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Abstract 

Modelling plays an increasingly important role in chemical and bioprocesses nowadays and is 

widely used for process simulation, optimisation and real-time control. Especially for 

metabolic reactions with complex underlying reaction mechanisms, modelling for process 

analysis, prediction and control is a very cost-effective technique. In this MPhil project, a 

temperature-dependent kinetic model to simulate biomass growth, substrate consumption and 

the production of GLA by Cunninghamella echinulata was first proposed. The model was 

verified to be of high accuracy using data from a 1L bioreactor. Model aided upscaling to a 5L 

bioreactor with a two-stage temperature-shift strategy showed a 69.6% increment of GLA 

production and was verified experimentally. Then, hybrid modelling which is a state-of-the-art 

modelling technique and combine machine learning techniques and traditional kinetic models, 

was used to simulate and predict the performance of the GLA fermentation experiment by 

Cunninghamella echinulata. In addition, the hybrid models incorporated different amounts of 

kinetic information from a pre-existing complex kinetic model, representing different level of 

hybrid model ‘greyness’ was investigated for bioprocess predictive modelling. The results 

show that incorporating more specific kinetic information increased the risk of incorporating 

incorrect inductive bias that hindered rather than enhanced hybrid model performance. 

Nonetheless, the hybrid models demonstrated much improved predictive confidence with 

similar predictive accuracy to the original kinetic model. 
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Chapter 1 Background and thesis structure  

1.1 Background  

With the development of computer technology in recent decades, modelling is playing an 

increasingly important role in the fields of process engineering, simulation and optimisation. 

For bioprocesses, even within a single cell, there are thousands of enzymatically catalysed 

metabolic reactions, which can lead to very complex growth and product kinetics. Thus, 

modelling is a very important tool to qualitatively and quantitatively simplify the complex 

metabolic reactions within cells (Rohner & Meyer, 1995). This provides a significant 

contribution in safety, optimal plant design, monitoring and analysis (Maria, 2004).  

Kinetic models are capable of representing complex intracellular metabolic reactions in a more 

complete way than most other types of models. They are able to assist in the rational design of 

the properties of cell factories or the production processes that they are utilized (Almquist et 

al., 2014), which is a useful tool for understanding bioprocesses and the impact of key 

operational variables due to their interpretable model structure and physical parameters (Maria, 

2004). However, identifying a suitable kinetic model and appropriate parameters to accurately 

predict a bioprocess is challenging and time-consuming. In addition, unstructured models 

simplify the complex metabolic reactions and interactions within the cell, and therefore the use 

of unstructured models to describe and predict the dynamic of bioprocesses can lead to large 

model uncertainties. 

Hybrid models as an alternative modelling approach combine the characteristics of data-driven 

models such as Artificial Neural Networks (ANNs) and Gaussian Processes (GPs) (Safarian et 
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al., 2021; Sheng et al., 2020) and kinetic models. Since the hybrid model balances the 

characteristics of a purely data-driven model and a dynamics model, it does not exhibit the 

same high dependence on training data as a purely data-driven model, which is prone to over-

fitting. In addition, hybrid models rely on less professional knowledge and consume less time 

compared with dynamics models. In a hybrid model, the data-driven part is responsible for 

learning complex functions with concentrated parameters from the process data, and the kinetic 

part is responsible for reducing the non-linearity of the data-driven model. As a result, hybrid 

models have successfully applied in several biochemical process modelling studies (Cabaneros 

Lopez et al., 2021; Willis & von Stosch, 2017). 

1.2 Thesis structure 

The main aims of this MPhil project are to (i) investigate the effect of temperature on the C. 

echinulata biomass growth and GLA production through the construction of develop a rigorous 

kinetic model and (ii) develop three hybrid models of the three degrees of mechanistic 

complexity for case: γ-linolenic acid (C18:3n-6, GLA) fermentation by the oily fungus 

Cunningham echinulata (C. echinulata). This MPhil thesis is presented in the journal format, 

following the thesis submission guidelines approved by The University of Manchester1. The 

content of the thesis is prepared according to the following structure.  

Chapter 2 summarise a dynamic model which can simulate biomass growth, substrate 

consumption, and GLA biosynthesis of Cunninghamella echinulata for a wide temperature 

 

1 https://documents.manchester.ac.uk/display.aspx?DocID=7420  
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range. Then, this model was validated using data from a 1L bioreactor, and it was found the 

optimal temperatures for biomass growth and GLA production. In addition, the new upscaling 

experiment with 5L bioreactor and a two-stage temperature-shift strategy was carried based on 

this dynamic model. 

Hybrid modelling provides a cost-effective solution to modelling complex biochemical 

reaction kinetics when the underlying mechanisms are not fully understood. However, a bi-

dimensional bias-variance trade-off is a challenge for hybrid modelling. Therefore, in Chapter 

3, three hybrid models incorporated different amounts of kinetic information from a pre-

existing complex kinetic model were presented to show the fitting and uncertainty performance 

for the fermentation of the fungus Cunninghamella echinulata. In addition, the validation 

experiment with the temperature-shift dynamics for the upscaled 5 L bioreactor was conducted 

to investigate predictive performance of hybrid models.  
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Chapter 2 Kinetic modelling of γ-linolenic acid production by 

Cunninghamella echinulate 

This chapter sheds light on building a dynamic model capable of simulating biomass growth, 

substrate consumption, and GLA biosynthesis of Cunninghamella echinulata for a wide 

temperature range was proposed for the first time. In addition, the model was verified to be of 

high accuracy using data from a 1L bioreactor, and the optimal temperatures for biomass 

growth and GLA production was found. Model aided upscaling to a 5L bioreactor with a two-

stage temperature-shift strategy of GLA production and was verified experimentally. This 

presents important advances for the upscaling of GLA production biotechnology from 

laboratory-scale to pilot-scale.  

2.1 Introduction 

2.1.1 Introduction of GLA and temperature-shift method 

The polyunsaturated fatty acid (PUFA), γ-linolenic acid (C18:3n-6, GLA), is widely utilised 

within the pharmaceutical and nutraceutical industries due to its outstanding value for treating 

diseases like rheumatoid arthritis (Jäntti et al., 1989), multiple sclerosis (Barber, A. J., 1988), 

schizophrenia (D.F Horrobin, 1979) and atopic eczema (Scott, J., 1989). As an essential 

precursor for the biosynthesis of several prostaglandins, GLA is an essential fatty acid with 

proven anti-inflammatory and anti-cancer effects (Wan, 2009). However, with the body unable 

to manufacture its own (Somashekar et al., 2003), GLA must be assimilated through the 

consumption of poultry, beef, pork, chicken or egg yolk, or else as a dietary supplement. 
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However, its natural concentration in such foodstuffs is small. For instance, 100 g of raw beef 

lean contains 2.2 mg of GLA (Horrobin, 1992).  

Plant seeds such as borage, black currant, evening primrose, and hemp have been used as 

commercial sources of GLA oil (Tanticharoen et al., 1994). However, cultivating these plants 

requires large swathes of arable land owing to their seeds low intracellular GLA content, which 

also hinders the economic viability of the seed-based extractive methods. In contrast, a 

promising alternative source: the oleaginous fungus Cunninghamella echinulata (C. 

echinulata), possesses a much higher GLA content of 33.5 mg g-1  (Kavadia et al., 2001),  a 

higher growth rate of 0.04 g L−1 h−1 (Chatzifragkou et al., 2010), and is simpler to cultivate 

(i.e., traditional fermentation). Taken together, this marks the fungus as an economically 

competitive source of GLA for large-scale production. 

In response, there have been many attempts to develop a commercially viable C. echinulata 

GLA production bioprocess (Čertík et al., 2006; Fakas et al., 2008). Primarily, a multitude of 

cultivation conditions have been explored to optimise GLA yield and adjust the PUFAs 

composition, including different medium compositions (e.g., glucose, fructose, whey 

concentrate (Chatzifragkou et al., 2010; Fakas et al., 2008)), temperatures (e.g., 15 ℃ to 35 ℃ 

(Fakas et al., 2008)) and pH (e.g., 7 to 10 (Dyal et al., 2005)). However, the cost of feedstock 

(i.e., low-cost carbon and nitrogen sources) is also widely studied to lower the GLA production 

cost (Chen & Chang, 1996; Gema et al., 2002). Despite these efforts, the operating temperature 

remains a critical factor in the control and optimisation of the bioprocess. However, only a 
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handful of studies (Al-Hawash et al., 2018; Li et al., 2019) have investigated the effect of 

temperature on lipid accumulation and the composition of PUFAs within C. echinulata.  

Temperature-shift: an approach where the operating temperature is switched during cultivation 

to increase the accumulation of the targeted metabolite has been reported to influence the 

intracellular PUFAs content of fungal species (Jang et al., 2005; Lindberg & Molin, 1993). 

Specifically, a two-stage temperature-shift strategy employed during the cultivation of the 

arachidonic acid (ARA)-producing fungus Mortierella alpine (M. alpine) increased ARA 

production and total fatty acid concentration by 26.1% and 20% by switching the temperature 

from 25 °C to 20 °C at the later stage of fermentation (Peng et al., 2010). 

However, whilst both C. echinulata and M. alpine are oleaginous fungi, the optimal 

temperature for biomass growth, lipid production, and product accumulation might differ 

significantly between strains. Hence, it is valuable to investigate the optimal temperature-shift 

strategy for industrial GLA production with C. echinulata. Furthermore, previous work has 

overlooked kinetic model-driven optimisation and control of such temperature-shift strategies 

(Peng et al., 2010; Sivagurunathan et al., 2014; M. L. Sun et al., 2017), despite the insight 

kinetic models capture about the dynamic behaviour of the underlying biological system. 

Moreover, model-based design of experiments is considered an effective tool to accomplish 

bioprocess scale-up from laboratory to pilot and industrial scale (Zhang et al., 2015).  

2.1.2 The aims of this work 

This work aims to: (i) investigate the effect of temperature on the C. echinulata biomass growth 

and GLA production through the construction of a rigorous kinetic model; (ii) evaluate the 
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performance of the temperature-shift strategy when up-scaling the fermentation processes from 

a 1L to 5L bioreactor; (iii) evaluate the predictive accuracy and sensitivity of the kinetic model 

over different bioreactor scales. These objectives underpin this work and are organised into 

two sections: the model construction procedure and the discussion of the results and 

implications of the research. 

2.2 Literature review 

As mentioned in section 2.1, the oleaginous fungus Cunninghamella echinulata (C. echinulata) 

as a promising alternative source can be used for large-scale GLA production. The cultivation 

can be affected by a multitude of cultivation conditions and the operating temperature remains 

a critical factor in the control and optimisation of the bioprocess. This review will focus on 

three major themes throughout the literature review. These themes are: (i) the construction of 

a rigorous kinetic model of C. echinulata fermentation, (ii) the effect of temperature on the C. 

echinulata biomass growth and GLA production, (iii) the predictive accuracy and sensitivity 

of the kinetic model. 

2.2.1 The construction of kinetic model 

The kinetic model constructed will simulate C. echinulata total and fat-free biomass growth, 

glucose consumption, and GLA accumulation. The Monod model, as one of the most notable 

unstructured models, was first introduced by Jaccques Monod in 1942 to describe the 

relationship between specific growth rate and substrate utilisation rate in a bioreactor (Monod, 

1949). The Monod model can be defined by Eq.2.1. 

𝜇 =
𝜇𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆
                                                                                                                                           (2.1) 
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Where, 𝜇  specific growth rate, 𝜇𝑚𝑎𝑥  maximum specific growth rate, S substrate 

concentration, X biomass concentration, 𝐾𝑠  half saturation constant. The Monod model 

assumes that there is only one growth limiting substrate in the bioreactor (Monod, 1942). 

However, the Monod model has several limitations e.g. the maximum specific growth rate is 

independent of the substrate concentration at high substrate concentratiom; growth is 

dependent on substrate concentration at low substrate concentration; the model cannot describe 

lag and death phease during the growth stage. 

The Contois model was first introducted by Contois in 1959 (Contois, 1959). Muloiwa, Stephen 

Nyende-Byakika and Megersa Dinka (2020) summaried the difference between Monod model 

and Contios model. They indicated that the Contios model is an extension of the Monod model 

and it is an unstructured model based on the both substrate and biomass concentration. The 

model structure of Contois model is shown below:  

𝜇 =
𝜇𝑚𝑎𝑥𝑆

𝐾𝑠 𝑋 + 𝑆
                                                                                                                                       (2.2) 

Where, 𝜇  specific growth rate, 𝜇𝑚𝑎𝑥  maximum specific growth rate, S substrate 

concentration, X biomass concentration, 𝐾𝑠 half saturation constant. In the Contios model, the 

assumption is that biomass concentration is inversely proportional to specific growth rate. 

Mrwebi (2004) indicated that the Contios model has not been widely used to describe specific 

growth rate, and when used, it produced satisfactory fit on the experimental data. Abdullah et 

al., (2006) reported a satisfactory fit on Aspergillus oryzae in industrial natural rubber effluent 

serum. The Contois model produced R2 of 80.2%.  
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Moreover, the Logistic model as another unstructure model which is also widely used. The 

Logistic model was first introduced by Pierre Verhulst in 1838 (Verhulst, 1838). This model is 

based on an assumption that the growth rate of cells is proportional to the current population, 

and the unutillised resources in a closed habitat (Horowitz et al., 2010). The model is a substrate 

independent model, it describe kinetic growth based on biomass cconcentration only (Ali et al., 

2017). The Logistic model is defined below: 

𝜇 = 𝜇𝑚𝑎𝑥 [1 −
𝑋

𝑋𝑚
 ]                                                                                                                           (2.3) 

Where, 𝜇  specific growth rate, 𝜇𝑚𝑎𝑥  maximum specific growth rate, X biomass 

concentration, Xm is the maximum biomass concentration. 

