) 0.0000 

Time point 10.4200 (100.00) 3.2270 

Fixed effects 

Variable ORadj (95% CI) p-value 

P18428 0.10 (0.02 – 0.64) 0.0145 

Age at baseline 1.27 (1.09 – 1.48) 0.0017 

Female sex 3.45 (0.17 – 71.94) 0.4247 

Weight 0.99 (0.94 – 1.04) 0.5867 

Concurrent csDMARD 0.52 (0.02 – 11.34) 0.6774 

BIRC2 (Q13490) 

% missing pre-imputation: 73.59 

Random effects 

Sample ID 2.64E-10 (0.00) 1.62E-05 

Time point 16.89 (100.00) 2.1090 

Fixed effects 

Variable ORadj (95% CI) p-value 

Q13490 0.18 (0.05 – 0.66) 0.0099 

Age at baseline 1.23 (1.06 – 1.42) 0.0048 

Female sex 1.56 (0.04 – 59.41) 0.8099 

Weight 0.98 (0.93 – 1.03) 0.4418 

Concurrent csDMARD 6.21 (0.19 – 205.92) 0.3069 

 

ABBREVIATIONS: Adjusted (adj), baculoviral IAP repeat-containing protein 2 (BIRC2), complement C4-

B (C4B), confidence interval (CI), conventional synthetic disease-modifying anti-rheumatic drug 

(csDMARD),C-reactive protein (CRP), identifier (ID), lipopolysaccharide-binding protein (LBP), odds ratio 

(OR), serum amyloid A2 protein (SAA2), standard deviation (SD). 
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Table 5.10. Multivariable model of protein levels significantly associated with therapeutic 

drug levels using linear mixed effects models in the BRAGGSS-PD cohort. 

Random effects 

Variable Variance (% variance) SD 

Sample ID 1.211E-06 (0.00) 0.0011 

Time point 14.74 (100.00) 3.8388 

Fixed effects 

Variable ORadj (95% CI) p-value 

CRP (P02741) 0.47 (0.15 – 1.51) 0.2053 

C4B (P0C0L5) 11.45 (1.42 – 92.60) 0.0223 

SAA2 (P0DJI9) 0.50 (0.08 – 2.96) 0.4455 

LBP (P18428) 0.39 (0.02 – 6.07) 0.5009 

BIRC2 (Q13490) 0.24 (0.05 – 1.19) 0.0807 

Age at baseline 1.32 (1.03 – 1.70) 0.0303 

Female sex 23.22 (0.05 – 10158.54 0.3107 

Weight 1.03 (0.95 – 1.12) 0.4702 

Concurrent csDMARD 0.47 (0.00 – 99.91) 0.7812 

 

ABBREVIATIONS: Adjusted (adj), baculoviral IAP repeat-containing protein 2 (BIRC2), complement C4-

B (C4B), confidence interval (CI), conventional synthetic disease-modifying anti-rheumatic drug 

(csDMARD),C-reactive protein (CRP), identifier (ID), lipopolysaccharide-binding protein (LBP), odds ratio 

(OR), serum amyloid A2 protein (SAA2), standard deviation (SD). 

 

5.6.2. Protein levels significantly associated with Amgevita or Benepali drug levels 

using linear mixed effects models in the BRAGGSS-PD cohort 

Ten patients with RA commenced on Amgevita were included in this analysis. Nine proteins 

were found to be significantly associated with Amgevita drug concentration levels, 

following adjustment for age, biological sex, weight, concurrent csDMARD, patient ID and 

sampling time point: 

 Filamin-B (FLNB, UniProt ID O75369), β-coefficientadj 1.10, 95% CI 0.23 – 1.96, 

p-value = 0.0179. 

 CRP (UniProt ID 02741), β-coefficientadj -0.44, 95% CI -0.80 – (-0.07), p-value = 

0.02311. 

 α-1-acid glycoprotein 1 (A1AG1, UniProt ID P02763), β-coefficientadj -0.54, 95% 

CI -1.05 – (-0.03), p-value = 0.0494. 

 Collagen α-2(VI) chain (COL6A2, UniProt ID P12110), β-coefficientadj -2.95, 95% 

CI -5.46 – (-0.43), p-value – 0.0429. 
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 LBP (UniProt ID P18428), β-coefficientadj -1.13, 95% CI -1.96 – (-0.41), p-value = 

0.0037. 

 Lysozyme C (LYZ, UniProt ID P61626), β-coefficientadj -0.83, 95% CI -1.61 – (-

0.05), p-value = 0.0467. 

 CD166 antigen (UniProt ID Q13740), β-coefficient 0.84adj, 95% CI 0.26 – 1.41, p-

value = 0.0070. 

 Ester hydrolase C11orf54 (C11orf54, UniProt ID Q9H0W9), β-coefficientadj 1.55, 

95% CI 0.34 – 2.70), p-value = 0.0160. 

 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit δ isoform 

(PIK3CD, UniProt ID O00329), β-coefficientadj 1.41, 95% CI 0.10 – 2.72, p-value = 

0.0422. 

 

Full results for these proteins are detailed in Table 5.11. These nine proteins were then placed 

into a multivariable model, detailed in Table 5.12. The only variables that remained 

significant when adjusted for other significant proteins were levels of A1AG1 (β-

coefficientadj -0.76, 95% CI -1.31 – (-0.22), p-value = 0.0097) and female sex (β-

coefficientadj 3.93, 95% CI 1.38 – 6.47, p-value = 0.0047). 

 

Table 5.11. Protein levels significantly associated with Amgevita drug levels using linear 

mixed effects models in the BRAGGSS-PD cohort. 

FLNB (O75369) 

% missing pre-imputation: 52.82 

Random effects 

Variable Variance (% variance) SD 

Sample ID 0.3472 (2.57) 0.5892 

Time point 9.8832 (73.22) 3.1438 

Residual 3.2684 (24.21) 1.8079 

Fixed effects 

Variable β-coefficientadj (95% CI) p-value 

O75369 1.10 (0.23 – 1.96) 0.0179 

Age at baseline 0.06 (-0.01 – 0.14) 0.1646 

Female sex 2.87 (-0.33 – 6.08) 0.1452 

Weight -0.02 (-0.05 – 0.01) 0.2778 

Concurrent csDMARD -0.91 (-3.51 – 1.70) 0.5236 
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CRP (P02741) 

% missing pre-imputation: 10.51 

Random effects 

Variable Variance (% variance) SD 

Sample ID 0.0000 (0.00) 0.0000 

Time point 7.7450 (67.92) 2.7830 

Residual 3.6580 (32.08) 1.9130 

Fixed effects 

Variable β-coefficientadj (95% CI) p-value 

P02741 -0.44 (-0.80 – (-0.07)) 0.0231 

Age at baseline 0.03 (-0.03 – 0.10) 0.2962 

Female sex 4.64 (1.89 – 7.38) 0.0019 

Weight -0.01 (-0.04 – 0.02) 0.5805 

Concurrent csDMARD -2.35 (-4.53 – (-0.16)) 0.0418 

A1AG1 (P02763) 

% missing pre-imputation: 0.00 

Random effects 

Variable Variance (% variance) SD 

Sample ID 0.1570 (1.32) 0.3963 

Time point 8.1120 (68.35) 2.8481 

Residual 3.6000 (30.33) 1.8973 

Fixed effects 

Variable β-coefficientadj (95% CI) p-value 

P02763 -0.54 (-1.05 – (-0.03)) 0.0494 

Age at baseline 0.06 (-0.01 – 0.13) 0.1774 

Female sex 4.93 (1.80 – 8.06) 0.0263 

Weight -0.01 (-0.05 – 0.02) 0.4533 

Concurrent csDMARD -1.80 (-4.15 – 0.54) 0.1920 

COL6A2 (P12110) 

% missing pre-imputation: 60.77 

Random effects 

Variable Variance (% variance) SD 

Sample ID 0.0038 (0.03) 0.0616 

Time point 9.0265 (71.41) 3.0044 

Residual 3.6110 (28.56) 1.9003 
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Fixed effects 

Variable β-coefficientadj (95% CI) p-value 

P12110 -2.95 (-5.46 – (-0.43)) 0.0429 

Age at baseline 0.04 (-0.02 – 0.10) 0.2872 

Female sex 5.03 (2.17 – 7.89) 0.0219 

Weight -0.03 (-0.07 – 0.00) 0.0793 

Concurrent csDMARD -3.01 (-5.39 – (-0.64)) 0.0515 

LBP (P18428) 

% missing pre-imputation: 0.51 

Random effects 

Variable Variance (% variance) SD 

Sample ID 0.0000 (0.00) 0.0000 

Time point 8.0820 (70.63) 2.8430 

Residual 3.3610 (29.37) 1.8300 

Fixed effects 

Variable β-coefficientadj (95% CI) p-value 

P18428 -1.13 (-1.86 – (-0.41)) 0.0037 

Age at baseline 0.09 (0.03 – 0.16) 0.0098 

Female sex 3.90 (1.37 – 6.44) 0.0043 

Weight -0.00 (-0.03 – 0.03) 0.9608 

Concurrent csDMARD -1.91 (-3.96 – 0.14) 0.0754 

LYZ (P61626) 

% missing pre-imputation: 4.10 

Random effects 

Variable Variance (% variance) SD 

Sample ID 0.4880 (3.89) 0.6986 

Time point 8.6800 (69.12) 0.29461 

Residual 3.3900 (26.99) 1.8412 

Random effects 

Variable β-coefficientadj (95% CI) p-value 

P61626 -0.83 (-1.61 – (-0.05)) 0.0467 

Age at baseline 0.04 (-0.04 – 0.12) 0.3661 

Female sex 4.59 (1.09 – 8.09) 0.0484 

Weight -0.02 (-0.05 – 0.02) 0.4347 

Concurrent csDMARD -2.75 (-5.60 – 0.10) 0.1066 
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CD166 antigen (Q13740) 

% missing pre-imputation: 50.77 

Random effects 

Variable Variance (% variance) SD 

Sample ID 0.6494 (4.69) 0.8059 

Time point 10.1747 (73.52) 3.1898 

Residual 3.0144 (21.78) 1.7362 

Fixed effects 

Variable β-coefficientadj (95% CI) p-value 

Q13740 0.84 (0.26 – 1.41) 0.0070 

Age at baseline 0.03 (-0.55 – 0.60) 0.5210 

Female sex 3.08 (-0.48 – 6.64) 0.1535 

Weight -0.02 (-0.06 – 0.02) 0.3541 

Concurrent csDMARD -1.72 (-4.53 – 1.09) 0.2839 

C11orf54 (Q9H0W9) 

% missing pre-imputation: 49.23 

Random effects 

Variable Variance (% variance) SD 

Sample ID 0.8414 (6.21) 0.9173 

Time point 9.5952 (70.87) 3.0976 

Residual 3.1022 (22.91) 1.7613 

Fixed effects 

Variable β-coefficientadj (95% CI) p-value 

Q9H0W9 1.55 (0.34 – 2.70) 0.0160 

Age at baseline 0.05 (-0.04 – 0.14) 0.3442 

Female sex 2.51 (-1.43 – 6.45) 0.2722 

Weight -0.02 (-0.06 – 0.02) 0.4240 

Concurrent csDMARD -1.31 (-4.37 – 1.75) 0.4437 

PIK3CD (O00329) 

% missing pre-imputation: 38.72 

Random effects 

Variable Variance (% variance) SD 

Sample ID 0.1991 (1.49) 0.4462 

Time point 9.6740 (72.42) 3.1103 

Residual 3.4855 (26.09) 1.8670 
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Fixed effects 

Variable β-coefficientadj (95% CI) p-value 

O00329 1.41 (0.10 – 2.72) 0.0422 

Age at baseline 0.04 (-0.03 – 0.11) 0.3735 

Female sex 3.24 (0.25 – 6.23) 0.1037 

Weight -0.02 (-0.06 – 0.01) 0.1903 

Concurrent csDMARD -1.49 (-3.88 – 0.90) 0.2855 

 

ABBREVIATIONS: α-1-acid glycoprotein 1 (A1AG1), adjusted (adj), cluster of differentiation (CD), 

collagen α-2(VI) chain (COL6A2), confidence interval (CI), conventional synthetic disease-modifying anti-

rheumatic drug (csDMARD), C-reactive protein (CRP), ester hydrolase C11orf54 (C11orf54), filamin-B 

(FLNB), identifier (ID), lipopolysaccharide-binding protein (LBP), lysozyme C (LYZ), phosphatidylinositol 

4,5-bisphosphate 3-kinase catalytic subunit δ isoform (PIK3CD), standard deviation (SD). 

 

Six patients with RA commenced on Benepali were included in this analysis. Three proteins 

were found to be significantly associated with Benepali drug concentration levels, following 

adjustment for age, biological sex, weight, concurrent csDMARD, patient ID and sampling 

time point: 

 Mannan-binding lectin serine protease 1 (MASP1, UniProt ID P48740), β-

coefficientadj 0.87, 95% CI 0.11 – 1.64, p-value = 0.0371. 

 Inhibitor of NF-κB kinase subunit α (IKKA, UniProt ID O15111), β-coefficientadj 

0.92, 95% CI 0.26 – 1.59, p-value = 0.01317. 

 Far upstream element-binding protein 1 (FUBP1, UniProt ID Q96AE4), β-

coefficientadj 0.96, 95% CI 0.08 – 1.83), p-value = 0.0446). 
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Table 5.12. Multivariable model of protein levels significantly associated with Amgevita 

drug levels using linear mixed effects models in the BRAGGSS-PD cohort. 

Random effects 

Variable Variance (% variance) SD 

Sample ID 0.0000 (0.00) 0.0000 

Time point 7.2360 (75.44) 2.6900 

Residual 2.3560 (24.56) 1.5350 

Fixed effects 

Variable β-coefficientadj (95% CI) p-value 

FLNB (O75369) 0.73 (-0.08 – 1.54) 0.08593 

CRP (P02741) 0.11 (-0.37 – 0.59) 0.64838 

A1AG1 (P02763) -0.76 (-1.31 – (-0.22)) 0.00970 

COL6A2 (P12110) -0.17 (-2.71 – 2.36) 0.89523 

LBP (P18428) -0.04 (-1.00 – 0.93) 0.94338 

LYZ (P61626) -0.72 (-1.46 – 0.03) 0.06912 

CD166 antigen (Q13740) 0.49 (-0.13 – 1.12) 0.13160 

C11orf54 (Q9H0W9) 1.22 (-0.00- 2.44) 0.05818 

PIK3CD (O00329) 0.76 (-0.53 – 2.05) 0.25862 

Age at baseline 0.07 (-0.00 – 0.15) 0.06404 

Female sex 3.93 (1.38 – 6.47) 0.00472 

Weight 0.02 (-0.02 – 0.05) 0.31179 

Concurrent csDMARD -1.31 (-3.46 – 0.85) 0.24237 

 

ABBREVIATIONS: α-1-acid glycoprotein 1 (A1AG1), adjusted (adj), cluster of differentiation (CD), 

collagen α-2(VI) chain (COL6A2), confidence interval (CI), conventional synthetic disease-modifying anti-

rheumatic drug (csDMARD), C-reactive protein (CRP), ester hydrolase C11orf54 (C11orf54), filamin-B 

(FLNB), identifier (ID), lipopolysaccharide-binding protein (LBP), lysozyme C (LYZ), phosphatidylinositol 

4,5-bisphosphate 3-kinase catalytic subunit δ isoform (PIK3CD), standard deviation (SD). 

 

Full results for these proteins are detailed in Table 5.13. Concurrent csDMARD therapy was 

dropped from all models due to rank deficiency because all patients with available 

information regarding this variable were receiving csDMARDs. The three significant 

proteins were then placed into a multivariable model, detailed in Table 5.14. The only 

variables that remained significant when adjusted for other significant proteins were levels 

of IKKA (β-coefficientadj 0.88, 95% CI 0.31 – 1.45, p=value = 0.0075), female sex (β-

coefficientadj -4.21, 95% CI -7.24 – (-1.18), p-value = 0.0140) and weight (β-coefficientadj    

-0.18, 95% CI -0.26 – (-0.10), p-value = 0.0004). 
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Table 5.13. Protein levels significantly associated with Benepali drug levels using linear 

mixed effects models in the BRAGGSS-PD cohort. 

MASP1 (P48740) 

% missing pre-imputation: 6.15 

Random effects 

Variable Variance (% variance) SD 

Sample ID 0.0000 (0.00) 0.0000 

Time point 8.8410 (80.68) 2.9730 

Residual 2.1170 (19.32) 1.4550 

Fixed effects 

Variable β-coefficientadj (95% CI) p-value 

P48740 0.87 (0.11 – 1.64) 0.0371 

Age at baseline -0.27 (-0.82 – 0.28) 0.3449 

Female sex -3.53 (-7.23 – 0.16) 0.0754 

Weight -0.15 (-0.24 – (-0.06)) 0.0046 

IKKA (O15111) 

48.46 

Random effects 

Variable Variance (% variance) SD 

Sample ID 0.0000 (0.00) 0.0000 

Time point 9.9040 (83.90) 3.1470 

Residual 1.9000 (16.10) 1.3780 

Fixed effects 

Variable β-coefficientadj (95% CI) p-value 

O15111 0.92 (0.26 – 1.59) 0.0132 

Age at baseline -0.14 (-0.62 – 0.35) 0.5826 

Female sex -2.23 (-5.50 – 1.04) 0.1963 

Weight -0.15 (-0.23 – (-0.06)) 0.0032 

FUBP1 (Q96AE4) 

% missing pre-imputation: 64.10 

Random effects 

Variable Variance (% variance) SD 

Sample ID 0.0000 (0.00) 0.0000 

Time point 6.9760 (75.45) 2.6410 

Residual 2.2700 (24.55) 1.5070 

Fixed effects 

Variable β-coefficientadj (95% CI) p-value 

Q96AE4 0.96 (0.08 – 1.83) 0.0446 

Age at baseline -0.05 (-0.57 – 0.47) 0.8471 

Female sex -3.23 (-6.98 – 0.52) 0.1032 

Weight -0.20 (-0.30 – (-0.09)) 0.8012 

 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), identifier (ID), far upstream element-binding 

protein 1 (FUBP1), inhibitor of nuclear factor-κB kinase subunit α (IKKA), mannan-binding lectin serine 

protease 1 (MASP1), standard deviation (SD). 
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Table 5.14. Multivariable model of protein levels significantly associated with Benepali drug 

levels using linear mixed effects models in the BRAGGSS-PD cohort. 

Random effects 

Variable Variance (% variance) SD 

Sample ID 0.0000 (0.00) 0.0000 

Time point 9.9610 (87.96) 3.1560 

Residual 1.3640 (12.04) 1.1680 

Fixed effects 

Variable β-coefficientadj (95% CI) p-value 

MASP (P48740) 0.59 (-0.07 – 1.24) 0.0955 

IKKA (O15111) 0.88 (0.31 – 1.45) 0.0075 

FUBP1 (Q96AE4) 0.71 (-0.01 – 1.43) 0.0687 

Age at baseline -0.32 (-0.77 – 0.12) 0.1701 

Female sex -4.21 (-7.24 – (-1.18)) 0.0140 

Weight -0.18 (-0.26 – (-0.10)) 0.0004 

 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), identifier (ID), far upstream element-binding 

protein 1 (FUBP1), inhibitor of nuclear factor-κB kinase subunit α (IKKA), mannan-binding lectin serine 

protease 1 (MASP1), standard deviation (SD). 

 

5.7. Analysis of protein expression and association with RA clinical outcome measures 

following treatment with etanercept 

180 patients with RA commencing etanercept were included in this analysis; baseline 

characteristics are detailed in Table 5.2. All patients had baseline and follow-up data 

recorded at three months, and 176/180 patients had follow-up data recorded at six months. 

Protein levels as detected using SWATH-MS were available on 152 patients at baseline, 159 

patients at three months and 64 patients at six months. 
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5.7.1. Linear regression between protein levels and RA clinical outcome measures, 

continuous variables 

5.7.1.1. Primary outcomes: DAS28 and ΔDAS28 

5.7.1.1.1. DAS28 

15 proteins measured at baseline were associated with DAS28 at that time point after 

adjustment for multiple testing and are presented in Appendix Seven, Table 1. 16 proteins 

measured at baseline were associated with DAS28 at that time point after adjustment for age, 

biological sex and RA disease duration and are presented in Appendix Seven, Table 2. 

Significant proteins from confounder-adjusted analysis were included in a multivariable 

model, along with age, sex and disease duration. Four proteins remained significant: 

 Transferrin receptor protein 1 (TFRC, UniProt ID P02786), β-coefficientadj -0.15, 

95% CI -0.26 – (-0.04), p-value = 0.0080. 

 14-3-3 protein η (YWHAH, UniProt ID Q04917), β-coefficientadj -0.18, 95% CI -

0.32 – (-0.04), p-value = 0.0123. 

 SAA1 (UniProt ID P0DJI8), β-coefficientadj 0.09, 95% CI 0.00 – 0.17, p-value = 

0.0496. 

 MAP2K3 (UniProt ID P46734), β-coefficientadj 0.36, 95% CI 0.09 – 0.64, p-value = 

0.0110. 

 

Full results of the multivariable analysis are presented in Appendix Seven, Table 3. 

 

One protein measured at baseline were associated with DAS28 at three months following 

adjustment for multiple testing: EH domain-containing protein 1 (EHD1, UniProt ID 

Q9H4M9). However, after adjustment for age, sex and disease duration, two baseline 

proteins (including EHD1) were associated with DAS28 at three months and are presented 

in Appendix Seven, Table 4. These two proteins were then included in a multivariable model 

along with age, sex and disease duration and both remained significantly associated with 

DAS28 at three months: 

 EHD1 (UniProt ID Q9H4M9), β-coefficientadj 0.25, 95% CI 0.09 – 0.41, p-value 

0.0030. 

 T-complex protein 1 subunit η (TCPH, UniProt ID Q99832), β-coefficientadj 0.67, 

95% CI 0.21 – 1.13, p-value = 0.0050. 

 

 The full multivariable model is presented in Appendix Seven, Table 5. 
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No proteins detected at baseline were associated with DAS28 at six months following 

adjustment for multiple testing. There were no significant associations after adjustment for 

age, sex and disease duration. 

 

36 proteins detected at three months were associated with DAS28 at the same time point 

after adjustment for multiple testing and are presented in Appendix Seven, Table 6. 28 

proteins detected at three months were associated with DAS28 at this time point after 

adjustment for age, sex and disease duration and are presented in Appendix Seven, Table 7. 

Significant proteins from confounder-adjusted analysis were included in a multivariable 

model, alongside age, sex and disease duration. Four proteins remained significantly 

associated with DAS28: 

 EHD1 (UniProt ID Q9H4M9), β-coefficientadj 0.17, 95% CI 0.02 – 0.32, p-value = 

0.0239. 

 Aspartyl/asparaginyl β-hydroxylase (ASPH, UniProt ID Q12797), β-coefficientadj -

0.28, 95% CI -0.53 – (-0.04), p-value = 0.0249. 

 CFHR3 (UniProt ID Q02985), β-coefficientadj 0.64, 95% CI 0.10 – 1.17, p-value = 

0.0209. 

 IGF1 (UniProt ID P05019), β-coefficientadj -0.28, 95% CI -0.54 – (-0.01), p-value = 

0.0423. 

 

The full results of the multivariable model are presented in Appendix Seven, Table 8. 

 

10 proteins detected at three months were associated with DAS28 at six months after 

adjustment for multiple testing and are presented in Appendix Seven, Table 9. Seven proteins 

detected at three months were associated with DAS8 at six months after adjustment for age, 

sex and disease duration and are presented in Appendix Seven, Table 10. Significant proteins 

from confounder-adjusted analysis were included in a multivariable model, alongside age, 

sex and disease duration. Two proteins remained significantly associated with DAS28: 

 ASPH (UniProt ID Q12797), β-coefficientadj -0.34, 95% CI -0.59 – (-0.10), p-value 

= 0.0076. 

 CFHR3 (UniProt ID Q02985), β-coefficientadj 0.72, 95% CI 0.15 – 1.28, p-value = 

0.0145. 

 

The full results of the multivariable model are presented in Appendix Seven, Table 11. 
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One protein detected after six months of treatment with etanercept was associated with 

DAS28 at this time point after adjustment for multiple testing: CRP (UniProt ID P02741), 

β-coefficient 0.67, 95% CI 0.38 – 0.96, p-value = 2.37E-05, adjusted p-value = 0.0051. CRP 

remained significantly associated after adjustment for age, sex and disease duration: β-

coefficientadj 0.67, 95% CI 0.37 – 0.96, p-value = 4.94E-05, adjusted p-value = 0.0107. 

 

5.7.1.1.2. ΔDAS28 

One protein detected before treatment with etanercept was associated with change in DAS28 

(ΔDAS28) at three months after adjustment for multiple testing: EHD1 (UniProt ID 

Q9H4M9), β-coefficient -0.27, 95% CI -0.41 – (-0.14), p-value = 6.09E-05, adjusted p-value 

= 0.0132. A positive value for ΔDAS28 represents improvement in DAS28 and a negative 

number represents worsening DAS28 after treatment. EHD1 remained significantly 

associated after adjustment for age, sex and disease duration: β-coefficientadj -0.28, 95% CI 

-0.41 – (-0.15), p-value = 5.38E-05, adjusted p-value = 0.0012. 

 

No proteins detected at baseline were associated with ΔDAS28 at six months following 

adjustment for multiple testing. There were still no significant associations after adjustment 

for age, sex and disease duration. 

 

Eight proteins detected at three months were associated with ΔDAS28 at three months after 

adjustment for multiple testing and are presented in Appendix Seven, Table 12. Two proteins 

detected at three months were significantly associated with ΔDAS28 at three months after 

adjustment for age, sex and disease duration and are presented in Appendix Seven, Table 13. 

These two proteins were included in a multivariable model alongside age, sex and disease 

duration, and both remained significantly associated with ΔDAS28: 

 EHD1 (UniProt ID Q9H4M9), β-coefficientadj -0.38, 95% CI -0.54 – (-0.22), p-value 

= 4.66E-06. 

 CRP (UniProt ID P02741), β-coefficientadj -0.17, 95% CI -0.29 – (-0.05), p-value = 

0.0047. 

 

 Full results are presented in Appendix Seven, Table 14. 

 

No proteins detected at three months or six months were associated with ΔDAS28 at six 

months after adjustment for multiple testing. There were still no significant associations after 

adjustment for age, sex and disease duration. 
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5.7.1.2. Secondary outcomes: DAS28 sub-components 

5.7.1.2.1. TJC 

No proteins detected at baseline were associated with TJC at baseline, three months or six 

months after Benjamini-Hochberg adjustment for multiple testing. There were still no 

associated proteins after adjustment for age, biological sex and RA disease duration. 

 

11 proteins detected at three months were associated with TJC at this time point following 

adjustment for multiple testing and are presented in Appendix Seven, Table 15. After 

adjustment for the potential confounders of age, sex and disease duration, eight proteins 

remained significantly associated following adjustment for multiple testing and are 

presented in Appendix Seven, Table 16. Significant proteins from analysis adjusted for 

potential confounders were then included in a multivariable model alongside age, sex and 

disease duration; three proteins remained significantly associated: 

 TNF (UniProt ID P01375), β-coefficientadj -1.49, 95% CI -2.58 – (-0.41), p-value = 

0.0079. 

 Macrophage migration inhibitory factor (MIF, UniProt ID P14174), β-coefficientadj 

-4.21, 95% CI -6.45 – (-1.98), p-value = 0.0003. 

 EHD1 (UniProt ID Q9H4M9), β-coefficientadj 0.82, 95% CI 0.16 – 1.48), p-value = 

0.0158. 

 

The full multivariable model is presented in Appendix Seven, Table 17. 

 

No proteins detected at three months or six months were associated with TJC at six months 

following adjustment for multiple testing. There were still no associations after adjustment 

for age, sex and disease duration. 

 

5.7.1.2.2. SJC 

No proteins detected at baseline were associated with SJC at this time point or at six months 

following adjustment for multiple testing. There were still no associations after adjustment 

for age, biological sex and RA disease duration. 

 

No proteins detected at baseline were associated with SJC at three months following 

adjustment for multiple testing. One protein was significant following adjustment for age, 

sex and disease duration: TCPH (UniProt ID Q99832), β-coefficientadj 0.05, 95% CI 0.02 – 

0.07, p-value = 0.0002, adjusted p-value = 0.0421. 
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11 proteins detected at three months were associated with SJC at this time point following 

adjustment for multiple testing and are presented in Appendix Seven, Table 18. Six proteins 

remained significantly associated following adjustment for age, sex and disease duration and 

are presented in Appendix Seven, Table 19. Significant proteins from confounder-adjusted 

analysis were then included in a multivariable model alongside age, sex and disease duration. 

Five proteins remained significantly associated with SJC: 

 Interleukin enhancer-binding factor 3 (ILF3,  UniProt  ID  Q12906),  β-coefficientadj 

-1.75, 95% CI -2.92 – (-0.69), p-value = 0.0016. 

 Complement factor H-related protein 3 (CFHR3, UniProt ID Q02985), β-

coefficientadj 1.39, 95% CI 0.29 – 2.49, p-value = 0.0143. 

 CRP (UniProt ID P02741), β-coefficientadj 0.34, 95% CI 0.10 – 0.59, p-value = 

0.0075. 

 Insulin-like growth factor I (IGF1, UniProt ID P05019), β-coefficientadj -0.81, 95% 

CI -1.41 – (-0.21), p-value = 0.0091. 

 TNF (UniProt ID P01375), β-coefficientadj -0.63, 95% CI -1.19 – (-0.07), p-value = 

0.0290). 

 

The full multivariable model is presented in Appendix Seven, Table 20. 

 

No proteins detected at three months or six months were associated with SJC at six months 

following adjustment for multiple testing. There were still no associations after adjustment 

for age, sex and disease duration. 

 

5.7.1.2.3. Patient-reported VAS of global health 

No proteins detected at baseline were associated with patient-reported VAS of global health 

at baseline, three months or six months following adjustment for multiple testing. There were 

still no associations after adjustment for age, biological sex and RA disease duration. 

 

Two proteins detected at three months were associated with VAS at this time point following 

adjustment for multiple testing: 

 EHD1 (UniProt ID Q9H4M9), β-coefficient 0.02, 95% CI 0.01 – 0.03, p-value = 

1.51E-05, adjusted p-value = 0.0033. 

 ASPH (UniProt ID Q12797), β-coefficient -0.01, 95% CI -0.02 – (-0.01), p-value = 

0.0004, adjusted p-value = 0.0417. 
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One protein remained significant following adjustment for age, sex and disease duration: 

EHD1 (UniProt ID Q9H4M9), β-coefficientadj 0.02, 95% CI 0.01 – 0.03, p-value = 4.71E-

05, adjusted p-value = 0.0102. 

 

One protein detected at three months was associated with VAS at six months following 

adjustment for multiple testing: ASPH (UniProt ID Q12797),  β-coefficient  -0.01,  95%  CI  

-0.02 – (-0.01), p-value = 4.10E-05, adjusted p-value = 0.0089. ASPH remained significantly 

associated following adjustment for age, sex and disease duration: β-coefficientadj -0.01, 

95% CI -0.02 – (-0.01), p-value = 0.0002, adjusted p-value = 0.0345. 

 

No proteins detected at six months were associated with VAS at this time point following 

adjustment for multiple testing. There were still no associations after adjustment for age, sex 

and disease duration. 

 

5.7.1.2.4. CRP measured using ELISA 

CRP detected using SWATH-MS was strongly correlated with CRP measured using ELISA 

(β-coefficient 7.36, 95% CI 6.15 – 8.57, p-value < 2.2E-16), and so, was excluded from 

analysis. 49 proteins detected at baseline (excluding CRP detected using SWATH-MS) were 

associated with CRP measured using ELISA at this time point following adjustment for 

multiple testing, and are presented in Appendix Seven, Table 21. 50 proteins detected at 

baseline were associated with CRP measured using ELISA at this time point after adjustment 

for age, biological sex and RA disease duration and are presented in Appendix Seven, Table 

22. Significant proteins from confounder-adjusted analysis were then included in a 

multivariable model alongside age, sex and disease duration. Nine proteins remained 

significantly associated with CRP and are presented in Table 5.15; the full multivariable 

model is presented in Appendix Seven, Table 23. 

 

One protein detected at baseline was associated with CRP measured using ELISA at 3 

months following adjustment for multiple testing: dual specificity mitogen-activated protein 

kinase kinase 3 (MAP2K3, UniProt ID P46734), β-coefficient 0.02, 95% CI 0.01 – 0.02, p-

value = 0.0004, adjusted p-value = 0.0417. This significant association was lost following 

adjustment for age, sex and disease duration. 
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Table 5.15. Proteins measured before treatment with etanercept significantly associated with 

CRP at baseline after inclusion in a multivariable model. 

Protein (UniProt ID) β-coefficientadj (95% CI) p-value % missing  values 

before imputation 

SAA1 (P0DJI8) 2.11 (0.40 – 3.82) 0.0172 26.92 

PRS6A (P17980) 1.17 (5.82 – 17.66) 0.0002 55.13 

SAA2 (P0DJI9) 3.48 (0.99 – 5.98) 0.0073 65.90 

APOA4 (P06727) 2.87 (0.42 – 5.32) 0.0241 13.33 

RBP4 (P02753) -9.47 (-14.33 – (-4.61)) 0.0002 0.00 

CASP10 (Q92851) -1.99 (-3.83 – (-0.15)) 0.0365 27.18 

TPP2 (P29144) -6.30 (-10.63 – (-1.98)) 0.0052 38.72 

CFHR3 (Q02985) -7.04 (-12.96 – (-1.12)) 0.0217 66.67 

ELANE (P08246) 2.70 (0.33 – 5.08) 0.0279 62.31 

 

ABBREVIATIONS: 26S proteasome regulatory subunit 6A (PRS6A), adjusted (adj), apolipoprotein A-IV 

(APOA4), caspase-10 (CASP10), complement factor H-related protein 3 (CFHR3), confidence interval (CI), 

C-reactive protein (CRP), identifier (ID), neutrophil elastase (ELANE), retinol-binding protein 4 (RBP4), 

serum amyloid A-1 protein (SAA1), serum amyloid A-2 protein (SAA2), tripeptidyl-peptidase 2 (TPP2). 

 

Three proteins detected at baseline were associated with CRP measured using ELISA at six 

months following adjustment for multiple testing and are presented in Appendix Seven, 

Table 24. The same three proteins from univariate analysis remained significant following 

adjustment for age, sex and disease duration and are presented in Appendix Seven, Table 25. 

These three proteins were then included in a multivariable model alongside age, sex and 

disease duration. All three proteins remained significant: 

 Clathrin heavy chain 1 (CLTC, UniProt ID Q00610), β-coefficientadj 4.55, 95% CI 

0.63 – 8.47, p-value = 0.0244. 

 MAP2K3 (UniProt ID P46734), β-coefficientadj 7.26, 95% CI 3.09 – 11.43, p-value 

= 0.0008. 

 Selenoprotein P (SELENOP, UnitProt ID P49908), β-coefficientadj -5.50 (-8.95 – (-

2.05)), p-value = 0.0022. 

 

Full results of the multivariable model are presented in Appendix Seven, Table 26. 

 

20 proteins detected at three months were associated with CRP measured using ELISA at 

three months following adjustment for multiple testing and are presented in Appendix Seven, 
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Table 27. 21 proteins detected at three months were associated with CRP measured using 

ELISA at three months after adjustment for age, sex and disease duration and are presented 

in Appendix Seven, Table 28. Significant proteins from confounder-adjusted analysis were 

then included in a multivariable model alongside age, sex and disease duration. Two proteins 

remained significant in the multivariable model: 

 LBP (UniProt ID P18428), β-coefficientadj 4.12, 95% CI 1.60 – 6.64, p-value 0.0017. 

 N-α-acetyltransferase 25, NatB auxiliary subunit (NAA25, UniProt ID Q14CX7), β-

coefficientadj -1.39, 95% CI -2.63 – (-0.15), p-value = 0.0303. 

 

The full results of the multivariable model are presented in Appendix Seven, Table 29. 

 

15 proteins detected at three months were associated with CRP measured using ELISA 

following adjustment for multiple testing and are presented in Appendix Seven, Table 30. 

Nine proteins detected at three months were associated with CRP measured using ELISA at 

six months after adjustment for age, sex and disease duration and are presented in Appendix 

Seven, Table 31. Significant proteins from confounder-adjusted analysis were included in a 

multivariable model, along with age, sex and disease duration. Two proteins remained 

significant in the multivariable model: 

 MAP2K3 (UniProt ID P46734), β-coefficientadj 6.29, 95% CI 1.88 – 10.70, p-value 

= 0.0060. 

 SAA1 (UniProt ID P0DJI8), β-coefficientadj 2.90, 95% CI 0.94 – 4.87, p-value = 

0.0044. 

 

Full results of the multivariable model are presented in Appendix Seven, Table 32. 

 

24 proteins detected at six months were associated with CRP measured using ELISA at six 

months following adjustment for multiple testing and are presented in Appendix Seven, 

Table 33. 22 proteins detected at six months were associated with CRP measured using 

ELISA at six months after adjustment for age, sex and disease duration and are presented in 

Appendix Seven, Table 34. Significant proteins from confounder-adjusted analysis were 

included in a multivariable model, along with age, sex and disease duration. Four proteins 

remained significant in the multivariable model: 

 CFHR5 (UniProt ID Q9BXR6), β-coefficientadj 6.28, 95% CI 1.15 – 11.42, p-value 

= 0.0215. 
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 APOA4 (UniProt ID P06727), β-coefficientadj 3.37, 95% CI 0.23 – 6.51, p-value = 

0.0422. 

 Glycine—tRNA ligase (GARS, UniProt ID P41250), β-coefficientadj -18.02, 95% CI 

-26.21 – (-9.83), p-value 0.0001. 

 A1AG1 (UnitProt ID P02763), β-coefficientadj 2.67, 95% CI 0.90 – 6.71, p-value = 

0.0143. 

 

The full results of the multivariable model are presented in Appendix Seven, Table 5.35. 

 

5.7.1.3. Summary of proteins associated with DAS28, ΔDAS28 and DAS28 components 

after linear regression analysis 

After adjustment for multiple testing, potential confounders (age, biological sex, RA disease 

duration) and within multivariable models, a number of proteins were associated with 

continuous RA disease outcome measures, and are summarised in Figure 5.19 and Table 

5.23. 
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Figure 5.21. Venn diagram of proteins associated with DAS28, ΔDAS28 and DAS28 

components after linear regression analysis. 

 

LEGEND: Proteins detected at baseline, proteins detected at baseline and three months, proteins detected at 

baseline and six months, proteins detected at three months, proteins detected at three and six months, proteins 

detected at six months. 

 

ABBREVIATIONS: 14-3-3 protein η (YWHAH), aspartyl/asparaginyl β-hydroxylase (ASPH), caspase-10 

(CASP10), complement factor H-related protein 3 (CFHR3), C-reactive protein (CRP), dual specificity 

mitogen-activated protein kinase kinase 3 (MAP2K3), EH domain-containing protein 1 (EHD1), insulin-like 

growth factor I (IGF1), interleukin enhancer-binding factor 3 (ILF3), macrophage migration inhibitory factor 

(MIF), T-complex protein 1 subunit η (TCPH), transferrin receptor protein 1 (TFRC), tumour necrosis factor 

(TNF). 

  

5.7.2. Logistic regression between protein levels and RA disease outcomes, categorical 

variables 

5.7.2.1. Poor EULAR response 

One protein detected before treatment with etanercept was associated with a poor EULAR 

response at three months after adjustment for multiple testing: PKP3 (UniProt ID Q9Y446), 

OR 0.48, 95% CI 0.33 – 0.70, p-value = 0.0001, adjusted p-value = 0.0273. PKP3 remained 
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significant after adjustment for age, biological sex and disease duration: ORadj 0.48, 95% CI 

0.33 – 0.71, p-value = 0.0002, adjusted p-value = 0.0394. 

 

No proteins detected at baseline were associated with a poor EULAR response at six months 

following adjustment for multiple testing. There were still no significant associations after 

adjustment for age, sex and disease duration. 

 

Nine proteins detected at three months were associated with a poor EULAR response at that 

time point following adjustment for multiple testing and are presented in Appendix Seven, 

Table 36. Five proteins detected at three months were associated with a poor EULAR 

response at that time point following adjustment for age, sex and disease duration and are 

presented in Appendix Seven, Table 37. Significant proteins from confounder-adjusted 

analysis were included in a multivariable model alongside age, sex and disease duration and 

three proteins remained significant: 

 ILF3 (UniProt ID Q12906), ORadj 0.69, 95% CI 0.06 – 0.64, p-value = 0.0080. 

 IGF1 (UniProt ID P05019), ORadj 0.44, 95% CI 0.21 – 0.82, p-value = 0.0166. 

 PKP3 (UniProt ID Q9Y446), ORadj 0.57, 95% CI 0.36 – 0.87, p-value = 0.0127. 

 

The full results of the multivariable analysis are presented in Appendix Seven, Table 38. 

 

No proteins detected after three months or six months were associated with poor EULAR 

response at six months following adjustment for multiple testing. There were still no 

significant associations after adjustment for age, sex and disease duration. 

 

5.7.2.2. Failure to achieve MCID in DAS28 (>-1.2) 

One protein detected before treatment with etanercept was associated with failure to achieve 

an MCID in DAS28 at three months after adjustment for multiple testing: PKP3 (UniProt ID 

Q9Y446), OR 0.49, 95% CI 0.34 – 0.69, p-value = 5.62E-05, adjusted p-value = 0.0121). 

PKP3 remained significantly associated after adjustment for age, biological sex and RA 

disease duration: ORadj 0.48, 95% CI 0.34 – 0.69, p-value = 8.40E-05, adjusted p-value = 

0.0181. 

 

No proteins detected at baseline were associated with failure to achieve an MCID in DAS28 

at six months after adjustment for multiple testing. There were still no significant 

associations after adjustment for age, sex and disease duration. 
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Two proteins detected after three months of treatment with etanercept were associated with 

failure to achieve an MCID in DAS28 at that time point after adjustment for multiple testing 

and are presented in Appendix Seven, Table 39. The same two proteins remained 

significantly associated after adjustment for age, sex and disease duration and are presented 

in Appendix Seven, Table 40. These two proteins were included in a multivariable model 

with age, sex and disease duration. One protein remained significant: ASPH, ORadj 0.61, 

95% CI 0.36 – 0.96, p-value = 0.0451. The full results of the multivariable model are 

presented in Appendix Seven, Table 41. 

 

One protein detected at three months was associated with failure to achieve an MCID in 

DAS28 at six months after adjustment for multiple testing: 26S proteasome regulatory 

subunit 6A (PRS6A, UniProt ID P17980), OR 3.48, 95% CI 1.79 – 6.75, p-value = 0.0002, 

adjusted p-value = 0.0487. The significant association was lost after adjustment for age, sex 

and disease duration. 

 

No proteins detected at six months were associated with failure to achieve an MCID in 

DAS28 at that time point, following correction for multiple testing. There were still no 

significant associations after adjustment for age, sex and disease duration. 

 

5.8. Differential expression of proteins over time following treatment with etanercept 

Patients from the BRAGGSS etanercept sub-cohort were used in this analysis. Phenotype 

data from the BRAGGSS database was incorporated with protein expression data generated 

using SWATH-MS at the SBDC to carry out differential expression analysis, adjusted for 

age, biological sex, RA disease duration and pre-treatment DAS28. Demographic details of 

this cohort are detailed in Table 5.2. 

 

5.8.1. Differential expression of proteins between sampling time points 

5.8.1.1. Differential expression of proteins before treatment and after three months of 

treatment 

133 patients with RA had available paired protein expression data between baseline (pre-

treatment) and at three months follow-up (after/during treatment). 31 patients (23.31%) had 

a poor EULAR response after three months of treatment with etanercept, 37 patients 

(27.82%) had a moderate response and 65 patients (48.87%) had a good response. The good 
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and moderate responders were pooled into a good/moderate group for analysis, as predictors 

of poor response were the variables of interest. 

 

11 proteins were significantly differentially expressed in poor responders between baseline 

and three months following Benjamini-Hochberg adjustment and are presented in Table 

5.16. A positive-fold change indicates that a protein had increased expression at three months 

when compared to baseline. 49 proteins were differentially expressed in good/moderate 

responders between baseline and three months and are presented in Appendix Eight, Table 

1. When protein expression was compared between baseline and three months in all patients, 

regardless of EULAR response, four proteins were differentially expressed and are presented 

in Appendix Eight, Table 2. 

 

Table 5.16. Differentially expressed proteins between baseline and 3 months of treatment 

with etanercept in EULAR poor responders. 

Protein (UniProt ID) Log-fold 

change 

Average 

expression 

p-value Adjusted 

p-value 

% missing 

values 

before 

imputation 

OGN (P20774) -0.47 8.57 4.77E-07 0.0001 77.69 

PARK7 (Q99497) -1.67 13.41 1.28E-06 0.0001 72.05 

PRDX3 (P30048) -2.33 14.96 3.58E-06 0.0003 13.59 

UGGT1 (Q9NYU2) -1.19 9.84 7.53E-06 0.0004 69.74 

AKT1 (P31749) -0.76 9.66 3.32E-05 0.0014 67.44 

CALD1 (Q05682) 1.51 11.21 9.28E-05 0.0033 76.67 

CAMK1 (Q14012) 1.37 13.50 0.0001 0.0056 62.82 

MIF (P14174) -0.35 `0.52 0.0005 0.0116 71.54 

NAMPT (P43490) -1.73 12.03 0.0005 0.0116 53.08 

LCN2 (P80188) 0.55 10.45 0.0009 0.0202 76.15 

FLII (Q13045) 0.60 14.26 0.0013 0.0260 71.28 

 

ABBREVIATIONS: Calcium/calmodulin-dependent protein kinase type 1 (CAMK1), caldesmon (CALD1), 

European League Against Rheumatism (EULAR), macrophage migration inhibitory factor (MIF), mimecan 

(OGN), neutrophil gelatinase-associated lipocalin (LCN2), nicotinamide phosphoribosyltransferase 

(NAMPT), Parkinson disease protein 7 (PARK7), protein flightless-1 homologue (FLII), RAC-α serine-

threonine-protein kinase (AKT1), thioredoxin-dependent peroxide reductase, mitochondrial (PRDX3), UDP-

glucose:glycoprotein glucosyltransferase 1 (UGGT1). 
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5.8.1.2. Differential expression of proteins before treatment and after six months of 

treatment 

59 patients with RA had paired protein expression data between baseline and after six 

months of treatment. 15 patients (25.42%) had a poor EULAR response at this time point, 

18 patients (30.51%) had a moderate response and 26 patients (44.07%) had a good response. 

Again, good and moderate responders were pooled into one categorical variable for 

comparison with poor responders. 

 

Eight proteins were significantly differentially expressed in poor responders between 

baseline and six months following Benjamini-Hochberg adjustment and are presented in 

Appendix Eight, Table 3. 35 proteins were significantly differentially expressed in 

good/moderate responders between baseline and six months and are presented in Appendix 

Eight, Table 4. No proteins were significantly differentially expressed between baseline and 

six months when all patients were pooled. 

 

5.8.1.3. Differential expression of proteins between 3 and 6 months of treatment 

56 patients had paired protein expression data between three and six months of treatment 

with etanercept. 15 patients (26.79%) had a poor EULAR response at six months, 16 patients 

(28.57%) were moderate responders and 25 patients (44.64%) were good responders. Good 

and moderate responders were again pooled and analysed against poor responders. 

Three proteins were differentially expressed between three and six months of treatment in 

poor responders, following Benejamini-Hochberg adjustment for multiple testing: 

 Band 3 anion transport protein (B3AT, UniProt ID P02730), log-fold change 2.02, 

average expression 10.68, p-value = 4.10E-09, adjusted p-value = 8.86E-07. 

 MAP2K3 (UniProt ID P46734), log-fold change 0.98, mean expression 10.80, p-

value 8.08E-06, adjusted p-value = 0.0009. 

 Leucine-rich repeat flightless-interacting protein 1 (LRRFIP1, UniProt ID 

Q32MZ4), log-fold change 0.91, average expression 14.56, p-value = 9.23E-05, 

adjusted p-value = 0.0066. 

 

16 proteins were differentially expressed between three and six months of treatment in 

good/moderate responders and are presented in Appendix Eight, Table 5. No proteins were 
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significantly differentially expressed between three and six months of treatment when all 

patients were included in analysis, regardless of EULAR response. 

 

5.8.2. Differential expression of proteins between responder statuses at the same time 

point 

5.8.2.1. Proteins at baseline correlated with EULAR response by three months 

152 patients with RA had protein expression data available at baseline with EULAR 

response data at three months. 34 patients (22.37%) had a poor EULAR response, 39 patients 

(25.66%) had a moderate response and 79 patients (51.97%) had a good response; good and 

moderate responders were again pooled for analysis. Nine proteins were significantly 

differentially expressed between EULAR good/moderate responders and poor responders; 

these are presented in Table 5.17. A positive-fold change indicates increased protein 

expression in the good/moderate response group. 

 

The same 152 patients with protein expression data at baseline also had EULAR response 

data at six months. 39 patients (25.66%) were poor responders at six months, 31 patients 

(20.39%) were moderate responders and 82 patients (53.95%) were good responders. No 

proteins at baseline were significantly differentially expressed between EULAR 

good/moderate responders and poor responders at six months. 
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Table 5.17. Differentially expressed proteins at baseline between 3-month good/moderate 

and poor EULAR responders. 

Protein (UniProt ID) Log-fold 

change 

Average 

expression 

p-value Adjusted 

p-value 

% missing 

values 

before 

imputation 

PKP3 (Q9Y446) 0.92 13.87 8.08E-05 0.0174 43.85 

TCPH (Q99832) -0.36 14.69 0.0002 0.0245 51.28 

KRT1 (P04264) 0.51 13.45 0.0008 0.0460 56.41 

CALD1 (Q05682) 1.09 10.75 0.0011 0.0460 76.67 

LTBP1 (Q14766) 0.36 13.09 0.0012 0.0460 60.00 

LRRFIP1 (Q32MZ4) 0.37 14.40 0.0013 0.0460 72.56 

PDIA6 (Q15084) 0.55 12.67 0.0018 0.0460 58.46 

CAMK1 (Q14012) 1.07 13.18 0.0019 0.0460 62.82 

PRDX3 (P30048) -1.06 15.52 0.0019 0.0460 13.59 

 

ABBREVIATIONS: Calcium/calmodulin-dependent protein kinase type 1 (CAMK1), caldesmon (CALD1), 

European League Against Rheumatism (EULAR), keratin, type II cytoskeletal 1 (KRT1), latent-transforming 

growth factor β-binding protein 1 (LTBP1), leucine-rich repeat flightless-interacting protein 1 (LRRFIP1), 

plakophilin-3 (PKP3), protein disulphide-isomerase A6 (PDIA6), T-complex protein 1 subunit η (TCPH), 

thioredoxin-dependent peroxide reductase, mitochondrial (PRDX3). 

 

5.8.2.2. Proteins at 3 months correlated with EULAR response by 6 months 

159 patients with protein expression data after three months of treatment with etanercept had 

EULAR response data at six months available for analysis. 43 patients (27.04%) had a poor 

EULAR response, 33 patients (20.75%) had a moderate response and 83 patients (52.20%) 

had a good response. Good and moderate responders were pooled for analysis. 16 proteins 

were significantly differentially expressed between good/moderate responders and poor 

responders and are presented in Table 5.18. 
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Table 5.18. Differentially expressed proteins at 3 months between 6-month good/moderate 

and poor EULAR responders. 

