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Typographical conventions

This thesis uses some typographical conventions to highlight elements of the data 
events components, normalisation classes and discourse concepts.

Typeface Usage

Bold-italic This typeface is used for the data event’s components names and relations. 
We have four components and four relations. The four components are: 
operation, data, software and database. The four relations are: input 
data, output data, by software, and from database. We used this presen-
tation to help the reader to differentiate between the component that we 
called data and the general meaning of data.

Italic This typeface is used for the annotated text e.g. The data are analysed by 
R. It is also used for annotated entities as well e.g. data and for the exam-
ples that are quoted from other articles.

Teletype font This typeface is used for EDAM classes e.g. Visualisation, Data
and Operation. It is also used for representing data event components 
relations e.g. Rel<operation:Design, SW:Primer3>.

Teletype font-bold This typeface is used for discourse relations or functions e.g.
Elaboration, Result and Method.
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Abstract

With the current rate of research activities, it is widely accepted that scientists face a 
challenge of keeping up-to-date with new findings, even within a sub-field of a disci-
pline. This difficulty extends to methods that have been used in the research. Under-
standing reported methods gives us confidence that the findings have resulted from an 
appropriate, rigorous and sound scientific process. However, the modern dynamic of 
science is also characterised with ever-changing methods, so scientists need to be able 
to learn about new ones and identify the common or most appropriate methods to use 
in a given situation.

One of the best sources of information about methods is the scientific literature. In 
this thesis, we developed a computational model to automatically represent the text 
that describes reported methods as an abstract method workflow. We focus on com-
putational sciences, which centre on data processing. Specifically, we consider data 
events as a representation of processes and changes that happen to data. A data event 
contains the main components of each step in computational experiments, such as in-
put/output data, processes and operations on data, databases where the data is stored 
and software and tools that are used in these processes. An abstract method workflow 
then models relationships between data events, ordering them in a way that represents 
the methodology as reported in the literature.

This thesis introduces ODNoRFlow, a text mining method that extracts and represents 
an abstract method workflow from a Methods section of a publication. It relies on a 
hybrid text mining approach (ODNoR) that combines machine learning and a rule-
based method to recognise data event components, normalise them to existing ontolo-
gies and identify the links and relations between them. Specifically, we fine-tuned a 
pre-trained transformer model (BioBERT) to extract mentions of data and operations, 
and used an existing named entity recognition system (bioNerDS) to extract software 
and database mentions. Mentions were normalised to the EDAM ontology. We used 
a combination of syntactic rules and a pre-trained attention-based BiLSTM model to 
identify relations and links between components, and considered whether an auto-
mated discourse analysis tool can be used to improve the outcomes.

We used the microarray analysis literature as a case study to demonstrate the feasi-
bility of the proposed approaches. At the data event level, the approach achieved F-
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scores for the identification and normalisation of components between 78% (for data) 
and 92% (for operations), whereas the relationship extraction F-scores were between 
62% and 92.5%. At the workflow level, we manually analysed automatically recon-
structed workflows from 25 papers, with the F-score between 61% and 93.5%. We 
also applied ODNoRFlow to a large corpus of the microarray analysis literature to 
identify and analyse the distribution of data events components, the differences in 
their usage and the associations between them.

Overall, the thesis provides a new computational framework that contributes to the 
automated extraction, representation and analysis of methods used in the computa-
tional biology literature.
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1.1 Motivation

The number of scientific publications has increased significantly over recent years [1]. 
This large volume of literature implies a large number of scientific methods that re-
quire a great effort to follow, understand and apply. This can be seen in particular in 
domains with rapid development, such as computational biology, in which experi-
ments being reported are growing in quantity and complexity. The situation becomes 
even more challenging in interdisciplinary domains that burden users with a broad 
variety of, often complex, methods published in the literature in different domains.

Publications usually present details of used methodologies (which contain methods 
and data) and results. Most of research results (such as specific findings) can be pre-
sented with computational representations (e.g. lists of interacting proteins) and can 
be retrieved, analysed and compared with other results. Even when the results of sci-
entific studies are not readily available, a number of text mining methods have been 
developed and applied to extract these from text. Indeed, the vast majority of text 
mining efforts so far has been about making results and findings available in a struc-
tured, computational representation. For example, there are several BioC implemen-
tations [2] to enable shared formats for annotations resulting from applying text min-
ing tools on the biomedical literature. Several corpora [3, 4, 5] have been produced to 
share and make such annotation information available in standardised BioC XML or 
JSON formats.

Some of the more recent attempts aim at checking and monitoring the reproducibility 
of research (and findings) as reported in scientific papers. For example, the Repro-
ducibility Project: Cancer Biology aimed at replicating 50 experiments from a selec-
tion of 23 high-profile papers in the field of cancer biology [6]. The replicated experi-
ments were linked to specific figures and tables in the original papers. An example of 
the extracted results is shown in Figure 1.1, with associated code that could be used 
to reproduce the results.

Methods presented in research papers are, however, only rarely represented by or linked 
to executable workflows, but are rather described in prose as part of scientific publica-
tions, often as part of the Methods (or Materials and Methods) section (see Figure 
1.1). This section describes the work conducted, what components are involved and 
why they were chosen [7]. It either cites well-known methodologies or should detail 
the important information related to the new proposed or combined methods [8]. Be-
ing in a free-text narrative, this means that the vast bulk of reported methods are in-
accessible computationally, making it difficult to query, retrieve and identify specific 
methods in a large body of research. However, finding, understanding and accessing 
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Figure 1.1. Reproducible papers. An example of the Methods section and the Results section from a 
replication Study paper. Some parts of the results are extracted and reproduced by code e.g. Figure 1B. 
This paper is part of Reproducibility Project: Cancer Biology. The image contains screenshots of the 

paper reported in the website https://elifesciences.org/articles/30274/executable.

https://elifesciences.org/articles/30274/executable
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methods is a key for further research development - researchers need to be aware of 
the evolving methods ‘space’ so that they can confidently apply the appropriate, up-
to-date methods to solve their scientific tasks. Therefore, there is a need to provide a 
medium of computational representation for methods reported in papers that are com-
patible with the FAIR (findable, accessible, interoperable and reusable) model [9, 10], 
so that scientists, including new domain users, could have the opportunity to better 
understand the methodological landscape in a given domain, including, for example:

• Finding appropriate methods for a given task;

• Finding trending and popular methods in a period of time for a given task;

• Understanding how these methods changed over time;

• Identifying by which new methods old ones are replaced;

• Finding those methods that are proposed but not used widely.

A computational FAIR representation of methods reported in a research paper could 
therefore reduce the time and effort required to identify papers of methodological in-
terest, replicate the detailed information about the methods, and enhance the ability to 
keep track of existing and recently published methods. The main aim of this thesis is 
to explore how to automatically build such a methods representation from a research 
paper.

As a case study, the thesis uses computational biology, where computational tools 
are used to analyse biological data in order to provide new biological insights: it is 
the science of studying biology using computational techniques. Methods sections 
in computational biology therefore often involve data and tools used to achieve ana-
lytical goals [11]. We specifically focus on the microarray analysis literature, which 
includes the analysis of experiments on the expression of thousands of genes [12]. 
We chose this domain as it has had a sustained period of use in the last twenty years: 
a huge amount of biological data have been generated through research in microarray 
technology and methods have been continually developed to analyse these data in this 
changing landscape [13, 14].

There have been previous attempts to reconstruct methods from papers in compu-
tational biology. For example, Eales et al. [15] have demonstrated the ability to ob-
tain phylogenetic methods from the literature and depicted best practice methods for 
a specified time frame. Additionally, Duck et al. [11] have shown that it is possible 
to extract methods’ components (database and software names) from the computa-
tional biology literature) and assess the usage over a period of time. Zhao et al. [16] 
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have focused on the resource citation hyperlinks mentioned in the scientific articles 
to extract the methods’ components as (online-resource citation, resource role (code 
or data) and resource function (use or procedure)). Still, to the best of our knowledge, 
extraction of specific data “events” and how they are connected to other method com-
ponents for an individual research article is not addressed in previous work.

In this thesis, we aim to build a computational model and represent the text from an 
individual paper that describes computational biology methods as an abstract work-
flow of data events. A data event is a representation of processes and changes that 
happen to data. It contains the main components of the experiments, such as input/out-
put data, processes, databases and software. As an example, sentence “GSE35957 
was downloaded from Gene Expression Omnibus (GEO) database“ [PMC3735399] 
contains a data event where process download is applied to a data instance (GSE35957). 
An abstract workflow then models the relationships between the data events repre-
sented in a paper, and can be queried and patterns of data events for a given time can 
be extracted and analysed.

We note that some journals now accept “executable papers”. An executable paper
combines the paper’s prose with embedded chunks of code that could be executed 
on provided datasets to (re)produce the results. This approach facilitates the repro-
ducibility but only works for a very small number of papers where the authors sub-
mit the associated code. We also note that such chunks of code do not necessarily in-
crease the understanding of the method, but rather provide an executable code. While 
these are useful, our aim and challenge is to use the existing literature to reconstruct 
computational data event workflows.

1.2 Research hypothesis and questions

The main hypothesis of this thesis is that by using text mining techniques we will be 
able to identify, extract and represent the individual computational biology meth-
ods that are reported in scientific articles. The consequent research questions for this 
study are: 

1. How are methods sections written? What specific entities and discourse ele-
ments characterise method sections?

2. How are data and operations mentioned in papers? How can we use these men-
tions as a proxy to identify data events that are part of methods’ workflows?

3. How can the answers to the previous questions be used to extract representations 
of computational biology workflows from text?
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4. Can we use a corpus of methods in computational biology to identify common 
patterns of method over time?

1.3 Research aim and objectives

The main aim of this project is to design, develop and evaluate a methodology to ex-
tract and represent data events workflows from the computational biology literature, 
in particular for the microarray analysis case study. We focus on what is reported in 
the manuscript, rather than what really has been conducted. This will help to index 
the literature with specific data events and methods’ workflows, and facilitate identi-
fication of well-known methods and new methodology patterns. The specific objec-
tives of this project are:

1. To conduct a survey of how methods sections are written.

2. To investigate the use of text mining techniques, such as named entity recog-
nition (NER), discourse analysis (DA) and domain relation extraction (RE) to 
identify data events.

3. To develop an approach for extracting data events mentioned in the Methods 
section by defining templates that contain information about processes conducted 
and reported in the text.

4. To develop a method for constructing workflows consisting of extracted data 
events, and evaluate the workflow construction in a case study on microarray 
analysis research.

5. To demonstrate how computational data event workflows can be used to identify 
common patterns of method over time.
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1.4 Research contributions

This thesis provides the following research contributions:

1. Extracts and analyses the common writing patterns in Methods sections in the 
microarray analysis literature in terms of discourse.

2. Provides annotation guidelines for labelling data and operations mentioned in 
scientific text and provides a first manually annotated corpus of Methods sec-
tions.

3. Develops and evaluates the ODNoR system that uses text mining and machine 
learning to annotate, normalise and relate the operations and data used in con-
ducting the work expressed in microarray analysis research papers.

4. Develops and evaluates the ODNoRFlow system that reconstructs an abstract 
workflow from a research paper.

5. Explores the common patterns of data events as reported in the microarray liter-
ature over the past 20 years.

1.5 Thesis structure

This thesis is submitted, with permission from the Faculty of Science and Engineer-
ing, in the journal format. As a result, the major chapters are organised into the struc-
ture of an individual research paper, and therefore necessarily have some repetitions 
that provide the context. Table 1.1 links the research questions specified above to 
Chapters that answered them. Specifically, the rest of this thesis is structured as fol-
lows:

• Chapter 2 introduces the background material for this thesis.

• Chapter 3 provides the analysis of discourse patterns on a complete set of open-
access full-text PubMed Central literature.

• Chapter 4 introduces and uses ODNoR to annotate, normalise and relate opera-
tions and data used to express the work reported in the literature.

• Chapter 5 develops and uses ODNoRFlow to reconstruct and evaluate abstract 
method workflows of articles. It also uses the discourse analysis to improve the 
result obtained from ODNoR.
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• Chapter 6 utilises the results of ODNoRFlow to automatically extract the pat-
terns of data events of a large corpus of papers in microarray analysis research.

• Chapter 7 evaluates the primary questions and challenges that this thesis ad-
dresses, elaborates on the limitations of the work contained within, and states 
some ideas for further work. It also summarises the contributions of this work, 
and draws some conclusions.

Table 1.1. Matching the research questions with the objectives, contributions and Chapters.

Question Objective(s) Contribution(s) Chapter
1 1 1 3
2 2 2, 3 4
3 3, 4 4 5
4 5 5 6
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To fulfil the objectives, we searched the literature to construct background informa-
tion about computational biology and how data are expressed in its methods (𝑂𝑏𝑗3). 
We investigated text mining and machine learning techniques to build the methods 
that extract data events (𝑂𝑏𝑗1,2,3). We explored evaluation techniques (𝑂𝑏𝑗4). We 
reviewed the available medium for representing, saving and exploring the workflow 
abstracts (𝑂𝑏𝑗4). Finally, we have shown how previous work attempted to extract re-
lated information of the methodologies mentioned in the papers.

2.1 Methodologies and scientific methods

The Merriam-Webster dictionary defines methodology as “a set of methods, rules, 
or ideas that are important in a science or art: a particular procedure or set of proce-
dures” [17]. A method is defined as “a careful or organized plan that controls the way 
something is done” [18]. However, in the literature, the two terms are often used to 
refer to the same thing.

Scientific method is the core of science and research. It details the required steps to 
achieve a desired result. The steps should be described objectively and a sufficient 
level of information should be included to facilitate the understandability of the method 
used and the result obtained. This level of understandability leads to an ability to 
judge the method and results, or to go further and repeat the experiment, or reproduce 
it according to the data available.

To describe a method, two elements should be reported: participants and procedures. 
The participants can be defined as the subjects (animate or inanimate) of the exper-
iment, and information should be provided on how they were chosen and any con-
ditions (i.e. exclusion/inclusion criteria) that were applied to them. The procedures 
describe any steps carried out with the participants, any chronological changes that 
occur, the design of the methods applied, any measurement or well-known methods 
used, and why they were used; this provides evidence for the research’s validity [7].

The current publishing practices, however, do not guarantee that the methods will 
be reported in all necessary detail in the literature. A study by Ioannidis et al. [19] 
showed that more than a half of 18 chosen microarray experiment articles published 
in the Nature Genetics journal could not be reproduced due to the incomplete infor-
mation provided about the dataset, insufficient details on the processing methods ap-
plied, or the unavailability of the software employed. Interestingly, the reason for be-
ing able to fully reproduce only 25% of the articles was said to be the sufficiency of 
the information given when describing the methods.
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Recent years have brought in several reporting standards that have been devised for 
experiments in a number of domains. For example, in biology, Minimum Information 
About a Microarray Experiment (MIAME) [20] provides a set of guidelines for de-
scribing microarray experiments in a publication. It includes six mandatory elements: 
sufficient information about raw data, final processed data, essential sample annota-
tion, experimental design, annotation of the array and, finally, laboratory and data 
processing protocols. In addition, there are available software that help researchers 
to produce their experiments in a format compatible with MIAME such as MAGE-
TAB [21]. The method should be precise and explicit in order to ensure a high level 
of understandability and reproducibility.

2.2 Computational biology

Computational biology is the field where computational tools are used to analyse bi-
ological data in order to provide new insights. It is the science of studying biology 
using computational techniques. Huerta et al. [22] defined computational biology as 
“the development and application of data-analytical and theoretical methods, mathe-
matical modelling and computational simulation techniques to the study of biological, 
behavioural, and social systems”. Also, Yu et al. [23] pointed out that computational 
biology traditionally refers to the simulation of biological process. This simulation 
requires tools and databases generated by engineering to answer biological questions 
and gain biological insights.

Computational biology differs from bioinformatics in that the latter is more concerned 
with developing the tools that are used in the former. In other words, bioinformatics 
is more related to engineering, while computational biology is more related to sci-
ence i.e. biology [24]. For example, BLAST (Basic Local Alignment Search Tool) 
is a bioinformatics algorithm developed to compare biological sequences. Using this 
tool in the literature is considered as a part of computational biology science, for ex-
ample, using BLAST to compare amino-acid sequences in a dataset of proteins, get-
ting results and analysing them.

Computational biology methods can be represented in executable scientific work-
flows. Merriam-Webster [25] defines workflow as “the set of relationships between 
all the activities in a project, from start to finish”. Scientific workflow systems “com-
pose and execute a series of computational or data manipulation steps, or workflow, 
in a scientific application” [26].

There have been several scientific workflow systems that represent computational bi-
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Figure 2.1. Sample workflow for mapping a protein sequence to identical sequences using EBI’s PICR 
web service, the workflow found from myExperiment3 by Hamish McWilliam, and which can be run 

on Taverna.

ology workflows, for example, Galaxy [27], Kepler [28] and Taverna [29] .

𝑚𝑦Grid team1 have build Taverna as a workflow management system and myExperi-
ment2 as a repository of these workflows. Taverna has a graphical representation that 
enables researchers to design and execute workflows. In this context, the workflow 
represents an experiment’s steps where each step can perform a specific task. Figure 
2.1 shows an example of a workflow.

2.3 Data

2.3.1 Data definitions

Data are an important part of the methods since they represent the dataset that is be-
ing used in an experiment. In computational biology, extensive use of data is required 
in dry or wet lab experiments. It is important to define what the data means in gen-
eral, as well as in computational biology, in order to define them in the scope of the 
project.

The definition of data in a number of dictionaries, encyclopaedias and research papers 
agrees on the point that data are facts, have a value, and can be manipulated and used 
as an input to a process or can be analysed as an output from a process.

1http://www.mygrid.org.uk/
2http://www.myexperiment.org/home
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For example, in Merriam-Webster [30], data are either “factual information (as mea-
surements or statistics) used as a basis for reasoning, discussion, or calculation”, ”in-
formation output by a sensing device or organ that includes both useful and irrelevant 
or redundant information and must be processed to be meaningful”, or ”information 
in numerical form that can be digitally transmitted or processed”.

Additionally, Wikipedia [31] defines data as “a set of values of qualitative or quanti-
tative variables” and these values can be manipulated, “measured, collected, reported, 
and analysed” or “visualized using graphs or images”. They are also defined data at 
an abstract level by “the fact that some existing information or knowledge is repre-
sented or coded in some form suitable for better usage or processing”. Raw data are 
defined in [31] as “unprocessed data” which can be processed at one stage and con-
sidered as “raw data” for the following stage. Additionally, experimental data are 
“data that are generated within the context of a scientific investigation by observation 
and recording” [31].

Dinov et al. [32] define data by looking into its modality: as “observed biomedical 
(raw) data, which is typically fed as input in different computational tools; model 
data, processed data resulting as an output from various tools (e.g., atlases); and tex-
tual data, spread sheets, web-pages (e.g., clinical charts)”.

The Concise Encyclopaedia of Bioinformatics and Computational Biology [33] does 
not provide a direct definition of data, however it describes the data-related concepts 
such as data structure and data description language and data standards. It provides 
the definition of metadata by Robert Stevens as ”data about data”. He confirmed that 
metadata can be furthermore described by other metadata. Europe PubMed searching 
services describe all information related to publication as metadata. For example, the 
description of the publication itself (year of publication, authors’ names and page-
length) and the description of the text of publication (related key words and MeSH
terms, GO ontology and organisms’ terms)

2.3.2 Data in computational biology

It is of our interest to know how data are reported in computational biology. We will 
mention some examples of data format and data mentions. We were also interested to 
know whether there are comprehensive schemas or guidelines to organise the men-
tions and use of the data in the computational biology literature.

The data in computational biology can be found in different formats. For example, 
there are more than 300 types of formats grouped into 7 general formats in EDAM’s 
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format ontology [34]. They can be binary format, HTML (Hypertext Markup Lan-
guage), RDF (Resource Description Framework) format, Textual format, JSON (JavaScript 
Object Notation), XML (eXtensible Mark-up Language) and YAML (YAML Ain’t 
Markup Language).

In the manuscripts, the data may be mentioned in a number of ways based on the pur-
pose of that mention. For example, DOI is referred to in the text by reference or a 
link (doi 10.5061/dryad.478g5). The data may be reported by mentioning the file 
format where the data exist (.CLE in raw intensity (.CEL) file), mention of biologi-
cal terms names (Gene .04 protein), short name (Gp0.4), mention of accession num-
ber as a reference to a database record (A2BC19), mention of sequences (ACTATC-
TAGAGCGGCCGCTT), reference to a biological concept that is used in the dataset 
(cluster, transcripts), metadata that refer to real data (human and mouse genomes) or 
parameters for named and unnamed software (for example blastn, e-value and DUST 
filter in “BLASTed (blastn, 𝑒−𝑣𝑎𝑙𝑢𝑒 = 106, DUST filter off)” or identity in “identity 
>= 94%”).

The above type of mention can be found in a supplementary file as well. Kafkas et
al. [35] studied the percentage of mentions in the body of articles and supplementary 
files and found the supplementary files contain more mentions than the body. Figure 
2.2 shows an example of accession numbers mentioned in supplementary files.

There are no comprehensive schemas for data in life science literature [37]. There are 
some general practices that are good to follow to facilitate the accessibility of the data 
used, for example, including identifiers or accession numbers for any usage of public 
access biological databases (e.g. Ensembl, UniProt). Another good practice is refer-
encing the data in the References section. For example, if authors used published data 
deposited in Dryad [36], then they should reference the original papers that published 
the data and reference the data package in Dryad. Figure 2.3 shows an example.

There are some journals that have guidelines which organise the process of depositing 
then referencing the data in their journals. For example, PLOS journal requires the 
data and metadata to be deposited in a public repository to make them available and 
accessible. The public repositories can be subject-specific (e.g. GenBank and PDB) 
and can store specific types of data such as sequences and structures, or they can be 
general repositories that accept multiple data types. After the data are deposited, they 
should be referenced in the literature by their digital object identifier (DOIs) or database 
reference in the public repositories.
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Figure 2.2. An example of a supplementary file with accession number annotation. The first column 
refers to the article full text identifier(PMC), the second is the name of the supplementary file, the third 
is the annotated accession numbers and the fourth is the contextual cue to the database (e.g. sprot for 

UniProt). Image is taken from Kafkas et al. [35].

Figure 2.3. If authors used data stored in Dryad, they have to cite two references. The first one is the 
reference for the original paper that deposits the data in Dryad (top reference in the figure) and the 
second one is the reference to the data package that is stored in Dryad. Image is taken from Dryad 

[36].

2.3.3 Data repositories

Data instances can be found in lists, thesauruses, controlled variables or ontologies. 
In this context we are going to explore the use of ontologies as a resource of data.