The Haldane model as another extension of the Monod model was introduced by Haldane in 

1930. This model introduces an inhibition term 𝐾𝑖  which deals with specific growth rate 

inhibition at very high or low substrate concentration. 𝐾𝑖 is the inhibition constant which is 

equal to the highest substrate concentration at which the specific growth rate is equal to one 

half maximum growth rate in the absence of an inhibition (Muloiwa et al., 2020). The Logistic 

model is defined by Eq.2.4: 

𝜇 =
𝜇𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆 +
𝑠2

𝐾𝑖

                                                                                                                                 (2.4) 

Where, 𝜇  specific growth rate, 𝜇𝑚𝑎𝑥  maximum specific growth rate, S substrate 

concentration, X biomass concentration, 𝐾𝑠  half saturation constant and 𝐾𝑖  inhibition 

constant. The advantage of the Haldane model is that it is capable of describing all growth 

phases: lag, exponential, stationary, and death phase (Dutta et al., 2015). In addition, it is able 

to describe growth rate at low and high substrate concentration. 
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In this work, there is no inhibition of substrate so the Haldane model is not considered. On the 

other hand, the Contois model was adopted to describe biomass growth because of its accurate 

fit on the experimental data and successful capture on the inverse proportionality between 

biomass growth and biomass concentration. 

Moreover, several literatures developed the kinetic model of lipid phenotypes of fungal strains, 

enabling to distinguish three lipid-producing stages, including low lipid-producing, lipid 

accumulation and lipid turnover stages. Wannawilai et al., (2020) developed the mathematical 

model which can be used to describe the lipid-producing stages of both the wild type and 

morphologically engineered strain of Aspergillus oryzae. The kinetic model structure is shown 

below: 

𝑑𝐶𝑋

𝑑𝑡
= 𝜇𝑚𝑎𝑥𝐶𝑋 (1 −

𝐶𝑋

𝐶𝑋𝑚
 
)                                                                                                             (2.5) 

𝑑𝐶𝑆

𝑑𝑡
= − [(

1

𝑌𝑋
𝑆

) (
𝑑𝐶𝑋

𝑑𝑡
) + 𝑚𝑆𝐶𝑋]                                                                                                   (2.6) 

𝑑𝐶𝑃

𝑑𝑡
= (𝛼𝜇 + 𝛽)𝐶𝑋 − 𝑘𝑑 (1 −

𝐶𝑆

𝐶𝑆0

)

𝑛

𝐶𝑋                                                                                       (2.7) 

The kinetic model structure is constructed by the Logistic model. For lipid-producing stage, 

authors used (𝛼𝜇 + 𝛽)𝐶𝑋  this term to sucessfully describe the lipid-producing and lipid 

accumulation. Moreover, 𝑘𝑑 (1 −
𝐶𝑆

𝐶𝑆0

)
𝑛

𝐶𝑋 this term accurately fit the lipid-producing stages, 

including low lipid-producing and lipid turnover stages. The models fitted well with the 

experimental data (R2 ≥ 0.96), indicating that lipid production profiles could be reasonably 

modeled.  
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Moreover, Antimanon et al., (2020) also developed the mathematical models to describe that 

the lipid and Dihomo-γ-linolenic acid (DGLA) were growth-associated metabolites 

corresponding to the relevant kinetic parameters of fermentations. The kinetic model they 

constructed is as same as literature by Wannawilai et al., (2020). 

𝑑𝑋

𝑑𝑡
= 𝜇𝑚𝑎𝑥𝑋 (1 −

𝑋

𝑋𝑚  
)                                                                                                                   (2.8) 

𝑑𝑆

𝑑𝑡
= − [(

1

𝑌𝑋
𝑆

) (
𝑑𝑋

𝑑𝑡
) + 𝑚𝑆𝑋]                                                                                                        (2.9) 

𝑑𝑃

𝑑𝑡
= (𝛼𝜇 + 𝛽)𝑋 − 𝑘𝑑 (1 −

𝑆

𝑆0
)

𝑛

𝑋                                                                                            (2.10) 

The formation mode of each product was defined according to the fungal growth. If α = 0 and 

β = 0, the product formation is the growth-related production. On the contrary, if α = 0 and β 

= 0, the product formation is unrelated to fungal growth. In case if the product formation is 

mixed with the growth production, the value α = 0 and β = 0. 𝑘𝑑 (1 −
𝑆

𝑆0
)

𝑛
 this term can be 

used to describe the lipid turnover phase which can cause the decay of lipid concentration. 

This literature provides an informative perspective in the n-6 fatty acid production through 

physiological manipulation, thus leading to a prospect in viable production of the DGLA-

enriched oil by the engineered strain. Therefore, GLA accumulation was simulated by adapting 

the Luedeking-Piret equation (Luedeking & Piret, 1959) to include a novel GLA consumption 

term which can be used to demonstrate lipid production rate when substrate was exhausted in 

this work. 

2.2.2 The effect of temperature 

As shown in Figure 2.1, the inverse correlation between biomass growth and GLA 

accumulation with increasing operating temperature. Therefore, an accurate kinetic model 
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capable of simulating GLA production must incorporate the effect of operating temperature. 

Phisalaphong et al. (2006) investigated temperature effect on kinetic parameters of ethonal 

fermentation using mathematical models. The relationship between temperature and 

parameters in their literature is shown below: 

 

Figure 2.1 The result of the effect of temperature on parameters 𝜇𝑚 , 𝐾𝑑  and 𝑣𝑚 illustrated by 

Phisalaphong et al. (2006) 

These parameters increased exponentially as the temperature increased. Expressed by the 

Arrhenius relationship, the temperature dependency of the reaction rate is fitted very well with 

the experimental data. They investigated and quantified the influence of temperature and 

initial sugar concentration on cell activites. Arrhenius relationships between operating 

temperature and the maxmium specific growth rate, speciific production rate, specific death 

rate were then established. The performance of a mathematical model to describe the dynamic 
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behaviour of the ethanol fermentation process were assessed.Similarly, Rivera et al. (2007) 

proposed an equation to describe the influence of temperature and fit it to the optimised values 

obtained for each temperature. The temperature-dependent parameter equations they used are 

shown below: 

𝜃𝑖 = 𝐴𝑖 ∙  exp (
𝐵𝑖

𝑇
)                                                                                                                           (2.11) 

𝜃𝑖 = 𝐴𝑖 ∙  exp (
𝐵𝑖

𝑇
) + 𝐶𝑖  ∙ exp (

𝐷𝑖

𝑇
)                                                                                             (2.12) 

In these equations, A, B and C are constants and T is temperature in ℃. The fitting results 

illustrated in their literature indicate that the temperature-dependent kinetic parameters 

described accurately the experimental data.  

Moreover, (Laidler, 1984) summarised the development of the Arrhenius equations. The author 

illustrated the most common used Arrhenius equation which introduced by Van’t Hoff in 1884. 

The expression is shown below: 

𝑘 = 𝐴𝑒−𝐵/𝑇                                                                                                                                        (2.13) 

In additions, other temperature-dependence equations were introduced. e.g. an equation in 

which the pre-exponential factor also has a temperature dependence was first proposed in 1893 

by Kooi, whose equation expressed by: 

𝑘 = 𝐴𝑇𝑐𝑒−𝐵/𝑇                                                                                                                                   (2.14) 

Also Van’t Hoff pointed out that most of the previously presented equations with special cases 

of the equations in 1898: 

𝑘 = 𝐴𝑇𝑐𝑒−(𝐵−𝐷𝑇2)/𝑇                                                                                                                        (2.15) 
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Although these empirical equations are widely different, all the equations can give a reasonably 

good fit to the experimental data. These temperature-dependent equations have a great 

enlightenment to find the suitable empirical equations in my work. 

2.2.3 Sensitivity analysis of the kinetic model 

The sensitivity analysis is evaluated for their usefulness as part of the model-building within 

process analysis technology applications. Considering the complexity of typical mechanical 

models of microbial processes, sensitivity analysis is needed to minimise the risk of errors in 

the process of model construction. Sin et al. (2009) introduced the sensitivity analysis 

techniques. In their work, the subjective input uncertainty was defined after an expert review 

process. Expert review involves asking the opinion of process experts (and/or consulting the 

relevant literature resources) about the uncertainty of the parameters. In order to structure the 

expert review process, it is assumed that all the model parameters have a uniform probability 

distribution. In this way, the minmum and maximum values of the uniform distribution can be 

calculated as follows: 

𝜃𝑚𝑖𝑛 = (1 − %𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛) × 𝜃𝑚𝑒𝑎𝑛                                                                                          (2.16)  

𝜃𝑚𝑎𝑥 = (1 + %𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛) × 𝜃𝑚𝑒𝑎𝑛                                                                                           (2.17) 

Then the well-known Latin Hypercube Sampling method was used for probabilistic sampling 

of the input space and the sampled input matrix 𝜃𝑁×𝑀was propagated through the dynamic 

model by performing N dynamic simulations. Overall, the sensitivity analysis is believed to 

help establish a reliable mechanical model and correctly interpret the model outputs, which 

helps to improve process understanding, process optimisation and control purposes. 
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2.3 Methodology  

The experiment setup work was completed by our co-operators of Xiamen University. The 

experiment setup is detailly displayed in Appendix A. 

2.3.1 Kinetic model construction 

The kinetic model constructed will simulate C. echinulata total and fat-free biomass growth, 

glucose consumption, and GLA accumulation over a range of operating temperatures for the 

experiments visualised in Figure 2.2.  

 

Figure 2.2 Experiment result obtained by Xiamen University on the effect of temperature on 

lipid-free biomass production (A), residual sugar concentration (B), lipid accumulation (C) and 



 30 

GLA synthesis (D) during batch growth of C. echinulata. The symbols used were 14  ℃ 

(square), 28 ℃ (empty circle), 37 ℃ (triangle). Error bars indicated on the mean of triplicate 

experimental runs. 

Two key features characterise the batch experiments shown in Figure 2.2: (i) the soft transition 

over 250 to 300 hours from glucose-replete to glucose-limiting conditions; (ii) the inverse 

correlation between biomass growth and GLA accumulation with increasing operating 

temperature. Therefore, an accurate kinetic model capable of simulating GLA production must 

incorporate the effects of culture glucose concentration and operating temperature. This will 

be the focus of the proceeding two sections. 

2.3.1.1 Model structure identification 

The soft transition from glucose-replete to glucose-limiting conditions between 250 and 300 

hours impacts biomass growth earlier than it does GLA accumulation. From Figure 2.2(A), 

Figure 2.2(B) and Figure 2.2(C), the total biomass concentration is observed to peak then 

decline beyond 200 hours irrespective of temperature despite glucose concentration remaining 

relatively high (i.e., > 30 g L-1). Whereas, Figure 2.2(B) and Figure 2.2(D) show that GLA 

concentration continues to accumulate, only decaying later once glucose drops below about 15 

g L-1. Taken together, this suggests that GLA is a secondary metabolite (Shamloo et al., 2017) 

with an accumulation tendency independent from biomass growth, where GLA is consumed to 

support cell maintenance once the carbon source becomes limiting. Leveraging this insight, the 

kinetic model structure could now be motived. 
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The Contois model accounts for the effect of cell flocculation and diffusional barriers that arise 

in high-density cell cultures. Unlike the Monod model (Zambrano & Carlsson, 2014), the 

Contois model (Abdullah et al., 2016; Muloiwa et al., 2020; S. L. Sun et al., 2009) successfully 

captures the inverse proportionality between biomass growth and biomass concentration that 

leads to the decline at 200 hours despite glucose concentration remaining high. Thus, the 

Contois model was adopted in this study to describe biomass growth. Equation (2.18) simulates 

the total biomass growth rate, the first term on the right-hand side represents total biomass 

growth whilst the second term represents endogenous cell decay. Building upon this, Equation 

(2.19) simulates fat-free biomass growth rate, assuming that the fat-free biomass growth rate 

is proportional to total biomass growth rate, as apparent in Figure 2.2(A) and Figure 2.2(C). 

𝑑𝑋𝑇

𝑑𝑡
= 𝜇𝑚 ∙

𝐶

𝐾𝑐𝑜 ∙ 𝑋𝑇 + 𝐶
∙ 𝑋𝑇 − 𝜇𝑑 ∙ 𝑋𝑇                                                                                      (2.18) 

d𝑋𝐵

d𝑡
= 𝑘0 ∙

d𝑋𝑇

d𝑡
= 𝑘0 ∙ (𝜇𝑚 ∙

𝐶

𝐶 + 𝑋𝑇 ∙ 𝐾𝑐𝑜
∙ 𝑋𝑇 − 𝜇𝑑 ∙ 𝑋𝑇)                                                     (2.19) 

Where 𝑋𝑇 is total biomass concentration (g L−1), 𝐶 is glucose concentration (g L−1), 𝜇𝑚 is 

maximum specific growth rate ( h−1 ), 𝜇𝑑  is specific cell death rate ( h−1 ), 𝐾𝑐𝑜  is half-

saturation constant and 𝑘0 is the ratio of fat-free biomass to total biomass (g g−1). 

Equation (2.20) simulates glucose consumption rate. The first term on the right-hand side is 

the glucose consumption rate for cell growth, whilst the second is glucose uptake for 

maintenance activities. 