Protein (UniProt ID) Log-fold 

change 

Average 

expression 

p-value Adjusted 

p-value 

% missing 

values 

before 

imputation 

NAMPT (P43490) 1.87 11.69 2.36E-07 5.10E-05 53.08 

ASPH (Q12797) 0.77 12.24 3.60E-05 0.0039 41.54 

IGF1 (P05019) 0.55 9.49 0.0002 0.0131 78.97 

PKP3 (Q9Y446) 0.82 14.23 0.0003 0.0131 43.85 

TNF (P01375) 0.58 11.07 0.0003 0.0131 40.77 

ILF3 (Q12906) 0.31 10.61 0.0004 0.0131 63.08 

CRP (P02741) -1.30 12.55 0.0005 0.0141 10.51 

XRCC6 (P12956) 0.82 11.74 0.0010 0.0257 60.26 

CFHR3 (Q02985) -0.28 9.13 0.0011 0.0257 66.67 

SAA1 (P0DJI8) -0.91 9.97 0.0012 0.0257 26.92 

CALM2 (P62158) 1.55 13.43 0.0016 0.0293 5.64 

COL6A2 (P12110) 0.48 14.65 0.0016 0.0293 60.77 

EHD1 (Q9H4M9) -0.87 11.89 0.0018 0.0304 72.82 

LBP (P18428) -0.47 13.12 0.0021 0.0327 0.51 

PPIA (P62937) 0.90 12.64 0.0026 0.0381 60.77 

RSU1 (Q15404) 0.78 11.65 0.0030 0.0410 58.21 

 

ABBREVIATIONS: Aspartyl/asparaginyl β-hydroxylase (ASPH), calmodulin-2 (CALM2), collagen α-2(VI) 

chain (COL6A2), complement factor H-related protein 3 (CFHR3), C-reactive protein (CRP), EH domain-

containing protein 1 (EHD1), European League Against Rheumatism (EULAR), insulin-like growth factor I 

(IGF1), interleukin enhancer-binding factor 3 (ILF3), lipopolysaccharide-binding protein (LBP), nicotinamide 

phosphoribosyltransferase (NAMPT), peptidyl-prolyl cis-trans isomerase A (PPIA), plakophilin-3 (PKP3), Ras 

suppressor protein 1 (RSU1), serum amyloid A-1 protein (SAA1), tumour necrosis factor (TNF), X-ray repair 

cross-complementing protein 6 (XRCC6). 

 

5.9. Machine learning methods to determine proteomic predictors of treatment 

response 

Four different machine learning algorithms were used to build and benchmark predictive 

models using a combination of clinical variables and protein expression to predict either 

poor EULAR response or failure to achieve an MCID in DAS28. Baseline values were used 
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to predict outcomes at three and six months, and three-month values were used to predict 

outcomes at six months. During benchmarking in training datasets using nested resampling, 

the support vector machine algorithm was found to be the algorithm that produced the best 

model fits, as judged by the lowest MMCE (Table 5.19). 

 

Support vector machine models were then built using full training datasets at each time point 

without nested resampling to obtain optimum hyperparameters. These optimum 

hyperparameters were then used to test predictive performance of each model on an 

independent test dataset at each time point. Predictive performance was poor, with the best 

predictive accuracy of 60.60% in the prediction of poor EULAR response at six months 

using baseline data. Full results are detailed in Table 5.20. 

 

Calibration was checked on all models tested on independent datasets and was poor across 

all models. Detailed classifier and calibration plots for each model are detailed in Appendix 

Nine. Furthermore, the Hosmer-Lemeshow goodness-of-fit test was carried out on each 

model fitted on test datasets to assess model fit. Low p-values indicate poor fit. All models 

returned p-values of < 2.2E-16; full results are detailed in Table 5.21. 
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Table 5.19. Benchmarking results to assess selection of machine learning algorithms in 

training data. 

Baseline variables and poor EULAR response at 3 months 

Model MMCE 

Penalised regression 0.1156 

K-nearest neighbours 0.2263 

Random forest 0.0968 

Support vector machine 0.0137 

Baseline variables and poor EULAR response at 6 months 

Model MMCE 

Penalised regression 0.2426 

K-nearest neighbours 0.2862 

Random forest 0.1890 

Support vector machine 0.1333 

Baseline variables and failure to achieve MCID in DAS28 at 3 months 

Model MMCE 

Penalised regression 0.0944 

K-nearest neighbours 0.2511 

Random forest 0.0980 

Support vector machine 0.0320 

Baseline variables and failure to achieve MCID in DAS28 at 6 months 

Model MMCE 

Penalised regression 0.1754 

K-nearest neighbours 0.2879 

Random forest 0.1603 

Support vector machine 0.1027 

3-month variables and poor EULAR response at 6 months 

Model MMCE 

Penalised regression 0.1887 

K-nearest neighbours 0.1931 

Random forest 0.1526 

Support vector machine 0.0789 

3-month variables and failure to achieve MCID in DAS28 at 6 months 

Model MMCE 

Penalised regression 0.2068 

K-nearest neighbours 0.2573 

Random forest 0.1586 

Support vector machine 0.0862 

 

ABBREVIATIONS: Disease Activity Score of 28 Joints (DAS28), European League Against Rheumatism 

(EULAR), mean misclassification error (MMCE), minimally clinically important difference (MCID). 
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Table 5.20. Performance of each support vector machine model in prediction on independent 

test datasets. 

Baseline variables and poor EULAR response at 3 months 

Performance metric  

AUC 0.8318 

Predictive accuracy 0.5238 

MMCE 0.4762 

Baseline variables and poor EULAR response at 6 months 

Performance metric  

AUC 0.6316 

Predictive accuracy 0.6061 

MMCE 0.3939 

Baseline variables and failure to achieve MCID in DAS28 at 3 months 

Performance metric  

AUC 0.2722 

Accuracy 0.4737 

MMCE 0.5263 

Baseline variables and failure to achieve MCID in DAS28 at 6 months 

Performance metric  

AUC 0.6754 

Predictive accuracy 0.4595 

MMCE 0.5405 

3-month variables and poor EULAR response at 6 months 

Performance metric  

AUC 0.4737 

Predictive accuracy 0.5152 

MMCE 0.4848 

3-month variables and failure to achieve MCID in DAS28 at 6 months 

Performance metric  

AUC 0.5188 

Predictive accuracy 0.5455 

MMCE 0.4545 

 

ABBREVIATIONS: Area under the receiver operating characteristic curve (AUC), Disease Activity Score of 

28 Joints (DAS28), European League Against Rheumatism (EULAR), minimally clinically important 

difference (MCID), mean misclassification error (MMCE). 



185 
 

Table 5.21. Hosmer-Lemeshow test results for each predictive model. 

Model χ2 Degrees of freedom p-value 

Baseline variables, poor EULAR response at 3 months 39747 8 <2.2E-16 

Baseline variables, poor EULAR response at 6 months 830.77 8 <2.2E-16 

Baseline variables, failure to achieve MCID in DAS28 at 3 months 3073422 8 <2.2E-16 

Baseline variables, failure to achieve MCID in DAS28 at 6 months 1224.7 8 <2.2E-16 

3-month variables, poor EULAR response at 6 months 567.32 8 <2.2E-16 

3-month variables, failure to achieve MCID in DAS28 at 6 months 1263.3 8 <2.2E-16 

 

ABBREVIATIONS: Disease Activity Score of 28 Joints (DAS28), European League Against Rheumatism (EULAR), minimally clinically important difference (MCID). 
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5.10. Network analysis of proteins significantly associated with treatment response to 

adalimumab and/or etanercept 

Proteins found to be significantly associated with treatment response were entered into the 

STRING Database v.11.5232. Only proteins that were significant following adjustment in 

multivariable models were included. 51 unique proteins were entered, and seven proteins 

were not joined to any other proteins via an interaction: 

 Tripeptidyl-peptidase 2 (TPP2, UniProt ID P29144). 

 NAA25 (UniProt ID Q14CX7). 

 PKP3 (UniProt ID Q9Y446). 

 Keratin, type II cytoskeletal 1 (KRT1, UniProt ID P04264). 

 Ras suppressor protein 1 (RSU1, UniProt ID Q15404). 

 Flavin reductase (NADPH) (BLVRB, UniProt ID P30043). 

 Band 3 anion transport protein (SLC4A1, UniProt ID P02730). 

 

All other proteins were joined in a network by a combination of known interactions (curated 

databases and published literature), predicted interactions (from gene neighbourhoods, gene 

fusions and gene co-occurrence), text mining, co-expression and protein homology. The full 

results of network analysis are presented in Figure 5.20. 

 

5.11. Chapter summary 

SWATH-MS was used to quantify proteins in 180 patients with RA and 14 HCs. Rigorous 

QC of protein data was carried out. Case-control analysis between RA patients and HCs 

identified proteins that were differentially expressed in RA patients, and further analysis 

focused on these proteins only. Using a variety of regression techniques, 53 proteins were 

found to be significantly associated with several different variables associated with RA 

disease activity, such as drug levels, DAS28 and its sub-components, EULAR response and 

achieving an MCID in DAS28. These proteins and their associations are summarised in 

Table 5.22. These proteins were then entered into the STRING database, and apart from 

seven proteins, all other proteins were found to have associations in a network linked to other 

proteins from the list of 53, indicating that there could be an underlying biological pathway 

behind most of the significant associations identified through analysis in this chapter. 
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Figure 5.22. Network analysis of proteins found to be significantly associated with treatment 

response to adalimumab and/or etanercept. 
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ABBREVIATIONS: 14-3-3 protein η (YWHAH), 26S proteasome regulatory subunit 6A (PSMC3, also 

known as PRS6A), α-1-acid glycoprotein 1 (ORM1, also known as A1AG1), apolipoprotein A-IV (APOA4), 

aspartyl/asparaginyl β-hydroxylase (ASPH), band 3 anion transport protein (SLC4A1), calcium/calmodulin-

dependent protein kinase type 1 (CAMK1), caldesmon (CALD1), calmodulin-2 (CALM2), caspase-10 

(CASP10), clathrin heavy chain 1 (CLTC), complement C4-B (C4B), complement factor H-related protein 

(CFHR), C-reactive protein (CRP), dual specificity mitogen-activated protein kinase kinase 3 (MAP2K3), EH 

domain-containing protein 1 (EHD1), flavin reductase (NADPH) (BLVRB), glycine—tRNA ligase (GARS), 

inhibitor of NF-κB kinase subunit α (CHUK, also known as IKKA), insulin-like growth factor I (IGF1), 

interleukin enhancer-binding factor 3 (ILF3), keratin, type II cytoskeletal 1 (KRT1), latent-transforming 

growth factor β-binding protein 1 (LTBP1), leucine-rich repeat flightless-interacting protein 1 (LRRFIP1), 

lipopolysaccharide-binding protein (LBP), macrophage migration inhibitory factor (MIF), mimecan (OGN), 

N-α-acetyltransferase 25, NatB auxiliary subunit (NAA25), neutrophil elastase (ELANE), neutrophil 

gelatinase-associated lipocalin (LCN2), nicotinamide phosphoribosyltransferase (NAMPT), Parkinson disease 

protein 7 (PARK7), peptidyl-prolyl cis-trans isomerase A (PPIA), plakophilin-3 (PKP3), protein disulfide-

isomerase A6 (PDIA6), protein flightless-1 homologue (FLII), RAC-α serine/threonine-protein kinase 

(AKT1), Ras suppressor protein 1 (RSU1), retinol-binding protein 4 (RBP4), selenoprotein P (SEPP1), serum 

amyloid A (SAA), T-complex protein 1 subunit η (CCT7, also known as TCPH), thioredoxin-dependent 

peroxide reductase mitochondrial (PRDX3), transferrin receptor protein 1 (TFRC), tripeptidyl-peptidase 2 

(TPP2), tumour necrosis factor (TNF), UDP-gluocose:glycoprotein glycosyltransferase 1 (UGGT1), X-ray 

repair cross-complementing protein 6 (XRCC6).
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Table 5.22. Summary of proteins identified as significantly associated with RA disease outcome and activity measures. 

Protein Therape-

utic drug 

levels 

Amg-

evita 

levels 

Bene-

pali 

levels 

T 

J 

C 

S 

J 

C 

V 

A 

S 

C 

R 

P 

D 

A 

S 

2 

8 

Δ 

D 

A 

S 

2 

8 

Poor 

EUL-

AR 

respo-

nse 

Δ 

D 

A 

S 

2 

8 

<1.2 

Expressi-

on 

baseline→3 

months 

Poor 

Response 

Expressi-

on 

baseline→6 

months 

Poor 

Response 

Expres-

sion 3→6 

months, 

Poor 

Response 

Baseline 

Good/moderate 

vs Poor 

Response 

3 months 

Good/moderate 

vs Poor 

Response 

C4B 

(P0C0L5) 

X 
               

A1AG1 

(P02763) 

 
X 

    
X 

         

IKKA 

(O15111) 

  
X 

             

TNF 

(P01375) 

   
X X 

          
X 

MIF 

(P14174) 

   
X 

       
X 

    

EHD1 

(Q9H4M9) 

   
X 

 
X 

 
X X 

      
X 

TCPH 

(Q99832) 

    
X 

  
X 

      
X 

 

ILF3 

(Q12906) 

    
X 

    
X 

     
X 

IGF1 

(P05019) 

    
X 

  
X 

 
X 

     
X 
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Protein Therape-

utic drug 

levels 

Amg-

evita 

levels 

Bene-

pali 

levels 

T 

J 

C 

S 

J 

C 

V 

A 

S 

C 

R 

P 

D 

A 

S 

2 

8 

Δ 

D 

A 

S 

2 

8 

Poor 

EUL-

AR 

respo-

nse 

Δ 

D 

A 

S 

2 

8 

<1.2 

Expressi-

on 

baseline→3 

months 

Poor 

Response 

Expressi-

on 

baseline→6 

months 

Poor 

Response 

Expres-

sion 3→6 

months, 

Poor 

Response 

Baseline 

Good/moderate 

vs Poor 

Response 

3 months 

Good/moderate 

vs Poor 

Response 

CFHR3 

(Q02985) 

    
X 

 
X X 

    
X 

  
X 

CRP 

(P02741) 

    
X 

  
X X 

      
X 

ASPH 

(Q12797) 

     
X 

 
X 

  
X 

    
X 

SAA1 

(P0DJI8) 

      
X 

        
X 

PRS6A 

(P17980) 

      
X 

         

SAA2 

(P0DJI9) 

      
X 

         

APOA4 

(P06727) 

      
X 

         

RBP4 

(P02753) 

      
X 

         

CASP10 

(Q92851) 

      
X 

         

TPP2 

(P29144) 

      
X 
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Protein Therape-

utic drug 

levels 

Amg-

evita 

levels 

Bene-

pali 

levels 

T 

J 

C 

S 

J 

C 

V 

A 

S 

C 

R 

P 

D 

A 

S 

2 

8 

Δ 

D 

A 

S 

2 

8 

Poor 

EUL-

AR 

respo-

nse 

Δ 

D 

A 

S 

2 

8 

<1.2 

Expressi-

on 

baseline→3 

months 

Poor 

Response 

Expressi-

on 

baseline→6 

months 

Poor 

Response 

Expres-

sion 3→6 

months, 

Poor 

Response 

Baseline 

Good/moderate 

vs Poor 

Response 

3 months 

Good/moderate 

vs Poor 

Response 

ELANE 

(P08246) 

      
X 

         

MAP2K3 

(P46734) 

      
X X 

    
X X 

  

CLTC 

(Q00610) 

      
X 

         

SELENOP 

(P49908) 

      
X 

         

LBP 

(P18428) 

      
X 

        
X 

NAA25 

(Q14CX7) 

      
X 

         

CFHR5 

(Q9BXR6) 

      
X 

         

GARS1 

(P41250) 

      
X 

         

YWHAH 

(Q04917) 

       
X 

        

TFRC 

(P02786) 

       
X 
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Protein Therape-

utic drug 

levels 

Amg-

evita 

levels 

Bene-

pali 

levels 

T 

J 

C 

S 

J 

C 

V 

A 

S 

C 

R 

P 

D 

A 

S 

2 

8 

Δ 

D 

A 

S 

2 

8 

Poor 

EUL-

AR 

respo-

nse 

Δ 

D 

A 

S 

2 

8 

<1.2 

Expressi-

on 

baseline→3 

months 

Poor 

Response 

Expressi-

on 

baseline→6 

months 

Poor 

Response 

Expres-

sion 3→6 

months, 

Poor 

Response 

Baseline 

Good/moderate 

vs Poor 

Response 

3 months 

Good/moderate 

vs Poor 

Response 

PKP3 

(Q9Y446) 

         
X X 

   
X X 

NAMPT 

(P43490) 

           
X 

   
X 

OGN 

(P20774) 

           
X 

    

PARK7 

(Q99497) 

           
X X 

   

PRDX3 

(P30048) 

           
X 

  
X 

 

UGGT1 

(Q9NYU2) 

           
X 

    

AKT1  

(P31749) 

           
X 

    

CALD1 

(Q05682) 

           
X X 

 
X 

 

CAMK1 

(Q14012) 

           
X 

  
X 

 

LCN2 

(P80188) 

           
X 
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Protein Therape-

utic drug 

levels 

Amg-

evita 

levels 

Bene-

pali 

levels 

T 

J 

C 

S 

J 

C 

V 

A 

S 

C 

R 

P 

D 

A 

S 

2 

8 

Δ 

D 

A 

S 

2 

8 

Poor 

EUL-

AR 

respo-

nse 

Δ 

D 

A 

S 

2 

8 

<1.2 

Expressi-

on 

baseline→3 

months 

Poor 

Response 

Expressi-

on 

baseline→6 

months 

Poor 

Response 

Expres-

sion 3→6 

months, 

Poor 

Response 

Baseline 

Good/moderate 

vs Poor 

Response 

3 months 

Good/moderate 

vs Poor 

Response 

FLII 

(Q13045) 

           
X 

    

SLC4A1 

(P02730) 

            
X 

   

LRRFIP1 

(Q32MZ4) 

            
X X X 

 

KRT1 

(P04264) 

            
X 

 
X 

 

BLVRB 

(P30043) 

            
X 

   

LTBP1 

(Q14766) 

              
X 

 

PDIA6 

(Q15084) 

              
X 

 

XRCC6 

(P12956) 

               
X 

CALM2 

(P62158) 

               
X 

COL6A2 

(P12110) 

               
X 
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Protein Therape-

utic drug 

levels 

Amg-

evita 

levels 

Bene-

pali 

levels 

T 

J 

C 

S 

J 

C 

V 

A 

S 

C 

R 

P 

D 

A 

S 

2 

8 

Δ 

D 

A 

S 

2 

8 

Poor 

EUL-

AR 

respo-

nse 

Δ 

D 

A 

S 

2 

8 

<1.2 

Expressi-

on 

baseline→3 

months 

Poor 

Response 

Expressi-

on 

baseline→6 

months 

Poor 

Response 

Expres-

sion 3→6 

months, 

Poor 

Response 

Baseline 

Good/moderate 

vs Poor 

Response 

3 months 

Good/moderate 

vs Poor 

Response 

PPIA 

(P62937) 

               
X 

RSU1 

(Q15404) 

               
X 

 

LEGEND: Protein expressed/differentially expressed at baseline, protein expressed/differentially expressed at baseline and three months, protein expressed/differentially expressed at baseline 

and six months, protein expressed/differentially expressed at three months, protein expressed/differentially expressed at three and six months, protein expressed/differentially expressed at six 

months, protein expressed/differentially expressed at all time points or significant in linear mixed effects model. 

 

ABBREVIATIONS: 14-3-3 protein η (YWHAH), 26S proteasome regulatory subunit 6A (PSMC3, also known as PRS6A), α-1-acid glycoprotein 1 (ORM1, also known as A1AG1), 

ΔDAS28 (change in DAS28 between measurement time points), apolipoprotein A-IV (APOA4), aspartyl/asparaginyl β-hydroxylase (ASPH), band 3 anion transport protein (SLC4A1), 

calcium/calmodulin-dependent protein kinase type 1 (CAMK1), caldesmon (CALD1), calmodulin-2 (CALM2), caspase-10 (CASP10), clathrin heavy chain 1 (CLTC), complement C4-B 

(C4B), complement factor H-related protein (CFHR), C-reactive protein (CRP), Disease Activity Score of 28 Joints (DAS28), dual specificity mitogen-activated protein kinase kinase 3 

(MAP2K3), EH domain-containing protein 1 (EHD1), European League Against Rheumatism (EULAR), flavin reductase (NADPH) (BLVRB), glycine—tRNA ligase (GARS), Health 

Assessment Questionnaire (HAQ), inhibitor of NF-κB kinase subunit α (CHUK, also known as IKKA), insulin-like growth factor I (IGF1), interleukin enhancer-binding factor 3 (ILF3), 

keratin, type II cytoskeletal 1 (KRT1), latent-transforming growth factor β-binding protein 1 (LTBP1), leucine-rich repeat flightless-interacting protein 1 (LRRFIP1), lipopolysaccharide-

binding protein (LBP), macrophage migration inhibitory factor (MIF), mimecan (OGN), N-α-acetyltransferase 25, NatB auxiliary subunit (NAA25), neutrophil elastase (ELANE), neutrophil 
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gelatinase-associated lipocalin (LCN2), nicotinamide phosphoribosyltransferase (NAMPT), Parkinson disease protein 7 (PARK7), peptidyl-prolyl cis-trans isomerase A (PPIA), plakophilin-

3 (PKP3), protein disulfide-isomerase A6 (PDIA6), protein flightless-1 homologue (FLII), RAC-α serine/threonine-protein kinase (AKT1), Ras suppressor protein 1 (RSU1), retinol-binding 

protein 4 (RBP4), selenoprotein P (SEPP1), serum amyloid A (SAA), swollen joint count (SJC), T-complex protein 1 subunit η (CCT7, also known as TCPH), tender joint count (TJC), 

thioredoxin-dependent peroxide reductase mitochondrial (PRDX3), transferrin receptor protein 1 (TFRC), tripeptidyl-peptidase 2 (TPP2), tumour necrosis factor (TNF), UDP-

gluocose:glycoprotein glycosyltransferase 1 (UGGT1), visual analogue score of patient global health (VAS), X-ray repair cross-complementing protein 6 (XRCC6). 
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CHAPTER SIX: PROTEOMIC PREDICTORS OF TREATMENT RESPONSE TO 

ETANERCEPT IN PATIENTS WITH RHEUMATOID ARTHRITIS – DISCUSSION 

 

6.1. Acquisition of data using SWATH-MS and data QC 

In the etanercept sub-cohort, three batches of patient samples were processed by the SBDC 

using SWATH-MS to acquire protein expression data. The first two batches were processed 

using the same methods, but immunodepletion of the most abundant proteins was carried 

out using a different method for the third batch. Subsequent PCA demonstrated separation 

by batch, and batch correction was carried out statistically using the sva217 package in R. In 

the BRAGGSS-PD cohort, two batches of patient samples were processed using SWATH-

MS using the same methods for both batches, but again, PCA showed clear separation by 

batch. Statistical batch correction was again performed using the sva package. One outlying 

sample from the baseline (pre-treatment) time point in the etanercept sub-cohort was also 

removed from analysis following hierarchical cluster dendrogram analysis. 

 

Across both cohorts, a large proportion of proteins detected had missing values. Missing 

values are a known limitation of DIA proteomics techniques (such as SWATH-MS), and 

missingess is multifactorial e.g. biological/chemical factors (such as sample degradation 

during storage, mis-cleavage during digestion, ion suppression) or bioinformatics factors 

(e.g. peptide misidentification, ambiguous precursor matching during quantitation)102. 

Missing values can range between 10 – 90% in gel-based MS techniques100, but as yet, no 

statistics for missing values have been compiled for SWATH-MS specifically. However, 

Summary of chapter contents: 

6.1. Acquisition of data using SWATH-MS and data QC 

6.2. Differential expression of proteins between RA cases and HCs 

6.3. Longitudinal analysis of protein expression in the first 12 weeks of treatment with  

 Amgevita or Benepali 

6.4. Proteins associated with RA disease outcomes following treatment with 

etanercept 

6.5. Differential expression of proteins over time and between different EULAR 

response groups 

6.6. Machine learning methods to detect proteomic predictors of treatment response 

6.7. Chapter summary 
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Krasny et al demonstrated a 15 – 20% increase in peptides identified compared with DDA 

MS and were able to identify 54% more hepatic extracellular matrix proteins with SWATH-

MS than with DDA MS295. It is known from previous studies that peptides which are less 

abundant are more challenging to detect using DIA techniques, so these peptides are more 

likely to be recorded as “missing”296. In this work, multi-density plots showed reduced 

protein expression with increasing missing values, which fits with prior knowledge 

regarding DIA proteomics, so it was hypothesised that values were likely to be missing 

because of lack of detection, as opposed to due to a patient’s physiological state during 

sampling. Heatmaps comparing protein missingness with sampling time point and EULAR 

response status of patients showed no clear pattern causing proteins to be missing, so missing 

values were imputed using a random forest algorithm. Repeat density plots after imputation 

showed good agreement of imputed values with the original datasets. 

 

The clear batch effect in SWATH-MS results is likely to have been due to processing factors 

at the SBDC, rather than sampling issues. Samples sent for processing at the SBDC were 

collected over a time period of several years from multiple different centres across the UK, 

but no batch effect was seen in terms of sampling time point. Furthermore, HCs processed 

as part of the second batch were seen grouped with other samples from this batch, and did 

not separate out on their own, indicating that the effect is due to processing at the SBDC, 

and not due to physiological differences between HCs and patients with RA. Sample 

processing and SWATH-MS techniques are continually evolving at SBDC, and the four 

batches sent for SWATH-MS were processed over a time period of three years, so it is 

unsurprising that there is separation in PCA between all batches. The first and second batches 

processed had different processing protocols from the third and fourth batches, and yet, all 

four batches still separated from one another. This could have been due to any number of 

variables, such as time to processing, use of a different spectrometer, differences in 

technique and differences in staff processing samples, but this can only be speculated as 

these samples were processed externally from the CfMR. However, because these 

differences were identified, and batch was not correlated with clinical response or sampling 

time point, statistical methods were able to be used to correct for batch effect. 

 

Imputation of missing protein values was based on the hypothesis that protein values were 

missing because they were not detected during MS, and not because they were not present 

in a sample physiologically. Treating missing values as missing, instead of imputing them, 

could have generated different results, and this would have influenced findings of analysis 
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of the SWATH-MS data. However, as post-imputation multi-density plots remained almost 

unchanged compared to the original data, it is unlikely that positive findings would have 

significantly changed if this alternative approach had been used. Furthermore, heatmaps of 

missing and non-missing proteins compared to sampling time point and treatment response 

showed no patterns of missingness, so these proteins were likely to be missing at random 

due to non-detection at SWATH-MS, as opposed to due to a physiological cause. 

 

SWATH-MS provides a robust method of acquisition of protein expression data. Because it 

is a DIA MS method, it enables increased and more reproducible proteome coverage with 

fewer missing values than DDA methods295. With fewer missing values relative to DDA 

MS, imputation accuracy is likely to be improved due to an increased number of values in 

the original dataset to contribute to imputation. Multiple imputation techniques were 

assessed on the same subset of data and directly compared; the most accurate method 

(random forest) was chosen based on the lowest RMSE. Following imputation with the most 

objectively accurate method, repeat multi-density plots showed that imputation did not alter 

the mean protein expression profile across each imputed dataset, indicating good accuracy 

of imputation. Statistical batch correction was carried out with a robust and validated 

methodology (surrogate variable analysis)297, leading to confidence in the analysis of the 

combined data set. 

 

Batch effects would have been negated if samples were all processed at the same time. 

However, to due limitations in budget and the time taken to collect BRAGGSS-PD samples, 

samples were sent for processing in multiple batches over the course of three years. If 

samples had been sent in one large batch towards the end of this project, while batch effect 

might have been eliminated, this would have reduced analysis time and preliminary work to 

determine the validity of the SWATH-MS data on earlier batches would not have been 

carried out in order to justify the processing of later batches. The decision to treat data as 

missing at random and not biologically missing may have led to different results and 

conclusions being drawn. However, due to relatively low levels of missingness leading to 

improved imputation accuracy and negligible alteration in mean protein expression 

distribution post-imputation, this is unlikely to be a major weakness of this analysis. 

 

Future improvements could involve sending all samples to be analysed in one single large 

batch, if budget allows, as well as validation with a second proteomics quantitation technique 

(e.g. MRM) to determine whether values are missing at random or biologically missing. 
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Multiplexed methods of protein quantification (e.g. SomaScan®, Olink®) could also be 

considered, as these techniques provide excellent quantification accuracy, although proteins 

not included on proprietary panels would obviously not be detected, unlike using a bottom-

up proteomics quantitation technique such as SWATH-MS. 

 

In conclusion, outliers and batch effect have been corrected during SWATH-MS data QC 

and missing values have been imputed with an empirically accurate technique, leading to a 

comprehensive proteomics dataset for further analysis against RA disease outcomes. 

 

6.2. Differential expression of proteins between RA cases and HCs 

216 proteins were found to be significantly differentially expressed in pre-treatment RA 

patients with high disease activity, in comparison to HCs. Four of these proteins overlapped 

with those included on the commercially-available Sectra DA panel, which measures 12 

protein biomarkers to determine RA disease activity298. The four overlapping proteins are: 

 Chitinase-3-like protein 1 (CHI3L1, UniProt ID P36222), also known as YKL-40. 

 SAA1 (UniProt ID P0DJI8) and SAA2 (UniProt ID P0DJI9) – it is unclear which 

isoform of SAA is included in the Vectra DA panel as the published manuscript states 

only “SAA”. 

 CRP (UniProt ID P02741). 

 

While this overlap with some proteins already included in a commercially-available 

biomarker panel aimed at measuring RA disease activity is reassuring, it also opens up 

avenues for future research. Subsequent sections in this thesis discuss potential candidate 

biomarkers for future studies of treatment response, but these could also be developed into 

a novel, sophisticated panel to assess RA disease activity. This would require a clinical trial 

in an inception cohort of patients with RA with detailed clinical outcome measurements 

carried out with each blood sampling time point to determine whether the panel accurately 

reflects measurable changes in disease activity. 

 

179/216 proteins were from the RA protein library, and the remaining 37 proteins were from 

the plasma protein library. This has important implications for future research because 

proteins previously found to be important in RA have been replicated here, and carrying out 

a literature review to build a bespoke RA protein library instead of using a generic plasma 

library alone has been a vital step in this process. Researchers should continue to build 

bespoke disease-specific protein libraries based on literature reviews in future studies, 
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despite the low power of some studies that have been included in the RA protein library in 

this thesis. 

 

The majority of proteins (146/216) were found to be increased in RA patients, and the 

remaining 70 proteins had decreased expression. Because protein expression values had 

already been log2-transformed and normalised as part of data pre-processing, a Welch’s t-

test was used to compare expression of each protein between cases and controls. These 

findings imply that proteins that decrease in expression after successful treatment are 

potentially of most interest. For example, Tasaki et al used multi-omics to carry out high-

dimensional phenotyping of patients with RA to identify molecular signatures of both 

treatment response and non-response138. Future work could include defining overall 

signatures of response and non-response within the proteomics data generated during the 

course of this thesis. 

 

This case-control approach led to the creation of a more streamlined dataset, with fewer 

proteins included in analysis. This was so that analysis would focus on proteins that were 

more strongly associated with an active RA disease state, as well as the issue of the presence 

of many potential predictors in comparison to relatively few patients at any given time point. 

Dimensionality reduction of the dataset meant that there was an improved likelihood of 

determining meaningful associations between detected proteins and RA disease outcomes, 

as well as reducing the chances of false-positives due to multiple comparisons between many 

hundreds of proteins. 

 

However, this approach may also have led to inadvertently losing any signal for potential 

relationships between proteins without differential expression between RA cases and HCs 

that may still be associated with RA disease outcomes. Future work could involve repeating 

this analysis with the full protein dataset and not the abridged dataset containing only 

significant results from the case-control analysis. Analyses could then be compared to 

determine whether any additional proteins are significantly associated with RA disease 

outcomes from the unabridged dataset. 

 

6.3. Longitudinal analysis of protein expression in the first 12 weeks of treatment with 

Amgevita or Benepali 

Longitudinal analysis of protein expression during the first 12 weeks of treatment was 

carried out on 16 patients with RA from the BRAGGSS-PD cohort, receiving a combination 
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of Amgevita (10 patients) and Benepali (six patients). All 16 patients were included in linear 

mixed effects modelling to determine any associations between protein expression and 

achievement of therapeutic drug levels. In the univariate analysis, five proteins were found 

to be significantly associated with therapeutic drug levels. These proteins were then placed 

in a multivariable linear mixed effects model, with age, biological sex, weight and 

concurrent csDMARD use included as fixed effects and patient ID and sampling time point 

included as random effects. In the multivariable model, only C4B (ORadj 11.4, 95% CI 1.42 

– 92.60) and age at baseline (ORadj 1.32, 95% CI 1.03 – 1.70) were associated with increased 

odds of achieving therapeutic drug levels. 

 

Protein expression was then analysed against individual therapeutic agent drug 

concentrations to determine whether any associations existed, again using a linear mixed 

effects modelling approach. Nine proteins were found to be significantly associated with 

Amgevita drug concentration levels, but after these were all included in a multivariable 

model, only A1AG1 (β-coefficient adj -0.76, 95% CI -1.31 – (-0.22)) and female sex (β-

coefficientadj 3.93, 95% CI 1.38 – 6.47) remained significantly associated. Three proteins 

were significantly associated with Benepali drug concentration levels; after inclusion in a 

multivariable model, only IKKA (β-coefficientadj 0.88, 95% CI 0.31 – 1.45), female sex (β-

coefficient -4.21, 95% CI -7.24 – (-1.18)) and weight (β-coefficient -0.18, 95% CI -0.26 – (-

0.10)) remained significant. Protein expression might be different between the two drugs 

due to a number of reasons, such as drug structure (Amgevita is a humanised mAb, whereas 

Benepali is a dimeric fusion protein) or differences in study populations (e.g. 10 patients, of 

whom nine were female, in the Amgevita cohort, versus six patients, of whom four were 

female, in the Benepali cohort). 

 

C4B is a C3 and C5 convertase that is an essential participant in the classical complement 

pathway299. It also binds to Igs and immune complexes (ICs), which augments their 

solubility and promotes clearance of ICs via erythrocyte complement receptor type 1 (CR1). 

This suggests a role for C4B in the mediation of immune-regulated conditions, such as RA. 

Rigby et al conducted a study of C4A and C4B gene copy numbers in a cohort of 160 RA 

patients, 88 non-RA patients and 51 HCs300. They found that RA patients had an 

approximately two-fold increase in the frequency of either homo- or heterozygous C4B 

deficiency compared to non-RA patients and HCs. In addition, C4B deficiency in their study 

cohort was found to be associated with the shared epitope in seropositive RA patients, so the 

authors suggested a role for C4B deficiency and interaction with the shared epitope in 
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seropositive RA pathogenesis. Conversely, Holers et al found reduced C4B deposition on 

mannan in a mouse model of collagen antibody-induced arthritis (CAIA); mice were injected 

with MASP2 duplexes prior to induction of CAIA, and these were associated with reduced 

clinical disease activity as well as decreased ex vivo C4B deposition on mannan301. However, 

this study was carried out in a mouse model and the Rigby study was carried out in humans, 

so the findings in this thesis would agree with the human genetic study in that increased 

levels of C4B were associated with the achievement of therapeutic drug levels. This suggests 

that patients without C4B deficiency (whether genetic or caused by increased RA disease 

activity) could be more likely to clear ICs associated with RA or even ADAbs, which could 

contribute to reaching therapeutic drug levels in these patients. It should be noted that the 

95% CI of this association is very wide (1.42 – 92.60), so any conclusions regarding C4B 

from this study cannot be drawn with a high level of certainty. However, only 6.92% of 

protein values were missing for C4B in this study, so findings are unlikely to be affected by 

protein missingness or imputation errors. 

 

A1AG1 is a hepatically-produced transport protein that binds multiple ligands, as well as 

synthetic drugs; drug-binding alters drug disposition and bioavailability302. Interestingly, 

neither csDMARDs nor bDMARDs are on the list of known medications that interact with 

A1AG1. However, a number of studies have found increased levels of A1AG1 in RA 

patients compared with HCs, in serum303, plasma304 and urine294. Rydén et al demonstrated 

increased fucosylation (a form of glycosylation constituting the addition of fucose sugar 

units to a molecule) of A1AG1 in patients with RA compared to HCs, but there was only a 

weak association with DAS28 at baseline and one year in male patients, and not in female 

patients, indicating that it did not represent an accurate indicator of disease activity305. The 

Rydén study included fewer patients than the current study, consisting of 130 patients with 

recently-diagnosed RA from six separate clinical rheumatology departments in Sweden, but 

it did include a higher number of HCs, consisting of 120 healthy blood donors (60 male and 

60 female) from a single blood donation centre. Haston et al showed that A1AG1 detected 

in RA patients had increased fucosylation and sialylation (the covalent addition of sialic acid 

to a protein) compared to previously published levels found in health306. This altered A1AG1 

in RA showed less efficient inhibition of callegenase-2 catalysis compared to normal plasma 

A1AG1, and it was hypothesised that A1AG1 found in RA synovial fluid may have 

insufficient function to prevent the enhanced cartilage destructive characteristic of active 

RA. Furthermore, A1AG1 has demonstrated varied glycosylation patterns, and this was 

shown to be different even between serum and synovial fluid within the same RA patient; 
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this structural diversity of A1AG1 showed that A1AG1 in serum was able to inhibit binding 

to the cell adhesion molecule E-selectin, but not A1AG1 in synovial fluid307. Using a 

different approach, Fischer et al used a rat model to elucidate the role of the DNA-sensing 

Toll-like receptor (TLR) 9 in inflammatory arthritis pathogenesis308. Rats with pristine-

induced arthritis had TLR9 inhibited prior to disease induction, and alongside reduced 

inflammatory arthritis and almost complete lack of bone erosions, serum levels of A1AG1, 

IL-6 and RF were found to be decreased. 

 

The current study found a negative association between A1AG1 protein expression and 

Amgevita levels. Although most previous studies have focused on differences in A1AG1 

expression between RA patients and HCs, Rydén et al did find only a weak association 

between this protein and DAS28 in male patients only305. Previous studies seem to indicate 

that this protein may play a role in RA pathogenesis and active inflammation at the 

synovium, so increased levels could fit with reduced drug levels in the current cohort of 

patients, particularly given that A1AG1 is known to affect drug-binding and bioavailability, 

although this has not previously been documented for therapeutic agents such as csDMARDs 

or TNFi such as adalimumab or etanercept. Further mechanistic studies designed to assess 

A1AG1 in the setting of bDMARD therapeutic efficacy in RA patients would need to be 

carried out to assess this protein as a potential predictive biomarker. It should also be noted 

that this protein was not significantly associated with either achieving therapeutic drug levels 

in the combined BRAGGSS-PD cohort (both Amgevita and Benepali patients) or with 

Benepali drug concentrations. This could be due to a lack of signal in the Benepali patients 

given the low study numbers (n = 6), or it could be a genuine association with only Amgevita. 

This discrepancy could be due to the different structure and pharmacology of these two drugs 

(e.g. Amgevita is a humanised mAb with a longer t1/2, Benepali is a dimerised fusion protein 

with a shorter t1/2. This finding requires replication in a larger cohort, with consideration of 

measurement of glycosylation and sialylation of A1AG1 in the study design. 

 

IKKA is a serine kinase that has been shown to regulate negative feedback of NF-κB309 310; 

NF-κB is known to influence the inflammatory state in RA, such as promoting T helper 1 

responses, activation, proliferation and atypical apoptosis of RA fibroblast-like synoviocytes 

(FLS), and enhancing the bone resorption activity of osteoclasts311. A previous candidate 

gene study in BRAGGSS (using a cohort independent to those included in this thesis) 

showed an association between a SNP for CHUK (the gene that controls IKKA expression) 

and treatment response to both etanercept, and etanercept, adalimumab and infliximab in a 
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wider cohort of patients312. In a later candidate gene study of 755 RA patients, Ferreiro-

Iglesias et al identified three genes associated with TNFi response, replicating the 

association with CHUK313. IKKA expression was associated with Benepali levels, and 

increased drug levels likely indicate an increased probability of treatment response. 

Increased IKKA could indicate reduced inflammation via the NF-κB pathway, but it is 

unclear whether patients had increased drug levels due to a predisposed reduced 

inflammatory burden, or whether IKKA levels were increased because increased drug levels 

were treating active RA more effectively. 

 

Strengths of this study include sampling over multiple time points within the same patient; 

this provides detailed information on protein expression in each patient over the first 12 

weeks of treatment, as opposed to many other studies, where only one-to-three sampling 

time points are used. This increased sampling provides a detailed reflection of protein 

expression over a short period of time and gives an increased chance of identifying 

biomarkers of treatment response very early in treatment with expensive therapeutic agents. 

If non-responder status can be predicted earlier in treatment, this could lead to 

escalation/switching of medication before more cost is spent on an ineffective treatment. 

Another advantage to this study is the use of linear mixed-effects modelling in analysis. 

Linear mixed-effects models are able to incorporate variables such as within-patient 

sampling, as well as confounding variables such as age and biological sex into analysis, 

enabling a reduction in false-positive associations by incorporation of relatedness into model 

structure314. Power is increased because corrections applied to each model incorporate its 

specific structure. 

 

As with the popPK study, this study would have benefitted from additional patient 

recruitment to increase power (discussed in Section 4.2.1). Another disadvantage is that 

proteomics samples were processed in two separate batches, leading to batch processing 

effect; this has been discussed in Section 6.1. 

 

Future work could include recruitment of additional patients so that power can be increased 

to improve confidence in results. Furthermore, significant proteins from this analysis require 

replication in an independent cohort to ensure the transferability of findings and that findings 

are not specific to this single cohort. Replication could be carried out with lower-throughput 

protein quantitation methods, such as targeted ELISA or bespoke multiplexed panels. 
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In conclusion, linear mixed-effects modelling of protein expression in patients commencing 

Amgevita or Benepali identified several proteins associated with either the achievement of 

therapeutic drug levels or with drug concentration levels themselves. These findings could 

provide the basis for future validation to determine whether these are viable biomarkers of 

early treatment response in patients commencing these costly drugs. Biomarkers that are 

measurable in blood would have an advantage over radiological determination of RA disease 

activity, as the latter is time-consuming and costly. It should also be determined whether 

these biomarkers confer additional benefit over simply measuring CRP or drug levels. 

 

6.4. Proteins associated with RA disease outcomes following treatment with etanercept 

Linear regression was used to determine associations between protein expression and the 

following continuous RA disease outcomes: 

 Primary outcomes: 

o DAS28. 

o  Change in DAS28 between measurement time points. 

 Secondary outcomes: DAS28 sub-components i.e. TJC, SJC, VAS of patient global 

health and high-sensitivity CRP measured using ELISA. 

 

Over various time points, 10 proteins were associated with DAS28 and two proteins were 

associated with ΔDAS28, three proteins were associated with TJC, six proteins were 

associated with SJC, two proteins were associated with VAS and 17 proteins were associated 

with CRP. This is summarised in Figure 5.19 and Table 5.22. Three proteins overlapped 

with the Vectra DA panel298: SAA1 (UniProt ID P0DJI8), SAA2 (UniProt ID P0DJI9) and 

CRP (P02741), providing a degree of external agreement. 

 

Logistic regression was used to determine associations between protein expression and the 

following categorical RA disease outcomes: 

 Poor EULAR response. 

 Failure to achieve an MCID in DAS28. 

 

Over various time points, three proteins were associated with poor EULAR response and 

two proteins were associated with failure to achieve MCID in DAS28. 

 

EHD1 (UniProt ID Q9H4M9) is an ATP- and membrane-binding protein involved in 

membrane reorganisation during ATP hydrolysis and vesiculation of endocytic 
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membranes315; this protein was positively associated with TJC in the analysis, but it is 

unclear whether this is a true biological association until more mechanistic studies can be 

carried out. If this were the case, one method to improve power would be to ensure the same 

person or small group of people were measuring DAS28 and calibrating their techniques, to 

account for variance in inter-observer scorings. EHD1 was also associated with VAS of 

patient global health, DAS28 and ΔDAS28, and it would be interesting to determine in the 

future whether this is a spurious association or whether TJC and VAS could be confirmed 

as surrogate measures of RA disease activity, in contrast to the findings of Hensor et al52. 

 

TCPH (UniProt ID Q99832), a component of the molecular chaperone complex chaperonin-

containing T-complex that facilitates protein folding during ATP hydrolysis316, was 

positively associated with SJC and DAS28, although the association with DAS28 was likely 

driven by its association with SJC, indicating active joint inflammation. CFHR3 (UniProt 

ID Q02985) is a protein thought to be involved in complement regulation that is associated 

with atypical haemolytic uraemic syndrome317; increased levels could be associated with 

raised SJC, but little is known about this protein’s function from published literature318. 

Interestingly, CFHR3 was also associated with CRP measured using ELISA and DAS28, 

which could correspond with a pro-inflammatory function. Reassuringly, CRP (UniProt ID 

P02741) was found to have a positive association with SJC, DAS28 and ΔDAS28 (the latter 

two likely mediated via raised SJC). This is an expected association, as CRP is an indicator 

of active inflammation, as is a raised SJC, so this finding could be considered a positive 

control that true positive associations exist within this dataset. 

 

IGF1 (UniProt ID P05019) is a growth factor similar and related to insulin, but with 

accentuated growth-promoting activity; it is thought to possibly regulate glucose transport 

and glycogen synthesis in osteoblasts319. In RA, osteoblast maturation is inhibited by 

circulating pro-inflammatory cytokines320, so decreased osteoblast maturation due to 

increased disease activity (with concurrent raised SJC) could potentially fit with decreased 

IGF1. IGF1 was also negatively associated with DAS28, although this could be driven by 

its association with SJC. Concurrently, IGF1 was also negatively associated with poor 

EULAR response, which fits with its negative association with DAS28. ILF3 (UniProt ID 

Q12906) is a RNA-binding protein that contributes to the innate antiviral response during 

acute infection321; expression was negatively associated with SJC and poor EULAR response 

and could indicate an anti-inflammatory action, possibly induced by treatment with 

etanercept. 
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ASPH (UniProt ID Q12797) is a protein with two known isoforms: isoform 1 is involved in 

hydroxylation of Asp/Asn residues in specific epidermal growth factor-like domains322 and 

isoform 8 is a membrane-bound calcium ion-sensing protein that is part of the endoplasmic 

reticulum323. According to the STRING database (text mining evidence only), this protein 

interacts with AKT1, a central node in the network of significant proteins in Figure 5.20. It 

was negatively associated with VAS of patient global health and DAS28 in analysis, and it 

was also negatively associated with failure to achieve an MCID. This may represent an anti-

inflammatory role for ASPH. 

 

TNF (UniProt ID P01375) was associated with TJC and SJC, which would be unsurprising 

given that it is the therapeutic target of etanercept (a TNFi drug), apart from the direction of 

association: increased TNF expression was associated with reduced TJC and SJC, which 

would not correlate with our current understanding of inflammation and perpetuated disease 

activity in patients with RA. Given that TJC can potentially be a subjective measure of 

disease activity due to factors such as superimposed OA or fibromyalgia, then this may 

indicate a false-positive signal, despite adjustment for potential confounders and multiple 

testing, as well as correction in a multivariable model. SJC as palpated by a clinician and not 

assessed as objective synovitis using imaging could also potentially be subjective, for 

example, if a patient has synovial hypertrophy due to persistent uncontrolled disease, or due 

to adiposity around joints. Again, this could indicate that the negative association with TNF 

is a false-positive. However, MIF (UniProt ID P14174), a pro-inflammatory cytokine324, was 

negatively associated with TJC, and this would correspond with reduced symptoms and an 

anti-inflammatory effect from commencement of treatment with etanercept. 

 

The function of A1AG1 has already been discussed in Section 6.3; it is positively associated 

with CRP measured using ELISA. SAA1 (UniProt ID P0DJI8) and SAA2 (UniProt ID 

P0DJI9) were both also associated with CRP, which is unsurprising as they are both known 

to be major acute phase reactants325 326. PRS6A (UniProt ID P17980) removes damaged or 

defunct proteins, participating in protein homeostasis327; expression was positively 

associated with CRP, and this could reflect ongoing cell protein damage caused by the 

inflammation during an active RA disease state. GARS1 is a protein involved in glycine 

ligation328 and diadenosine tetraphosphate (Ap4A) production; Ap4A is a pleiotropic cell 

signalling molecule required in cell regulation pathways329. GARS1 expression was 

negatively associated with CRP, and it was shown to interact with PRS6A in Figure 5.24, 
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but not directly with CRP, so these two proteins could reflect ongoing RA disease activity, 

but from a pathway alternative to CRP. 

 

APOA4 (UniProt ID P06727) is a protein involved in lipid physiology330; this protein was 

found to be positively associated with CRP, which could indicate an element of lipid 

dysregulation during acute inflammation. Previous literature has described the phenomenon 

of rheumatoid cachexia, a process of loss of fat-free mass and preservation or even increase 

of fat mass associated with uncontrolled RA331, and proteins associated with lipid 

homeostasis could represent a novel source of disease activity biomarkers if associations can 

be replicated in independent cohorts. 

 

Neutrophil elastase (ELANE, UniProt ID P08246) is a proteinase secreted by neutrophils 

during inflammation that influences the function of monocytes, granulocytes and natural 

killer (NK) cells and inhibits enzyme release and chemotaxis of neutrophils that is mediated 

via C5a332. ELANE expression was significantly positively associated with CRP, and this 

could be a feasible association, given that there is a body of evidence that neutrophils are 

involved in active RA333. ELANE could represent a novel biomarker of RA disease activity, 

particularly as it lies in an interaction network with CRP and TNF (Figure 5.20). MAP2K3 

is a dual-specificity kinase that is actuated via cytokines and environmental stress, and could 

also reflect active RA disease334. This protein was positively associated with both CRP and 

DAS28, and likely increased levels reflect ongoing systemic inflammation. 

 

CLTC (UniProt ID Q00610) is a constituent of clathrin, the predominant structural protein 

in the coat of coated pits and vesicles335; clathrin-coated pits are areas of the cell membrane 

where receptor-mediated endocytosis can occur336. CLTC expression was significantly 

associated with CRP, and this could represent increased endocytosis and cell-to-cell protein 

transport. LBP (UniProt ID P18428) is a protein that plays a role in innate immune response, 

initially by binding to lipopolysaccharide (also known as bacterial endotoxin)337; expression 

was positively associated with CRP. These proteins associated with cell function and 

immunity could also feasibly be potential biomarkers of RA disease activity and treatment 

response i.e. reduced levels could indicate treatment response. CFHR5 (UniProt ID 

Q9BXR6) is involved in complement regulation338, and may play a role in RA in a similar 

way to C4A (discussed in Section 6.3). Expression was also positively associated with CRP. 
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RBP4 (UniProt ID P02753) participates in retinol (vitamin A) binding in plasma and was 

negatively associated with CRP339. SEPP1 (UniProt ID P49908) is thought to possibly be 

responsible for some of the antioxidant properties of selenium and was also negatively 

associated with CRP340; reduced levels with increasing CRP would fit with an antioxidant 

role. However, CASP10 (UniProt ID Q92851) was also negatively associated with CRP; this 

protein is part of the caspase cascade that contributes to apoptosis341 and downregulation 

would not necessarily fit with systemic inflammation, so this may be a false positive finding. 

Similarly, TPP2 (UniProt ID P29144), which participates in a proteolytic cascade 

downstream of the 26S proteasome342, and NAA25 (UniProt ID Q14CX7), which catalyses 

acetylation of certain peptide residues343, are also negatively associated with CRP when 

perhaps this would be unexpected. However, both TPP2 and NAA25 do not have any 

interactions with any other proteins in the network map in Figure 5.20, so these could be 

false-positive associations. 