An ontology is a machine-readable description of specific domain concepts, the prop-
erties of these concepts, and the constraints of these properties [38]. The ontology 
concepts are classes and subclasses that are linked to relations extracted from the do-
main. They contain the common domain terms so that the domain knowledge can 
be shared for analysis and annotation tasks. An ontology itself is only a definition 
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Figure 2.4. EDAM ontology concepts and relations. Data has a topic, is an output or input to an 
operation, identified by an identifier and has a format. Image is taken from Ison et al. [34].

of classes, and together with instances of classes, they comprise a knowledge base. 
Domain experts tend to produce standard ontologies to facilitate the reuse and anno-
tation of domain terms [38]. In the following sections, examples of general data on-
tologies and computational biology ontologies are described.

EDAM

EDAM [34] is an ontology that describes bioinformatics and biomedical resources. It 
includes five sub-ontologies linked to five types of relations (see Figure 2.4). The five 
sub-ontologies are topic, data, operation, format and identifiers.

Topic declares the general concept’s terms e.g. computational biology concept is a 
main class in topic ontology and the subclasses can be nucleic acids, phylogeny, pro-
teins, etc.

Data are more specific than a topic; examples of biological data are protein sequences
and protein sequence alignment.

Operation is where the concepts of processes are defined, with their relationships to 
possible inputs and outputs e.g. alignment, mapping, clustering, etc. (see Figures 2.5
and 2.6).

Format defines how the data are represented, e.g. binary or XML (format is detailed 
in Section 2.3.2), and the identifier is a subset of the data and refers to an entity e.g. 
UniProt accession.
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The current version of EDAM includes over 2,200 concepts that are defined by names 
(terms), synonyms, definitions and other properties. The definitions of concepts in-
clude useful terms that can be used as control variables for finding the biological terms 
in the text. They can also be used for semantic annotation of workflows and web ser-
vices, and as a standard for exchanging data. EDAM also can be used for verifying 
files and exchange formats, as some useful information about regular expressions can 
be used to validate the exchanged identifier values.

Software Ontology

The Software Ontology (SWO) [39] is an ontology that defines computational biol-
ogy software in terms of data, data format, algorithm, organisation, programming 
language and software license (see Figure 2.7). The data and data format terms are 
merged with the EDAM data and format terms that result (1,168 and 434 terms re-
spectively, compared to 1,140 and 347 terms in EDAM). 

Gene Ontology

Gene Ontology (GO) [40] contains three GO domains: cellular component, molecu-
lar function and biological process. There is no is–a relation between the sub-ontologies 
but other relations such as part–of  and regulates can be maintained between them. 
The structure of a node in GO consists of essential and optional parts. The manda-
tory elements are GO ID (GO:0005125), namespace which refers to the sub-ontology, 
definition and relation to other GO elements. GO optionally defines database cross-
references where Gene and protein nodes are linked to their databases such as Swis-
sProt, GenBank, EMBL, DDBJ, PIR, MIPS, YPD and WormPD, Pfam, SCOP and 
ENZYME. Figure 2.8 shows a representation of GO ontology.
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Figure 2.5. EDAM operation subclasses.

Figure 2.6. As an example of how a class is defined in EDAM ontology, pairwise alignment is an 
operation under the sequence alignment operation class. It has a definition, synonym and properties 

that indicate this operation has an output data of type sequence alignment (pair).



CHAPTER 2. BACKGROUND 38

Figure 2.7. Software ontology concepts and relations. Image is taken from Malone et al. [39].

Figure 2.8. Graphical representation of subclasses of biological process class in Gene Ontology.



CHAPTER 2. BACKGROUND 39

2.4 Machine Learning

Machine learning (ML) is a sub-field of artificial intelligence (AI), which uses com-
puter science, statistics and data science to develop systems that automatically im-
proved by experience [41]. The developments of novel learning algorithms and the-
ory, as well as availability of online data and low-cost computation, have spurred re-
cent advances in machine learning [41]. The available techniques (such as Support 
Vector Machine (SVM), Conditional Random Fields (CRF), Hidden Markov model 
(HMM), Random Forest, etc.) can be supervised or unsupervised. Supervised mod-
els need sufficient training data to learn from, however, unsupervised models do not 
need training data, but may suffer from over-fitting where noisy data are captured by 
the model.

• Deep learning

Deep learning is a type of machine learning that uses a multi-layer neural net-
work to learn complex features of the input data and improve the prediction out-
put. It surpasses the traditional machine learning algorithms by automating the 
features extractions process and learning non-linear relations and hence bound-
aries between inputs [42, 43]. Deep learning is usually implemented using a 
neural network architecture. A Feedforward neural network (FNN) is an artifi-
cial neural network that has multi-layered architecture where all nodes in one 
layer are fully connected to the nodes in the next layer. It has an input layer that 
accepts the input features, and an output layer that produces the output of the 
network. The layers in between are known as hidden layers. They process the 
inputs based on weights and activation functions and pass the knowledge from 
layer to layer to learn complex features. Figure 2.9 shows the layout of the feed-
forward neural network. Bidirectional Long short-term memory (BiLSTM) is 
a model with two LSTMs: one taking the input in a forward direction, and the 
other in a backwards direction. Knowing the preceding and following words of 
a word gives more level of context and hence improves the learning process and 
performance of the model. Figure 2.10 shows the layout of the BiLSTM neural 
network.

• Transformer
Transformers are the evolution of encoder decoder architecture. The encoder 
reads the text input and the decoder produces a prediction for the task. Faster 
training with better performance is achieved due to utilising parallel processing 
and attentions. Transformer consists of multi-layers; each layer contains multi 
heads, each head is the weighted sum of the value vectors. The vectors corre-
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Figure 2.9. Feedforward neural network with two hidden layers. Information always moves forward, no 
feedback connections. The input layer accepts the input features, and the output layer is the final layer 
that produces the output of the network. The layers in between are known as hidden layers. Image is 

taken from Shridhar et al. [44].

Figure 2.10. BiLSTM neural network architecture. Image is taken from Cornegruta et al. [45].
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sponding to each token/word are transformed into query key value vectors, some 
calculations are done using softmax-normalization dot product. There are two 
deep learning frameworks: TensorFlow [46] and PyTorch [47]

Attention [48] is a well-known method used in modern deep-learning models. 
It provides the neural network with the ability to “focus” on features (select in-
puts). Transformers use attentions to boost the speed of training.

Self-attention is the mechanism the transformer uses to learn the value of the 
relevance between the current word and all words of the input sequence.

The formula that calculates the outputs of the self-attention layer:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇

√𝑑𝑘
)𝑉

where

√𝑑𝑘 is the dimension of the key vector K and query vector Q.

The following steps (two through six) detail how to calculate the self-attention 
values:

1. For each word in the input sequence, calculate the query (Q), keys (K) and 
values (V) vectors. These vectors are calculated by multiplying the word 
embedding of the word by three weight matrices. The weight matrices are 
calculated during the training process.

2. Calculate a score for each word in a sequence against other words in the in-
put sequence. The score is calculated by the dot product of the query vec-
tor of the word with the key vector of the other words. For example: scores 
for word1, against word1 = q1.k1, against word2 = q1.k2, ..

3. Divide the scores by the square root of the length of Q and K vectors.

4. Normalise the scores by softmax, so they are all positive and add up to 1. 
This softmax score determines the relation between the word and all words 
positions, either the same word position or other words’ positions. The 
higher the scores, the more relevant the words. The word has the highest 
softmax score to itself. Softmax gets the value produced for each class and 
returns the probability of each class.

5. Multiply each softmax score by V value vector. This will lower the score of 
the irrelevant words.
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6. For each word, sum up the weighted values vectors; this produces one vec-
tor that expresses the self-attention of the word position and forwards it to 
the feedforward neural network layer.

Self-attention produces one vector, and the value of the word’s position is the 
highest. If we have multi-layers of self-attention, the model will be able to in-
spect different positions. Multi-head attention uses multiple sets of Query, 
Key, and Value weight matrices to produce more vectors for each word. The 
multiple attentions are concatenated and multiplied by a weight matrix (𝑊 𝑂)
to produce one vector for the feedforward neural network layer.

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)𝑊 𝑂

where
ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊 𝑄

𝑖 , 𝐾𝑊 𝐾
𝑖 , 𝑉 𝑊 𝑉

𝑖 )

We will explore Bidirectional Encoder Representations from Transformers (BERT), 
the state-of-the-art language model. It used transformers, which utilise the atten-
tions to build robust models that can be fine-tuned to different tasks or trained 
on more features. Figure 2.11 shows a graphical representation of BERT, trans-
formers and attentions.

BERT [49] is a new open-source model released by Google. It has pre-trained 
models that are trained on textbooks and Wikipedia.

The BERT can be fine-tuned to do NLP tasks such as NER. It also can be trained 
on specific domains like BioBERT [50] which trained on PubMed and PMC ar-
ticles and SciBERT [51] that is trained on papers from the corpus of semantic-
scholar.org .

The power of BERT is first, that it has multiple head attentions. Twelve atten-
tion heads in BERT base and 16 in BERT large. Second, it applies bidirectional 
training, which learns contextual relations of a text sequence from all surround-
ing words (left to right and right to left) at the same time. This overcomes the 
traditional way of combining two directional left-to-right and right-to-left train-
ing.

BERT can be used as a feature-based or fine-tuning model. Input features are 
extracted from word embedding. A word embedding is a natural language mod-
elling technique that turns a word into a vector of continuous values that repre-
sent a lot of meaning/semantic information of the word. The vector could have 
length of 256, 512 or 1024. Instead of starting a model with initial embedding, 



CHAPTER 2. BACKGROUND 43

Encoder

encoder#0

encoder#1

encoder#5

decoder#0

decoder#1

decoder#5

Encoders Decoders
Attention
vectors
K and V

linear 

Transformer Transformer Transformer

Transformer Transformer Transformer

Token1 Token2 Token N

Embedding 1 Embedding 2 Embedding N

Token1 Token2 Token N

Transformer

BERT

self attention

feedforward
neural network

add + normalise

add + normalise

feedforward
neural network

feedforward
neural network

Token Embeddings 

Segment Embeddings

Position Embeddings 

wordpiece

softmax

Figure 2.11. BERT uses a bidirectional Transformer. BERT input representation is the tokens by 
wordpiece and the input embeddings are the sum of the token embeddings, the segmentation 

embeddings and the position embeddings. Transformer is an encoder decoder that uses attentions. 
BERT uses only the encoder mechanism.
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Figure 2.12. Text mining aims to convert unstructured text to structured data. The text mining pipeline 
typically contains information retrieval, information extraction, semantic metadata annotation followed 

by knowledge discovery. Image is taken from McNaught [52].

the word embeddings resulted from pre-trained models can be used as input fea-
tures for other models.

A word is directly mapped to its word or subword as it appears in the BERT vo-
cabulary words (wordpiece embeddings). If the word is absent from the vocab-
ulary file, it is divided into pieces that are available. Any corpus can be repre-
sented by around 30k subword vocab. BERT vector is a context sensitive; the 
word order, the position and the neighbour contribute to the attention head ma-
trices.

Fine-tuning is using the trained models as a ground framework of a new purpose-
specific model. For example, with a classification layer that predicts the NER
label, BERT can be trained to recognise the type of entities mentioned in a se-
quence of a text.

2.5 Text mining

Text mining or text data mining is the process of finding and extracting information 
from text [53]. Automating this process aims at handling the rapid development of 
domains that deliver a huge amount of data containing valuable information. Without 
these automated techniques, it would be impossible to follow, investigate and draw 
insights from the data. The key difference between data processing systems and lan-
guage processing systems is the use of language-related knowledge [54, chap. 1].

Manning and Schütze [54, chap. 1] states six specific levels of language behaviour: 
The first one is phonetics and phonology, where sounds and their phonemes are the 
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units of processing. The second is morphology where morphemes and other linguis-
tic units, such as roots, affixes and parts of speech are identified and analysed. The 
third is the syntax, which relates to the order of the words and how they are combined 
to form the structure. The fourth is semantics, where the meanings of words are stud-
ied. The fifth is pragmatics, which addresses how the meaning is related to the goals 
and intentions of the writer/speaker. Finally, there is the discourse, which interprets 
the meaning of a whole paragraph or document.

2.5.1 Information retrieval

Text mining is divided into three phases: information retrieval, information extrac-
tion and data mining [55, chap. 2]. Information retrieval retrieves the text/audio from 
resources based on the terms of the query, while the information extraction is more 
precise and considers the syntax, and sometimes semantics, and the highest two lan-
guage behaviours in the extraction process. In terms of information retrieval, there 
are a number of free accessible repositories for life science publications, for example:

• PubMed4 includes more than 26 million biomedical literature abstracts with 
links to full text. The links may include references to full-text content from PubMed 
Central5 which contains 4 million free access articles, or a reference to where 
the paper is published in life science journals. The articles are identified by a 
PubMed reference number (PMID) and PubMed Central reference number (PM-
CID). PMID identifies the abstracts in PubMed, while PMCID identifies the full 
text in PubMed Central. The articles can be searched by multiple criteria such as 
MeSH terms.

• Europe PMC6 (EPMC) contains 31.4 million abstracts and 3.8 million full texts. 
It provides searches over the abstract and full text at the same time. The EPMC 
offers search services through their website as well as a programming guide-
line for two kinds of web services Representational State Transfer (RESTful) 
and Simple Object Access Protocol (SOAP). The search criteria can be key-
words searched at specific article parts (e.g. abstract, methods, results or supple-
mentary data) and the search query can retrieve the articles that contain DOI or 
data mention of different databases (e.g. OMIM, Pfam or Ensembl) or different 
ontologies (GO or ChEBI). The search results can be sorted by “times cited”, 
which displays the highly cited publications first. The retrieved articles are an-
notated further by biomedical terms, GO terms and accession numbers. See Fig-

4http://www.ncbi.nlm.nih.gov/pubmed
5http://www.ncbi.nlm.nih.gov/pmc
6http://europepmc.org/
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Figure 2.13. The articles in EPMC are annotated by features shown on the right (e.g. accession 
numbers, GO, diseases, etc.). The annotated terms are linked to their definition in corresponding 

databases or ontologies.

Figure 2.14. The definition of Gene 0.4 protein (Gp0.4) in UniProtKB. It is linked to the annotated 
accession number P03776 in Figure 2.13.

ures 2.13 and 2.14 that show an example of an annotated article that is linked to 
a related database. As an example of using EPMC RESTful API services, Bous-
field et al. [56] studied the reusage of data in scientific articles and patents by 
tracking the data mention and whether it was cited by other publications.

2.5.2 Information extraction

For information extraction (IE), pre-processing text is usually performed before ap-
plying extraction techniques. It includes lexical level steps, such as tokenization, where 
text is split into tokens (word, space, punctuation, etc.), sentence splitting where the 
text is divided into sentences, stemming which returns the word to its root and part of 
speech tagging where the word is assigned to its classification as verb, noun, adjec-
tive or preposition. Also, it may include steps at the syntactic level such as chunking 
and dependency parsing. This report will explore three IE categories: Named Entity 
Recognition (NER), Entity linking (EL) and Relation extraction (RE).
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Named-entity recognition

NER is the process of identifying a group of terms that belong to the same cluster. 
Krauthammer and Nenadic [57] stated three steps of NER: term recognition, where 
the terms are identified, term classification where the identified terms are linked to 
their class, and term mapping where these terms are normalised to unique identi-
fiers. The third steps, term mapping, is considered as an important task in IE that also 
known as entity linking.

Entity linking

Entity linking, also known as entity normalisation in biomedical literature, simply 
aims to find a corresponding concept defined in a knowledge base (KB) or an ontol-
ogy and link it to the annotated entities. There are three main challenges faced while 
doing this task, absence, if there is no corresponding concept, ambiguity, if the same 
entity linked by different concepts, variation, if the same concept linked by different 
entity mentions [58].

Relation extraction

Relation extraction (RE) is an important task in information extraction (IE). It aims to 
extract and classify relational between identified entity mentions in plain text. Gener-
ally speaking, relation extraction modules can be classified into two categories, rule-
based approaches relying on predefined patterns and machine learning methods based 
on well-designed features.

Most relation extraction systems focus on extracting binary relations [59]. Examples 
of dataset are SemEval-2010 Task 8 [60], KBP37 [61] and TACRED [62].

SemEval-2010 Task 8 [60] containing 10,717 annotated examples covering nine re-
lations: cause-effect, instrument-Agency, product-Producer, content-container, entity-
Origin, entity-Destination, component-Whole, member-Collection and Communication-
Topic. They added other relation to express the relations that are apart from the nine 
explicitly annotated relations. Examples are: 

• sentence: “He had chest pains and <e1>headaches</e1> from <e2>mold</e2> 
in the bedrooms.” has the relation Cause-Effect(e2,e1).

• sentence: “<e1>People</e1> have been moving back into <e2>downtown</e2>.”
has the relation Entity-Destination(e1,e2).
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• Sentence: “The <e2>farmer</e2> grows <e1>apples</e1>” has the relation 
Product-Producer(e2,e1).

There are few dataset handles the relations between entities across sentences (i.e. two 
entities are mentioned in two different sentences) [63]. Examples of dataset that ad-
dress the relations between entities at the sentence level and the document level are 
BioRED [64], DocOIE [65] and DocRED [66].

Information extraction approaches:

• Dictionary-based:

The dictionary has a list of all possible terms that need to be annotated in the 
text. The advantage of this approach is its ease, which requires only a match 
between the text terms and the dictionary. The disadvantage is the creation of 
such a dictionary, especially with the evolving fields that generate new terms. It 
also increases the level of ambiguity since the matching can be with more than 
one entry in the dictionary, e.g. “Bad” can be linked to behaviour or to a pro-
tein name. Linnaeus [67] is a dictionary-based recogniser that identifies species 
names with an F-score of 95%. It can be configured to adapt other dictionaries 
from different domain.

Dictionary lookup approach is widely used to enhance the entity linking [68, 
58]. A dictionary contains term(s) and a mapping value, e.g. normalising gene 
name, reducing many synonyms and phrases representing the same concept to a 
single identifier for that gene. Cohen [69] built a dictionary based gene and pro-
tein NER from online genomics resources and achieved a level of performance 
comparable to state-of-the-art systems that require supervised learning and man-
ual dictionary creation.

For relation extraction, the dictionaries can be used to identify the relations if 
their indicators are fixed and can be easily enumerated, which is not commonly 
possible. For example, Zhou et al. [70] have a relation trigger words identifica-
tion dictionary for identifying protein-protein interactions (PPIs) because the 
words describing interactions between proteins are more likely fixed. They have 
an example of a sentence “Leukotriene B4 stimulates c-fos and c-jun gene tran-
scription and AP-1 binding activity in human monocytes” that contains three 
PPIs as:

– Stimulate (leukotriene B4, c-fos),

– Stimulate (leukotriene B4, c-jun) and
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– Stimulate (leukotriene B4, AP-1).

However, they need to use rules to extract biomolecular events, such as positive 
regulation and transportation, because the trigger words for these relations can-
not be handled by only dictionaries. 

• Rule-based:

This approach uses lexical and syntactical features in rules to match the terms, 
e.g. the task that returns the name of cities that followed by the word “univer-
sity” to annotate potential names of universities. The advantage of this approach 
is that it can be used as a second step to filter the results created by dictionary 
based systems and give more flexibility in matching the terms. The disadvantage 
is it should be manually identified and created.

BioNerDS [71] is a named entity recognition system for bioinformatics software 
and databases. It has an F-score at mention level of 63-91% and 63-78% at doc-
ument level. The mention level F-score is calculated for all the mentions over 
the corpus. The document level F-score is calculated for the mentions over the 
document. It has a case-sensitive dictionary with 8,214 entries collected from 
online resources to annotate known names and 17 rules to recognise unknown 
names. The result is filtered by a machine-learning classifier to eliminate the 
terms incorrectly annotated as resource names.

Whatizit was initially developed by Rebholz-Schuhmann et al. [72] and identi-
fied names that refer to biomedical terms and linked them to their definition in 
a public database. Kafkas et al. [73] expanded it to include identification of ac-
cession numbers in three public databases. Kafkas et al. [35] improved the two 
previous works and obtain an F-score 77%-96% in a total of ten databases. The 
patterns that are used can be seen in Figure 2.15. The service is now integrated 
with the EPMC search service and the identified terms or accession numbers are 
tagged by XML then wrapped to HTML to facilitate navigation to their defini-
tion in the public access database.

For entity linking, most of the biomedical entity normalisation studies in the 
last decades use the morphological information to normalise the entities [74]. 
The state-of-art rule-based system proposed by D’Souza and Ng [75] on two 
datasets, ShARe/CLEF eHealth Challenge corpus [76] and NCBI disease cor-
pus [77]. It achieved F-score 90.75% and 84.65% on the two datasets. It defined 
ten kinds of rules at different priority levels, such as abbreviation expansion, to 
measure morphological similarities between disorder mentions and concepts in 
two Knowledge base: SNOMED-CT resource of the UMLS Metathesaurus [78] 
and MEDIC lexicon [79].
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Figure 2.15. Data accession reference patterns and contextual clues used for ten databases used to 
extract the accession numbers. Image is taken from Kafkas et al. [35]

For relation extractions, pattern rules are constructed from syntactic and seman-
tic features in text. Recent work involved larger corpora for extracting better pat-
terns [63]. 

PATTY system [80] is based on mining algorithm that computes the n-gram 
combinations with large co-occurrence support. It processed two different cor-
pora: the New York Times archive and the English edition of Wikipedia and 
achieved an accuracy between 75%-84.7%. It produced a large resource of re-
lational patterns that are arranged in a semantically meaningful taxonomy, along 
with entity-pair instances. Examples of extracted patterns are:

– <person> criticized by <organization> for the relation critizedByMedia

– <person> successfully sued <person> for the relation suedBy

– <musician> PRP idol <musician> for the relation hasMusicalIdol

– <musician> wrote hits for <musician> for the relation wroteHitsFor

RelEx [81] is a rule-based biomedical relationship extraction system. It extracted 
150,000 relations between genes and proteins from set of one million MED-
LINE abstracts with an F-score of 78%. It used the dependency parse trees in 
comination with noun-phrase chunk that contains entities to build three extrac-
tion rules:
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– effector-relation-effectee (‘A activates B’)

– relation-of-effectee-by-effector (‘Activation of A by B’)

– relation-between-effector-and-effectee (‘Interaction between A and B’).

• Machine learning:

In machine learning (ML) techniques, the patterns are extracted by training mod-
els on pre-processed data representation. This approach better result are achieved 
with less human efforts.

There are many NER systems that have been implemented using ML. BERT 
model [49] can be fine-tuned for NER task. It achieved the state-of-the-art per-
formance, F-score of 94.45%, on the English version of the standard CoNLL-
2003 Named Entity Recognition dataset [82]. CoNLL-2003 dataset consists 
of 1393 English news articles and is annotated with four entity types: location 
(LOC), organizations (ORG), person (PER) and Miscellaneous (MISC).