𝑑𝐶

𝑑𝑡
= −𝑌𝐶0 ∙ (𝜇𝑚 ∙

𝐶

𝐾𝑐𝑜 ∙ 𝑋𝑇 + 𝐶
∙ 𝑋𝑇 − 𝜇𝑑 ∙ 𝑋𝑇) − 𝑚 ∙ 𝑋𝑇                                                     (2.20) 

Where 𝑌𝐶0 is yield coefficient from glucose to biomass (g g−1) and 𝑚 is biomass specific 

maintenance coefficient (g g−1h−1). 
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Finally, GLA accumulation was simulated by adapting the Luedeking-Piret equation 

(Luedeking & Piret, 1959) to include a novel GLA consumption term. In Equation (2.21), the 

first two terms reflect the growth-dependent and growth-independent synthesis rates, 

proportional to biomass growth rate and biomass concentration, respectively. Whereas the third 

term represents the rate of GLA consumption for maintenance under glucose limiting 

conditions. Examining the term more closely, when glucose is replete, 
1

𝐶+𝐾𝑝
→ 0, glucose is 

consumed as usual; however, when glucose becomes limiting, 
1

𝐶+ 𝐾𝑝
→

1

𝐾𝑝
, starved of any 

extracellular carbon source for cell maintenance, GLA is consumed instead. Thus: 

d𝑋𝐺

d𝑡
= 𝑘𝑚 ∙ (𝜇𝑚 ∙

𝐶

𝐶 + 𝐾𝑐𝑜 ∙ 𝑋𝑇
∙ 𝑋𝑇 − 𝜇𝑑 ∙ 𝑋𝑇) + 𝑘𝑛 ∙ 𝑋𝑇 − 𝑘𝑑 ∙

1

𝐶 + 𝐾𝑝
∙ 𝑋𝑇                    (2.21) 

Where 𝑘𝑚 is the growth-dependent synthesis constant (g g−1), 𝑘𝑛 is the growth-independent 

synthesis constant (g g−1h−1), 𝑘𝑑 is the specific GLA decay rate ( g g−1h−1) and 𝐾𝑝 is the 

saturation product constant (g L−1) for GLA decay. 

2.3.1.2 Simulating temperature effects 

Figures 2.2(A), 2.2(C), and 2.2(D) illustrate the inverse correlation between biomass growth 

and GLA accumulation with increasing operating temperature: whilst higher temperatures 

promote total and fat-free biomass growth, GLA accumulation is reduced. Therefore, some 

kinetic parameters will correlate positively with temperature within the proposed model 

structure, whilst others will correlate negatively. 

In order to investigate the temperature dependence of each kinetic parameter, seven were 

modelled as a function of temperature (𝜇𝑚 , 𝐾𝑐𝑜 , 𝑌𝐶0 , 𝐾0 , 𝑘𝑚 , 𝑘𝑑  and 𝐾𝑝), whilst the 

remaining three parameters (𝑚 , 𝜇𝑑 , 𝑘𝑛 ) where considered temperature independent. The 
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positive or negative temperature dependence was captured by either Equation (2.22), or 

Equation (2.23) (Laidler, 1984), respectively, where the former is simply the standard 

Arrhenius equation.  

𝜃𝑖 = 𝐴𝑖 ∙  exp (
𝐵𝑖

𝑇
)                                                                                                                           (2.22) 

𝜃𝑖 = 𝐶𝑖 − 𝐴𝑖  ∙ exp (
𝐵𝑖

𝑇
)                                                                                                                 (2.23) 

Where 𝐴𝑖 , 𝐵𝑖 and 𝐶𝑖  in the above equations are specific parameters to be fitted for each 

kinetic parameter 𝜃𝑖 and 𝑇 is the temperature in Kelvins K. Thus, two or three constants 

describe each of the seven temperature-dependent parameters. 

2.3.2 Parameter estimation method 

The 24 parameters required by the model were estimated by formulating the nonlinear least-

squares optimisation problem defined by Equations 2.24 (a) to (j), identifying parameter vector 

parameters 𝜃 by minimising the objective function (Del Rio-Chanona et al., 2015):  

min
𝜃

𝐸(𝜃)  = ∑ [
(𝑋𝑇𝑛

− 𝑋𝑇𝑒𝑛
)

2

𝑋𝑇𝑒𝑚𝑎𝑥

2 +
(𝐶𝑛 − 𝐶𝑒𝑛

)
2

𝐶𝑒𝑚𝑎𝑥
2

+
(𝑋𝐵𝑛

− 𝑋𝐵𝑒𝑛
)

2

𝑋𝐵𝑒𝑚𝑎𝑥

2 +
(𝑋𝐺 𝑛

− 𝑋𝐺 𝑒𝑛
)

2

𝑋𝐺𝑒𝑚𝑎𝑥

2 ]

𝑛𝑝

𝑛=1

 

                                                                                                                                                             (2.24𝑎) 

Subject to: 

𝑑𝑋𝑇

𝑑𝑡
= 𝑓(𝑋𝑇(𝑡), 𝜃) ,                          𝑡 ∈ [𝑡0, 𝑡𝑓]                              (2.24𝑏) 

𝑑𝐶

𝑑𝑡
= 𝑓(𝐶(𝑡), 𝜃) ,                               𝑡 ∈ [𝑡0, 𝑡𝑓]                              (2.24𝑐) 

𝑑𝑋𝐵

𝑑𝑡
= 𝑓(𝑋𝐵(𝑡), 𝜃) ,                            𝑡 ∈ [𝑡0, 𝑡𝑓]                             (2.24𝑑) 

𝑑𝑋𝐺

𝑑𝑡
= 𝑓(𝑋𝐺(𝑡), 𝜃) ,                             𝑡 ∈ [𝑡0, 𝑡𝑓]                             (2.24𝑒) 

𝜃𝑙𝑏 ≤ 𝜃 ≤ 𝜃𝑢𝑏                                                                                (2.24𝑓) 

𝑋𝑇(𝑡0) = 𝑋𝑇0
                                                                                (2.24𝑔) 
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𝐶(𝑡0) = 𝐶0                                                                                   (2.24ℎ) 

𝑋𝐵(𝑡0) = 𝑋𝐵0
                                                                                 (2.24𝑖) 

𝑋𝐺(𝑡0) = 𝑋𝐺 0
                                                                                 (2.24𝑗) 

Where 𝑋𝑇𝑒𝑛
, 𝐶𝑒𝑛

, 𝑋𝐵𝑒𝑛
and 𝑋𝐺 𝑒𝑛

 are the measured concentrations of biomass, substrate, fat-

free biomass and GLA respectively, at each sampling time 𝑛. Whilst, 𝑋𝑇𝑛
, 𝐶𝑛 , 𝑋𝐵𝑛

 and 

𝑋𝐺 𝑛
 are the respective concentrations computed by the model at each sampling time 𝑛, and 

𝑋𝑇𝑒𝑚𝑎𝑥
, 𝐶𝑒𝑚𝑎𝑥

, 𝑋𝐵𝑒𝑚𝑎𝑥
 and 𝑋𝐺𝑒𝑚𝑎𝑥

 are the maximum measured concentrations and 𝑛𝑝 

is the number of sampling points. 

This derivative-based nonlinear programming problem (NLP) was solved by adopting the 

parameter estimation framework widely employed by (del Rio-Chanona et al., 2017). Given 

the high nonlinearity and stiffness of the system (i.e., components of different orders of 

magnitude and time scales), the differential system of equations was discretised by direct 

transcription by orthogonal collocation (Biegler, 1984) into a series of nonlinear algebraic 

equations. The NLP was then solved using the interior point nonlinear optimisation solver 

IPOPT (Wächter & Lorenz T. Biegler, 2006) implemented in the open-source Python 

optimisation environment: Pyomo (Hart et al., 2017). 

2.3.3 Sensitivity analysis 

Although the solution to a parameter estimation problem may provide point estimates that agree 

with the data instantaneously, questions about model stability remain unaddressed. Therefore, 

model sensitivity to parameter uncertainty was investigated by resampling each parameter in 

turn with all others fixed, simulating the state variable trajectories each time (Franceschini & 
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Macchietto, 2008). These trajectories were then aggregated into the propagated uncertainty 

bounds shown later. All the model parameters were assumed to be distributed uniformly 

between a lower bound (𝑃𝑚𝑖𝑛) and an upper bound (𝑃𝑚𝑎𝑥) centred on the mean (𝑃𝑚𝑒𝑎𝑛), defined 

as follows (Sin et al., 2009): 

𝑃𝑚𝑖𝑛 = (1 − %𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛) ∗ 𝑃𝑚𝑒𝑎𝑛                                                                                               (2.8) 

𝑃𝑚𝑎𝑥 = (1 + %𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛) ∗ 𝑃𝑚𝑒𝑎𝑛                                                                                               (2.9) 

In total, Latin Hypercube Sampling (LHS) of the input space selected 200 parameter samples. 

All code was executed in Python version 3.7 using the SMT 1.0.0, SciPy libraries and NumPy. 

2.4 Results and discussion 

2.4.1 Results of model construction 

The values of the parameter estimates are shown in Table 2.1.  

Table 2.4.11 Parameters values with different operation temperatures 

T ( ℃) 𝜇𝑚  (h−1) 𝐾𝑐𝑜 (g L−1) 𝑌𝐶0 (g g−1) 𝐾0 (g g−1) 𝑘𝑚  (g g−1) 

14 0.115 41.345 1.420 0.700 0.011600 

28 0.164 49.586 1.307 0.780 0.003085 

37 0.218 55.000 0.591 0.901 0.001173 

   𝑘𝑑(g g−1h−1) 𝐾𝑝 (g L−1) 𝜇𝑑  (h−1) 𝑚 (g g−1h−1) 𝑘𝑛 (g g−1h−1) 

14 0.00352 25.013 0.0017 0.00498 0.00013814 

28 0.00480 34.277 0.0017 0.00498 0.00013814 

37 0.00727 37.888 0.0017 0.00498 0.00013814 
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In addition, the average relative error between model fitting performance and experimental 

results are shown in Table 2.2. 

Table 2.4.12 The relative percentage error between model fitting and experimental results 

Output 

variable 

Relative percentage error (%) 

T = 14 ℃ T = 28 ℃ T = 37 ℃ 

𝑿𝑻 6.56 2.55 8.06 

𝑪 12.01 20.70 16.28 

𝑿𝑩 8.63 2.95 6.98 

𝑿𝑮 12.10 20.81 18.67 
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Figure 2.3 Experimental results and simulation fitting results for (a) total biomass, (b) glucose, 

(c) fat-free biomass and (d) GLA. 

From Figure 2.3, it is evident that the model accurately captures the bioprocess dynamics over 

the different operating temperatures, with the state variables’ mean relative percentage error 

falling within 20%, as shown in Table 2.2. Furthermore, features observed experimentally are 

successfully described by the proposed model structure. For instance, Figure 2.3 illustrates how 

the experimental and simulated total and fat-free biomass concentrations pass through a 
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maximum at around 270 hours; GLA concentration peaks similarly, albeit later on around 300 

hours. The peaks at 270 and 300 hours mark the transition from glucose-replete to glucose-

limiting conditions for cell growth and bioproduct synthesis, respectively.  

Examining GLA accumulation more closely, GLA accumulation is characterised by an initial 

lag phase that proceeds exponential growth. This suggests that C. echinulata only 

biosynthesises GLA once sufficient primary metabolites have accumulated during cell growth 

under nutrient replete conditions, an observation consistent with the findings by (Chen & 

Chang, 1996), where GLA was reported to form as a secondary metabolite. Thus, physically 

motivating the first two terms on the right-hand side of Equation (21). However, beyond the 

exponential growth phase, when glucose becomes limiting, the third term on the right-hand 

side of Equation (21) dominates, and GLA concentration drops sharply. Thus, the kinetic model 

can accurately capture the GLA decay dynamics at 14 °C and 37 °C illustrated in Figure 2.2(D). 

This demonstrates the high fidelity of the modified Luedeking-Piret equation proposed herein 

for simulating the temperature-dependent biokinetics of C. echinulata. However, whilst the 

model struggles to fit the GLA decay stage at 28 °C, the error remains relatively small. 

Therefore, any marginal improvement made by introducing more parameters (e.g. adding the 

degree of lipid depletion to 1 / (𝐶 + 𝐾𝑝) which can reduce error by 5%), is outweighed by 

the risk of overfitting and poor predictive accuracy on unseen process states. 

2.4.2 Model sensitivity analysis 

The sensitivity of the simulated trajectories with respect to the kinetic model parameters was 

investigated as described in Section 2.4. That is, each parameter, in turn, was resampled 200 
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times between 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥 with a variation of 5%, whilst the other parameters were held 

constant, simulating the state variable trajectories each time. This approach of uncertainty input 

characterisation is similar to the method which was mentioned by (Sin et al., 2009). Figure 2.4 

displays the propagated uncertainty for total biomass, fat-free biomass, glucose, and GLA 

concentration resulting from a 5% variation in parameter 𝑚 at an operating temperature of 

14 °C. 

 

Figure 2.4 Uncertainty with 5% variation for parameter 𝑚 in the model predictions for (a) 

total biomass, (b) glucose, (c) fat-free biomass and (d) GLA. 



 40 

In Figure 2.4, the spread of the uncertainty bands reflects the sensitivity of the model’s 

prediction to uncertainty in parameter 𝑚, where the propagated uncertainty increases with time. 

Supplementary uncertainty projections for the remaining model parameters and temperatures 

can be found in Appendix B. 

For a more comprehensive comparison of the model’s sensitivity to each parameter, Table B.1 

(see Appendix B) tabulates the mean relative percentage deviation (MRPD) between the lower 

and upper bound for each state variable and operating temperature.  

Upon inspecting Table A.1, it is evident that the model is more sensitive to 𝐵𝑖 than either 𝐴𝑖 

or the remaining temperature-independent parameters, an expected result given that 𝐵𝑖 

modifies the exponent of the temperature-dependent parameters. Of these, the MRPD is largest 

for 𝐵𝜇𝑚
, 𝐵𝑘𝑐𝑜

 and 𝐵𝑌𝑐𝑜
 in decreasing order, and therefore contribute most to model 

uncertainty. Moreover, the temperature-dependent parameters 𝜇𝑚, 𝑘𝑐𝑜 and 𝑌𝑐𝑜, are critical 

to simulating all four state variables, unlike 𝜇𝑜 or 𝑘𝑚, 𝑘𝑑 and 𝐾𝑝 for instance, which are 

specific to fat-free biomass growth and GLA synthesis, respectively.  

Therefore, when employing this model for robust online process control and optimisation, 𝐴𝑖 

and 𝐵𝑖 for 𝜇𝑚, 𝑘𝑐𝑜 and 𝑌𝑐𝑜 should be estimated very accurately and fixed before operation. 