 

YWHAH (UniProt ID Q04917) is an adapter protein that is thought to modulate a wide 

variety of signalling pathways344 and is at the centre of a network node in Figure 5.20 

including IGF1, EHD1 and CLTC. Given its diverse functions, it could feasibly interact with 

other proteins involved in the systemic inflammation of active RA. It was found to be 

negatively associated with DAS28. The final protein completing this network node is TFRC 

(UniProt ID P02786), which participates in iron homeostasis345, and this was also found to 

be negatively associated with DAS28. The network node described here could represent a 

future area of research into biomarkers predictive of treatment success, or even potential 

therapeutic targets. 

 

PKP3 is a protein of undetermined function that possibly plays a role in junctional plaques346. 

This protein did not have any interactions with any other proteins in the network map in 

Figure 5.20. However, it was also associated with a better-than-poor EULAR response and 

with achieving a ΔDAS28 >1.2, so future work should ascertain whether this protein could 

be a completely novel biomarker for RA disease activity or treatment response. 

 

One of this study’s strengths is the detailed interrogation of multiple RA disease outcome 

measures in order to determine whether common proteins were associated with any of these 

measures. This was possible because of detailed patient phenotyping available from the 

BRAGGSS cohort. Furthermore, a wide range of proteins were available for analysis, due 

to the dynamic range and sensitivity of SWATH-MS. Of note, as well as using a generic 
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plasma library, the benefit of SWATH-MS was that a bespoke library of proteins associated 

with RA was able to be used to validate previous findings (Tables 5.3 – 5.6). SWATH-MS 

has this advantage over proprietary multiplexed panels, as bespoke libraries can be generated 

for DIA, and for re-interrogation of previously acquired MS data in silico. Network analysis 

demonstrated a biologically viable network of protein interactions derived from significant 

proteins from analysis, and only seven out of 52 proteins had no interactions with any other 

proteins. This could be because they are false-positive findings, or encouragingly, this could 

be because they represent completely novel biomarkers in the RA inflammatory process; 

validation in an independent cohort followed by mechanistic studies if findings are replicated 

would be required to state this with any certainty, however. Novel proteins could potentially 

aid future prognostication of RA, particularly in terms of treatment response, or even provide 

new drug targets. 

 

This arm of the study did make multiple comparisons within each patient, which could lead 

to false-positive results due to type 1 error. All analyses were adjusted for multiple testing 

using the Benjamini-Hochberg method, and were also adjusted for the potential confounders 

of age, biological sex and RA disease duration. However, these statistical methods may still 

not have mitigated for the multiple-testing effect. Furthermore, because missing protein 

values were imputed, this may have unknowingly influenced results. An area of future 

research could be to repeat analysis without imputation of missing proteins in order to assess 

whether results replicate; this would help to determine whether imputation affects the final 

results of this analysis. While multiple RA clinical outcome measures were assessed in this 

study, 2C-DAS28 was not used as an outcome measure, nor were EULAR response nor 

ΔDAS28 calculated using 2C-DAS28. These are potentially more objective outcome 

measures as they exclude the patient-reported components of TJC and VAS of patient-

reported global health. However, clinician-reported measures have been shown to 

demonstrate more variability than patient-reported measures347, so conventional DAS28 

remains a valid RA clinical outcome measure. Future work could involve additional analysis 

using 2C-DAS28 (and EULAR response and ΔDAS28 calculated using 2C-DAS28). Ideally, 

protein expression would be analysed using objective measures of synovitis, such as 

ultrasound or MRI images, but this would require a new inception cohort and would be costly 

and time-consuming. Re-analysing the data with re-calculated 2C-DAS28 measurements 

would be the next logical step in a large dataset that has already been collected. 
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Therefore, future work should focus on validation of all the aforementioned significant 

protein associations in an independent cohort. If findings are replicated, targeted mechanistic 

studies could confirm whether these are biologically viable targets and whether they should 

be brought forward for development as large-scale biomarkers to be measured in clinical 

practice. Cross-referencing with known therapeutic agents could also provide avenues for 

repurposing of currently licensed drugs. Particularly promising protein interactions could 

even provide novel therapeutic targets, in the most optimistic scenario. 

 

In conclusion, a number of both established and novel proteins have been found to be 

associated with various RA disease outcome measures, both clinician- and patient-reported. 

The established associations are reassuring and act as positive controls in this analysis. The 

new associations could lead to future biomarker development. 

 

6.5. Differential expression of proteins over time and between different EULAR 

response groups 

Differential expression of proteins was carried out within the same category of EULAR 

responders across different time points, and between poor and good/moderate EULAR 

responders within the same time point. 31 patients had a poor response at three months, and 

11 proteins were differentially expressed between baseline and this time point. 15 patients 

had a poor response at six months; eight proteins were differentially expressed between 

baseline and this time point and three proteins were differentially expressed between three 

months and this time point. 152 patients had baseline protein data: nine proteins were 

differentially expressed between good/moderate and poor responders at three months, but no 

baseline proteins were differentially expressed between the same response categories at six 

months. 159 patients had three-month protein data and six-month EULAR response data, 

and 16 proteins were differentially expressed between good/moderate and poor responders. 

 

A number of proteins were differentially expressed between baseline and three months in 

poor EULAR responders. Mimecan (OGN) stimulates bone formation alongside 

transforming growth factor (TGF)-β1 and/or TGF-β2, although the evidence level for this is 

only within the UniProt database without any peer-reviewed publications348. UDP-

gluocose:glycoprotein glycosyltransferase 1 (UGGT1) oversees and regulates protein 

folding in the endoplasmic reticulum349. RAC-α serine/threonine-protein kinase (AKT1), 

alongside AKT2 and 3, is involved in the control of multiple cell processes, including cell 

metabolism and survival350. Neutrophil gelatinase-associated lipocalin (LCN2) is an iron 
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transport protein that is involved in a number of cellular processes, including apoptosis and 

innate immunity351 352. Protein flightless-1 homologue (FLII) is believed to play a role in 

cytokinesis cell migration353. These proteins, by-and-large, appear to be involved in multiple 

metabolic processes, including cell death, and it would make sense that these proteins would 

be differentially expressed at different time points in patients who are not responding to 

treatment. 

 

Nicotinamide phosphoribosyltransferase (NAMPT) is an enzyme that catalyses the 

formation of an intermediate in the biosynthesis of nicotinamide adenine dinucleotide 

(NAD), a critical enzyme involved in a multitude of metabolic processes354. This protein was 

differentially expressed between baseline and three months in poor responders, but also 

between good/moderate and poor responders at three months. Parkinson disease protein 7 

(PARK7) has multiple functions that are much-conjectured, but it appears to protect cells 

against oxidative stress and apoptosis355-358. As well as being differentially expressed 

between baseline and three months in non-responders, it is also differentially expressed 

between baseline and six months in non-responders. Thioredoxin-dependent peroxide 

reductase, mitochondrial (PRDX3) has a role in protecting cells against oxidative stress via 

the reduction and detoxification of peroxides359. This protein was differentially expressed 

between baseline and three months in poor responders, and between good/moderate and poor 

responders at baseline. Caldesmon (CALD1) is an actin- and myosin-binding protein that 

interacts with multiple molecular components of muscle tissue360. In this analysis, it was 

differentially expressed between baseline and three and six months in poor responders, as 

well as between good/moderate and poor responders at baseline. Calcium/calmodulin-

dependent protein kinase type 1 (CAMK1) functions within a calcium signalling cascade, 

and amongst several functions, regulates the cell cycle, cell differentiation and actin filament 

organisation (i.e. it interacts with muscle components, like CALD1)361. In addition to 

differential expression between baseline and three months in poor responders, it also 

demonstrates differential expression between good/moderate and poor responders at 

baseline. MIF was also differentially expressed between baseline and three months in poor 

responders; its function is described in Section 6.4. 

 

Other proteins were differentially expressed between baseline and six months in poor 

responders. Flavin reductase (NADPH) (BLVRB) is a broad-specificity oxidoreductase that 

is involved in multiple physiological processes, including haem catabolism362. Band 3 anion 

transport protein (SLC4A1) functions as both a transporter and structural protein in 
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erythrocytes363. It was differentially expressed between baseline and six months and between 

three and six months in poor responders. Leucine-rich repeat flightless-interacting protein 1 

(LRRFIP1) is a transcriptional repressor; amongst other proteins, it is thought to modulate 

expression of TNF364. It is also thought to participate in TLR signalling via negative 

competition with the negative FLII regulator for myeloid differentiation primary response 

protein MyD88 (MYD88) binding365. It was differentially expressed between baseline and 

six months and between three and six months in poor responders and between good/moderate 

and poor responders at baseline. Keratin, type II cytoskeletal 1 (KRT1) is thought to regulate 

kinase activity, including the molecular scaffolder, the receptor of activated protein C kinase 

1 (RACK1)366. KRT1 was differentially expressed between baseline and six months in poor 

responders, as well as between good/moderate and poor responders at baseline. CFHR3 was 

also differentially expressed between baseline and 6 months and between good/moderate 

and poor responders at 3 months; its function is described in Section 6.4. MAP2K3 was 

differentially expressed between baseline and six months and between three and six months 

in poor responders and its function is also described in Section 6.4. These proteins’ common 

functionality appears to be in metabolic processes and as structural proteins. This could be 

related to increased immune cell proliferation associated with the active inflammatory 

process of uncontrolled RA. 

 

Further proteins were differentially expressed between good/moderate and poor responders 

at baseline. Latent-transforming growth factor β-binding protein 1 (LTBP1) is a crucial 

modulator of TGFβ367, which regulates growth and differentiation of a range of cell types 

and is involved in a number of processes, including immune function368. LTBP1 was 

differentially expressed between good/moderate and poor responders at baseline. Protein 

disulfide-isomerase A6 (PDIA6) is thought to prevent the aggregation of misfolded 

proteins369; this protein was also differentially expressed between good/moderate and poor 

responders at baseline. CCT7 was differentially expressed between good/moderate and poor 

responders at baseline and its function is described in Section 6.4. PKP3 was also 

differentially expressed between good/moderate and poor responders at baseline and three 

months; its function was also described in Section 6.4. Again, common themes of these 

proteins include cell regulation and immune function. 

 

Finally, a number of proteins were differentially expressed between good/moderate and poor 

responders at three months. X-ray repair cross-complementing protein 6 (XRCC6) is a 

helicase that plays a variety of important roles in DNA replication and repair370. 
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Interestingly, patients with SLE have been found to produce large amounts of autoantibodies 

to both XRCC5 and XRCC6371. As XRCC6 was found to be differentially expressed between 

good/moderate and poor responders and also has an association with a related rheumatic 

disease, this protein could provide an interesting potential biomarker for future study. 

Calmodulin-2 (CALM2) controls an array of enzymes, ion channels and other proteins via 

calcium binding372, and it was found to be differentially expressed between good/moderate 

and poor responders at three months. Collagen α-2(VI) chain (COL6A2) is a cell binding 

protein373, and was also differentially expressed between good/moderate and poor 

responders at three months. Peptidyl-prolyl cis-trans isomerase A (PPIA) is a multi-function 

protein that has wide-ranging functions, including chemotactic effects on leukocytes374 and 

both pro- and anti-apoptotic signalling in situations of oxidative stress375. PPIA was 

differentially expressed between good/moderate and poor responders at three months. Ras 

suppressor protein 1 (RSU1) is thought to participate in the Ras signal transduction 

pathway376; Ras proteins are involved in regulation of normal cell growth and control over 

malignant transformation377. RSU1 was differentially expressed between good/moderate and 

poor responders at three months, and this could indicate dysregulated cell proliferation in 

the setting of active RA. 

 

TNF, EHD1, ILF3, IGF1, CRP, ASPH, SAA1 and LBP were also differentially expressed 

between good/moderate responders and poor responders at three months; their functions 

have already been described in Section 6.4. The proteins described here are compatible with 

a pro-inflammatory state, and differential expression between responders is likely to 

represent treatment response to etanercept. Replication of associations with linear RA 

clinical outcome measures also indicates that these proteins may be more robust candidate 

biomarkers for future replication and functional studies. Overall, it appears that change in 

proteins with treatment may be more informative than measurement of proteins at a single 

time point (e.g. pre-treatment), and this requires validation in future studies. Perhaps 

focusing on change in protein expression may be informative in the prediction of future or 

sustained drug response. In the clinic room, this could lead to measurement of protein 

profiles at baseline and a time point early in treatment (e.g. 6 weeks) to determine whether 

to discontinue or persist with treatment. 

 

The strength of this study is that it allows protein expression profiles to be generated for the 

groups of interest, as opposed to identifying single proteins of interest. These profiles can 

give an overview of the inflammasome involved in active RA, which could then identify 
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novel biomarkers and/or drug targets. Furthermore, by testing multiple proteins in future 

replication studies, positive replication may be more reliable if multiple replicated 

associations are found. The finding that CRP was associated with treatment response at three 

months acts as a positive control as this is an expected result, and adds more validity to the 

findings of this study. Other differentially expressed proteins are associated with prior 

knowledge of active inflammation and autoimmunity as well, such as TNF and SAA1. 

Proteins identified from these analyses are, therefore, promising, and warrant further study 

in the future that is outwith the scope of this thesis. 

 

This study would have been strengthened by increased patient numbers, particularly if there 

had been more SWATH-MS data available at the six-month time point. SWATH-MS protein 

maps were also based on pre-defined RA and plasma libraries – this means that other 

influential proteins may been missed from analysis due to the pre-selection process. 

However, a strength of data obtained using SWATH-MS is that future extractions with 

alternate protein libraries can be carried out in silico, if desired for additional analysis. 

Network analysis could also reveal additional proteins to extract for testing in validation 

studies. 

 

In addition, samples included in this analysis were the same samples as those from Section 

5.7, leading to inevitable data leakage. Because the EULAR response criteria are based on 

DAS28 measurements, proteins previously associated with DAS28 and its components are 

also influencing the differential expression profiles in this analysis. This means that there 

must be a caveat on findings in this analysis, as they are not a replication of findings from 

Section 5.7, but rather, an extension of analysis of DAS28 and its components that is being 

amalgamated into overall EULAR response. For example, only three proteins were 

associated with poor EULAR response, but these all overlapped with differential expression 

profiles between good/moderate and poor responders at various time points. However, this 

work is still valuable, because as previously mentioned, it provides a higher-level summary 

of the ongoing RA active inflammasome at different sampling time points. 

 

Future work would involve replication studies in an independent cohort of patients, as well 

as functional laboratory studies to assess the biological feasibility of any proteins whose 

findings replicate. In conclusion, this analysis provides multiple differential expression 

profiles that define how the protein expression of poor responders changes over time, and 

how good/moderate responders differ from poor responders at different time points. The 
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proteins that make up these profiles could contribute to treatment response prediction in the 

future, or provide targets for novel drug development or drug repurposing. 

 

6.6. Machine learning methods to detect proteomic predictors of treatment response 

Four different machine learning methods were used to train models predictive of treatment 

non-response, defined as either a poor EULAR response or failure to achieve an MCID in 

DAS28 at a given time point. A support vector machine provided the model with the lowest 

MMCE after benchmarking, then optimum hyperparameters were tuned before testing on an 

independent validation dataset. Predictive performance was poor, with poor calibration, 

using both treatment failure outcomes and at all time points tested. 

 

At the model training and benchmarking stage, MMCE values were actually relatively low, 

ranging from 0.0137 for a support vector machine algorithm, predicting poor EULAR 

response at three months, to 0.2879 for a K-nearest neighbours algorithm predicting failure 

to achieve an MCID in DAS28 at six months; this latter MMCE is still relatively good 

performance. These very low MMCE values may indicate over-fitting of the data; it was 

envisaged that this would be mitigated by performing nested resampling during the training 

and benchmarking phase. MMCE values could potentially have been improved if a more 

robust resampling technique such as bootstrapping had been used, but nested resampling was 

chosen because it is not as computationally intensive as bootstrapping, in order to reduce 

computation time during the model development stage. Computational time was prolonged 

because nested resampling was carried out and merged with the benchmarking phase as part 

of the implementation in the mlr226 R package. 

 

Pre-processing data could potentially cause data leakage affecting the model training. 

Missing protein values were imputed statistically, based on pre-existing values already in 

the dataset, but if imputed proteins were completely missing from a sample due to biological 

reasons and incorrectly assumed to be present and then imputed, this could also have affected 

results. Similarly, batch correction was performed statistically, and this may have caused the 

effect of some proteins that would have influenced prediction to be mitigated, leading to a 

less predictive model. Finally, due to class imbalance, datasets had to be synthetically up-

sampled using a SMOTE algorithm, which again could have led to data bleeding, as up-

sampled values were based on pre-existing values in the dataset. 
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However, findings during the prediction phase of this analysis, carried out on data partitioned 

independently from the training data, demonstrated very poor predictive accuracy. 

Pragmatically, this would be more in-keeping with what would have been expected pre-

analysis: hundreds of variables were being used to develop predictive models with a 

relatively low sample of patients. Whilst there has been some success in developing machine 

learning models predictive of treatment response in RA378, many of these published studies 

have published AUCs from model training and not from validating these trained models in 

an independent dataset. Therefore, many of these studies report results with an optimistic 

bias that are not truly reflective of a chosen model’s predictive accuracy. While the use of a 

support vector machine algorithm might mitigate against having multiple comparisons with 

few samples, algorithm selection is irrelevant if there truly is not any predictive pattern in 

the data that is being analysed. 

 

Another issue with this lack of predictive accuracy could be because of the treatment 

response measures selected. Both outcome measures were based on the conventional four-

component DAS28, and not on more objective RA disease activity outcomes, such as 

radiological evidence of synovitis (e.g. ultrasound or MRI scores of synovitis), or even 

therapeutic drug levels, such as in Section 5.6. These outcomes are more objective, because 

they do not rely on subjective measures with high variability, such as patient-reported VAS 

of global health, a TJC, or even variability between assessors of TJC and SJC sub-

components of the DAS28. Perhaps future predictive models will need to use more objective 

outcome measures in order to predict treatment response with more accuracy. This would 

require large-scale inception studies that integrate detailed clinical and phenotypic data with 

one such objective measure of treatment response. Performance could also be improved with 

further optimisation of the bespoke RA protein library, as informative proteins may not have 

been included in the final analysis. A strategy for expanding the bespoke protein library 

could be to include proteins or genes known to be associated with ADME of TNFi. 

 

Strengths of this study include the benchmarking of four different machine learning 

algorithms that implement training using mathematically contrasting techniques, providing 

a broad overview of potential suitable algorithms. Furthermore, while nested resampling is 

not as robust a resampling method as for example, bootstrapping, it still mitigates against 

over-fitting and hyperparameter selection based on unequal train/test splits during 

resampling carried out in model training. There can also be confidence in the results of final 

model testing in an independent validation dataset; while these results are essentially 
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negative findings, data was correctly partitioned and not re-used during both training and 

testing, so predictive accuracy results are likely to be true values. 

 

This analysis relied heavily on several data transformations during pre-processing, which 

could have caused optimistic bias during model training. However, these transformations 

were also carried out on the test data (but carried out separately, so values were not imputed 

from samples from the training dataset), and predictive accuracy in this dataset was poor, so 

data manipulation prior to analysis may not have had as major an effect as anticipated. 

Perhaps the most important causes of poor predictive accuracy could be that a more objective 

treatment outcome measure was not selected or that the RA and plasma protein libraries did 

not include proteins that are most predictive.  However, it was important to demonstrate that 

predictive accuracy is poor with conventional DAS28-based outcome measures in order to 

build a case for the adoption of more objective treatment outcome measures in both research 

and the clinic room. 

 

The scope for future work is compelling: larger datasets with more detailed and objective 

measures of both treatment outcomes and predictors could lead to more accurate prediction 

models. Another piece of work could be to analyse batches sent for processing at SBDC 

separately to test whether correction of batch effect had a significant effect on the predictive 

accuracy of models. All data from SBDC was pooled and batch-corrected in this analysis in 

an attempt to maximise the power of the data, but keeping batches independent may change 

the outcome of results. 

 

In conclusion, machine learning methods demonstrated poor predictive accuracy of 

SWATH-MS proteomics data in determining predictors of treatment non-response to 

etanercept in a cohort of densely-phenotyped patients with RA. However, there is a wide 

latitude for future work to be developed in this field, and this may include choosing a more 

objective RA disease outcome measure. 

 

6.7. Chapter summary 

SWATH-MS proteomics data was obtained on 180 patients starting etanercept from the 

wider BRAGGSS cohort, 16 patients starting either Amgevita or Benepali from the 

BRAGGSS-PD sub-study cohort and on 14 HCs. Robust protein QC was carried out prior 

to analysis. 216 proteins were found to be differentially expressed between RA cases and 

HCs. Several different proteins were found to be associated with: 
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 Therapeutic drug concentration levels of Amgevita or Benepali. 

 Actual drug concentrations of Amgevita or Benepali. 

 DAS28, ΔDAS28 and DAS28 sub-components. 

 Poor EULAR response and failure to achieve an MCID in DAS28. 

 

Furthermore, several proteins were differentially expressed over time by patients who had a 

poor EULAR response, and between good/moderate and poor EULAR responders at a given 

time point. These proteins provide a hypothesis for future replication and mechanistic studies 

to identify biomarkers of treatment response, or provide new drug targets, either in de novo 

drug development or in repurposing of therapeutic agents that have already been licensed. 
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CHAPTER SEVEN: A PROTEIN QUANTITATIVE TRAIT ANALYSIS OF 

PATIENTS COMMENCING ETANERCEPT 

 

7.1. Results 

7.1.1. Study participants 

For the pQTL study, 147 patients with available genotyping data were included from the 

etanercept sub-cohort of BRAGGSS patients, as previously described in Section 5.1. A 

summary of their baseline covariate characteristics is described in Table 7.1. 

 

Table 7.1. Baseline covariate characteristics of patients in the BRAGGSS etanercept cohort. 

Covariate Statistic 

Age at baseline (years), median [IQR] 56.39 [49.34, 64.73] 

Disease duration (years), median[IQR] 6.00 [2.00, 13.00] 

Female sex, n (%) 108 (75.52) 

Concurrent csDMARD, n (%) 116 (81.12) 

BMI (kg/m2), median [IQR] 27.43 [23.48, 32.67] 

Seropositivity for RF/ACPA, n (%) 96 (67.13) 

 

ABBREVIATIONS: Anti-citrullinated antibody pepides (ACPA), Biologics in Rheumatoid Arthritis Genetics 

and Genomics Study Syndicate (BRAGGSS), body mass index (BMI), conventional synthetic disease-

modifying anti-rheumatic drug (csDMARD), interquartile range (IQR), rheumatoid factor (RF). 

 

For the polygenic risk score (PRS) study, an additional 1,563 patients from BRAGGSS 

independent to the above etanercept cohort of patients was included. These patients were 

receiving a number of different TNFi drugs, including adalimumab, etanercept and 

infliximab. Recruitment and genotyping of this cohort have previously been described248. A 

summary of baseline covariate characteristics is described in Table 7.2; age information was 

not available in this cohort. 

  

Summary of chapter contents: 

7.1. Results 

7.2. Discussion 

7.3. Chapter summary 
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Table 7.2. Baseline covariate characteristics of patients in the polygenic risk score target 

data cohort. 

Covariate Statistic Number of missing 

values 

Female sex, n (%) 1,202 (76.95) 1 

Concurrent csDMARD, n (%) 1,273 (81.50) 1 

Baseline DAS28, median 

[IQR] 

6.35 [5.72, 7.12] 0 

EULAR poor response, n (%) 279 (17.76%) 0 

 

ABBREVIATIONS: Conventional synthetic disease-modifying anti-rheumatic drug (csDMARD), Disease 

Activity Score of 28 Joints (DAS28), interquartile range (IQR). 

 

7.1.2. Results of pQTL analysis 

A total of 482 unique proteins that were present in all three batches processed at the SBDC 

(Section 5.3) after passing QC as described in Section 5.4 were included in the analysis. 

 

At baseline (pre-treatment), a total of 2,184 cis pQTLs were identified for 60 unique proteins, 

likely reflecting that many pQTLs will be in strong LD with one another. The most 

associated SNPs for each protein at this time point are presented in Table 7.3. Boxes 7.1 and 

7.2 detail tissues where eQTLs for SNPs rs2894255 and rs10737680 are expressed, 

respectively. A q-q plot for all cis pQTLS identified is presented in Figure 7.1. The 

distribution of observed p-values for cis pQTLs departed the diagonal sooner than those for 

trans pQTLs, indicating that the former were easier to detect than the latter, and this reflects 

the difference in p-value thresholds for cis and trans pQTLs. A total of 389 trans pQTLs 

were also identified for two unique proteins; the most associated SNPs for each protein at 

this time point are presented in Appendix Ten, Table 1. 

 

After three months of treatment with etanercept, a total of 1,432 cis pQTLs were identified 

for 68 unique proteins, again, likely reflecting that many of these pQTLs are in strong LD 

with one another. The most associated SNPs for each protein at this time point are presented 

in Table 7.4. Boxes 7.1 and 7.3 detail tissues where eQTLs for SNPs rs2894255 and 

rs190820372 are expressed, respectively. A q-q plot for all cis pQTLs identified is presented 

in Figure 7.2; again, this demonstrated that cis pQTLs were easier to detect than trans 

pQTLs. A total of 1,570 trans pQTLs were also identified for eight unique proteins; the most 

associated SNPs for each protein at this time point are presented in Appendix Ten, Table 2. 
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Table 7.3. SNPs with lowest false-discovery rate-adjusted p-values for each protein included 

in pQTL study at baseline (before treatment with etanercept). 

Most 

associated 

SNP 

Chr Protein 

(UniProt 

ID) 

% protein 

values 

missing 

before 

imputation 

Total 

SNPs 

for 

protein 

p-value Adjusted 

p-value 

Tissue of 

expression of 

corresponding 

eQTL 

rs189758989 22 APOL1 

(O14791) 

0.26 1 2.64E-07 0.0005 None 

rs145980995 10 IKKA 

(O15111) 

48.46 4 7.39E-08 0.0002 None 

rs62269178 3 CP 

(P00450) 

0 1 3.54E-06 0.0049 None 

rs77303550 16 HPR 

(P00739) 

0.77 3 1.09E-07 0.0002 None 

rs41269133 6 PLG 

(P00747) 

0 3 7.63E-07 0.0013 None 

rs1801020 5 F12 

(P00748) 

0.26 15 5.54E-24 1.41E-17 Liver, brain 

rs112287874 1 AGT 

(P01019) 

0 3 6.99E-06 0.0085 None 

rs142387042 9 C5 

(P01031) 

0 1 1.86E-06 0.0028 None 

rs145688178 2 IL1B 

(P01584) 

24.42 1 6.71E-08 0.0002 None 

rs72756526 9 AMBP 

(P02760) 

0 10 3.39E-07 0.0007 None 

rs13286883 9 A1AG1 

(P02763) 

0 1 3.58E-06 0.005 None 

rs149850735 11 HPX 

(P02790) 

0 3 2.20E-06 0.0033 None 

rs9898 3 HRG 

(P04196) 

0 27 1.05E-09 4.76E-06 None 

rs150327239 12 VWF 

(P04275) 

54.87 4 1.63E-06 0.0025 None 

rs113005658 4 CFI 

(P05156) 

0 1 1.24E-09 5.56E-06 None 

rs111686156 1 ALPL 

(P05186) 

20.82 1 5.66E-07 0.0011 None 

rs147671350 1 TPM3 

(P06753) 

71.54 1 3.35E-06 0.0047 None 

rs117073451 14 HSP90AA1 

(P07900) 

66.67 7 2.99E-09 1.18E-05 None 

rs77782541 1 FH 

(P07954) 

36.76 1 5.32E-06 0.0067 None 

rs148760384 4 SOD3 

(P08294) 

50.77 28 7.58E-08 0.0002 None 

rs56393506 6 APOA 

(P08519) 

15.42 4 1.25E-11 1.17E-07 None 

rs2894255 6 C4A 

(P0C0L4) 

0 1,560 3.07E-16 4.60E-11 See Box 7.1 

rs9268145 6 C4B 

(P0C0L5) 

6.92 21 6.46E-07 0.0011 None 

rs151142563 2 HSPD1 

(P10809) 

48.21 2 4.41E-06 0.0059 None 

rs77900687 8 CLU 

(P10909) 

0 29 4.34E-09 1.50E-05 None 
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Most 

associated 

SNP 

Chr Protein 

(UniProt 

ID) 

% protein 

values 

missing 

before 

imputation 

Total 

SNPs 

for 

protein 

p-value Adjusted 

p-value 

Tissue of 

expression of 

corresponding 

eQTL 

rs143494653 19 GLU2B 

(P14314) 

43.96 2 6.86E-07 0.0012 None 

rs112641969 15 PKM 

(P14618) 

65.04 4 4.71E-06 0.0062 None 

rs138661388 15 AMPN 

(P15144) 

41.28 1 2.25E-07 0.0005 None 

rs141862094 13 VGFR1 

(P17948) 

43.85 2 1.74E-06 0.0027 None 

rs117607817 10 VCL 

(P18206) 

23.91 1 4.17E-08 0.0001 None 

rs35196210 12 TNFRSF1A 

(P19438) 

68.89 1 6.48E-06 0.008 None 

rs149248320 5 LMNB1 

(P20700) 

21.03 1 3.55E-06 0.0049 None 

rs11713634 3 CPN2 

(P22792) 

0 15 3.73E-22 1.58E-16 None 

rs61966459 13 PROZ 

(P22891) 

9.77 8 1.08E-06 0.0018 Liver, pituitary, 

stomach, breast, 

thyroid, whole 

blood 

rs2173194 9 TNC 

(P24821) 

49.36 6 1.72E-07 0.0004 None 

rs11600340 11 DDX6 

(P26196) 

44.22 6 4.14E-09 1.43E-05 None 

rs854562   PON1 

(P27169) 

0 9 3.23E-07 0.0006 Liver, adrenal 

gland, testis, 

prostate, pancreas, 

ovary 

rs117919176 7 RDX 

(P35241) 

64.27 26 1.39E-10 8.85E-07 None 

rs142553639 17 KRT20 

(P35900) 

30.33 5 2.18E-07 0.0004 None 

rs12066959 1 CFHR2 

(P36980) 

1.03 116 1.42E-10 8.88E-07 None 

rs117050879 7 MDH2 

(P40926) 

67.69 7 1.54E-07 0.0003 None 

rs117045022 9 PTGDS 

(P41222) 

72.31 1 7.66E-06 0.0093 None 

rs13056865 22 RANBP1 

(P43487) 

67.18 2 8.60E-06 0.0103 None 

rs114756928 4 AFM 

(P43652) 

0 1 2.37E-10 1.46E-06 None 

rs115631137 3 UBE2E1 

(P51965) 

69.15 1 1.93E-09 8.16E-06 None 

rs192265627 1 HSPG2 

(P98160) 

67.61 2 3.14E-06 0.0045 None 

rs148611864 10 PFKP 

(Q01813) 

26.41 4 3.57E-10 1.86E-06 None 

rs10737680 1 CFHR1 

(Q03591) 

11.54 177 6.20E-13 7.90E-09 See Box 7.2 

rs74918287 6 PAFA 

(Q13093) 

48.59 6 2.40E-08 6.39E-05 None 
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Most 

associated 

SNP 

Chr Protein 

(UniProt 

ID) 

% protein 

values 

missing 

before 

imputation 

Total 

SNPs 

for 

protein 

p-value Adjusted 

p-value 

Tissue of 

expression of 

corresponding 

eQTL 

rs57565725 16 COTL1 

(Q14019) 

48.46 1 3.26E-06 0.0046 None 

rs138943167 9 ZNF169 

(Q14929) 

55.01 2 5.44E-06 0.0069 None 

rs67436553 12 NAA25 

(Q14CX7) 

48.97 1 7.42E-07 0.0013 None 

rs140435033 12 KRT77 

(Q7Z794) 

41.03 3 9.71E-06 0.0113 None 

rs142569471 5 DCP2 

(Q8IU60) 

70.18 1 8.52E-07 0.0014 None 

rs12122975 1 NAXE 

(Q8NCW5) 

65.13 5 3.89E-07 0.0008 None 

rs118057809 14 SCFD1 

(Q8WVM8) 

34.1 1 1.30E-07 0.0003 None 

rs2179485 20 RRBP1 

(Q9P2E9) 

56.67 28 5.80E-07 0.0011 None 

rs141173103 10 MINPP1 

(Q9UNW1) 

53.33 3 5.10E-08 0.0001 None 

rs277462 1 PADI2 

(Q9Y2J8) 

24.16 1 3.19E-06 0.0045 None 

rs73061453 3 DYNC1LI1 

(Q9Y6G9) 

35.48 1 2.29E-06 0.0034 None 

 

ABBREVIATIONS: 60 kDa heat shock protein, mitochondrial (HSPD1), α-1-acid glycoprotein 1 (A1AG1), 

afamin (AFM), alkaline phosphatase, tissue-nonspecific isozyme (ALPL), aminopeptidase N (AMPN), 

angiotensinogen (AGT), apolipoprotein(a) (APOA), apolipoprotein L1 (APOL1), ATP-dependent 6-

phosphofructokinase, platelet type (PFKP), basement membrane-specific heparan sulfate proteoglycan core 

protein (HSPG2), caeruloplasmin (CP), carboxypeptidase N subunit 2 (CPN2), chromosome (chr), clusterin 

(CLU), coactosin-like protein (COTL1), coagulation factor XII (F12), complement C4-A (C4A), complement 

C4-B (C4B), complement C5 (C5), complement factor H-related protein 1 (CFHR1), complement factor H-

related protein 2 (CFHR2), complement factor I (CFI), cytoplasmic dynein 1 light intermediate chain 1 

(DYNC1LI1), expression quantitative trait locus/loci (eQTL), extracellular superoxide dismutase [Cu-Zn] 

(SOD3), fumarate hydratase, mitochondrial (FH), glucosidase 2 subunit β (GLU2B), haemopexin (HPX), 

haptoglobin-related protein (HRP), heat shock protein HSP 90-α (HSP90AA1), histidine-rich glycoprotein 

(HRG), identifier (ID), inhibitor of nuclear factor κ-B kinase subunit α (IKKA), interleukin-1 β (IL1B), keratin, 

type I cytoskeletal 20 (KRT20), keratin, type II cytoskeletal 1b (KRT77), lamin-B1 (LMNB1), m7GpppN-

mRNA hydrolase (DCP2), malate dehydrogenase, mitochondrial (MDH2), multiple inositol polyphosphate 

phosphatase 1 (MINPP1), N-α-acetyltransferase 25, NAD(P)H-hydrate epimerase (NAXE), NatB auxiliary 

subunit (NAA25),  plasminogen (PLG), platelet-activating factor acetylhydrolase (PAFA), probable ATP-

dependent RNA helicase DDX6 (DDX6), prostaglandin-H2 D-isomerase (PTGDS), protein AMBP (AMBP), 

protein-arginine deiminase type-2 (PADI2), protein quantitative trait locus/loci (pQTL), pyruvate kinase PKM 

(PKM), radixin (RDX), Ran-specific GTPase-activating protein (RANBP1), ribosome-binding protein 1 

(RRBP1), Sec1 family domain-containing protein 1 (SCFD1), serum paraoxonase/arylesterase 1 (PON1), 

single nucleotide polymorphism (SNP), tenascin (TNC), tropomyosin α-3 chain (TPM3), tumour necrosis 



225 
 

factor receptor superfamily member 1A (TNFRSF1A), ubiquitin-conjugating enzyme E2 E1 (UBE2E1), 

vascular endothelial growth factor receptor 1 (VGFR1), vinculin (VCL), vitamin K-dependent protein Z 

(PROZ), von Willebrand factor (VWF), zinc finger protein 169 (ZNF169). 

 

 

Overlaps between significant proteins from baseline and three-month pQTL analyses are 

summarised in Table 7.5 and Figure 7.3. Overlaps between significant proteins from all 

pQTL analyses and proteins associated with RA disease outcome measures from Sections 

5.6 to 5.8 are summarised in Table 7.6. These proteins were then input into the STRING 

database to determine whether there were any known interactions between these proteins, 

and this is presented in Figure 7.4. 

 

  

Box 7.1. Tissues where eQTLs for rs2894255 (C4A gene) are known to be 

expressed. 

Lung   Skin   Spleen   Salivary gland 

Thyroid  Testis   Prostate  Pituitary 

Tibial nerve  Heart   Ovary   Spinal cord 

Oesophagus  Skeletal muscle Kidney   Vagina 

Adipose tissue  Colon   Epstein Barr Virus- 

transformed lymphocytes 

Arteries  Liver   Uterus   Stomach 

Whole blood  Brain   Adrenal gland  Breast 

Cultured fibroblasts Pancreas  Small intestine 

Box 7.2. Tissues where eQTLs for rs10737680 (CFHR1 gene) are known to be 

expressed. 

Liver   Cultured fibroblasts Brain   Adipose tissue 

Spleen   Testis   Adrenal gland  Nerve 
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Figure 7.1. Q-Q plot of genome-wide pQTLs at baseline (before treatment with etanercept). 

 

 

LEGEND: Q-Q plot of –log10(p-value) of genome-wide pQTL analysis before treatment with etanercept. The 

red points and line represent the statistical p-values for cis (or local) pQTLs. The blue points and line represent 

the statistical p-values for trans (or distant) pQTLS. 

 

 

  

Box 7.3. Tissues where eQTLs for rs190820372 (CFHR1 gene) are known to be 

expressed. 

Liver   Adipose tissue   Nerve   Spleen 

Brain   Cultured fibroblasts  Adrenal gland  Breast 

Colon   Small intestine   Lung   Stomach 

Pancreas 
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Table 7.4. SNPs with lowest false-discovery rate-adjusted p-values for each protein included 

in pQTL study after 3 months treatment with etanercept. 

Most 

associated 

SNP 

Chr Protein 

(UniProt 

ID) 

% protein 

values 

missing 

before 

imputation 

Total 

SNPs 

for 

protein 

p-value Adj p-

value 

Tissue of 

expression of 

corresponding 

eQTL 

rs114226893 22 APOL1 

(O14791) 

0.26 9 1.13E-09 1.39E-05 None 

rs10510794 3 FLNB 

(O75369) 

52.82 276 9.02E-10 1.19E-05 Cultured 

fibroblasts 

rs34417180 16 HPR 

(P00739) 

0.77 2 3.68E-06 0.0074 Heart, nerve 

rs8191936 6 PLG 

(P00747) 

0 2 3.30E-06 0.0067 None 

rs1801020 5 F12 

(P00748) 

0.26 12 1.70E-23 2.87E-17 Liver, brain 

rs113568276 6 CFB 

(P00751) 

0 4 3.22E-06 0.0065 None 

rs72823478 2 IL1B 

(P01584) 

24.42 1 1.49E-07 0.0005 None 

rs140942977 1 C1QC 

(P02747) 

0 1 9.85E-07 0.0023 None 

rs55825809 19 FTL 

(P02792) 

52.19 1 9.70E-06 0.0173 None 

rs150845792 16 ALDOA 

(P04075) 

84.62 2 1.11E-06 0.0026 None 

rs78370639 6 SOD2 

(P04179) 

44.47 1 2.05E-07 0.0006 None 

rs13073829 3 HRG 

(P04196) 

0 21 3.09E-07 0.0009 None 

rs11609243 12 IGF1 

(P05019) 

78.97 1 3.09E-06 0.0063 None 

rs41497052 1 ALPL 

(P05186) 

20.82 5 1.70E-08 7.71E-05 None 

rs144647167 14 PYGL 

(P06737) 

69.74 1 2.03E-07 0.0006 None 

rs117384764 12 LDHB 

(P07195) 

41.39 1 9.01E-06 0.0164 None 

rs79918073 11 CTSD 

(P07339) 

54.62 1 1.33E-07 0.0004 None 

rs116684782 4 SOD3 

(P08294) 

50.77 8 9.23E-10 1.20E-05 None 

rs78924361 14 CTSG 

(P08311) 

68.89 3 1.17E-06 0.0027 None 

rs9295128 6 APOA 

(P08519) 

15.42 22 1.05E-07 0.0003 None 

rs76187874 17 A2AP 

(P08697) 

0 22 1.86E-06 0.004 None 

rs2894255 6 C4A 

(P0C0L4) 

0 635 1.91E-11 1.62E-06 See Box 7.1 

rs204883 6 C4B 

(P0C0L5) 

6.92 26 3.27E-07 0.0009 Whole blood 

rs61904443 11 HSPA8 

(P11142) 

28.28 2 5.18E-06 0.0102 None 

rs150297179 22 XRCC6 

(P12956) 

60.26 1 5.29E-06 0.0104 None 
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Most 

associated 

SNP 

Chr Protein 

(UniProt 

ID) 

% protein 

values 

missing 

before 

imputation 

Total 

SNPs 

for 

protein 

p-value Adj p-

value 

Tissue of 

expression of 

corresponding 

eQTL 

rs145827445 2 XRCC5 

(P13010) 

15.13 1 8.95E-06 0.0163 None 

rs187550307 15 PKM 

(P14618) 

65.04 2 8.91E-06 0.0163 None 

rs9806694 15 AMPN 

(P15144) 

41.28 2 1.44E-06 0.0032 None 

rs147009906 11 CD44 

(P16070) 

11.83 1 6.76E-07 0.0017 None 

rs79872280 3 ITIH1 

(P19827) 

0 3 2.96E-07 0.0009 None 

rs11713634 3 CPN2 

(P22792) 

0 12 4.57E-11 2.75E-06 None 

rs61966459 13 PROZ 

(P22891) 

9.77 21 1.36E-07 0.0004 Liver, pituitary, 

stomach, breast, 

thyroid, whole 

blood 

rs854562 7 PON1 

(P27169) 

0 8 5.28E-08 0.0002 Liver, adrenal 

gland, testis, 

prostate, 

pancreas, ovary 

rs138816256 5 CANX 

(P27824) 

45.5 10 1.16E-07 0.0004 None 

rs12231148 12 PTPN6 

(P29350) 

9 20 1.35E-18 2.64E-13 None 

rs139074486 19 BLVRB 

(P30043) 

77.95 2 1.39E-09 1.65E-05 None 

rs117457005 11 RDX 

(P35241) 

64.27 1 1.79E-06 0.0038 None 

rs10801582 1 CFHR2 

(P36980) 

1.03 94 1.92E-09 1.88E-05 None 

rs148555185 1 TAGLN2 

(P37802) 

26.99 1 1.45E-06 0.0032 None 

rs148212408 7 MDH2 

(P40926) 

67.69 1 1.50E-06 0.0033 None 

rs10460510 2 MRPL19 

(P49406) 

34.7 3 4.26E-08 0.0001 None 

rs115373136 1 HDGF 

(P51858) 

56.56 1 6.15E-07 0.0015 None 

rs6062997 20 PLTP 

(P55058) 

3.6 5 1.55E-06 0.0034 None 

rs145005927 20 DSTN 

(P60981) 

58.35 1 8.31E-07 0.002 None 

rs72691742 14 CALM2 

(P62158) 

5.64 1 3.65E-06 0.0074 None 

rs6665824 1 CFHR1 

(Q03591) 

11.54 136 1.35E-11 1.37E-06 See Box 7.3 

rs190820372 7 CALD1 

(Q05682) 

76.67 3 3.12E-13 4.18E-08 None 

rs187671161 13 FOXO1 

(Q12778) 

64.1 2 2.19E-07 0.0007 None 

rs11673692 19 ILF3 

(Q12906) 

63.08 1 9.48E-06 0.017 None 
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Most 

associated 

SNP 

Chr Protein 

(UniProt 

ID) 

% protein 

values 

missing 

before 

imputation 

Total 

SNPs 

for 

protein 

p-value Adj p-

value 

Tissue of 

expression of 

corresponding 

eQTL 

rs696044 3 CAMK1 

(Q14012) 

62.82 1 1.42E-06 0.0032 None 

rs79360255 16 COTL1 

(Q14019) 

48.46 3 1.18E-07 0.0004 None 

rs9906599 17 GRB7 

(Q14451) 

6.68 2 4.21E-06 0.0084 None 

rs142995251 17 LASP1 

(Q14847) 

77.89 7 5.86E-09 4.35E-05 None 

rs117452594 10 RSU1 

(Q15404) 

58.21 2 2.87E-07 0.0008 None 

rs116838200 3 MYLK 

(Q15746) 

54.36 1 2.22E-06 0.0046 None 

rs62402216 6 MAPK14 

(Q16539) 

53.59 3 1.87E-07 0.0006 None 

rs73121704 12 CAND1 

(Q86VP6) 

48.72 3 8.14E-11 2.91E-06 None 

rs115373136 1 NAXE 

(Q8NCW5) 

65.13 7 1.75E-14 2.62E-09 None 

rs141739774 16 DNAH3 

(Q8TD57) 

38.05 1 3.06E-09 2.56E-05 None 

rs113930700 6 PHIP 

(Q8WWQ0) 

47.3 1 7.54E-07 0.0019 None 

rs151286550 1 PARK7 

(Q99497) 

72.24 1 1.13E-06 0.0026 None 

rs150571376 2 TCPH 

(Q99832) 

51.28 1 1.33E-06 0.003 None 

rs145505184 11 C11orf54 

(Q9H0W9) 

49.23 1 3.40E-07 0.0009 None 

rs188695391 11 EHD1 

(Q9H4M9) 

72.82 1 5.58E-06 0.0107 None 

rs4687154 3 IL1RAP 

(Q9NPH3) 

74.29 1 7.01E-06 0.0131 None 

rs147277776 20 RRBP1 

(Q9P2E9) 

56.67 1 6.90E-07 0.0017 None 

rs62290911 3 FETUB 

(Q9UGM5) 

1.79 1 8.72E-06 0.016 None 

rs147084701 10 MINPP1 

(Q9UNW1) 

53.33 2 7.34E-07 0.0018 None 

 

ABBREVIATIONS: 39S ribosomal protein L19, mitochondrial (MRPL19), α-2-antiplasmin (A2AP), 

adjusted (adj), alkaline phosphatase, tissue-nonspecific isozyme (ALPL), aminopeptidase N (AMPN), 

apolipoprotein(a) (APOA), apolipoprotein L1 (APOL1), calcium/calmodulin-dependent protein kinase type 1 

(CAMK1), caldesmon (CALD1), calmodulin-2 (CALM2), calnexin (CANX), carboxypeptidase N subunit 2 

(CPN2), cathepsin D (CTSD), cathepsin G (CTSG), CD44 antigen (CD44), chromosome (chr), coactosin-like 

protein (COTL1), coagulation factor XII (F12), complement C1q subcomponent subunit C (C1QC), 

complement C4-A (C4A), complement C4-B (C4B), complement factor B (CFB), complement factor H-related 

protein 1 (CFHR1), complement factor H-related protein 2 (CFHR2), cullin-associated NEDD8-dissociated 

protein 1 (CAND1), destrin (DSTN), dynein axonemal heavy chain 3 (DNAH3), EH domain-containing 

protein 1 (EHD1), ester hydrolase C11orf54 (C11orf54), expression quantitative trait locus/loci (eQTL), 

extracellular superoxide dismutase [Cu-Zn] (SOD3), ferritin light chain (FTL), fetuin-B (FETUB), filamin-B 
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(FLNB), flavin reductase (NADPH) (BLVRB), forkhead box protein O1 (FOXO1), fructose-bisphosphate 

aldolase A (ALDOA), glycogen phosphorylase, liver form (PYGL), growth factor receptor-bound protein 7 

(GRB7), haptoglobin-related protein (HPR), heat shock cognate 71 kDa protein (HSPA8), hepatoma-derived 

growth factor (HDGF), histidine-rich glycoprotein (HRG), identifier (ID), insulin-like growth factor I (IGF1), 

inter-α-trypsin inhibitor heavy chain H1 (ITIH1), interleukin-1 β (IL1B), interleukin-1 receptor accessory 

protein (IL1RAP), interleukin enhancer-binding factor 3 (ILF3), LIM and Sh3 domain protein (LASP1), L-

lactate dehydrogenase B chain (LDHB), malate dehydrogenase, mitochondrial (MDH2), mitogen-activated 

protein kinase 14 (MAPK14), multiple inositol polyphosphate phosphatase 1 (MINPP1), myosin light chain 

kinase, smooth muscle (MYLK), NAD(P)H-hydrate epimerase (NAXE), Parkinson disease protein 7 

(PARK7), PH-interacting protein (PHIP), phospholipid transfer protein (PLTP), plasminogen (PLG), protein 

quantitative trait locus/loci (pQTL), pyruvate kinase PKM (PKM), Ras suppressor protein 1 (RSU1), serum 

paraoxonase/arylesterase 1 (PON1), radixin (RDX), ribosome-binding protein 1 (RRBP1), single nucleotide 

polymorphism (SNP), superoxide dismutase [Mn], mitochondrial (SOD2), T-complex protein 1 subunit η 

(TCPH), transgelin-2 (TAGLN2), tyrosine-protein phosphatase non-receptor type 6 (PTPN6), vitamin K-

dependent protein Z (PROZ), X-ray repair cross-complementing protein 5 (XRCC5), X-ray repair cross-

complementing protein 6 (XRCC6). 

 

7.1.3. Derivation of polygenic risk scores predictive of poor EULAR response 

Significant SNPs from the pQTL analysis were then included in PRS models to determine 

genetic predictors of poor EULAR response after three or six months of treatment with TNFi, 

using the cohort of 1,563 extant BRAGGSS genotyped samples. 

 

At baseline (before treatment with TNFi), a PRS model was derived that included 48 

significant SNPs. However, this model only explained 0.26% of variance in EULAR 

response in the target cohort; covariates alone explained only 2.25% of the variance. The 

overall p-value of the model was non-significant, at 0.1176. 

 

After three or six months of treatment with TNFi, a polygenic risk score model was derived 

that included 37 significant SNPs. This model only explained 0.05% of variance in EULAR 

response in the target cohort; covariates alone explained 65.47% of the variance. The overall 

p-value of the model was non-significant, at 0.5915. 
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Figure 7.2. Q-Q plot of genome-wide pQTLs after 3 months of treatment with etanercept. 

 

LEGEND: Q-Q plot of –log10(p-value) of genome-wide pQTL analysis after 3 months of treatment with 

etanercept. The red points and line represent the statistical p-values for cis (or local) pQTLs. The blue points 

and line represent the statistical p-values for trans (or distant) pQTLS. 
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Table 7.5. All significant proteins identified from cis pQTL analyses. 