The current state-of-the-art in entity linking is EntQA[83]. They followed the 
trend of formulating language tasks as QA problems. They proposed inverted 
open-domain QA by performing entity linking before entity extraction. Given a 
passage, the retrieval model retrieves candidate entities that might be mentioned 
in the passage (questions), by studying the description of the passage, then the 
reader model predict potentially mentions (answers). They only used standard 
pre-trained Transformers for initialisation and is directly fine-tuned on AIDA 
dataset. EntQA achieved strong performance on the GERBIL benchmarking 
platform [84] with an F1 score of 85.8% (2.1 absolute improvement) on the test 
portion of the AIDA-CoNLL dataset [85].

In the biomedical text, the state-of-the-art is achieved by Ji et al. [86] which in-
creased the accuracy of biomedical entity normalisation by 1.17%. They com-
pare the performance of three transformers models (BERT [49], bioBERT [50] 
and ClinicalBERTB [87]) on three different datasets (ShARe/CLEF [76], NCBI 
[77] and TAC2017ADR [88]) and achieved the best F-score as 91.10% 89.06% 
93.22%, respectively.

For relation extraction, Figure 2.16 shows how the performance of the state of 
art relation extractions models on SemEval-2010 Task 8 dataset are increased 
especially after using the neural networks in extracting the relations in year 2013. 
Examples of models that achieved the state-of-the-art by Zhou et al. [89] and 
Soares et al. [90]. Zhou et al. [89] achieved state-of-the-art in relation extrac-
tion from a plain text without the need to get high-level features from lexical re-
sources such as WordNet or NLP systems like dependency parser and named 
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Figure 2.16. The F-score of the state-of-the-art relation extraction models increased over years on 
SemEval- 2010 Task 8 dataset. Now in the image is 2020 and image is taken from Han et al. [63].

entity recognizers (NER). They used Att-BiLSTM, on SemEval-2010 Task 8 
dataset, to capture the most important semantic information in a sentence and 
achieved F-score of 84%. Soares et al. [90] introduced another state-of-the-
art RE system using BERT. The learning method based on matching the blanks 
(MTB) that learns relation representations from entity resolution annotations 
without any further tuning for relation extraction. It achieved F-score of 89.5% 
on SemEval-2010 Task 8 dataset. Cohen et al. [91] reported the current state-
of-the-art, on SemEval-2010 Task 8 dataset, which achieved 91.9% using BERT 
model. They used supervised span-prediction based system, similar to question 
answering (QA), for relation classification (RC). RC task is classifying the rela-
tion of two given entities into one of the predefined relations, or to a null “no-
relation” class if there is no match to one of the relations. It achieved signifi-
cantly better then the standard classification based that uses a single embedding 
to represent the relation between a pair of entities. 

Example of text mining systems

GATE [92] is an open source framework that provides a graphical interface as 
well as Java plug-ins for text mining techniques. It includes embedded solu-
tions for text pre-processing, information extraction and evaluation. For pre-
processing and simple name entity recognition (for known person, places and 
time), it includes ANNIE. The ANNIE pipeline pre-processes the text by the 
tokenizer, sentence splitter and POS Tagger. It uses a gazetteer as a dictionary 
of domain terms and uses semantic rules in the ANNIE transducer to match 
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pre-processed text with the gazetteer terms to identify target entities. Ortho-
graphic coreference (OrthoMatcher) does not identify new entities, but it assigns 
a classification to a proper name that is annotated with an unknown type. GATE 
reuses the existing solution instead of implementing a new one. E.g. for biomed-
ical NER, they integrated ABNER [93] and GENIA tagger [94]. Jape rules in 
GATE are one of the important features that facilitate creating and annotating 
rules with Java programming.

GENIA project7 annotated GENIA Corpus at different levels. GENIA Corpus 
includes 2000 MEDLINE abstracts that were retrieved by the MeSH terms “hu-
man”, “blood cells”, and “transcription factors”. The annotation format is XML 
and the annotations can be found added for Part-of-speech, molecular biology 
terms such as proteins, genes and cell types taking into account the coreference 
annotation, the protein-protein interactions or gene regulatory relations, bio-
events that describe the changes and molecular biology processes that happen 
to annotated biomedical terms.

2.5.3 Discourse analysis

Discourse is defined as the “use of spoken or written language in a social context” 
[95].

Discourse analysis was developed in the 1970s and it differs from common language 
analysis that isolates the text from surrounding conditions by concerning itself “with 
the use of language in a running discourse, continued over a sequence of sentences, 
and involving the interaction of speaker (or writer) and auditor (or reader) in a spe-
cific situational context, and within a framework of social and cultural conventions.” 
[96]

The analysis of discourse involves interpreting the meaning behind its units (docu-
ment, paragraph, sentences, phrases, clauses or words). The importance of discourse, 
as the top of NLP processes, is that it enables problems to be solved that underlying 
techniques cannot solve. Discourse has four structures that differ in complexity, cov-
erage and symmetry [97]. Complexity refers to the level of extraction that is required 
from the text - are segments enough, do we need to extract chunks or do we need to 
use a parser? Coverage is how much the extracted discourse spans the text. Symmetry 
or asymmetry refers to whether the discourse units have the same level of importance 
or not.

7http://www.geniaproject.org/
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• Topic

Topic structure defines the main entities in a text and how they have been de-
scribed. It is commonly seen in textbooks and encyclopaedias where one subject 
can be identified, and then subsequently related information can be linked to it 
[97]. It is used to explain a topic or an area of interest e.g. if a book talks about 
computer hardware, the topic structure then will include the definition, a list of 
these hardware components with their functions, and whether they have syn-
onyms. Topic structure partly covers the text with segments that contain lexicon 
related to the topic. This can be clearly identified if the same word is repeated 
in the text or by looking for semantically related words. The semantic-related 
words can be hypernyms (more general terms), hyponyms (more specific terms), 
synonyms (terms with a similar sense), and meronyms (terms that refer to a part 
of a given whole).

• Functions

Functions structure defines the elements by the functions and roles they play in 
the text [97]. One of the significant functional discourse examples is extracting 
the functions of text in scientific papers. In this case, the sentences or clauses 
are classified as zones, where each zone represents a high-level rhetorical status 
such as background, hypothesis, observation, conclusion, etc. As topical struc-
tures, the functional segments partially cover the text. The lexicon can be a list 
of cues with possible synonyms, e.g. to segment the results section, the words 
that are looked for are result, finds, conclude, etc. Functional structure is helpful 
to determine which sentence or paragraph belongs to which section especially in 
the absence of xml tags that are utilised by some journals.

Functional discourse can also be beneficial for defining the advantage and disad-
vantage of using proposed methodologies, or in assessing the quality of writing 
where a piece of work is tested regarding specific requirements, such as a thesis 
statement in the introduction part of a document [98]. Another application is the 
comparison between an author’s own work and the methods of others included 
in the publication [99], for example 20 online journal articles annotated manu-
ally. The annotation schema are presented as zones that are grouped into three. 
The first group includes the main classes: background, problem-setting, and per-
sonal work. The personal work, which refers to the authors work, contains meth-
ods, results, insight, implications and miscellaneous. The second group is the 
comparison between the author’s work and other work: connections and differ-
ences. The last group includes the outline, which includes the summary of the 
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work presented in the article.

The ART Corpus [100] contains 225 physical chemistry and biochemistry ar-
ticles that are annotated by the functionality of each sentence (e.g. motivation, 
goal, method, experiment, observation, conclusion, hypothesis, etc.).

• Event

Event discourse, or eventualities, covers the description of events that happen to 
an item and cause a change over time and/or place [97]. It is commonly used in 
narrative and reporting news and accidents identifying the events that can make 
a change in the item [101] e.g. ”x arrested”, arrested is an event where the item 
x is changed by. The order of events is important and for that the identification 
of temporal relations in an event structure is crucial [102].

Chambers and Jurafsky [102] demonstrated that the event structure can be de-
scribed with templates that represent that event type and semantic roles of sur-
rounding components. They suggested a system that learned to build and fill a 
template for a domain that has no templates, by learning from a domain that has. 
They suggested three steps in order to build such a template schema. The first 
step involves identifying event types and event words e.g. the event type attack
has event words like kill, shoot down, down, etc. The event words can be in the 
form of a verb or noun. To know if two words belong to the same group, the co-
sine similarity function is used to identify the distance between them. The sec-
ond step is retrieving the documents that contain such kinds of events and infer 
the semantic roles that surround the events. The third step is to fill the created 
templates with information extraction tools.

There are a number of corpora that are event annotated based on domain. For 
example, ACE 2005 [103] contains news articles that are annotated with 33 dif-
ferent event types. In addition, there are guidelines of how to annotate events, 
e.g. for timely events, there is a guideline written by Saurı et al. [104].

Others examine the meta-knowledge annotation schemas (see Figure 2.17). In 
biomedical texts, there are some works in events like in bio-events which can 
be described by six meta-knowledge categories. Nawaz et al. [105] focused on 
two aspects of meta-knowledge; the knowledge type that includes the functional 
roles such as fact, observation, investigation, introduction, methods, etc. and on 
certainty levels that handle how much the mentioned information is certain (L1 
for neutral opinion, L2 for high confidence and L3 for low confidence) e.g. the 
word “may” indicates a low level of certainty. They identified the changes of 
knowledge type inside a manuscript’s sections e.g. the mention of a method is 
sometimes followed by observation, which might be followed by analysis.
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Figure 2.17. Meta-knowledge annotation scheme for bio-event. Image is taken from Nawaz et al. 
[105].

Table 2.1. RST relations examples from [106].

Relation Name Nucleus Satellite
Background text whose understanding is being 

facilitated
text for facilitating understanding

Elaboration basic information additional information
Preparation text to be presented text which prepares the reader to 

expect and interpret the text to be 
presented.

Condition action or situation whose occur-
rence results from the occurrence 
of the conditioning situation

conditioning situation

Purpose an intended situation the intent behind the situation
Restatement a situation a re-expression of the situation
Solutionhood a situation or method supporting 

full or partial satisfaction of the 
need

a question, request, problem, or 
other expressed need

Summary text a short summary of that text

• Relational Discourse

Also known as coherence relations discourse or rhetorical relations discourse. 
There are a number of discourse schemas in this area and this report will pro-
vide three of them.

– Rhetorical Structure Theory RST [108] maintains the relationship be-
tween two text spans. It fully analyses the text to build a tree of units that 
are linked by relations. It is asymmetry discourse that gives some units 
(nuclei) more weight than other units (satellites). This is because the nuclei 
contain the main information and satellites contain additional information. 
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Figure 2.18. The abstract extracted from Scientific American magazine “Lactose and Lactase. Lactose 
is milk sugar, the enzyme lactase breaks it down. For want of lactase most adults cannot digest milk. In 

populations that drink milk the adults have more lactase, perhaps through natural selection.” is 
analysed by RST. The first sentence is a preparation for the remaining sentences. The second sentence 

is a definition of the two terms which in turn play a role as a background for the remaining two 
sentences. Image is taken from Mann and Taboada [106].

Figure 2.19. The parse tree of sentence “Although preliminary findings were reported more than a year 
ago, the latest results appear in today’s New England Journal of Medicine, a forum likely to bring new 

attention to the problem.” is shown on the top. The explicit connective although gives a contrast 
relation between the two arguments highlighted by yellow and blue. Image is taken from Pennsylvania 

[107].

It is important e.g. in text summarisation and generation. The relations that 
are defined under this type of discourse differ slightly between the available 
annotation guidelines, although they share the same broad categories. Ex-
amples of relations used are elaboration, preparation, condition, etc. Table 
2.1 shows some examples of RST relations. Figure 2.18 shows a paragraph 
discoursed by RST.

– Penn Discourse TreeBank PDTB [109] contains open-domain articles 
collected from the Wall Street Journal. The PDTB corpus maintains dis-
course relations between two arguments that are partially covered the text 
and each argument has the same weight of importance. The relations can 
be explicit and implicit based on the presence of the discourse connectives. 
The relation could be temporal, comparison, causal or expansion. Figure 
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Table 2.2. Contingency Table

Correct (C) Not Correct (NC)
Retrieved (R) True Positive (TP) False Positive (FP)
Not Retrieved (NR) False Negative (FN) True Negative (TN)

2.19 shows a sentence discoursed by PDTB.

– Biomedical Discourse Relation Bank
BioRDB [110] follows the PDTB annotation schema but is used in biomed-
ical text. The Bio-DRB corpus contains 24 biomedical articles from the 
GENIA corpus. It is manually annotated by explicit and implicit discourse 
relations with 80% inter-annotator agreement. The BioRDB team devel-
oped a machine-learning classifier to identify the explicit connectives with 
a 0.89 F score. The interesting conclusion they discovered was that training 
the classifier in biomedical text and testing it in biomedical text produced 
a better result than when training it on a general domain corpus and then 
testing it on a biomedical text. Another interesting result is that more than 
50% of the annotated temporal relations occur in the Methods and Materi-
als section, which means that temporal relations deserve further attention 
and study.

2.6 Evaluation

2.6.1 Precision, recall, F-score

Rijsbergen [111] stated that three important questions should be addressed at the time 
of evaluation: why do we need to evaluate?, what are the things that we are going to 
evaluate?, and how we are going to evaluate them? The evaluation process is impor-
tant for measuring the benefits or cost caused by a proposed solution, or to know if it 
performs better or worse than a standard. In order to do such an evaluation, certain 
measures should be calculated and analysed.

The two most frequent measures for information retrieval and extraction are preci-
sion and recall Rijsbergen [111, chap. 7]. Their elements can be defined by the con-
tingency table.

The correct column (C) defines all relevant items that the solution should address 
that include true positive (TP) and false negative (FN). TP is the correct retrieved 
items. FN is the correct items that are not retrieved by the system or are in another 
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way incorrectly missing items. The incorrect column (NC) defines the things that 
are not relevant and should not be considered as a part of the solution - false positive 
(FP) and true negative (TN). However, according to the system behaviour, it can re-
trieve FP; the items that are not correct or relevant to the answer, or it can correctly 
avoid extracting non-relevant answers and that is called TN. The retrieve (R) indicates 
the real system output and shows all the terms retrieved (TP and FP). The row (NR) 
shows the items that are not retrieved (FN and TN). The system result should be ide-
ally compared to a “gold standard” that contains the correct terms. Precision declares 
the percentage of the retrieved items that are correct and recall declares the percent-
age of correct items that are retrieved.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
𝑅

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑃
𝐶

There is a trade-off between precision and recall, e.g. to increase the recall, some of 
the retrieved items may be incorrect which will affect precision. This introduces a 
combined measure called the F-measure, which is a weighted harmonic which means 
that it gives weight to the most important measures [112].

𝐹 = 1
𝛼 1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + (1 − 𝛼) 1
𝑅𝑒𝑐𝑎𝑙𝑙

= (𝛽2 + 1)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝛽2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

where
𝛽2 = 𝛼

1 − 𝛼
Values of 𝛽 < 1 emphasize precision, while values of 𝛽 > 1 emphasize recall. F 
measure is the one which gives equivalent importance to both precision and recall 
where 𝛼 = 0.5 i.e. 𝛽 = 1

𝐹 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

2.7 Workflow representation, exploration and saving

There are three ways to save, represent and explore the data events in workflows:

• BRAT format

Brat format [113] provides a medium for storing, presenting and processing the 
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Figure 2.20. An example of a text file annotated with BRAT and viewed in user-interface. Image is 
taken from Stenetorp et al. [113].

annotation files in order to explore them and construct further information. The 
annotation file includes the annotation of entities, relations, normalisation and 
events. An example of BRAT annotation is in Figure 2.20 .

The files in BRAT annotation format can be viewed online through the brat rapid 
annotation tool8. The colourful user interface enables a viewing and editing 
platform for the annotations. This service can be installed in local devices as 
well.

There are configuration files that define the annotation structure and format. 
The annotation structure includes the defined names of all annotation types, the 
structure of the annotation types and any restrictions. The links to other websites 
can be defined in case an entity is going to be linked to its definition or normal-
isation. The user can define the viewing format for each defined annotation type 
as well.

The annotation file is stored with the same folder and same name as the original 
text file but with the .ann suffix. The file contains a line for each annotation. It 
must start with an ID of a single upper-case character identifying the annotation 
type and a number. The characters are: T for entities annotation, R for relations, 
N for normalisation and E for events. It is followed by the defined name of the 
annotation type (that previously defined and stored in a configuration file).

The annotation files can be processed with programming languages such as Java 
and Python. Example of Java library is https://github.com/yfpeng/pengyifan-
brat.

• Comma-Separated Values (CSV)

CSV are widely used and easily imported and processed by multiple environ-
ments, including programming languages. There are different format for how the 
data could be stored and interpreted. There could be an optional header line in 

8http://brat.nlplab.org

http://brat.nlplab.org
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the first line of the file with the same format as normal record lines. The records 
could be double quoted. The data can be viewed as tables which makes for eas-
ier capturing and understanding of the information.

• Directed network graph

A directed network graph has nodes that are connected by arrows that show the 
flow direction between the nodes. Gephi [114] is software to represent graphs. 
It accepted the information of the nodes and edges in spreadsheets and converts 
them to graphs. The first spreadsheet contains the id of nodes’ labels that are 
going to be represented in the graph. The second spreadsheet defines the re-
lations between the nodes. Each line contains two ids from the first file to ex-
press a from/to relation between these two nodes. Additional information can 
be added to describe the name or the weight of the relationship. Gephi provides 
an interactive environment to get insights from the graphs. It gives the ability of 
formatting, partitioning, and calculating the value of some statistical matrices.

2.8 Related work in the literature

Eales et al. [15] defined the best practice methods of the phylogenetic field. They 
first identified a method model for molecular phylogenetics. This model contains 
four main steps: sequence alignment; tree inference; statistical testing and data re-
sampling; and finally tree visualisation and annotation. Then, from a journals’ ar-
ticles that implemented phylogenetic methods, they extracted terms, relating to the 
above mentioned four stages, to model the individual methods, or phylogenetic pro-
tocols that were used. The extraction process mainly depends on a controlled vocab-
ulary, populated manually by important phylogenetic terms and software names. The 
matching between extracted results and corresponding occurrence in the articles gave 
an F-score of 78.7%. They found that the total of the most used protocols was 10 pro-
tocols out of 847 uniquely extracted protocols. They studied the usage of the most 
used protocols by sub-discipline, authors, and time span. Figure 2.21 shows the con-
nected model and terms extracted from the text in order to form the experiments used 
by mapping to a model protocol.

Duck et al. [115] extracted the patterns of software and databases used in bioinfor-
matics literature. They built a network with directed edges between databases and 
software and another one that linked software only. The dataset was a method sec-
tion of PubMed articles that contained the MeSH term “bioinformatics” and between 
the years 2004-2013. They extracted the named database and software by using their 
published named entity recognition tool bioNerDS [71]. Then they filtered the results 
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to include only resources that occurred more than once to focus on commonly used 
resources. The patterns formed were based on the co-occurrence in the literature, the 
co-occurrence of the database and software, and the co-occurrence of the database. 
The binominal test was used to include only links that were above confidence levels 
to ensure only links that were common were included. The software links reported 
that common tasks (with % confidence level) were present in the sequence search fol-
lowed by sequence alignment. For database-software links, the GO database was the 
most commonly used. This is interesting as it was used as a ‘data sink’ where soft-
ware deposit the data in instead of retrieving it. The automatic extraction was com-
pared to the manually created steps by the previously mentioned study [15] and it was 
found that the resources extracted were compatible with the manual protocol (see Fig-
ure 2.22). They extracted the patterns that report the commonly used resources in the 
literature, which gave a view on what is currently used and the new resources that are 
turning out to be popular. Individual methods were not extracted and the order of ex-
tracting depended only on the occurrence of the text. Still, extraction of specific data 
and how they are connected to other method components for a given research article 
is not addressed in previous work.

Additionally, Kovačević et al. [116] extracted the Automatic Term Recognition (ATR) 
methodologies. They first analysed the text to annotate the statements that involved a 
mention of methodology. Then the sentences were segmented and mapped to one of 
the four functional categories (task, method, implementation and resource/features). 
The segments were detected and classified automatically using a Conditional Ran-
dom Fields (CRF) model for each category. Their approach produced a good perfor-
mance; F-scores at document level were 72% for Tasks, 60% for Method mentions, 
74% for the Resources/Features and 78% for the Implementation mentions. The in-
teresting findings were that the most mentioned methods in ATR were part-of-speech 
tagging, morphological analysis and syntactic parsing, while the most common tasks 
were term recognition, classification, pattern matching and similarity calculation.

Kappeler et al. [117] extracted methods being provided for each paper from biomed-
ical science research. The domain was scoped to involve empirical procedures that 
revealed protein interactions. Pattern matching of lexical clues was the basis of the 
procedure adopted in order to identify empirical methods with the assistance of sta-
tistical methods. The results showed that 67.3% were composed of the top five most 
commonly used methods. Thus, for manual rules design, they concentrated on these 
five methods. They were able to identify the experimental methods of protein interac-
tion in publications with an F-score of 45.9%.

Recently there are few detests that handles scientific method entities and relations. 
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Figure 2.21. Extracting phylogenetic models that correspond to a protocol represented as a sequence 
from 1 to 4 from a text mentioned in (Amari paper). Image is taken from Eales et al. [15].

SienceIE [119] is a corpus for the SEMEval 2017 task 10. It contains 500 scientific 
articles of the Computer Science, Material Sciences and Physics domains. It includes 
three types of entities (called keyphrases): Tasks, Methods, and Materials and two 
relation types: hyponym-of and synonym-of. Augenstein et al. [119] and Luan et al. 
[120] introduced the state-of-the-art systems that extract entities and relations from 
this dataset.

SciERC [121] extended previous dataset, SienceIE, to include 500 annotated scien-
tific abstracts, from AI domain, containing annotations for scientific entities, their re-
lations, and coreference information between mentions. They defined six types for 
annotating scientific entities (Task, Method, Metric, Material, Other-ScientificTerm 
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Figure 2.22. Pattern of software and database usage within phylogenetics papers extracted by [115]. It 
was consistent with the model provided by [15] in Figure 2.21. Image is taken from Duck et al. [115].

Figure 2.23. An example of SciREX annotation. Image is taken from Jain et al. [118].
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Figure 2.24. An example of SciRes annotation. Image is taken from Zhao et al. [16].

and Generic) and seven relation types (Compare, Part-of, Conjunction, Evaluate-for, 
Feature-of, Used-for, HyponymOf). They developed SciIE, BiLSTM model, to ex-
tract entities, relations and coreference resolution across sentences and achieved F-
score of 64.2%, 39.3% and 48.2%, respectively.

SciREX [118] extended the previous dataset, SciERC, to include 438 fully annotated 
documents from ML articles available in Papers with Code website. It contains anno-
tations for entity mentions (Dataset, Metric, Task, Method), coreferences, salient en-
tities, and N-ary relation over the document (between clustered salient entities). They 
introduced an end-to-end neural model, using BERT-BiLSTM-CRF, to perform doc-
ument level IE task. The model to outperform existing state-of-the-art models on sub-
tasks and achieved F-score between 67%-27% for the end-to-end tasks. An example 
of a relation with extracted entities: (Dataset: SQuAD, Metric: EM, Method: BiDAF, 
Task:machine comprehension). Figure 2.23 shows an example of the annotation. 