𝑚, 𝜇𝑑 and 𝑘𝑛 should be treated similarly because whilst the model is not as sensitive to these 

parameters, they impact all four state variables. Whereas 𝐴𝑖  and 𝐵𝑖 for 𝜇𝑜 , 𝑘𝑚 , 𝑘𝑑  and 

𝐾𝑝 are ideal candidates to be updated during online process control and optimisation because 

they are not “critical” to model accuracy as a whole but significantly impact state variables of 

interest. 
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2.4.3 Effects of temperature on bioprocess kinetics 

The effect of temperature on C. echinulate fermentation was studied by inspecting the 

temperature correlations captured by fitting Equations (22) and (23). Table 2.3 tabulates 𝐴𝑖,  

𝐵𝑖  and 𝐶𝑖  for each temperature-dependent parameter and displays the coefficient of 

determination (𝑅2) between the values predicted as functions of temperature and the optimal 

value fitted on an experiment-by-experiment basis. 

Table 2.4.3 The coefficient of determination (R2) of the optimal parameters fitting as functions 

of temperature and the obtained constant (A, B and C). 

Parameter 𝑅2 𝐴 𝐵 𝐶 

 𝜇𝑚 0.99 590.58 -2457.29 N/A 

𝐾𝐶0 0.98 1239.43 -966.81 N/A 

𝐾0 0.96 18.41 -942.62 N/A 

𝑘𝑚 0.99 5.58E-16 8813.01 N/A 

𝑘𝑑 0.93 62.24 -2808.45 N/A 

𝐾𝑝 0.98 7670.33 -1640.48 N/A 

𝑌𝐶0 0.99 5.60E+10 -7655.47 1.67 

From Table 2.3, it can be seen that the majority of the kinetic parameters follow the standard 

Arrhenius relationship, with 𝜇𝑚 , 𝐾𝑐𝑜 , 𝑘0, 𝑘𝑑and 𝐾𝑝 increasing exponentially from 14 ℃ 

to 37 ℃. This is expected given that these specific model parameters are closely related to the 

biosynthesis of biomass and lipid turnover, whereby their metabolic and enzymatic activities 

increase with temperature for as long as the temperature is sub-optimal. Similar findings were 
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reported in the literature by (Peng et al., 2010), who observed an increase in biomass 

productivity from 18 ℃ to 25 ℃, corroborating the observation herein. In contrast, parameters 

𝑘𝑚  and 𝑌𝐶0  decreased with temperature (See Table 2.1). However, whilst 𝑘𝑚  and 𝑌𝐶0 

exhibit the same trend overall, 𝑘𝑚 decreases exponentially from the offset, unlike 𝑌𝐶0 which 

remains relatively static from 14 ℃ to 28 ℃ before plummeting over 28 ℃ to 37 ℃. Since 

𝑌𝐶0  is associated with the efficiency with which glucose is utilised to synthesis biomass 

constitutes, the sudden drop in 𝑌𝐶0 indicates that high temperatures deactivated the overflow 

metabolism that previously produced by-product. However, higher temperatures are merely 

concomitant to an increased biomass biosynthesis rate and rapid glucose consumption. 

2.4.4 Design of a temperature-shift strategy 

A two-stage temperature-shift strategy promises to maximise GLA yield, given the different 

optimum temperatures for C. echinulata biomass growth and GLA accumulation. From Figure 

2.2, it is clear that biomass productivity is maximised at a temperature of 37 ℃, whilst peak 

GLA accumulation is highest at 14 ℃. Therefore, the bioreactors were operated at 37 ℃ to 

maximise biomass density in the first stage before dropping to 14  ℃  to maximise GLA 

accumulation in the second stage. The remaining degree of freedom: when to shift the 

temperature from 37 ℃ to 14 ℃, was addressed by rigorous optimisation of the peak GLA 

concentration as predicted by the kinetic model. To validate the kinetic model’s fidelity for 

bioprocess scale-up and process optimisation, two further experiments were conducted to 

verify the temperature-shift strategy. The two experiments were all carried out in a 5 L 

bioreactor, ultimately switching the temperature at 168 hours and 96 hours, respectively. 
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Figure 2.5 The experimental results and model prediction results for (a) total biomass, (b) 

glucose, (c) fat-free biomass and (d) GLA of temperature-shift strategy at 168hr in 5L 

fermentor. 
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Figure 2.6 The experimental results and model prediction results for (a) total biomass, (b) 

glucose, (c) fat-free biomass and (d) GLA of temperature-shift strategy at 96hr in 5L fermentor. 

Figure 2.5 and Figure 2.6 compare the model predictions and corresponding experimental 

results when employing the chosen temperature-shift policy in the 5L bioreactor. The state 

variables were predicted accurately within 30% error in both cases, as quantified in Table 2.4.  
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Table 2.4.4 Model prediction accuracy for the temperature-shift processes 

Output variable Temperature-shift at 96hr Temperature-shift at 168hr 

 Prediction error (%) Prediction error (%) 

𝑋𝑇 29.86 13.00 

𝐶 36.07 28.77 

            𝑋𝐵 16.86 14.89 

𝑋𝐺  27.30 22.73 

 

Of particular success was the upscaled temperature-shift experiment, which despite being a 

first for C. echinulata, achieved a GLA concentration of 1323 mg L-1, a 69.6% increase over 

780 mg L-1 attained by the fixed temperature culture at 14  ℃  in Figure 2.2. Similarly, 

employing a two-stage temperature shift policy (Peng et al., 2010) increased ARA production 

by 26.1%; however, the greater increase here highlights the strategy’s effectiveness for 

promoting C. echinulate GLA biosynthesis in particular. 

The model’s sensitivity to parameter uncertainty was re-evaluated with the new temperature-

shift policy (See Appendix C). However, the conclusions drawn from here mirror those Section 

3.2, so will not be elaborated upon, namely: that propagated uncertainty increases with time, 

high sensitivity to parameters 𝐵𝜇𝑚
, 𝐵𝑘𝑐𝑜

 and 𝐵𝑌𝑐𝑜
; but low sensitivity to parameters 𝜇𝑑, 𝑚 

and 𝑘𝑛. Therefore, leading to the same control policy recommendations when subscribing to 

the two-stage temperature shift strategy. 

2.5 Conclusion 
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In this work, a temperature-dependent biokinetic model capable of simulating the fermentative 

biomass growth and GLA biosynthesis of C. echinulata was proposed for the first time. Using 

experimental data from a 1L bioreactor, the biokinetic parameters were identified and the 

prediction accuracy verified over a wide temperature range from 14  ℃ to 37  ℃ . Higher 

cultivation temperatures around 37 ℃ were found to benefit cell biomass growth, whilst GLA 

accumulation favoured lower temperatures around 14 ℃. Thus, a two-stage temperature-shift 

strategy was designed and tested by optimising biomass growth and GLA biosynthesis of C. 

echinulata for the first time. Compared to fixed temperature cultivation at 14 ℃, the optimised 

two-stage temperature shift strategy increased GLA production by 69.6% when verified 

experimentally. The proposed biokinetic model’s high predictive accuracy when up-scaling the 

bioreactor from 1L to 5L demonstrates the model’s reliability for continued scale-up of the 

biotechnology. However, further studies on the impact of scale-dependent transport 

phenomena such as mixing induce shear rate, aeration and eddy size is recommended to 

improve the upscaling predictions. In addition, dissolved oxygen was found to run out in the 

later stage of the temperature-shift experiments, meaning that oxygen concentration may 

become a limiting factor for biomass growth. As a result, this parameter should be included in 

the model for future process control and optimisation. 
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Chapter 3 Investigating ‘greyness’ of hybrid model for bioprocess 

predictive modelling 

This chapter presented three hybrid models for predicting the temperature-dependent rates of 

biomass growth, glucose consumption and γ-linolenic acid accumulation during fermentation 

of the fungus Cunninghamella echinulata. Each hybrid model incorporated different amounts 

of kinetic information from a pre-existing complex kinetic model, representing three levels of 

hybrid model ‘greyness’, then embedded a Gaussian Process (GP) to simulate the unknown 

kinetics inferred from experimental measurements. This observation also held when using the 

hybrid models to predict the temperature-shift dynamics for the upscaled 5 L bioreactor. The 

hybrid models demonstrated much improved predictive confidence with similar predictive 

accuracy to the original kinetic model, demonstrating the proficiency of hybrid modelling for 

accelerating the construction of confident bioprocess models for robust process optimisation 

and real-time monitoring. 

3.1 Introduction 

With the exponential increase in computing power in recent decades, modelling now plays a 

critical role in process engineering and is widely applied in simulation, optimisation and control 

(Marchetti et al., 2016; Voll & Marquardt, 2012; Zhang et al., 2019). In essence, process 

modelling aims to translate knowledge about a process into an abstract mathematical 

representation (von Stosch et al., 2014). For bioprocesses, even a single cell contains thousands 

of enzymes catalysing thousands of interacting metabolic reactions, leading to complex growth 

and product formation dynamics. Modelling is a valuable tool for qualitatively and 
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quantitatively simplifying the complex metabolic reactions within a fermenter (Rohner & 

Meyer, 1995), paving the way toward significant improvements in safety, optimal plant design, 

monitoring and analysis (Maria, 2004). 

High fidelity kinetic models are effective tools for understanding biological processes and the 

influence of key operating variables due to their interpretable model structure and physical 

parameters (Maria, 2004). However, identifying the correct model structure and parameters to 

describe and predict a given dynamic bioprocess accurately is challenging and time-consuming. 

This is acutely challenging for biochemical systems that are not fully understood. Hence, to 

simplify, the cell culture is often assumed homogeneous, and the evolution of the process is 

described in terms of macroscopic variables (e.g. biomass, substrate and product concentration). 

Unstructured kinetic models achieve this by lumping the effect of countless metabolic reactions 

into a handful of kinetic constants. However, the kinetic constants in the model are macroscopic 

representations of the numerous metabolic reactions within the cell, leading to issues during 

parameter estimations and process optimisation (Nicoletti et al., 2009). Moreover, since, in 

reality, the lumped kinetic constants represent complex functions of extracellular nutrient and 

metabolite concentrations in the culture and environmental conditions (González-Figueredo et 

al., 2019), pure kinetic models cannot satisfy accurate, low-uncertainty long-term prediction 

performance of dynamic bioprocesses. 

Alternatively, the step-change in the macroscopic state variables can be captured directly from 

process data as a function of the current state and operating conditions using data-driven 

models such as Artificial Neural Networks (ANNs) and Gaussian Processes (GPs) (Safarian et 
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al., 2021; Sheng et al., 2020). However, while data-driven methods streamline model 

construction by automatically capturing the complex process dynamics without a priori 

physical knowledge, they cannot be used to extrapolate outside the operational range they were 

trained on and are prone to overfitting (Dochain, 2008; Nicoletti et al., 2009). Moreover, data-

driven methods require large amounts of information-rich data to capture the highly nonlinear 

bioprocess dynamics (Sansana et al., 2021) – a luxury that is seldom available without 

extensive, well-designed experiments. Nonetheless, fermentation processes can have long 

experimental cycles, in many cases requiring several weeks or months to complete an 

experiment and offline sample analysis. Hence, collecting sufficient bioprocess data for data-

driven model construction is time and resource-consuming. 

Hybrid models offer a solution and middle ground by embedding the data-driven model into 

the kinetic model structure to simulate the dynamic nature of the lumped parameters. This way, 

the data-driven model is responsible for learning the complex functions underling the lumped 

parameters from process data, while the structure of the kinetic model reduces the nonlinearity 

of the data-driven modelling problem compared with the original bioprocess dynamics. As a 

result, hybrid models have experienced success in several recent fermentation process 

modelling (Saraceno et al., 2010; Vega-Ramon et al., 2021; Wang et al., 2010) and biochemical 

process modelling studies (Cabaneros Lopez et al., 2021; Willis & von Stosch, 2017), where 

embedding a data-driven model has proven capable of enhancing the prediction accuracy of an 

unstructured kinetic model (Carinhas et al., 2011; von Stosch et al., 2014). 
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Hybrid models exist on a spectrum of ‘greyness’ between pure data-driven ‘black-box’ models 

and pure mechanistic-based ‘white-box’ models. Towards the ‘black-box’ end of the spectrum, 

the data-driven component is more responsible for capturing the process dynamics, while 

towards the ‘white-box’ end, the mechanistic backbone is more responsible for capturing the 

process dynamics. Hence, a bi-dimensional bias-variance trade-off exists for any given hybrid 

modelling problem (Sansana et al., 2021). Specifically, when building a hybrid bioprocess 

model, there exists a question of how much kinetic information to incorporate before offloading 

the remaining model complexity onto the data-driven component. This decision is often made 

based on experience given the fact that different balances of bioprocess data and mechanistic 

understanding can be available for each system.  

Despite this, an approach to systematically determine the most suitable ‘greyness’ in the 

bidimensional hybrid modelling plane remains unaddressed. As a result, the aim in this chapter 

is to investigate this decision for dynamic bioprocess simulation by exploring the question for 

a real case study: γ-linolenic acid (C18:3n-6, GLA) fermentation by the oily fungus 

Cunningham echinulata (C. echinulata) for which a complex unstructured kinetic model was 

constructed in our previous work (Song, 2021). In spite of the high accuracy of the kinetic 

model, it was time consuming to identify the suitable model structure. Moreover, the kinetic 

model also suffers from large uncertainty, restricting its applicability and reliability for 

bioprocess control and optimisation. Specifically, this chapter aims to investigate the effect of 

‘greyness’ by incorporating different amounts of kinetic information from the complex kinetic 

model structure to build three hybrid models of three degrees of mechanistic complexity. Each 
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hybrid model was used to capture the temperature-dependent kinetics before being used to 

predict the temperature-shift kinetics and the predictive performance alongside model 

uncertainty compared with the original complex unstructured kinetic model. 

3.2 Literature review 

As mentioned previously, hybrid models are the effective tools which have successfully applied 

in fermentation process modelling. However, hybrid models exist on a spectrum of ‘greyness’ 

between ‘black-box’ models and ‘white-box’ models. Hence, how to balance a bi-dimensional 

bias-variance for any given hybrid modelling in still a key problem. This review will focus on 

three major themes throughout the literature review. These themes are: (i) investigate the 

‘greyness’ of γ-linolenic acid (C18:3n-6, GLA) dynamic bioprocess simulation by the 

Cunningham echinulata (C. echinulata), (ii) the predictive performance for temperature-shift 

fermentation with model uncertainty compared with the pure complex unstructured kinetic 

model. 