Protein pQTL at baseline pQTL at 3 months pQTL at baseline and 3 

months 

APOL1 (O14791) 
  

X 

IKKA (O15111) X 
  

FLNB (O75369) 
 

X 
 

CP (P00450) X 
  

HPR (P00739) 
  

X 

PLG (P00747) 
  

X 

F12 (P00748) 
  

X 

CFB (P00751) 
 

X 
 

AGT (P01019) X 
  

C5 (P01031) X 
  

IL1B (P01584) 
  

X 

C1QC (P02747) 
 

X 
 

AMBP (P02760) X 
  

A1AG1 (P02763) X 
  

HPX (P02790) X 
  

FTL (P02792) 
 

X 
 

ALDOA (P04075) 
 

X 
 

SOD2 (P04179) 
 

X 
 

HRG (P04196) 
  

X 

VWF (P04275) X 
  

IGF1 (P05019) 
 

X 
 

CFI (P05156) X 
  

ALPL (P05186) 
  

X 

PYGL (P06737) 
 

X 
 

TPM3 (P06753) X 
  

LDHB (P07195) 
 

X 
 

CTSD (P07339) 
 

X 
 

HSP90AA1 (P07900) X 
  

FH (P07954) X 
  

SOD3 (P08294) 
  

X 

CTSG (P08311) 
 

X 
 

APOA (P08519) 
  

X 

A2AP (P08697) 
 

X 
 

C4A (P0C0L4) 
  

X 

C4B (P0C0L5) 
  

X 

HSPD1 (P10809) X 
  

CLU (P10909) X 
  

HSPA8 (P11142) 
 

X 
 

XRCC6 (P12956) 
 

X 
 

XRCC5 (P13010) 
 

X 
 

GLU2B (P14314) X 
  

PKM (P14618) 
  

X 

AMPN (P15144) 
  

X 
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Protein pQTL at baseline pQTL at 3 months pQTL at baseline and 3 

months 

CD44 (P16070) 
 

X 
 

VGFR1 (P17948) X 
  

VCL (P18206) X 
  

TNFRSF1A (P19438) X 
  

ITIH1 (P19827) 
 

X 
 

LMNB1 (P20700) X 
  

CPN2 (P22792) 
  

X 

PROZ (P22891) 
  

X 

TNC (P24821) X 
  

DDX6 (P26196) X 
  

PON1 (P27169) 
  

X 

CANX (P27824) 
 

X 
 

PTPN6 (P29350) 
 

X 
 

BLVRB (P30043) 
 

X 
 

RDX (P35241) 
  

X 

KRT20 (P35900) X 
  

CFHR2 (P36980) 
  

X 

TAGLN2 (P37802) 
 

X 
 

MDH2 (P40926) 
  

X 

PTGDS (P41222) X 
  

RANBP1 (P43487) X 
  

AFM (P43652) X 
  

MRPL19 (P49406) 
 

X 
 

HDGF (P51858) 
 

X 
 

UBE2E1 (P51965) X 
  

PLTP (P55058) 
 

X 
 

DSTN (P60981) 
 

X 
 

CALM2 (P62158) 
 

X 
 

HSPG2 (P98160) X 
  

PFKP (Q01813) X 
  

CFHR1 (Q03591) 
  

X 

CALD1 (Q05682) 
 

X 
 

FOXO1 (Q12778) 
 

X 
 

ILF3 (Q12906) 
 

X 
 

PAFA (Q13093) X 
  

CAMK1 (Q14012) 
 

X 
 

COTL1 (Q14019) 
  

X 

GRB7 (Q14451) 
 

X 
 

LASP1 (Q14847) 
 

X 
 

ZNF169 (Q14929) X 
  

NAA25 (Q14CX7) X 
  

RSU1 (Q15404) 
 

X 
 

MYLK (Q15746) 
 

X 
 

MAPK14 (Q16539) 
 

X 
 

KRT77 (Q7Z794) X 
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Protein pQTL at baseline pQTL at 3 months pQTL at baseline and 3 

months 

CAND1 (Q86VP6) 
 

X 
 

DCP2 (Q8IU60) X 
  

NAXE (Q8NCW5) 
  

X 

DNAH3 (Q8TD57) 
 

X 
 

SCFD1 (Q8WVM8) X 
  

PHIP (Q8WWQ0) X  
 

PARK7 (Q99497)  X  

TCPH (Q99832) 
 

X 
 

C11orf54 (Q9H0W9) 
 

X 
 

EHD1 (Q9H4M9) 
 

X 
 

IL1RAP (Q9NPH3) 
 

X 
 

RRBP1 (Q9P2E9) 
  

X 

FETUB (Q9UGM5) 
 

X 
 

MINPP1 (Q9UNW1) 
  

X 

PADI2 (Q9Y2J8) X 
  

DYNC1LI1 (Q9Y6G9) X 
  

 

ABBREVIATIONS: 39S ribosomal protein L19, mitochondrial (MRPL19), 60 kDa heat shock protein, 

mitochondrial (HSPD1), α-1-acid glycoprotein 1 (A1AG1), α-2-antiplasmin (A2AP), afamin (AFM), alkaline 

phosphatase, tissue-nonspecific isozyme (ALPL), aminopeptidase N (AMPN), angiotensinogen (AGT), 

apolipoprotein(a) (APOA), apolipoprotein L1 (APOL1), ATP-dependent 6-phosphofructokinase, platelet type 

(PFKP), basement membrane-specific heparan sulfate proteoglycan core protein (HSPG2), caeruloplasmin 

(CP), calcium/calmodulin-dependent protein kinase type 1 (CAMK1), caldesmon (CALD1), calmodulin-2 

(CALM2), calnexin (CANX), carboxypeptidase N subunit 2 (CPN2), cathepsin D (CTSD), cathepsin G 

(CTSG), CD44 antigen (CD44), clusterin (CLU), coactosin-like protein (COTL1), coagulation factor XII 

(F12), complement C1q subcomponent subunit C (C1QC), complement C4-A (C4A), complement C4-B), 

complement C5 (C5), complement factor B (CFB), complement factor H-related protein 1 (CFHR1), 

complement factor H-related protein 2 (CFHR2), complement factor I (CFI), Cullin-associated NEDD8-

dissociated protein 1 (CAND1), cytoplasmic dynein 1 light intermediate chain 1 (DYNC1LI1), destrin 

(DSTN), dynein axonemal heavy chain 3 (DNAH3), EH domain-containing protein 1 (EHD1), ester hydrolase 

C11orf54 (C11orf54), extracellular superoxide dismutase [Cu-Zn] (SOD3), ferritin light chain (FTL), fetuin-

B (FETUB), filamin-B (FLNB), flavin reductase (NADPH) (BLVRB), forkhead box protein O1 (FOXO1), 

fructose-bisphosphate aldolase A (ALDOA), fumarate hydratase, mitochondrial (FH), glucosidase 2 subunit β 

(GLU2B), glycogen phosphorylase, liver form (PYGL), growth factor receptor-bound protein 7 (GRB7), 

haemopexin (HPX), haptoglobin-related protein (HPR), heat shock cognate 71 kDa protein (HSPA8), heat 

shock protein HSP 90-α (HSP90AA1), hepatoma-derived growth factor (HDGF), histidine-rich glycoprotein 

(HRG), insulin-like growth factor 1 (IGF1), inter-α-trypsin inhibitor heavy chain H1 (ITIH1), interleukin-1 β 

(IL1B), interleukin-1 receptor accessory protein (IL1RAP), interleukin enhancer-binding factor 3 (ILF3), 

inhibitor of NF-κB kinase subunit α (IKKA), keratin, type I cytoskeletal 20 (KRT20), keratin, type II 

cytoskeletal 1b (KRT77), lamin-B1 (LMNB1), LIM and SH3 domain protein 1 (LASP1), L-lactate 

dehydrogenase B chain  (LDHB), m7GpppN-mRNA hydrolase (DCP2), malate dehydrogenase, mitochondrial 

(MDH2), mitogen-activated protein kinase 14 (MAPK14), multiple inositol polyphosphate phosphatase 1 



235 
 

(MINPP1), myosin light chain kinase, smooth muscle (MYLK), N-α-acetyltransferase 25, NatB auxiliary 

subunit (NAA25), NAD(P)H-hydrate epimerase (NAXE), Parkinson disease protein 7 (PARK7), PH-

interacting protein (PHIP), phospholipid transfer protein (PLTP), plasminogen (PLG), platelet-activating factor 

acetylhydrolase (PAFA), probable ATP-dependent RNA helicase DDX6 (DDX6), prostaglandin-H2 D-

isomerase (PTGDS), protein AMBP (AMBP), protein-arginine deiminase type-2 (PADI2), protein quantitative 

trait locus/loci (pQTL), pyruvate kinase PKM (PKM), radixin (RDX), Ran-specific GTPase-activating protein 

(RANBP1), Ras suppressor protein 1 (RSU1), ribosome-binding protein 1 (RRBP1), Sec1 family domain-

containing protein 1 (SCFD1), serum paraoxonase/arylesterase 1 (PON1), superoxide dismutase [Mn], 

mitochondrial (SOD2), T-complex protein 1 subunit η (TCPH), tenascin (TNC), transgelin-2 (TAGLN2), 

tropomyosin α-3 chain (TPM3), tumour necrosis factor receptor superfamily member 1A (TNFRSF1A), 

tyrosine-protein phosphatase non-receptor type 6 (PTPN6), ubiquitin-conjugating enzyme E2 E1 (UBE2E1), 

vascular endothelial growth factor receptor 1 (VGFR1), vinculin (VCL), vitamin K-dependent protein Z 

(PROZ), von Willebrand factor (VWF), X-ray repair cross-complementing protein 5 (XRCC5), X-ray repair 

cross-complementing protein 6 (XRCC6), zinc finger protein 169 (ZNF169). 

 

Figure 7.3. Venn diagram illustrating number of cis pQTLs significant at baseline, 3 months 

or both time points. 

 

ABBREVIATIONS: Protein quantitative trait locus/loci (pQTL). 
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Table 7.6. Overlaps between significant proteins from pQTL analyses and proteins 

significantly associated with RA clinical response outcome measures. 

Protein UniProt ID 

IKKA O15111 

A1AG1 P02763 

IGF1 P05019 

C4B P0C0L5 

XRCC6 P12956 

BLVRB P30043 

CALM2 P62158 

CALD1 Q05682 

ILF3 Q12906 

CAMK1 Q14012 

NAA25 Q14CX7 

RSU1 Q15404 

TCPH Q99832 

EHD1 Q9H4M9 

 

ABBREVIATIONS: α-1-acid glycoprotein 1 (A1AG1), calcium/calmodulin-dependent protein kinase type 1 

(CAMK1), caldesmon (CALD1), calmodulin-2 (CALM2), complement C4-B (C4B), EH domain-containing 

protein 1 (EHD1), flavin reductase (NADPH) (BLVRB), inhibitor of nuclear factor κ-B kinase subunit α 

(IKKA), insulin-like growth factor I (IGF1), interleukin enhancer-binding factor 3 (ILF3), N-α-

acetyltransferase 25, NatB auxiliary subunit (NAA25), Ras suppressor protein 1 (RSU1), T-complex protein 1 

subunit η (TCPH), X-ray repair cross-complementing protein 6 (XRCC6). 
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Figure 7.4. Protein interactions between significant proteins from Table 7.6. 

 

 

ABBREVIATIONS: α-1-acid glycoprotein 1 (A1AG1, also known as ORM1), calcium/calmodulin-

dependent protein kinase type 1 (CAMK1), caldesmon (CALD1), calmodulin-2 (CALM2), complement C4-B 

(C4B), EH domain-containing protein 1 (EHD1), flavin reductase (NADPH) (BLVRB), inhibitor of nuclear 

factor κ-B kinase subunit α (IKKA, also known as CHUK), insulin-like growth factor I (IGF1), interleukin 

enhancer-binding factor 3 (ILF3), N-α-acetyltransferase 25, NatB auxiliary subunit (NAA25), Ras suppressor 

protein 1 (RSU1), T-complex protein 1 subunit η (TCPH, also known as CCT7), X-ray repair cross-

complementing protein 6 (XRCC6). 

 

7.2. Discussion 

pQTL analyses were carried out in 147 patients with RA who were commencing etanercept 

with available genotyping and protein expression data at baseline and after three months of 

treatment. At baseline (pre-treatment), a total of 2,184 cis pQTLs were identified for 60 

unique proteins. After three months of treatment with etanercept, a total of 1,432 cis pQTLs 

were identified for 68 unique proteins. 43 proteins had significant pQTL associations at both 
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baseline and three months. 14 proteins with significant pQTLs at either baseline or three 

months were also significantly associated with RA disease outcome measures as determined 

in Sections 5.7 and 5.8. Significant pQTLs from baseline and three months were used to 

attempt to develop PRS models to predict EULAR poor response at each respective time 

point. However, PRS derived from these pQTLs did not predict EULAR response by three 

or six months. 

 

For brevity, only pQTLs with an adjusted p-value < 5E-08 will be discussed here; proteins 

overlapping with findings from Section 5.6 to 5.8 will be discussed in more detail in Chapter 

Eight. Four proteins were below this threshold at baseline. Coagulation factor XII (F12, 

UniProt ID P00748) is involved in the clotting cascade, and also participates in fibrinolysis 

and bradykinin and angiotensin production379. F12 has corresponding eQTLs in liver and 

brain. Carboxypeptidase N subunit 2 (CPN2, UniProt ID P22792) is an 83 kDa subunit that 

stabilises its catalytic subunit at 37oC, enabling it to remain in systemic circulation380. 

 

C4A (UniProt ID P0C0L4), along with C4B (which was found to be significantly associated 

with therapeutic drug levels in Section 5.6), participates in the dissemination of the classical 

complement pathway381. C4A had multiple tissues in which corresponding eQTLs were 

found (see Box 7.1), and these tissues included cultured fibroblasts, skeletal muscle and 

adipose tissue, which could potentially participate in the active RA disease process. In 

addition, C4a anaphylatoxin (a proteolytic by-product of C4) is involved in local tissue 

inflammation, stimulating smooth muscle contraction, vascular permeability and the release 

of histamine from basophils and mast cells382. C4B also had significant pQTLs at both 

baseline and three months, and a genetic basis for these inflammatory mediators may give 

more robust evidence that C4A and B should be considered for future validation studies. 

Furthermore, mutations in the C4A and B genes has been shown to be causative of C4 

deficiency in SLE; given that there is some clinical overlap between RA and SLE, these C4 

components could represent future biomarkers of prognosis and/or disease activity that also 

have a genetic basis. CFHR1, along with CFHR3 (which was found to be associated with 

SJC, CRP and DAS28 in Section 5.7), is involved in complement regulation338. CFHR1 also 

has multiple tissues in which associated eQTLs are expressed (Box 7.2), including in 

cultured fibroblasts. Given that C4A and C4B genes seem to be strongly implicated in the 

expression of these complement proteins and the further strong association of pQTLs for 

CFHR1, the complement axis seems to be associated with ongoing inflammation in active 

RA. 
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After three months of treatment, there were four proteins with pQTLs with an adjusted p-

value below a threshold of 5E-08, one of which was F12, whose function has already been 

described above. Tyrosine-protein phosphatase non-receptor type 6 (PTPN6) regulates the 

signalling of tyrosine phosphorylated cell surface receptors and is an important participant 

in haematopoiesis383. The function of CALD1 has been described in Section 6.5. NAD(P)H-

hydrate epimerase (NAXE) is involved in the repair of a NADP(HX), a damaged form of 

NAD(P)H caused by enzyme or heat-dependent hydration384. This protein also modulates 

angiogenesis via acceleration of cholesterol efflux from endothelial cells to high-density 

lipoproteins385. 

 

Fourteen proteins associated with various RA disease outcome measures from Section 5.6 

to 5.8 also had significant pQTLs and are presented in Table 7.6. These proteins were also 

input into the STRING database, and their interactions are shown in Figure 7.4. These 

proteins do not form one coherent network, although some on this list do have known 

interactions, as demonstrated in Figure 7.4. However, this may not be a disadvantage, as it 

means that different regions of the overall interaction network outlined in Figure 5.20 could 

be explored in the future, and understanding the mechanisms behind active RA and 

ineffective treatment response from a number of different angles could potentially lead to 

more targeted prediction and treatment of different subsets of patients in the future. 

Treatment could even be targeted using multiple pathways in patients with very active 

disease, to ensure rapid and comprehensive control of disease activity. 

 

Results of the PRS modelling were disappointing, but not unexpected. As with the machine 

learning predictive models developed in Section 5.9, models predictive of poor EULAR 

response after treatment with etanercept were not statistically significant. This is likely to be 

due to similar reasons as discussed in Section 6.6, namely, either due to a true lack of 

association, or because poor EULAR response was not a sufficiently sensitive or objective 

treatment outcome measure. Because EULAR response is calculated from DAS28, pseudo-

subjective measures that make up a total DAS28 such as TJC and patient-reported VAS of 

global health may not completely reflect ongoing biological processes affecting RA disease 

activity. 

 

To date, there have been few published studies of pQTL analysis in patients with RA. Sun 

et al carried out a large-scale pQTL analysis and identified 1,927 pQTLs with 1,478 proteins 

and were able to identify a number of disease-associated loci from analysis84. However, all 
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samples in the Sun et al study were obtained from HCs and were not replicated in specific 

disease-affected cohorts, including not in patients with RA. Luo et al carried out a candidate 

gene Mendelian randomisation study in JIA patients, but this only utilised pQTLs close to 

two candidate genes and was not carried out in RA patients386. The most similar study to the 

work in this thesis was published recently by He et al: DNA methylation, eQTL and pQTL 

studies in PBMCs from 25 patients with RA and 18 HCs implicated the ribophorin II (RPN2) 

gene in RA pathogenesis387. However, this was a case-control study, and findings were not 

related back to RA clinical outcome measures. Results differ from those of the current study, 

which failed to identify RPN2 as a protein significantly associated with response to 

etanercept. 

 

Strengths of this study include the high-quality measurement of several hundred proteins 

with genotype data available on the same patients to ensure a robust pQTL association study. 

This study has also identified a genetic basis for 14 of the proteins found to be associated 

with RA clinical outcome measures identified in previous sections, lending a more robust 

justification for these findings, as opposed to spurious false-positives due to multiple 

comparisons made using the SWATH-MS data. Furthermore, a moderately-sized target 

cohort with genotype data was available for the testing of PRS modelling using pQTLs that 

had been identified earlier. The pQTL-based PRS did not associate with response to 

treatment, however, given the sample sizes tested, large effects can be excluded. 

 

As previously discussed, the lack of a PRS model that can accurately predict RA treatment 

response may well be due to the use of an outcome measure that is not closely linked to the 

underlying pathophysiology of RA. However, other factors could have influenced negative 

findings. For example, the covariates used to correct the pQTL analysis were different from 

those of the target data in the PRS analysis, as only limited data was available for the latter 

cohort. However, analysis without the use of any covariates with both cohorts (not presented) 

still demonstrated no predictive value in the polygenic model, so discrepancies in covariate 

inclusion are unlikely to have influenced results dramatically. Another contributory factor 

could have been protein selection: proteins that had an association could have been excluded 

from the original SWATH-MS extract and imputation of missing values may have 

influenced results. The PRS analysis may have been more sensitive if it had been focused to 

only include QTLs for proteins with evidence for association with response, as opposed to 

including all proteins passing QC from the original SWATH-MS extraction. Finally, this 

study has a relatively small sample size, which may have been under-powered to develop an 
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accurate prediction model. This does not mean that genetics should be discounted as a 

predictor of treatment response. Rather, that some or all of the above factors should be taken 

into account with future study design for genetic risk score construction. 

 

In conclusion, pQTL analyses were carried out in RA patients commencing etanercept, and 

identified numerous loci that are significantly associated with paired protein expression data. 

14 proteins from analyses in Chapter Five were found to have a genetic basis underlying 

their expression, and these could prove to be valuable candidates for future study. PRS 

modelling failed to fit statistically significant models predictive of RA treatment non-

response. 

 

7.3. Chapter summary 

pQTL analyses were carried out at baseline and after three months of treatment with 

etanercept in 147 patients with RA who had paired genotype and protein expression data. At 

baseline, 2,184 cis pQTLs were identified in 60 proteins and at three months, 1,570 cis 

pQTLs were identified in 68 proteins. Significant pQTLs were included in polygenic risk 

score models, but failed to predict treatment non-response at three months. 
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CHAPTER EIGHT: DISCUSSION 

 

This thesis has sought evidence to confirm the hypothesis that biological factors, such as 

protein expression, contribute to variability in circulating drug levels and treatment response 

to biologic agents in patients with RA. By confirming this hypothesis and identifying such 

factors, clinical rheumatology practice can move towards a precision medicine approach, 

whether by personalising dosing regimens of specific agents, or by selecting therapeutic 

agents which are most likely to be successful in controlling disease activity in patients with 

RA, given their phenotypic and/or genotypic profile. By ensuring patients receive the right 

drug at the right time, this will maximise cost-benefit by reducing prescription of ineffective 

medications that have a cost to the NHS, as well as controlling a patient’s active RA more 

rapidly, preventing the cost of treating long-term sequelae such as joint destruction, and 

reducing the costs of increased healthcare encounters due to disease flares. Furthermore, 

some patients may be able to receive biologic agents at an increased dosing interval than 

licensed, thereby reducing NHS drug costs by decreasing the overall number of doses, as 

shown with simulations of Benepali in this thesis. 

 

This thesis has provided proof-of-concept for popPK parameter estimation in a small cohort 

of patients commencing either Amgevita or Benepali in a real-world setting; simulations of 

altered dosing intervals have provided feasibility data for a future personalised dosing trial. 

A number of proteins identified using SWATH-MS have been found to be associated with 

various RA disease outcome measures, including therapeutic Amgevita or Benepali drug 

levels and DAS28 and its sub-components. Several proteins were also differentially 

Summary of chapter contents: 
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8.3. Evidence of proteins associated with DAS28 and its components – future 

biomarkers? 
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8.6. Clinical implications 

8.7. Future work 

8.8. Final conclusions 
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expressed over time by patients with a poor EULAR response, and between good/moderate 

and poor EULAR responders, providing candidate protein expression profiles that separate 

these time points or responder groups and which now require independent replication. 

Finally, pQTL analysis has identified loci that implicate a genetic basis behind expression 

of proteins that are associated with RA disease outcome measures, which could prove 

essential in future personalised streamlining of patients onto appropriate medication. 

 

8.1. Proof-of-concept for personalised dosing: popPK studies and parameter estimation 

Amgevita and Benepali, and most other biologics prescribed for the treatment of RA, are 

usually dispensed as pre-filled auto-injector syringes with a set dosage. Therefore, dose 

increases or reductions for these agents can only be effected by alteration of the dosing 

interval. An etanercept dose-finding study by Breedveld et al consisting of post-hoc analysis 

determined that doses of 10mg twice-weekly, 50mg every two weeks and 50mg weekly were 

the most effective to reach a steady-state drug concentration in the target range of 0.5 – 2 

mg/L388. Target concentrations in this study were determined using PD markers in an Emax 

model of pooled trial patients, and are lower than those proposed by Jamnitski et al at 2.1 – 

4.7 mg/L220. This may be because the levels proposed by the Jamnitsky study may be 

random, not trough, drug concentrations, as this was not overtly stated in the manuscript. 

Interestingly, findings from the Breedveld study broadly agreed with those in this thesis, in 

that doses lower than the currently recommended dosage of Benepali 50mg weekly were 

also found to be efficacious, and higher doses were of no further benefit to patients. 

However, while lower doses were shown to be as effective as the recommended dose, this 

was using data from a randomised clinical trial (RCT), where different doses of the drug 

were administered. In routine clinical practice, only 50mg pre-filled auto-injectors are 

available for patients to self-administer in England. Therefore, this thesis describes methods 

and results for an alternate-dosing strategy that involves alteration of the standard dosing 

interval of every seven days, based on popPK modelling data derived from real-world 

patients and not just patients who met eligibility criteria for an RCT. 

 

The importance of carrying out pharmacological studies in patients recruited directly from 

the clinic room instead of into the controlled situation of a clinical trial should not be 

underestimated. In an RCT, strict inclusion criteria exist that often exclude more unwell 

patients with a higher disease burden, and the drug being studied is administered by a 

clinician at set times using a standardised protocol, which varies from which and how 

patients receive these medications in routine clinical practice. In this thesis, the samples and 
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data were collected from patients who were injecting themselves with medications, and 

drugs were not being administered by study clinicians. Drugs were not being administered 

at precise times (although precise dates and times were documented for the purpose of 

popPK modelling), and this is what would be expected in a patient’s daily life. Drug 

administration also depended on each patient’s individual technique, and this may also have 

influenced how much drug was absorbed; overall, therefore, the study design is more in-

keeping with real-world scenarios and the findings should have greater generalisability than 

those from an RCT. 

 

Despite the variable factors, enough drug concentration data was collected in order to derive 

two popPK models of patients starting TNFi biosimilars, one each for Amgevita and 

Benepali. This study has shown that even outside the very controlled environment of an 

early-phase clinical trial, it is still possible to obtain a level of meaningful and accurate 

information that allows the fitting of popPK models that reflect expected PK parameters, but 

also form the basis for simulations for future trial design. The fact that this has been achieved 

with only 10 and six patients in each popPK model, respectively, with only sparse sampling 

over 12 weeks, highlights the power of this modelling technique. With more patients 

recruited and more accurate PK parameter estimation, a personalised dosing trial based on 

these parameters could be a very realistic and feasible next step to this research. Alongside 

a personalised dosing trial, health economic research could be carried out to determine the 

cost-benefit of increased dosing intervals to the NHS, by comparing savings in drug cost and 

costs incurred from delayed RA disease control (such as increased healthcare encounters due 

to disease flares) against the cost of extra drug doses in those patients who require reduced 

dosing intervals (i.e. increased doses closer together) and extra drug level sampling so that 

personalised doses can be recommended. Only by demonstrating improved outcomes, 

acceptability to patients and cost-benefit can personalised dosing translate from a research 

trial to routine clinical practice. 

 

8.2. Should we use drug concentration levels as a treatment outcome measure in RA? 

Previous findings have shown that random adalimumab levels, but not random etanercept 

levels, were predictive of EULAR response at 12 months11. It could be postulated that 

therapeutic or even absolute drug levels would provide a clinician with a more objective RA 

clinical outcome measure than a composite score, like DAS28 or ACR20/50/70, which 

includes patient-reported outcome measures. Because drug levels are not influenced by 

patient reporting, they could be considered an objective clinical outcome measure. 
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Conversely, levels could be affected by a number of factors, such as operator inaccuracy 

when carrying out ELISAs, faulty testing kits, sample degradation or even poor drug 

adherence by patients. This latter variable is less of an issue, as drug non-adherence has been 

shown to be predictive of treatment non-response in patients receiving TNFi64, so low drug 

levels in this case would be a proxy for non-adherence and would still be predictive of drug 

non-response. 

 

Drug levels could also be low due to neutralising ADAbs, although these have not been 

detected for etanercept389. Immunogenicity to TNFi is a potential cause of both primary and 

secondary non-response. This study did not include ADAb levels, and this is a potential area 

for future development as serum samples are still available in the BRAGGSS-PD patients at 

all sampling time points. It could be interesting to ascertain whether ADAbs develop early, 

within the first 21 weeks of treatment, and if so, how early they develop and how much they 

impact drug levels and treatment response at 3 months. Another potential confounder for 

drug levels is body composition and/or BMI, but in popPK analysis, weight was not shown 

to significantly impact the model when included as a covariate. 

 

There are arguments against using drug concentration levels as a clinical outcome measure, 

however. Jani et al found no association between random etanercept levels and EULAR 

response following adjustment for the confounders of age and biological sex, and were also 

unable to define a clear therapeutic window of etanercept levels that corresponded to 

treatment response11. Furthermore, studies defining therapeutic windows for etanercept vary 

widely in estimates, with Jamnitski et al proposing 2.1 – 4.7 mg/L220 (although it is unclear 

whether these are trough or random levels), Chen et al proposing trough levels 1.24 mg/L at 

six months and 0.80 mg/L at 12 months390, and Sanmarti et al proposing trough levels of 2.3 

mg/L391. There could be biological reasons why drug levels may not accurately reflect RA 

disease activity as well. For example, drug concentrations may be “adequate,” in which case, 

a patient would be regarded as a treatment “responder,” but they might have ongoing 

inflammation and/or synovitis, as assessed with measurement of acute-phase reactants (e.g. 

CRP or ESR) or with imaging (e.g. ultrasound or MRI evidence of synovitis). In this case, 

using drug levels as a measure of disease activity would bias biomarker discovery. 

 

Perhaps some of the most compelling evidence for using drug levels as an outcome measure 

are findings from this thesis. After adjustment for confounders, three proteins were found to 

be associated with drug levels: C4B was associated with therapeutic drug levels, A1AG1 
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was negatively associated with Amgevita levels (and positively associated with CRP) and 

IKKA was associated with Benepali levels. While these could be chance findings due to 

multiple comparisons in a small cohort of patients, the same proteins have also been shown 

to be associated with other RA disease outcome measures in a sub-cohort of BRAGGSS 

patients on etanercept, independent from the BRAGGSS-PD patients. Furthermore, these 

proteins also had associated pQTLs: C4B had 21 associated SNPs at baseline and 26 at three 

months, A1AG1 had one associated SNP at baseline and four SNPs were associated with 

IKKA at baseline. During SWATH-MS protein map extraction, C4B was included from the 

plasma library, and both A1AG1293 294 and IKKA (participant in canonical TNF pathway) 

were included from the bespoke RA library. 

 

The three proteins could be examined further as predictors of drug levels. C4B, alongside 

C4A, is reduced in patients with SLE. It has been shown that a high copy number of C4 

genes is protective against SLE392, and this thesis found that increased levels of C4B were 

associated with the achievement of therapeutic drug levels. Although SLE has a distinct 

disease identity from RA, there are common autoinflammatory components, and increased 

C4B levels alongside treatment response could implicate C4 as either an anti-inflammatory 

driver or marker in the setting of treatment of active RA with etanercept. 

 

A1AG1 was associated with CRP, a known acute-phase reactant, and it is known to 

participate in the acute-phase response itself393. CRP is a non-specific acute-phase reactant, 

and can be raised in all inflammatory states, including acute infection; it is a good indicator 

of ongoing systemic inflammation, but may not be specific to RA. However, A1AG1 

expression was shown to have a genetic basis in the sub-cohort of etanercept patients, which 

could implicate a disease process more specific to RA. As A1AG1 had a pQTL at baseline, 

but not three months, patients with increased expression could be more likely to fail on 

Amgevita. This requires wider validation and experimental studies to determine the 

mechanism, but A1AG1 is potentially an exciting biomarker predictive of treatment non-

response. IKKA inhibits the pro-inflammatory canonical NF-κ-B signalling pathway310, so 

similarly, a positive association with Benepali levels and a pQTL at baseline could reflect 

increased levels in patients who are likely to achieve treatment response on this drug. 

 

Whether drug levels should be used as an objective RA disease outcome measure remains a 

research question; while there are arguments both for and against their use, this should be 

confirmed against known objective measures of RA disease activity, such as radiological 
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evidence of synovitis. However, radiological methods are time-consuming and can be costly 

(in the case of MRI), so large-scale studies have thus far not been undertaken. 

 

8.3. Evidence of proteins associated with DAS28 and its sub-components – future 

biomarkers? 

In addition to C4B, A1AG1 and IKKA, 11 other proteins were found to be associated with 

DAS28 and/or its components and also had associated pQTLs. This genetic basis for 

expression supports these proteins as candidate biomarkers, due to the known genetics 

underlying RA pathogenesis394. These proteins had a combination of both pro- and anti-

inflammatory roles. 

 

EHD1 has multiple roles in cell membrane reorganisation during ATP hydrolysis315; in this 

thesis, it was found to be positively associated with DAS28, worsening ΔDAS28 and patient-

reported VAS of global health. Therefore, this would potentially implicate EHD1 as a pro-

inflammatory biomarker. TCPH is also involved processes during ATP hydrolysis, namely, 

assistance with protein folding316; and this protein was also positively associated with 

DAS28 and SJC. Both EHD1 and TCPH could represent biomarkers of treatment non-

response via their interactions with ATP hydrolysis. 

 

A number of proteins were negatively associated with markers of increased RA disease 

activity. IGF1 is known to regulate osteoblast glycogen synthesis as well as stimulate 

glucose transport in osteoblasts319, and was negatively associated with DAS28, SJC and poor 

EULAR response. IGF1 only had a pQTL after three months of treatment, so expression 

seems to be more a reflection of response to etanercept, as opposed to influencing the success 

of the drug. ILF3 is involved in a wide range of transcriptional and post-transcriptional 

processes395 and plays an important anti-viral role321. In this thesis, it was negatively 

associated with SJC and poor EULAR response, with a pQTL at three months, but not 

baseline, so again, expression is likely to be in response to treatment with etanercept. NAA25 

is thought to participate in normal cell-cycle progression343 and was negatively associated 

with CRP in this thesis. The pQTL associated with this protein was identified pre-treatment, 

so NAA25 could represent a baseline biomarker predictive of treatment response to 

etanercept. 

 

The remaining proteins with pQTLs that were associated with RA clinical outcome measures 

were all differentially expressed between good/moderate and poor EULAR responders at 
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either baseline or three months (XRCC6, CALM2, CALD1, CAMK1 and RSU), apart from 

BLVRB, which was differentially expressed between baseline and six months in poor 

EULAR responders. These proteins seem to form expression profiles differentiating 

different EULAR response groups, or the same group over time. A genetic basis behind some 

elements of these expression profiles implies that it may be possible to predict whether a 

patient is likely to respond to etanercept or not. 

 

Notable by its absence is CRP: it frequently lost significance when adjusted in multivariable 

models and it had no pQTLs, implying that there was no genetic basis to its expression, 

despite its association with DAS28 and ΔDAS28. While these associations are reassuring in 

that they act as a positive control for the rest of the analyses, the negative findings for CRP 

confirm its role as a non-specific acute-phase reactant. Therefore, measurement of CRP 

levels pre-treatment or early in treatment are unlikely to provide clinicians with a useful 

marker of prognosis or future treatment response, and simply reflect ongoing disease 

activity. Increased levels probably reflect treatment inefficacy and continued increased 

disease activity, but this protein is unlikely to inform any treatment decisions, such as 

whether to commence or switch patients from particular therapeutic agents. An explanation 

for the lack of genetic basis of CRP expression in this study could be that while numerous 

studies have identified a genetic effect on basal CRP, CRP variability resulting from 

different levels of systemic inflammation within the study cohort could be large enough to 

mask the influence of underlying genetics396. This thesis has identified other protein 

candidate biomarkers that are potentially more specific and more predictive of treatment 

response than CRP, which now require independent validation; if replicated, the testing of 

these proteins could have implications for future clinical practice. The candidate biomarkers 

must also by confirmed against objective disease activity outcomes that are not based on 

CRP or clinical measurements, such as radiological evidence of synovitis. 

 

8.4. Thesis strengths 

The study populations included in this thesis are, undoubtedly, one of its strengths. Although 

smaller than expected, the BRAGGSS-PD cohort has already yielded exciting positive 

findings with respect to future personalised dosing trial design. While considered sparse 

sampling in popPK terms, the multiple serum samples obtained over time in this cohort have 

provided detailed protein maps that demonstrate changes in protein levels over time with 

treatment with Amgevita or Benepali. Sampling was more detailed than previous studies 

carried out in BRAGGSS, where samples were only available at baseline and three, six and 
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12 months. However, because of the additional ethics obtained for the popPK study, 

additional serum protein mapping was carried out on the extra samples taken between 

baseline and three months. 

 

Collection of samples for the BRAGGSS-PD sub-study was robust and reliable. The author 

collected all samples and ensured that they were all delivered to the CfMR and processed 

within 24 hours of sampling. Drug administration and sampling times were all accurately 

recorded to the nearest minute. Because drug administration was witnessed by the author, it 

was also assured that drug concentration measurements were true trough levels, and not 

random drug levels. 

 

Use of patients from the wider BRAGGSS cohort, both in the etanercept sub-cohort and in 

the PRS study, was also a strength to this thesis. Patients recruited to BRAGGSS are deeply 

phenotyped, and have a wide range of detailed treatment outcome data that can be analysed 

alongside biological samples. 

 

A large cohort of BRAGGSS patients, separate from the etanercept sub-cohort, were also 

included as target data as part of the PRS modelling analyses. This cohort had fully QC-d 

genotype data on all participants, as well as additional covariate information for adjusted 

analysis. Use of these additional patients was also a strength because it allowed testing of 

significant pQTLs in a completely independent cohort. 

 

Another strength in this work lies in the protein acquisition technique. SWATH-MS is an 

accurate, high-throughput DIA MS technique that can capture thousands of proteins in each 

run92. SWATH-MS compares favourably against other MS techniques103 and has fewer 

missing values than other DDA techniques101. In addition, because SWATH-MS captures 

all proteins in a sample during each run, data can be re-interrogated with an alternative 

protein library in silico at a later date, as a permanent recording of the protein makeup of 

each sample is made. 

 

8.5. Thesis limitations 

Whilst use of BRAGGSS patients was a strength of this thesis, this also came with inherent 

limitations. Because BRAGGSS is a real-world clinical observational study, there is a large 

scope for missing data. Many patients have missing RA disease outcome data after baseline, 

and this is often because of delayed outpatients appointments due to health service pressures, 
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leading to, for example, overdue DAS28 measurements. In addition, many aspects of 

BRAGGSS data collection rely on patients filling in paper questionnaires (e.g. HADS, HAQ) 

and returning these via post to the study coordination team. This self-directed aspect to 

participation in BRAGGSS does leave it open to missing data. 

 

The work in this thesis only focused on adalimumab and etanercept and their biosimilars, 

and these are only two of a selection of TNFi drugs. A range of bDMARDs with differing 

mechanisms alternative to TNFi are available for prescription to patients with uncontrolled 

RA, such as abatacept (T cell blockade), tocilizumab (IL-6 receptor inhibition) and rituximab 

(CD20 blockade). In addition, a new generation of small-molecule tsDMARDs have been 

approved for treatment of RA in the UK over the past five years, which work via inhibition 

of Janus kinases and interfering with the JAK-STAT signalling pathway. Findings in this 

thesis are likely specific to the TNFi drugs studied, and need to be assessed in other drugs 

which work via different biological pathways to determine whether they are transferable. 

 

While findings of significant proteins replicated across independent BRAGGSS cohorts, 

there was no external data for validation outside of BRAGGSS available for analysis in this 

thesis. BRAGGSS is a UK-based multi-centre cohort, but treatment practices and the 

genetics of patients are different outside of the UK. Findings from this study require external 

validation, both from other UK-based cohorts, as well as in internationally-recruited patients. 

 

There are also limitations to the acquisition of data using SWATH-MS and its subsequent 

pre-processing prior to analysis in this thesis. Missing protein values were assumed to be 

missing at random and were subsequently imputed; however, if values were truly missing 

due to biological reasons, then this might have been the incorrect approach and may have 

influenced results. Proteins included in analysis were pre-selected into a generic plasma 

library and a bespoke RA library, but both of these protein libraries may not have included 

proteins that affected treatment response and hence, were not matched from the libraries 

during data extraction. Future studies could include an enhanced RA protein library that 

builds on pathways from proteins identified in this thesis, that includes proteins known to 

have an effect on ADME of TNFi drugs and that includes proteins identified from further 

functional genetics studies. Another potential issue with the SWATH-MS data was that when 

a batch processing effect was discovered after SWATH-MS, this was statistically corrected. 

However, this may have suppressed any proteins with a strong signal in the equalisation 

process. An alternative approach here would have been to analyse all batches separately, and 
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then assess for replication. The decision was made to batch correct and analyse all samples 

together for the machine learning analysis in order to maximise power, but this may not have 

been the optimal approach. Future work could include repeating the machine learning 

analysis with separate batches, instead of grouping them together. Proteins detected using 

SWATH-MS could also be confirmed using a different technology, such as multiplexed 

detection techniques (e.g. Olink®82, SomaScan®81) or ELISA. 

 

As discussed earlier in this thesis, negative findings could have been due to the use of RA 

clinical outcome measures that do not adequately reflect active synovitis. The DAS28 (and 

EULAR response, which is based on DAS28) is a composite score that is not agnostic of 

non-inflammatory factors, such as a patient’s perception of their health state outwith their 

RA (VAS of global health) or chronic widespread syndromes such as fibromyalgia (as 

reflected by increased TJC). According to a patient’s body habitus, it can also sometimes be 

challenging to palpate for swollen joints. However, objective measures of disease activity 

such as ultrasound or MRI synovitis are not practical for rapid assessment in the clinic room, 

and so, although the DAS28 is imperfect, it is the current measure of choice for assessing 

RA disease activity in UK practice. 

 

8.6. Clinical implications 

The research carried out in this thesis has utilised real-world clinical patients recruited from 

rheumatology clinics across the UK. As such, findings are applicable to patients receiving 

routine clinical care and should be more relevant for from translation to day-to-day practice. 

The popPK study has provided a basis for future personalised dosing studies. Commencing 

patients on a longer dosing interval of a TNFi could have substantial cost-saving 

implications, while also reducing patient drug exposure and risk of adverse events, such as 

infection. Furthermore, commencing patients with more aggressive disease on a shorter 

dosing interval may ensure more rapid control of symptoms and halt the processes of joint 

destruction, and this also has cost-saving potential, from reduced burden on healthcare 

services (from reduced flares) as well as ensuring patients are more likely to respond to 

treatment. 

 

A number of candidate biomarkers of treatment response and non-response have been 

identified during the course of this thesis. Currently, patients are commenced on biologics 

according to local prescribing protocols, often on the least expensive drugs first, then with 

escalation through gradually more expensive agents if initial therapy fails. If biomarkers of 
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treatment response to specific therapeutic agents can be determined during experimental 

studies, in the future, patients may be tested for these pre-treatment or very early on in 

treatment to determine whether they are likely to respond to a drug, or whether its 

prescription is an exercise in futility. Cycling of patients through multiple biologics imparts 

a significant cost burden on health services, as well as needlessly exposing patients to the 

risk of adverse events from a drug without a clear probability of success on any given agent. 

Stratified drug prescription, guided by biological markers such as a patient’s underlying 

genetics or baseline protein expression profile, could ensure patients receive the correct 

agent at the first attempt. 

 

8.7. Future work 

There is a wide scope for future work. Firstly, additional patients could be recruited to both 

popPK studies (for Amgevita and Benepali) in order to gather more data points for detailed 

parameter estimation. An increased number of patients would also improve power and 

potentially allow introduction of covariates into models. Once PK parameters are accurately 

estimated with confidence, this could lead to a true personalised dosing study. Patients could 

have drug levels measured at specific points during a trial – these levels could then be used 

to determine exactly what their current PK profile is, in order to advise on the next dosing 

interval of their biologic. This form of active monitoring and feedback could lead to more 

rapid disease control, but also be cost-saving if dosing intervals can later be lengthened once 

a patient’s RA disease activity is under control. Some patient involvement and engagement 

work that has been carried out in the CfMR has found that patients like the concept of 

personalised dosing, and further qualitative work with patient focus groups could be included 

as part of future personalised dosing study design to evaluate patient acceptability and design 

feasibility. 

 

As previously mentioned, the machine learning analysis could be re-run in a number of ways 

i.e. without imputed missing proteins values, without batch correction, with all proteins 

obtained at SWATH-MS, and not filtered for only those proteins that were significantly 

differentially expressed in the case-control study. A variety of different machine learning 

algorithms that were not included in the analysis for this thesis could also be tested. The 

computational time required for all of these combinations was outwith the scope of this 

thesis, but additional analysis could potentially yield further interesting findings in addition 

to those included in this body of work. 
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Another previously mentioned analysis would involve measurement for ADAbs in the 

BRAGGSS-PD patients. It would be interesting to ascertain whether ADAbs were associated 

with drug levels and/or treatment response outcomes in these patients, as well as how early 

they might occur. Given the extensive sampling before the 12-week point in these patients, 

this would be an accurate method to assess how early in treatment patients might develop 

ADAbs. 

 

Most importantly, significant proteins identified from this study require both external 

validation and experimental mechanistic confirmation of association. The most logical 

starting point would be to validate the 14 proteins that were associated with RA disease 

outcome measures that also had significant pQTLs and to carry out genetic studies at the 

SNPs identified. Because of the low number of these proteins, these could be measured in 

an independent cohort to BRAGGSS using ELISA or even a bespoke panel from a provider 

of multiplexed protein quantification. Mechanistic studies should be carried out on any 

protein(s) validated in an external cohort in order to determine how each protein interacts 

with RA drug therapy i.e. whether protein levels predict drug response, or whether they are 

a consequence of drug response. Studies could also be carried out in patients with RA 

receiving different therapeutic agents (as previously discussed) or in patients with different 

diseases receiving the same drugs, in order to check the specificity of findings to RA or the 

drugs studied in this thesis. This would then ascertain whether significant proteins are 

generally prognostic of a patient’s RA disease course, that is, whether they will associate 

with response, regardless of treatment or even disease, or whether they are predictors of 

specific therapeutic agents. The latter would be preferable in the practice of precision 

medicine, as it would aid streamlining of patients onto a drug with a mechanism targeted to 

their biological profile. 

 

Further downstream, if any significant proteins are validated as biomarkers of treatment 

response, these could then be developed for clinical assay. The ideal outcome would be a 

simple ELISA-based laboratory blood test, as for CRP, where clinicians can decide that a 

patient requires treatment escalation, and then a test can be ordered to determine which 

therapy to stratify that patient onto. Ideally, candidate biomarkers identified by this study 

would be able to predict treatment response to TNFi either before or very early on in 

treatment, to ensure that patients with RA are not commenced futilely on a drug that they 

are destined not to respond to. Something that this thesis has touched on throughout is that 

perhaps treatment response should be defined differently. 
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Currently, composite scores such as the DAS28 and CDAI/SDAI incorporate patient-

reported measures of global health. Patient VAS of global health has previously been 

demonstrated to correlate strongly with illness cognitions and depression as measured using 

the HADS397. However, biological variables impact on biological processes, so an objective 

physiological measure of disease activity would be preferential in future clinical practice, as 

opposed to a composite score that incorporates patient-reported elements that can be biased 

by psychological factors. Biomarkers of treatment response that are found to be associated 

with synovitis and the systemic inflammation inherent with active RA could prove to be the 

objective disease outcome measure and/or predictor of treatment response that could 

transform current bDMARD prescribing practice. Another additional piece of research that 

could be carried out as a consequence of this thesis is to determine whether any proteins 

correlate with the 2C-DAS28, which omits TJC and VAS of global health and has been 

shown to correlate with ultrasound evidence of synovitis, as well as with radiographic 

evidence of joint erosions52. 

 

Mechanistic studies may also offer valuable insight and understanding into the function of 

significant proteins. This may lead to development of new drug targets, which could inform 

both de novo drug development, as well as repurposing of pre-existing therapeutic agents. 

 

8.8. Final conclusions 

This thesis sought to identify biological factors that might contribute to the variability in 

circulating TNFi drug levels and treatment response to biologic agents in patients with RA. 

The popPK studies did not identify any significant model covariates, but did provide proof-

of-concept for future personalised dosing studies. The discovery proteomics study identified 

a number of proteins that were significantly associated with various RA clinical outcome 

measures. Perhaps the most promising of these proteins are C4B, A1AG1 and IKKA, which 

had associations in two independent cohorts as well as a genetic basis behind their 

expression, with associated pQTLs. Findings from this thesis require external validation with 

replication studies in an independent cohort, but once confirmed, this could pave the way for 

future biomarker and/or drug target development. 
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Summary of documents contained in Appendix One: 
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 Favourable ethical opinion for BRAGGSS Substantial Amendment 17a (BRAGGSS-

PD sub-study). 

 BRAGGSS-PD patient information leaflet v.1. 

 BRAGGSS PD informed consent form v.1. 

 Favourable ethical opinion for BRAGGSS Substantial Amendment 17b (combined 

BRAGGSS prospective arm and BRAGGSS-PD patient information leaflet and 

consent form). 

 Combined BRAGGSS prospective arm and BRAGGSS-PD patient information 

leaflet v.1. 

 Combined BRAGGSS prospective arm and BRAGGSS-PD informed consent form 

v.1. 
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North West - Greater Manchester South Research Ethics 
Committee 

3rd Floor, Barlow House 

4 Minshull Street 

Manchester 
M1 3DZ 

 

 

12 November 

2018 Professor 

Anne Barton 

Arthritis Research UK 
Epidemiology Unit School of 
Medicine 
The University of 
Manchester 
Oxford Road 
Manchester 
M13 9PT 

 
 

Dear Professor Barton 
 

Study title: Investigation of genes influencing response to therapy with 
Etanercept in patients with rheumatoid arthritis and related 
arthropathies. 

REC reference: 04/Q1403/37 
Amendment number: Amendment 17a 
Amendment date: 09 October 2018 
IRAS project ID: 31668 

 
The above amendment was reviewed by the Sub-Committee in correspondence. 

 

Ethical opinion 
 

The members of the Committee taking part in the review gave a favourable 
ethical opinion of the amendment on the basis described in the notice of 

Please note: This is the favourable 

opinion of the REC only and does 

not allow the amendment to be 

implemented at NHS sites in 

England until the outcome of the 

HRA assessment has been 

confirmed. 
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amendment form and supporting documentation. 
 
The Committee agreed that where home visits were to be made a lone worker 
policy should be confirmed. 

 

The researcher confirmed that a lone worker policy was in place and this was provided. 
 

The Committee was satisfied. 
 

Approved documents 
 

The documents reviewed and approved at the meeting were: 
 

Document Version Date 

Notice of Substantial Amendment (non-CTIMP) [Minimal dataset] Amendment 
17a 

09 
October 
2018 

Other [Lone Worker Policy]   

Participant information sheet (PIS) [Patient information leaflet] 2 09 
October 
2018 

Research protocol or project proposal 2 09 
October 
2018 

 

Membership of the Committee 
 

The members of the Committee who took part in the review are listed on 
the attached sheet. 

 

Working with NHS Care Organisations 
 

Sponsors should ensure that they notify the R&D office for the relevant NHS 
care organisation of this amendment in line with the terms detailed in the 
categorisation email issued by the lead nation for the study. 

 

Statement of compliance 
 

The Committee is constituted in accordance with the Governance Arrangements 
for Research Ethics Committees and complies fully with the Standard Operating 
Procedures for Research Ethics Committees in the UK. 

 
We are pleased to welcome researchers and R & D staff at our Research 
Ethics Committee members’ training days – see details at 
http://www.hra.nhs.uk/hra-training/ 

 

 

Yours sincerely 

 
pp 
Professor 
Sobhan 
Vinjamuri Chair 

04/Q1403/37: Please quote this number on all correspondence 

http://www.hra.nhs.uk/hra-training/
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PATIENT INFORMATION LEAFLET 

Personalising Dosing of Biologics in Rheumatoid Arthritis to Maximise Cost-Benefit 

(BRAGGSS-PD) 

A Sub Study of the BRAGGSS Study; 
Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate  

 

 
 
A Sub Study of the BRAGGSS Study; 
Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate  
 
You are being invited to participate in the BRAGGSS-PD sub-study. Before you decide 
whether to take part or not, it is important for you to understand why this research is being 
done and what it will involve. Please take time to read the following information and ask 
for anything that is unclear to be explained. 
 
• Part 1 tells you the purpose of the study and what will happen to you if you take 
part. 
• Part 2 gives you more detailed information about the conduct of the study and 
other useful study information. 
 
Part 1 
 
What is the purpose of the study? 
 
We would like to find out whether clinical and/or psychological factors combined with 
serological, immune or genetic factors either in blood or joint fluid influence arthritis or 
treatment response. We have previously found that drug levels in the blood correlate with 
how well a treatment works, so we also want to explore what influences the drug levels. 
We aim to determine whether changing the time between each drug dose could potentially 
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be used in the future to adjust drug levels for each person (personalising the dosing 
intervals).  
 
 
Why have I been chosen? 
 
You have been chosen to participate as you are about to start Adalimumab, Etanercept or 
Certolizumab biologic treatment, or a biosimilar derived from these medications. 
 
 
Do I have to take part? 
 
You do not have to take part. If you do decide to take part, you can keep this information 
leaflet and will be asked to sign a consent form. You are still free to stop taking part in the 
study at any time without giving a reason. Your participation will not interfere with the 
normal healthcare and treatment that you receive.  
 
What will happen to me if I take part? 

 
* The one week blood sample is only for participants taking Etanercept 
 
• If you agree to take part in the study, the study doctor will ask you to sign a consent 
form and arrange for a blood test to be carried out. This blood test would be performed as 
part of the treatment that you would receive anyway, whether or not you choose to 
participate in this study, but if you do agree to take part, an additional sample of blood will 
be taken. You should not need an extra needle for this sample; the extra blood would just 
be added on to your routine sampling. However, this may require an extra visit if your 
routine bloods have already been taken.  