SciRes [16] is a dataset of 3,088 manually annotated resource contexts, i.e. a sequence 
of words that appear around a particular citation. They used full articles from three 
sources: the ACL Anthology Reference Corpus (ARC), a corpus of scientific publi-
cations about computational linguistics; the NeurlPS Proceedings (NeurlPS), a cor-
pus of conference proceedings about neural information; and the PubMed, an archive 
of biomedical and life sciences journal literature. They have focused on the resource 
citation hyperlinks mentioned in the scientific articles to extract the methods’ com-
ponents as (online-resource citation, resource role and resource function). They de-
fined three general role types with 9 subtypes: Material (Data), Method (Tool, Code, 
Algorithm) and Supplement (Document, Website, Paper, License, Media). The func-
tion types are: Use, Produce, Introduce, Extend, Compare, and Other. Figure 2.24
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shows an example of the annotation. They implemented a BERT-based classifier, 
SciResCLF, to classify the roles and functions of a resource based on the word se-
quences of resource contexts. Then SciResREC, another BERT-Based model, uses 
these classification labels as features for predicting the resource hyperlinks. SciResCLF 
classifier achieved an F-score between 90%-35% and SciResREC achieved an accu-
racy of 50% in predicting resources. 

2.9 Conclusion

We have looked at different topics to build a knowledge of the available methodolo-
gies that could help in answering our research questions.

We investigated the NER techniques to help in annotating the terms that represent 
the key aspects of the work conducted in the papers. We also searched for available 
knowledge bases to normalise the annotated concepts to their classes. The possible 
ways of presenting and storing this information for further search and processing are 
also searched.

The previous research papers either focused on extracting methods of one topic or 
looking at some key mentions of the Methods section for the whole corpus. We now 
need to extract more key mentions from an individual paper and represent the flow of 
the work conducted.
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Abstract

Background A Methods section is a crucial part of a research article in terms of un-
derstanding and validating the work conducted. In order to handle method descrip-
tions computationally, it is of interest to understand how the Methods section is writ-
ten, find any patterns in how methods are written and whether they are consistent 
with general writing guidelines for methods. We are interested in studying the writing 
style in terms of the sentences’ roles, or functional discourse. For example, are the 
sentences concerned with background information, explaining the experiment con-
ducted, the operations of the method or showing the result obtained? Objectives We 
want to know the answers to the following questions: What is the size and shape of a 
Methods section? What are the discourse styles of Methods sections? Does discourse 
style change over time and publication venue? Can we use functional discourse anno-
tations to focus on the parts of a Methods section that talk only of methods?

Methods In this work, the writing style of the Methods section in a corpus of 13,559 
papers from 1999 to 2017 from the microarray analysis literature are analysed in terms 
of functional discourse using the SAPIENTA tool. The functional discourse patterns 
are produced across the whole corpus, across time and for publication venues.

Results The Methods section mainly contains the sentences describing experiments, 
methods or models. Since there is no restriction on the articles’ length, the size of the 
Methods section varies. We found that 75% of the articles in the corpus have fewer 
than 70 sentences in their methods section. Most of the patterns obtained contain 
methods and experiments but of different lengths, and few of them express the outlier 
behaviours of having additional functions. The functional discourse patterns varied 
over the time and different journals.

Conclusions We demonstrate the feasibility of identifying writing patterns over the 
Methods section. Our results help to investigate the writing structure patterns, the 
probability of having these patterns, or a sequence of functions and linked those to 
the journals. We speculate that discourse analysis will be a useful methodology in 
computationally manipulating descriptions of methods in text.

68
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3.1 Introduction

Scientific research is typically published in the form of an article structured as an In-
troduction, Materials and Methods, Results and Conclusion [122]. The number of 
scientific publications has increased dramatically over recent years [1]. Consequently, 
it is broadly accepted that scientists cannot keep up-to-date with the plethora of new 
findings, even within a sub-field of a discipline [123]. This difficulty extends to meth-
ods; there are many methods and scientists need to know about new methods and they 
need to know the best method to use in a given situation.

Methods are typically described with prose in scientific publications. The description 
illustrates how the work is conducted, what components are involved and why they 
were chosen for use [7]. There is a considerable body of work showing that meth-
ods are poorly described in the scientific literature, in terms of incomplete and non-
transparent reporting of how trials were designed and conducted [124, 125, 126]. 
This results in findings not being able to be reproduced and results being unreliably 
compared across findings [126]. One consequence of not being able to reproduce 
methods is a poorer dissemination of knowledge about methods that can be applied in 
studies and the consequent diminution of the efficiency and effectiveness of science.

Given the number of publications, representing the current prose descriptions of method-
ologies in a structured, searchable representation is essential for providing informa-
tion about which methods are available for a given task. This will enhance the abil-
ity of researchers to keep track of existing and recently published methods. It will 
also allow a community to assess trends in the uptake and deprecation of a particular 
method.

Thus, our broad aim is to extract a structured representation of computational meth-
ods from the biology literature. We have previously developed bioNerDS [71], a named 
entity recogniser for bioinformatics software and databases in the literature [127]. 
We have also used results of a survey of the literature using bioNerDS to show the 
networks of tools and databases used at the population level for computational biol-
ogy [11]. The next step is to organise the tools and data identified in a method work-
flow for an individual scientific article.

A prerequisite for tackling this challenge is to understand how a Methods section is 
written. That is, what is the articulation or organisational presentation of methods in 
semi-structured or unstructured prose? If we have an understanding of the patterns 
of how prose describing methods is organised, then we can direct our text analytics 
methods to recover the data inputs and outputs, the software and the steps that em-
body the method informed by those patterns.
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In this study, we seek to understand how Method sections are written by investigating 
the discourse patterns of method descriptions. Discourse analysis refers to the “study 
of the organisation of language above the sentence or above the clause” [128]. The 
aim of studying discourse is to determine the patterns of the important discourse el-
ements within the text, such as clarifying an aim, explaining a method or justifying a 
result.

Multiple studies have been conducted on identifying functional discourse in scientific 
literature.

• Tuefel et al. [129] defined a rhetorical discourse annotation schema known as 
argumentative zoning (AZ). It contains seven concepts (Aim, Textual, Own,
Background, Contrast, Basis, Other) and is concerned more in classifying 
whether the mentioned scientific concepts belong to the paper’s author or are 
cited from others’ work.

• Guo and Korhonen developed weakly supervised [130] and then unsupervised 
classifiers [131] to extract argumentative zoning in abstracts of biomedical arti-
cles. They extracted six functional concepts (Background, Objective, Method,
Result, Conclusion, and Related work). These categories were originally 
formed and illustrated by Mizuta [99].

• Liakata et al. [132] developed an automatic annotation tool to extract the core 
scientific concepts (CoreSC) in life science articles. The eleven core concepts 
(Hypothesis, Motivation, Goal, Object, Background, Method, Experiment,
Model, Observation, Result and Conclusion) are described in [133]. Short 
definitions for these functions are listed in Table 5.2.

While AZ focused on identifying the author’s own text and cited text, CoreSC is more 
concerned with the ultimate role of a sentence in the text [134].

Example 1 (PMC2582621)

The Affymetrix Latin Square spike-in data U133A were retrieved from (12). They con-
tained 14×3 hybridizations where spike-in targets were added at various concentra-
tions from 0 pM to 512 pM. Probe information was obtained through (20), where only 
30 of the 42 probesets were found. A total of 365 probes matched to target sequences. 
Among them, 10 probes with very low signal intensities (under 900 at highest target 
concentration) were removed. In total, 355 probes are included in this study.

An example of a functional discourse analysis using the general scientific concepts 



CHAPTER 3. WRITING PATTERNS 71

Table 3.1. Functional discourse concepts definitions from [133].

Category Function Definition
Background Background Pre-existing facts and known information. It is not an old 

method.

Approach
Method Pre-existing or new methods. It is a general description of the 

procedures conducted.
Model Theoretical model that contains equations, assumptions and the 

design of objects used.
Experiment Physical procedures that contains instruments, measurements, 

any special conditions and detailed steps of the processes.

Outcome
Observation Simple, clear description of the experiment output. This in-

cludes the reference to the data presented in tables or figures.
Result Factual description of the experiment output. It is a further 

level of output description that could interpret, summarise, or 
compare a group of Observation.

Conclusion A general summary of what is found by the research and 
whether it supports or violates the research hypothesis.

Objective

Hypothesis The research prediction that needs to be tested.
Goal The aim of the work conducted.
Motivation The importance of the work conducted.
Object The entity being studied, investigated, reported or discussed in 

the work conducted. It could be a physical or abstract entity.

Table 3.2. Functional concepts of sentences in Example 1.

Sentence Number Function
1 Method
2 Background
3 Method
4 Method
5 Observation
6 Result

annotation guideline [133] on paragraphs of a Methods section in Example 1, is shown 
in Table 3.2.

The first sentence was a Method since it expressed retrieving data which is part of 
the procedures conducted. The second sentence reported factual information about 
the retrieved data, and hence it was classified as Background. The last sentence de-
scribed the Result of the filtering performed in the previous sentences.

This study is undertaken in the context of computational biology, focusing on the mi-
croarray analysis literature. We chose this domain as it has had a sustained period of 
use over the last twenty years. Huge amount of biological data have been generated 
through research in microarray technology and methods have been continually devel-
oped to analyse these data [13, 14].
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3.2 Materials and Methods

Our aim is to look for patterns of functional discourse elements in how methods are 
described in a corpus of computational biology papers. A workflow of our method is 
shown in Figure 3.1. An outline of our approach is as follows:

1. Collect a corpus of literature featuring microarray data analysis

2. Automatically annotate these papers with functional discourse tags

3. Extract the Methods section from these annotated papers

4. Analyse the discourse annotations for the patterns of discourse.

3.2.1 Corpus creation

PubMed central [135] was searched in April 2017 for articles that were published be-
tween 1𝑠𝑡 January 1998 and 31𝑠𝑡 March 2017 using the MeSH term microarray anal-
ysis. In addition, to obtain full text articles, we restricted the PubMed search to in-
clude only those in the PubMed Central Open Access subset. The query used was:

``microarray analysis''[MeSH Terms] AND (``1998/01/01''[PubDate] : 
``2017/03/31''[PubDate]) AND ``open access''[filter]

Using the retrieved PMC IDs, the full text in XML format is downloaded via the Eu-
rope PMC’s SOAP web [136].

PMC open access articles are archived by a common XML tag suite that is provided 
by NCBI/NLM [137]. Apart from archiving the actual article contents (text, graphs 
and tables), the article’s metadata included in the PMC articles contain the year of 
publication, the journal in which the article is published, the type of the article and 
ten to fifteen associated MeSH terms for each article. To consider a document as a 
microarray analysis article, the document should be indexed by at least one of the fol-
lowing MeSH terms: Microarray Analysis (D046228), Oligonucleotide Array Se-
quence Analysis (D020411), Protein Array Analysis (D040081) and Tissue Array 
Analysis (D046888).

These four terms are the main MeSH terms for microarray analysis articles.

The article type can be a research article, where an original study is conducted, a re-
view article, where a review of literature is reported, a product review, where soft-
ware is reviewed or analysed, or it can be other if the article does not fit to any of the 
24 types that are defined by NCBI/NLM [137].
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Figure 3.1. System workflow. The articles are first retrieved from Europe PubMed Central (EPMC) in 
XML formats based on PMC IDs. The articles are functionally discourse annotated by SAPIENTA 

then the paper sections are tagged by Section Tagger. The functional discourse sequences of the 
Methods section is extracted then analysed by the Markov model and TraMineR package.
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3.2.2 Functional discourse annotation

We used SAPIENTA [132] for functional discourse annotation because it was the 
only online available tool for functional discourse at the time of doing the research. 
SAPIENTA automatically annotates the sentences with a scientific function with 51% 
average accuracy for all eleven CoreSC concepts on a dataset of 256 chemistry arti-
cles that include biochemistry and theoretical work [100]. The accuracy of identify-
ing Experiment, Method and Model are 76%, 30% and 53% respectively. Merging 
the CoreSC concepts into the four broader categories gives a much better F-score as 
Background: 59%, Approach (Experiment, Method and Model): 72%, Outcome 
(Observation, Result and Conclusion): 81%, Objective (Hypothesis, Motivation,
Goal and Object): 38%.

Guo et al. [138] proves that using automatic functional discourse classifiers, one of 
which is SAPIENTA, is useful in identifying the functional structure of the scien-
tific documents of the biomedical field. It gets 81% F-score at the Abstract level on 
a dataset of 1000 cancer risk assessment abstracts.

We performed manual annotation for samples of 25 microarray analysis Methods sec-
tions and it gave an F-score of 62%. Method, Experiment and Model were extracted 
with F-scores of 74.26%, 44.62% and 60.44% respectively. Appendix D shows the 
details of evaluation scores.

3.2.3 Methods section extraction

Since the focus is on the Methods section, the paper sections are first tagged using 
the Section Tagger [139] then the Methods section is extracted. Section Tagger is a 
rule based tagger that extracts section categories of an article body with an F-score of 
98.02% on a dataset of 100 full text articles randomly selected from PMC. We used 
the Section Tagger because it is the one used for the advanced search within Europe 
PMC. It extracts 17 predefined categories (Introduction - Background - Materials and 
Methods - Discussion - Conclusion - Future Work - Case Study - Acknowledgement 
and Funding-Author Contribution - Competing Interest - Supplementary Data - Ab-
breviations - Key words - References -Appendix - Figures - Tables - Other). For iden-
tifying the Materials and Methods section, the target section title should not contain 
the word ‘supplement’ and may contain words such as methods, materials, experi-
mental, implementation, the study, theory…etc.
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3.2.4 Functional discourse analysis

We wish to know how the discourse functions are distributed over the article sections, 
and over the Methods section:

1. Is there any relation between the functions to the article context?

2. What is the probability of having a specific function?

3. What are the possible patterns that could be extracted from the functional dis-
course sequences?

These questions could be answered by four types of analysis:

Functional distribution The frequency of the functions, the averages and correlations 
are calculated to show how the functions are distributed over the paper sections and 
over the sentences of the Methods section.

Sequential rules The general ordering of the functional discourse elements is calcu-
lated by sequential rules. A rule states that an item 𝑋 is probably followed by another 
item 𝑌 (𝑋 → 𝑌) based on the number of items that have this relation among the stud-
ied sequences. Most of the rules have a support measurement and confidence.

Support(𝑋 ⟶ 𝑌 ) = Number of transactions that contain (𝑋 → 𝑌)
Total number of transactions

Confidence(𝑋 ⟶ 𝑌 ) = Number of transactions that contain (𝑋 → 𝑌)
Total number of transactions that contain 𝑋

The top-k association rule methodology [140] was used in this paper to find the k 
most frequent rules and their minimum support values for a given confidence value. 
We used the tool implemented by Fournier-Viger et al. [141] to extract these rules.

The Functional discourse probability The annotated Methods sections are represented 
as a Markov model in order to analyse the behaviour of the functional discourse and 
then extract possible patterns. Markov models are effective in modelling categori-
cal data sequences [142]. We chose District Time Markov Chains (DTMC) [143] to 
represent the functional discourse sequences. The state space is the eleven functions 
𝑆 = {𝐵𝑎𝑐, 𝑀𝑒𝑡, 𝑀𝑜𝑑, 𝐸𝑥𝑝, 𝑀𝑜𝑡, 𝐺𝑜𝑎, 𝐻𝑦𝑝, 𝑂𝑏𝑗, 𝑂𝑏𝑠, 𝑅𝑒𝑠, 𝐶𝑜𝑛} and the Markov 
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chain is the sequence of discrete random variables 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑡, … 𝑋𝑛, where 
𝑋𝑡 is the functional discourse state at sentence 𝑡 ,and 𝑋𝑛 is the last sentence’s state in 
the observed sequence. The observed sequences need not have an equal length.

The Markov property assumes that the probability of the next state 𝑋𝑡+1 depends 
solely on the current state 𝑋𝑡. This is in line with the assumption that within in the 
same paragraph the next sentence is affected by the previous one.

The probability distribution of transitions from one state to another can be represented 
in a transition matrix where each element gives the probability that starts with state 𝑖
and ends with state 𝑗. It is obtained through the markovchain package [144] where the 
maximum likelihood estimator (MLE) method was used to calculate the conditional 
probability for 𝑝𝑖𝑗.

𝑝𝑀𝐿𝐸
𝑖𝑗 = (𝑛𝑖𝑗)/ ∑(𝑛𝑖)

where 𝑛𝑖𝑗 is the number of sequences that has state 𝑖 at sentence number 𝑡 followed 
in the next sentence by state 𝑗. 𝑛𝑖 is the number of sequences that is longer than 𝑡 and 
has state 𝑖 at sentence 𝑡.

From the probability transition matrix, we can deduce some of the states’ behaviour 
and classifications, such as whether there is an absorbing state where reaching it means 
terminating the sequence, or if the studied states are irreducible and all the states can 
be followed by other states. It also can find if the state is periodic, which means the 
state reappears at regular intervals; otherwise it is aperiodic.

Also, having the probability transition matrix over a long period of time, the number 
of sentences in our case, gives a unique probability distribution on the state space 𝑆, 
known as steady state, where the behaviour of states remains in this distribution for-
ever regardless of the starting state. The states should be aperiodic and irreducible to 
have a steady state.

Patterns We try first to find the patterns of Methods sections, regardless of year or 
journals. Then we find the patterns for each year and the top journals.

Every annotated Methods section is represented in a sequence of functions. One way 
of finding a representative for the sequences is to select one that is nearly similar to 
others sequences. The similarity is measured by the cost of converting a sequence to 
another. The conversion process is accomplished either by inserting the missed state 
or deleting an extra state or by substituting a state with the corresponding one. In this 
study, the cost is derived by the Long Common Sub-sequence method (LCS) [145]. It 
is a position-shifted method that looks for the longest common sub-sequence between 
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two sequences in order to convert one to another. The final conversion cost is calcu-
lated by the formula:
|𝑆𝑒𝑞1| + |𝑆𝑒𝑞2| − 2 ∗ 𝑀𝑎𝑥(|𝐿𝐶𝑆(𝑆𝑒𝑞1, 𝑆𝑒𝑞2)|)
This gave a 𝑛𝑥𝑛 symmetric matrix that shows the distance between each sequence 
and another, 𝑛 being the number of the sequences, which is the number of the articles 
in our study.

Since the distance between each two sequences is known, we looked for the ones that 
have the lowest distance. We used TraMineR R package [146] to extract the repre-
sentative sequences. The package implemented by Gabadinho et al. [147] where the 
neighbourhood density method was used. It uses a neighbourhood radius to deter-
mine the number of neighbour sequences. The whole set of sequences are then put in 
descending order. The selected representatives should be far enough from each other 
by a threshold. This also ensures that outlier patterns could be found. We control the 
number of patterns by the ones which should at least have 88% of the sequences as 
their neighbours.

3.3 Results

The PMC search query returned 14,454 articles. A glance at Figure 3.2 reveals that 
the first article was published in 1999. The number of publications increased dramat-
ically in the following ten years. The level of publication remained stable until 2016, 
which had a reduction of 68.67% in the number of the articles. The reason behind 
this drop is that, although most of the journals have full open access and the articles 
are immediately archived in PMC, the new articles are not necessarily indexed yet by 
MeSH terms.

As a general trend in Figure 3.3, PLoS ONE, BMC Genomics and BMC Bioinformat-
ics together contribute 41.5% of the overall publications, where BMC Medical Ge-
nomics, BMC Genomics and BMC Bioinformatics contain the highest percentages of 
published articles related to microarray topics across all their publications (17%, 15% 
and 14% respectively). For more details see additional file 1.

The most common article types are research articles (94.42%) while the remaining 
types are distributed between review articles, product review and other article types 
(1.65%, 1.38% and 2.55% respectively). For more details see additional file 2.

The total number of associated MeSH terms is 9,732. The most frequent MeSH term 
over the four main MeSH terms is Oligonucleotide Array Sequence Analysis (77.22%). 
The other three MeSH terms are Microarray Analysis, Tissue Array Analysis and 
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Table 3.3. Minimum, maximum, mean and median of the Methods section length in terms of the 
number of sentences.

Min Max Mean Median
1 388 57 52

Protein Array Analysis (10.99%,6.99% and 4.79% respectively). The majority of 
other associated MeSH terms are general terms such as human ,animals, female, male 
and mice (4.42%,2.64%,2.06%,1.64% and 1.36% respectively). For more details see 
Additional file 3.

The length of the Methods section varies between papers. Figure 3.4 shows the length 
distribution over the corpus. Table 3.3 shows the minimum, maximum, mean and me-
dian length of the Methods section in terms of the number of sentences.

Figure 3.2. The number of articles published per year over the corpus.

Using the Section Tagger [139], 94% of the articles clearly express the Methods sec-
tion within the paper sections (total articles 13,589). For the remaining 865 articles, 
442 are not research articles (e.g. letters, meeting reports, case reports, etc.). That 
leaves 423 research articles (3% of research articles) without an extracted Methods 
section. The reasons behind this are discussed in Additional file 7.

During the investigation of the paper structure, some of the papers labelled as re-
search articles are not really research articles; they might be research news or reviews 
but archived as research articles. By removing these various articles that do not match 
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Figure 3.3. The percentage of microarray analysis papers. The blue bar shows the number of all 
publications per journal while the orange bar above it shows the number of microarray analysis papers. 
The percent is written on each bar. The journals are in descending order with respect to the number of 

microarray analysis papers. The top 20 journals are displayed.

the ‘research article’ profile, we removed 30 papers, resulting in a corpus of 13,559 
articles. All the articles’ details are in Additional file 4.

3.3.1 Functional discourse analysis

The most frequent functions over all the sections of the articles are Result, Method
then Background (22.71%, 22.24% and 17.24%). Figure 3.5 shows the distribution 
of the functional discourse concepts over the papers’ sections.

77.33% of Method mentions are in the Methods and Results sections while 87.49% 
of Experiment mentions are only in the Methods section. 56.71% of Result men-
tions are in the Results section while 66.65% of Conclusion mentions are in the 
Discussion section. 35.77% of Background mentions are found in the Introduction. 
It is also frequent in the Abstract, Result and Discussion sections (21.97%, 19.5% and 
16.37%).