3.3 Methodology  

3.3.1 Introduction to case study 

γ-linolenic acid (GLA) fermentation via C. echinulata X-15, a screened high-yield strain, was 

carried out in 1 L bioreactors with pH fixed during the cultivation. Three batch experiments 

were conducted under different temperatures: 14, 28, and 37  ℃ . Cultivation time of the 

experiments ranged from 300 to 480 h. A total of 39 experimental data points were collected 

across the three experiments (13 experimental measurements per experiment) at different 

temperatures. Then, to enhance GLA production, two additional temperature-shift experiments 
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were designed in which GLA fermentation was carried out in a 5 L bioreactor. Temperature 

was switched from 37 to 14 ℃ at the 168th hour and the 96th hour, respectively, in the two 

experiments. Figure 3.1 depicts C. echinulata total and fat-free biomass growth, glucose 

consumption, and GLA accumulation over a range of operating temperatures for the constant-

temperature experiments.  

 

Figure 3.1 Experiment result on the effect of temperature on lipid-free biomass production (A), 

residual sugar concentration (B), lipid accumulation (C) and GLA synthesis (D) during batch 

growth of C. echinulata. The symbols used were 14 ℃ (square), 28 ℃ (empty circle), 37 ℃ 

(triangle). Error bars indicated on the mean of triplicate experimental runs. 
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3.3.2 Introduction to the kinetic model 

A complex kinetic model was proposed in our previous study to simulate the effect of the 

temperature on total and fat-free biomass growth, glucose consumption and GLA production 

and is reproduced in Equations (3.1-3.4) (Song, 2021). 

𝑑𝑋𝑇

𝑑𝑡
= 𝜇𝑚 ∙

𝐶

𝐾𝑐𝑜 ∙ 𝑋𝑇 + 𝐶
∙ 𝑋𝑇 − 𝜇𝑑 ∙ 𝑋𝑇                                                                                         (3.1) 

d𝑋𝐵

d𝑡
= 𝑘0 ∙

d𝑋𝑇

d𝑡

= 𝑘0 ∙ (𝜇𝑚 ∙
𝐶

𝐶 + 𝑋𝑇 ∙ 𝐾𝑐𝑜
∙ 𝑋𝑇 − 𝜇𝑑 ∙ 𝑋𝑇)                                                          (3.2) 

𝑑𝐶

𝑑𝑡
= −𝑌𝐶0 ∙ (𝜇𝑚 ∙

𝐶

𝐾𝑐𝑜 ∙ 𝑋𝑇 + 𝐶
∙ 𝑋𝑇 − 𝜇𝑑 ∙ 𝑋𝑇) − 𝑚 ∙ 𝑋𝑇                                                        (3.3) 

d𝑋𝐺

d𝑡
= 𝑘𝑚 ∙ (𝜇𝑚 ∙

𝐶

𝐶 + 𝐾𝑐𝑜 ∙ 𝑋𝑇
∙ 𝑋𝑇 − 𝜇𝑑 ∙ 𝑋𝑇) + 𝑘𝑛 ∙ 𝑋𝑇 − 𝑘𝑑 ∙

1

𝐶 + 𝐾𝑝
∙ 𝑋𝑇                      (3.4) 

In Equation 1, 𝑋𝑇 is total biomass concentration (g L−1), 𝐶 is glucose concentration (g L−1), 

𝜇𝑚 is maximum specific growth rate (h−1), 𝜇𝑑 is specific cell death rate (h−1) and 𝐾𝑐𝑜 is 

the half-saturation constant. In Equation 2, 𝑘0 is the ratio of fat-free biomass to total biomass 

(g g−1). In Equation 3.3, 𝑌𝐶0 is yield coefficient from glucose to biomass (g g−1) and 𝑚 is 

biomass-specific maintenance coefficient ( g g−1h−1). Finally, in Equation 3.4, 𝑘𝑚  is the 

growth-dependent synthesis constant ( g g−1 ), 𝑘𝑛  is the growth-independent synthesis 

constant (g g−1h−1), 𝑘𝑑 is the specific GLA decay rate ( g g−1h−1) and 𝐾𝑝 is the saturation 

product constant (g L−1) for GLA decay. The parameter values and their uncertainties estimated 

in our previous work (Song, 2021) are tabulated in Appendix E Table S1. 

Our previous work showed that this model could accurately simulate the effect of temperature 

on total and fat-free biomass growth, glucose consumption and GLA production over a wide 

temperature range. However, the complex and highly nonlinear model structure was not only 
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time-consuming to identify, but also suffered from large uncertainty (e.g. standard deviation of 

GLA production over 100%) which prevents its further application in process control and 

optimisation. Other researchers have also emphasised this issue in their works (Sadino-

Riquelme et al., 2020; Vega-Ramon et al., 2021). Therefore, to improve the kinetic model, its 

structure was adapted to build three hybrid models, each with different amounts of mechanistic 

complexity, as described in Section 2.3. Then once built, the predictive performance of three 

hybrid models was benchmarked against the original kinetic model in Section 3.5. 

3.3.3 Hybrid model construction 

3.3.3.1 Hybrid model structures 

The complex bioprocess dynamics arise from underlying biological mechanisms; some are 

known and are encoded in the kinetic model, others not and remain untapped within process 

data. Hybrid models leverage both sources of process knowledge by embedding a data-driven 

model inside a kinetic model, such that the kinetic model describes known mechanisms while 

the data-driven component fills in the gaps with knowledge extracted from process data. The 

structure of the hybrid model will depend on how confidently certain mechanisms are known 

to occur. For example, Equation (5), one of the embedded hybrid structures used to describe 

total biomass growth in this work, explicitly accounts for substrate saturation (i.e., the first term 

on the right) and endogenous biomass decay (i.e., the second term on the right). However, the 

complex function of the dynamic states: total biomass concentration 𝑋𝑇, glucose concentration 

𝐶 , fat-free biomass concentration 𝑋𝐵 , GLA concentration 𝑋𝐺  and temperature 𝑇  that 
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underlies the maximum specific growth rate is learnt from process data by a data-driven sub-

model 𝜇′(∙). 

d𝑋𝑇

d𝑡
= 𝜇′(𝑋𝑇 , 𝐶, 𝑋𝐵, 𝑋𝐺, 𝑇) ∙

𝐶

𝐶 + 𝑋𝑇 ∙ 𝐾𝐶0
∙ 𝑋𝑇 − 𝜇𝑑 ∙ 𝑋𝑇                                                          (3.5) 

Compared with a purely mechanistic kinetic model, the mechanistic backbone of a hybrid 

model does not need to be as complex. Specifically, where a purely mechanistic kinetic model 

would strive to include all aspects of the kinetics, the mechanistic backbone of a hybrid model 

only needs to capture an approximation by drawing upon the standard kinetic theories available 

in the literature (e.g., Monod, Contois or Haldane models). By only tasking the data-driven 

component with simulating the unknown elements, the nonlinearity of the data-driven 

modelling problem is reduced compared with the original bioprocess dynamics. However, there 

remains the question of how much kinetic information to incorporate from the original complex 

kinetic model outlined in Section 2.2 while avoiding overfitting the data-driven model. 

Therefore, in this study, three hybrid models were built to simulate the fermentation process 

by incorporating different amounts of kinetic information from the original kinetic model, as 

shown in Equations (3.6) to (3.8), representing three levels of ‘greyness’. 

Hybrid Model 1, presented in Equations (3.6a) to (3.6d), only incorporated the most 

fundamental but confident assumption that biomass growth, glucose consumption, and GLA 

production are proportional to the current cell population. The proportionality parameters for 

total biomass growth 𝜇(∙), glucose consumption 𝑌𝐶/𝑋𝑇
(∙), fat-free biomass growth 𝑌𝑋𝐵/𝑋𝑇

(∙) 

and GLA accumulation 𝑌𝑋𝐺/𝑥𝑖
(∙) were each represented by unique a data-driven function of 

the state concentrations and temperature. Hybrid Model 2, presented in Equations (3.7a) to 
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(3.7d), then incorporated substrate saturation, substrate maintenance and first-order 

endogenous biomass decay, while the data-driven terms account for the complex functions 

underlying maximum specific growth rate 𝜇′(∙) , the glucose to biomass yield coefficient 

𝑌𝐶/𝑋𝑇

′ (∙), the ratio of total to fat-free biomass 𝑌𝑋𝐵/𝑋𝑇

′ (∙) and the growth-dependent GLA yield 

coefficient 𝑌𝑋𝐺/𝑥𝑖

′ (∙) . Finally, Hybrid Model 3, presented in Equations (3.8a) to (3.8d), 

incorporated glucose limiting GLA consumption and the temperature-dependent Arrhenius 

expression. Here the data-driven terms account for the complex functions underlying the 

parameters in the exponent of the Arrhenius expressions for maximum specific growth rate 

𝐵𝜇𝑚
(∙), the glucose to biomass yield coefficient 𝐵𝐶(∙), the ratio of total to fat-free biomass 

𝐵𝑋𝐵
(∙) and the growth-dependent GLA yield coefficient 𝐵𝑋𝐺

(∙). 

Hybrid Model 1: 

d𝑋𝑇

d𝑡
= 𝜇(𝑋𝑇 , 𝐶, 𝑋𝐵, 𝑋𝐺, 𝑇) ∙ 𝑋𝑇                                                                                                      (3.6a) 

d𝐶

d𝑡
= −𝑌 𝐶

𝑋𝑇

(𝑋𝑇 , 𝐶, 𝑋𝐵, 𝑋𝐺, 𝑇) ∙ 𝑋𝑇                                                                                                (3.6b) 

d𝑋𝐵

d𝑡
= 𝑌𝑋𝐵/𝑋𝑇

(𝑋𝑇 , 𝐶, 𝑋𝐵, 𝑋𝐺 , 𝑇) ∙ 𝑋𝑇                                                                                             (3.6c) 

d𝑋𝐺

d𝑡
= 𝑌𝑋𝐺/𝑥𝑖

(𝑋𝑇 , 𝐶, 𝑋𝐵, 𝑋𝐺 , 𝑇) ∙ 𝑋𝑇                                                                                             (3.6d) 

Hybrid Model 2: 

d𝑋𝑇

d𝑡
= 𝜇′(𝑋𝑇 , 𝐶, 𝑋𝐵, 𝑋𝐺, 𝑇) ∙

𝐶

𝐶 + 𝑋𝑇 ∙ 𝐾𝐶0
∙ 𝑋𝑇 − 𝜇𝑑 ∙ 𝑋𝑇                                                        (3.7a) 

d𝐶

d𝑡
= −𝑌𝐶/𝑋𝑇

′ (𝑋𝑇 , 𝐶, 𝑋𝐵, 𝑋𝐺 , 𝑇) ∙
𝐶

𝐶 + 𝑋𝑇 ∙ 𝐾𝐶0
∙ 𝑋𝑇 − 𝑚 ∙ 𝑋𝑇                                                 (3.7b) 

d𝑋𝐵

d𝑡
= 𝑌𝑋𝐵/𝑋𝑇

′ (𝑋𝑇 , 𝐶, 𝑋𝐵, 𝑋𝐺 , 𝑇) ∙
𝐶

𝐶 + 𝑋𝑇 ∙ 𝐾𝐶0
∙ 𝑋𝑇 − 𝑘0 ∙ 𝑋𝑇                                                (3.7c) 

d𝑋𝐺

d𝑡
= 𝑌𝑋𝐺/𝑥𝑖

′ (𝑋𝑇 , 𝐶, 𝑋𝐵, 𝑋𝐺, 𝑇) ∙
𝐶

𝐶 + 𝐾𝐶0 ∙ 𝑋𝑇
∙ 𝑋𝑇 + 𝑘𝑔 ∙ 𝑋𝑇                                                (3.7d) 

Hybrid Model 3: 
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d𝑋𝑇

d𝑡
= 𝐴𝜇 𝑚

∙ 𝑒
𝐵𝜇𝑚(𝑋𝑇,𝐶,𝑋𝐵,𝑋𝐺,𝑇)

𝑇 ∙
𝐶

𝐶 + 𝑋𝑇 ∙ 𝐾𝑐𝑜
∙ 𝑋𝑇 − 𝜇𝑑 ∙ 𝑋𝑇                                                (3.8a) 

d𝐶

d𝑡
= −𝐴𝐶 ∙ 𝑒

𝐵𝐶(𝑋𝑇,𝐶,𝑋𝐵,𝑋𝐺 ,𝑇)
𝑇 ∙

𝐶

𝐶 + 𝑋𝑇 ∙ 𝐾𝐶0
∙ 𝑋𝑇 − 𝑚 ∙ 𝑋𝑇                                                      (3.8b) 

d𝑋𝐵

d𝑡
= 𝐴𝑋𝐵

∙ 𝑒
𝐵𝑋𝐵

(𝑋𝑇,𝐶,𝑋𝐵,𝑋𝐺,𝑇)

𝑇 ∙
𝐶

𝐶 + 𝑋𝑇 ∙ 𝐾𝐶0
∙ 𝑋𝑇 − 𝑘0 ∙ 𝑋𝑇                                                  (3.8c) 

d𝑋𝐺

d𝑡
= 𝐴𝑋𝐺

∙ 𝑒
𝐵𝑋𝐺

(𝑋𝑇,𝐶,𝑋𝐵,𝑋𝐺,𝑇) 

𝑇 ∙
𝐶

𝐶 + 𝑋𝑇 ∙ 𝐾𝐶0
∙ 𝑋𝑇 + (𝑘𝑛 −

𝑘𝑑

𝐶 + 𝑘𝑝
) ∙ 𝑋𝑇                          (3.8d) 

For each hybrid model, only the minimum number of kinetic constants were replaced with 

data-driven sub-models to avoid over-parameterisation. However, using a set of lumped 

constants to represent dynamic properties results in large uncertainty and low accuracy, 

particularly if the kinetic model structure is non-identifiable. Hence only the parameters 

directly related to biomass growth, substrate consumption and production were replaced with 

data-driven sub-models. These parameters commonly suffer from the greatest uncertainty; at 

the same time, these parameters also have the greatest influence on the predicted process 

trajectory. The aim of replacing the most sensitive parameters was to reduce kinetic model 

complexity and prediction uncertainty. 