  
Before you 

start biologic 
treatment 

After you’ve started biologic treatment 

  
  

1hour 
1 

week* 
2 

weeks 
4 

weeks 
6 

weeks 
3 

months 

Questionnaire 
completed by 
you 

X           X 

2 extra blood 
samples 

X X X X       

1 extra blood 
sample 

        X X X 

Synovial fluid 
aspiration 
(some 
participants 
only) 

X 

          

X 
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• The study doctor will ask you questions about your health and you will be asked to 
complete some questionnaires about your feelings towards your rheumatoid arthritis and 
your treatment with a biologic therapy. 
• If you have swollen joints, your study doctor will ask to perform a joint aspiration. 
Further information about this procedure is provided on page 4. However, you can still opt 
not to provide us with synovial fluid if you don’t want to. If you would like to provide a 
synovial fluid sample, the aspiration can either take place on the same day or can be 
arranged at another point before you start biologic treatment; your study doctor will 
discuss this with you.  
• After processing the sample you donate, we might realise that it doesn’t provide 
enough information to study, or perhaps the blood tubes may be broken or lost during 
delivery. If this situation arises, we would like permission to be able to contact you to 
replace the lost/insufficient sample. 
• The study doctor will be in touch with you to find out the date you are expected to 
start your biologic therapy and arrange for the rest of the questionnaires and samples to 
take place, which are detailed in the table above.  
 
In total, your participation will involve the following in a period of just over 3 months: 
(i) Agreement to answer questions about your health, feelings towards both your 
illness and the biologic treatment at 2 different time points. 
(ii) Agreement to provide blood samples at 6 or 7 different time points (depending on 
which medication you are starting). These would be stored and used to investigate genetic 
and other factors (including drug levels) that may influence your arthritis and your response 
to treatment. 
(iii) Agreement to link information already collected from your specialist to the results 
of the genetic studies. 
(iv) If you have swollen joints, you will be asked to provide synovial fluid samples twice 
during the study. If you decide you don’t want to have fluid taken from the joint, you can 
still take part in the rest of the study. 
(v) There will be additional hospital visits at the 2 week, 4 week and 6 week timepoints. 
Travel and parking will be reimbursed for these visits.  
(vi) If you are taking Etanercept, there will also be an additional hospital visit 1 week 
after you start your biologic treatment. Travel and parking will be reimbursed for this visit. 
 
What is serology? 
 
Serology is the study of serum. Serum is the fluid obtained when blood is separated into its 
solid and liquid components after it has been allowed to clot. It contains antibodies (as well 
as other proteins), which are made by the immune system to defend against infection. 
Antibodies are thought to play a role in rheumatoid arthritis.  
 
What is genetics? 
 
Genetics is the study of genes. DNA (deoxyribonucleic acid) is a molecule contained within 
nearly all our body’s cells and it contains genes within it. It is our genes that help to 
determine certain characteristics, such as hair colour and gender, as well as the likelihood 
that we will develop certain diseases. Genes differ between people and the purpose of this 
study is to investigate whether differences in genes affects how people respond to 
treatment with biologic therapy.  
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Once a gene is identified, we need to work out how it can make individuals susceptible to 
developing certain diseases. Although DNA is present in all cells, the genes it codes for are 
not ‘switched on’ (expressed) in all tissues. As part of this study, we’ll be measuring 
whether a gene is expressed. We think that genes that make people more susceptible to 
developing rheumatoid arthritis may be expressed in blood cells, because these are 
important in the immune system. Knowing whether a gene is expressed in blood cells will 
help us understand how it might make people more susceptible to developing diseases. 
 
What are white blood cells? 
 
White blood cells make up a large part of our blood. They are one of the main components 
that respond to being treated with biologic treatments in diseases like rheumatoid arthritis. 
These cells can be extracted from a blood sample. Looking at them can help us to 
understand whether their components, which vary from person to person, affect response 
to biologic treatment. 
 
What is joint (synovial) fluid? 
 
Every joint in the human body contains synovial fluid. The synovial membrane secretes this 
fluid into the joint cavity. It lubricates the joints and allows it to move easily. The synovial 
membrane is also the main place where inflammation occurs in joint diseases such as 
arthritis. Therefore, if you have swollen joints, you will have more synovial fluid than 
normal.. As part of this study, we are hoping to perform joint aspirations (to extract this 
fluid) on patients, so we can find out more about your treatment response.  
 
Joint aspiration is a procedure to remove fluid from the space around a joint using a needle 
and syringe. This is usually done under a local anaesthetic to relieve swelling and/or to 
obtain fluid for analysis to diagnose a joint disorder or problem. Joint aspiration is most 
often done on the knee joint and will only be performed if you have swollen joints. 
 
If you don’t want to provide us with synovial fluid, that’s ok. You can still take part in the 
rest of the study.  
 
What are the possible benefits of taking part? 
 
We cannot promise that the results of the study will help you, but the information we get 
might help to improve the treatment of people with rheumatoid arthritis in the future. 
 
Will the research influence the treatment I receive? 
 
The research will not alter the treatment you receive. Your specialist will start and stop 
treatments as determined by how you are doing. 
 
Unfortunately, we won’t be able to provide you with any of the results of this study as you 
are undergoing your treatment, but we hope to provide you with information about the 
outcome of the study once it has ended. 
 
Will my taking part in the study be kept confidential? 
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Yes. All the information about your participation in this study will be kept confidential. The 
details are included in part 2. 
 
 
 
 
Who is organising and co-ordinating the study? 
 
The study is being co-ordinated by the Arthritis Research UK, Centre for Musculoskeletal 
Research at the University of Manchester and the lead researcher, Professor Anne Barton, 
can be contacted for further details (Anne.Barton@manchester.ac.uk). The study doctor is 
Stephanie Ling (Email: Stephanie.Ling@manchester.ac.uk) and the Study Coordinators are 
Sarah Ashton and James Anderson (Tel: 0161 276 0539, Email: Sarah.Ashton-
2@manchester.ac.uk James.Anderson@manchester.ac.uk). 
 
This completes Part 1 of the information sheet. 
 
If the information in Part 1 has interested you and you are considering participation, please 
continue to read the additional information in Part 2 before making any decision. 
 
Part 2 
 
What will happen if I don’t want to carry on with the study? 
 
You can choose to withdraw from this study at any time, with no impact on your treatment 
or follow up with your Consultant and rheumatology team. If you do withdraw from the 
study, we would, with your permission, like to use any samples already donated and the 
data collected up until your withdrawal.  
 
What will happen to my research data? 
 
The University of Manchester is the sponsor for this study based in the United Kingdom. 
We will be using information from you and your medical records in order to undertake this 
study and will act as the data controller for this study. This means that we are responsible 
for looking after your information and using it properly. The University of Manchester will 
keep identifiable information about you for 5 years after the study has finished. Other study 
information will then be completely anonymised and kept for future research. 
Paper copies of any study documents will be retained in locked filing cabinets, which will 
be in turn kept in locked rooms in the Centre for Musculoskeletal Research at the University 
of Manchester. Information will be entered into the computer and stored electronically on 
University of Manchester databases which will be password protected and stored in 
restricted areas. 
Your rights to access, change or move your information are limited, as we need to manage 
your information in specific ways in order for the research to be reliable and accurate. If 
you withdraw from the study, we will keep the information about you that we have already 
obtained. To safeguard your rights, we will use the minimum personally-identifiable 
information possible. 
You can find out more about how we use your information by contacting;  
• The Chief investigator, Professor Anne Barton, (Anne.Barton@manchester.ac.uk)  
• The Study Doctor is Stephanie Ling (Stephanie.Ling@manchester.ac.uk)  
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• The Study Coordinators are Sarah Ashton and James Anderson (Tel: 0161 276 0539, 
Sarah.Ashton-2@manchester.ac.uk, James.Anderson@manchester.ac.uk) 
 
The research staff at your hospital will collect information from your medical records for 
this research study in accordance with our instructions. They will provide your health 
information to the University of Manchester team along with your name, NHS number and 
contact details so that the team in Manchester can contact you about the research study 
at the follow up timepoints. All of the information received at the University of Manchester 
is regarded as a special category of information.  
 
The research team at your hospital will pass these details to the study coordinator along 
with the information collected from you and your medical records. The only people at the 
University of Manchester who will have access to information that identifies you will be 
people who need to contact you at the follow-up timepoints. The people who analyse the 
information will not be able to identify you and will not be able to find out your name, NHS 
number or contact details. 
 
Information provided from the questionnaires you complete, and the clinical information 
provided by your study doctor, will be combined with the data we get from the blood tests 
and your synovial fluid. The individuals performing the genetic studies will have no access 
to any personal identifiable information about you, apart from your year of birth, your 
gender and the information collected during the research about your response to 
treatment with a biologic therapy, if you participate.  
 
You will be assigned a unique identification number and the results of the genetic tests will 
be stored on secure databases within the Arthritis Research UK, Centre for Musculoskeletal 
Research. Professor Anne Barton will act as custodian of the samples and, therefore, be 
responsible for protecting this information. 
 
Individuals from the University of Manchester and regulatory organisations, such as the 
Health Research Authority, may need to look at the data collected for this study to make 
sure the project is being carried out as planned. This may involve looking at identifiable 
data, such as your name, but all individuals involved in auditing and monitoring the study, 
will have a strict duty of confidentiality to you as a research participant. 
 
If you agree to take part in this research study, the information about your health and care 
may be provided to researchers running other research studies in this organisation and in 
other organisations. These organisations may be universities, NHS organisations or 
companies involved in health and care research in this country or abroad. Your information 
will only be used by organisations and researchers to conduct research in accordance with 
the UK Policy Framework for Health and Social Care Research. Information that could 
identify you will not be shared with any other organisation. 
 
What will happen to the samples I give? 
 
• The samples will be considered a gift to the Arthritis Research UK, Centre for 
Musculoskeletal Research, and stored under the custodianship of the Chief Investigator, 
Professor Anne Barton. 
• The samples you provide will be processed and stored at the Centre for 
Musculoskeletal Research or at an approved offsite Biobank facility. 
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• DNA will be extracted from the blood samples. 
• The serum sample will be used to look for antibodies and proteins that may be 
present which may influence the likelihood of someone getting arthritis and influence their 
treatment response. 
• Cells will be extracted from the blood samples to assess whether immune cell 
patterns predict treatment response.   
• DNA, RNA, cells and serum will be made available to other researchers who are 
undertaking research in this field. This will include researchers in other recognised 
Institutions, both in the UK and abroad. All of this data will be pseudo-anonymised; no 
identifiable information will be made available to these researchers.  
• The nature of this research is to examine patterns of genes and proteins in large 
numbers of individuals and no results on your own data will be fed back to you.  
What will happen to the results of the research study? 
 
Results of these studies will be published in scientific journals and presented at national 
and international rheumatology / genetics meetings. 
 
Who is funding the research? 
 
The BRAGGSS study is being funded from a core programme grant from the Arthritis 
Research UK, Centre for Musculoskeletal Research at The University of Manchester. 
Additional funding for the Personalising Dosing arm of BRAGGSS has been secured from 
NIHR Manchester Biomedical Research Centre via a competitive process. 
 
Who has reviewed the study? 
 
Before any research goes ahead it has to be checked by a Research Ethics Committee. They 
make sure that the research is fair. Your project has been checked by the Greater 
Manchester South Research Ethics Committee and has received the green light to go ahead.  
 
Thank you for taking time to read this information leaflet, which you should keep for future 
reference. 
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Consent Form 
 

Personalising Dosing of Biologics in Rheumatoid Arthritis to Maximise Cost-Benefit 
(BRAGGSS-PD) 

 
A Sub Study of the BRAGGSS Study; 

Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate  
 

 
Name of Researcher: Professor Anne Barton / Dr. Stephanie Ling 
 
 

1) I confirm that I have read and understand the information sheet version 1, dated 
30/04/2018 for the above study and have had the opportunity to consider the 
information and ask questions. 

2) I understand that my participation is voluntary and that I am free to withdraw at 
any time, without giving any reason and without my medical care or legal rights 
being affected. 

3) If I choose to withdraw from the study, I agree that my samples and data collected 
up to that point will be used in the research.  

4) I agree to complete the questionnaires and other survey forms about my health and 
about my feelings towards my illness and therapy. 

5) I agree to provide blood samples from a vein in my arm. These will be used to 
extract DNA, RNA, plasma, proteins, serum, cells and drug levels. 

6) I understand that all of the samples collected from me will be gifted to the Centre 
for Musculoskeletal Research and that these will be made available to researchers 
who are undertaking research. Such researchers will receive no identifiable 
information about me apart from my year of birth, my gender, and the information 
collected during the research about response to treatment with biologic/targeted 
therapy drugs if I participate.  

7) I agree to have my samples processed and stored at the Centre for Musculoskeletal 
Research or at an approved offsite research facility for the period of the study,  

Please initial box 
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8) I agree to have my samples stored and used to investigate genetic, clinical, 
serological and psychological factors involved in arthritis and response to 
treatment. 

 

9) I agree that my samples (and data created from analysis of my samples) may be 
provided to other bona-fide researchers working in the field for research purposes 
(this may include researchers both in this country and abroad).  

10) I understand that the nature of the research is to examine patterns of genes and 
cell types in large numbers of individuals and no results on my own genes will be 
fed back to me. Similarly, it will not be possible for researchers to inform me of my 
own disease progression or treatment response.  

11) I agree that my study doctor may provide the researchers with information from 
my Health Records that is relevant to this study. 
 

12) I understand that relevant sections of my data collected during the study, may be 
looked at by individuals from the University of Manchester, from regulatory 
authorities or from the NHS Trust, where it is relevant to my taking part in this 
research. I give permission for these individuals to have access to my data. 

13) I agree to information, from which I can be identified, being held securely by the 
research team at the Arthritis Research UK, Centre for Musculoskeletal Research. 
 

14) I agree to take part in the above study.  

 
 
 
 
 
 
 
 
 
 
 
 
 
Name of patient   Date   Signature of patient 
 
 
 
 
Name of person taking consent Date   Signature 
1 copy for the participant, 1 copy for the study file (original), and 1 copy sent to co-ordinating site  

 

  

 

15)  Synovial Fluid Samples (if applicable) 

I agree to donate synovial fluid samples to this study at the following timepoints;  

before I start biologic therapy, and 3 months after I have started my biologic  

therapy. These samples will be gifted the Centre for Musculoskeletal Research who  

will store and use these samples in the same way as my blood samples 

(see points 6, 7, 8, 9 and 10 above) 
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North West - Greater Manchester South Research Ethics Committee 
3rd Floor, Barlow House 

4 Minshull Street 
Manchester 

M1 3DZ 

Tel: 0207 104 8063 

 

 

04 December 2020 

Professor Anne Barton 

Arthritis Research UK Epidemiology Unit 
School of Medicine 
The University of Manchester 
Oxford Road 
Manchester 
M13 9PT 

 
 

Dear Professor Barton 

 
Study title: Investigation of genes influencing response to therapy with 

Etanercept in patients with rheumatoid arthritis and related 
arthropathies. 

REC reference: 04/Q1403/37 
Amendment number: SA17b 
Amendment date: 11 November 2020 
IRAS project ID: 31668 

Please note: This is the favourable 

opinion of the REC only and does 

not allow the amendment to be 

implemented at NHS sites in 

England until the outcome of the 

HRA assessment has been 

confirmed. 
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The above amendment was reviewed 30 November 2020 by the Sub-Committee in 
correspondence. 

 

Ethical opinion 
 

The members of the Committee taking part in the review gave a favourable ethical opinion 
of the amendment on the basis described in the notice of amendment form and supporting 
documentation. 

 
The Sub Committee raised no ethical issues with the amendment. 

 

Approved documents 
 

The documents reviewed and approved at the meeting were: 
 

Document Version Date 
 

Completed Amendment Tool [Substantial Amendment 17b 
amendment tool] 

1.2 11 November 2020  

Covering letter on headed paper [SA17b Cover Letter] 1 11 November 2020  

Participant consent form [Prospective and PD combined consent 
form] 

1 11 November 2020  

Participant information sheet (PIS) [Prospective and PD combined 
information leaflet] 

1 11 November 2020  

 
Membership of the Committee 

 

The members of the Committee who took part in the review are listed on the attached 
sheet. 

 
Working with NHS Care Organisations 

 
Sponsors should ensure that they notify the R&D office for the relevant NHS care 
organisation of this amendment in line with the terms detailed in the categorisation email 
issued by the lead nation for the study. 

 

Amendments related to COVID-19 
 

We will update your research summary for the above study on the research summaries 
section of our website. During this public health emergency, it is vital that everyone can 
promptly identify all relevant research related to COVID-19 that is taking place globally. If 
you have not already done so, please register your study on a public registry as soon as 
possible and provide the HRA with the registration detail, which will be posted alongside 
other information relating to your project. 

 
Statement of compliance 

 
The Committee is constituted in accordance with the Governance Arrangements for 
Research Ethics Committees and complies fully with the Standard Operating Procedures for 
Research Ethics Committees in the UK. 

 

HRA Learning 
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We are pleased to welcome researchers and research staff to our HRA 
Learning Events and online learning opportunities– see details at: 
https://www.hra.nhs.uk/planning-and- improving-research/learning/ 

 

 

Yours sincerely 
 

pp 
 

Professor 
Sobhan 
Vinjamuri Chair 

 
E-mail: gmsouth.rec@hra.nhs.uk 

IRAS Project ID - 31668: Please quote this number on all correspondence 

https://www.hra.nhs.uk/planning-and-improving-research/learning/
https://www.hra.nhs.uk/planning-and-improving-research/learning/
mailto:gmsouth.rec@hra.nhs.uk
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Patient Information Sheet 

Prospective Arm   

Combined with 

Personalising Dosing of Biologics in Rheumatoid Arthritis to Maximise Cost-Benefit 

(BRAGGSS-PD) 

STUDY TITLE:  Can clinical, serological, genetic and psychological factors be used to predict 

response to biologic treatment in rheumatoid arthritis? 

You are being invited to participate in the BRAGGSS Prospective Arm research study. Before 
you decide, it is important for you to understand why the research is being done and what 
it will involve. Please take time to read the following information and ask for anything that 
is unclear to be explained. 
 
About the research 
Who will conduct the research?  
Prof. Anne Barton 
Centre for Musculoskeletal Research 
Division of Musculoskeletal and Dermatological Research 
School of Biological Sciences 
University of Manchester 
 
Dr. Stephanie Ling 
Centre for Musculoskeletal Research 
Division of Musculoskeletal and Dermatological Research 
School of Biological Sciences 
University of Manchester 
 
What is the purpose of the study? 
When a person is treated with a biologic/targeted therapy drug for rheumatoid arthritis, 
information is routinely collected to assess whether these treatments have a greater risk 
of serious side effects and long term health problems than established treatments. This 
study is an extension of this to find out whether clinical, serological, genetic and 
psychological factors influence arthritis or response to treatment. 
 
We also would like to find out whether clinical and/or psychological factors combined with 
serological, immune or genetic factors either in blood or joint fluid influence arthritis or 
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treatment response. We have previously found that drug levels in the blood correlate with 
how well a treatment works, so we also want to explore what influences the drug levels. 
We aim to determine whether changing the time between each drug dose could potentially 
be used in the future to adjust drug levels for each person (personalising the dosing 
intervals).  
 
Who is sponsoring the study? 
The University of Manchester is the sponsor for this study based in the United Kingdom. 
We will be using information from you and your medical records in order to undertake this 
study and will act as the data controller for this study. This means that we are responsible 
for looking after your information and using it properly. 
 
Who is funding the research? 
The study is being funded from a core programme grant from Versus Arthritis.  
 
Who has reviewed the study? 
Before any research goes ahead it has to be checked by a Research Ethics Committee. They 
make sure that the research is fair.  
 
Will the outcomes of the research be published?  
At the end of the trial the results will be analysed and published in recognised medical 
journals and/or presented at scientific meetings. You will not be identified in any 
publication about the study. 
 
In addition, a summary of the findings will be made available on request to study 
participants (Please let your research nurse know if you are interested). You will be able to 
review a summary of these research findings, along with summaries of other research 
studies from the Centre for Musculoskeletal Research on our website; 
https://www.musculoskeletal.manchester.ac.uk/. 
 
What would my involvement be? 
What will I be asked to do if I take part? 
Your participation will involve the following: 
(i) Agreement to answer questions about your health, feelings towards both your 
illness and the biologic treatment at 4 different time points. 
(ii) Agreement to provide DNA, RNA, serum and cells at up to 9 different time points, 
as shown in the table on the next page. This would be obtained from blood samples, stored 
and used to investigate genetic factors that may influence arthritis and response to 
treatment. 
(iii) You may be asked to donate additional blood (20ml = roughly 1 table spoon) for the 
purpose of cell analysis. This request will be dependent on the treatment you are about to 
receive.  
(iv) If you have swollen joints, your study doctor will ask to perform a joint aspiration. 
Further information about this procedure is provided later in the information leaflet. 
However, you can still opt not to provide us with synovial fluid if you don’t want to. If you 
would like to provide a synovial fluid sample, the aspiration can either take place on the 
same day or can be arranged at another point before you start biologic treatment; your 
study doctor will discuss this with you.  
(v) Agreement to link information already collected from your specialist to the results 
of the genetic studies. 

https://www.musculoskeletal.manchester.ac.uk/
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(vi) There will be additional hospital visits at the 2 week, 4 week, 6 week and 12 week 
time points. Travel and parking will be reimbursed for these visits. Alternatively, some visits 
could take place at your home. Please discuss this with your research doctor. 
(vii) If you are taking Etanercept, there will also be an additional hospital visit 6 days 
after you start your biologic treatment. Travel and parking will be reimbursed for this visit. 
(viii) The 6 and 12 month blood kits will be sent to you at your home address by the team 
at The University of Manchester. There won’t be any additional hospital visits for these. 
You can take the blood kit to your next scheduled hospital appointment or GP visit so the 
samples can be taken there.  
 
What do I have to do? 
• If you agree to take part in the study, a member of the research team will ask you 
to sign a consent form and arrange for a blood test to be carried out. This blood test would 
be performed as part of the treatment that you would receive anyway, regardless of 
whether or not you choose to participate in this study, but if you do agree to take part, an 
additional sample of blood will be taken. You should not need an extra needle for this 
sample; the extra blood would just be added on to your routine sampling. However, this 
may require an extra visit if your routine bloods have already been taken.  
• A member of the research team will ask you questions about your health and you 
will be asked to complete some questionnaires about your feelings towards your 
rheumatoid arthritis and your treatment with a biologic therapy. 
• The study doctor will be in touch with you to find out the date you are expected to 
start your biologic therapy and arrange for the rest of the questionnaires and samples to 
take place, which are detailed in the table above.  
• At regular intervals over the course of one year (3 months, 6 months and 12 months 
after starting treatment), you will be asked similar questions regarding your health and 
feelings about your disease and treatment. Further blood samples will be taken at these 
times. 
• It may occur that on processing the sample you donated does not provide sufficient 
yield to analyse, or on occasion blood tubes may be broken/lost during delivery. If this 
situation arises, we would like permission to be able to contact you to replace the 
lost/insufficient sample. 
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This table might help to explain what taking part in the study involves; 
 Before 

you start 

biologic 

treatment 

After you’ve started biologic treatment 

  
1hour 

6 

days* 

2 

weeks 

4 

weeks 

6 

weeks 

3 

months 

6 

months 

12 

months 

Questionnaire 

completed by 

you 

X 

  

   X 

X X 

2 tubes of 

blood 
 

  
    

X’’ X’’ 

3 tubes of 

blood 
 

X X 
X X X  

  

6 tubes of 

blood 
X 

  
   X 

  

Synovial fluid 

aspiration 

(some 

participants 

only) 

X 

  

   X 

  

 
* The day 6 blood sample is only for participants taking Etanercept 
‘’ 6 and 12 month blood kits will be sent to you at home 
 
Why have I been chosen to take part? 
You have been chosen to participate as you are about to start Adalimumab, Etanercept or 
Certolizumab biologic treatment, or a biosimilar derived from these medications. 
 
What will happen to the samples I give? 
• The sample(s) will be considered a gift to the Centre for Musculoskeletal Research, 
and stored under the custodianship of the Chief Investigator, Professor Anne Barton. 
• The sample(s) you provide will be processed and stored at the Centre for 
Musculoskeletal Research or an approved offsite Biobank facility.  
• DNA will be extracted from the blood samples 
• The serum and plasma samples will be used to look for antibodies that may be 
present that may predispose to disease and influence treatment response. 
• Cells will be extracted from the blood samples to assess whether immune cell 
patterns predict treatment response.   
• DNA, RNA, cells, plasma and serum will be made available to other researchers who 
are undertaking research in this field. This will include researchers in other recognised 
Institutions, both in this country and abroad. 
 
What is genetics? 
DNA (deoxyribonucleic acid) is a molecule contained within nearly all our body’s cells and 
it contains genes within it. It is our genes that help to determine certain characteristics, 
such as hair colour and gender, as well as the likelihood that we will develop certain 
diseases. Genes vary between people and the purpose of this study is to investigate 
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whether variation in genes affects how people respond to treatment with biologic therapy. 
Genetics is the study of genes. 
 
Once a gene is identified, we need to work out how it predisposes to disease. Although 
DNA is present in all cells, the genes it codes for are not ‘switched on’ (expressed) in all 
tissues. It is possible to test whether a gene is expressed by measuring RNA (ribonucleic 
acid). We think that genes that predispose to rheumatoid arthritis may be expressed in 
blood cells, because these are important in the immune system. Knowing whether a gene 
is expressed in blood cells will help us understand how it might predispose to disease. 
 
What are cells? 
White blood cells make up a large part of our blood. They are one of the main components 
that respond to being treated with biologic treatments in complex diseases like rheumatoid 
arthritis. Cells can be extracted from a blood sample and analysed to assess whether the 
protein components, which vary from person to person, affect response to treatment. 
What is serology? 
Serum is the fluid obtained when blood is separated into its solid and liquid components 
after it has been allowed to clot. It contains antibodies, which are made by the immune 
system to defend against infection. Antibodies are thought to play a role in rheumatoid 
arthritis. Serology is the study of serum. 
 
What is joint (synovial) fluid? 
Every joint in the human body contains synovial fluid. The synovial membrane secretes this 
fluid into the joint cavity. It lubricates the joints and allows it to move easily. The synovial 
membrane is also the main place where inflammation occurs in joint diseases such as 
arthritis. Therefore, if you have swollen joints, you will have more synovial fluid than 
normal.. As part of this study, we are hoping to perform joint aspirations (to extract this 
fluid) on patients, so we can find out more about your treatment response.  
 
Joint aspiration is a procedure to remove fluid from the space around a joint using a needle 
and syringe. This is usually done under a local anaesthetic to relieve swelling and/or to 
obtain fluid for analysis to diagnose a joint disorder or problem. Joint aspiration is most 
often done on the knee joint and will only be performed if you have swollen joints. 
 
If you don’t want to provide us with synovial fluid, that’s ok. You can still take part in the 
rest of the study.  
 
Do I have to take part? 
No. It is up to you to decide whether to join this study. Participation is entirely voluntary. 
We will describe the study and go through this information sheet. If you agree to take part, 
we will then ask you to sign a consent form. You are free to withdraw at any time, without 
giving a reason, and your medical care will not be affected. 
 
What are the possible benefits of taking part? 
We cannot promise that the results of the study will help you but the information we get 
might help to improve the future treatment of people with rheumatoid arthritis. 
 
Will the research influence the treatment I receive? 
The research does not alter the treatment you receive. Your specialist will start and stop 
treatments as determined by your clinical condition. 
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What will happen if I don’t want to carry on with the study? 
You can choose to withdraw from this study at any time, with no impact on your treatment 
or follow up with your Consultant. If you decide to stop taking part, no more tests will be 
performed as part of the research study. 
 
If you decide to withdraw from the trial, the researcher will seek your permission to retain 
the information and samples that have been obtained from the start of the trial to the point 
of withdrawal. 
• You can choose to withdraw yourself, your data and blood samples completely. In 
this case, your data will not be included in our analysis. 
• You can choose to withdraw yourself but still allow for your information and blood 
samples collected until the point of withdrawal to the used. In this case, any information 
already provided or results from tests already performed on you or your blood samples will 
continue to be used in the trial. 
In the unlikely event of a loss of capacity, the research team would retain your blood 
samples and data already collected and continue to use them in connection with the 
purposes for which consent is being sought. This could also include further research after 
the current project has ended subject to ethical approval. 
 
Data Protection and Confidentiality 
What information will you collect about me?  
In order to undertake the research project we will need to collect the following personal 
information/data about you at the University of Manchester: 
• Name 
• Contact Details 
• Date of Birth 
• Medical History 
 
This information will be sent to The University of Manchester by your research team at your 
hospital.   
 
The University of Manchester are collecting and storing this personal information in 
accordance with the General Data Protection Regulation (GDPR) and Data Protection Act 
2018 which legislate to protect your personal information.  The legal basis upon which we 
are using your personal information is “public interest task” and “for research purposes” if 
sensitive information is collected. For more information about the way we process your 
personal information and comply with data protection law please see our Privacy Notice 
for Research Participants;  
http://documents.manchester.ac.uk/display.aspx?DocID=37095.  
 
The University of Manchester, as Data Controller for this project takes responsibility for the 
protection of the personal information that The National Repository study is collecting 
about you.   In order to comply with the legal obligations to protect your personal data the 
University has safeguards in place such as policies and procedures.  All researchers are 
appropriately trained and your data will be looked after in the following way: 
Your consent form will be retained for 10 years at the University of Manchester in either 
electronic or paper format. In paper format the forms will be stored in a secure way at the 
University of Manchester, following University regulations. In electronic format the data 

http://documents.manchester.ac.uk/display.aspx?DocID=37095
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will be stored securely within the University of Manchester with access limited to study 
personnel 
 
What are my rights in relation to the information you will collect about me? 
You have a number of rights under data protection law regarding your personal 
information. For example you can request a copy of the information we hold about you. 
This is known as a Subject Access Request. If you would like to know more about your 
different rights, please consult our privacy notice for research and if you wish to contact us 
about your data protection rights, please email dataprotection@manchester.ac.uk or write 
to The Information Governance Office, Christie Building, University of Manchester, Oxford 
Road, M13 9PL. at the University and we will guide you through the process of exercising 
your rights. 
 
If you would like to know more about your different rights or the way we use your personal 
information to ensure we follow the law, please consult our Privacy Notice for Research; 
http://documents.manchester.ac.uk/display.aspx?DocID=37095. 
Under what legal basis are you collecting this information? 
We are collecting and storing this personal identifiable information in accordance with data 
protection law which protect your rights.  These state that we must have a legal basis 
(specific reason) for collecting your data. For this study, the specific reason is that it is “a 
public interest task” and “a process necessary for research purposes”.  
Will my taking part be kept confidential and my personal identifiable information be 
protected? 
 
Your participation in the study will be kept confidential to the study team and those with 
access to your personal information as listed above.   
 
Clinical information about you will be combined with serological and genetic data. The 
individuals performing the genetic studies will not combine it with any personal identifiable 
information about you apart from your year of birth, your gender and the health 
information collected provided by your hospital research nurse. They will not have access 
to your name.  
 
The University of Manchester is the sponsor for this study based in the United Kingdom. 
We will be using information from you and your medical records in order to undertake this 
study and will act as the data controller for this study. This means that we are responsible 
for looking after your information and using it properly. The University of Manchester will 
keep identifiable information about you for 10 years after the study has finished. 
 
Your NHS Trust will collect information from you and your medical records for this research 
study in accordance with our instructions.  
 
Your NHS Trust will use your name, gender, date of birth and contact details to contact you 
about the research study, and make sure that relevant information about the study is 
recorded for your care, and to oversee the quality of the study. This is regarded as a special 
category of information. Individuals from The University of Manchester and regulatory 
organisations may look at your medical and research records to check the accuracy of the 
research study. Your NHS Trust team will pass information about your gender and date of 
birth to The University of Manchester along with the information collected from you and 
your medical records. The only people in The University of Manchester who will have access 
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to information that identifies you will be people who need to contact you or your 
healthcare team regarding your participation in the study or audit the data collection 
process. The people who analyse the information will not be able to identify you and will 
not be able to find out your name, NHS number, or contact details. 
 
When you agree to take part in a research study, the information about your health and 
care may be provided to researchers running other research studies in this organisation. 
The future research should not be incompatible with this research project and will concern 
relevant treatments.  These organisations may be universities, NHS organisations or 
companies involved in health and care research in this country or abroad. Your information 
will only be used by organisations and researchers to conduct research in accordance with 
the UK Policy Framework for Health and Social Care Research 
(https://www.hra.nhs.uk/planning-and-improving-research/policies-standards-
legislation/uk-policy-framework-health-social-care-research/). 
 
 
This information will not identify you and will not be combined with other information in a 
way that could identify you. The information will only be used for the purpose of health 
and care research, and cannot be used to contact you regarding any other matter or to 
affect your care. It will not be used to make decisions about future services available to 
you. 
 
What if I have a complaint? 
If you wish to make a formal complaint to someone independent of the research team or 
if you are not satisfied with the response you have gained from the researchers in the first 
instance then please contact  
The Research Ethics Manager, Research Office, Christie Building, The University of 
Manchester, Oxford Road, Manchester, M13 9PL, by emailing: 
research.complaints@manchester.ac.uk  or by telephoning 0161 275 2674. 
If you wish to contact us about your data protection rights, please email 
dataprotection@manchester.ac.uk or write to The Information Governance Office, Christie 
Building, The University of Manchester, Oxford Road, M13 9PL at the University and we will 
guide you through the process of exercising your rights. 
You also have a right to complain to the Information Commissioner’s Office 
(https://ico.org.uk/make-a-complaint/), Tel 0303 123 1113. 
 
 
Contact Details 
The study is being co-ordinated by the Arthritis Research UK, Centre for Musculoskeletal 
Research at the University of Manchester and the lead researcher, Professor Anne Barton, 
can be contacted for further details (Tel: 0161 275 1638, Fax: 0161 275 5043, Email: 
Anne.Barton@manchester.ac.uk). The study doctor is Stephanie Ling (Tel: 07392314928, 
Email: Stephanie.Ling@manchester.ac.uk). Alternatively, please contact the Study 
Coordinator (Tel: 01613060539/ 07785692979, Email: sarah.ashton-2@manchester.ac.uk).  
 
Thank you for taking time to read the information sheet, which you should keep for future 
reference. 
  

https://www.hra.nhs.uk/planning-and-improving-research/policies-standards-legislation/uk-policy-framework-health-social-care-research/
https://www.hra.nhs.uk/planning-and-improving-research/policies-standards-legislation/uk-policy-framework-health-social-care-research/
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Combined Consent Form 

 

Can clinical, serological, genetic and psychological factors be used to predict response to 

biologic treatment in rheumatoid arthritis? (BRAGGSS Prospective Arm) 

 

Personalising Dosing of Biologics in Rheumatoid Arthritis to Maximise Cost-Benefit 

(BRAGGSS-PD) 

The BRAGGSS Study; 

Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate  

Name of Researcher: Professor Anne Barton / Dr. Stephanie Ling 

  Activities Initials 

1 

I confirm that I have read the attached information sheet (Version 1, Date11/11/2020) for 

the above study and have had the opportunity to consider the information and ask questions 

and had these answered satisfactorily.   

2 

 

I understand that my participation in the study is voluntary and that I am free to withdraw at 

any time without giving a reason and without detriment to myself.  I understand that it will 

not be possible to remove my data from the project once it has been anonymised and forms 

part of the data set.   

 

I agree to take part on this basis. 

   

3 
If I choose to withdraw from the study, I agree that my samples and data collected up to that 

point will be used in the research. 

 

4 

 

I agree to have a blood sample taken for the research purpose as explained to me. These will 

be used to extract DNA, RNA, plasma, proteins, serum, cells and drug levels. I understand 

that the research using my sample will be genetic, clinical, serological and psychological 

research examining the factors involved in arthritis and response to treatment. 

  

5 

 

I understand that the sponsors of this study may make my blood sample/DNA available to 

other researchers for future research and that this may include researchers working abroad. I 

give permission for these individuals to have access to my sample, but not any personal 

identifying information about me. I offer my blood sample as a gift. 

  

6 
I agree to be contacted by the study team with a request for a further blood sample should 

my sample(s) be damaged in the post or a low yield of DNA extracted for analysis purposes  
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7 
I agree to that my samples processed and stored at the Centre for Musculoskeletal Research 

or at an approved offsite research facility for the period of the study.  

8 

 

I understand that the nature of the research is to examine patterns of genes and cell types in 

large numbers of individuals and no results on my own genes will be fed back to me. 

Similarly, it will not be possible for researchers to inform me of my own disease progression 

or treatment response 

  

9 

I agree that my study doctor may provide the researchers with information from my  

Health Records that is relevant to this study. 

  

10 
I agree to information, from which I can be identified, being held securely by the research 

team at the Arthritis Research UK, Centre for Musculoskeletal Research.  

11 

 

I understand that data collected during the study may be looked at by individuals from The 

University of Manchester or regulatory authorities, where it is relevant to my taking part in 

this research. I give permission for these individuals to have access to my data. 

  

12 
I agree that any anonymised data collected may be shared with other researchers both at the 

University of Manchester and at other institutions.  

13 
I agree to complete the questionnaires and other survey forms about my health and about 

my feelings towards my illness and therapy.  

14 
I agree that any data collected may be published in anonymous form in academic books, 

reports or journals.  

15 
I agree that the researchers may contact me in future about other research projects 

(optional).  

16 I agree to take part in this study. 
 

 

 

 

 

 

 

 

 

17)  Synovial Fluid Samples (if applicable) 

I agree to donate synovial fluid samples to this study at the following timepoints;  

before I start biologic therapy, and 3 months after I have started my biologic  

therapy. These samples will be gifted the Centre for Musculoskeletal Research who  

will store and use these samples in the same way as my blood samples 

(see points 6, 7, 8, 9 and 10 above) 
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Name of patient   Date   Signature of patient 

 

 

Name of person taking consent Date   Signature 

 

1 copy for the participant, 1 copy for the study file (original), and 1 copy sent to co-ordinating site  

Data Protection 

The personal information we collect and use to conduct this research will be processed in accordance 

with data protection law as explained in the Participant Information Sheet and the Privacy Notice for 

Research Participants http://documents.manchester.ac.uk/display.aspx?DocID=37095.  

 

  

  

 

http://documents.manchester.ac.uk/display.aspx?DocID=37095
http://documents.manchester.ac.uk/display.aspx?DocID=37095
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APPENDIX TWO: LONE WORKER RISK ASSESSMENT, POLICY AND 

TRAINING CERTIFICATION 

Summary of documents contained in Appendix Two: 

 Lone worker risk assessment for BRAGGSS-PD. 

 Lone worker policy for BRAGGSS-PD. 

 Certification of lone worker training. 
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General Risk Assessment Form 

Date: (1) 

 

 

Assessed by: (2) 

 

 

Checked / 

Validated* by: (3) 

 

 

Location:  (4) 

 

 

Assessment ref no 

(5) 

 

 

Review date: 

(6) 

 

 

Task / premises: (7) 

 

Risk assessment for home visits as part of the PD arm of the BRAGGSS study 

 

Activity (8) Hazard (9) Who might be 

harmed and 

how (10) 

Existing measures to control risk (11) Risk rating (12) Result 

(13) 

Home visits 

 

Have any risk been 

identified by any 

other agency? 

Clinician  For home visits background information on the family is 
gathered beforehand, a specific risk assessment 
conducted where necessary. 

 Where higher risk identified visits not to be conducted 
alone 

 Staff own experience and training in recognising signs of 
aggression and avoiding / de-escalating this. 

 NHS Conflict Resolution training up-to-date 

 Clinician will have met participant in advance of the 
home visit  
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Date: (1) 

 

 

Assessed by: (2) 

 

 

Checked / 

Validated* by: (3) 

 

 

Location:  (4) 

 

 

Assessment ref no 

(5) 

 

 

Review date: 

(6) 

 

 

Task / premises: (7) 

 

Risk assessment for home visits as part of the PD arm of the BRAGGSS study 

 

Activity (8) Hazard (9) Who might be 

harmed and 

how (10) 

Existing measures to control risk (11) Risk rating (12) Result 

(13) 

 

 

Are the entrances 

/exits to the 

property easily 

accessible? 

Clinician  Clinician to gather the information relating to this 
participant from the appropriate healthcare personnel/ 
the participant themselves to enable them to make a 
suitable and sufficient assessment of the risks 

 Clinician to research the property in advance via 
Google Maps and make visual assessment before 
entering the property 

  

 

 

Are there any 

dangers/hazards 

associated with the 

property? 

Clinician  Clinician to gather the information relating to this 
participant from the appropriate healthcare personnel/ 
the participant themselves to enable them to make a 
suitable and sufficient assessment of the risks 
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Date: (1) 

 

 

Assessed by: (2) 

 

 

Checked / 

Validated* by: (3) 

 

 

Location:  (4) 

 

 

Assessment ref no 

(5) 

 

 

Review date: 

(6) 

 

 

Task / premises: (7) 

 

Risk assessment for home visits as part of the PD arm of the BRAGGSS study 

 

Activity (8) Hazard (9) Who might be 

harmed and 

how (10) 

Existing measures to control risk (11) Risk rating (12) Result 

(13) 

 

 

Are there pets in 

the household, are 

they threatening? 

Clinician  Clinician to gather the information relating to this 
participant from the appropriate healthcare personnel/ 
the participant themselves to enable them to make a 
suitable and sufficient assessment of the risks 

  

 

 

Transportation of 

needles, blood and 

other materials 

required for the 

home visit 

Clinician  Travel sized sharps bins to be acquired 

 Lockable tool box acquired 

 Kit to be checked by clinician before each visit 

 Blood samples to be transported in approved padded 
postal boxes to minimise any damage that could occur 
to them. 

 All tubes to be appropriately labelled in advance of the 
visit 

  



307 
 

 

 

Clinician 

working in 

unknown 

environment 

without 

colleague 

support 

Clinician  Agreed schedule –times and location of visits to be 
known. 

 Online learning module undertaken 

 Response procedure in event of overdue contact. 

 Contact point available in office (including an agreed 
emergency code phrase) at the start and end of each 
visit 

 Ensure colleagues know the mode of transport the 
clinician is taking and (if relevant) the car details. 

 Reduce time spent working alone so far as is 
reasonably practicable.  

 All staff to be familiar with lone working procedures. 

 Regular supervision and arrangements for debrief / 
feedback from clinician 

 Clinician to complete lone worker training 

 Contact point to follow Steph via Whatsapp Location 
Tracker 

 A locked document to be kept on the shared drive 
containing the clinicians photo and emergency contact 
details 
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Lone worker policy for BRAGGSS-PD 

 

Ensuring minimal risk to the researcher 

Risks can be assessed and identified at the hospital informed consent appointment so Dr. 

Ling can visit participant’s homes safely.  

 

Maintaining contact with a designated person 

Researchers will have a work mobile phone. The number will be given to participants (to 

enable them to cancel/rearrange visits). This work phone will also enable the researcher to 

contact their CfMR Buddy prior and after each visit. The designated person can also contact 

the researcher at any point during the visit if they need to for whatever reason. 

 

Safety checks 

Researchers will complete electronic safety checks which the designated person will have 

for each visit the researcher undertakes. This will include the name and contact details of 

participants, time/location of appointment and expected time of departure (see below). 

 

Date of visit 

  

Appointment time 

  

Expected time of departure 

  

Participant’s name 

  

Participant’s address 

   

Participants telephone number (Home or Mobile)   

 

Safety procedure 

If the researcher has not called the designated person by the expected time of departure from 

the visit, then the designated person must ring the researcher. If the researcher is safe but the 

visit is still running the designated person must continue to ring every 10 minutes until the 

researcher has left the appointment and confirmed they are safe.  

 

If the researcher does not answer, then the designated person must leave a message 

instructing them to call back within 10 minutes. If the researcher does not call back within 

10 minutes, then the designated person must attempt to contact the participant. If the 

participant doesn’t answer then the designated person must contact the emergency services 

and inform them of the researchers last known whereabouts.  

 

If at any time during the appointment the researcher does not feel safe, they should explain 

that they need to fetch some paperwork from the car and exit the participants home to phone 

the designated person to discuss what action to take.  

 

In the event of wanting to report an emergency without raising the alarm of the participants, 

the researchers should ring the designated person and say ‘tell Sid I’m going to be late’. The 

designated person should then immediately ring the police on 999 and ask for assistance at 

the participant’s address 
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.



311 
 

APPENDIX THREE: UPDATED BIOCOSHH FOR BRAGGSS FOR INCLUSION 

OF PATIENTS WITH RESOLVED HEPATITIS B AND C 

Safety Services 

 

APPLICATION TO HANDLE BIOLOGICAL MATERIALS & ASSESSMENT OF RISK 

  

(This form is NOT to be used for Genetically Modified Organisms, for which a separate form 

is used). All applications to handle human materials must also apply for Ethics approval).    

Application received:  

 

(Local BSA use) 

Project No:  

 

(Local BSA use) 

This form must be completed when: 

 using a biological agent listed on the “Approved List of biological agents”  
including HG1 micro-organisms 

 using any Specified Animal Pathogen listed on SAPO schedule 1 

 using biological material which is likely, knowingly or suspected to be 
contaminated with a biological agent from the Approved List or the SAPO list. 

 If working with pathogens, identify any that are listed on ATCSA schedule 5 or  
COSHH schedule 3 part V, and bring this to the attention of your local BSA/ the 
University Biological Safety Advisor 

 

NB Your local BSA may also require the completion of this form where the infectious 

status of the biological material requires detailed consideration (eg tissue of unknown 

infectivity status, cell cultures and clinical samples).  

  

Sources of assistance and guidance to help you complete this form are available on the 

Safety Services Biological Materials webpage. 

 

1. School/Division/ 

Research Group: 

Centre for Musculoskeletal Research 

Division of Musculoskeletal and Dermatological 

Sciences 

School of Biological Sciences 

2. Principal Investigator: 

(title, forename, surname) 

Employer, if not University: 

Professor Anne 

Barton 

3. Position: Centre Lead, 

Centre for 

Musculoskeletal 

Research 

4. Other Investigators: 

(title, forename, surname) 

Mohammed 

Shafi Ahmed 

Ruairí McErlean 

5. Positions: 

(e.g. 

academic 

Research 

technicians 

 

https://www.hse.gov.uk/pubns/misc208.pdf
https://www.legislation.gov.uk/uksi/2008/944/schedule/1/made
https://www.staffnet.manchester.ac.uk/compliance-and-risk/compliance/schedule-5-pathogens-and-toxins/
https://www.legislation.gov.uk/uksi/2002/2677/schedule/3/made
http://www.healthandsafety.manchester.ac.uk/toolkits/biogm/bio/
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For each person named, state 

the employer, if not University 

staff or student 

 

 

 

Megan Sutcliffe 

 

Stephanie Ling 

 

 

Nisha Nair 

staff, 

technician, 

research 

student, 

research 

associate, 

 etc.) 

 

 

PhD student 

 

Clinical research 

fellow 

 

Research 

associate 

6. Project Title: 

 

Working with human bodily fluids (including DNA 

and RNA extraction from whole blood) – hepatitis B 

and C extension for the Biologics in Rheumatoid 

Arthritis Genetics and Genomics Study Syndicate 

(BRAGGSS) project 

7. Principal areas where the 

work will be done: include 

building, floor & room no’s, type 

of room e.g. cold room, 

centrifuge room, research lab 

1st floor laboratory, AV Hill Building 

CIGMR blood laboratory, 3rd floor, Stopford Building 

8. Containment level of area(s) 1           2          3 

 

9. Hazard Group of agent(s) 1            2         3 

 

10. Containment level required 1           2         3 

 

11. Brief Summary of Project: Please write ¼ - ½ page, defining all abbreviations  

used. 

 

A variety of human-derived biological sample types are collected, processed, stored and 

analysed as part of the Centre for Musculoskeletal Research’s research portfolio, including 

blood. Donors are from low-risk populations of patients who have been screened for blood-

borne viruses prior to commencing powerful immunosuppressive medication. This includes 

both Caucasian patients, as well as those from Black and Minority Ethnic groups. 

 

Blood is sourced from hospital patients and is collected using one of two methods: 

1. Most commonly, patients are screened for inclusion in the study by clinic nurses and 
blood drawn alongside routine blood samples. Samples are transported to the 
laboratory in IATA-approved packaging by post. 

2. Patients recruited to the BRAGGSS-Personalised Dosing (PD) sub-study are 
screened for inclusion by hospital rheumatology teams. Patients are visited at home 
for phlebotomy by the study doctor in order to ensure that blood is taken when they 
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receive device training at home by an external provider for their first dose of 
medication. Samples are transported to the laboratory in IATA-approved packaging 
by car. 

DNA and/or RNA are extracted from the blood and/or buffy coat samples to study genotypes, 

gene expression and response to medication in patients with rheumatoid arthritis. 

 

Serum, plasma and peripheral blood mononuclear cells are isolated from blood samples and 

stored for use in a variety of immunoassays internally only. 

12. Summary of experimental procedures: 

Blood samples are fractionated to allow for storage of serum plasma, cells and buffy coat 

samples. 

 

DNA extractions are carried out by manual phenol chloroform method from blood, or using 

the automated Maxwell® 16 system for buffy coat. 

 

Below highlights the potential areas of biological risk from aerosols/sharps/spills in these 

procedures: 

 Removal of blood tube lid: carried out inside class II cabinet for blood fractionation 
and high-throughput DNA extraction; in addition, safety glasses used for RNA 
extraction. 

 Use of rollers for mixing blood tubes with reagents: blood tube placed inside a 50ml 
falcon tube before rolling. 

 Centrifugation: centrifuge buckets sealed with clip-on/screw-on lids. 

 Subsequent pouring off of supernatant: carried out inside a class II cabinet or with 
safety glasses into a sealable “blood bucket” containing 10% Distel (laboratory 
disinfectant grade) for disinfection overnight. 

 Serum/plasma aliquoting: carried out inside a class II cabinet. 

 No use of sharps or glass. 

 Small risk of skin puncture from pipette tips. 

13. Nature of biological agent (for cell lines state species of origin and how 

authenticity has been determined):  

Human blood for RNA extraction 

≤3ml whole blood per sample 

≤50 samples extracted per day 

 

Human blood for serum/plasma/cell separation 

≤10ml whole blood per sample 

≤100 samples processed per day 

 

Human blood for DNA extraction 

≤10ml whole blood per sample 

≤100 samples extracted per batch (each batch takes 1.5 days) 
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Human buffy coat for DNA extraction 

≤2ml buffy coat per sample 

≤16 samples extracted per batch (each batch takes 1 hour) 

Maximum 7 batches per day = 112 samples 

 

Samples selected from patients at hospital rheumatology clinics. Nurses/specialist clinical 

pharmacists screen patients for suitability and blood samples are collected at the same time 

as routine blood samples where possible. Otherwise, blood samples collected by study 

doctor on home visit. Patients are screened for blood-borne viruses prior to commencing 

treatment that is being studied in BRAGGSS-PD, so the study doctor will know in advance if 

samples are contaminated. Standard laboratory protocol is to treat all samples as if they are 

contaminated i.e. medium-risk. No patients will be recruited with active HBV/HCV – only with 

evidence of previous infection e.g. hepatitis B core antibody (anti-HBc) positive + hepatitis B 

surface antigen (HBsAg) negative. 

Potential hazard to humans and/or animals 

14. Pathogenicity 

Whole blood has the risk of carrying blood-borne viruses; in particular, hepatitis B virus 

(HBV), hepatitis C virus (HCV) and the human immunodeficiency virus (HIV). These can 

cause severe disease and death. 

 

However, both HBV and HCV, whilst in Hazard Group 3 (HG3) according to the Health 

and Safety Executive (HSE) Approved List of Biological Agents, are also stipulated in 

the same document to present a limited risk of infection for workers because they are 

not normally infectious by the airborne route. Containment Level 3 (CL3) measures are 

not necessarily required, but all other aspects of the work should reflect the high 

standards expected at CL3. 

 

A large retrospective study of organ donors carried out by DE Feo et al demonstrated 

no risk of HBV transmission via heart and kidney transplants from donors who had 

tested positive for hepatitis B core antibody (anti-HBc), although recipients of livers who 

had not previously been vaccinated against HBV or had previous infection were at more 

risk of subsequently developing HBV. Given that a needlestick injury provides an 

infinitesimal fraction of the dose of a solid-organ transplant, the risk of developing HBV 

from a needlestick inoculation injury from an anti-HBc positive sample is near to none, 

particularly if laboratory staff are immunised against HBV, as is mandatory. 