The Methods section contains all the eleven functions, divided into Experiment and
Method (44.34%, 35.82%) followed by Result, Background and Model (8.33%, 
3.22% and 3.21%). Although 53.36% of the Model mentions are in the Methods sec-
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Figure 3.4. Methods section length analysis. The histogram shows the frequency of articles based on 
the Methods section length and the box plot diagram shows the median, first and third quartiles and 

outliers of the Methods section length based on Tukey’s method [148].

tion, these mentions contribute only 3.21% of the mentions in the Methods section. 
This could be due to the nature of the microarray analysis papers which tends to have 
more experimental and theoretical methods than modelling or designing a theoret-
ical solution. The presence of Background shows the propensity to mention some 
preliminary information either about the methods or data used. Result occurs more 
than Background and Model, where we can see the authors mention some factual re-
sult of using the methods inside the Methods section. Details of functional discourse 
distribution are in Additional file 5.
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The average number of sentences for each function in the Methods section is shown 
in Figure 3.8. It shows that Experiment and Method have the highest averages.

We used a Pearson correlation coefficient to test the relationship between the func-
tions over the papers’ sections. We found 12 statistically significant relations that 
show there is a high chance when a number of sentences of one function is increased 
in a section, the other function is increased as well (see Figure 3.6). There is a strong 
positive relationship between (Model and Method), (Goal and Object) and finally 
between (Result and Observation). There is also a fairly strong positive relation-
ship between (Method and Experiment), (Background and Motivation, (Conclusion
and Hypothesis), (Hypothesis and Result), (Observation and Object), (Observation
and Goal), (Object and Result) and finally between (Goal and Result).

Figure 3.7 shows the distribution of functional discourse concepts over the Methods 
sections’ sentences. It can be noticed that Background is concentrated at the begin-
ning of the section. Result is present in all sentences with almost the same level of 
usage. Despite fewer articles that have too long a Methods section, the usage did not 
decrease over the course of the Methods section but overtook the usage of the Method
and Experiment functions.

Figure 3.5. Functional discourse concepts distribution over the article sections. It is easy to notice 
that each section has all of the eleven functions, but with different percentages. 72.49% of the Abstract 

section is Background and the second most frequent function is Method, which constitutes only 
14.85%. 55.01% of the Introduction section is Background and 20.69% is Method. Functions in the 

Methods section are distributed over Experiment, Method and Result (44.35%, 35.82% and 
8.34%, respectively). 37.78%, 20.23% and 13.53% of the Result section are Result, Method and
Observation, respectively. 35.48% of the Discussion section functions are Result and 31.47% are

Conclusion. All numbers and percentages are in Additional file 5.

Using the top-k rule, the top 8 rules ordered by frequency then accuracy, are shown in 
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Figure 3.6. The correlation between functions over the sections. There are 12 statistically significant 
relations between the functions (out of 55). The Histogram with kernel density estimation and rug plot 

for each function is shown on the diagonal. On the top of the diagonal : the value of the correlation 
written with a font size proportional to the strength of the correlation and have the significance level as 

stars. Each significance level is associated to a symbol: p-values(0, 0.001, 0.01, 0.05, 0.1, 1) 
symbolised with (“***”, “**”, “*”, “.”, “ ”) respectively. The scatter plots with a fitted line are on the 

bottom of the diagonal.

Table 3.4. The most two frequent and accurate rules are that Experiment is followed 
by Method or vice versa. It also shows that a sentence with a Result is more likely 
to follow sentences with a Experiment function and Method function than preceding 
them. 2cm 

Using the Markov Chain Model, the transition probabilities matrix is represented in 
the state diagram in Figure 3.9. The transition probabilities show that Experiment
and Method are the most stable functions. This means that if the current sentence 
function is one of them, then this will remain for the next sentence. If it is going to 
be changed, then it is likely to be converted to the other, which is also supported by 
the first two rules in Table 3.4. Model is also stable with a 0.74 chance; we could 
say that in the Methods section the functions that belong to the approach category 
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Figure 3.7. Functional discourse concepts distribution over sentences of the Methods section. It is 
more common to start with Method than Experiment. As a general trend, Method usage is more 

frequent than Experiment, the one exception is in the interval between sentence 20 and sentence 60. 
The usage of Method increased after that, reaching a peak around sentence 100. The Background
mention is more frequent at the beginning of the section, then the usage is decreased steadily until 
sentence number 30 where the lower usage of Background is maintained through the section. In 

contrast, Result increased with the later sentences with small alternating increases and decreases, the 
most being between sentences 60 and 190. It overtook the usage of Method after 280 sentences.

(Experiment, Method and Model) are highly probable to come in a successive pat-
tern. It is also noticeable from the state diagram that the transition for any function 
has a high chance of being to Method. The only exception is Observation with a 
0.24 chance of moving to a Result in the next sentence and a chance of 0.15 of mov-
ing to Method. We also derived the steady state vector in Table 3.5. It gives a picture 
of what a function of a sentence could be after a long run of transition probability and 
almost reaching the end of the Methods section. It shows that it is expected to have
Experiment by 0.43 and Method by 0.37. It is interesting that the probability of end-
ing with Experiment is more than Method although the level of Method usage was 
the higher after sentence number 60. Besides the probability depending on the stabil-
ity of a function, Figure 3.4 shows that 75% of articles finish at sentence 70 or before. 
The probability of ending with Result is 0.09 and other functions in the outcome 
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Figure 3.8. The average number of sentences for each function in the Methods section. Average 
number of sentences for Method, Experiment and Result are 20.449, 25.316 and 4.756 respectively.

Table 3.4. Top 8 rules show that an Experiment function is followed by a Method function with 91% 
confidence and a Method function is followed by an Experiment function with 78% confidence. The 

other rules relate Method functions with remaining functions which show Background, Observation
and Object occur with high confidence before a Method, and where Result comes after Method and

Experiment.

Rule Support Confidence (accuracy)
occurrence of x → y /

all sequences
Support /

occurrence of x
Experiment → Method 79% 91%
Method → Experiment 75% 78%
Method → Result 56% 58%

Method , Experiment → Result 52% 90%
Result → Method 52% 84%

Background → Method 37% 90%
Observation → Method 35% 82%

Object → Method 26% 86%

category have 0.01 each. The probability of ending with Background is 0.03. The 
probability of having Goal, Hypothesis or Motivation at the end of the Methods 
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Table 3.5. The steady state vector means that after a long run of transition probability over a Methods 
section, it is highly likely to have Experiment or Method with a proportionality of 0.43 and 0.36 

respectively.

Function Transition probability
Bac 0.0285
Con 0.0144
Exp 0.4341
Goa 0.0041
Hyp 0.0013
Met 0.3648
Mod 0.0327
Mot 0.0007
Obj 0.0124
Obs 0.0189
Res 0.0879

section is zero.

Using the TraMineR package [146], the patterns are extracted as the sequences that 
are mostly similar to other sequences. Those patterns altogether should at least be 
similar to 88% of the whole sequence, as we stated in the Methods section 3.2.4. It 
means 88% of the whole set should be far less than a threshold from the obtained 
patterns set. The threshold is set to 55.7 (10% of the maximum distance between se-
quences). That means it only costs less than 55.7 to convert a sequence to its pattern. 
Maximum distance (557) is obtained from the distance matrix that has all the dis-
tances between the sequences. The pattern is written in state-permanence-sequence 
(SPS) format where a function is represented by an interval that shows how many 
successive sentences are holding the same function.

Applying the density method gives total coverage (88%) with a reasonable number of 
patterns (6) (see Figure 3.10). Some patterns show the behaviour of Experiment and
Method while others show the behaviour of other functions that do not belong to the 
approach category. The patterns are as follows:

Pattern P1 (Met,1)-(Exp,19)-(Met,13)-(Exp,4)-(Met,2). It basically starts with a long 
interval of Experiment followed by Method and ends with some spells of both. 40.36% 
of the whole set belong to the cluster represented by P1. This pattern represents a bal-
ance between Method and Experiment mentions.

Pattern P2 (Met,13)-(Bac,1)-(Met,6)-(Res,3)-(Met,14)-(Res,1)-(Exp,14)-(Obs,1). 
This pattern has long spells of Method and Experiment with some intervention of
Background, Result and Observation. 14.40% of the whole set belongs to the 
cluster represented by P2. This pattern has more Method mentions in total compared 
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Figure 3.9. A state diagram. This shows the probability between state transitions. The loop arrow 
shows the stability of a function; if the current sentence is in state A, how how likely is it to be in state 
A in the next sentence? The most stable one is Experiment (0.93) and the most unstable one is Goal

(0.20). Method is also a highly stable function and if it could be substituted with one of the 10 
functions then this is going to be Experiment. We can see that most of the functions tend to be 

followed by Method except Observation, which is probably followed by a Result. All transition 
probabilities’ data are in Additional file 6.

to the Experiment mentions.

Pattern P3 (Obj,1)-(Met,1)-(Res,2)-(Exp,13)-(Res,1)-(Met,2)-(Res,1)-(Met,4)-(Exp,23)-
(Res,3)-(Exp,13)-(Bac,1). P3 expresses chunks of repeated patterns of Method and/or
Experiment followed by Result. It has long successive mentions of Experiment. 
The pattern starts with an Object and ends with a Background and contains few 
mentions of Method. 19.21% of the whole set belongs to the cluster represented by 
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P3. The dominant function in this pattern is the Experiment.

Pattern P4 (Exp,2)-(Res,5)-(Met,7)-(Exp,1)-(Res,1)-(Exp,6)-(Met,9)-(Res,4)-(Exp,17)-
(Res,2)-(Mod,6)-(Exp,5)-(Met,7). The forth cluster contains less than 1% of the se-
quences and generally expresses chunks of repeated patterns of Method and/or Experiment
followed by Result.

Pattern P5 (Res,3)-(Con,2)-(Bac,4)-(Mot,1)-(Res,3)-(Con,1)-(Res,5)-(Met,2). This 
pattern represents 9.76% of the sequences. It has few spells of Method and represents 
the articles that focus more on explaining the background and result obtained using 
the methods more than the method itself.

Pattern P6 (Bac,7)-(Met,22)-(Exp,11)-(Met,29)-(Res,2). This pattern represents 6.67% 
of the sequences. It starts with Background, elaborate in Method and/or Experiment
and ends with Result. It has more Method mentions than Experiment.

Figure 3.10. Patterns in terms of functional discourse. n= 13,559 is the number of Methods sections 
where the functional sequences have been analysed. The six patterns are the sequences chosen to 

represent all sequences. The width of a pattern is proportional to the number of sequences it 
represents. The criterion applied is the neighbourhood density with 88% total coverage. The bottom 

line is graded by the sentence number (1 to 388). The patterns are plotted for each sentence and 
coloured based on the function.
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Table 3.6. The steady state for the four journals. It can be seen that BMC Bioinformatics, after a long 
run of transition probability over the Methods section, has the lowest probability in Experiment but 

the highest in Model and Result.

PLoS One BMC Genomics BMC Bioinformatics BMC Medical Genomics
Bac 0.0235 0.0234 0.061 0.041
Con 0.0077 0.0134 0.0435 0.0035
Exp 0.4898 0.3808 0.0467 0.2612
Goa 0.0032 0.0039 0.0106 0.0066
Hyp 0.0008 0.0012 0.0037 0.002
Met 0.3784 0.4146 0.3921 0.4988
Mod 0.0137 0.0213 0.1255 0.0567
Mot 0.0004 0.0005 0.0025 0.0015
Obj 0.0106 0.0124 0.0301 0.019
Obs 0.0134 0.0163 0.0299 0.0304
Res 0.0584 0.1123 0.2545 0.0793

3.3.2 Journal patterns

There are 622 different journals in the corpus. We limit our analysis to the top three 
journals that have the largest number of microarray analysis papers and the top three 
journals that have a higher percent in publishing microarray analysis papers among 
their publications in the period covered by the corpus.

The top three publishing journals in our corpus are: PLoS ONE, BMC Genomics and 
BMC Bioinformatics and the top three journals with the highest percent of microar-
ray articles are: BMC Medical Genomics, BMC Genomics and BMC Bioinformatics. 
In total, we have four journals to compare their writing behaviour in the Methods sec-
tion in terms of the functional discourse.

Figure 3.11 shows the distribution of functional discourse concepts over the Meth-
ods sections’ sentences. The distribution of functional discourse in four journals re-
flects the global behaviour of all the journals shown in Figure 3.7. However, BMC 
Bioinformatics, a non experimental journal, is slightly different in having far fewer
Experiment and more Model functions. Also, the usage of the Result function 
did not decrease over the course of the long Methods section (within the inner out-
lier length of BMC Bioinformatics articles of 180 as in Figure 3.12) which means 
the usage of Result at the end of the section is frequent. This is also supported by 
steady state probability in Table 3.6 that the chances of ending with a Result is 26% 
compared to the other journals 11%, 6% and 8% and the average number of sentences 
with the Result function is more than the average number of sentences with the Result
function in the other journals (see Figure 3.13).

Finding the patterns using TraMineR with the density neighbour method with 80% 
coverage and the threshold distance of 10% of the maximum length of the Methods 
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(a) PLoS ONE (b) BMC Genomics

(c) BMC Bioinformatics
(d) BMC Medical Genomics

Figure 3.11. Functional discourse concepts distribution over the Methods sections’ sentences in the top 
four journals. The x axis shows the sentences, the y axis shows how much the frequency of a function 

in a sentence over all the journal publications. PLoS ONE, BMC Genomics and BMC Medical 
Genomics have a similar distribution over their Methods section in having Method and Experiment

functions. BMC Bioinformatics differs from the general behaviour by having much fewer Experiment
functions and more Model and Result ones.

section for each journal produces a large number of patterns that are hard to be pre-
sented and analysed. For example, BMC Bioinformatics had 315 patterns and BMC 
Medical Genomic needed 53 patterns to represent the behaviour of the sequences. 
This could be because smaller corpora have smaller distances between functional se-
quences that means there are a limited number of operations to convert to the nearest 
pattern. If we have diversity between the functional sequences, then more patterns are 
expected. The maximum distance between sequences in the corpus was 557 while it 
is 267 in BMC Bioinformatics. It is more flexible to do up to 55.7 operations to con-
vert a sequence to a pattern than limiting the operations to 26.7. This explains why 
these patterns are hidden by the longer more sequences in the whole corpus.

For simplicity, and the purpose of presentation, Figure 3.14 shows the top pattern for 
each journal and Table 3.7 shows the spells. Although the pattern did not cover the 
whole sequences, its behaviour agrees with the result obtained by the steady state (Ta-
ble 3.6) and the average number of sentences (Figure 3.13). It is obvious that BMC 
Bioinformatics did not include Experiment in the pattern while more Method and
Result are shown. This pattern is better linked to general pattern P2 that has more 
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Figure 3.12. The length of the Methods section over the four journals. The width is proportional to the 
number of publications. The BMC Bioinformatics tends to have the longest length over the four 

journals.

Table 3.7. The top patterns of each journal.

Journal Pattern
PLoS ONE (Met,3)-(Exp,20)-(Met,14)-(Exp,7)
BMC Bioinformatics (Met,9)-(Res,2)-(Met,11)-(Res,2)-(Met,4)
BMC Genomics (Met,1)-(Exp,13)-(Met,16)-(Exp,1)-(Res,2)-(Met,2)
BMC Medical Genomic (Met,28)

method in its sequence. P2 is also the nearest pattern to BMC Medical Genomics 
that has only spells of Method. PLoS ONE has a pattern that focuses on Method and
Experiment whereas BMC Genomics has some Result functions in its pattern. 
Both of these two journals’ patterns are mapped to the P1, the pattern that shows the 
balance appearance of Method and Experiment. Table 3.8 shows the exact cost be-
tween general patterns and journal patterns.
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Figure 3.13. The average number of sentences with functional discourse concepts over the four 
journals. The average number of sentences with Method and Experiment are the most compared to 
the average number of sentences with other functions. However, BMC Bioinformatics has a greater 

mean for Method, Model and Result more than Experiment.

Table 3.8. Cost of mapping the journal patterns to one of the six patterns.

P1 P2 P3 P4 P5 P6
BMC Bioinformatics 35 31 71 54 37 51
PLoS ONE 9 49 49 56 61 59
BMC Genomics 14 46 54 57 48 46
BMC Medical Genomic 35 25 79 54 45 43

3.3.3 Year patterns

The dominant patterns of the Methods section over the years from 2000 to 2017 have
Method and Experiment intervals. Figure 3.15 and Table 3.9 show the best sequence 
that could represent the articles over the years. Figure 3.16 shows the usage of the 
six patterns over the years. We speculate the usage of the patterns over the years by 
calculating the mean of the distances between the patterns and the articles over the 
years; the smaller the mean, the higher chance that the pattern represents the articles 
over the year and hence the higher usage.

For patterns P1, P3 and P4, we can split the usage into two periods, from 2000 to 
2007, the usage is decreasing and from 2007 to 2017, the usage is increasing. Pattern 
P2 has stable use since 2008. Pattern P5, the pattern which has few spells of methods 
and experiments, its chance to represent the articles decreased over the time. The us-
age of pattern P6 increased over the time since year 2004. Years 2000 and 20017 are 
not included since they have a small number of articles (2 and 7 respectively).
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(a) PLoS ONE (b) BMC Genomics

(c) BMC Bioinformatics (d) BMC Medical Genomics

Figure 3.14. The patterns of Methods section of the top four journals. The PLoS ONE and BMC 
Medical Genomics have similar patterns as they completely focus on Method and Experiment

whereas BMC Genomics and BMC Bioinformatics have some Result in the patterns.

3.4 Discussion

Most of the research articles have Methods sections that are over represented with 
sentences explaining methods, experiments and the result obtained by applying them. 
This article type goes with the observed rise of the experimental research articles in 
the 20th century that, leaving behind the observational articles, mainly reported the 
facts, that were dominant in the previous three centuries [122]. Generally, the articles 
used almost the same number of sentences in explaining the methods and reporting 
the results. The approach category that includes Method, Experiment and Model
constitutes 38.56% of the functions of the articles. Almost the same percent of men-
tions (37.70%) applied to outcome category that includes Result, Observation
and Conclusion. Background and objectives (that includes Hypothesis, Goal,
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Figure 3.15. Usage of patterns over the years.

Motivation and Object) covered 17.24% and 6.50% respectively.

Methods are mostly written in the Methods section so it is legitimate to focus our at-
tention on that section. Of course, we should check on the nature of the appropriate 
functions in the rest of the paper, but purely in terms of numbers, it looks like it is a 
reasonable thing to do.

The microarray analysis articles mostly include sentences that expressing experiments 
and methods in their Methods section. 80.17% of the Methods section’s sentences are 
mentions of Experiment and Method functions.

Our analysis shows that the use of the Experiment function is highly restricted to 
the Methods section (87.49% of the mentions was in the Methods section). Almost 
half of the Method mentions are in the Methods section, the other half is distributed 
throughout the paper’s sections.

Most of the articles follow the general writing guidelines in dedicating the Methods 
section for explaining the methods and experiments. Best practice guidelines suggest 
that the Methods section should focus only on the methods and procedures that are 
done, how the materials are prepared, inclusion and exclusion criteria and the analy-
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(a) 2000 (b) 2001 (c) 2002 
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(g) 2006 (h) 2007 (i) 2008 

(j) 2009 (k) 2010 (l) 2011 

(m) 2012 (n) 2013 (o) 2014 

(p) 2015 (q) 2016 (r) 2017 

Figure 3.16. The patterns of Methods section for each year in the corpus. The dominant patterns of 
Methods section over the years from 2001 to 2017 have Method and Experiment intervals. In 2017, 
only 7 documents are included in the study, combination of functions appeared in the patterns. Table 

3.9 shows the spells of the patterns and the coverage percent.

sis tests that are used [149, 7, 150]. Besides these generally accepted writing styles, 
journals have their own instructions on how to write the Methods section (usually in 
submission guidelines). While some strictly prohibit adding any unimportant details, 
background information or found result, others are flexible and specify few or no in-
structions. For example, the aim of the study should be included in the Methods sec-
tion in BMC Bioinformatics [151]. In PLoS ONE, if the study is about the microarray 
experiments, then Minimum Information About a Microarray Experiment should be 
followed as a guideline [152]. MIAME [20] requires the authors to mention the data 
as raw and after they have been processed. Due to this variation of guidelines and the 
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Table 3.9. Years patterns with the coverage percent.

Year Number of articles Coverage Pattern
2000 2 50% (Con,17)
2001 20 35% (Exp,17)

(Met,6)-(Con,6)
2002 59 32.2% (Exp,27)
2003 101 27.7% (Exp,24)-(Met,4)-(Exp,8)
2004 216 44.9% (Met,17)

(Exp,35)-(Met,2)-(Goa,1)-(Met,2)
2005 432 48.1% (Bac,1)-(Exp,14)-(Met,13)
2006 557 44% (Exp,20)-(Met,8)
2007 784 41.7% (Exp,20)-(Met,11)
2008 1048 54.3% (Met,1)-(Exp,13)-(Met,12)-(Exp,7)
2009 1253 48% (Obj,1)-(Exp,14)-(Met,14)
2010 1480 67.4% (Exp,12)-(Met,11)-(Exp,9)-(Met,3)
2011 1402 47.1% (Exp,14)-(Met,10)-(Exp,11)
2012 1550 53.7% (Exp,18)-(Met,14)-(Exp,5)
2013 1452 50.7% (Met,2)-(Exp,19)-(Met,13)
2014 1447 66.5% (Met,4)-(Exp,17)-(Met,12)
2015 1326 58.1% (Met,1)-(Exp,17)-(Met,12)-(Exp,2)
2016 423 61.2% (Met,1)-(Exp,5)-(Met,5)-(Exp,16)-(Met,8)

2017 7 28.6% (Exp,5)-(Met,3)-(Exp,4)-(Mod,1)-(Exp,8)-(Obs,2)-
(Exp,10)-(Met,4)-(Obs,1)-(Met,3)-(Exp,11)-(Obs,1)
(Bac,7)-(Obj,1)-(Exp,16)-(Goa,2)-(Res,1)-(Met,1)

absence of writing templates and validating systems, the writing style would vary as 
well.

From the writing guidelines and functional discourse definitions, we expect to see 
most of the functions. Although the paper writes solely about the methods, the de-
tails and method explanation include some observations and factual results. We can 
observe short intervals of Goal that express the aim of the task done. There is also 
background information for more details and clarification.

Although most of the patterns alternate between Method and Experiment, there is 
a considerable appearance of Result. The presence of Result leads to the question 
of whether this result is a general one derived from using the mentioned method in 
general, or is a result obtained from the study. The same applied to Observation
where some tables and figures could be added to explain the methods used, not the 
result obtained.

The number of patterns could give an overview about the style of writing in func-
tional discourse, but what if we would like to precisely link a paper to a specific pat-
tern? e.g. our paper, using SAPIENTA, has a functional sequence in SPS format as 
(Goa,1)-(Met,4)-(Obs,1)-(Met,4)-(Bac,4)-(Met,2)-(Res,1)-(Met,2)-(Res,1)-(Met,15)-
(Mod,6)-(Met,4)-(Goa,1)-(Met,12). Table 3.10 shows the cost of converting the paper 
sequence to the general patterns and the journal patterns based on the LCS similar-



CHAPTER 3. WRITING PATTERNS 96

Table 3.10. Cost of mapping the paper pattern to one of the six patterns and journal patters. Mean 
distances to all articles of the journals are added between brackets.