3.3.3.2 Parameter estimation and mitigating overfitting 

Since the data-driven parameters are functions of dynamic state variables, they are time-

varying parameters 𝝋, while the remaining parameters 𝜽 ∈ [ 𝐾𝑐𝑜 ,  𝜇𝑑 , 𝑚, 𝑘0, 𝑘𝑔, 𝑘𝑛, 𝑘𝑑 , 𝑘𝑝]
𝑇
 

are constant kinetic parameters. To simulate the bioprocess, the data-driven sub-models 

updated the time-varying parameters as a function of the current state concentrations and 

temperature. However, before correlating the time-varying parameters with the state 
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concentrations and temperature, the time-varying and constant parameters were estimated 

simultaneously from experimental data. 

Parameter estimation was formulated as the nonlinear least-squares regression problem shown 

in Equations (3.9a) to (3.9h), where the set of time-varying parameters 𝝋  and constant 

parameters 𝜽 were found by minimising the difference between the experimentally measured 

�̂�𝑛 and simulated 𝒚𝑛 values of the state variables 𝒚 ∈ [𝑋𝑇 , 𝐶, 𝑋𝐵, 𝑋𝐺]𝑇 subject to the system 

of ordinary differential equations (ODEs) 𝑓(𝒚(𝑡), 𝜽, 𝝋) describing the rates of change of the 

state variables. Where in Equation (3.9b), 𝚲 is a weighting matrix, and 𝑛 and 𝑖 index the 

batch number and time interval, respectively. Finally, 𝒚𝑙𝑏 and 𝒚𝑢𝑏 are the lower and upper 

bounds of the state variables, respectively, while 𝜽𝑙𝑏  and 𝜽𝑢𝑏  and 𝝋𝒍𝑏  and 𝝋𝑢𝑏  are the 

lower and upper bounds of the constant and time-varying parameters, respectively. 

min
𝜽,𝝋

𝐸(𝜽, 𝝋)  = 𝑓(𝜽, 𝝋) + 𝝀𝑇 ∙ 𝑃(𝝋) (3.9a) 

𝑓(𝜽, 𝝋) = ∑ ∑ (�̂�𝑛
 𝑖 − 𝒚𝑛

 𝑖 (𝜽, 𝝋))
𝑇

𝚲 (�̂�𝑛
 𝑖 − 𝒚𝑛

 𝑖  (𝜽, 𝝋))

𝐼

𝑖=1

𝑁

𝑛=1

 (3.9b) 

𝑃(𝜑𝑖) = ∑(𝜑𝑖
𝑡+1 − 𝜑𝑖

𝑡)2

𝑡𝑓

𝑡=0

  (3.9c) 

Subject to: 

𝑑𝒚

𝑑𝑡
= 𝑓(𝒚(𝑡), 𝜽, 𝝋) (3.9d) 

𝒚𝑙𝑏 ≤ 𝒚 ≤ 𝒚𝑢𝑏 (3.9e) 

𝜽𝑙𝑏 ≤ 𝜽 ≤ 𝜽𝑢𝑏 (3.9f) 

𝝋𝑙𝑏 ≤ 𝝋 ≤ 𝝋𝑢𝑏  (3.9g) 

𝒚(𝑡0) = 𝒚0 (3.9h) 
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This work follows the dynamic parameter estimation framework widely employed by  (del 

Rio-Chanona et al., 2017). To estimate the model parameters, the system of ODEs was first 

discretised and transformed into a nonlinear programming (NLP) problem. To guarantee 

solution accuracy, the system of ODEs was discretised using fourth-order orthogonal 

collocation over finite elements in time into a system of nonlinear algebraic equations (Biegler, 

1984). The interior-point optimisation solver IPOPT (Wächter & Biegler, 2006) was then used 

to solve the resulting NLP problem, as implemented in the open-source Python optimisation 

environment: Pyomo (Hart et al., 2017). 

Given that it would be physically inconsistent for the data-driven sub-models to be a function 

of time span, the batch time was divided into equally spaced 24-hour intervals, each assigned 

a unique value for each time-varying parameter. Ideally, the number of intervals would equal 

the number of data points. However, experimental measurements were taken at nonuniform 

intervals (i.e., a mixture of 12, 24, 36, 48, 60, 72 or 120 hours between measurements), 

rendering the time-varying parameters strung between sparsely spaced measurements non-

identifiable. Without a uniquely identifiable value associated with each interval, any correlation 

between the time-varying parameters and the state variables would be prone to overfitting. To 

rectify this problem, the time-varying parameters were penalised from changing too rapidly 

from one interval to the next, given that underlying metabolism should not change too 

drastically in this period. This was achieved by introducing the penalty term 𝑃(𝝋) defined by 

Equation (3.9c) into the objective function. In Equation (3.9a), the penalty weight 𝜆𝑖 controls 

the ‘rigidity’ of the time-varying parameter 𝜑𝑖 with time – larger values will smoothen out 
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the influence of measurement noise and prevent overfitting. The value of 𝜆𝑖 for each 𝜑𝑖 was 

selected to balance hybrid model fitting accuracy and uncertainty on the training datasets. 

3.3.3.3 Introduction to Gaussian processes 

This work selected a Gaussian Process (GP) as the data-driven sub-model. GPs are a 

probabilistic machine learning technique capable of returning an estimate of the uncertainty 

associated with a prediction (Mowbray et al., 2021). Within each hybrid model, four 

independent multi-input single-output GPs correlated the estimated four time-varying 

parameter values over each 24-hour interval with the state concentrations and temperature. The 

posterior distribution of possible functions was inferred by specifying a prior distribution and 

then conditioning it with training data. The prior distribution was specified using a kernel 

function based on the squared-exponential function shown in Equation (3.10). For a fair 

comparison between each hybrid model, several kernels were screened to achieve the best 

performance for each hybrid model: 

𝑘(𝒙, 𝒙∗) = 𝜎2 exp (−
(𝒙 − 𝒙∗)𝑇(𝒙 − 𝒙∗)

2𝑙2
) + 𝛿𝑖𝑗𝜎𝑛𝑜𝑖𝑠𝑒

2  (3.10) 

where 𝒙 and 𝒙∗ are two different input locations, 𝑘(𝒙, 𝒙∗) is the covariance between them, 

𝜎, 𝑙 and 𝜎𝑛𝑜𝑖𝑠𝑒  are hyperparameters that control the properties of the underlying distribution 

over functions, and 𝛿𝑖𝑗is the Kronecker delta function (Williams, 2006). The hyperparameters 

were optimised by maximum likelihood using the L-BFGS algorithm.  The inputs 𝒙 ∈ ℝ𝑚×𝑑 

to GP can be understood as sampling from a multivariate Gaussian distribution conditioned on 

training dataset 𝒙∗ ∈ ℝ𝑛×𝑑  
with corresponding a mean function of zero and covariance kernel 

function 𝑘(𝒙, 𝒙∗) as shown in Equation (3.11) (Mowbray et al., 2021). 
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𝑓(𝒙) ~ GP(0, 𝑘(𝒙, 𝒙∗)) (3.11) 

This work uses the open-source GP regression package for Python GPy (GPy, 2014), but for 

more detailed information on the theory, we guide the reader towa/rds (Rasmussen, 2004). 

3.3.3.4 Multistep-ahead simulation and propagated uncertainty estimation 

Only the system’s initial state 𝒙0 was provided to the hybrid models, requiring the future state 

trajectory to be simulated in a closed-loop multistep-ahead manner. At each time step, as a 

function of the current state concentration 𝒚𝑖  and temperature 𝑇𝑖 , the GPs predicted and 

updated the vector of time-varying parameters 𝝋𝑖 ~ GP(𝒚𝑖 , 𝑇𝑖) which were then held constant 

from time 𝑡𝑖 until the next interval at time 𝑡𝑖+1 where it was updated again using the new 

state. 

The confidence intervals for the constant parameters (𝜽) were estimated by taking the trace of 

an approximated covariance matrix obtained by taking the inverse of the Hessian matrix at the 

optimal parameter solution (Del Rio-Chanona et al., 2015; Franceschini & Macchietto, 2008). 

For all three hybrid models, it was verified that the contribution to the overall uncertainty by 

the constant parameters (𝜽) at the optimal solution was negligible compared to the time-varying 

parameters ( 𝝋 ). Therefore, propagated state uncertainty was estimated by Monte Carlo 

simulation whereby a random value of 𝝋𝑖 was sampled from the 68.2% confidence interval 

of the normal distribution returned by the GP at each time step: 𝒩𝝋(𝝁𝑖 , 𝝈𝑖) ~ GP(𝒚𝑖 , 𝑇𝑖), while 

𝜽 was held constant. This was repeated for each time step to produce one possible process 

trajectory, and then this was repeated 200 times from the same initial state 𝒚0 to generate 200 

possible process trajectories. All code was executed in Python version 3.7 using SciPy version 
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1.8.0, and NumPy version 1.23.0. Numerical integration was performed using LSODA from 

SciPy’s ODEINT library. 

3.4 Results and discussion 

3.4.1 Result of hybrid model construction  

Measurements of the state concentrations taken during fermentation at 14 ℃, 28 ℃ and 37 ℃ 

were used together to build three dynamic hybrid models. The structures of the three hybrid 

models were those described in Section 2.3.1, where Hybrid Model 1 incorporated the least 

mechanistic information from the original kinetic model, Hybrid Model 2 incorporated an 

intermediate amount and Hybrid Model 3 incorporated the most mechanistic information. 

Table 3.1 presents the estimated constant parameters for the three hybrid models.  
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Table 3.4.11 Estimated values of fixed parameters in different hybrid models 

Parameters Hybrid Model 1 Hybrid Model 2 Hybrid Model 3 

𝐾𝑐𝑜 (g L−1) - 48.64 48.64 

𝜇𝑑  (h−1) - 1.70 × 10−3 1.70 × 10−3 

𝑚 (g g−1h−1) - 3.10 × 10−3 3.10 × 10−3 

𝑘0 (g g−1h−1) - 1.35 × 10−3 1.35 × 10−3 

𝑘𝑔  (g g−1h−1) - −3.23 × 10−5 - 

𝑘𝑛  (g g−1h−1) - - 1.20 × 10−4 

𝑘𝑑  (g L−1h−1) - 5.20 × 10−3 5.20 × 10−3 

𝑘𝑝 (g L−1) - 32.39 32.39 

𝐴𝜇𝑚
 - - 590.58 

𝐴𝐶
′  - - 1.27 × 10−4 

𝐴𝑋𝐵
 - - 10872.57 

𝐴𝑋𝐺
 - - 3.29 × 10−13 

Once built using the three fermentation experiments, the hybrid models were used to simulate 

the state trajectories for the same three experiments to check the fitting result. Figures 3.2 to 

3.4 display the fitting results and 68.2% confidence intervals when simulating the 14 ℃ 

fermentation experiment using Hybrid Models 1 to 3, respectively.  
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Figure 3.2 Simulation result of Hybrid Model 1 for total biomass concentration (A), glucose 

consumption (B), fat-free biomass concentration (C) and GLA accumulation (D) at 14℃.  
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Figure 3.3 Simulation result of Hybrid Model 2 for total biomass concentration (A), glucose 

consumption (B), fat-free biomass concentration (C) and GLA accumulation (D) at 14℃. 
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Figure 3.4 Simulation result of Hybrid Model 3 for total biomass concentration (A), glucose 

consumption (B), fat-free biomass concentration (C) and GLA accumulation (D) at 14℃. 

The remaining fitting results for the 28 ℃ and 37 ℃ fermentation experiments are displayed 

in Appendix E. Together, these results show that all three hybrid models could fit relatively 

well, with an average mean relative percentage error (MRPE) between the measured and 

predicted states of 6.22 %, 18.3 %, 7.54 % and 6.65 % for total biomass, glucose, fat-free 

biomass and GLA concentration, respectively. 
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In terms of the value of the penalty term coefficient (i.e., 𝜆) for each fermentation experiment 

for each hybrid model was selected to balance fitting accuracy and uncertainty on the training 

dataset. For example, when fitting total biomass concentration for the 14 ℃ fermentation 

experiment, if  𝜆𝑋𝑇
 is chosen as 0.1, the fitting error is 1.69% and while the prediction’s 

uncertainty is 3.67%. However, if 𝜆𝑋𝑇
 is chosen as 10, the fitting error increases to 3.94% 

while the prediction’s uncertainty decreases by 3.26%. In addition, comparing the magnitude 

of 𝝀𝑇 ∙ 𝑃(𝝋) reveals that Hybrid Model 1 required a penalty five orders of magnitude larger 

than the other two hybrid models, whereas Hybrid Models 2 and 3 had a 𝝀𝑇 ∙ 𝑃(𝝋) of similar 

magnitude. From this simple observation, it can be concluded that Hybrid Model 1 was more 

prone to overfitting, necessitating a stronger penalty to prevent overfitting and reduce 

uncertainty. This is expected as Hybrid Model 1 has the least mechanistic information and its 

accuracy heavily relies on the construction of data-driven models.  

3.4.2 Influence of hybrid model greyness on fitting performance 

Section 3.1 demonstrated that the three hybrid models fit well under different cultivation 

temperatures. However, upon comparing the fitting results of the three hybrid models in 

Figures 3.2 to 3.4, a few key differences can be seen in their fitting accuracy and uncertainty. 