 

Reference: De Feo TM et al. Risk of transmission of hepatitis B virus from anti-HBC 

positive cadaveric organ donors: a collaborative study. Transplant Proc 

2005;37(2):1238-9. 

15. Epidemiology 

0.1% of the UK have HIV (diagnosed and undiagnosed people aged 15-59 years). 
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0.1-0.5% carry HBV. 

0.5-1.0% have chronic HCV. 

 

Reference: Advisory Committee on Dangerous Pathogens. Protection against blood-

borne infections in the workplace: HIV and Hepatitis. HSE (1995). 

16. Infectious dose 

From needle stick injuries, HBV is estimated to have a transmission rate up to 100 

times greater than HIV (which is around 0.3%), and 10 times that of HCV. HBV 

transmission depends on the immune response of the individual. 

17. Routes of transmission 

Skin puncture by blood-contaminated sharp objects. 

Skin lesion e.g. eczema, skin break. 

Splashing of mucous membranes i.e. eyes, nose, mouth. 

18. Medical data 

Health Surveillance 

Staff working with human blood should have hepatitis B vaccination through the 

University Occupational Health Service. 

 

First aid 

Puncture wounds should be washed (not scrubbed) with soap and water for several 

minutes. Pressure above the wound to induce bleeding from the contaminated injury 

should also be performed. 

 

Mucous membrane exposure 

Copious irrigation with tap water, sterile saline or sterile water for several minutes. If 

necessary, the person who has been potentially inoculated should report to the nearest 

Emergency Department for treatment, whilst reporting of the incident to Occupational 

Health should also occur. 

 

Prophylaxis 

Post-exposure prophylaxis for HIV is recommended for healthcare workers 

occupationally exposed to HIV. For HCV, healthcare workers with known exposure 

should be monitored for seroconversion and referred for medical follow-up if 

seroconversion occurs. For HBV, workers should be immunised against the virus. The 

incident should be logged with Occupational Health and follow-up screening should 

occur. 

19. Environmental stability 

HIV 
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Viral load reduces after storage at 4C. Heating blood to 56-60C reduces infectivity to 

below detectable levels. May remain infectious in dried blood for months. 

 

HBC and HCV 

Stable at 37C for 1 hour and at 56C for 30 minutes, but not when heated above 60C. 

May remain infectious in dried blood for up to 3 weeks. 

20. Possible involvement of non-laboratory personnel (e.g. cleaners, security, UG  

students, visitors) 

Unlikely if clean-up and waste disposal procedures are followed. Cleaners are made 

aware that blood is used in the laboratory. 

21. Special containment procedures 

Appendix 8 of the HSE document “Management and operation of microbiological 

containment laboratories” states that the main physical control measures that may not 

be required are: 

 The laboratory does not need to be maintained at negative air pressure because 
the agents are not transmissible by the airborne route. 

 The laboratory does not need to have exhaust air extracted using HEPA 
filtration. Any work that could give rise to an aerosol of infectious material must 
be carried out in a microbiological safety cabinet (MSC) or equivalent 
containment. 

 The laboratory does not need to be sealable to permit fumigation because these 
agents are easily broken down and cannot survive in the environment. 

 

Dispensing with these physical containment measures means that work can take place 

in a CL2 laboratory, but the other procedural/management measures normally required 

at CL3 must still be in place: 

 It is important to separate work with infected samples from the routine work that 
may also be carried out in the laboratory to control potential exposure. 

 Production of aerosols or droplets should also be considered. However, this 
particularly project does not include: 

o Working with samples in the infectious and/or transmissive stage of 
HBV/HCV; patients with HIV will not be recruited. 

o Tissue culture. 
o Passaging HBV/HCV into an intermediate host. 
o Potential means of transmission of a parasite from host to host (including 

humans). 
 

Use of sharps is not required in any protocol. 

Blunt-nosed scissors are used to open sample bags. 

Screw or clip-on lids are used on centrifuge buckets to contain tube leaks/breaks. 

Blood Vacutainer tubes and buffy coat cryovials are plastic. 

Special care is taken when opening Vacutainer tubes of blood to reduce aerosol 

formation, which is carried out inside a MSC. 
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Manual phenol chloroform extraction: class II MSC is used for the majority of the 

protocol for potentially hazardous samples. 

RNA extractions: carried out on a drip tray with safety glasses. 

Maxwell extractions: involve pipetting buffy coat into reagent cartridges and then 

peeling off foil seal before being placed inside the machine; carried out on lab bench 

with safety glasses. 

 

Blood samples are taken from populations not known to be high-risk. However, if 

a sample is sent to use from a patient known to be carrying a blood-borne viral 

infection, then the following special containment procedures apply: 

Upon receipt, infected blood samples will be logged in then isolated, marked as infected 

using orange infectious hazard tape and stored in a dedicated “infectious samples” box 

at -80C. The box will have clear marking on the sides and lid to warn that it contains 

infected samples. The freezer will also carry a sign stating that some contents may be 

infected. 

 

For samples that have already been processed and stored prior to discovery of an 

infection, the following procedures will apply: 

All stored samples from the patient, except DNA and RNA, will be identified and marked 

as infected on our Laboratory Information Management System (LIMS). Blood and buffy 

coat samples will be relocated to the infected samples box as above. Serum, plasma 

and cell samples which have been stored in 2C barcoded Matrix tubes will be 

transferred onto a new Matrix track. This will not involve opening the tubes or any 

transfer of the biological material itself, just the container tube. The new Matrix rack will 

then be wrapped with orange, infectious samples hazard tape so that the plate lid 

cannot be removed without first removing the tape. This will then be returned to -80C 

storage. The destination freezer will carry a sign stating that some contents may be 

infected. 

22. Are the containment measures (a) in good working order and 

(b) on recorded inspection and maintenance programmes? 

a) Yes 
b) Yes 

23. Are the work area, floors and benching suitable and free from defects? 

Yes 

24. Animal work: Where will this be performed?  

N/A 

25. Protective clothing and equipment 

Howie-style laboratory coats worn at all times. Routine use of nitrile gloves to prevent 

direct contact with materials. Ecoshield gloves from Stopford Stores conform to EN374-

2-2003 standard with an acceptable quality level (AQL) of 0.65. 
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Safety glasses worn when transferring blood products outside of a class II MSC. 

26. Storage & transport arrangements 

Vacutainer blood tubes are initially logged into the LIMS (system hosted in the CIGMR 

blood lab) before being frozen. Plasma and buffy coat are also extracted from EDTA 

blood tubes into Matrix tubes and cryovials at this stage. Vacutainer blood tubes and 

buffy coat cryovials are stored in -80C and -40C freezers in secondary containers, in 

freezer rooms located inside the AV Hill building 1st floor laboratory space. Transport 

to/from the laboratory is in a secondary container, on dry ice if already frozen. 

27. Disinfection & disposal procedures 

Blood waste is disinfected 1:1 with 10% Distel overnight, in metal blood waste buckets, 

before being poured down the sink. 

 

Blood-contaminated consumables waste is disinfected 1:1 with 10% Distel overnight in 

a beaker, then placed in a blood waste carton; this is sealed and put in a yellow 

biohazard waste bag before disposal by incineration. All other consumables waste is 

placed in yellow biohazard waste bags for incineration. 

 

Maxwell extractions only: dilute further to 2.75L per run in a waste beaker/bucket before 

pouring down the sink (lysis buffer harmful). 

28. Immunisation & health surveillance 

All laboratory staff and postgraduate students vaccinated against HBV as part of the 

health surveillance from Occupational Health. All staff have fitness to work certificates 

from Occupational Health. 

29. Environmental monitoring 

Not necessary. 

30. Emergency procedures 

Spills should be mopped up with blue roll and placed in a blood waste carton for 

incineration. The area should be disinfected with 10% Distel. For large spills, spill kit 

absorbent sheets can be used. 

 

Contaminated clothing should be autoclaved before being laundered. 

31. Will the areas be shared by other workers not directly involved in the work? If 

so who? 

Separate areas of the laboratory are used for -80C freezer storage and cell work by 

staff and postgraduate students in our research group. Some of their work will involve 

sharing centrifuges. 
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Other research groups share the laboratory, but use different bays, with their own 

freezers, centrifuges and waste disposal. 

32. If the answer to 31 is yes, how will they be informed of the hazards and risks 

associated with this work? 

All laboratory staff will be shown the risk assessments for the laboratory and be advised 

of the nature of the hazards/procedures carried out. All staff working regularly in the 

laboratory (even not directly with blood) are offered HBV vaccinations. 

APPROVALS and SIGNATURES 
33. I certify that I and all co-workers will  

(a) sign the reverse of this form to 

indicate that they are familiar with the 

contents of this Risk Assessment,  

(b) will attend appropriate safety courses, 

(c) carry out the work in accordance with 

the COSHH regulations 2002 as 

amended Approved Code of Practice, 5th 

Edition 2005 and the ACDP guidance 

document on “The Approved List of 

biological agents and other relevant 

legislation and  

(d) obtain ethical approval where 

required.  

(State University/NRES Ethic Approval 

number................................................) 

Biologics in Rheumatoid Arthritis 

Genetics and Genomics Study 

Syndicate (BRAGGSS): 04/Q1403/37 

I will submit an updated form if I plan to 

extend the work outside the areas of risk 

covered by the present application 

Name of Principal Investigator(printed): 

Professor Anne Barton 

 

Signature 

 

 

Date 

 

10/03/2021 

34. I agree with the risk assessment for 

this project. 

Name of Local BSA (printed): 

 

Signature  Date 

35. For HG1 and routine HG2 (e.g. 

clinical samples), with control 

measures in place –  

Signature 

 

 

 

Date 
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I have agreed to allow the work to 

proceed in accordance with this 

assessment. 

 

Name of Local BSA (printed): 

 

If this section is signed, no 

further signatures or 

approvals are required. 

OR 

For all other HG2 work, all HG3 work 

and forms with any unresolved 

queries 

I agree to allow the work to proceed in 

accordance with this assessment   

 

Name of Local GM/Bio Safety 

Committee Chair on behalf of the Local 

GM/Bio Safety Committee (printed): 

 

Signature 

 

 

 

If this section is signed, the 

Local GM/Bio Committee will 

communicate whether work 

can commence, or if 

notification to the HSE is 

required (via the UBSA) 

Date 

Other signatures to be obtained at the discretion of the University BSA, 

depending on the risk, legal requirements and other relevant factors, eg ATCSA 

Schedule 5 matters: 

36. I agree with this assessment and 

application 

University BSA 

Signature Date 

37. I agree with this assessment and 

application 

 

Chair of University GM and 

Biohazards Safety Advisory Group 

Signature Date 

Office Use 
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APPENDIX FOUR: GOOD CLINICAL PRACTICE CERTIFICATION FOR THE 

DURATION OF THIS PHD 
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APPENDIX FIVE: LIST OF PROTEINS INCLUDED IN THE BESPOKE RHEUMATOID ARTHRITIS PROTEIN LIBRARY FOR 

SWATH-MS EXTRACTION 

UniProtKB ID Protein name Gene name Reference 

Q04446 1,4-alpha-glucan-branching enzyme GBE1 Wang 2012 

P31946 14-3-3 protein beta/alpha YWHAB Giusti 2010 

Q04917 14-3-3 protein eta YWHAH Giusti 2010 

P61981 14-3-3 protein gamma YWHAG Giusti 2010 

P31947 14-3-3 protein sigma SFN Giusti 2010 

P63104 14-3-3 protein zeta/delta YWHAZ Giusti 2010 

P32754 4-hydroxyphenylpyruvate dioxygenase HPD Serada 2010 

P62841 40S ribosomal protein S15 RSP15 Wang 2012 

M0R210 40S ribosomal protein S16 RPS16 Noh 2014 

P62081 40S ribosomal protein S7 RPS7 Wang 2012 

P08865 40S ribosomal protein SA RPSA Noh 2014 

P21589 5'-nucleotidase NT5E Wang 2012 

P52209 6-phosphogluconate dehydrogenase, decarboxylating PGD Wang 2012, Yang 2015 

P10809 60 kDa heat shock protein, mitochondrial HSPD1 Schulz 2007 

Q02952 A-kinase anchor protein 12 AKAP12 Wang 2012 

Q9Y2D5 A-kinase anchor protein 2 AKAP2 Wang 2012 

Q5JQC9 A-kinase anchor protein 4 AKAP4 Noh 2014 

Q96CW1 AP-2 complex subunit mu-1 AP2M1 Wang 2012 

Q01813 ATP-dependent 6-phosphofructokinase, platelet type PFKP Wang 2012, Yang 2015 

Q92499 ATP-dependent RNA helicase DDX1 DDX1 Wang 2012 

P60709 Actin, cytoplasmic 1 ACTB Schulz 2007, Katano 2009 

P63261 Actin, cytoplasmic 2 ACTG1 Schulz 2007, Chang 2009 

P07108 Acyl-CoA-binding protein DB1 Wang 2012 

Q15848 Adiponectin ADIPOQ Schaffler 2003 

P02763 Alpha-1-acid glycoprotein 1 ORM1 Park 2016, Kang 2014 
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P19652 Alpha-1-acid glycoprotein 2 ORM2 Park 2016, Kang 2014 

P01011 Alpha-1-antichymotrypsin SERPINA3 Serada 2010 

P01009 Alpha-1-antitrypsin SERPINA1 Swedlund 1974, Gysen, 1985, Chang 2013 

P01023 Alpha-2-macroglobulin A2M Cheng 2014 

O43707 Alpha-actinin-4 ACTN4 Yang 2018 

P35611 Alpha-adducin ADD1 Wang 2012 

P06733 Alpha-enolase ENO1 Noh 2014 

P15144 Aminopeptidase N ANPEP Wang 2012 

P01019 Angiotensinogen AGT Urbaniak 2017 

P09525 Annexin A4 ANXA4 Wang 2012 

P02647 Apolipoprotein A-I APOA1 Noh 2014 

P02652 Apolipoprotein A-II APOA2 Yang 2018 

P06727 Apolipoprotein A-IV APOA4 Cheng 2014 

P04114 Apolipoprotein B-100 APOB Mateos 2012 

P02654 Apolipoprotein C-I APOC1 Kim 2018 

P02656 Apolipoprotein C-III APOC3 Cheng 2014 

P55056 Apolipoprotein C-IV APOC4 Cheng 2014 

P05090 Apolipoprotein D APOD Cheng 2014 

P02649 Apolipoprotein E APOE Mateos 2012 

Q13790 Apolipoprotein F APOF Serada 2010 

O14791 Apolipoprotein L1 APOL1 Serada 2010 

O95445 Apolipoprotein M APOM Serada 2010 

Q12797 Aspartyl/asparaginyl beta-hydroxylase ASPH Wang 2012 

Q15121 Astrocytic phosphoprotein PEA-15 PEA15 Wang 2012 

P20160 Azurocidin AZU1 Mateos 2012 

P20749 B-cell lymphoma 3 protein BCL3 KEGG pathway 

O95429 BAG family molecular chaperone regulator 4 BAG4 KEGG pathway 

Q8N8U9 BMP-binding endothelial regulator protein BMPER Katano 2009 

Q13490 Baculoviral IAP repeat-containing protein 2 BIRC2 KEGG pathway 

Q13489 Baculoviral IAP repeat-containing protein 3 BIRC3 KEGG pathway 
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Q9Y2J2 Band 4.1-like protein 3 EPB41L3 Wang 2012 

Q9BXH1 Bcl-2-binding component 3 BBC3 Doroshevskaya 2014 

P21810 Biglycan BGN Hueber 2009 

P54132 Bloom syndrome protein BLM Serada 2010 

Q92583 C-C motif chemokine 17 CCL17 Cuppen 2017 

Q99731 C-C motif chemokine 19 CCL19 Cuppen 2017 

P13500 C-C motif chemokine 2 CCL2 Hueber 2007 

P78556 C-C motif chemokine 20 CCL20 KEGG pathway 

O00626 C-C motif chemokine 22 CCL22 Cuppen 2017 

P10147 C-C motif chemokine 3 CCL3 Olszewski 2001 

P13501 C-C motif chemokine 5 CCL5 KEGG pathway 

P02778 C-X-C motif chemokine 10 CXCL10 KEGG pathway 

P02778 C-X-C motif chemokine 10 CXCL10 Hueber 2007 

P19875 C-X-C motif chemokine 2 CXCL2 KEGG pathway 

P19876 C-X-C motif chemokine 3 CXCL3 KEGG pathway 

P42830 C-X-C motif chemokine 5 CXCL5 KEGG pathway 

P02741 C-reactive protein CRP Cheng 2014 

P02741 C-reactive protein CRP Kim 2018, Seok 2017 

O15519 CASP8 and FADD-like apoptosis regulator CFLAR KEGG pathway 

Q13166 CATR tumorigenic conversion 1 protein CATR1 Urbaniak 2017 

P17676 CCAAT/enhancer-binding protein beta CEBPB KEGG pathway 

P29279 CCN family member 2 CCN2 Wang 2012 

P14209 CD99 antigen CD99 Yang 2018 

Q9BPX6 Calcium uptake protein 1, mitchondrial MICU1 Noh 2014 

Q05682 Caldesmon CALD1 Wang 2012 

P20810 Calpastatin CAST Hueber 2009 

Q99439 Calponin 2 CNN2 Wang 2012 

O43852 Calumenin CALU Wang 2012 

P00915 Carbonic anhydrase 1 CA1 Yang 2018 

P22792 Carboxypeptidase N subunit 2 CPN2 Obry 2015 
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Q9NQ79 Cartilage acidic protein 1 CRTAC1 Grazio 2013 

P49747 Cartilage oligomeric matrix protein COMP Chandra 2011 

Q92851 Caspase-10 CASP10 KEGG pathway 

P42574 Caspase-3 CASP3 KEGG pathway 

P55210 Caspase-7 CASP7 KEGG pathway 

Q14790 Caspase-8 CASP8 KEGG pathway 

P04040 Catalase CAT Biemond 1984 

P07858 Cathepsin B CTSB Liao 2004 

Q9UBR2 Cathepsin Z CTSZ Serada 2010 

Q8WUJ3 Cell migration-inducing and hyaluronan-binding protein CEMIP Yang 2015 

Q8WUJ3 Cell migration-inducing and hyaluronan-binding protein CEMIP Wang 2012 

P04637 Cellular tumor antigen p53 TP53 Doroshevskaya 2014 

P00450 Ceruloplasmin CP Biemond 1984 

P36222 Chitinase-3-like protein 1 CHI3L1 Hueber 2005 

P06276 Cholinesterase BCHE Kim 2018, Seok 2017 

O75390 Citrate synthase, mitochondrial CS Wang 2012, Yang 2015 

P10909 Clusterin CLU Cheng 2014 

P00740 Coagulation factor IX F9 Grazio 2013 

P00451 Coagulation factor VIII F8 Serada 2010 

P00742 Coagulation factor X F10 Kim 2018 

P02461 Collagen alpha-1(III) chain COL3A1 Siebert 2017 

P27658 Collagen alpha-1(VIII) chain COL8A1 Siebert 2017 

P02452 Collagen alpha1(I) chain COL1A1 Wang 2012 

P20908 Collagen alpha1(V) chain COL5A1 Wang 2012 

P08123 Collagen alpha2(I) chain COL1A2 Wang 2012 

P00736 Complement C1r subcomponent C1R Obry 2015 

P01024 Complement C3 C3 Noh 2014 

P0C0L4 Complement C4-A C4A Mateos 2012, Urbaniak 2017 

P10643 Complement component C7 C7 Obry 2015 

P07357 Complement component C8 alpha chain C8A Mateos 2012 
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P07358 Complement component C8 beta chain C8B Grazio 2013 

P07360 Complement component C8 gamma chain C8G Mateos 2012 

P02748 Complement component C9 C9 Serada 2010 

Q03591 Complement factor H-related protein 1 CFHR1 Cheng 2014 

Q9BXR6 Complement factor H-related protein 5 CFHR5 Grazio 2013 

P05156 Complement factor I CFI Grazio 2013 

Q9ULV4 Coronin-1C CORO1C Sekigawa 2008 

P15336 Cyclic AMP-dependent transcription factor ATF-2 ATF2 KEGG pathway 

P18848 Cyclic AMP-dependent transcription factor ATF-4 ATF4 KEGG pathway 

Q99941 Cyclic AMP-dependent transcription factor ATF-6 beta ATF6B KEGG pathway 

P16220 Cyclic AMP-responsive element-binding protein 1 CREB1 KEGG pathway 

O43889 Cyclic AMP-responsive element-binding protein 3 CREB3 KEGG pathway 

Q96BA8 Cyclic AMP-responsive element-binding protein 3-like protein 1 CREB3L1 KEGG pathway 

Q70SY1 Cyclic AMP-responsive element-binding protein 3-like protein 2 CREB3L2 KEGG pathway 

Q68CJ9 Cyclic AMP-responsive element-binding protein 3-like protein 3 CREB3L3 KEGG pathway 

Q8TEY5 Cyclic AMP-responsive element-binding protein 3-like protein 4 CREB3L4 KEGG pathway 

Q02930 Cyclic AMP-responsive element-binding protein 5 CREB5 KEGG pathway 

P04080 Cystatin B CSTB Wang 2012 

P21291 Cysteine and glycine-rich protein 1 CSRP1 Sekigawa 2008 

Q16678 Cytochrome P450 1B1 CYP1B1 Wang 2012 

P10176 Cytochrome c oxidase subunit 8A COX8A Urbaniak 2017 

P21399 Cytoplasmic aconitate hydratase ACO1 Wang 2012, Yang 2015 

Q9Y6G9 Cytoplasmic dynein 1 light intermediate chain 1 DYNC1LI1 Noh 2014 

O43639 Cytoplasmic protein NCK2 NCK2 Sekigawa 2008 

P78527 DNA-dependent protein kinase catalytic subunit PRKDC Wang 2012 

Q14574 Desmocollin-3 DSC3 Sekigawa 2008 

P60981 Destrin DSTN Wang 2012 

P36957 Dihydrolipoyllysine-residue succinyltransferase component of 

2-oxoglutarate dehydrogenase complex, mitochondrial 

DLST Wang 2012, Yang 2015 

Q5VWQ8 Disabled homolog 2-interacting protein DAB2IP KEGG pathway 
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O14672 Disintegrin and metalloproteinase domain-containing protein 10 ADAM10 Wang 2012 

Q02750 Dual specificity mitogen-activated protein kinase kinase 1 MAP2K1 KEGG pathway 

P46734 Dual specificity mitogen-activated protein kinase kinase 3 MAP2K3 KEGG pathway 

P45985 Dual specificity mitogen-activated protein kinase kinase 4 MAP2K4 KEGG pathway 

P52564 Dual specificity mitogen-activated protein kinase kinase 6 MAP2K6 KEGG pathway 

O14733 Dual specificity mitogen-activated protein kinase kinase 7 MAP2K7 KEGG pathway 

O00429 Dynamin-1-like protein DNM1L KEGG pathway 

Q8TD57 Dynein heavy chain 3, axonemal DNAH3 Chang 2013 

P16581 E-selectin SELE KEGG pathway 

Q96J02 E3 ubiquitin-protein ligase Itchy homolog ITCH KEGG pathway 

Q00987 E3 ubiquitin-protein ligase Mdm2 MDM2 Doroshevskaya 2014 

Q96C19 EF-hand domain-containing protein D2 EFHD2 Schulz 2007 

P11021 Endoplasmic reticulum chaperone BiP HSPA5 Schulz 2007, Lu 2010 

Q9BS26 Endoplasmic reticulum resident protein 44 ERP44 Wang 2012 

P05305 Endothelin-1 EDN1 KEGG pathway 

P51671 Eotaxin CCL11 Hueber 2007 

P56537 Eukaryotic translation initiation factor 6 EIF6 Wang 2012 

P15311 Ezrin EZR Wagatsuma 1996 

Q13158 FAS-associated death domain protein FADD KEGG pathway 

Q96M96 FYVE, RhoGEF and PH domain-containing protein 4 FGD4 Katano 2009 

Q96AE4 Far upstream element binding protein 1 FUBP1 Wang 2012 

Q01469 Fatty acid-binding protein 5 FABP5 Giusti 2010 

P02792 Ferritin light chain (ferritin L subunit) FTL Chang 2009 

P02671 Fibrinogen alpha chain FGA Tabushi 2008, Yang 2018 

P02675 Fibrinogen beta chain FGB Chang 2013, Yang 2018 

P02679 Fibrinogen gamma chain FGG Yang 2018 

Q08830 Fibrinogen-like protein 1 FGL1 Yang 2018 

P09038 Fibroblast growth factor 2 FGF2 Hueber 2009 

Q9BYJ0 Fibroblast growth factor-binding protein 2 FGFBP2 Yang 2018 

Q06828 Fibromodulin FMOD Hueber 2009 
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P02751 Fibronectin FN1 Wang 2012, Tabushi 2008, Kim 2006 

Q15485 Ficolin-2 FCN2 Cheng 2014 

O75636 Ficolin-3 FCN3 Mateos 2012 

P20930 Filaggrin FLG Hueber 2005 

P21333 Filamin-A FLNA Sekigawa 2008 

P78423 Fractalkine CX3CL1 KEGG pathway 

P05062 Fructose-bisphosphate aldolase B ALDOB Serada 2010 

Q92820 Gamma-glutamyl hydrolase GGH Wang 2012 

P06396 Gelsolin GSN Park 2016, Kang 2014 

P11413 Glucose-6-phosphate 1-dehydrogenase G6PD Yang 2015 

O94808 Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 2 GFPT2 Wang 2012, Yang 2015 

P22352 Glutathione peroxidase 3 GPX3 Cheng 2014 

Q96SL4 Glutathione peroxidase 7 GPX7 Wang 2012 

P04406 Glyceraldehyde-3-phosphate dehydrogenase GAPDH Grazio 2013 

P41250 Glycine--tRNA ligase GARS Wang 2012 

P04141 Granulocyte-macrophage colony-stimulating factor CSF2 Olszewski 2001 

Q14451 Growth factor receptor-bound protein 7 GRB7 Kim 2006 

P09341 Growth-regulated alpha protein CXCL1 KEGG pathway 

O14775 Guanine nucleotide-binding protein subunit beta-5 GNB5 Noh 2014 

P04441 H-2 class II histocompatibility antigen gamma chain CD74 Cuppen 2017 

Q8N7B1 HORMA domain-containing protein 2 HORMAD2 Noh 2014 

P00738 Haptoglobin HP Noh 2014 

C7G492 Heat shock protein 90kDa alpha (cytosolic), class A member 1 HSP90AA1 Noh 2014 

P04792 Heat shock protein beta-1 HSPB1 Meng 2016 

P69905 Hemoglobin subunit alpha HBA1 Seok 2017 

P68871 Haemoglobin subunit beta HBB Serada 2010 

P61978 Heterogeneous nuclear ribonucleoprotein K HNRNPK Schulz 2007 

P52926 High mobility group protein HMGI-C HMGA2 Wang 2012 

P04196 Histidine-rich glycoprotein HRG Kim 2018 

P07305 Histone H1.0 H1F0 Wang 2012 



330 
 

UniProtKB ID Protein name Gene name Reference 

P62807 Histone H2B type 1-E HIST1H2BE Chandra 2011 

O60814 Histone H2B type 1-K HIST1H2BK Siebert 2017 

Q16778 Histone H2B type 2-E HIST2H2BE Hueber 2009 

P62805 Histone H4 HIST1H4A Meng 2016, Mateos 2012 

P39880 Homeobox protein cut-like 1 CUX1 Siebert 2017 

P10915 Hyaluronan and proteoglycan link protein 1 HAPLN1 Doran 1995 

Q9Y4L1 Hypoxia up-regulated protein 1 HYOU1 Wang 2012 

P01591 Immunoglobulin J chain JCHAIN Grazio 2013 

P01871 Immunoglobulin heavy constant mu IGHM Kim 2006 

P01766 Immunoglobulin heavy variable 3-13 IGHV3-13 Grazio 2013 

P01764 Immunoglobulin heavy variable 3-23 IGHV3-23 Grazio 2013 

P01763 Immunoglobulin heavy variable 3-48 IGHV3-48 Grazio 2013 

P01767 Immunoglobulin heavy variable 3-53 IGHV3-53 Grazio 2013 

P01834 Immunoglobulin kappa constant IGKC Chang 2009 

P0DOY2 Immunoglobulin lambda constant 2 IGLC2 Seok 2017 

B9A064 Immunoglobulin lambda-like polypeptide 5 IGLL5 Seok 2017 

Q14974 Importin subunit beta-1 KPNB1 Wang 2012 

O15111 Inhibitor of nuclear factor kappa-B kinase subunit alpha CHUK KEGG pathway 

O14920 Inhibitor of nuclear factor kappa-B kinase subunit beta IKBKB KEGG pathway 

Q15181 Inorganic pyrophosphatase PPA1 Wang 2012 

P05019 Insulin-like growth factor I IGF1 Serada 2010 

A2RTY6 Inter-alpha (Globulin) inhibitor H2 ITIH2 Cheng 2014 

P19827 Inter-alpha-trypsin inhibitor heavy chain H1 ITIH1 Grazio 2013 

Q06033 Inter-alpha-trypsin inhibitor heavy chain H3 ITIH3 Obry 2015, Serada 2010 

P05362 Intercellular adhesion molecule 1 ICAM1 KEGG pathway 

P01574 Interferon beta IFNB1 KEGG pathway 

P01579 Interferon gamma IFNG Degre 1983 

P10914 Interferon regulatory factor 1 IRF1 KEGG pathway 

Q8N0X8 Interleukin 12 p40 
 

Hueber 2007 

P01583 Interleukin-1 alpha IL1A Hueber 2009 
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P01583 Interleukin-1 alpha IL1A Hueber 2007 

P01584 Interleukin-1 beta IL1B Olszewski 2001 

Q9NPH3 Interleukin-1 receptor accessory protein IL1RAP Serada 2010 

P18510 Interleukin-1 receptor antagonist protein IL1RN Malyak 1993, Firestein 1992, Olszewski 2001 

P14778 Interleukin-1 receptor type 1 IL1R1 Cuppen 2017 

P29459 Interleukin-12 subunit alpha IL12A Hueber 2009 

P29460 Interleukin-12 subunit beta IL12B Hueber 2009 

P35225 Interleukin-13 IL13 Hueber 2007 

P40933 Interleukin-15 IL15 Hueber 2009 

Q13478 Interleukin-18 receptor 1 IL18R1 KEGG pathway 

P05112 Interleukin-4 IL4 Cuppen 2017 

P05231 Interleukin-6 IL6 Olszewski 2001 

P13232 Interleukin-7 IL7 Cuppen 2017 

P10145 Interleukin-8 CXCL8 Olszewski 2001 

P03956 Interstitial collagenase MMP1 Wang 2012, Mateos 2012, Gysen 1985 

A5A6M9 Keratin, hair, acidic, 2 KRTHA2 Noh 2014 

P13645 Keratin, type I cytoskeletal 10 KRT10 Noh 2014 

P08779 Keratin, type I cytoskeletal 16 KRT16 Noh 2014 

Q2M2I5 Keratin, type I cytoskeletal 24 KRT24 Serada 2010 

P35527 Keratin, type I cytoskeletal 9 KRT 9 Noh 2014 

Q9NSB4 Keratin, type II cuticular Hb2 KRT82 Serada 2010 

Q9NSB2 Keratin, type II cuticular Hb4 KRT84 Chang 2013 

P04264 Keratin, type II cytoskeletal 1 KRT1 Noh 2014 

P35908 Keratin, type II cytoskeletal 2 epidermal KRT2 Noh 2014 

P13647 Keratin, type II cytoskeletal 5 KRT5 Serada 2010 

O95678 Keratin, type II cytoskeletal 75 KRT20 Serada 2010 

Q86UP2 Kinectin KTN1 Wang 2012 

Q16719 Kynureninase [human] KYNU Wang 2012 

P14151 L-selectin SELL Serada 2010 

Q14847 LIM and SH3 domain protein 1 LASP1 Wang 2012 
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P02788 Lactotransferrin LTF Meng 2016 

Q04760 Lactoylglutathione lyase GLO1 Wang 2012 

Q14766 Latent-transforming growth factor beta-binding protein 1 LTBP1 Sekigawa 2008 

P02750 Leucine-rich alpha-2-glycoprotein LRG1 Seok 2017 

P15018 Leukemia inhibitory factor LIF KEGG pathway 

P30740 Leukocyte elastase inhibitor SERPINB1 Mateos 2012 

P09960 Leukotriene A-4 hydrolase LTA4H Serada 2010 

Q86UK5 Limbin EVC2 Serada 2010 

P18428 Lipopolysaccharide-binding protein LBP Kim 2018 

P05451 Lithostathine-1-alpha REG1A Sekigawa 2008 

O60488 Long-chain-fatty acid--CoA ligase 4 ACSL4 Wang 2012, Yang 2015 

P51884 Lumican LUM Chang 2013 

P01374 Lymphotoxin-alpha LTA KEGG pathway 

Q14108 Lysosome membrane protein 2 SCARB2 Wang 2012 

P09603 Macrophage colony-stimulating factor 1 CSF1 KEGG pathway 

P40925 Malate dehydrogenase, cytoplasmic MDH1 Yang 2015 

P48740 Mannan-binding lectin serine protease 1 MASP1 Serada 2010 

P50281 Matrix metalloproteinase-14 MMP14 KEGG pathway 

P14780 Matrix metalloproteinase-9 MMP9 KEGG pathway 

Q96QZ7 Membrane-associated guanylate kinase, WW and PDZ 

domain-containing protein 1 

MAGI1 Katano 2009 

Q687X5 Metalloreductase STEAP4 STEAP4 Noh 2014 

Q9UPN3 Microtubule-actin cross-linking factor 1, isoforms 1/2/3/5 MACF1 Noh 2014 

P46821 Microtubule-associated protein 1B MAP1B Wang 2012 

Q15691 Microtubule-associated protein RP/EB family member 1 MAPRE1 Sekigawa 2008 

P20774 Mimecan OGN Hueber 2009, Cuppen 2017 

P28482 Mitogen-activated protein kinase 1 MAPK1 KEGG pathway 

P53779 Mitogen-activated protein kinase 10 MAPK10 KEGG pathway 

Q15759 Mitogen-activated protein kinase 11 MAPK11 KEGG pathway 

P53778 Mitogen-activated protein kinase 12 MAPK12 KEGG pathway 
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O15264 Mitogen-activated protein kinase 13 MAPK13 KEGG pathway 

Q16539 Mitogen-activated protein kinase 14 MAPK14 KEGG pathway 

P27361 Mitogen-activated protein kinase 3 MAPK3 KEGG pathway 

P45983 Mitogen-activated protein kinase 8 MAPK8 KEGG pathway 

P45984 Mitogen-activated protein kinase 9 MAPK9 KEGG pathway 

Q99558 Mitogen-activated protein kinase kinase kinase 14 MAP3K14 KEGG pathway 

Q99683 Mitogen-activated protein kinase kinase kinase 5 MAP3K5 KEGG pathway 

O43318 Mitogen-activated protein kinase kinase kinase 7 MAP3K7 KEGG pathway 

P41279 Mitogen-activated protein kinase kinase kinase 8 MAP3K8 KEGG pathway 

Q8NB16 Mixed lineage kinase domain-like protein MLKL KEGG pathway 

P26038 Moesin MSN Wagatsuma 1996 

P08571 Monocyte differentiation antigen CD14 CD14 Liao 2004, Kang 2014, Park 2016 

Q9H8L6 Multimerin-2 MMRN2 Serada 2010 

P05164 Myeloperoxidase MPO Meng 2016, Baskol 2006 

P02144 Myoglobin MB Sekigawa 2008 

Q9UKX3 Myosin-13 MYH13 Noh 2014 

O95167 NADH dehydrogenase (ubiquinone] 1 alpha subcomplex subunit 3 NDUFA3 Katano 2009 

Q9Y6K9 NF-kappa-B essential modulator IKBKG KEGG pathway 

P25963 NF-kappa-B inhibitor alpha NFKBIA KEGG pathway 

O14745 Na(+)/H(+) exchange regulatory cofactor NHE-RF1 SLC9A3R1 Wang 2012, Schulz 2007 

Q13491 Neuronal membrane glycoprotein MG-b GPM6B Katano 2009 

P0C0P6 Neuropeptide S NPS Katano 2009 

P59665 Neutrophil defensin 1 DEFA1 Mateos 2012 

P80188 Neutrophil gelatinase-associated lipocalin LCN2 Katano 2009, Mateos 2012 

P43490 Nicotinamide phosphoribosyltransferase NAMPT Wang 2012 

P19838 Nuclear factor NF-kappa-B p105 subunit NFKB1 KEGG pathway 

Q9HC29 Nucleotide-binding oligomerization domain-containing protein 2 NOD2 KEGG pathway 

O00151 PDZ and LIMB domain protein 1 PDLIM1 Serada 2010 

P04746 Pancreatic alpha-amylase AMY2A Sekigawa 2008 

P12272 Parathyroid hormone-related protein PTHLH Okano 1996 
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Q8TEW0 Partitioning defective 3 homologue PARD3 Noh 2014 

O75594 Peptidoglycan recognition protein 1 PGLYRP1 Sekigawa 2008 

P23284 Peptidyl-prolyl cis-trans isomerase B PPIB Sekigawa 2008 

Q00688 Peptidyl-prolyl cis-trans isomerase FKBP3 FKBP3 Wang 2012 

Q06830 Peroxiredoxin-1 PRDX1 Serada 2010 

Q13162 Peroxiredoxin-4 PRDX4 Chang 2009 

P30044 Peroxiredoxin-5, mitochondrial PRDX5 Giusti 2010 

P30041 Peroxiredoxin-6 PRDX6 Wang 2012 

P04180 Phosphatidylcholine-sterol acyltransferase LCAT Serada 2010 

P27986 Phosphatidylinositol 3-kinase regulatory subunit alpha PIK3R1 KEGG pathway 

O00459 Phosphatidylinositol 3-kinase regulatory subunit beta PIK3R2 KEGG pathway 

Q92569 Phosphatidylinositol 3-kinase regulatory subunit gamma PIK3R3 KEGG pathway 

P42336 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic 
subunit alpha isoform 

PIK3CA KEGG pathway 

P42338 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic 

subunit beta isoform 

PIK3CB KEGG pathway 

O00329 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic 

subunit delta isoform 

PIK3CD KEGG pathway 

P05155 Plasma protease C1 inhibitor SERPING1 Obry 2015, Serada 2010 

P00747 Plasminogen PLG Cheng 2014 

P13796 Plastin-2 LCP1 Mateos 2012 

P02776 Platelet factor 4 PF4 Trocme 2009 

Q13093 Platelet-activating factor acetylhydrolase PLA2G7 Serada 2010 

P20742 Pregnancy zone protein PZP Mateos 2012 

Q9UHG3 Prenylcysteine oxidase 1 PCYOX1 Serada 2010 

P01133 Pro-epidermal growth factor EGF Fabre 2008 

Q14005 Pro-interleukin-16 IL16 Murota 2016 

Q03837 Profilaggrin FLG Chandra 2011 

P46013 Proliferation marker protein Ki-67 MKI67 Noh 2014 

Q07954 Prolow-density lipoprotein receptor-related protein 1 LRP1 Wang 2012 

P13674 Prolyl 4-hydroxylase subunit alpha-1 P4HA1 Yang 2015 
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Q8NBP7 Proprotein convertase subtilisin/kexin 9 PCSK9 Serada 2010 

P35354 Prostaglandin G/H synthase 2 PTGS2 KEGG pathway 

P11171 Protein 4.1 EPB41 Noh 2014 

Q5T0W9 Protein FAM83B FAM83B Noh 2014 

P31949 Protein S100-A11 S100A11 Liao 2004 

P80511 Protein S100-A12 S100A12 Baillet 2010 

P05109 Protein S100-A8 S100A8 Katano 2009, Mateos 2012, Baillet 2010 

P06702 Protein S100-A9 S100A9 Katano 2009, Baillet 2010 

P78504 Protein jagged-1 JAG1 KEGG pathway 

Q9Y2J8 Protein-arginine deiminase type-2 PADI2 De Rycke 2005 

Q9UM07 Protein-arginine deiminase type-4 PADI4 Darrah 2017 

P21980 Protein-glutamine gamma-glutamyltransferase 2 TGM2 Wang 2012 

Q92954 Proteoglycan 4 PRG4 Mateos 2012 

P01100 Proto-oncogene c-Fos FOS KEGG pathway 

P31749 RAC-alpha serine/threonine-protein kinase AKT1 KEGG pathway 

P31751 RAC-beta serine/threonine-protein kinase AKT2 KEGG pathway 

Q9Y243 RAC-gamma serine/threonine-protein kinase AKT3 KEGG pathway 

P50395 Rab GDP dissociation inhibitor beta GDI2 Noh 2014 

P35241 Radixin RDX Wagatsuma 1996 

P43487 Ran-specific GTPase-activating protein RANBP1 Schulz 2007 

P15153 Ras-related C3 botulinum toxin substrate 2 RAC2 Meng 2016 

Q13546 Receptor-interacting serine/threonine-protein kinase 1 RIPK1 KEGG pathway 

Q9Y572 Receptor-interacting serine/threonine-protein kinase 3 RIPK3 KEGG pathway 

P15927 Replication protein A 32 kDa subunit RPA2 Schulz 2007 

Q9HD89 Resistin RETN Schaffler 2003 

Q15293 Reticulocalbin-1 RCN1 Wang 2012 

P51647 Retinal dehydrogenase 1 ALDH1A1 Chang 2009 
 

Rheumatoid factor 
 

Chandra 2011 

P42331 Rho GTPase-activating protein 25 ARHGAP25 Noh 2014 

O75676 Ribosomal protein S6 kinase alpha-4 RPS6KA4 KEGG pathway 
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O75582 Ribosomal protein S6 kinase alpha-5 RPS6KA5 KEGG pathway 

P21817 Ryanodine receptor 1 RYR1 Noh 2014 

A0A096LPE2 SAA2-SAA4 readthrough SAA2-SAA4 Cheng 2014 

Q8WVM8 Sec 1 family domain-containing protein 1 SCFD1 Chang 2009 

P49908 Selenoprotein P SELENOP Serada 2010 

O75326 Semaphorin-7A SEMA7A Kim 2006 

Q92743 Serine protease HTRA1 HTRA1 Hueber 2009 

Q96HS1 Serine/threonine-protein phosphatase PGAM5, mitochondrial PGAM5 KEGG pathway 

P02787 Serotransferrin TF Obry 2015 

Q86U17 Serpin A11 SERPINA11 Grazio 2013 

P02768 Serum albumin ALB Noh 2014 

P0DJI8 Serum amyloid A-1 protein SAA1 Serada 2010 

P35542 Serum amyloid A-4 protein SAA4 Seok 2017 

P02743 Serum amyloid P-component APCS Cheng 2014 

P27169 Serum paraoxonase/arylesterase 1 PON1 Yang 2018 

Q15166 Serum paraoxonase/lactonase 3 PON3 Serada 2010 

P04278 Sex hormone-binding globulin SHBG Yang 2018 

P37108 Signal recognition particle 14kDa protein SRP14 Wang 2012 

O00193 Small acidic protein SMAP Wang 2012 

P55854 Small ubiquitin-related modifier 3 SUMO3 Wang 2012 

P05023 Sodium/potassium-transporting ATPase subunit alpha-1 ATP1A1 Wang 2012 

Q9Y666 Solute carrier family 12 member 7 SLC12A7 Noh 2014 

Q15465 Sonic hedgehog protein SHH Yang 2018 

Q9Y5X1 Sorting nexin-9 SNX9 Wang 2012 

Q13813 Spectrin alpha chain, brain SPTAN1 Wang 2012 

Q01130 Splicing factor, arginine/serine-rich 2 SFRS2 Wang 2012 

Q16629 Splicing factor, arginine/serine-rich 7 SFRS7 Wang 2012 

P08254 Stromelysin-1 MMP3 Mateos 2012 

Q9Y6N5 Sulfide:quinone oxidoreductase, mitochondrial SQOR Wang 2012 

P00441 Superoxide dismutase [Cu-Zn] SOD1 Sekigawa 2008 
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P04179 Superoxide dismutase [Mn], mitochondrial SOD2 Wang 2012, Chang 2009 

O14543 Suppressor of cytokine signaling 3 SOCS3 KEGG pathway 

Q15750 TGF-beta-activated kinase 1 and MAP3K7-binding protein 1 TAB1 KEGG pathway 

Q9NYJ8 TGF-beta-activated kinase 1 and MAP3K7-binding protein 2 TAB2 KEGG pathway 

Q8N5C8 TGF-beta-activated kinase 1 and MAP3K7-binding protein 3 TAB3 KEGG pathway 

Q12933 TNF receptor-associated factor 2 TRAF2 KEGG pathway 

Q13114 TNF receptor-associated factor 3 TRAF3 KEGG pathway 

O00463 TNF receptor-associated factor 5 TRAF5 KEGG pathway 

Q9Y228 TRAF3-interacting JNK-activating modulator TRAF3IP3 Noh 2014 

Q8NBS9 Thioredoxin domain-containing protein 5 TXNDC5 Chang 2009 

P30048 Thioredoxin-dependent peroxidase reductase, mitochondrial PRDX3 Chang 2009 

P07996 Thrombospondin-1 THBS1 Wang 2012 

P04216 Thy-1 membrane glycoprotein THY1 Wang 2012 

P19971 Thymidine phosphorylase TYMP Wang 2012 

Q15560 Transcription elongation factor A protein 2 TCEA2 Noh 2014 

P05412 Transcription factor AP-1 JUN KEGG pathway 

P17275 Transcription factor jun-B JUNB KEGG pathway 

Q04206 Transcription factor p65 RELA Yamasaki 2001 

Q15582 Transforming growth factor-beta-induced protein ig-h3 TGFBI Mateos 2012 

Q01995 Transgelin TAGLN Wang 2012 

Q92973 Transportin-1 TNPO1 Noh 2014 

P02766 Transthyretin TTR Yang 2018 

P40939 Trifunctional enzyme subunit alpha, mitochondrial HADHA Wang 2012, Yang 2015 

Q9NP99 Triggering receptor expressed on myeloid cells 1 TREM1 Sekigawa 2008 

P60174 Triosephosphate isomerase TPI1 Chang 2009 

O14773 Tripeptidyl-peptidase 1 TPP1 Wang 2012 

Q9NYL9 Tropomodulin-3 TMOD3 Sekigawa 2008 

P09493 Tropomyosin alpha-1 chain TPM1 Wang 2012 

P67936 Tropomyosin alpha-4 chain TPM4 Wang 2012 

P07951 Tropomyosin beta chain TPM2 Wang 2012 
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P35030 Trypsin 3 PRSS3 Wang 2012 

Q9BQE3 Tubulin alpha-1C chain TUBA1C Noh 2014 

P07437 Tubulin beta chain TUBB Chang 2013 

Q86V25 Tubulinyl-Tyr carboxypeptidase 2 VASH2 Noh 2014 

P01375 Tumor necrosis factor TNF Olszewski 2001 

P21580 Tumor necrosis factor alpha-induced protein 3 TNFAIP3 KEGG pathway 

P19438 Tumor necrosis factor receptor superfamily member 1A TNFRSF1A KEGG pathway 

P20333 Tumor necrosis factor receptor superfamily member 1B TNFRSF1B Cuppen 2017 

P25445 Tumor necrosis factor receptor superfamily member 6 FAS KEGG pathway 

Q15628 Tumor necrosis factor receptor type 1-associated DEATH 

domain protein 

TRADD KEGG pathway 

P54577 Tyrosine--tRNA ligase, cytoplasmic YARS Wang 2012 

Q16851 UTP--glucose-1-phosphate uridylytransferase UGP2 Wang 2012 

P51965 Ubiquitin-conjugating enzyme E2 E1 UBE2E1 Katano 2009 

P68036 Ubiquitin-conjugating enzyme E2 L3 UBE2L3 Wang 2012 

P07911 Uromodulin UMOD Yang 2018 

P26640 Valine--tRNA ligase VARS Wang 2012 

P19320 Vascular cell adhesion protein 1 VCAM1 KEGG pathway 

P49767 Vascular endothelial growth factor C VEGFC KEGG pathway 

P50552 Vasodilator-stimulated phosphoprotein VASP Sekigawa 2008 

P49748 Very long-chain specific acetyl-CoA dehydrogenase, mitochondrial ACADVL Wang 2012, Yang 2015 

O75396 Vesicle-trafficking protein SEC22b SEC22B Wang 2012 

P08670 Vimentin VIM Meng 2016, Noh 2014, Chang 2013, Tabushi 2008 

P02774 Vitamin D-binding protein GC Yan 2012 

P07225 Vitamin K-dependent protein S PROS1 Obry 2015 

P13010 X-ray repair cross-complementing protein 5 XRCC5 Schulz 2007 

B2RXF5 Zinc finger and BTB domain-containing protein 42 ZBTB42 Noh 2014 

Q14929 Zinc finger protein 169 ZNF169 Noh 2014 

Q53GI3 Zinc finger protein 394 ZNF394 Noh 2014 

Q8TA94 Zinc finger protein 563 ZNF563 Noh 2014 
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Q5TYW1 Zinc finger protein 658 ZNF658 Noh 2014 

Q499Z4 Zinc finger protein 672 ZNF672 Noh 2014 

P25311 Zinc-alpha-2-glycoprotein AZGP1 Obry 2015 
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APPENDIX SIX: SIGNIFICANT RESULTS FROM THE CASE-CONTROL 

PROTEOMICS ANALYSIS 

Significantly differentially expressed proteins in patients with RA compared to HC. 
UniProt ID Mean 

expression 

RA 

Mean 

expression 

HC 

Difference in means 

(95% CI) 