P1 P2 P3 P4 P5 P26 BMC bio PLoS ONE BMC genetics BMC Med
Paper 65 45 105 70 63 43 34(67.91) 68(71.96) 55(69.40) 30(56.06)

ity measure. The most similar pattern is P6 ((Bac,7)-(Met,22)-(Exp,11)-(Met,29)-
(Res,2)). The longest common sub-sequence was 43 , the length of the Methods sec-
tion of the paper is 58 the length of P6 is 71, the cost is (58+71-2(43)) = 43.

For journals, since the patterns did not cover a large percent of the articles, we calcu-
lated the mean distance to all articles belong to that journal in addition to the distance 
to the reported pattern. The most similar patterns and articles belong to the BMC 
Medical Genomics and BMC Bioinformatics journals respectively.
Since the ultimate aim is to recover the context that may include input, output data, 
operations and software, some discourse functions could help in normalising the sen-
tences that handle the required information. For example:

• Background sentences could be excluded since they talk either about general 
information or describe data in more detail.

• The Result and Observation sentences could contain output data.

• Method, Experiment and Model sentences need a further layer of interpreta-
tion in order to extract such information.

3.5 Limitations

1. Knowing that 12% of the articles are not represented by the reported patterns, 
how could the patterns be more general and cover the whole corpus? Could nor-
malising the length and successive functions enhance the accuracy of the pat-
terns?

2. The Methods section is often written with subsections. There is no reflection of 
the subsection in the patterns. Does the first section always follow a pattern that 
differs from other subsections? We could expect how the section could finish by 
steady state, but how it could start? Could we find the first and last subsections 
patterns and compare them to the middle subsections.

3. Calculating the distance between patterns and sequences could be enhanced by 
considering the relations between functions. For example, substituting a func-
tion with another from the same category should cost less than substituting it 
with a function from another category.
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4. How far can we trust the annotated functional discourse? The accuracy of the 
extracted patterns mainly depends on the accuracy of SAPIENTA. SAPIENTA 
original papers reported F-score of 51% and 81% for chemistry papers at the all 
sections level and abstract level, respectively. We got an F-score of 62% for mi-
croarray analysis’s Methods section. To overcome this limitation, the reported 
functional discourse could be supported with another type of discourse like ar-
gumentative zone or another kind of processing to analyse if the analysed sen-
tence is important in reporting the operations included the paper context.

3.6 Conclusion

We examined the writing style of the Methods section in term of functional discourse. 
The extracted patterns clearly showed that most of the Methods sections are dedicated 
to the purpose of explaining the methods. The methods and experiments with some 
little result are usually presented in the patterns. Methods section sentences are also 
a mixture of the current method and method from other studies and thus functional 
discourse alone is insufficient to isolate a particular method. Further interpretation is 
needed for functional discourse to specify the contexts that express the methods, data 
and software.

3.7 Additional Files

3.7.1 Additional file 1 — Journal’s microarray publications

Additional file shows the number of a journal’s microarray publications from year 
1999 to 2017. The percentage of microarray publication is calculated for the top 20 
journals that publish 100 microarray articles or more and plotted in Figure 3.3.

3.7.2 Additional file 2 — Articles types frequency

Additional file shows all articles types and their frequency.

3.7.3 Additional file 3 — MeSH terms and frequency

Additional file shows all MeSH terms, frequency and parentage to MeSH terms with 
and without the four main microarry MeSH terms, to see the general terms distribu-
tion over general terms.
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3.7.4 Additional file 4 — Articles PMC IDs and other details

Additional file shows all retrieved PMC ID, with journal, type, subject and year of 
publication. It also contains the list of PMC IDs used in our corpus , and the list of 
the removed articles PMC IDs(865 have no Methods section as a result of Section 
Tagger tool, the specific 423 Research articles IDs as part of them, additional 30 ar-
ticles are removed because they either do not match the ‘research article’ profile or 
failed to be annotated by SAPIENT). These numerical information used for Figures 
3.2 .

3.7.5 Additional file 5 — Functional discourse distribution

Additional file shows the frequency of each function in each section. The percentage 
of a function to the functions in whole paper and for each section. The numerical data 
used to create and explain the Figure 3.5.

3.7.6 Additional file 6 — Functional discourse frequency for each sentence and tran-

sition matrix 

The numerical data used to create Figures 3.7, 3.9 and 3.4.
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Abstract

Background Understanding the work conducted in research is essential to validate 
and replicate the work presented in research articles. The first step in this endeav-
our must be to understand and identify the basic parts involved in the work conducted 
such as operations, data, software and databases. It is of interest to extract the work-
flow of a paper that shows the relationships between these parts. We want to know 
how far we can extract the operations and data from plain text? Can operations and 
data be normalised to known concepts in knowledge resources such as the EDAM 
ontology? Can the relations between the operations and data be identified and gener-
alised among the publications?

Objective This study evaluates the feasibility of using NLP and deep learning ap-
proaches for extracting and linking operations, input data, output data, software and 
database reported in the methods and representing them with their normalised con-
cepts in a viewable platform

Methods We have developed the ODNoR system that identifies operations and data
terms from the primary literature, normalises the identified entities, and finds the re-
lations between the data, operations, software and databases.

Results We identified such entities with an F-measure between 92.46% and 78.10%. 
The F-scores for identifying relations ranged between 92.5% and 62%. The normali-
sation accuracy was between 96% and 84.35%. The annotation with relations is pre-
sented in BRAT format.

Conclusions The proposed end-to-end system achieved encouraging results and demon-
strated the feasibility of using deep learning methods to extract the keys that repre-
sents the methods from the Methods section in microarray analysis literature. 

100
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4.1 Introduction

In scientific research, scientific methods are substantial part that are being proposed, 
modified, and used to solve scientific problems. Methods are typically described with 
prose in scientific publications. The description illustrates how the work is conducted, 
what components are involved and why they were chosen for use [7]. Given the num-
ber of publications, extracting and identifying these components is essential for pro-
viding information about which methods are available for a given task. 

There are some works to extract the key components from the scientific articles. Sien-
ceIE [119] is a corpus for the SEMEval 2017 task 10. It contains 500 scientific ar-
ticles of the Computer Science, Material Sciences and Physics domains. It includes 
three types of entities (called keyphrases): Tasks, Methods, and Materials and two 
relation types: hyponym-of and synonym-of. Augenstein et al. [119] and Luan et al. 
[120] introduced the state-of-the-art systems that extract entities and relations from 
this dataset.

SciERC [121] extended previous dataset, SienceIE, to include 500 annotated scien-
tific abstracts, from AI domain, containing annotations for scientific entities, their re-
lations, and coreference information between mentions. They defined six types for 
annotating scientific entities (Task, Method, Metric, Material, Other-ScientificTerm 
and Generic) and seven relation types (Compare, Part-of, Conjunction, Evaluate-for, 
Feature-of, Used-for, HyponymOf). They developed SciIE, BiLSTM model, to ex-
tract entities, relations and coreference resolution across sentences and achieved F-
score of 64.2%, 39.3% and 48.2%, respectively.

SciREX [118] extended the previous dataset, SciERC, to include 438 fully annotated 
documents from ML articles available in Papers with Code website. It contains an-
notations for entity mentions (Dataset, Metric, Task, Method), coreferences, salient 
entities, and N-ary relation over the document (between clustered salient entities). 
They introduced an end-to-end neural model, using BERT-BiLSTM-CRF, to perform 
document level IE task. The model to outperform existing state-of-the-art models on 
subtasks and achieved F-score between 67%-27% for the end-to-end tasks. 

SciRes [16] is a dataset of 3,088 manually annotated resource contexts, i.e. a sequence 
of words that appear around a particular citation. They used full articles from three 
sources: the ACL Anthology Reference Corpus (ARC), the NeurlPS Proceedings 
(NeurlPS), and the PubMed. They have focused on the resource citation hyperlinks 
mentioned in the scientific articles to extract the methods’ components as (online-
resource citation, resource role and resource function). They defined three general 
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role types with 9 subtypes: Material (Data), Method (Tool, Code, Algorithm) and 
Supplement (Document, Website, Paper, License, Media). The function types are: 
Use, Produce, Introduce, Extend, Compare, and Other. They implemented a BERT-
based classifier, SciResCLF, to classify the roles and functions of a resource based 
on the word sequences of resource contexts. Then SciResREC, another BERT-Based 
model, uses these classification labels as features for predicting the resource hyper-
links. SciResCLF classifier achieved an F-score between 90%-35% and SciResREC 
achieved an accuracy of 50% in predicting resources. 

Our aim in this paper is to extract the main parts that express a method conducted and 
reported in the computational biology literature. Duck et al. [71] have previously de-
veloped bioNerDS, a named entity recogniser for bioinformatics software and databases 
in the literature [127]. They have also used the results of a survey of the literature us-
ing bioNerDS to give a global view of the networks of tools and databases used [11]. 
The next step is to identify the operations and data used in a Methods section for a 
single research article.

In our context, an operation is a specific/concrete computational process conducted 
in an experiment and presented in a manuscript as a part of the work done in a paper. 
The operation could have data inputs and produce output data. It could also have ei-
ther input or output data and, in some cases, it could be mentioned without any data 
but an indication that a process has been done. We also have operations that did not 
do any kind of processing but assign the data a role or identification; for example:

Example 2 (PMC2582621)

“In total, 355 probes are included in this study.”

data are items (or collections of items) that exist in digital form (i.e. representation), 
and can be potentially used as an input to, or output from, a database, software that 
processes those data to fulfil specific/concrete computational processes that are con-
ducted in an experiment and presented in a manuscript. This description includes any 
data used in the experiment, even when no explicit operations are mentioned in the 
sentence context. It excludes the abstract data that are used for conceptual and ex-
planatory purposes (e.g., discussion of strings, integers, etc..). It also excludes the 
real/physical data and any biological processes conducted on them, e.g. the temper-
ature, unless those measurements become part of the experimental data.

In this paper we introduce and evaluate ODNoR, that accepts a plain text description 
of a method then produces normalised entities and identified relations between them. 
The entities includes data, operation, software and database. With relations input 
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data, output data, by software and from database. The extracted entities and rela-
tions can be read as: the data is from database and is an input for an operation that 
is performed by software to produce an output data

The system comprises a new named-entity facility that recognises the operations and 
data, combined with the use of bioNerDS to recognise software and databases. The 
new recogniser is based on transformer technology that utilises the power of atten-
tion and word embedding and achieved the state-of-the-art performance on eleven 
common NLP tasks in 2018. For example, BERT [49] achieved F-score of 93.16%, 
1.5% point absolute improvement, on SQuAD (Stanford Question Answering Dataset) 
for question answering task and 80.5% (7.7% point absolute improvement) on GLUE 
(General Language Understanding Evaluation) for all nine natural language under-
standing tasks. 

Specifically, we used BioBERT [50], initialised with the BERT weights and trained 
on PubMed article abstracts and PubMed Central full texts. BioBERT outperforms 
the BERT on three biomedical text mining tasks: biomedical named entity recogni-
tion (0.62% F1 score improvement), biomedical relation extraction (2.80% F1 score 
improvement) and biomedical question answering (12.24% MRR improvement). They 
compared the performance of BERT and BioBERT on different biomedical detests, 
such as BC4CHEMD dataset for drug and chemical entities, CHEMPROT dataset for 
protein–chemica relations and BioASQ 6b-factoid dataset for question answering. We 
fine-tuned BioBERT on our labelled data to derive a model that is able to annotate a 
large quantity of data.

The system also recognises the relationships between the recognised entities using 
rule-based and machine learning systems.

Data are an essential part of the methods since they represent the dataset that is being 
used in an experiment. In computational biology, extensive use of data is required in 
dry or wet lab experiments. In the manuscripts, the data may be mentioned in a num-
ber of ways based on the purpose of that mention. For example:

• A DOI is referred to inside the text by reference or a link (doi 10.5061/dryad.478g5).

• Data may be reported by mentioning the file format where the data exist (.CLE 
in raw intensity (.CEL) file).

• Mention of biological term’s names (Gene 0.4 protein), short name (Gp0.4).

• Mention of accession number as a reference to a database record (A2BC19).

• Mention of sequences (ACTATCTAGAGCGGCCGCTT).
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• Reference to a biological concept that is used in the dataset (cluster, transcripts).

• Metadata that refer to real data (human and mouse genomes).

• Parameters for named and unnamed software (for example blastn, e-value and 
DUST filter in “BLASTed (blastn, e-value = 106, DUST filter)” or identity in 
“identity >= 94%”).

Kafkas et al. [35] studied the percentage of the data mentions in the body of articles 
and supplementary files and found the supplementary files contain more mentions 
than the body.

Entity normalisation, also known as entity linking, simply aims to find a correspond-
ing concept defined in a knowledge base (KB) or an ontology and link it to the anno-
tated entities. Dictionary lookup approach is widely used to enhance the entity link-
ing [68, 58]. Most of the biomedical entity normalisation studies in the last decades 
use the morphological information to normalise the entities [74]. The state-of-art 
rule-based system proposed by D’Souza and Ng [75] on two datasets, ShARe/CLEF 
eHealth Challenge corpus [76] and NCBI disease corpus [77]. It achieved F-score 
90.75% and 84.65% on the two datasets. It defined ten kinds of rules at different pri-
ority levels, such as abbreviation expansion, to measure morphological similarities 
between disorder mentions and concepts in two Knowledge base: SNOMED-CT re-
source of the UMLS Metathesaurus [78] and MEDIC lexicon [79]. The current state-
of-the-art is achieved by Ji et al. [86], which increased the accuracy of biomedical 
entity normalisation by 1.17%. They compare the performance of three transform-
ers models (BERT [49], BioBERT [50] and ClinicalBERTB [87]) on three different 
datasets (ShARe/CLEF [76], NCBI [77] and TAC2017ADR [88]) and achieved the 
best F-score as 91.10% 89.06% 93.22%, respectively.

Normalising the mentions of operations and data is important to ensure that the op-
eration has a common meaning. This in turn is a facility to populate such knowledge 
with instances from the literature. EDAM [34] is an ontology that describes bioinfor-
matics and biomedical resources. The current version includes over 2,200 concepts 
that are described using names (terms), synonyms, definitions and other properties. 
The definitions of concepts include useful terms that can be used as control variables 
for finding the biological terms in the text. They can also be used for semantic anno-
tation of workflows and web services, and as a standard for exchanging data. EDAM 
can also be used for verifying files and exchange formats, as some useful information 
about regular expressions can be used to validate the exchanged identifier values. 

EDAM includes four top main sub-ontologies, Topic, Data, Operation and Format. 
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Figure 4.1. EDAM ontology concepts and relations. Data has a topic, is an output or input to an 
operation, identified by an identifier and has a format. Image is taken from Ison et al. [34].

A fifth sub-ontology, called Identifier, is rooted under Data. Table 4.1 shows the 
definitions and examples of the five main concepts. The sub-ontologies are linked by 
five types of relationships (see Figure 4.1). They are:
Operation has a Topic
Data has a Topic
Operation has input/output Data
Format is format of Data
Identifier is identifier of Data
An example of relations with instances is: Protein threading (is an operation) (has 
input Data) Protein structure (has output Data) Sequence-structure alignment.

Bio.tools [153] is used to normalise the software mentions and a further post-processing 
step. Bio.tools is a repository of tools’ description that includes at least three core at-
tributes (name, short description and homepage). The description may include up to 
50 important scientific, technical and administrative attributes. One of the function 
attributes, which (if it exists), must contain at least one operation and may contain the 
data input and output. All of these, if they exist, are defined by EDAM’s Operation,
Data(format) ontologies.

As an example:

Bioconductor is a tool that is archived with three Operations

(Analysis, Data handling and Statistical calculation)

and accepts three types of Data input
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(Sequence, Data reference and Experimental measurement)

and produces one of three types of Data

(Mathematical model (with workflow format), Ontology data or Report)

The Topic may be included as part of a tool’s description. For the Bioconductor tool, 
four terms were associated: (Bioinformatics, Computational biology, Data 
management and Statistics and probability)

Relation extraction aims to extract and classify relational between identified entity 
mentions in plain text. Generally speaking, relation extraction modules can be clas-
sified into two categories, rule-based approaches relying on predefined patterns and 
machine learning methods based on well-designed features. Recent work involved 
larger corpora for extracting better patterns [63]. PATTY system [80] is based on 
mining algorithm that computes the n-gram combinations with large co-occurrence 
support. It processed two different corpora: the New York Times archive and the En-
glish edition of Wikipedia and achieved an accuracy between 75%-84.7%. RelEx 
[81] is a rule-based biomedical relationship extraction system. It extracted 150,000 
relations between genes and proteins from set of one million MEDLINE abstracts 
with an F-score of 78%. Zhou et al. [89] achieved state-of-the-art in relation ex-
traction from a plain text without the need to get high-level features from lexical re-
sources such as WordNet or NLP systems like dependency parser and named entity 
recognizers (NER). They used Att-BiLSTM, on SemEval-2010 Task 8 dataset, to cap-
ture the most important semantic information in a sentence and achieved F-score of 
84%. Soares et al. [90] introduced another state-of-the-art RE system using BERT. 
The learning method based on matching the blanks (MTB) that learns relation repre-
sentations from entity resolution annotations without any further tuning for relation 
extraction. It achieved F-score of 89.5% on SemEval-2010 Task 8 dataset. Cohen et
al. [91] reported the current state-of-the-art, on SemEval-2010 Task 8 dataset, which 
achieved 91.9% using BERT model. They used supervised span-prediction based sys-
tem, similar to question answering (QA), for relation classification (RC).

4.2 Materials and Methods

Figure 4.2 represents a high-level overview of ODNoR. An outline of our approach is 
as follows:

1. Preparation of data

2. Annotation
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Table 4.1. EDAM Concepts Definition. Table is taken from Ison et al. [34].

Sub-
ontology

Num-
ber of 
con-
cepts

EDAM definition General Definition Examples

Operation 558

Singular, 
bioinformatics-specific 

operations that are 
functions of tools, 

workflows or scripts, or 
can be performed 

manually

Can have special cases 
a)no input b)no output 

c)no input no output but 
change the current state

Protein threading - 
ID mapping - 

Service discovery - 
Molecular dynamics

Data 1,140

Types of data that are 
relevant in bioinformatics, 
commonly used as inputs, 

outputs or intermediate 
data of analyses, or 

provided by databases and 
portals

Information, represented 
in an information artefact 

(data record) that is 
‘understandable’ by 

dedicated computational 
tools that can use the data 
as input or produce it as 

output

Annotated text- 
online course - DNA 
structure - Sequence 
alignment image - 

Evidence - 
Profile-profile 

alignment - Gene 
expression matrix

Topic 209

Application domains of 
bioinformatics tools and 

resources; topics of 
research, studies or 

analyses; approaches, 
techniques and paradigms 
within -or directly related 

to- Bioinformatics

Cell biology - Model 
organisms - Allergy, 
clinical immunology 

and 
immunotherapeutics

Identifiers
(under
Data)

528

Types of identifiers that 
identify biological or 

computational entities; 
including 

resource-specific data 
accessions. Several 

identifier concepts in 
EDAM include regular 

expressions and examples

The identifier is not 
unique, the same id may 
identify multiple things

NCBI genome 
accession - DOI 
(note: it has a 

regular expression 
property within the 

EDAM ontology 
(doi )?[0-9]2[̇0-

9]4/.* ) - CABRI 
accession

Format 347

Data formats commonly 
used in -and specific to- 
Bioinformatics. Many 

format concepts in 
EDAM include references 

to their definition and 
documentation

FASTA - T-Coffee 
format - debug - 

InChI
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Representation

BRAT files CSV

Figure 4.2. System workflow. There are three main steps before presenting an experiment’s basic parts; 
data preparation, annotation and relation extraction. Normalisation is an additional layer to present the 

entities in well-know resources concepts.
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3. Normalisation

4. Relation extraction

5. Representation

ODNoR is designed and developed as a Named Entity Recogniser and Relation Ex-
traction tool that recognises Operation and Data mentions, Normalises them and iden-
tifies their Relations in the literature.

Identifying the data and operation entities is the first step to construct the workflow 
data events of a research article.

After finding the components, it is important to find the relations between them, what 
are the input data and output data, whether they are retrieved or deposited to a men-
tioned database, and whether the operation is done by stated software.

Once the entities and their relations are identified in the context of an event, the data 
event can be constructed. The series of the data events are then linked in order to 
form the workflow of the research paper’s method.

A layer of normalising the data, operations and software is added to link the data 
events to well-known resources.

4.2.1 Corpus creation

PubMed central [135] was searched for articles that were published between 1𝑠𝑡 Jan-
uary 1998 and 31𝑠𝑡 March 2021 using the MeSH term microarray analysis. In addi-
tion, to obtain full text articles, we restricted the PubMed search to include only those 
in the PubMed Central Open Access subset. The query used was:

``microarray analysis''[MeSH Terms] AND (``1998/01/01''[PubDate] : 
``2021/03/31''[PubDate]) AND ``open access''[filter]

25 documents were randomly chosen for training and test purposes. Training and test-
ing data were divided as 75% and 25%, respectively.

4.2.2 Data preparation

The data and operations were manually annotated as collaboration annotation, based 
on the rules in the guideline attached in Additional file 1. BRAT format annotated 
corpus, 25 Methods sections, is available in Additional file 2
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Following is the definition of the entities and inclusion and exclusion criteria. Figure 
4.3 shows the steps of data and operation annotations.

Operation description

In our context, the operations are a specific/concrete computational process conducted 
in an experiment and presented in a manuscript as a part of the work done by a paper. 
The operations could have data inputs and produce outputs data. It also could have 
either input or output data and in some cases it could be mentioned without any data 
but an indication that a process is done. We also has a kind of operation that did not 
do any kind of processing but assigns the data a role or identification in the context. 

Operation exclusion criteria:

The following types of operations were not included in the operation annotation:

• Biological processes conducted on real/physical data.

• Non analytical context processes such as the process that explain how a software 
works in general.

Data description

Data are items (or collections of items) that exist in digital form (i.e. representation), 
and can be potentially used as an input to or output from DB, software that processes 
those data to fulfil a specific/concrete computational processes that is conducted in an 
experiment and presented in a manuscript. This description includes any used data in 
the experiment although no explicit operations are mentioned in the sentence context.

Data exclusion criteria:

The following types of data were not included in the data annotation: 

• The real/physical data.

• Hypothetical mentions such as abstract data that are used for conceptual and ex-
planation purposes (e.g., discussion of strings, integers, etc.).

• Data in files/tables/figures or in the supplementary files/tables/figures.
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no

yes

no

yes

no
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Figure 4.3. A flowchart shows the steps of annotation.
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inputData

outputData

Figure 4.4. Four types of relations between extracted entities.