To begin with, Hybrid Model 1 suffered from greater uncertainty than Hybrid Models 2 or 3 

(i.e., MRPU of 27.09% as opposed to 17.55% or 7.92%, respectively). This result stems from 

the fact that it is easier to overfit a limited number of observations when only incorporating the 

most fundamental assumptions about the underlying dynamics. Specifically, Hybrid Model 1 

assumed that biomass growth, glucose consumption and GLA production were directly 
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proportional to the current cell population. As a result, the time-varying proportionality 

parameters 𝜇(∙), 𝑌𝐶/𝑋𝑇
(∙), 𝑌𝑋𝐵/𝑋𝑇

(∙) and 𝑌𝑋𝐺/𝑥𝑖
(∙) had to account for more of the kinetics, 

requiring them to vary more drastically to capture the process dynamics than the time-varying 

parameters in Hybrid Models 2 or 3. Hence the data-driven modelling problem was more 

nonlinear for Hybrid Model 1, increasing uncertainty for a given number of observations. This 

trend continued: propagated uncertainty decreased from Hybrid Models 1 to 3 (i.e., MRPU of 

27.09%, 17.55% and 7.92%, respectively) as more kinetic information was incorporated, and 

it became harder to overfit the highly nonlinear temperature-dependent bioprocess dynamics. 

To reduce uncertainty to some extent, it was necessary to more strongly penalise variation in 

the time-varying parameters from one interval to the next during parameter estimation by 

increasing 𝝀𝑇 ∙ 𝑃(𝝋) for Hybrid Model 1 compared with Hybrid Models 2 or 3 – as discussed 

in Section 3.2. However, improved confidence came at the cost of worse fitting accuracy, 

where Figure 3.2 shows that Hybrid Model 1 could not fit the exponential growth phase well 

before 100 hours. The poor fit stems from the combination of three factors: (i) the low biomass 

concentration before 100 hours, (ii) the relatively large observed biomass growth, glucose 

consumption and productivity rates before 100 hours, and that (iii) Hybrid Model 1 assumed 

the rates of change of state were directly proportional to the current cell population. As a result, 

the time-varying proportionality parameters 𝜇(∙), 𝑌𝐶/𝑋𝑇
(∙), 𝑌𝑋𝐵/𝑋𝑇

(∙) and 𝑌𝑋𝐺/𝑥𝑖
(∙) would 

have had to be large initially but then decrease rapidly as biomass concentration increased. 

Unfortunately, the rigidity imposed by a stronger penalty penalised the time-varying 

parameters from dropping rapidly enough to simultaneously fit the exponential growth phase 
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without overshooting the stationary phase. Accordingly, Figures 3.3 and 3.4 show that Hybrid 

Models 2 and 3 fit better (i.e., MRPE of 6.05% and 6.06%, respectively, as opposed to 11.2% 

for Hybrid Model 1) but also capture the exponential growth phase – a result of incorporating 

substrate inhibitory effects into the mechanistic backbone. 

For a more comprehensive comparison of fitting accuracy and uncertainty, Table 3.3 presents 

the MRPE and MRPU, respectively, achieved by the three hybrid models for each of the three 

different temperature fermentation experiments. These results show that the three hybrid 

models fitted well overall (i.e., overall average MRPE of 9.67%). These results also reaffirm 

the observations drawn from Figures 3.2 to 3.4 above: fitting uncertainty decreased from 

Hybrid Models 1 to 3 (i.e., average MRPU of 29.93%, 21.36% and 10.78%, respectively) and 

fitting accuracy improved from Hybrid Models 1 to 2 (i.e., average MRPE of 13.1% and 7.35%, 

respectively) as more kinetic information was incorporated into the hybrid model structure.  

However, Table 3.2 reveals an interesting exception: while Hybrid Model 2 fitted more 

accurately than Hybrid Model 1, Hybrid Model 3 fitted worse than Hybrid Model 2 despite 

incorporating more kinetic information.  

 

 

 

Table 3.4.2 Mean relative percentage error (MRPE, %) and mean relative percentage 

uncertainty (MRPU, %) of different hybrid models over different temperatures. 𝑋𝑇, 𝐶, 𝑋𝐵 

and 𝑋𝐺  are total biomass, glucose, fat-free biomass and GLA, respectively.  
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 Hybrid model 1 Hybrid model 2 Hybrid model 3 

14 ℃ 

 MRPE MRPU MRPE MRPU MRPE MRPU 

𝑋𝑇 9.39 24.41 5.05 6.81 3.85 3.25 

𝐶 16.78 36.01 10.02 16.12 9.63 12.18 

𝑋𝐵 12.78 17.51 3.78 15.00 5.05 9.79 

𝑋𝐺  6.04 30.44 5.34 32.30 5.69 6.47 

28 ℃ 

 MRPE MRPU MRPE MRPU MRPE MRPU 

𝑋𝑇 13.07 15.38 2.13 5.57 3.05 4.88 

𝐶 28.64 39.88 26.18 26.05 25.51 23.06 

𝑋𝐵 16.11 8.55 2.43 10.01 4.12 9.95 

𝑋𝐺  6.18 31.97 5.62 45.66 6.91 8.67 

37 ℃ 

 MRPE MRPU MRPE MRPU MRPE MRPU 

𝑋𝑇 13.11 25.58 2.03 4.88 4.32 4.91 

𝐶 15.62 53.29 13.93 27.33 18.07 24.37 

𝑋𝐵 14.23 10.73 3.94 7.23 5.45 13.59 

𝑋𝐺  4.62 65.37 7.79 59.46 11.62 8.23 
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In other words, fitting accuracy varied monotonically from Hybrid Models 1 to 3 (i.e., average 

MRPE of 13.1%, 7.35% and 8.61%, respectively) as more kinetic information was incorporated. 

While Hybrid Model 1 had to sacrifice some fitting accuracy to combat fitting uncertainty, the 

worse fit for Hybrid Model 3 is likely due to inductive bias caused by inadvertently 

incorporating incorrect kinetic information. The original kinetic model was built by 

hypothesising the underlying dynamics by drawing on empirical knowledge that explained the 

available experimental observations. However, unstructured kinetic models could be also 

slightly over-parameterised when aiming to improve its fitting accuracy, so more complex 

structures risk incorporating incorrect assumptions. Therefore, incorporating incorrect kinetic 

information into a hybrid will likely induce an inductive bias that negatively impacts bias-

variance capital, either pushing nonlinearity back onto the data-driven component or causing 

the model to misrepresent the bioprocess dynamics. 

3.4.3 Hybrid model temperature-shift prediction performance comparison 

In order to maximise GLA yield, a two-stage temperature-shift strategy was employed based 

on the different optimum temperatures for C. echinulata biomass growth and specific GLA 

production. Our previous work identified that biomass growth is maximised at 37 ℃, while 

specific GLA production is maximised at 14 ℃. It was hypothesised that operating the 

bioreactor at 37 ℃ to maximise biomass concentration before dropping to 14 ℃ to maximise 

specific GLA production would maximise overall GLA yield. The original kinetic model was 

then used to predict and optimise the batch time at which the bioreactor temperature would be 

shifted during fermentation from 37 ℃ to 14 ℃ to maximise the final GLA concentration. 
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Finally, two validation experiments were conducted in an upscaled 5 L bioreactor, switching 

the temperature from 37 ℃ to 14 ℃ at either 168 hours or 96 hours, respectively. Therefore, 

in this work, to validate and compare the fidelity of the three hybrid models for bioprocess 

scale-up and optimisation, the three hybrid models were used to predict the upscaled 

temperature-shift bioprocess trajectories. Note that the original kinetic and three hybrid models 

were built using the same three fixed temperature (i.e., 14 ℃, 28 ℃ or 37 ℃) fermentation 

datasets. 

Figures 3.5 and 3.6 show the total biomass, glucose, fat-free biomass and GLA concentration 

trajectories predicted by the three hybrid models for the upscaled 5 L bioreactor when shifting 

the temperature at 168 hours or 96 hours, respectively.  
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Figure 3.5 The experimental result and model prediction results for total biomass concentration 

(A), glucose consumption (B), fat-free biomass concentration (C) and GLA accumulation (D) 

of temperature-shift strategy at 168th hr in the 5 L fermenter. 
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Figure 3.6 The experimental result and model prediction results for total biomass concentration 

(A), glucose consumption (B), fat-free biomass concentration (C) and GLA accumulation (D) 

of temperature-shift strategy at 96th hr in the 5 L fermenter. 
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Tables 3.3 compare the MRPE for the kinetic and three hybrid models when shifting the 

temperature at 168 hours or 96 hours, respectively, while Tables 3.3 show the MRPU when 

shifting the temperature at 168 hours or 96 hours, respectively.  

Table 3.4.3 Model prediction accuracy (MRPE, %) and uncertainty (MRPU, %) for the 

temperature-shift processes with different temperature-shift strategies at 168th hr and 96th hr. 

Temperature-shift strategy at 168th hr 

 Kinetic model Hybrid model 1 Hybrid model 2 Hybrid model 3 

State MRPE MRPU MRPE MRPU MRPE MRPU MRPE MRPU 

𝑋𝑇 13.00 27.45 31.73 33.36 22.24 5.16 23.85 3.79 

𝐶 28.77 86.97 58.19 46.51 28.64 23.49 17.14 29.22 

𝑋𝐵 14.89 28.21 33.40 21.09 21.88 7.57 26.55 11.43 

𝑋𝐺  22.73 73.59 11.38 55.45 24.54 64.08 25.12 18.12 

Temperature-shift strategy at 96th hr 

 Kinetic model Hybrid model 1 Hybrid model 2 Hybrid model 3 

State MRPE MRPU MRPE MRPU MRPE MRPU MRPE MRPU 

𝑋𝑇 29.86 30.45 26.86 29.37 9.43 6.87 13.09 5.06 

𝐶 36.07 70.05 28.04 29.76 10.90 16.34 11.51 20.59 

𝑋𝐵 16.86 45.62 26.55 20.38 8.89 10.84 13.87 11.87 

𝑋𝐺  27.30 70.06 34.68 51.11 21.05 60.26 24.43 21.72 
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Taken together, it is evident that Hybrid Model 1 suffered from low prediction accuracy and 

large uncertainty (i.e., average MRPE of 31.4% and MRPU of 35.87%) compared with Hybrid 

Models 2 and 3 due to Hybrid Model 1 possessing a simpler mechanistic backbone that 

rendered it prone to overfitting – in line with observations made in Section 3.3. In contrast, 

Hybrid Model 2 (i.e., average MRPE of 18.4% and MRPU of 24.33%) and Hybrid Model 3 

(i.e., average MRPE of 19.4% and MRPU of 15.23%) were more accurate and confident. Of 

these two hybrid models, Hybrid Model 2 was the most accurate, particularly when the 

temperature was switched at 96 hours, where the MRPE fell within 20% but within 10% for 

total biomass, glucose and fat-free biomass concentration. These results demonstrate the 

potential of Hybrid Model 2 for model-based bioreactor optimisation, scale-up and control. 

However, it is interesting that while Hybrid Model 3 was the most confident, it again had 

slightly worse predictive accuracy than Hybrid Model 2 – in line with observations made in 

Section 3.3 about hybrid model fitting. Therefore, incorporating more specific kinetic 

information about a system that is not fully understood is not without the risk of incorporating 

incorrect biases that might hinder rather than enhance hybrid model performance. 

3.4.4 Comparison between kinetic and hybrid model predictive performance 

Unstructured kinetic models are lumped macroscopic descriptions of many intracellular 

metabolic reactions so often suffer from large model-process mismatch. To mitigate this, 

kinetic models are often slightly over-parameterised, trading some accuracy for increased 

uncertainty. For this reason, while accurate, the kinetic model proposed in our previous work 

suffered from large uncertainty (192%). In contrast, Hybrid Models 2 and 3 achieve similar 
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predictive accuracy but much lower uncertainty, as illustrated in Figures 3.3 and 3.4. 

Specifically, the kinetic and two hybrid models had an average MRPE of 19.5% and 21.3%, 

respectively, but an average MPRU of 45.90% and 19.77%, respectively. 

Examining the 96-hour temperature shift experiment, Hybrid Models 2 and 3 were, in fact, 

more accurate than the original kinetic model (i.e., average MRPE of 14.1% rather than 27.5%, 

respectively), particularly for predicting total-biomass, glucose and fat-free biomass 

concentration (i.e., average MRPE of 11.3% rather than 27.6%, respectively). However, while 

Hybrid Models 2 and 3 were more accurate at predicting the early accumulation of GLA 

compared to the kinetic model (i.e., average MRPE of 22.7% rather than 27.3%, respectively), 

Figures 3.5 and 3.6 show that the two hybrid models were slightly worse at predicting the 

accumulation of GLA towards the end of the batch. This is probably due to the fact that by 

incorporating less kinetic information than the original kinetic model, the hybrid models may 

not contain the necessary kinetic knowledge about GLA accumulation for accurate prediction. 

Without any doubt, this problem could be remedied by using a data-driven sub-model to update 

𝑘𝑛 as a function of the current state and temperature. However, selecting the best combination 

of time-varying parameters is challenging; Section 1.3.2 described how the time-varying 

parameters represented growth, consumption and production while all other parameters were 

non-growth associated constants to which the model had low sensitivity. Therefore, replacing 

𝑘𝑛 with a data-driven sub-model would also risk increasing hybrid model uncertainty when 

Hybrid Models 2 and 3 already have similar accuracy and smaller uncertainty than the original 

kinetic model. 
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3.5 Conclusion  

This work proposed three hybrid models for simulating γ-linolenic acid (GLA) biosynthesis 

during fermentation of C. echinulata, each built with different levels of ‘greyness’ by 

incorporating different amounts of kinetic information from a pre-existing complex kinetic 

model. By embedding a data-driven Gaussian Process (GP) to simulate the dynamic nature of 

the otherwise constant lumped kinetic parameters, it was possible to accurately capture the 

bioprocess dynamics over a wide range of operating temperatures (i.e., 14 ℃ to 37 ℃). It was 

found that introducing too little kinetic information rendered the hybrid model prone to 

overfitting, resulting in high fitting uncertainty and low fitting accuracy. However, while 

incorporating more kinetic information always reduced hybrid model uncertainty, best fitting 

accuracy was achieved by incorporating only a moderate amount of kinetic information. 