Standard 

error 

p-value % missing 

before 

imputation 

Library 

Q99497 13.50 7.06 6.44 (6.41-6.47) 1.40E-02 2.83E-111 72.05 RA 

P06733 11.28 2.15 9.13 (9.08-9.19) 2.62E-02 9.28E-104 64.10 RA 

Q9Y3I0 12.39 5.00 7.39 (7.35-7.43) 2.18E-02 4.93E-103 67.18 RA 

P12956 12.44 4.90 7.54 (7.49-7.58) 2.30E-02 3.99E-102 60.26 RA 

Q14012 13.99 6.23 7.76 (7.71-7.81) 2.41E-02 1.31E-101 62.82 RA 

Q05682 11.96 4.39 7.57 (7.52-7.62) 2.37E-02 1.84E-101 76.67 RA 

P62937 13.07 4.52 8.55 (8.49-8.60) 2.69E-02 2.56E-101 60.77 RA 

Q9H4M9 12.83 5.15 7.68 (7.63-7.73) 2.45E-02 6.33E-101 72.82 RA 

P05109 15.46 3.40 12.05 (11.95-12.16) 5.19E-02 6.90E-93 34.36 RA 

Q15404 11.81 5.41 6.40 (6.34-6.47) 3.35E-02 1.37E-87 58.21 RA 

P43490 12.70 3.91 8.80 (8.66-8.93) 6.80E-02 3.94E-77 53.08 RA 

P02786 12.87 4.14 8.72 (8.58-8.87) 7.30E-02 5.39E-75 39.23 RA 

P08246 11.17 4.82 6.34 (6.21-6.47) 6.52E-02 1.58E-69 62.31 RA 

Q8NCW5 10.49 3.78 6.71 (6.50-6.91) 1.03E-01 7.90E-59 65.13 RA 

P30043 10.56 4.77 5.77 (5.58-5.96) 9.45E-02 4.22E-57 77.95 RA 

P23284 10.14 3.97 6.17 (5.89-6.46) 1.43E-01 7.22E-48 52.31 RA 

P20774 8.75 9.72 -0.97 (-1.03-(-0.91)) 2.92E-02 2.74E-41 77.69 RA 

P02730 10.60 8.85 1.75 (1.60-1.89) 7.17E-02 1.94E-33 82.05 RA 

P06703 10.21 8.94 1.26 (1.17-1.36) 4.87E-02 2.66E-29 68.72 RA 

P78347 13.03 11.48 1.55 (1.39-1.71) 8.02E-02 3.92E-28 70.51 RA 

P06702 11.83 9.45 2.39 (2.12-2.65) 1.32E-01 2.48E-26 43.08 RA 

P07900 15.63 14.48 1.14 (1.00-1.29) 8.03E-02 3.23E-26 66.67 RA 

Q32MZ4 14.81 13.88 0.92 (0.81-1.04) 5.99E-02 6.68E-25 72.56 RA 

Q15084 13.04 11.51 1.52 (1.33-1.72) 9.74E-02 3.34E-23 58.46 RA 

O43505 17.12 15.77 1.35 (1.16-1.53) 9.25E-02 1.09E-21 70.26 RA 

P12110 13.36 14.72 -1.36 (-1.56-(-1.16)) 1.00E-01 1.40E-21 60.77 RA 

Q9Y6R7 12.41 11.20 1.21 (1.04-1.39) 8.70E-02 3.14E-21 77.69 RA 

P67936 10.70 8.64 2.06 (1.76-2.36) 1.50E-01 8.54E-21 28.97 RA 

P06753 15.15 14.10 1.05 (0.86-1.23) 9.13E-02 3.90E-17 71.54 RA 

Q13490 8.93 7.72 1.20 (1.01-1.39) 9.38E-02 2.95E-16 73.59 Plasma 

Q9P2E9 14.65 13.91 0.74 (0.60-0.87) 6.78E-02 4.09E-16 56.67 RA 

Q13136 10.55 14.29 -3.74 (-4.47-(-3.00) 3.69E-01 1.82E-15 33.08 Plasma 

P02788 10.92 9.14 1.78 (1.42-1.42) 1.82E-01 1.24E-13 51.03 RA 

Q92952 10.31 9.29 1.02 (0.79-1.25) 1.15E-01 2.49E-13 43.08 Plasma 

Q9H299 9.81 8.42 1.39 (1.14-1.64) 1.24E-01 7.30E-13 10.51 RA 

P12109 12.87 11.46 1.41 (1.09-1.72) 1.59E-01 1.10E-12 58.46 RA 

Q15185 14.17 15.72 -155 (-1.92-(-1.18)) 1.85E-01 3.29E-12 28.97 RA 

P37108 9.94 7.49 2.45 (2.03-2.86) 2.03E-01 3.97E-12 56.92 Plasma 

Q14116 13.02 14.80 -1.78 (-2.16-(-1.39)) 1.91E-01 4.27E-12 58.46 RA 

O00151 12.93 11.18 1.75 (1.33-2.17) 2.09E-01 4.62E-12 40.51 RA 

P63104 9.58 8.79 0.79 (0.60-0.99) 9.91E-02 3.05E-11 45.90 RA 

Q92851 9.34 10.76 -1.43 (-1.79-(-1.06)) 1.83E-01 3.30E-11 27.18 Plasma 

Q13045 14.08 14.76 -0.68 (-0.85-(-0.51)) 8.62E-02 5.80E-11 71.28 RA 
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O15111 11.35 13.11 -1.75 (-2.19-(-1.30)) 2.23E-01 6.70E-11 48.46 Plasma 

P29144 13.64 14.50 -0.86 (-1.08-(-0.64)) 1.11E-01 7.31E-11 38.72 RA 

P81605 9.87 8.24 1.63 (1.20-2.05) 2.11E-01 7.43E-11 54.10 RA 

P49247 11.02 9.78 1.24 (0.91-1.57) 1.64E-01 9.65E-11 33.08 RA 

P62158 13.04 10.69 2.34 (1.72-2.96) 3.11E-01 1.33E-10 5.64 RA 

O75347 12.27 13.82 -1.54 (-1.95-(-1.13) 2.05E-01 1.40E-10 35.90 RA 

Q00610 14.27 13.30 0.97 (0.72-1.22) 1.26E-01 7.86E-10 57.44 RA 

P13796 15.11 15.97 -0.86 (-1.10-(-0.62)) 1.15E-01 3.45E-09 48.72 RA 

P36222 13.69 15.46 -1.77 (-2.28-(-1.27)) 2.51E-01 7.18E-09 24.62 RA 

Q12906 10.46 11.10 -0.64 (-0.83-(-0.44) 9.63E-02 7.54E-09 63.08 RA 

P07737 12.56 11.07 1.48 (1.04-1.93) 2.23E-01 2.35E-08 4.87 RA 

O95168 12.42 9.56 2.86 (2.24-3.49) 2.97E-01 2.47E-08 43.85 Plasma 

P04406 15.29 15.96 -0.67 (-0.89-(-0.46) 1.08E-01 3.64E-08 47.69 RA 

P14174 10.46 9.54 0.92 (0.71-1.13) 1.00E-01 4.32E-08 71.54 RA 

P17980 16.56 15.48 1.08 (0.78-1.38) 1.46E-01 4.63E-08 55.13 RA 

O95445 16.30 17.02 -0.72 (-0.94-(-0.50)) 1.07E-01 4.74E-08 12.31 RA 

Q12797 11.53 13.27 -1.74 (-2.26-(-1.23) 2.53E-01 7.95E-08 41.54 Plasma 

Q13740 15.06 15.82 -0.76 (-1.01-(-0.51)) 1.24E-01 1.72E-07 50.77 RA 

P13797 13.31 11.76 1.55 (1.03-2.07) 2.58E-01 1.90E-07 38.21 RA 

P46939 14.50 15.41 -0.92 (-1.18-(-0.65)) 1.29E-01 2.07E-07 19.49 RA 

P0DJI9 12.50 10.26 2.25 (1.59-2.90) 3.17E-01 2.53E-07 65.90 RA 

P46821 11.75 10.09 1.66 (1.06-2.26) 3.01E-01 5.08E-07 58.46 RA 

P18428 13.49 12.28 1.21 (0.81-1.60) 1.94E-01 6.35E-07 0.51 RA 

Q9NY33 12.38 13.53 -1.16 (-1.46-(-0.85)) 1.43E-01 6.51E-07 51.28 RA 

Q562R1 11.94 10.77 1.17 (0.82-1.53) 1.70E-01 7.46E-07 1.54 RA 

P08603 17.63 17.05 0.59 (0.37-0.80) 1.06E-01 9.08E-07 0.00 RA 

P98179 17.50 18.42 -0.92 (-1.24-(-0.60)) 1.58E-01 1.15E-06 38.72 RA 

Q14766 13.45 12.36 1.09 (0.79-1.40) 1.42E-01 1.39E-06 60.00 RA 

P05023 12.78 13.78 -1.00 (-1.35-(-0.65)) 1.74E-01 1.66E-06 7.18 Plasma 

P04040 8.73 8.25 0.48 (0.29-0.66) 9.22E-02 2.01E-06 61.54 RA 

Q86U17 8.04 8.60 -0.56 (-0.78-(-0.35)) 1.01E-01 2.09E-06 68.46 Plasma 

P21399 16.34 17.32 -0.98 (-1.36-(-0.60)) 1.92E-01 2.48E-06 53.33 RA 

P01610 10.17 10.55 -0.38 (-0.52-(-0.23)) 7.32E-02 2.99E-06 73.85 RA 

Q01518 10.14 9.03 1.11 (0.72-1.49) 1.87E-01 3.26E-06 18.46 RA 

Q6UX71 9.04 8.78 0.27 (0.16-0.37) 5.30E-02 4.54E-06 68.21 RA 

Q02985 9.48 8.52 0.96 (0.64-1.28) 1.52E-01 4.65E-06 66.67 RA 

P02741 14.00 11.18 2.82 (1.79-3.84) 4.98E-01 5.95E-06 10.51 RA 

P18510 10.21 9.17 1.04 (0.64-1.44) 1.96E-01 8.49E-06 15.90 Plasma 

Q05639 15.09 13.85 1.24 (0.85-1.63) 1.84E-01 8.97E-06 73.85 RA 

Q5JQC9 10.43 9.33 1.09 (0.65-1.54) 2.21E-01 1.17E-05 34.87 Plasma 

P12955 14.20 13.51 0.70 (0.40-0.99) 1.49E-01 1.38E-05 56.67 RA 

Q16539 11.61 8.86 2.76 (1.85-3.66) 4.21E-01 1.40E-05 53.59 Plasma 

P04264 13.89 12.67 1.22 (0.79-1.64) 2.00E-01 1.48E-05 56.41 RA 

Q96AE4 11.92 14.37 -2.45 (-3.37-(-1.53)) 4.39E-01 1.90E-05 64.10 Plasma 

P26640 13.15 12.51 0.64 (0.39-0.90) 1.25E-01 2.42E-05 65.38 RA 

Q9Y283 13.18 12.18 1.00 (0.56-1.45) 2.23E-01 3.11E-05 54.87 Plasma 

P02654 15.78 16.94 -1.16 (01.64-(-0.68)) 2.35E-01 3.13E-05 0.51 RA 

P04207 9.85 10.90 -1.05 (-1.46-(-0.65)) 1.91E-01 3.26E-05 77.69 RA 
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P05155 17.70 19.35 -1.64 (-2.32-(-0.97)) 3.28E-01 4.27E-05 0.00 RA 

P63313 19.18 18.55 0.63 (0.34-0.92) 1.44E-01 4.86E-05 75.13 RA 

O75083 10.67 6.78 3.89 (2.35-5.43) 7.28E-01 5.51E-05 65.64 RA 

P12111 15.76 14.93 0.84 (0.49-1.18) 1.66E-01 6.15E-05 42.05 RA 

P05019 8.97 10.31 -1.34 (-1.88-(-0.80)) 2.56E-01 7.23E-05 78.97 RA 

Q8NBS9 16.10 15.35 0.75 (0.41-1.10) 1.71E-01 7.39E-05 38.21 RA 

P13473 9.27 8.53 0.75 (0.41-1.08) 1.62E-01 8.08E-05 28.21 RA 

P04114 18.20 18.92 -0.72 (-1.05-(-0.39)) 1.61E-01 8.25E-05 0.00 RA 

Q9NYU2 9.89 8.23 1.66 (0.97-2.35) 3.27E-01 9.34E-05 69.74 RA 

P04075 9.88 11.69 -1.81 (-2.62-(-0.99)) 3.94E-01 1.38E-04 84.62 RA 

P02655 15.81 17.06 -1.25 (-1.83-(-0.67)) 2.83E-01 1.47E-04 0.00 RA 

Q01813 7.48 6.39 1.09 (0.56-1.63) 2.64E-01 1.66E-04 26.41 Plasma 

Q13263 10.70 10.07 0.62 (0.31-0.93) 1.56E-01 1.91E-04 62.31 RA 

Q12933 11.35 10.69 0.66 (0.33-0.99) 1.63E-01 2.21E-04 36.92 Plasma 

P00736 15.00 14.47 0.53 (0.27-0.80) 1.30E-01 2.45E-04 0.00 RA 

Q9H0W9 17.25 16.49 0.76 (0.37-1.15) 1.95E-01 2.46E-04 49.23 RA 

Q9Y446 14.06 12.46 1.59 (0.86-2.33) 3.47E-01 2.70E-04 43.85 RA 

Q14204 19.05 18.78 -0.72 (-1.10-(-0.35)) 1.88E-01 2.73E-04 25.64 RA 

P50454 20.06 19.73 0.33 (0.16-0.50) 8.69E-02 2.79E-04 32.31 RA 

Q5VWQ8 7.32 10.93 -3.61 (-5.34-(-1.87)) 8.26E-01 3.69E-04 33.33 Plasma 

Q15560 10.49 10.71 -0.23 (-0.35-(-0.10)) 6.07E-02 4.07E-04 47.18 Plasma 

P05451 11.16 10.74 0.42 (0.20-0.63) 1.04E-01 4.26E-04 43.33 RA 

Q9BXR6 9.80 9.13 0.68 (0.33-1.02) 1.69E-01 4.78E-04 41.03 RA 

P08294 8.70 7.97 0.73 (0.33-1.13) 2.01E-01 5.15E-04 50.77 RA 

Q12778 9.70 9.07 0.63 (0.29-0.96) 1.68E-01 5.48E-04 64.10 Plasma 

P07384 11.17 11.66 -0.49 (-0.77-(-0.22)) 1.37E-01 7.02E-04 54.87 RA 

P06727 19.78 18.42 1.36 (0.62-2.10) 3.60E-01 8.00E-04 13.33 RA 

Q9HDC9 11.26 11.92 -0.65 (-1.00-(-0.31)) 1.68E-01 8.44E-04 57.95 RA 

P17948 13.56 13.03 0.53 (0.24-0.83) 1.46E-01 8.80E-04 43.85 RA 

P61626 12.48 11.05 1.42 (0.68-2.17) 3.52E-01 9.98E-04 4.10 RA 

O00329 9.17 7.36 1.81 (0.80-2.82) 4.87E-01 1.13E-03 38.72 Plasma 

Q99460 13.90 12.60 1.30 (0.55-2.04) 3.64E-01 1.28E-03 33.08 RA 

P00558 12.05 10.87 1.18 (0.51-1.85) 3.27E-01 1.34E-03 38.21 RA 

P09172 9.66 10.40 -0.74 (-1.17-(-0.32)) 2.08E-01 1.38E-03 35.64 RA 

P22352 13.10 13.68 -0.59 (-0.94-(-0.23)) 1.76E-01 1.62E-03 0.00 RA 

Q14019 11.20 10.51 0.70 (0.30-1.09) 1.90E-01 1.63E-03 48.46 RA 

P20700 12.85 13.74 -0.90 (-1.40-(-0.39)) 2.36E-01 1.70E-03 21.03 RA 

P01375 11.00 9.46 1.54 (0.68-2.40) 4.00E-01 1.76E-03 40.77 Plasma 

P40939 9.73 10.28 -0.55 (-0.88-(-0.21)) 1.67E-01 1.75E-03 56.92 RA 

O43852 11.38 10.64 0.74 (0.31-1.16) 2.01E-01 1.84E-03 47.69 RA 

P27918 12.40 11.46 0394 (0.39-1.49) 2.66E-01 2.05E-03 0.00 RA 

P43487 8.96 8.62 0.34 (0.13-0.54) 9.93E-02 2.06E-03 67.18 Plasma 

Q9Y450 13.62 14.13 -0.51 (-0.82-(-0.20)) 1.51E-01 2.12E-03 19.49 Plasma 

P0C0L5 16.09 17.02 -0.93 (-1.50-(-0.36)) 2.78E-01 2.18E-03 6.92 RA 

P07339 19.85 16.67 3.18 (1.30-5.06) 8.95E-01 2.35E-03 54.62 RA 

P45983 10.38 11.16 -0.78 (-1.27-(-0.29)) 2.42E-01 2.48E-03 54.36 RA 

Q99832 14.73 13.74 0.99 (0.41-1.56) 2.70E-01 2.55E-03 51.28 RA 

Q09666 19.61 19.14 0.46 (0.17-0.75) 1.44E-01 2.91E-03 44.36 RA 
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UniProt ID Mean 

expression 

RA 

Mean 

expression 

HC 

Difference in means 

(95% CI) 

Standard 

error 

p-value % missing 

before 

imputation 

Library 

P41250 14.54 13.96 0.58 (0.22-0.94) 1.74E-01 3.03E-03 65.13 RA 

P13010 9.06 9.92 -0.85 (-1.38-(-0.32)) 2.56E-01 3.09E-03 15.13 Plasma 

P40926 13.11 12.82 0.29 (0.10-0.49) 9.49E-02 3.09E-03 67.69 RA 

P27361 8.88 9.53 -0.65 (-1.07-(-0.24)) 2.02E-01 3.20E-03 65.38 Plasma 

P06737 13.86 14.17 -0.31 (-0.50-(-0.11)) 9.42E-02 3.42E-03 69.74 RA 

Q9UKX3 8.99 9.67 -0.68 (-1.12-(-0.24)) 2.15E-01 3.45E-03 64.10 Plasma 

Q15746 13.05 12.45 0.59 (0.22-0.96) 1.77E-01 3.66E-03 54.36 RA 

Q99784 10.30 9.98 0.32 (0.11-0.52) 9.90E-02 4.43E-03 51.28 RA 

Q8TEW0 11.80 10.39 1.41 (0.49-2.33) 4.39E-01 4.62E-03 33.59 Plasma 

Q04917 9.12 8.17 0.95 (0.33-1.57) 2.98E-01 4.89E-03 72.05 Plasma 

Q9BPX6 9.76 10.60 -0.85 (-1.41-(-0.28)) 2.73E-01 5.47E-03 42.82 Plasma 

P10909 17.89 17.53 0.35 (0.11-0.60) 1.21E-01 5.66E-03 0.00 RA 

Q92820 9.99 9.36 0.63 (0.20-1.06) 2.11E-01 5.72E-03 32.56 RA 

P05546 18.27 17.85 0.42 (0.13-0.71) 1.44E-01 5.75E-03 0.00 RA 

Q14CX7 12.61 11.15 1.46 (0.49-2.43) 4.55E-01 5.81E-03 48.97 Plasma 

Q9UGM5 12.22 11.60 0.62 (0.19-1.06) 2.13E-01 6.61E-03 1.79 RA 

P54578 14.18 14.54 -0.36 (-0.61-(-0.11)) 1.23E-01 6.79E-03 57.69 RA 

Q9HC38 13.54 14.11 -0.57 (-0.99-(-0.16)) 2.06E-01 6.83E-03 41.28 RA 

P23396 10.91 9.28 1.63 (0.52-2.75) 5.25E-01 6.96E-03 21.79 RA 

P01776 18.57 17.08 1.50 (0.44-2.55) 5.06E-01 7.65E-03 57.44 RA 

P05160 11.78 11.35 0.42 (0.1-0.72) 1.37E-01 7.69E-03 56.92 RA 

P02656 16.44 17.38 -0.94 (-1.61-(-0.28)) 3.22E-01 7.80E-03 0.00 RA 

P14780 10.33 9.69 0.64 (0.18-1.09) 2.26E-01 7.96E-03 26.67 RA 

P27169 16.15 16.73 -0.58 (-0.99-(-0.16)) 1.97E-01 9.05E-03 0.00 RA 

Q7Z3U7 18.80 18.00 0.80 (0.21-1.39) 2.87E-01 9.68E-03 8.21 RA 

Q8WVM8 15.68 13.50 2.18 (0.61-3.75) 7.35E-01 9.90E-03 34.10 Plasma 

P41222 10.00 10.44 -0.43 (-0.75-(-0.11)) 1.53E-01 1.03E-02 72.31 RA 

P31749 9.64 9.15 0.49 (0.12-0.85) 1.75E-01 1.08E-02 67.44 Plasma 

P52272 16.46 16.24 0.21 (0.05-0.38) 8.19E-02 1.10E-02 68.46 RA 

P01011 20.94 20.40 0.53 (0.13-0.93) 1.92E-01 1.11E-02 0.00 RA 

Q7KZF4 16.88 15.53 1.34 (0.34-2.35) 4.76E-01 1.13E-02 24.36 RA 

P19838 15.14 14.13 1.01 (0.25-1.78) 3.75E-01 1.15E-02 10.77 Plasma 

P00918 8.68 8.18 0.50 (0.12-0.88) 1.86E-01 1.19E-02 19.49 RA 

Q13201 12.78 12.25 0.53 (0.13-0.94) 1.95E-01 1.19E-02 63.85 RA 

Q03591 12.05 10.81 1.24 (0.31-2.17) 4.38E-01 1.20E-02 11.54 RA 

Q8NB16 11.47 11.15 0.32 (0.08-0.57) 1.17E-01 1.22E-02 26.67 Plasma 

P02748 17.03 16.47 0.56 (0.13-0.99) 2.07E-01 1.23E-02 0.00 RA 

P26599 11.69 12.16 -0.47 (-0.83-(-0.18)) 1.82E-01 1.25E-02 58.21 RA 

P11766 16.66 16.40 0.26 (0.06-0.46) 9.78E-02 1.37E-02 56.67 RA 

P52566 14.53 13.67 0.86 (0.18-1.54) 3.31E-01 1.48E-02 52.56 RA 

O43143 11.77 13.14 -1.37 (-2.45-(-0.30)) 5.01E-01 1.57E-02 57.69 RA 

P22897 12.35 12.94 -0.59 (-1.05-(-0.13)) 2.17E-01 1.60E-02 43.33 RA 

P80188 10.65 10.86 -0.21 (-0.38-(-0.04)) 8.40E-02 1.62E-02 76.15 RA 

P48740 11.02 11.60 -0.58 (-1.05-(-0.11)) 2.29E-01 1.73E-02 6.15 RA 

P03951 12.02 11.00 1.02 (0.20-1.84) 3.91E-01 1.75E-02 2.82 RA 

P15144 12.58 11.79 0.80 (0.16-1.44) 3.00E-01 1.75E-02 41.28 RA 

P42765 12.00 11.66 0.34 (0.06-0.63) 1.36E-01 2.13E-02 45.38 RA 

P02776 12.66 12.15 0.51 (0.08-0.94) 2.10E-01 2.14E-02 8.46 RA 
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UniProt ID Mean 

expression 

RA 

Mean 

expression 

HC 

Difference in means 

(95% CI) 

Standard 

error 

p-value % missing 

before 

imputation 

Library 

P0DJI8 11.21 9.88 1.33 (0.21-2.46) 5.45E-01 2.25E-02 26.92 RA 

O60716 11.38 10.27 1.10 (0.17-2.04) 4.47E-01 2.37E-02 37.69 RA 

P02452 11.31 10.67 0.64 (0.10-1.18) 2.59E-01 2.39E-02 61.79 RA 

Q86VB7 10.32 9.79 0.54 (0.07-1.00) 2.23E-01 2.46E-02 32.05 RA 

Q01668 9.82 9.20 0.62 (0.09-1.16) 2.48E-01 2.51E-02 61.79 Plasma 

P30048 15.17 12.28 2.89 (0.42-5.36) 1.15E-01 2.53E-02 13.59 RA 

O75369 16.46 16.84 -0.38 (-0.71-(-0.05) 1.56E-01 2.57E-02 52.82 RA 

P02743 16.78 16.26 0.52 (0.07-0.97) 2.17E-01 2.62E-02 0.26 RA 

P46734 10.73 10.41 0.31 (0.04-0.59) 1.37E-01 2.63E-02 68.97 Plasma 

Q86VP6 14.37 14.83 -0.46 (-0.87-(-0.01)) 1.95E-01 2.94E-02 48.72 RA 

P07359 13.26 12.66 0.60 (0.07-1.14) 2.59E-01 2.95E-02 8.21 RA 

P05090 17.27 17.65 -0.38 (-0.72-(-0.04)) 1.69E-02 2.97E-02 0.00 RA 

P02763 19.57 18.90 0.68 (0.07-1.28) 2.97E-01 3.04E-02 0.00 RA 

P62701 13.40 13.08 0.32 (0.03-0.61) 1.39E-01 3.30E-02 12.56 RA 

P02753 17.33 17.70 -0.37 (-0.70-(-0.03)) 1.65E-01 3.35E-02 0.00 RA 

P04180 13.23 12.99 0.24 (0.02-0.47) 1.10 E-01 3.36E-02 0.00 RA 

P04275 14.45 14.60 -0.15 (-0.28-(-0.01)) 6.48E-02 3.38E-02 54.87 RA 

P10809 15.50 16.02 -0.53 (-1.01-(-0.04)) 2.33E-01 3.44E-02 48.21 RA 

P49913 10.98 10.45 0.53 (0.04-1.02) 2.38E-01 3.64E-02 20.25 RA 

P04004 18.83 18.45 0.37 (0.02-0.72) 1.68E-01 3.68E-02 0.00 RA 

P49908 11.27 11.70 -0.42 (-0.82-(-0.03)) 1.94E-01 3.69E-02 6.92 RA 

P09871 15.62 15.29 0.32 (0.02-0.63) 1.51E-01 4.05E-02 0.00 RA 

P68871 17.82 16.92 0.90 (0.04-1.75) 4.09E-01 4.09E-02 0.00 RA 

P09104 16.42 16.57 -0.15 (-0.29-(-0.00)) 7.20E-02 4.32E-02 55.90 RA 

Q9UNW1 11.33 10.96 0.37 (0.01-0.73) 1.71E-01 4.39E-02 53.33 RA 

Q7Z794 11.75 12.13 -0.38 (-0.74-(-0.01)) 1.83E-01 4.43E-02 41.03 RA 

P49327 17.85 17.39 0.45 (0.01-0.90) 2.13E-01 4.50E-02 18.97 RA 

P08697 16.25 16.69 -0.44 (-0.87-(-0.01)) 2.05E-01 4.68E-02 0.00 RA 

P58107 15.13 15.40 -0.27 (-0.54-(-0.00)) 1.32E-01 4.82E-02 64.36 RA 
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APPENDIX SEVEN: SIGNIFICANT PROTEINS ASSOCIATED WITH RA 

DISEASE OUTCOMES 

Table 1. Proteins measured before treatment with etanercept significantly associated with 

DAS28 at baseline, univariate analysis. 

Protein (UniProt 

ID) 

β-coefficient (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

P01011 0.25 (0.13 – 0.37) 0.0001 0.0206 0.00 

P46734 0.21 (0.10 – 0.33) 0.0003 0.0206 68.97 

P02741 0.74 (0.35 – 1.14) 0.0003 0.0206 10.51 

P18428 0.28 (0.13 – 0.44) 0.0004 0.0206 0.51 

P30048 0.56 (0.24 – 0.87) 0.0007 0.0283 13.59 

P02763 0.37 (0.16 – 0.57) 0.0008 0.0290 0.00 

P17948 0.21 (0.09 – 0.33) 0.0010 0.0294 43.85 

P02748 0.22 (0.09 – 0.35) 0.0012 0.0305 0.00 

Q32MZ4 -0.18 (-0.28 – (-0.07)) 0.0013 0.0305 72.56 

P54578 0.16 (0.06 – 0.26) 0.0014 0.0305 57.69 

P00558 -0.39 (-0.63 – (-0.15)) 0.0016 0.0305 38.21 

P0DJI8 0.63 (0.24 – 1.02) 0.0017 0.0305 26.92 

Q04917 -0.30 (-0.49 – (-0.12)) 0.0018 0.0305 72.05 

Q05682 -0.50 (-0.81 – (-0.18)) 0.0022 0.0347 76.67 

Q99460 -0.44 (-0.81 – (-0.18)) 0.0030 0.0437 33.08 
 

ABBREVIATIONS: Confidence interval (CI), Disease Activity Score of 28 Joints (DAS28), identifier (ID). 
 

Table 2. Proteins measured before treatment with etanercept significantly associated with 

DAS28 at baseline, adjusted for age, biological sex and RA disease duration. 

Protein (UniProt 

ID) 

β-coefficientadj (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

P01011 0.24 (0.12 – 0.37) 0.0002 0.0260 0.00 

P46734 0.21 (0.10 – 0.33) 0.0003 0.0260 68.97 

P02741 0.74 (0.34 – 1.13) 0.0004 0.0260 10.51 

P18428 0.28 (0.12 – 0.43) 0.0006 0.0273 0.51 

P30048 0.55 (0.24 – 0.87) 0.0007 0.0273 13.59 

P02763 0.36 (0.15 – 0.58) 0.0009 0.0273 0.00 

Q32MZ4 -0.18 (-0.29 – (-0.08)) 0.0010 0.0273 72.56 

P0DJI8 0.65 (0.26 – 1.03) 0.0013 0.0273 26.92 

P17948 0.20 (0.08 – 0.33) 0.0013 0.0273 43.85 

Q04917 -0.31 (-0.50 – (-0.12)) 0.0014 0.0273 72.05 

P54578 0.16 (0.06 – 0.26) 0.0015 0.0273 57.69 

P00558 -0.40 (-0.64 – (-0.16)) 0.0016 0.0273 38.21 

P02748 0.21 (0.08 – 0.34) 0.0017 0.0273 0.00 

Q05682 -0.50 (-0.81 – (-0.19)) 0.0018 0.0273 76.67 

Q99460 -0.44 (-0.73 – (-0.15)) 0.0031 0.0443 33.08 

P02786 -0.36 (-0.60 – (-0.12)) 0.0036 0.0489 39.23 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), Disease Activity Score of 28 Joints (DAS28), 

identifier (ID), rheumatoid arthritis (RA). 
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Table 3. Proteins measured before treatment with etanercept significantly associated with 

DAS28 at baseline, adjusted for age, multivariable model. 

Protein (UniProt ID) β-coefficientadj (95% CI) p-value % missing before 

imputation 

P01011 0.05 (-0.32 – 0.42) 0.7961 0.00 

P46734 0.36 (0.09 – 0.64) 0.0110 68.97 

P02741 0.03 (-0.06 – 0.12) 0.5016 10.51 

P18428 0.05 (-0.18 – 0.29) 0.6588 0.51 

P30048 0.01 (-0.09 – 0.12) 0.8252 13.59 

P02763 0.07 (-0.10 – 0.25) 0.4044 0.00 

Q32MZ4 -0.16 (-0.49 – 0.17) 0.3389 72.56 

P0DJI8 0.09 (0.00 – 0.17) 0.0496 26.92 

P17948 0.14 (-0.15 – 0.43) 0.3462 43.85 

Q04917 -0.18 (-0.32 – (-0.04)) 0.0123 72.05 

P54578 0.02 (-0.31 – 0.35) 0.8922 57.69 

P00558 -0.04 (-0.17 – 0.09) 0.5602 38.21 

P02748 -0.41 (-0.82 – 0.01) 0.0579 0.00 

Q05682 0.03 (-0.09 – 0.14) 0.6765 76.67 

Q99460 0.00 (-0.10 – 0.11) 0.9487 33.08 

P02786 -0.15 (-0.26 – (-0.04)) 0.0080 39.23 

Age at baseline -0.01 (-0.02 – 0.01) 0.3087 N/A 

Male sex -0.01 (-0.33 – 0.31) 0.9632 N/A 

Disease duration 0.01 (-0.00 – 0.03) 0.0568 N/A 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), Disease Activity Score of 28 Joints (DAS28), 

identifier (ID). 

 

Table 4. Proteins measured before treatment with etanercept significantly associated with 

DAS28 after three months of treatment, adjusted for age, biological sex and RA disease 

duration. 

Protein 

(UniProt ID) 

β-coefficientadj 

(95% CI) 

p-value Adjusted 

p-value 

% missing before 

imputation 

Q9H4M9 0.32 (0.17 – 0.47) 6.53E-05 0.0117 72.82 

Q99832 0.11 (0.05 – 0.16) 0.0001 0.0017 51.28 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), Disease Activity Score of 28 Joints (DAS28), 

identifier (ID). 

 

Table 5. Proteins measured before treatment with etanercept significantly associated with 

DAS28 at three months, multivariable model. 

Variable β-coefficientadj (95% CI) p-value % missing before 

imputation 

Q9H4M9 0.25 (0.09 – 0.41) 0.0030 72.82 

Q99832 0.67 (0.21 – 1.13) 0.0050 51.28 

Age at baseline 0.02 (0.00 – 0.04) 0.0158 N/A 

Male sex -0.30 (-0.81 – 0.20) 0.2373 N/A 

Disease duration -0.01 (-0.04 – 0.01) 0.1787 N/A 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), Disease Activity Score of 28 Joints (DAS28). 
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Table 6. Proteins measured after three months of treatment with etanercept associated with 

DAS28 at three months, univariate model. 

Protein 

(UniProt ID) 

β-coefficient (95% CI) p-value Adjusted p-

value 

% missing 

before 

imputation 

Q9H4M9 0.41 (0.27 – 0.56) 1.47E-07 3.20E-05 72.82 

P02741 0.54 (0.34 – 0.74) 3.49E-07 3.80E-05 10.51 

Q12797 -0.26 (-0.36 – (-0.15)) 2.32E-06 0.0002 41.54 

P18428 0.19 (0.11 – 0.28) 7.85E-06 0.0004 0.51 

Q02985 0.10 (0.05 – 0.14) 5.10E-05 0.0017 66.67 

P02763 0.26 (0.13 – 0.38) 5.57E-05 0.0017 0.00 

P05019 -0.17 (-0.25 – (-0.09)) 5.67E-05 0.0017 78.97 

P01375 -0.18 (-0.26 – (-0.09)) 0.0001 0.0038 40.77 

P0DJI9 0.14 (0.07 – 0.22) 0.0003 0.0058 65.90 

P78347 -0.14 (-0.22 – (-0.07)) 0.0003 0.0058 70.51 

Q12906 -0.09 (-0.14 – (-0.04)) 0.0003 0.0058 63.08 

P43490 -0.39 (-0.59 – (-0.18)) 0.0003 0.0059 53.08 

P06737 0.09 (0.04 – 0.14) 0.0005 0.0080 69.74 

P08603 0.12 (0.05 – 0.18) 0.0006 0.0094 0.00 

P0DJI8 0.28 (0.12 – 0.44) 0.0007 0.0094 26.92 

P30043 -0.17 (-0.27 – (-0.07)) 0.0007 0.0094 77.95 

P36222 -0.24 (-0.38 – (-0.10)) 0.0014 0.0178 24.62 

Q14CX7 -0.26 (-0.42 – (-0.10)) 0.0018 0.0221 48.97 

P02748 0.13 (0.05 – 0.21) 0.0020 0.0226 0.00 

Q9Y446 -0.20 (-0.33 – (-0.07)) 0.0021 0.0230 43.85 

P31749 -0.13 (-0.21 – (-0.05)) 0.0023 0.0232 67.44 

P12956 -0.23 (-0.37 – (-0.08)) 0.0025 0.0238 60.26 

P02743 0.14 (0.05 – 0.23) 0.0025 0.0238 0.26 

Q00610 0.10 (0.03 – 0.16) 0.0029 0.0256 57.44 

P10809 -0.11 (-0.18 – (-0.04)) 0.0030 0.0256 48.21 

P04075 -0.18 (-0.31 – (-0.06)) 0.0031 0.0259 84.62 

P01776 -0.32 (-0.52 – (-0.11)) 0.0033 0.0264 57.44 

Q8NB16 0.06 (0.02 – 0.10) 0.0035 0.0267 26.67 

Q15185 -0.20 (-0.33 – (-0.07)) 0.0041 0.0308 28.97 

P29144 -0.21 (-0.35 – (-0.07)) 0.0046 0.0329 38.72 

Q9HDC9 0.10 (0.03 – 0.17) 0.0048 0.0336 57.95 

Q99832 0.07 (0.02 – 0.13) 0.0053 0.0359 51.28 

P62937 -0.24 (-0.42 – (-0.07)) 0.0058 0.0378 60.77 

P06753 0.10 (0.03 – 0.17) 0.0067 0.0424 71.54 

Q6UX71 0.05 (0.01 – 0.08) 0.0074 0.0455 68.21 

O95445 -0.10 (-0.17 – (-0.03)) 0.0079 0.0476 12.31 
 

ABBREVIATIONS: Confidence interval (CI), Disease Activity Score of 28 Joints (DAS28), identifier (ID). 
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Table 7. Proteins measured after three months of treatment with etanercept associated with 

DAS28 at three months, adjusted for age, biological sex and RA disease duration. 

Protein (UniProt 

ID) 

β-coefficientadj (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

P02741 0.55 (0.35 – 0.76) 3.51E-07 5.50E-05 10.51 

Q9H4M9 0.41 (0.25 – 0.56) 5.09E-07 5.50E-05 72.82 

P18428 0.20 (0.11 – 0.28) 1.01E-05 0.0007 0.51 

Q12797 -0.24 (-0.34 – (-0.13)) 1.64E-05 0.0009 41.54 

P05019 -0.17 (-0.26 – (-0.09)) 7.48E-05 0.0031 78.97 

Q02985 0.10 (0.05 – 0.14) 8.72E-05 0.0031 66.67 

P01375 -0.17 (-0.27 – (-0.08)) 0.0003 0.0077 40.77 

P02763 0.23 (0.11 – 0.36) 0.0003 0.0077 0.00 

P43490 -0.38 (-0.59 – (_0.17)) 0.0006 0.0122 53.08 

P08603 0.12 (0.05 – 0.19) 0.0006 0.0122 0.00 

Q12906 -0.09 (-0.13 – (-0.04)) 0.0006 0.0122 63.08 

P30043 -0.18 (-0.28 – (-0.08)) 0.0007 0.0125 77.95 

P06737 0.09 (0.04 – 0.14) 0.0009 0.0150 69.74 

P0DJI8 0.27 (0.11 – 0.43) 0.0011 0.0164 26.92 

Q14CX7 -0.27 (-0.44 – (-0.11)) 0.0013 0.0181 48.97 

P02743 0.15 (0.06 – 0.24) 0.0014 0.0189 0.26 

P36222 -0.24 (-0.39 – (-0.10)) 0.0015 0.0192 24.62 

P0DJI9 0.12 (0.05 – 0.20) 0.0017 0.0200 65.90 

P78347 -0.12 (-0.20 – (-0.05)) 0.0020 0.0229 70.51 

Q8NB16 0.07 (0.02 – 0.11) 0.0024 0.0250 26.67 

P31749 -0.13 (-0.22 – (-0.05)) 0.0024 0.0250 67.44 

Q9Y446 -0.19 (-0.32 – (-0.06)) 0.0039 0.0367 43.85 

P01776 -0.31 (-0.53 – (-0.10)) 0.0039 0.0367 57.44 

P12956 -0.21 (-0.36 – (-0.07)) 0.0049 0.0438 60.26 

P02748 0.12 (0.04 – 0.20) 0.0053 0.0449 0 

Q92820 0.15 (0.05 – 0.25) 0.0054 0.0449 32.56 

Q00610 0.09 (0.03 – 0.16) 0.0056 0.0449 57.44 

P0C0L5 0.17 (0.05 – 0.29) 0.0058 0.0449 6.92 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), Disease Activity Score of 28 Joint (DAS28), 

identifier (ID), rheumatoid arthritis (RA). 
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Table 8. Proteins measured after three months of treatment with etanercept significantly 

associated with DAS28 at three months, multivariable model. 

Variable β-coefficientadj (95% CI) p-value % missing before 

imputation 

P12956 0.05 (-0.16 – 0.26) 0.6174 60.26 

Q9H4M9 0.17 (0.02 – 0.32) 0.0239 72.82 

P43490 0.04 (-0.11 – 0.19) 0.4923 53.08 

P30043 -0.22 (-0.47 – 0.03) 0.0851 77.95 

P78347 -0.10 (-0.50 – 0.31) 0.6364 70.51 

Q00610 0.08 (-0.27 – 0.43) 0.6456 57.44 

P36222 -0.08 (-0.26 – 0.10) 0.3849 24.62 

Q12906 -0.41(-0.90 – 0.09) 0.1097 63.08 

Q12797 -0.28 (-0.53 – (-0.04)) 0.0249 41.54 

P0DJI9 0.18 (-0.15 – 0.50) 0.2895 65.90 

P18428 0.06 (-0.27 – 0.40) 0.7128 0.51 

P08603 0.14 (-0.33 – 0.61) 0.5605 0.00 

Q02985 0.64 (0.10 – 1.17) 0.0209 66.67 

P02741 0.12 (-0.02 – 0.26) 0.1055 10.51 

P05019 -0.28 (-0.54 – (-0.01)) 0.0423 78.97 

Q9Y446 -0.15 (-0.33 – 0.04) 0.1182 43.85 

P01375 -0.23 (-0.47 – (-0.00)) 0.0507 40.77 

P0C0L5 -0.05 (-0.24 – 0.15) 0.6424 6.92 

P06737 -0.13 (-0.61 – 0.35) 0.6002 69.74 

Q92820 0.06 (-0.18 – 0.30) 0.6327 32.56 

Q14CX7 -0.11 (-0.29 – 0.07) 0.2342 48.97 

P01776 0.13 (-0.06 – 0.31) 0.1805 57.44 

P31749 -0.14 (-0.41 – 0.13) 0.3166 67.44 

Q8NB16 0.06 (-0.48 – 0.60) 0.8259 26.67 

P02748 -0.37 (-0.74 – 0.01) 0.0587 0.00 

P0DJI8 0.04 (-0.13 – 0.21) 0.6599 26.92 

P02743 -0.14 (-0.47 – 0.19) 0.4162 0.26 

P02763 0.19 (-0.07 – 0.45) 0.1558 0.00 

Age at baseline 0.01 (-0.01 – 0.02) 0.5393 N/A 

Male sex -0.16 (-0.62 – 0.30) 0.5005 N/A 

Disease duration 0.00 (-0.02 – 0.02) 0.7589 N/A 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), Disease Activity Score of 28 Joints (DAS28). 
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Table 9. Proteins measured after three months of treatment with etanercept associated with 

DAS28 at six months, univariate analysis. 

Protein (UniProt 

ID) 

β-coefficient (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

P02741 0.43 (0.25 – 0.61) 7.32E-06 0.0011 10.51 

Q12797 -0.21 (-0.30 – (-0.12)) 9.81E-06 0.0011 41.54 

P0DJI8 0.28 (0.14 – 0.43) 0.0001 0.0100 26.92 

P02748 0.14 (0.07 – 0.21) 0.0002 0.0131 0.00 

P18428 0.14 (0.07 – 0.22) 0.0003 0.0151 0.51 

P17980 0.11 (0.05 – 0.17) 0.0004 0.0153 55.13 

Q02985 0.08 (0.03 – 0.12) 0.0006 0.0190 66.67 

P62158 -0.43 (-0.68 – (-0.18)) 0.0008 0.0216 5.64 

P18510 0.16 (0.06 – 0.26) 0.015 0.0366 15.90 

P01375 -0.13 (-0.21 – (-0.05)) 0.0018 0.0386 40.77 
 

ABBREVIATIONS: Confidence interval (CI), Disease Activity Score of 28 Joints (DAS28), identifier (ID). 

 

Table 10. Proteins measured after three months of treatment with etanercept associated with 

DAS28 at six months, adjusted for age, biological sex and RA disease duration. 

Protein (UniProt 

ID) 

β-coefficientadj (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

P02741 0.41 (0.23 – 0.60) 2.27E-05 0.0049 10.51 

Q12797 -0.20 (-0.29 – (-0.10)) 6.67E-05 0.0072 41.54 

P18428 0.14 (0.07 – 0.22) 0.0004 0.0294 0.51 

P02748 0.13 (0.06 – 0.20) 0.0007 0.0294 0.00 

P17980 0.11 (0.05 – 0.17) 0.0007 0.0294 55.13 

P0DJI8 0.25 (0.11 – 0.40) 0.0008 0.0294 26.92 

Q02985 0.07 (0.03 – 0.12) 0.0012 0.0355 66.67 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), Disease Activity Score of 28 Joints (DAS28), 

identifier (ID), rheumatoid arthritis (RA). 

 

Table 11. Proteins measured after three months of treatment with etanercept significantly 

associated with DAS28 at six months, multivariable model. 

Variable β-coefficientadj (95% CI) p-value % missing 

before 

imputation 

P17980 0.35 (-0.05 – 0.75) 0.0868 55.13 

Q12797 -0.34 (-0.59 – (-0.10)) 0.0076 41.54 

P18428 0.18 (-0.20 – 0.56) 0.3492 0.51 

Q02985 0.72 (0.15 – 1.28) 0.0145 66.67 

P02741 0.05 (-0.12 – 0.21) 0.5921 10.51 

P02748 -0.05 (-0.45 – 0.36) 0.8235 0.00 

P0DJI8 0.16 (-0.01 – 0.33) 0.0684 26.92 

Age at baseline 0.01 (-0.01 – 0.03) 0.2920 N/A 

Male sex -0.22 (-0.76 – 0.33) 0.4344 N/A 

Disease duration -0.01 (-0.03 – 0.01) 0.3240 N/A 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), Disease Activity Score of 28 Joints (DAS28). 
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Table 12. Proteins measured after three months of treatment with etanercept associated with 

ΔDAS28 at three months, univariate analysis. 

Protein (UniProt 

ID) 

β-coefficient (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

Q9H4M9 -0.37 (-0.50 – (-0.24)) 7.15E-08 1.50E-05 72.82 

P02741 -0.36 (-0.54 – (-0.17)) 0.0002 0.0201 10.51 

P06737 -0.08 (-0.12 – (-0.04)) 0.0004 0.0276 69.74 

P0DJI8 -0.24 (-0.38- (-0.10)) 0.0010 0.0356 26.92 

Q12906 0.07 (0.03 – 0.11) 0.0010 0.0356 63.08 

Q02985 -0.07 (-0.11 – (-0.03)) 0.0011 0.0356 66.67 

Q12797 0.16 (0.06 – 0.25) 0.0012 0.0356 41.54 

P78347 0.11 (0.04 – 0.18) 0.0013 0.0356 70.51 
 

ABBREVIATIONS: Change in Disease Activity Score of 28 Joints after treatment (ΔDAS28), confidence 

interval (CI), identifier (ID). 

 

Table 13. Proteins measured after three months of treatment with etanercept associated with 

ΔDAS28 at three months, adjusted for age, biological sex and RA disease duration. 

Protein (UniProt 

ID) 

β-coefficientadj (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

Q9H4M9 -0.37 (-0.50 – (-0.23)) 3.05E-07 6.60E-05 72.82 

P02741 -0.35 (-0.54 – (-0.17)) 0.0003 0.0308 10.51 
 

ABBREVIATIONS: Change in Disease Activity Score of 28 Joints after treatment (ΔDAS28), confidence 

interval (CI), identifier (ID). 

 

Table 14. Proteins measured after three months of treatment with etanercept significantly 

associated with ΔDAS28 at three months, multivariable model. 

Variable β-coefficientadj (95% CI) p-value % missing 

before 

imputation 

Q9H4M9 -0.38 (-0.54 – (-0.22)) 4.66E-06 72.82 

P02741 -0.17 (-0.29 – (-0.05)) 0.0047 10.51 

Age at baseline -0.02 (-0.05 – (-0.00)) 0.0308 N/A 

Male sex 0.20 (-0.34 – 0.74) 0.4635 N/A 

Disease duration 0.01 (-0.01 – 0.03) 0.4756 N/A 
 

ABBREVIATIONS: Adjusted (adj), change in Disease Activity Score of 28 Joints after treatment (ΔDAS28), 

confidence interval (CI). 
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Table 15. Proteins measured after three months of treatment with etanercept significantly 

associated with TJC at three months, univariate analysis. 

Protein (UniProt 

ID) 

β-coefficient (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

P43490 -0.09 (-0.14 – (-0.05)) 3.96E-05 0.0086 53.08 

Q12797 -0.05 (-0.07 – (-0.02) 0.0001 0.0130 41.54 

P01375 -0.04 (-0.06 – (-0.02)) 0.0002 0.0137 40.77 

P05019 -0.04 (-0.06 – (-0.02)) 0.0003 0.0166 78.97 

P14174 -0.02 (-0.03 – (-0.01)) 0.0004 0.0166 71.54 

Q9Y446 -0.05 (-0.07 – (-0.02)) 0.0006 0.0220 43.85 

P30043 -0.04 (-0.06 – (-0.02)) 0.0007 0.0220 77.95 

P12956 -0.05 (-0.08 – (-0.02)) 0.0010 0.0282 60.26 

Q9H4M9 0.06 (0.02 – 0.09) 0.0014 0.0347 72.82 

P0DJI9 0.03 (0.01 – 0.04) 0.0023 0.0463 65.90 

Q12906 -0.02 (-0.03 – (-0.01)) 0.0024 0.0463 63.08 
 

ABBREVIATIONS: Confidence interval (CI), identifier (ID), tender joint count (TJC). 

 

Table 16. Proteins measured after three months of treatment with etanercept significantly 

associated with TJC at three months, adjusted for age, biological sex and RA disease 

duration. 

Protein (UniProt 

ID) 

β-coefficientadj (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

P43490 -0.09 (-0.14 – (-0.05)) 7.36E-05 0.0159 53.08 

P01375 -0.04 (-0.06 – (-0.02)) 0.0003 0.0215 40.77 

Q12797 -0.04 (-0.06 – (-0.02)) 0.0004 0.0215 41.54 

P05019 -0.03 (-0.05 – (-0.01)) 0.0006 0.0215 78.97 

Q9Y446 -0.05 (-0.08 – (-0.02)) 0.0006 0.0215 43.85 

P14174 -0.02 (-0.03 – (-0.01)) 0.0006 0.0215 71.54 

P30043 -0.04 (-0.06 – (-0.02)) 0.0010 0.0311 77.95 

Q9H4M9 0.06 (0.02 – 0.09) 0.0013 0.0359 72.82 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), identifier (ID), rheumatoid arthritis (RA), 

tender joint count (TJC). 
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Table 17. Proteins measured after three months of treatment with etanercept significantly 

associated with TJC at three months, multivariable model. 

Variable β-coefficientadj (95% CI) p-value % missing before 

imputation 

P43490 -0.12 (-0.72 - .47) 0.6910 53.08 

P01375 -1.49 (-2.58 – (-0.41)) 0.0079 40.77 

Q12797 -0.99 (-2.04 – 0.07) 0.0700 41.54 

P05019 -0.83 (-2.09 – 0.43) 0.1976 78.97 

Q9Y446 -0.70 (-1.54 – 0.14) 0.1056 43.85 

P14174 -4.21 (-6.45 – (-1.98)) 0.0003 71.54 

P30043 -0.81 (-1.88 – 0.25) 0.1361 77.95 

Q9H4M9 0.82 (0.16 – 1.48) 0.0158 72.82 

Age at baseline -0.01 (-0.10 – 0.07) 0.7631 N/A 

Male sex -1.82 (-3.96 – 0.32) 0.0979 N/A 

Disease duration -0.02 (-0.11 – 0.06) 0.5939 N/A 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), tender joint count (TJC). 

 

Table 18. Proteins measured after three months of treatment with etanercept significantly 

associated with SJC at three months, univariate analysis. 

Protein (UniProt 

ID) 

β-coefficient (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

Q12906 -0.04 (-0.06 – (-0.02)) 3.88E-05 0.0078 63.08 

P05019 -0.07 (-0.11 – (-0.04)) 7.25E-05 0.0078 78.97 

Q02985 0.04 (0.02 – 0.06) 0.0001 0.0080 66.67 

P02741 0.17 (0.09 – 0.26) 0.0001 0.0080 10.51 

P01375 -0.07 (-0.11 – (-0.03)) 0.0003 0.0110 40.77 

P43490 -0.15 (-0.24 – (-0.07)) 0.0006 0.0220 53.08 

Q12797 -0.08 (-0.12 – (-0.03)) 0.0012 0.0357 41.54 

P18428 0.06 (0.02 – 0.09) 0.0018 0.0482 0.51 

O95445 -0.05 (-0.08 – (-0.02)) 0.0023 0.0482 12.31 

P78347 -0.05 (-0.08 – (-0.02)) 0.0023 0.0482 70.51 

P02748 0.05 (0.02 – 0.09) 0.0025 0.0482 0.00 
 

ABBREVIATIONS: Confidence interval (CI), identifier (ID), swollen joint count (SJC). 

 

Table 19. Proteins measured after three months of treatment with etanercept significantly 

associated with SJC at three months, adjusted for age, biological sex and RA disease 

duration. 

Protein (UniProt 

ID) 

β-coefficientadj (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

Q12906 -0.04 (-0.06 – (-0.02)) 8.10E-05 0.0100 63.08 

P05019 -0.07 (-0.11 – (-0.04)) 0.0001 0.0100 78.97 

Q02985 0.04 (0.02 – 0.06) 0.0002 0.0100 66.67 

P02741 0.17 (0.08 – 0.26) 0.0002 0.0100 10.51 

P01375 -0.07 (-0.11 – (-0.03) 0.0004 0.0189 40.77 

P43490 -0.15 (-0.24 – (-0.06)) 0.0011 0.0405 53.08 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), identifier (ID), rheumatoid arthritis (RA), 

swollen joint count (SJC). 
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Table 20. Proteins measured after three months of treatment with etanercept significantly 

associated with SJC at three months, multivariable model. 