Relations description

As well as the two entities, we defined and manually annotated four types of relations 
(see Figure 4.4):
inputData, which defines a relation from data to an operation.
outputData, which defines a relation from an operation to data.
bySW, which defines a relation from an operation to software.
fromDB, which defines a relation from data to a database.

4.2.3 Automated annotation

We tested the usage of 4 systems and compared their capabilities in annotations; rule-
based, BiLSTM-CRF, BERT and BioBERT. The four systems were tested and anal-
ysed separately. We are interested to see the performance over these systems and ex-
amine if the current state-of-art in biomedical named entity recognition BioBERT
will produce better result than the BERT. We also would like to examine the perfor-
mance of BiLSTM-CRF as one of previous NER state-of-the-art on CoNLL 2003 
dataset [154].

Rule based

The texts were lexically analysed through the Sketch Engine tool [155] before mak-
ing the rules that aimed to recognise the mention of an operation performed on the 
data. The rules are written through the GATE JAPE environment [156]. Figure 4.5
shows an abstract representation of the main steps of the rule based system. The most 
important rules for annotating the operations are:

1. Test the verb of the sentence
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Figure 4.5. Abstract of the rule-based system.

1.1. The verb refers to a process:

The verb is either syntactically or semantically similar to one of the EDAM 
Operation concepts. A list of words (in Appendix B) was created for the 
operations that fail to syntactically match one of the EDAM concepts, e.g. 
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the Data retrieval operation could be referred to by the verbs down-
load, obtain, get, accessed, etc... There are 13 hard-coded mapping rules.

1.2. The verb of action:

The process could be preceded by a verb of action, e.g. verbs such as “per-
formed”, “done”, “employed”, “conducted”, etc.. It comes with variant 
context, e.g. “we performed an operation on data” or “we used a tool to 
perform the operation” or “a tool is used to perform the operation”.

1.3. Verb phrases starting with “used to”:

Verb phrases starting with “used to” are frequent in the corpus. Examples 
of these phrases are: ”operation/software used to do an operation”, ”oper-
ation/software used to process data” or ”operation/software used to fulfil a 
task.

Example 3 (PMC4149277)

“A BRB-ArrayTool plug-in was used to perform regression analysis of time 
course expression data to identify the genes whose expression varies over 
time.”

2. Test the subject of the sentence

2.1. The subject is the operation:

In this case, the verb is often an action verb such as “performed”, “done”, 
“employed”, the subject is usually an expression of a process. The subject 
is first checked as to whether or not it is correctly mapped to an EDAM 
concept, since some subjects could be tools, software or methods performed.

2.2. The subject could be a composite of operation and data. e.g. the analysis 
of data is performed. 

2.3. The subject is a tool and used to perform the operation

Example 4 (PMC3735399)

“Pathway enrichment analysis of interaction network GENECODIS was 
used to perform biological pathway enrichment analysis of all genes in the 
interaction network with FDR 0.05. GENECODIS is a function analysis 
tool of gene, and it integrates different information resources (GO, KEGG 
or SwissProt), searches and arranges gene set annotation by statistical sig-
nificance”
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Some of the data rules depend on first finding the operation. If there was no opera-
tion performed, the inference of using data in the study or data resulting from previ-
ously mentioned operations were checked.

Example 5 (PMC2374988)

“The microarray breast cancer datasets considered in this work are described else-
where [5,7,9,18,19]. For these cohorts we used the normalized data, which are avail-
able in the public domain (see [5,7,9,18,19]).”

The most important rules in determining the data are:

1. Where the verb is an operation, the subject is usually the data. More data could 
occur in the rest of the sentence.

2. Where the subject is the operation, we looked for data in the object and the rest 
of the sentence.

Analysis of the preposition showed with what it frequently comes. e.g.

• “at” is followed by data describing the condition of the operation,

• “on” usually comes with data,

• “by” either comes with either v-ing detailing the operations, or using data/tools/ 
software or mentions of a tool name.

3. Since the data and method/software/tools could occur in the same place, post-
processing is performed to make sure the tagged text was not a tool. We checked 
the annotation in both the bioNerDS and bio.tools.

4. The noun mentions were also checked in EDAM Data ontology and ePMC an-
notation resources to see if they matched any known data instance.

BiLSTM-CRF

We used a pre-trained model from NeuroNER [157]. We used NeuroNER because 
it is a well-documented and user-friendly named-entity recognition tool that accepts 
BRAT annotation. It is based on long short-term memory (LSTM) [158] and con-
tained in three layers: “The character-enhanced token-embedding layer, Label predic-
tion layer, and Label sequence optimization layer.”. The parameters of the configura-
tion file were fine-tuned to use a pre-trained model to annotate the data. We enabled 
using the CRF layer and used the PMC embedding file for pre-trained token embed-
dings. We left the default value for other parameters. It takes training, validation, and 
testing data in the BRAT format as inputs.
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Figure 4.6. Supervised learning approach on our labelled data using the pre-trained model BioBERT. 
This model was fine-tuned on English version of the standard CoNLL-2003 NER dataset that uses BIO 
(Begin, Inside, Outside) tagging scheme. We did a modification to make it compatible with out BRAT 

annotation.

BERT

Bidirectional Encoder Representations from Transformers (BERT) [49] is a new open 
source model released by Google. It has pre-trained models that are trained on text-
books and Wikipedia. It deals with inputs as WordPieces rather than tokens and uses 
multi-head attentions for faster and better performance. We used BERT Base, which 
has 12 encoder layers, 768 hidden units and 12 attention heads. The deep learning 
framework used is TensorFlow [46]. This model was fine-tuned on English version 
of the standard CoNLL-2003 Named Entity Recognition dataset [82] that uses BIO 
(Begin, Inside, Outside) tagging scheme. Since our annotation is in BRAT format, we 
first convert the BRAT to CoNLL format, perform the NER based on BRAT model, 
then finally convert the CoNLL result into BRAT format.

BioBERT

BioBERT [50] is a pre-trained model that is initialised with the BERT weights and 
then trained on PubMed abstracts and PMC full-text articles. It achieved better re-
sults in tagging biomedical articles than the normal BERT on three biomedical text 



CHAPTER 4. ODNOR 117

mining tasks: biomedical named entity recognition, biomedical relation extraction 
and biomedical question answering. On biomedical named entity, BioBERT achieved 
F-score between 72.24% and 93.47% on BC4CHEMD dataset for drug and chem-
ical. Figure 4.6 shows how we fine-tuned BioBERT on our labelled data to have a 
model suitable to our task. As mentioned above in BERT, the model was fine-tuned 
on CoNLL-2003 dataset [82] that uses BIO (Begin, Inside, Outside) tagging scheme. 
We did the same process for converting our BRAT annotation into CoNLL format, 
perform the NER based on BioBERT model, then finally convert the CoNLL result 
into BRAT format.

4.2.4 Integration with bioNerDS

BioNerDS [71] is a dictionary- and rule-based named entity recogniser for bioinfor-
matics software and databases in the literature [127]. We used the improved version 
with post-processing filtering reported in [11] with an F-measure of 67% (precision 
82%). We used bioNerDS to extract resources and we integrated it with our system 
and related the software with operations and databases with data. We updated the 
dictionary by adding the new tools mentioned in bio.tools [153] to reflect up-to-date 
tools.

Since not all resources are explicitly classified as database or software, a classifica-
tion process was done to find the type of the resource. The name of the annotated re-
source with a set of keywords used for annotation were tested to the regular expres-
sion (adapted from bioNerDS), then the dictionary was checked. The dictionary con-
tains a hint if a SW or DB is found. In some cases, the resource matched more than 
one instance of a dictionary that can be software and database at the same time. In 
this case, the resource was tested against bio.tools; if there was a match, then it was 
SW. If not, then it was a DB. If there were no hints in the dictionary and regular ex-
pressions, the resource was tested to bio.tools and recorded as unknown if there was 
no match.

4.2.5 Normalisation

We used the EDAM ontology [34] (version 1.21) to normalise the annotated opera-
tions and data. The EDAM Operation ontology is used for operations while data are 
normalised to the concepts in the EDAM Data and the EDAM Topic parts of the on-
tology. The OWL API [159] is used to deal with the ontologies.
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We used cosine distance to test how the terms and concepts were syntactically sim-
ilar. A threshold (0.51) was set to avoid far matches. Cosine similarity is calculated 
using only the dot product and magnitude of each vector, V1 . V2 / (|V1| * |V2|), and 
is therefore affected only by the terms the two vectors have in common. The vector 
representation is defined by Ukkonen [160] that based on finding common sub-strings 
of fixed length q (q-grams) between two strings. In our case, the q is 3. Cosine simi-
larity takes into account the number of occurrences of each q-grams. Therefore, each 
string will be divided into q-grams, and the string profile will be the collections of 
q-grams along with the number of their occurrences. Only the value of the common 
q-grams are involved in calculating the Cosine similarity. We specifically used the 
implementation provided by the java-string-similarity library [161] that implemented 
different string similarity and distance measures such as Levenshtein edit distance, 
Longest Common Subsequence, cosine similarity, etc.. We compared the results ob-
tained by a number of provided algorithms on samples of our dataset. We found that 
cosine similarity gives us the best result.

For operation normalisation, handcrafted rules were tested if there was no syntax 
match. There are 13 implemented rules with a list of words (in Appendix B) to rel-
evant concepts. These rules are for concepts that are referred to with different terms 
e.g. Data retrieval concept can be expressed in the text as downloading, obtain-
ing or getting data, calculation concepts could be expressed as summing, subtracting, 
log transforming or averaging.

We added Assigning Role as an additional operation concept in the EDAM Oper-
ation ontology. In some cases, the operation was not computational itself but it as-
signed a role to the data mentioned. For example, in the sentence: “The data are in-
cluded in the study”, the data here has no action performed on it but it has a role since 
it is used in the study. There was also another case as in the appearance of “as” where 
data was assigned a role as a named data

Example 6 (PMC4219025)

“We used Cytoscape [77] to visualize the networks with the strength of the gene-gene 
correlation as a co-factor.”

Here the strength of the gene-gene correlation played a role of co-factor in the Cy-
toscape tool.

If the operation failed to be mapped syntactically or by the rules, the synonym set 
from WordNet was tested. We tested the similarity of the operation to the top 12 op-
eration classes. The Leacock and Chodorow [162] algorithm was used to determine 
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the semantic relevance of the two words. The algorithm tested the relatedness be-
tween the operation and the classes by examining the path lengths between them, as 
they represented in WordNet, and select the shortest the path as a measure of similar-
ity: 

𝐿𝐶𝐻(𝑠1, 𝑠2) =
- 𝑀𝑎𝑡ℎ. log𝑒(𝐿𝐶𝑆(𝑠1, 𝑠2).𝑙𝑒𝑛𝑔𝑡ℎ

(2 * 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ(𝑝𝑜𝑠))

We specifically used the implementation provided by WS4J (WordNet Similarity for 
Java) library [163] which counts up the number of edges between the senses in the 
’is-a’ hierarchy of WordNet. The value is then scaled by the maximum depth of the 
WordNet ’is-a’ hierarchy. A relatedness value is obtained by taking the negative log 
of this scaled value. 

If the mapping failed, the operation was mapped to the top class Operation. Algo-
rithm 1 shows the steps of the operations normalisation.

For data mapping, we looked at both the Data and Topic ontologies and ePMC an-
notation. Although the Topic ontology has fewer classes than the Data ontology, the 
reason we normalised to the Topic ontology was the data used is referenced in a text 
in a general way, rather than specifying the item of data used and as it was listed in 
the EDAM ontology, e.g. gene mention was mapped to Genes as Topic it made more 
sense than mapping it to gene ID. If there was no Data concept detected, the data
text was checked if it contained any indication of comparison (sign or word), then 
it was mapped to the Experimental measurement data concept. If there was no 
match, the data was mapped to the class Data in the Data ontology. We also add an-
other layer of normalisation by checking if there is any EPMC annotation related to 
the annotated text.

4.2.6 Relation extraction

We defined and manually annotated four types of relations, as mentioned previously 
in Subsection 4.2.2: input data, output data, By software and from database.

We used the system developed by Zhou et al. [89] which depends on Bidirectional 
Long short-term memory (BiLSTM) [158] and attention [48] to extract relations. It 
capture the most important semantic information in a sentence without the need to 
get high-level features from lexical resources such as WordNet or NLP systems like 
dependency parser and named entity recognizers (NER). The system was originally 
used for SemEval-2010 relation classification task [60] that contains 10,717 anno-
tated examples covering nine relations: cause-effect, instrument-Agency, product-
Producer, content-container, entity-Origin, entity-Destination, component-Whole, 
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Algorithm 1 Operation Normalisation.
1: procedure OperationNorm
2:  operationStem ← pre-process (operation)
3:  𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 ← WordNet dictionary
4:  loop through annotated entities:
5:  top:
6:  𝑚𝑎𝑝 ← 𝐸𝐷𝐴𝑀𝑚𝑎𝑝𝑝𝑖𝑛𝑔()
7:  if map not null then:
8:  𝑛𝑜𝑟𝑚𝑅𝑢𝑙𝑒 ←‶ 𝑆𝑦𝑛𝑡𝑎𝑥″;
9:  goto loop.

10:  𝑚𝑎𝑝 ← 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑅𝑢𝑙𝑒𝑠 (see Algorithm 2)
11:  if map not null then:
12:  𝑛𝑜𝑟𝑚𝑅𝑢𝑙𝑒 ←‶ 𝑅𝑢𝑙𝑒𝑠″;
13:  goto loop.
14:  if operationlen > 1 then:
15:  goto top (Test the last word).
16:  if failed then:
17:  goto top (Test the first word).
18:  if failed then:
19:  do semantic similarity (synonym set)
20:  𝑛𝑜𝑟𝑚𝑅𝑢𝑙𝑒 ←‶ 𝑠𝑦𝑛𝑜𝑛𝑦𝑚″;
21:  if failed then:
22:  map to top class operation
23:  𝑛𝑜𝑟𝑚𝑅𝑢𝑙𝑒 ←‶ 𝑇 𝑜𝑝𝑐𝑙𝑎𝑠𝑠″;
24:  goto loop.
25:  close;
26:

Algorithm 2 Rules of Syntax match for operations.
1: procedure OperationRules
2:  operationStem ← pre-process (operation)
3:  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 0.9
4:  𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 ← WordNet dictionary
5:  top:
6:  𝑉 𝑒𝑟𝑏𝑠 ← list of verbs lemma
7:  loop:
8:  𝑐𝑜𝑠𝑖𝑛𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← The cosine distance between operation lemma and Verbs(i) lemma
9:  if cosineDistance > threshold then return true

10:  goto loop.
11:  close;
12:  goto top.

member-Collection and Communication-Topic. There is an additional relation other
that express the relations that are not defined. Att-BiLSTM outperformed the previ-
ous task results but its F-score, 84%, is overtaken by the relation extraction models 
that adapt transformers technology, with F-score of 91.9%. Although transformer-
based approaches achieved higher scores in relation extraction, Att-BiLSTM achieved 
better result on our dataset. We modified the Att-BiLSTM model to extract input and 
output data relations. The format accepted should present each sentence with the two 
entities that have a relation. Each sentence should have only one relation. Since the 
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Table 4.2. Operations annotation results.

Model Trained Data Test Data
Prec Recall 𝐹1-Scores Prec Recall 𝐹1-Scores

Rule Based 77.98 70.43 74.01 71.50 63.88 67.48
BiLSTM-CRF 94.58 89.15 91.79 85.93 76.82 81.12
BERT 99.15 97.29 98.21 93.38 85.98 89.52
BioBERT 97.69 98.94 98.31 93.38 91.56 92.46

Table 4.3. Data annotation results.

Model Trained Data Test Data
Prec Recall 𝐹1-Scores Prec Recall 𝐹1-Scores

Rule Based 50.63 44.81 47.54 52.59 41.22 46.21
BiLSTM-CRF 90.01 84.54 87.19 73.46 54.58 62.63
BERT 98.41 92.89 95.57 78.17 70.70 74.25
BioBERT 93.86 98.94 96.33 72.87 84.15 78.10

original sentence could have more than data or operations, the duplicate of a sen-
tence was made to include only one relation between each mention of data and op-
eration. We assumed that every mention of data and operation in the same sentence 
had a relation. This scenario is true if there is only one operation mentioned in a sen-
tence, but when more than one operation is present, it is not always true. The data
mention could have a relation with two operations if it is an output data of one oper-
ation and an input of another. In some cases data could be an input for one and have 
no relation with the following operation.

4.2.7 Representation

The current annotated and normalised terms are stored in BRAT [113] format to en-
able web-based representation. This includes the annotated entities and the relations. 
They are also available in XML and CSV format.

4.3 Results

4.3.1 Annotation

Table 4.2 shows the F-score results of the operations annotation in all four systems 
and table 4.3 shows the results of the data annotation. The best F-scores, 92.46% for 
operations and 78.10% for data annotations, were achieved by the model based on 
the BioBERT.
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Table 4.4. Statistics describing the manually annotated corpus.

Characteristics Value
Total number of documents 25
Number of sentences 740
Total operations mentions 621
Total data mentions 1,041
Average mentions of operation per document 25
Average mentions of data per document 42
Maximum mentions of operation in a single document 50
Maximum mentions of data in a single document 420

Table 4.5. BioNerDS evaluation results.

Prec Recall 𝐹1-Scores
Databases 40.43 55.88 46.91
Software 73.73 65.80 69.19

Table 4.6. Normalisation evaluation results.

Prec Recall 𝐹1-Scores
Operations 95.40 1 97.64
Data 84.35 1 91.51
Software 1 75.58 86.09

Table 4.4 shows the number of annotated entities in the manually annotated corpus.

4.3.2 Integration with bioNerDS

The annotated software and databases are manually evaluated and have the F-scores 
shown in Table 4.5.

4.3.3 Normalisation

Table 4.6 shows our normalisation evaluation. The accuracy of the operations map-
ping is 95.40%, which implies the EDAM Operation ontology is a good knowledge 
resource that represents the operational concepts.

More than 40% of data mentions (unique text) were mapped to the top class Data. 
This is because all mapping choices failed to find a match for the data mention and 
we linked it to the top class Data. This shows that a large part of data failed to find a 
class match.

The low percent of mapped data entities reflects the way the data are expressed by, 
and annotated, in the text. The data in the context of input to, or output from, an op-
eration are mentioned in a more descriptive way than in a specific instance of data. 
Moreover, the same data are referred with different names in different sentences; for 
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example, the cell file, the data and the cells’ information could refer to the same in-
stance of data in the text.

Although the data mapping is correct, it is not precise (specific). The classes in the 
Data ontology refer to a specific id, while it is just mentioned as a name in the text. 
For example, the data called the prob mapped to the correspondence concepts in EDAM 
Data ontology as dbProb ID, which is not precise. The matched Topic is Probes
which presents a more relevant corresponding class. The same goes for samples; the
sample ID is the Data ontology, while there is no mentioned ID. The samples Topic 
concept is more relevant.

There are some imprecise classes matched with the annotated entities. Using a syn-
onym set for normalisation produces most of the false positives, e.g. run is mapped 
to Calculation where it is an operation. The syntax mapping also match the terms 
with imprecise classes, e.g. any assign is mapped to NOE assignment, measure is 
mapped to Neurite measurement, and for data referred by the word value, the class
E-value is chosen.

The following is an example of the annotated operations and data with correspond-
ing EDAM’s Operation and Data classes for Methods section of article with PM-
CID PMC3735399. The Methods section of the paper is in Appendix C (Subsection 
C.1.1).

Annotated operations with normalisation

Sentence: “GSE35957 was downloaded from Gene Expression Omnibus (GEO) database 
(http://www.ncbi.nlm.nih.gov/geo/), which is based on GPL570 [HG-
U133_Plus_2] Affymetrix Human information Genome U133 Plus 2.0 Array 
Platform (Affymetrix, Santa Clara, CA, USA).”

1. downloaded, Data retrieval

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_2422

Sentence: “Microarray probe annotation information was downloaded from the Affymetrix 
Company, including all AffymetrixATH1(25K) gene chip probe information, and 
the probe annotation information files of the platform.”

2. downloaded, Data retrieval

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_2422

(http://www.ncbi.nlm.nih.gov/geo/)
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Sentence: “The original data were preprocessed by Affymetrix [7,8] package in R lan-
guage.”

3. preprocessed, Process

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_0004

Sentence: “LIMMA [9] package in R language was used to identify the differentially ex-
pressed genes between the expression profile of five osteoporosis patients and 
four non-osteoporosis samples.”

4. identify, Entity identification

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_3280

Sentence: “Multiple testing correction was performed by Bayesian method [10].”

5. Multiple testing correction, Correlation

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_3465 (wrong mapping, it should be
calculation)

Sentence: “An FDR <0.01 and |logFC| >1 were chosen as thresholds for screening the dif-
ferentially expressed genes.”

6. chosen as, Assigning Role

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_11111

7. screening, Virtual ligand screening

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_0482

Sentence: “Therefore, we used HitPredict software (http://hintdb.hgc.jp/htp/) to 
search the differentially expressed genes that can interact with OPG gene.”

8. search, Search

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_2421

Sentence: “This study used the protein-protein interactions with high confidence to find 
interactions between the differentially expressed genes, and used the Cytoscape 
[12] to visualize the interaction relationships.”

9. find, Recognition

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_2423

10. visualize, Visualisation

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_0337

(http://hintdb.hgc.jp/htp/)
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Sentence: “In this study, we used MCODE to mine the modules from the protein-protein 
interaction network with degree >2.”

11. mine, Analysis

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_2945

Sentence: “Further, we used Bingo [13] to annotate each module based on the hypergeo-
metric distribution (FDR <0.05).”

12. annotate, Annotation

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_0226

Sentence: “GENECODIS was used to perform biological pathway enrichment analysis of 
all genes in the interaction network with FDR <0.05.”

13. biological pathway enrichment analysis, Enrichment analysis

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_3501

Annotated data with normalisation

Sentence: “GSE35957 was downloaded from Gene Expression Omnibus (GEO) database 
(http://www.ncbi.nlm.nih.gov/geo/), which is based on GPL570 [HG-
U133_Plus_2] Affymetrix Human information Genome U133 Plus 2.0 Array 
Platform (Affymetrix, Santa Clara, CA, USA).”

1. GSE35957, Data

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_0006

Sentence: “Microarray probe annotation information was downloaded from the Affymetrix 
Company, including all AffymetrixATH1(25K) gene chip probe information, and 
the probe annotation information files of the platform.”

2. Microarray probe annotation information, Gene annotation (homology information)

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_3148

Sentence: “The original data were preprocessed by Affymetrix [7,8] package in R lan-
guage.”

3. The original data, Data

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_0006

Sentence: “LIMMA [9] package in R language was used to identify the differentially ex-
pressed genes between the expression profile of five osteoporosis patients and 
four non-osteoporosis samples.”