Therefore, when incorporating more specific kinetic information about a system that is not 

fully understood, there is always a risk of incorporating incorrect kinetic information that 

creates an inductive bias that hinders rather than enhances hybrid model performance. 

Therefore, due to the unknowability of the ground truth, when building a hybrid model, either 

by hypothesising the nature of the underlying kinetics or from a pre-existing complex kinetic 

model, it may be necessary for the complexity of the mechanistic backbone to be built up 

incrementally on a case-by-case basis until a drop in hybrid model performance is observed.  

Once built, the hybrid models were used to predict the upscaled (i.e., 1 L to 5 L bioreactor) 

bioprocess dynamics when shifting the temperature during fermentation from 37 ℃ to 14 ℃ 

at either 96 hours or 168 hours. Again, incorporating more kinetic information reduced 
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predictive uncertainty, while incorporating only a moderate amount yielded the hybrid model 

with the best predictive accuracy. The hybrid models achieved similar accuracy to the original 

kinetic model at much lower uncertainty and time cost due to the flexible data-driven terms 

more accurately representing the complex underlying kinetics. However, the mechanistic 

backbone only needs to capture an approximation of the process dynamics, while the specifics 

can be inferred from process data, greatly accelerating model construction. Therefore, hybrid 

modelling offers a cost-efficient technique for combining different sources of process 

knowledge for long-term robust process optimisation and real-time monitoring. 
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Chapter 4 Summary and recommendations for future work 

4.1 Summary 

Both the kinetic learning model and the hybrid model proposed in this MPhil project show 

accurate fitting and predictive performance in C. echinulat fermentation experiment. 

Furthermore, both models were applied in scale-up experiments from 1L to 5L bioreactor with 

temperature-shift strategy and showed the high prediction accuracy. 

In Chapter 2, a first-time proposed temperature-dependent biokinetic model is able to simulate 

the fermentative biomass growth and GLA biosynthesis of C. echinulata. The kinetic 

parameters were identified, and the prediction accuracy was verified over a wide temperature 

range from 14 ℃ to 37 ℃ by using experimental data from a 1L bioreactor. Moreover, the 

kinetic model was applied to scale up the bioreactor from 1L to 5L and showed the high 

predictive accuracy. This demonstrates the model’s reliability for continued scale-up of the 

biotechnology. Based on the obtained results, the further biokinetic model design with the 

impact of scale-dependent transport phenomena such as mixing induce shear rate, aeration and 

eddy size can be developed. In addition, the oxygen concentration may be a limiting factor for 

biomass growth because of the depletion of dissolved oxygen in the later stage of the 

temperature-shift experiments. 

Three hybrid models for simulating fermentation of C. echinulata were presented in Chapter 3. 

Each model built with different levels of ‘greyness’ by incorporating different amounts of 

kinetic information. It was found that introducing too little kinetic information made the hybrid 

model prone to overfitting, resulting in high uncertainty and low fitting accuracy. Oppositely, 
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incorporating more kinetic information reduced hybrid model uncertainty. According to the 

simulation result, only a hybrid model with moderate amount of kinetic information can 

achieve the best fitting accuracy. Moreover, the hybrid models were used to predict the 

upscaling experiment from 1L to 5L bioreactor with temperature-shift strategy. The hybrid 

models achieved similar accuracy to the original kinetic model at much lower uncertainty and 

time cost due to the flexible data-driven terms more accurately representing the complex 

underlying kinetics. This promising result offers a cost-efficient technique for combining 

different sources of process knowledge for long-term robust process optimisation and real-time 

monitoring. 

4.2 Future work 

In this MPhil research, kinetic models have been designed and applied to simulate fermentation 

experiment of the fungus Cunninghamella echinulata. However, the effects of scale-dependent 

transport phenomena such as mixing induce shear rate, aeration and eddy size was deficiently 

investigated. These factors need to be taken into account in future studies in order to improve 

the upscaling predictions. Furthermore, as dissolved oxygen was depleted in the final stage of 

the temperature-shift experiment, this means that the effect of oxygen concentration is also an 

important factor in the accuracy of the model predictions, and it should be taken into account 

in future studies for further process control and optimisation. 

In addition, the fermentation experiment of Cunninghamella echinulate also simulated by three 

hybrid model with different model structures. The hybrid models can achieve the similar 

accuracy to the original kinetic model where only an approximation of the process dynamics 
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is required to be captured by the mechanistic backbone. However, similar with kinetic models, 

the effects related to scale-up was lacked to investigate. The further validation is required of 

predicted performance for long-term robust process optimization, process control and real-time 

monitoring. 
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Appendix A:  

A.1 Experimental setup  

A.1.1 Microorganism and culture conditions 

C. echinulata X-15 was a screened high-yield strain in our lab, which was maintained on potato 

dextrose agar (PDA) plates at 4 °C and transferred every 3 weeks to PDA plates. The culture 

was grown at 28 °C for 2 days, and then stored at 4 °C until fermentations were conducted. 

The seed culture medium consisted of (per liter): 80 g glucose, 6 g urea, 5 g (NH4)2SO4, 1 g 

yeast extract, 5 g KH2PO4, 1 g MgSO4, 0.06 mg Biotin. The fermentation medium consisted of 

(per liter): 100 g glucose, 6 g tryptone, 5 g yeast extract, 2 g NaNO3, 3 g KH2PO4, 0.5 g MgSO4. 

The culture was grown at 28 °C. 

A.1.2 Inoculum preparation and fermentation 

The 250 ml baffled flasks containing 50 ml seed medium was inoculated with a loop of 

mycelium of C. echinulata and cultivated at 28 °C, 150 rpm for 2 days. GLA fermentation was 

carried out in 1L bioreactors (Infors-2015 Bioprocess controller, Netherland) containing 0.7 L 

medium and cultivated at different temperatures (14, 28, and 37 °C) with 10% (v/v) of the seed 

culture without pH controlled. The cultivation time in the experiments ranged from 300 to 480 

h as indicated. Samples were taken periodically for analysis. In the two temperature-shift 

experiments, the GLA fermentation was carried out in a 5L bioreactor (Infors-2015 Bioprocess 

controller, Netherland) containing 3.5L medium, ultimately switching the temperature from 37 

to 14 oC at 168 hours and 96 hours, respectively. All the control conditions were same as those 

in the single temperature experiments. All cultivation experiments were performed in triplicate 
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and analysed individually. 

A.1.3 Analytical methods 

Mycelia after cultivation were harvested by vacuum filtration, washed with distilled water, and 

then dried at 70 °C until constant weight. Total lipids were extracted with chloroform/methanol 

(2:1, v/v) according to the methods of Bligh and Dyer (Bligh & Dyer, 1959). For fatty-acid 

methyl ester (FAME) analysis, lipids were saponated by 2 mL 0.5 M KOH-CH3OH for 15 min 

at 65 °C, then esterified by 2 mL BF3-CH3OH for 30 min at 70 °C. Fatty-acid methyl ester 

(FAME) were extracted with hexane and analysed by gas chromatography. Gas 

chromatography was performed with an Agilent GC-7890A gas chromatograph (Agilent, USA) 

equipped with a flame ionisation detector (FID) and a split injector with a split-to-splitless ratio 

of 100:1. Glucose concentration was determined by biosensor with glucose oxidase electrode 

(SBA-40C, Shandong).  
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Appendix B: 

Table B.1 tabulates the mean relative percentage deviation (MRPD) between the lower and 

upper bound for each state variable and operating temperature.  

Table B.1. Model relative deviation (%) w.r.t. 5% variations of parameter permutation. 

T/℃ Var. 𝑚 𝜇𝑑 𝑘𝑛 𝐴𝜇𝑚
 𝐵𝜇𝑚

 𝐴𝑘𝑐𝑜
 𝐵𝑘𝑐𝑜

 𝐴𝑘0
 𝐵𝑘0

 

14 𝑋𝑇 1.63 1.40 0 6.62 56.87 4.50 15.23 0 0 

𝐶 15.68 10.60 0 24.57 182.13 20.76 66.37 0 0 

𝑋𝐵 1.62 1.39 0 6.51 55.89 4.45 14.98 9.53 31.41 

𝑋𝐺  1.88 0.73 8.28 6.99 59.96 4.18 14.07 0 0 

28 𝑋𝑇 1.25 1.22 0 7.46 60.11 5.41 17.33 0 0 

𝐶 8.04 4.29 0 15.44 114.14 13.19 42.09 0 0 

𝑋𝐵 1.24 1.21 0 7.41 59.59 5.39 17.25 9.59 30.16 

𝑋𝐺  1.86 0.56 13.98 7.13 58.76 4.44 14.27 0 0 

37 𝑋𝑇 1.62 1.31 0 7.72 61.12 5.98 18.60 0 0 

𝐶 16.62 6.61 0 23.38 145.10 20.67 57.95 0 0 

𝑋𝐵 1.62 1.31 0 7.69 60.92 5.97 18.56 9.68 29.55 

𝑋𝐺  3.62 0.85 21.25 8.07 64.47 5.67 17.67 0 0 

 𝐴𝑘𝑚
 𝐵𝑘𝑚

 𝐴𝑘𝑑
 𝐵𝑘𝑑

 𝐴𝐾𝑝
 𝐵𝐾𝑝

 𝐴𝑌𝑐𝑜
 𝐵𝑌𝑐𝑜

 𝐶𝑌𝑐𝑜
 

14 𝑋𝑇 0 0 0 0 0 0 0.28 10.57 3.17 

𝐶 0 0 0 0 0 0 0.57 23.74 6.46 

𝑋𝐵 0 0 0 0 0 0 0.28 10.53 3.16 
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𝑋𝐺  5.31 234.27 3.65 37.13 1.79 10.23 0.32 12.07 3.62 

28 𝑋𝑇 0 0 0 0 0 0 1.05 44.19 3.46 

𝐶 0 0 0 0 0 0 2.47 136.4 8.11 

𝑋𝐵 0 0 0 0 0 0 1.05 44.11 3.46 

𝑋𝐺  3.35 136.73 7.39 71.38 3.58 19.42 1.48 61.48 4.83 

37 𝑋𝑇 0 0 0 0 0 0 2.91 203.6 4.56 

𝐶 0 0 0 0 0 0 8.48 1998 13.29 

𝑋𝐵 0 0 0 0 0 0 2.91 203.5 4.55 

𝑋𝐺  2.30 89.40 13.61 114.05 6.89 36.31 5.44 345.8 8.51 
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Appendix C: 

Figure C.1. displays the propagated uncertainty for total biomass, fat-free biomass, glucose, 

and GLA concentration resulting from a 5% variation in part parameters at different operating 

temperatures.  
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𝜇𝑑 
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𝑘𝑛 

(C) 

Figure C.1. Uncertainty with 5% variation for parameters in the model predictions for total 

biomass, glucose, fat-free biomass and GLA at 14 ℃ (A), 28 ℃ (B) and 37 ℃ (C). 
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Appendix D: 

Figure D.1 show the uncertainty trajectories of part parameters generated by the Latin 

Hypercube Sampling (LHS) for 200 samples in temperature-shift at 168 hr and 96 hr. 
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𝑘𝑛 

(B) 

Figure D.1. The uncertainty trajectories of models for different parameters with 5% input 

variation in temperature-shift at (A) 168 hr, (B) 96 hr. 
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Appendix E: 

 

Figure E.1: Simulation result of Hybrid Model 1 for total biomass concentration (A), glucose 

consumption (B), fat-free biomass concentration (C) and GLA accumulation (D) at 28℃.  
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Figure E.2: Simulation result of Hybrid Model 1 for total biomass concentration (A), glucose 

consumption (B), fat-free biomass concentration (C) and GLA accumulation (D) at 37℃. 
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Figure E.3: Simulation result of Hybrid Model 2 for total biomass concentration (A), glucose 

consumption (B), fat-free biomass concentration (C) and GLA accumulation (D) at 28℃.  
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Figure E.4: Simulation result of Hybrid Model 2 for total biomass concentration (A), glucose 

consumption (B), fat-free biomass concentration (C) and GLA accumulation (D) at 37℃.  
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Figure E.5: Simulation result of Hybrid Model 3 for total biomass concentration (A), glucose 

consumption (B), fat-free biomass concentration (C) and GLA accumulation (D) at 28℃.  
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Figure E.6: Simulation result of Hybrid Model 3 for total biomass concentration (A), glucose 

consumption (B), fat-free biomass concentration (C) and GLA accumulation (D) at 37℃.  
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Table S1: Estimated kinetic model parameters values with 1 standard deviation at different 

temperatures for the unstructured kinetic model. 

T ( ℃) 14 28 37 

𝜇𝑚  (h−1) 0.12 ± 0.0018 0.16 ± 0.32 0.22 ± 0.092 

𝐾𝑐𝑜 (g L−1) 41.35 ± 0.047 49.59 ± 129.35 55.00 ± 41.73 

𝑌𝐶0 (g g−1) 1.42 ± 0.038 1.31 ± 1.64 0.59 ± 1.15 

𝐾0 (g g−1) 0.70 ± 0.19 0.78 ± 0.28 0.90 ± 0.38 

𝑘𝑚  (g g−1) 1.16 × 10−2

± 0.015 

3.09 × 10−3

± 0.012 

1.17 × 10−3

± 0.38 

  𝑘𝑑(g g−1h−1) 3.52 × 10−3 4.80 × 10−3 7.27 × 10−3 

𝐾𝑝 (g L−1) 25.01 34.28 37.89 

𝜇𝑑  (h−1) 1.70 × 10−3

± 0.00026 

1.70 × 10−3

± 0.0036 

1.70 × 10−3

± 0.0055 

𝑚 (g g−1h−1) 4.98 × 10−3

± 0.00041 

4.98 × 10−3

± 0.0080 

4.98 × 10−3

± 0.0060 

𝑘𝑛 (g g−1h−1) 1.38 × 10−4

± 6.41 × 10−5 

1.38 × 10−4

± 7.23 × 10−5 

1.38 × 10−4

± 5.84 × 10−5 
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