Variable β-coefficientadj (95% CI) p-value % missing before 

imputation 

Q12906 -1.75 (-2.82 – (-0.69)) 0.0016 63.08 

P05019 -0.81 (-1.41 – (-0.21)) 0.0091 78.97 

Q02985 1.39 (0.29 – 2.49) 0.0143 66.67 

P02741 0.34 (0.10 – 0.59) 0.0075 10.51 

P01375 -0.63 (-1.19 – (-0.07)) 0.0290 40.77 

P43490 -0.10 (-0.35 – 0.15) 0.4260 53.08 

Age at baseline 0.03 (-0.01 – 0.07) 0.1944 N/A 

Male sex -0.95 (-2.04 – 0.14) 0.0909 N/A 

Disease duration 0.00 (-0.04 – 0.05) 0.8350 N/A 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), swollen joint count (SJC). 
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Table 21. Proteins measured before treatment with etanercept significantly associated with 

CRP at baseline, univariate analysis. 
Protein (UniProt ID) β-coefficient (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

P0DJI8 0.06 (0.05 – 0.07) 1.19E-22 <1E-06 26.92 

P17980 0.02 (0.01 – 0.02) 3.52E-16 <1E-06 55.13 

P02763 0.03 (0.02 – 0.03) 1.51E-13 <1E-06 0.00 

P0DJI9 0.03 (0.02 – 0.04) 1.55E-13 <1E-06 65.90 

Q00610 0.02 (0.01 – 0.02) 2,99E-11 <1E-06 57.44 

Q92952 0.02 (0.01 – 0.02) 4.20E-11 <1E-06 43.08 

P06727 0.03 (0.02 – 0.04) 8.03E-10 <1E-06 13.33 

P18428 0.02 (0.01 – 0.02) 1.61E-08 <1E-06 0.51 

P02748 0.01 (0.01 – 0.02) 2.68E-08 1.00E-06 0.00 

P01011 0.01 (0.01 – 0.02) 2.68E-08 3.00E-06 0.00 

P19838 0.02 (0.01 – 0.03) 2.43E-06 4.40E-05 10.77 

P49908 -0.01 (-0.02 – (-0.01)) 7.03E-06 0.0001 6.92 

O95445 -0.01 (-0.01 – (-0.00)) 2.73E-05 0.0004 12.31 

Q9BXR6 0.01 (0.01 – 0.02) 3.96E-05 0.0006 41.03 

P06753 0.01 (0.00 – 0.01) 0.0001 0.0019 71.54 

P46939 -0.01 (-0.01 – (-0.00)) 0.0002 0.0020 19.49 

P04114 -0.01 (-0.01 – (-0.00)) 0.0003 0.0040 0.00 

P02753 -0.01 (-0.01 – (-0.00)) 0.0004 0.0040 0.00 

Q9Y6R7 -0.01 (-0.01 – (-0.00)) 0.0004 0.0041 77.69 

Q92851 -0.02 (-0.03 – (-0.01)) 0.0004 0.0041 27.18 

P37108 0.01 (0.00 – 0.01) 0.0006 0.0052 56.92 

P54578 0.01 (0.00 – 0.01) 0.0006 0.0052 57.69 

P06737 -0.01 (-0.01 – (-0.00) 0.0007 0.0067 69.74 

P46734 0.01 (0.00- 0.01) 0.0008 0.0069 68.97 

P02654 -0.01 (-0.02 – (-0.00)) 0.0011 0.0086 0.51 

P01776 -0.02 (-0.03 – (-0.01)) 0.0011 0.0086 57.44 

P98179 -0.01 (-0.02 – (-0.00)) 0.0011 0.0086 38.72 

Q13740 -0.01 (-0.01 – (-0.00)) 0.0012 0.0086 50.77 

P20700 -0.01 (-0.01 – (-0.00)) 0.0015 0.0107 21.03 

P02743 0.01 (0.00 – 0.01) 0.0015 0.0107 0.26 

P02452 0.01 (0.00 – 0.01) 0.0018 0.0123 61.79 

Q99497 0.02 (0.01 – 0.02) 0.0019 0.0127 72.05 

P08603 0.01 (0.00 – 0.01) 0.0025 0.0155 0.00 

P27169 -0.01 (-0.01 – (-0.00)) 0.0025 0.0155 0.00 

P05109 0.02 (0.01 – 0.04) 0.0035 0.0208 34.36 

Q9HC38 -0.01 (-0.02 – (-0.00)) 0.0036 0.0208 41.28 

Q14116 -0.01 (-0.02 – (-0.00)) 0.0037 0.0208 58.46 

O00329 0.02 (0.01 – 0.03) 0.0046 0.0253 38.72 

P17948 0.01 (0.00 – 0.01) 0.0053 0.0284 43.85 

Q05682 -0.02 (-0.03 – (-0.00)) 0.0058 0.0305 76.67 

Q99832 0.00 (0.00 – 0.01) 0.0070 0.0358 51.28 

P40939 0.02 (0.00 – 0.03) 0.0085 0.0427 56.92 

Q15185 -0.01 (-0.02 – (-0.00)) 0.0087 0.0429 28.97 

Q15746 0.00 (0.00 – 0.01) 0.0094 0.0451 54.36 

Q9Y283 0.02 (0.00 – 0.03) 0.0102 0.0478 54.87 

Q9H0W9 -0.01 (-0.02 – (-0.00)) 0.0108 0.0490 49.23 

P02656 -0.01 (-0.02 – (-0.00)) 0.0109 0.0490 0.00 

Q15084 0.01 (0.00 – 0.01) 0.0112 0.0490 58.46 

P29144 -0.01 (-0.02 – (-0.00)) 0.0113 0.0490 38.72 

 

ABBREVIATIONS: Confidence interval (CI), C-reactive protein (CRP), identifier (ID). 
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Table 22. Proteins measured before treatment with etanercept significantly associated with 

CRP at baseline, adjusted for age, biological sex and RA disease duration. 
Protein (UniProt 

ID) 

β-coefficientadj (95% 

CI) 

p-value Adjusted p-

value 

% missing before 

imputation 

P0DJI8 0.06 (0.05 – 0.07) 7.37E-22 <1E-06 26.92 

P17980 0.02 (0.01 – 0.02) 1.03E-15 <1E-06 55.13 

P02763 0.03 (0.02 – 0.03) 3.34E-13 <1E-06 0.00 

P0DJI9 0.03 (0.02 – 0.04) 4.41E-13 <1E-06 65.90 

Q00610 0.02 (0.01 – 0.02) 5.41E-11 <1E-06 57.44 

Q92952 0.02 (0.01 – 0.02) 6.62E-11 <1E-06 43.08 

P06727 0.03 (0.02 – 0.04) 9.84E-10 <1E-06 13.33 

P02748 0.01 (0.01 – 0.02) 2.04E-08 <1E-06 0.00 

P18428 0.02 (0.01 – 0.02) 2.10E-08 <1E-06 0.51 

P01011 0.01 (0.01 – 0.02) 1.46E-07 3.00E-06 0.00 

P19838 0.03 (0.02 – 0.04) 2.62E-06 4.70E-05 10.77 

P49908 -0.01 (-0.02 – (-0.01)) 7.37E-06 0.0001 6.92 

O95445 -0.01 (-0.01 – (-0.00)) 3.80E-05 0.0006 12.31 

Q9BXR6 0.01 (0.01 – 0.02) 4.99E-05 0.0007 41.03 

P46939 -0.01 (-0.01 – (-0.00)) 0.0001 0.0015 19.49 

P06753 0.01 (0.00 – 0.01) 0.0002 0.0026 71.54 

Q9Y6R7 -0.01 (-0.01 – (-0.00)) 0.0002 0.0029 77.69 

P04114 -0.01 (-0.01 – (-0.00) 0.0003 0.0038 0.00 

P02753 -0.01 (-0.01 – (-0.00)) 0.0004 0.0040 0.00 

Q92851 -0.02 (-0.03 – (-0.01)) 0.0005 0.0049 27.18 

P37108 0.01 (0.01 – 0.02) 0.0006 0.0059 56.92 

P54578 0.01 (0.00 – 0.01) 0.0008 0.0074 57.69 

P06737 -0.01 (-0.01 – (-0.00)) 0.0008 0.0074 69.74 

P01776 -0.02 (-0.03 – (-0.01)) 0.0009 0.0082 57.44 

P20700 -0.01 (-0.01 – (-0.00)) 0.0010 0.0082 21.03 

Q13740 -0.01 (-0.01 – (-0.00)) 0.0011 0.0082 50.77 

P46734 0.01 (0.00 – 0.01) 0.0011 0.0082 48.72 

Q99497 0.02 (0.01 – 0.03) 0.0033 0.0082 72.05 

P98179 -0.01 (-0.02 – (-0.00)) 0.0016 0.0083 38.72 

P02654 -0.01 (-0.02 – (-0.00)) 0.0013 0.0093 0.51 

P02743 0.01 (0.00 – 0.01) 0.0014 0.0093 0.26 

P02452 0.01 (0.00 – 0.01) 0.0021 0.0135 61.79 

P08603 0.01 (0.00 – 0.01) 0.0023 0.0151 0.00 

O00329 0.02 (0.01 – 0.03) 0.0028 0.0170 38.72 

P05109 0.02 (0.01 – 0.04) 0.0032 0.0192 34.36 

Q05682 -0.02 (-0.03 – (-0.01)) 0.0034 0.0198 76.67 

P17948 0.01 (0.00 – 0.01) 0.0037 0.0210 43.85 

P27169 -0.01 (-0.01 – (-0.00)) 0.0040 0.0221 0.00 

Q14116 -0.01 (-0.02 – (-0.00)) 0.0041 0.0021 58.46 

Q9HC38 -0.01 (-0.02 – (-0.00)) 0.0044 0.0230 41.28 

Q15746 0.00 (0.00 – 0.01) 0.0045 0.0230 54.36 

P02656 -0.01 (-0.02 – (-0.00)) 0.0062 0.0305 0.00 

P29144 -0.01 (-0.02 – (-0.00)) 0.0062 0.0305 38.72 

Q99832 0.00 (0.00 – 0.01) 0.0080 0.0387 51.28 

Q02985 0.00 (0.00 – 0.01) 0.0083 0.0388 66.67 

Q15185 -0.01 (-0.02 – (-0.00)) 0.0087 0.0402 28.97 

P08246 0.01 (0.00 – 0.02) 0.0105 0.0464 62.31 

P42765 0.00 (0.00 – 0.01) 0.0106 0.0464 45.38 

Q9H0W9 -0.01 (-0.02 – (-0.00)) 0.0107 0.0464 49.23 

P02655 -0.01 (-0.02 – (-0.00)) 0.0112 0.0474 0.00 

 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), C-reactive protein (CRP), identifier (ID), 

rheumatoid arthritis (RA). 
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Table 23. Proteins measured before treatment with etanercept significantly associated with 

CRP at baseline, multivariable model. 
Variable β-coefficientadj (95% CI) p-value % missing before imputation 

P0DJI8 2.11 (0.40 – 3.82) 0.0172 26.92 

P17980 1.17 (5.82 – 17.66) 0.0002 55.13 

P02763 3.30 (-0.63 – 7.22) 0.1027 0.00 

P0DJI9 3.48 (0.99 – 5.98) 0.0073 65.90 

Q00610 -0.02 (-7.48 – 7.44) 0.9958 57.44 

Q92952 -1.65 (-6.59 – 3.29) 0.5148 43.08 

P06727 2.87 (0.42 – 5.32) 0.0241 13.33 

P02748 2.88 (-5.72 – 11.49) 0.5130 0.00 

P18428 0.29 (-4.01 – 4.60) 0.8943 0.51 

P01011 -4.39 (-11.83 – 3.05) 0.2502 0.00 

P19838 1.44 (-0.34 – 3.21) 0.1160 10.77 

P49908 -2.64 (-6.04 – 0.76) 0.1314 6.92 

O95445 -1.05 (-7.02 – 4.92) 0.7312 12.31 

Q9BXR6 2.13 (-1.81 – 6.06) 0.2919 41.03 

P46939 -5.52 (-11.74 – 0.71) 0.0855 19.49 

P06753 -5.40 (-11.03 – 0.23) 0.0631 71.54 

Q9Y6R7 -2.27 (-6.94 – 2.40) 0.3436 77.69 

P04114 0.77 (-4.35 – 5.89) 0.7692 0.00 

P02753 -9.47 (-14.33 – (-4.61)) 0.0002 0.00 

Q92851 -1.99 (-3.83 – (-0.15)) 0.0365 27.18 

P37108 2.17 (-0.43 – 4.77) 0.1049 56.92 

P54578 4.95 (-2.68 – 12.58) 0.2068 57.69 

P06737 2.91 (-3.75 – 9.57) 0.3931 69.74 

P01776 1.65 (-0.86 – 4.17) 0.2012 57.44 

P20700 -4.00 (-9.41 – 1.42) 0.1511 21.03 

Q13740 1.85 (-3.18 – 6.87) 0.4733 50.77 

P46734 1.58 (-4.04 – 7.19) 0.5836 68.97 

Q99497 1.09 (-1.11 – 3.28) 0.3358 72.05 

P98179 2.32 (-3.22 – 7.85) 0.4145 38.72 

P02654 1.37 (-2.75 – 5.48) 0.5174 0.51 

P02743 -2.06 (-9.42 – 5.29) 0.5837 0.26 

P02452 3.15 (-1.01 – 7.30) 0.1410 61.79 

P08603 -6.30 (-13.10 – 0.50) 0.0725 0.00 

O00329 0.30 (-1.16 – 1.76) 0.6871 38.72 

P05109 -0.76 (-2.04 – 0.52) 0.2498 34.36 

Q05682 0.24 (-1.94 – 2.42) 0.8275 76.67 

P17948 -1.13 (-6.65 – 4.39) 0.6888 43.85 

P27169 3.85 (-2.27 – 9.98) 0.2207 0.00 

Q14116 -0.21 (-4.00 – 3.58) 0.9143 58.46 

Q9HC38 2.98 (-0.58 – 6.54) 0.1046 41.28 

Q15746 -4.12 (-14.35 – 6.11) 0.4319 54.36 

P02656 0.06 (-4.02 – 4.14) 0.9762 0.00 

P29144 -6.30 (-10.63 – (-1.98)) 0.0052 38.72 

Q99832 3.41 (-3.09 – 9.91) 0.3066 51.28 

Q02985 -7.04 (-12.96 – (-1.12)) 0.0217 66.67 

Q15185 -2.76 (-6.63 – 1.11) 0.1661 28.97 

P08246 2.70 (0.33 – 5.08) 0.0279 62.31 

P42765 2.13 (-6.27 – 10.53) 0.6202 45.38 

Q9H0W9 -1.85 (-4.93 – 1.23) 0.2424 49.23 

P02655 1.45 (-2.20 – 5.11) 0.4380 0.00 

Age at baseline 0.03 (-0.23 – 0.28) 0.8370 N/A 

Male sex 4.55 (-2.04 – 11.14) 0.1793 N/A 

Disease duration 0.00 (-0.24 – 0.24) 0.9943 N/A 

 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), C-reactive protein (CRP). 
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Table 24. Proteins measured before treatment with etanercept significantly associated with 

CRP at baseline, univariate analysis. 

Protein (UniProt 

ID) 

β-coefficient (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

P49908 -0.01 (-0.02 – (-0.01)) 6.41E-05 0.0139 6.92 

Q00610 0.01 (0.01 – 0.02) 0.0004 0.0139 57.44 

P46734 0.01 (0.00 – 0.02) 0.0005 0.0295 68.97 
 

ABBREVIATIONS: Confidence interval (CI), C-reactive protein (CRP), identifier (ID). 

 

Table 25. Proteins measured before treatment with etanercept significantly associated with 

CRP at baseline, adjusted for age, biological sex and RA disease duration. 

Protein (UniProt 

ID) 

β-coefficientadj (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

P49908 -0.01 (-0.03 – (-0.01)) 0.0001 0.0226 6.92 

Q00610 0.01 (0.01 – 0.02) 0.0005 0.0263 57.44 

P46734 0.01 (0.00 – 0.02) 0.0004 0.0263 68.97 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), C-reactive protein (CRP), identifier (ID). 

 

Table 26. Proteins measured before treatment with etanercept significantly associated with 

CRP at six months, multivariable model. 

Variable β-coefficientadj (95% CI) p-value % missing before 

imputation 

Q00610 4.55 (0.63 – 8.47) 0.0244 57.44 

P46734 7.26 (3.09 – 11.43) 0.0008 68.97 

P49908 -5.50 (-8.95 – (-2.05)) 0.0022 6.92 

Age at baseline 0.21 (-0.04 – 0.46) 0.0989 N/A 

Male sex -0.74 (-7.11 – 5.64) 0.8216 N/A 

Disease duration -0.29 (-0.56 – (-0.02)) 0.0391 N/A 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), C-reactive protein (CRP). 
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Table 27. Proteins measured after three months of treatment with etanercept significantly 

associated with CRP at three months, univariate analysis. 

Protein (UniProt 

ID) 

β-coefficient (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

P18428 0.03 (0.02 – 0.05) 1.73E-09 <1E-06 0.51 

P0DJI8 0.06 (0.03 – 0.08) 6.21E-07 4.50E-05 26.92 

P02763 0.04 (0.02 – 0.05) 1.93E-05 0.0010 0.00 

P02743 0.03 (0.01 – 0.04) 2.32E-05 0.0010 0.26 

P02748 0.02 (0.01 – 0.03) 3.19E-05 0.0010 0.00 

Q00610 0.02 (0.01 – 0.03) 3.30E-05 0.0010 57.44 

P06727 0.04 (0.02 – 0.06) 9.84E-05 0.0027 13.33 

Q14CX7 -0.04 (-0.06 – (-0.02)) 0.0001 0.0028 48.97 

Q92952 0.02 (0.01 – 0.03) 0.0003 0.0062 43.08 

P01011 0.02 (0.01 – 0.03) 0.0005 0.0093 0.00 

P05109 0.06 (0.03 – 0.10) 0.0006 0.0105 34.36 

P06753 0.02 (0.01 – 0.03) 0.0006 0.0108 71.54 

P17980 0.02 (0.01 – 0.03) 0.0007 0.0112 55.13 

P08603 0.01 (0.01 – 0.02) 0.0013 0.0179 0.00 

Q02985 0.01 (0.00 – 0.02) 0.0013 0.0179 66.67 

P0DJI9 0.02 (0.01 – 0.03) 0.0021 0.0265 65.90 

P08294 0.03 (0.01 – 0.06) 0.0024 0.0284 50.77 

Q9H4M9 0.03 (0.01 – 0.06) 0.0024 0.0303 72.82 

P62701 0.01 (0.00 – 0.02) 0.0033 0.0358 12.56 

Q9HC38 -0.03 (-0.05 – (-0.01)) 0.0047 0.0479 41.28 
 

ABBREVIATIONS: Confidence interval (CI), identifier (ID). 
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Table 28. Proteins measured after three months of treatment with etanercept significantly 

associated with CRP at three months, adjusted for age, biological sex and RA disease 

duration. 

Protein (UniProt 

ID) 

β-coefficientadj (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

P18428 0.04 (0.02 – 0.05) 1.53E-09 <1E-06 0.51 

P0DJI8 0.06 (0.04 – 0.08) 3.70E-07 2.70E-05 26.92 

P02763 0.04 (0.02 – 0.06) 7.59E-06 0.0004 0.00 

Q00610 0.02 (0.01 – 0.03) 5.54E-05 0.0018 57.44 

P02748 0.02 (0.01 – 0.03) 5.66E-05 0.0018 0.00 

P06727 0.04 (0.02 – 0.06) 6.05E-05 0.0018 54.87 

P02743 0.03 (0.01 – 0.04) 6.74E-05 0.0018 0.26 

Q14CX7 -0.04 (-0.07 – (-0.02) 0.0001 0.0027 48.97 

P17980 0.02 (0.01 – 0.03) 0.0002 0.0045 55.13 

Q92952 0.02 (0.01 – 0.03) 0.0005 0.0106 43.08 

P01011 0.02 (0.01 – 0.03) 0.0006 0.0116 0.00 

P05109 0.06 (0.03 – 0.10) 0.0009 0.0148 34.36 

P08603 0.02 (0.01 – 0.02) 0.0010 0.0148 0.00 

P06753 0.02 (0.1 – 0.03) 0.0010 0.0148 71.54 

P0DJI9 0.02 (0.01 – 0.03) 0.0016 0.0220 65.90 

P0C0L5 0.03 (0.01 – 0.04) 0.0021 0.0248 6.92 

P08294 0.04 (0.01 – 0.06) 0.0024 0.0290 50.77 

Q02985 0.01 (0.00 – 0.02) 0.0029 0.0328 66.67 

P62701 0.01 (0.00 – 0.02) 0.0031 0.0328 12.56 

Q9H4M9 0.03 (0.01 – 0.05) 0.0044 0.0456 72.82 

P05546 0.02 (0.00 – 0.03) 0.0048 0.0475 0.00 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), identifier (ID), rheumatoid arthritis (RA). 
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Table 29. Proteins measured after three months of treatment with etanercept significantly 

associated with CRP at three months, multivariable model. 

Variable β-coefficientadj (95% CI) p-value % missing before 

imputation 

P18428 4.12 (1.60 – 6.64) 0.0017 0.51 

P0DJI8 1.10 (-0.12 – 2.32) 0.0783 26.92 

P02763 1.16 (-0.68 – 2.99) 0.2185 0.00 

Q00610 1.66 (-1.95 – 5.27) 0.3692 35.9 

P02748 -1.21 (-4.84 – 2.41) 0.5132 0.00 

P06727 0.88 (-0.42 – 2.17) 0.1882 13.33 

P02743 0.61 (-1.96 – 3.18) 0.6413 0.26 

Q14CX7 -1.39 (-2.63 – (-0.15)) 0.0303 48.97 

P17980 0.32 (-2.92 – 3.56) 0.8458 55.13 

Q92952 0.06 (-2.48 – 2.59) 0.9655 43.08 

P01011 -0.61 (-3.87 – 2.66) 0.7170 0.00 

P05109 -0.07 (-0.77 – 0.63) 0.8433 34.36 

P08603 -1.27 (-5.15 – 2.52) 0.5239 0.00 

P06753 -0.38 (-3.39 – 2.64) 0.8077 71.54 

P0DJI9 0.86 (-1.58 – 3.30) 0.4923 65.90 

P0C0L5 0.38 (-1.16 – 1.93) 0.6300 6.92 

P08294 0.69 (-0.41 – 1.78) 0.2226 50.77 

Q02985 3.58 (-0.46 – 7.62) 0.0848 66.67 

P62701 -0.62 (-5.48 – 4.24) 0.8026 12.56 

Q9H4M9 0.25 (-0.80 – 1.31) 0.6359 72.82 

P05546 -1.36 (-4.78 – 2.06) 0.4370 0.00 

Age at baseline -0.03 (-0.17 – 0.11) 0.6739 N/A 

Male sex 3.85 (0.23 – 7.47) 0.0388 N/A 

Disease duration 0.09 (-0.06 – 0.23) 0.2326 N/A 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI). 
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Table 30. Proteins measured after three months of treatment with etanercept significantly 

associated with CRP at six months, univariate analysis. 

Protein (UniProt 

ID) 

β-coefficient (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

P0DJI8 0.03 (0.02 – 0.04) 1.21E-05 0.0013 26.92 

Q12797 -0.02 (-0.03 – (-0.01)) 3.41E-05 0.0019 41.54 

P02763 0.02 (0.01 – 0.03) 3.43E-05 0.0019 0.00 

P01011 0.01 (0.01 – 0.02) 5.38E-05 0.0023 0.00 

P46734 0.01 (0.01 – 0.02) 0.0001 0.0039 68.97 

Q9BXR6 0.01 (0.01 – 0.02) 0.0002 0.0068 41.03 

Q15746 0.01 (0.00 – 0.01) 0.0003 0.0077 54.36 

P02748 0.01 (0.01 – 0.02) 0.0003 0.0082 0 

Q7KZF4 -0.02 (-0.03 – (0.01)) 0.0023 0.0487 24.36 

Q9HDC9 0.01 (0.00 – 0.01) 0.0029 0.0487 57.95 

Q00610 0.01 (0.00 – 0.01) 0.0030 0.0487 57.44 

P17980 0.01 (0.00 – 0.01) 0.0031 0.0487 55.13 

P19838 0.02 (0.01 – 0.03) 0.0034 0.0487 10.77 

Q92952 0.01 (0.00 – 0.02) 0.0036 0.0487 43.08 

Q6UX71 0.00 (0.00 – 0.01) 0.0036 0.0487 68.21 
 

ABBREVIATIONS: Confidence interval (CI), identifier (ID). 

 

Table 31. Proteins measured after three months of treatment with etanercept significantly 

associated with CRP at six months, adjusted for age, biological sex and RA disease duration. 

Protein (UniProt 

ID) 

β-coefficientadj (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

P0DJI8 0.03 (0.01 – 0.04) 5.25E-05 0.0056 26.92 

P02763 0.02 (0.01 – 0.03) 9.60E-05 0.0056 0.00 

P01011 0.01 (0.01 – 0.02) 0.0001 0.0056 0.00 

P46734 0.01 (0.01 – 0.02) 0.0001 0.0056 68.97 

Q12797 -0.02 (-0.02 – (-0.01)) 0.0002 0.0056 41.54 

Q15746 0.01 (0.00 – 0.01) 0.0002 0.0074 54.36 

Q9BXR6 0.01 (0.01 – 0.02) 0.0006 0.0156 43.33 

P02748 0.01 (0.00 – 0.02) 0.0009 0.0221 0.00 

Q9HDC9 0.01 (0.00 – 0.01) 0.0022 0.0474 57.95 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), identifier (ID), rheumatoid arthritis (RA). 
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Table 32. Proteins measured after three months of treatment with etanercept significantly 

associated with CRP at six months, multivariable model. 

Variable β-coefficientadj (95% CI) p-value % missing before 

imputation 

P0DJI8 2.90 (0.94 – 4.87) 0.0044 26.92 

P02763 2.40 (-0.45 – 5.24) 0.1006 0.00 

P01011 0.02 (-5.80 – 5.84) 0.9941 0.00 

P46734 6.29 (1.88 – 10.70) 0.0060 68.97 

Q12797 -2.43 (-5.41 – 0.54) 0.1106 41.54 

Q15746 7.43 (-0.18 – 15.04) 0.0578 54.36 

Q9BXR6 2.25 (-1.45 – 5.96) 0.2349 43.33 

P02748 -3.28 (-9.04 – 2.48) 0.2660 0.00 

Q9HDC9 3.13 (-1.14 – 7.39) 0.1527 57.95 

Age at baseline 0.12 (-0.12 – 0.36) 0.3378 N/A 

Male sex -1.25 (-7.36 – 4.85) 0.6881 N/A 

Disease duration -0.05 (-0.31 – 0.20) 0.6826 N/A 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI). 

 

Table 33. Proteins measured after six months of treatment with etanercept significantly 

associated with CRP at six months, univariate analysis. 

Protein (UniProt 

ID) 

β-coefficient (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

P0DJI8 0.07 (0.05 – 0.10) 1.38E-06 0.0001 26.92 

P02748 0.03 (0.02 – 0.04) 6.23E-06 0.0004 0.00 

P0DJI9 0.04 (0.02 – 0.05) 1.43E-05 0.0008 65.90 

P02763 0.04 (0.02 – 0.06) 2.47E-05 0.0010 0.00 

Q14012 -0.08 (-0.12 – (-0.05)) 2.87E-05 0.0010 62.82 

P01011 0.02 (0.01 – 0.04) 4.94E-05 0.0014 0.00 

P18428 0.03 (0.02 – 0.04) 5.10E-05 0.0014 0.51 

P17980 0.02 (0.01 – 0.03) 5.70E-05 0.0014 55.13 

P06727 0.04 (0.02 – 0.06) 0.0004 0.0028 13.33 

P05109 0.08 (0.04 – 0.13) 0.0004 0.0082 34.36 

Q9BXR6 0.02 (0.01 – 0.03) 0.0006 0.0109 41.03 

P41250 -0.01 (-0.02 – (-0.00)) 0.0011 0.0185 65.13 

P42765 0.01 (0.00 – 0.02) 0.0014 0.0219 45.38 

P31749 0.01 (0.00 – 0.02) 0.0016 0.0234 67.44 

P62701 0.01 (0.00 – 0.02) 0.0023 0.0300 12.56 

P78347 -0.02 (-0.03 – (-0.01)) 0.0024 0.0300 70.51 

Q04917 -0.03 (-0.04 – (-0.01)) 0.0027 0.0328 72.05 

P62937 -0.06 (-0.09 – (-0.02)) 0.0032 0.0368 60.77 

P14174 0.01 (0.00 – 0.02) 0.0039 0.0417 71.54 

Q13263 -0.02 (-0.04 – (-0.01)) 0.0044 0.0452 62.31 

P11766 0.01 (0.00 – 0.02) 0.0049 0.0458 56.67 

P30043 -0.04 (-0.06 – (-0.01)) 0.0049 0.0458 77.95 

Q05639 -0.02 (-0.03 – (-0.01)) 0.0053 0.0458 73.85 

P13797 -0.04 (-0.07 – (-0.01)) 0.0053 0.0458 38.21 
 

ABBREVIATIONS: Confidence interval (CI), identifier (ID). 
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Table 34. Proteins measured after six months of treatment with etanercept significantly 

associated with CRP at six months, adjusted for age, biological sex and RA disease duration. 

Protein (UniProt 

ID) 

β-coefficientadj (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

P0DJI8 0.08 (0.05 – 0.10) 3.08E-06 0.0003 26.92 

P02748 0.03 (0.02 – 0.04) 1.69E-05 0.0012 0.00 

P0DJI9 0.04 (0.02 – 0.05) 3.86E-05 0.0019 65.90 

P02763 0.04 (0.02 – 0.06) 4.41E-05 0.0019 0.00 

Q14012 -0.08 (-0.12 – (-0.04)) 8.05E-05 0.0026 62.82 

P18428 0.03 (0.01 – 0.04) 8.57E-05 0.0026 0.51 

P01011 0.02 (0.01 – 0.04) 0.0001 0.0039 0.00 

P17980 0.02 (0.01 – 0.03) 0.0002 0.0047 55.13 

P06727 0.03 (0.01 – 0.05) 0.0009 0.0180 13.33 

P05109 0.08 (0.04 – 0.13) 0.0009 0.0180 34.36 

Q9BXR6 0.01 (0.01 – 0.02) 0.0014 0.0258 41.03 

P42765 0.01 (0.00 – 0.02) 0.0018 0.0297 45.38 

P62937 -0.06 (-0.l0 – (-0.02)) 0.0022 0.0342 60.77 

P02743 0.02 (0.01 – 0.04) 0.0026 0.0370 0.26 

P78347 -0.02 (-0.03 – (-0.01)) 0.0027 0.0370 70.51 

P41250 -0.01 (-0.02 – (-0.00)) 0.0032 0.0394 65.13 

P62701 0.01 (0.00 – 0.02) 0.0033 0.0394 12.56 

Q04917 -0.03 (-0.04 – (-0.01)) 0.0039 0.0422 72.05 

P31749 0.01 (0.00 – 0.02) 0.0039 0.0422 67.44 

P14174 0.01 (0.00 – 0.02) 0.0043 0.0436 71.54 

P30043 -0.04 (-0.06 – (-0.01)) 0.0044 0.0436 77.95 

P11766 0.01 (0.00 – 0.02) 0.0052 0.0484 56.67 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), identifier (ID), rheumatoid arthritis (RA). 
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Table 35. Proteins measured after six months of treatment with etanercept significantly 

associated with CRP at six months, multivariable model. 

Variable β-coefficientadj (95% CI) p-value % missing before 

imputation 

P0DJI8 -0.22 (-2.28 – 1.83) 0.8329 26.92 

P02748 0.74 (-5.51 – 7.00) 0.8171 0.00 

P0DJI9 2.41 (-1.20 – 6.02) 0.1986 65.90 

P02763 3.81 (0.90 – 6.71) 0.0143 0.00 

Q14012 -0.63 (-2.09 – 0.83) 0.4052 62.82 

P18428 1.86 (-2.17 – 5.89) 0.3718 0.51 

P01011 0.06 (-7.90 – 8.01) 0.9891 0.00 

P17980 1.61 (-4.21 – 7.43) 0.5904 55.13 

P06727 3.37 (0.23 – 6.51) 0.0422 13.33 

P05109 -0.05 (-1.13 – 1.03) 0.9313 34.36 

Q9BXR6 6.28 (1.15 – 11.42) 0.0215 41.03 

P42765 0.50 (-8.83 – 9.84) 0.9164 45.38 

P62937 -1.03 (-3.00 – 0.94) 0.3124 60.77 

P02743 -2.13 (-7.81 – 3.55) 0.4675 0.26 

P78347 -0.90 (-7.77 – 5.97) 0.7977 70.51 

P41250 -18.02 (-26.21 – (-9.83)) 0.0001 65.13 

P62701 2.67 (-11.16 – 16.51) 0.7070 12.56 

Q04917 2.32 (-2.85 – 7.49) 0.3850 72.05 

P31749 3.62 (-4.72 – 11.95) 0.4006 67.44 

P14174 -2.79 (-10.46 – 4.88) 0.4804 71.54 

P30043 2.41 (-1.08 – 5.90) 0.1832 77.95 

P11766 8.13 (0.14 – 16.11) 0.0534 56.67 

Age at baseline -0.11 (-0.36 – 0.13) 0.3733 N/A 

Male sex 4.52 (-2.64 – 11.68) 0.2240 N/A 

Disease duration -0.00 (-0.26 – 0.26) 0.9886 N/A 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI). 

 

Table 36. Proteins measured after three months of treatment with etanercept associated with 

poor EULAR response at three months, univariate analysis. 

Protein (UniProt 

ID) 

OR (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

P43490 0.57 (0.45 – 0.72) 3.33E-06 0.0007 53.08 

Q12797 0.42 (0.27 – 0.67) 0.0002 0.0246 41.54 

Q12906 0.12 (0.04 – 0.40) 0.0004 0.0253 63.08 

P05019 0.36 (0.20 – 0.64) 0.0006 0.0253 78.97 

Q9Y446 0.54 (-0.38 – 0.77) 0.0006 0.0253 43.85 

P62158 0.76 (0.64 – 0.90) 0.0011 0.0403 5.64 

P12110 0.44 (0.27 – 0.73) 0.0014 0.0403 60.77 

P02741 1.38 (1.13 – 1.68) 0.0015 0.0403 10.51 

P0DJI8 1.51 (1.17 – 1.94) 0.0017 0.0408 26.92 
 

ABBREVIATIONS: Confidence interval (CI), European League Against Rheumatism (EULAR), identifier 

(ID), odds ratio (OR). 
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Table 37. Proteins measured after three months of treatment with etanercept associated with 

poor EULAR response at three months, adjusted for age, biological sex and RA disease 

duration. 

Protein (UniProt 

ID) 

ORadj (95% CI) p-value Adjusted 

p-value 

% missing 

before 

imputation 

P43490 0.58 (0.46 – 0.74) 7.59E-06 0.0016 53.08 

Q12797 0.43 (0.27 – 0.69) 0.0004 0.0282 41.54 

Q9Y446 0.52 (0.36 – 0.75) 0.0005 0.0282 43.85 

Q12906 0.13 (0.04 – 0.41) 0.0005 0.0282 63.08 

P05019 0.36 (0.20 – 0.65) 0.0007 0.0296 78.97 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), European League Against Rheumatism 

(EULAR), identifier (ID), rheumatoid arthritis (RA). 

 

Table 38. Proteins measured after three months of treatment with etanercept associated with 

poor EULAR response at three months, multivariable model. 

Variable ORadj (95% CI) p-value % missing before 

imputation 

P43490 0.81 (0.59 – 1.13) 0.2201 53.08 

Q12906 0.21 (0.06 – 0.64) 0.0080 63.08 

Q12797 0.69 (0.37 – 1.19) 0.2020 41.54 

P05019 0.44 (0.21 – 0.82) 0.0166 78.97 

Q9Y446 0.57 (0.36 – 0.87) 0.0127 43.85 

Age at baseline 1.00 (0.96 – 1.05) 0.8742 N/A 

Male sex 0.45 (0.11 – 1.51) 0.2214 N/A 

Disease duration 0.98 (0.93 – 1.03) 0.4241 N/A 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), European League Against Rheumatism 

(EULAR), odds ratio (OR). 

 

Table 39. Proteins measured after three months of treatment with etanercept associated with 

failure to achieve a MCID in DAS28 at three months, univariate analysis. 

Protein (UniProt 

ID) 

OR (95% CI) p-value Adjusted 

p-value 

% missing before 

imputation 

Q12797 0.44 (0.28 – 0.67) 0.0001 0.0209 41.54 

P43490 0.67 (0.25 – 0.83) 0.0002 0.0209 53.08 
 

ABBREVIATIONS: Confidence interval (CI), Disease Activity Score of 28 Joints (DAS28), identifier (ID), 

minimum clinically important difference (MCID). 

 

Table 40. Proteins measured after three months of treatment with etanercept associated with 

failure to achieve a MCID in DAS28 at three months, adjusted for age, biological sex and 

RA disease duration. 

Protein (UniProt 

ID) 

ORadj (95% CI) p-value Adjusted 

p-value 

% missing before 

imputation 

Q12797 0.45 (0.29 – 0.70) 0.0003 0.0410 41.54 

P43490 0.68 (0.55 – 0.84) 0.0004 0.0410 53.08 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), Disease Activity Score of 28 Joints (DAS28), 

identifier (ID), minimum clinically important difference (MCID). 
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Table 41. Proteins measured after three months of treatment with etanercept associated with 

failure to achieve MCID in DAS28 at three months, multivariable model. 

Variable ORadj (95% CI) p-value % missing before imputation 

P43490 0.79 (0.61 – 1.01) 0.0644 53.08 

Q12797 0.61 (0.36 – 0.96) 0.0451 41.54 

Age at baseline 1.02 (0.98 – 1.05) 0.3475 N/A 

Male sex 0.98 (0.37 – 2.44) 0.9179 N/A 

Disease duration 0.95 (0.94 – 1.02) 0.3765 N/A 
 

ABBREVIATIONS: Adjusted (adj), confidence interval (CI), Disease Activity Score of 28 Joints (DAS28), 

minimally clinically important difference (MCID). 
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APPENDIX EIGHT: STATISTICALLY SIGNIFICANT DIFFERENTIALLY 

EXPRESSED PROTEINS IN THE BRAGGSS ETANERCEPT SUB-COHORT 

Table 1. Differentially expressed proteins between baseline and 3 months of treatment with 

etanercept in EULAR good/moderate responders. 

Protein Log-fold 

change 

Average 

expression 

p-value Adjusted p-

value 

% missing before 

imputation 

P0DJI9 -1.36 11.97 3.74E-17 8.08E-15 65.90 

P20774 -0.45 8.57 9.12E-17 9.85E-15 77.69 

P12110 0.89 14.23 2.90E-13 2.09E-11 60.77 

Q02985 -0.45 9.31 1.78E-10 8.89E-09 66.67 

P06753 -0.67 14.72 2.06E-10 8.89E-09 71.54 

Q92952 -0.69 9.93 1.67E-09 6.00E-08 43.08 

P0DJI8 -1.63 10.63 2.60E-09 8.08E-08 26.92 

P17980 -0.60 16.29 3.02E-09 8.15E-08 55.13 

P02741 -1.70 13.27 2.16E-08 5.19E-07 10.51 

P18428 -0.57 13.34 7.04E-07 1.52E-05 0.51 

P02763 -0.80 19.38 1.12E-06 2.14E-05 0.00 

P13796 -0.68 14.54 1.19E-06 2.14E-05 48.72 

P05019 0.55 9.36 1.71E-06 2.84E-05 78.97 

Q86U17 0.40 8.37 2.30E-06 3.55E-05 68.46 

Q96AE4 0.90 12.90 9.08E-06 0.0001 64.10 

Q9Y6R7 -0.38 12.17 3.35E-05 0.0005 77.69 

Q9P2E9 -0.42 14.09 3.54E-05 0.0005 56.67 

Q00610 -0.37 14.06 9.26E-05 0.0011 57.44 

P06727 -0.81 19.48 9.43E-05 0.0011 13.33 

P02748 -0.40 16.94 0.0001 0.0015 0.00 

O95168 -0.61 11.70 0.0001 0.0015 43.85 

P43487 -0.51 8.55 0.0002 0.0015 67.18 

Q05682 0.79 11.21 0.0002 0.0021 76.67 

Q14766 -0.29 12.98 0.0004 0.0035 60 

P01011 -0.36 20.83 0.0004 0.0035 0.00 

P42765 -0.27 11.84 0.0006 0.0047 45.38 

P02753 0.34 17.48 0.0013 0.0104 0.00 

P04264 -0.31 13.41 0.0018 0.0138 56.41 

Q05639 0.20 15.13 0.0019 0.0138 73.85 

P27169 0.25 16.30 0.0021 0.0150 0.00 

P22897 0.23 12.42 0.0023 0.0158 43.33 

P05451 -0.23 11.09 0.0023 0.0158 43.33 

Q12797 0.48 12.04 0.0031 0.0196 41.54 

P18510 -0.45 9.93 0.0032 0.0196 15.90 

P02743 -0.33 16.65 0.0032 0.0196 0.26 

P04114 0.32 18.41 0.0045 0.0264 0.00 

Q99497 -0.53 13.41 0.0045 0.0264 72.05 

P12109 -0.43 12.43 0.0058 0.0330 58.46 

P45983 0.42 10.71 0.0060 0.0330 54.36 

Q5VWQ8 0.86 7.70 0.0062 0.0336 33.33 
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Protein Log-fold 

change 

Average 

expression 

p-value Adjusted p-

value 

% missing before 

imputation 

P46939 0.20 14.59 0.0069 0.0365 19.49 

P30048 -0.72 14.96 0.0083 0.0420 13.59 

Q6UX71 -0.12 9.07 0.0086 0.0420 68.21 

P04207 0.28 10.26 0.0087 0.0420 77.69 

P09172 0.34 9.95 0.0089 0.0420 35.64 

P12955 -0.39 14.13 0.0091 0.0420 56.67 

Q15084 -0.30 12.57 0.0092 0.0420 58.46 

P41222 0.21 10.18 0.0093 0.0420 72.31 

P06702 -0.44 11.56 0.0109 0.0480 43.08 

 

ABBREVIATIONS: European League Against Rheumatism (EULAR). 

 

Table 2. Differentially expressed proteins between baseline and three months of treatment 

with etanercept, all patients. 

Protein Log-fold 

change 

Average 

expression 

p-value Adjusted p-

value 

% missing 

before 

imputation 

P05019 1.03 9.36 1.63E-05 0.0035 78.97 

O95168 -1.16 11.70 0.0005 0.0400 43.86 

P0DJI9 -1.07 11.97 0.0007 0.0400 65.90 

Q86U17 0.58 8.37 0.0007 0.0400 68.46 

 

Table 3. Differentially expressed proteins between baseline and six months of treatment with 

etanercept in EULAR poor responders. 

Protein Log-fold 

change 

Average 

expression 

p-value Adjusted p-

value 

% missing 

before 

imputation 

P02730 1.46 10.85 9.76E-07 0.0002 82.05 

Q99497 -2.93 13.19 1.58E-06 0.0002 72.05 

Q32MZ4 0.83 14.46 1.75E-05 0.0013 72.56 

P46734 0.86 10.83 0.0001 0.0061 68.97 

Q02985 -0.74 9.36 0.0003 0.0124 66.67 

Q05682 2.27 10.96 0.0006 0.0208 76.67 

P04264 0.91 13.39 0.0008 0.0234 56.41 

P30043 1.89 9.23 0.0009 0.0235 77.95 
 

ABBREVIATIONS: European League Against Rheumatism (EULAR). 
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Table 4. Differentially expressed proteins between baseline and six months of treatment with 

etanercept in EULAR good/moderate responders. 

Protein Log-fold 

change 

Average 

expression 

p-value Adjusted 

p-value 

% missing before 

imputation 

P46734 1.13 10.83 4.05E-16 8.75E-14 68.97 

Q04917 1.68 8.50 7.89E-15 8.52E-13 72.05 

P31749 -0.90 9.45 6.30E-12 4.53E-10 67.44 

P14174 -0.59 10.33 6.80E-10 3.67E-08 71.54 

P04075 -1.18 9.50 3.74E-09 1.62E-07 84.62 

P17980 -0.81 16.37 2.12E-08 7.65E-07 55.13 

Q15746 -0.77 12.89 4.33E-08 1.33E-06 54.36 

Q32MZ4 0.60 14.46 5.88E-08 1.59E-06 72.56 

Q9H4M9 1.70 12.30 3.00E-07 7.20E-06 72.82 

P06727 -1.31 19.69 4.88E-07 1.05E-05 13.33 

Q05682 1.89 10.96 5.85E-07 1.07E-05 76.67 

P0DJI9 -1.38 12.20 5.95E-07 1.07E-05 65.90 

P06753 -0.72 14.86 2.65E-06 4.41E-05 71.54 

P80188 0.61 10.56 4.66E-06 7.19E-05 76.15 

P02452 -0.73 11.02 5.27E-06 7.26E-05 61.79 

P02763 -1.12 19.48 5.37E-06 7.26E-05 0.00 

P18428 -0.76 13.41 8.27E-06 0.0001 0.51 

Q99497 -1.46 13.19 1.34E-05 0.0002 72.05 

Q6UX71 -0.30 9.08 1.35E-05 0.0002 68.21 

P02748 -0.66 17.02 1.65E-05 0.0002 0.00 

P02741 -1.87 13.45 2.83E-05 0.0003 10.51 

P02730 0.68 10.85 2.93E-05 0.0003 82.05 

P40926 0.44 13.08 6.58E-05 0.0006 67.69 

Q02985 -0.39 9.36 0.0005 0.0049 66.67 

Q13201 0.60 12.78 0.0006 0.0050 63.85 

P01011 -0.53 20.88 0.0006 0.0050 0.00 

Q9HDC9 0.41 11.56 0.0007 0.0054 57.95 

P30043 1.06 9.23 0.0008 0.0061 77.95 

Q9BPX6 -0.65 9.79 0.0014 0.0104 42.82 

P08246 -0.97 10.48 0.0015 0.0106 62.31 

P40939 1.24 9.25 0.0016 0.0115 56.92 

O00329 -1.44 9.33 0.0019 0.0130 38.72 

Q92952 -0.50 10.05 0.0020 0.0133 43.08 

P0DJI8 -1.41 10.84 0.0029 0.0187 26.92 

P04264 0.44 13.39 0.0031 0.0192 56.41 

 

ABBREVIATIONS: European League Against Rheumatism (EULAR). 

  



373 
 

Table 5. Differentially expressed proteins between three and six months of treatment with 

etanercept in EULAR good/moderate responders. 

Protein Log-fold 

change 

Average 

expression 

p-value Adjusted 

p-value 

% missing before 

imputation 

P46734 1.27 10.80 2.25E-18 4.87E-16 68.97 

Q9HDC9 0.70 11.49 3.01E-14 3.25E-12 57.95 

P04075 -1.77 9.76 4.69E-12 3.37E-10 84.62 

Q9H4M9 1.78 12.20 3.36E-09 1.82E-07 72.82 

P31749 -0.86 9.35 6.58E-09 2.84E-07 67.44 

P06737 0.50 14.09 3.22E-08 1.16E-06 69.74 

P02730 1.04 10.68 9.34E-08 2.88E-06 82.05 

P14174 -0.52 10.30 3.09E-07 8.35E-06 71.54 

Q15746 -0.67 12.81 3.18E-06 7.64E-05 54.36 

Q9BPX6 -0.80 9.90 6.19E-05 0.0013 42.82 

P43487 0.43 8.42 0.0002 0.0038 67.18 

P05019 -0.53 9.48 0.0004 0.0078 78.97 

P07384 -0.73 11.06 0.0008 0.0133 54.87 

P20774 0.33 8.56 0.0022 0.0334 77.69 

Q9UNW1 0.46 11.22 0.0029 0.0423 53.33 

P08246 -0.85 10.45 0.0032 0.0438 62.31 

 

ABBREVIATIONS: European League Against Rheumatism (EULAR). 
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APPENDIX NINE: CLASSIFIER PLOTS FOR MODELS DEVELOPED DURING 

MACHINE LEARNING ANALYSIS 

Figure 1. Baseline variables and prediction of poor EULAR response after three months of 

treatment with etanercept. 

 
 

 

 

 

 

 

 

ABBREVIATIONS: Area under the receiver operating characteristic curve (AUC), European League Against 

Rheumatism (EULAR).  
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Figure 2. Baseline variables and prediction of poor EULAR response after six months of 

treatment with etanercept. 

 
 

 

 

 

 

 

 

 

 

 

 

 
ABBREVIATIONS: Area under the receiver operating characteristic curve (AUC), European League Against 

Rheumatism (EULAR).  
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Figure 3. Baseline variables and prediction of failure to achieve MCID in DAS28 after three 

months of treatment with etanercept. 

 

 
 
ABBREVIATIONS: Area under the receiver operating characteristic curve (AUC), Disease Activity Score of 

28 Joints (DAS28), minimally clinically important difference (MCID). 
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Figure 4. Baseline variables and prediction of failure to achieve MCID in DAS28 after six 

months of treatment with etanercept. 

 

 
 
ABBREVIATIONS: Area under the receiver operating characteristic curve (AUC), Disease Activity Score of 

28 Joints (DAS28), minimally clinically important difference (MCID). 
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Figure 5. Three-month variables and prediction of poor EULAR response after 6 months of 

treatment with etanercept. 

 

 
 
ABBREVIATIONS: Area under the receiver operating characteristic curve (AUC), European League Against 

Rheumatism (EULAR). 
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Figure 6. Three-month variables and prediction of failure to achieve MCID in DAS28 after 

6 months of treatment with etanercept. 

 

 
 
ABBREVIATIONS: Area under the receiver operating characteristic curve (AUC), Disease Activity Score of 

28 Joints (DAS28), minimally clinically important difference (MCID). 
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APPENDIX TEN: SIGNIFICANT TRANS PQTLS IDENTIFIED DURING PQTL 

ANALYSIS 

Table 1. trans pQTLS before treatment with etanercept. 
Top SNP Protein Total SNPs 

for protein 

p-value Adjusted 

p-value 

Tissue of expression of 

corresponding eQTL 

rs111538442 P08294 15 1.07E-24 6.28E-17 None 

rs75213181 Q8NCW5 374 6.99E-24 6.28E-17 None 

 

ABBREVIATIONS: Expression quantitative trait locus/loci (eQTL), protein quantitative trait locus/loci 

(pQTL), single nucleotide polymorphism (SNP). 

 

Table 2. trans pQTLs after three months of treatment with etanercept. 
Top SNP Protein Total SNPs 

for protein 

p-value Adjusted 

p-value 

Tissue of expression of 

corresponding eQTL 

rs9658041 O75369 358 2.53E-25 1.28E-18 None 

rs77036310 P05186 13 1.74E-24 7.53E-18 None 

rs79466292 P07900 1 1.28E-22 5.51E-16 None 

rs143257148 P11766 440 2.91E-25 1.28E-18 None 

rs1538304 P15144 529 1.75E-20 3.90E-14 None 

rs6432156 P45983 8 2.21E-20 4.91E-14 None 

rs527240128 Q14847 175 1.39E-20 3.90E-14 None 

rs2069940 Q9UNN8 46 9.28E-22 3.94E-15 Cultured fibroblasts, skin, skeletal 

muscle, Epstein Barr virus-

transformed lymphocytes, adipose 

tissue 

 

ABBREVIATIONS: Expression quantitative trait locus/loci (eQTL), protein quantitative trait locus/loci 

(pQTL), single nucleotide polymorphism (SNP). 

 