(http://www.ncbi.nlm.nih.gov/geo/)
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4. differentially expressed genes, Gene ID

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_2295

5. the expression profile, Gene expression profile

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_0928

Sentence: “An FDR <0.01 and |logFC| >1 were chosen as thresholds for screening the dif-
ferentially expressed genes.”

6. FDR <0.01, Experimental measurement data

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_3108

7. | logFC | >1, Experimental measurement data

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_3108

8. thresholds, Experimental measurement data

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_3108

9. the differentially expressed genes, Gene ID

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_2295

Sentence: “Therefore, we used HitPredict software (http://hintdb.hgc.jp/htp/) to 
search the differentially expressed genes that can interact with OPG gene.”

10. differentially expressed genes, Gene ID

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_2295

Sentence: “This study used the protein-protein interactions with high confidence to find 
interactions between the differentially expressed genes, and used the Cytoscape 
[12] to visualize the interaction relationships.”

11. protein-protein interactions, Protein interaction ID

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_1074

12. high confidence, Evidence

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_2042

13. interactions, Atom interaction data

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_0906

14. differentially expressed genes, Gene ID

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_2295

(http://hintdb.hgc.jp/htp/)
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15. interaction relationships, Protein interaction record

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_0906

Sentence: “In this study, we used MCODE to mine the modules from the protein-protein 
interaction network with degree >2.”

16. modules, Data

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_0006

17. protein-protein interaction network, Protein interaction ID

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_1074

18. degree > 2, Experimental measurement data

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_3108

Sentence: “Further, we used Bingo [13] to annotate each module based on the hypergeo-
metric distribution (FDR <0.05).”

19. module, Data

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_0006

20. hypergeometric distribution, Dirichlet distribution

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_1347

21. FDR < 0.05, Experimental measurement data

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_3108

Sentence: “GENECODIS was used to perform biological pathway enrichment analysis of 
all genes in the interaction network with FDR <0.05.”

22. all genes, Gene ID

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_2295

23. interaction network, Atom interaction data

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_0906

24. FDR < 0.05, Experimental measurement data

ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_3108
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Table 4.7. Relations results.

Trained Data Test Data
Prec Recall 𝐹1-Scores Prec Recall 𝐹1-Scores

Input data 94 91 93 78 88 83
Output data 84 88 86 71 55 62
From database 77.61 1 87.39 72.72 1 84.21
By software 83.15 1 90.80 86.05 1 92.50

4.3.4 Relation extraction

Table 4.7 shows the relations evaluation result. We used the Att-BiLSTM for extract-
ing the relationship between data and operations, whether an operation had input 
data, output data. It achieved F-scores of 83% and 62%, respectively.

We did a rule-based relation extraction to relate data with databases and operations
with software. It gave F-scores of 98.56% and 98%, respectively.

One of the chapter’s contributions is presenting the possible operations of a tool. Al-
though bio.tools presents this kind of information, our system presents a granular set 
of EDAM classes than referring to just the top classes and also discover any missed 
mentions. For example, the R tool has an association with 143 unique operations
while it is expressed in bio.tools by three top classes of EDAM Operation ontology 
(Analysis, Data handling and Visualisation). It is also associated with the
Calculation class that is not mentioned in bio.tools as an EDAM top Operation
class.

4.3.5 Representation

The annotation of data, operations, software and databases with relations among 
them is represented in the BRAT format. Figure 4.7 shows the annotation with rela-
tions of the article with PMCID PMC3735399. Figures 4.8, 4.9 and 4.10 shows the 
normalisation representation in BRAT.

4.4 Discussion

Developing rule-based systems was challenging and time-consuming. The rule-based 
system gives moderate results (poor result for data). The syntax structure of the texts 
is varied among the corpus. Implementing basic rules of analysing < subject, verb, 
object > could not be generalised well to include all varieties of the text. More flexi-
ble rules could have annotated meaningless data, while strict rules increased the accu-
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Figure 4.7. An example of annotation with relations in BRAT format.

racy but reduced the recall. One of the limitations of the system is that it depends on 
the verb of the sentence. In the case where there are two verbs, but they are not recog-
nised as being two main verbs, one operation will be missed. Another limitation is 
that the list of the verbs that implies an operation meaning should be collected prior 
to the annotation if it is not syntactically similar to the operations in the EDAM Oper-
ation ontology.

Moving to neural networks and transformers gave better results when the training was 
on the biomedical corpus. The BioBERT system gave the best result in annotating 
both the operations and data.

4.4.1 Ambiguity

We encountered some challenges in annotating the operations and data. Here are 
some examples of the ambiguous cases:

1. There are some entities with the same syntax but could be operations or data
based on the context they are mentioned in.

Example 7 (PMC4438953)

“Complete amino acid sequences were downloaded from NCBI database in FASTA 
format and alignments were performed using ClustalW. Subsequently, align-
ments were adjusted using Bioedit 7.0 software with 60 % threshold for homol-
ogy.”
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Figure 4.8. Data Normalisation in BRAT.

Figure 4.9. Operation Normalisation in BRAT.

Figure 4.10. Software Normalisation in BRAT.

Alignment in the first sentence is an operation, but alignments in the second sen-
tence are data.

Example 8 (PMC2919724)

“A global score for our reanalysed dataset and the original analysis was com-
puted as the sum of log-scores for each individual TF.”

Analysis often comes as an operation. However, in this sentence, the original 
analysis is data.

2. The data instances are not always mentioned as a singular or a compound name 
but as a long description.
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Example 9 (PMC4268857)

“Analyses were performed on three data sets:

1. The publicly available TCGA, from which HE images, mRNA expression, ge-
nomic data including copy number variation and DNA methylation data, and 
corresponding clinical information for 489 HGSOC patient samples were ob-
tained. This was downloaded from the TCGA data portal [4] and cBioPortal 
[25].

2. SEARCH data set with tissue samples and corresponding clinical information 
for 245 HGSOC samples (out of 516 ovarian cancer cases; Table 1). Patients 
were recruited after a diagnosis of ovarian cancer and if they were able to con-
sent for participation in the study [3]. Key demographical and clinical data on 
the patients, including BRCA1 germ-line mutation status, were presented anony-
mously.

3. Nottingham Ovarian Cancer Study (NOT) data set with tissue samples and 
corresponding clinical data from 276 HGSOC samples (out of 507 ovarian can-
cer cases; Table 2). This is a retrospective study of ovarian cancer cases di-
agnosed between 1991 and 2011 [3]. For this study, the institutional research 
ethics boards (East Of England Cambridgeshire REC (for SEARCH) and Der-
byshire REC (for NOT)) waived the need to obtain consent. Both local human 
research investigation committees approved each study. ”

The first sentence is followed by three points that contain many sentences ex-
plaining the data used and where they are obtained and some metadata about 
them.

3. The context that explains the operations could start with the purpose of using an 
operation or how to do an operation followed by a series of other operations.

Example 10 (PMC4438953)

“GO analysis was used to analyze the predominant functions of the differentially 
expressed genes according to the GO, which is the key functional classification 
of the NCBI (18,19). Fisher’s exact test and χ2 test were used to classify the GO 
category, and the FDR (20) was calculated to correct the P-value; the smaller 
the FDR, the smaller the error in judging the P-value.”

There is going to be a redundancy if we annotate both analysis references the 
GO analysis and analyze because they refer to the same operation. We cannot 
apply the same rule for the second sentence. The FDR was calculated calcula-
tion is a separate operation done before the following operation correction in 
context correct the P-value
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Example 11 (PMC2714961)

“We used the Oncomine database http://www.oncomine.org/main/index.jsp to 
conduct a meta-analysis of the number of studies comparing gene expression 
in normal prostate tissue with that of localized prostate tumor tissue [12]. The 
complete list of the studies used in the meta-analysis can be found in the supple-
mentary materials (Table S1).”

In the first sentence, Oncomine database is not the medium used to do the meta-
analysis operation as the syntax could suggest. It is the source of the data, as 
we can implicitly understand that from the following sentence since there is no 
explicit mention of data retrieval. This first sentence is an introductory sentence 
rather than a sentence that contains an operation or data.

4.4.2 Limitations

1. The annotation and normalisation of data could be enhanced. One suggestion is 
that by excluding any data description, a limited number of words are expressing 
the data. Another is to develop more rules for data normalisation by studying the 
EDAM Data classes.

2. Enhance the relation extraction part by oversampling output data and adding 
“Other” relation to express no relation between a mention of data and an oper-
ation.

3. Post-processing of the annotated terms could be done to improve the annotation 
accuracy, such as splitting the combined nouns, removing the annotation of the 
subtitles and removing the acronyms from data.

4. The relation between the data and database did not show if the database was 
used as a sink or data source.

4.5 Conclusion

The ODNoR tool can get the key information mentioned in the Methods section, nor-
malise them and find the relations between them. The data and operations are auto-
matically annotated from the literature using BioBERT with a high accuracy. The re-
lations between input, output data, operations, software and databases are expressed. 
The operations and data are normalised to EDAM Operation, Data and Topic ontolo-
gies. The software entities are normalised to bio.tools IDs. Now we have the com-
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ponents of the method, we can proceed with the process of a method extraction and 
form an abstract that combines these components in a flow of events.

4.6 Additional Files

4.6.1 Additional file 1 — Annotation Guideline

4.6.2 Additional file 2 — Annotated Corpus
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Abstract

Background Understanding the work conducted in research papers is crucial to vali-
date, evaluate and replicate it. With a growing number of publications, an additional 
challenge is to understand research methodologies described in prose. Representing 
them as smaller steps that contain the main parts of the research workflow in a com-
putationally amenable form could facilitate faster understanding and enable replica-
tion.

Objectives This chapter aimed to explore how to automatically reconstruct data work-
flows that represent the methodology as presented in each research paper in the mi-
croarray analysis literature. We also explore how a discourse analysis can improve the 
result of the extracted representations.

Methods We introduce and evaluate ODNoRFlow, which processes the Methods sec-
tion of a paper and produces linked data events that express the steps of the work re-
ported in the paper as an abstract workflow. The system is applied to the Methods 
section in a corpus of 25 papers selected randomly from the microarray analysis lit-
erature.

We analysed the result of two types of discourse analysis, functional discourse and 
RST, by comparing the discourse function or relation to the extracted data events to 
build a pattern that help in improving the workflow precision result.

Results We extracted 25 abstract workflows from the used data set. We evaluated the 
quality of the extracted data events and obtained an F-measure was between 93.56% 
and 61.04% with a good inter-annotator agreement. We evaluated the possibility of 
using discourse analysis to improve the quality result of the extracted data events and 
found that the patterns extracted are not sufficient to filter out unrelated data events.

Conclusion We demonstrated the feasibility of automatically identifying and link-
ing data events that express the steps of the work reported in the paper as an abstract 
workflow.

135
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5.1 Introduction

The methods reported in the scientific literature are growing in quantity and complex-
ity. Understanding and applying these methods requires huge efforts to explore them 
since they are not computationally formed. The key reason as for methodologies not 
being available in a computational form is that they are traditionally reported in the 
Methods section of a research paper as a free-text description of the steps of the work 
that has been reported, what components are involved and why they were chosen [7]. 
If methods were computationally extracted and represented from published method-
ologies then researchers could have the opportunity to identify trending methods in 
a period of time for a given task and which new methods old ones are replaced with. 
Similarly, they would be able understand how these methods changed over time and 
be able to link between the method developments and how the methods evolve.

The aim of this paper is to explore how to automatically extract a computational rep-
resentation of methods reported in the Methods section from the computational biol-
ogy literature, in particular using microarray analysis as a case study. We have previ-
ously developed ODNoR (Chapter 4), a named entity recogniser for identification of 
mentions of computational biology operations and data in the literature. In this chap-
ter we aim to organise the operations and data identified in an abstract data/method 
workflow for a single research article. Specifically, we introduce and evaluate ODNoR-
Flow, which accepts free-text of the Methods section and produces linked data events 
that represent the steps of the work reported in the paper. A data event is an operation 
on data performed by an operator(s). In our context, operators can be software (e.g. 
BLAST), tools (e.g. Microsoft Excel) or different methods (e.g. Student’s t-test). A 
representation of a data event contains an operation, data, software and databases in-
volved in the data event. We then organise the entity mentions and their relationships 
in data events in an abstract workflow. This abstract workflow demonstrates the work 
reported in a paper — Figure 5.1 shows an abstract level of a data event.

We tested and evaluate the proposed approach on 25 papers in the area of microarray 
analysis. For each abstract workflow, we compare all the extracted data events to the 
manually expected ones and score each data event based on the quality of the extrac-
tion, good, partial, missing or spurious. We studied the feasibility of using discourse 
analysis with the data events to improve the quality of the constructed workflow. Two 
types of discourse are used, the functional discourse and rhetorical structure theory.
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Figure 5.1. Abstract level of an event
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5.2 Materials and Methods

ODNoRFlow uses the output of the ODNoR system to reconstruct an abstract work-
flow of a paper. Once the entities and their relations are identified in the context of a 
single event by ODNoR, the data event is constructed. A series of the data events are 
linked in order to form the workflow of the paper. Figure 5.2 represents a high-level 
overview of ODNoRFlow, which comprises of the following steps:

1. Data preparation

2. Data events’ components Extraction

3. Workflow construction

4. Workflow representation

We then evaluated the extracted workflows and explored the role of discourse analysis 
in filtering out false positives.

5.2.1 Data preparation

PubMed central [135] was searched for articles that were published between 1𝑠𝑡 Jan-
uary 1998 and 31𝑠𝑡 March 2021 using the MeSH term microarray analysis. In addi-
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Figure 5.2. System workflow.
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tion, to obtain full text articles, we restricted the PubMed search to include only those 
in the PubMed Central Open Access subset. The query used was:

``microarray analysis''[MeSH Terms] AND (``1998/01/01''[PubDate] : 
``2021/03/31''[PubDate]) AND ``open access''[filter]

25 documents were randomly chosen for training and test purposes. Training and test-
ing data were divided as 75% and 25%, respectively. These are identical to the 25 
documents that were used in Chapter 4. 

5.2.2 Data events’ components extraction

A data event consists of input and output data (“operands”), an operation, and soft-
ware and databases (“operators”) involved to accomplish a task. We used ODNoR 
(Chapter 4) to extract data event components, normalise them (e.g. to EDAM), and 
find the links between them (e.g. which operand links to which operation).
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Table 5.1. Data event template. This template is filled by the entities extracted and mapped to the 
source knowledge using the ODNoR system.

Extracted text Mapping
Event No.

input data (EDAM Data, EDAM Topic,
ePMC annotation

operand output data (EDAM Data, EDAM Topic,
ePMC annotation

operation operation (EDAM Operation)
software (bio.tools)

Semantic Roles

operator database

5.2.3 Workflow construction

In ODNoRFlow, we organise the extracted entities and relations into data events, and 
link them to construct a paper’s workflow. We defined a template for a data event 
that was inspired by the representation of events in discourse analysis [97]. We build 
the data event structure based on the suggestions reported by Chambers and Juraf-
sky [102]. They show the steps of creating template structure of events in a specific-
domain that has no previous template. Table 5.1 shows the data event template that 
we aim to fill by the extracted key components and their relations.

We have two types of data event: (explicit) data events and implicit data events. In an 
(explicit) data event, there is an explicit data process done and reported in a sentence. 
An implicit data event is an event that represents the data involved in a step of study 
but without being accompanied by an operation in the same sentence. The process 
done on the data could be mentioned in a previous sentence and the data in the cur-
rent sentence are the result of applying the previous process (e.g. In total, 355 probes 
are included in this study. [PMC2582621]). Another case of an implicit data event 
is when the data refer to a kind of usage not in a form of a process (e.g. For some 
datasets, the linkage relied on Ensembl external database identifiers. [PMC2374988]).

5.2.4 Workflow representation

The workflow can be stored and represented in three different formats: the BRAT for-
mat, the CSV format and as a directed network graph. In the BRAT format, the events 
are viewed with relations and entities as text annotation. The internal data are stored 
in .ann files. The CSV format are commonly used in analytics. The workflow can be 
also viewed as a directed network graph where the arrows show the flow direction 
between data and operations, and between operations themselves. We used Gephi 
[114] to represent and manipulate the workflow.
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5.2.5 Workflow evaluation

There are two aspects used to validate the data events: completeness, which relates 
to entities and relations inside a data event, and sequentiality of events in a workflow, 
which relates to the order of the data events in the workflow.

For completeness, we want to consider how well the extracted data events represents 
i.e. captures a data event against the manual annotation. We used lenient, intermedi-
ate and strict evaluations to obtain the F-scores.

To evaluate our system we classified the result of the events (i.e. annotation) to mul-
tiple categories. We adapted evaluation metrics introduced by the Message Under-
standing Conference (MUC) [164], taking into account different errors categories in 
the process of the evaluation. We aimed to express how well the extracted informa-
tion (i.e. annotations) represents i.e. captures a data event against the manual annota-
tion. The evaluation process classified each data event as:

• Good, where the annotation represents all the key aspects of an event as reported 
in a paper that are necessary to understand the event.

• Partial, where an event annotation partially reflects the key aspects of the event. 
Here, the extracted representation might miss some components, but it still gives 
us a reasonable understanding of the event.

• Missing, where an event annotation is not captured by the system. This means 
that the systems fails to give the expected annotation and hence a useful repre-
sentation of the event.

• Spurious, where an event annotation has no relation with the event mentioned in 
a given part of paper (i.e. the sentence). In other words, the event annotation is 
not usable.

We used the MUC-defined metrics to estimate the quality of the automatic extraction 
of data event annotations, as specified by the following formulae:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (𝐺𝑜𝑜𝑑 + (𝑤 ∗ 𝑃𝑎𝑟𝑡𝑖𝑎𝑙))
𝐺𝑜𝑜𝑑 + 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 + 𝑆𝑝𝑢𝑟𝑖𝑜𝑢𝑠

𝑅𝑒𝑐𝑎𝑙𝑙 = (𝐺𝑜𝑜𝑑 + (𝑤 ∗ 𝑃𝑎𝑟𝑡𝑖𝑎𝑙))
𝐺𝑜𝑜𝑑 + 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 + 𝑀𝑖𝑠𝑠𝑖𝑛𝑔
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𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑤 =

⎧{{
⎨{{⎩

1 Lenient evaluation 

0.5 Intermediate evaluation 

0 Strict evaluation  

We also calculated the inter-annotator agreement (IAA) between two different raters 
on 20% (5 out of 25) of the corpus , and then analyses the specific-category agree-
ments between the raters. In categorical measurements (as we have here), specific 
agreement represents the degree of agreement observed across all possible categories. 
If two raters are involved, the specific agreement for any category is the probability 
of one rater assigning an item to that category given that the other rater has also as-
signed that item to that category. It will test how much the two raters are agreed and 
this will give an indication as to how far we can trust the result produced by the sys-
tem [165]. The specific category agreement, proposed by Dice [166] and extended by 
Uebersax [167], was used to consider multiple raters and categories including miss-
ing data. We used the agreement software package implemented by Girard [168]. It is 
calculated as following:

𝑆𝐴𝑘 =
∑𝑛′

𝑖=1 𝑟𝑖𝑘(𝑟𝑖𝑘 − 1)
∑𝑛′

𝑖=1 𝑟𝑖𝑘(𝑟𝑖 − 1)

𝑛′ — the number of items that were coded by two or more raters

𝑟𝑖𝑘 — the number of raters that assigned item 𝑖 to category 𝑘

𝑟𝑖 — the number of raters that assigned item 𝑖 to any category

For sequentiality of events in a workflow, the order is tested at a single sentence level 
and at the sentence above the one examined. We tested both the manually annotated 
data events and automatically extracted one, to verify that the description of the meth-
ods in the body of the text is a reflection of the way the methods were actually ap-
plied. The scoring is done as follows:

• False positive events receive a zero score.

• True positive events are tested if they come in an appropriate order while, ignor-
ing any false positives before them.
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• If there is an event incorrectly reported and the following event should precede 
it, both of them receive a zero mark.

• We encapsulate the incorrectly ordered events at a minimum span so they do not 
affect the score of the following events.

• We then calculate the percentage of the correct order events over all the reported 
events to obtain the score of sequentiality of events in a workflow.

5.2.6 Data events and discourse analysis

In Chapter 3 we examined the discourse analysis as part of the pre-processing step. 
We looked at two types of discourse Functional discourse and RST.

Functional discourse. Liakata et al. [132] developed an automatic annotation tool to 
extract the core scientific concepts (CoreSC) in life science articles. The details of 
the eleven core concepts (Hypothesis, Motivation, Goal, Object, Background,
Method, Experiment, Model, Observation, Result and Conclusion) are de-
scribed in [133]. Short definitions for these functions are listed in Table 5.2.

Table 5.2. Functional discourse concepts definitions from [133]

Category Function Definition
Background Background Pre-existing facts and known information. It is not an old 

method.

Approach
Method Pre-existing or new methods. It is a general description of the 

procedures conducted.
Model Theoretical model that contains equations, assumptions and the 

design of objects used.
Experiment Physical procedures that contain instruments, measurements, 

any special conditions and detailed steps of the processes.

Outcome
Observation Simple, clear description of the experiment output. This in-

cludes the reference to the data presented in tables or figures.
Result Factual description of the experiment output. It is a further 

level of output description that could interpret, summarise, or 
compare a group of Observation.

Conclusion A general summary of what is found by the research and 
whether it supports or violates the research hypothesis.

Objective

Hypothesis The research prediction that needs to be tested.
Goal The aim of the work conducted.
Motivation The importance of the work conducted.
Object The entity being studied, investigated, reported or discussed in 

the work conducted. It could be a physical or an abstract entity.

Rhetorical structure theory (RST). The rhetorical structure theory [108] is a hierarchi-
cal discourse relation analysis and covers the whole text in order to identify the rela-
tions. It is mainly divides the whole text into nuclear and satellite (NS) units and then 
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Table 5.3. RST relations adopted from [172].

contingency evidence concession condition
restatement evaluation example temporal
background comment reason circumstance
enablement consequence explanation means
summary result comparison attribution

interpretation antithesis manner purpose
definition concession condition elaboration

assigns a relation between them. A Nucleus is the unit of text that holds a main idea 
and can be understood by itself, while a satellite is additional information and can-
not be interpreted without a linked nucleus. Most of the existing tools [169, 170, 171] 
have been tested on the text of the Wall Street corpus. The state of the art tool was 
developed by [171] with an F score of 55.73%. The annotation tool Discourse Pars-
ing from Linear Projection (DPLP) was developed by [172], achieved F-score 61.75% 
and extracted 28 (NS) high-level relations that are defined in [173]. Table 5.3 lists the 
RST relations.

We would like to explore how to use the discourse analysis either as a pre-processing 
step to filter sentences or parts of sentences that mainly talk about the methods re-
ported in the Methods section, or as a post-processing step to filter out the spurious 
data events produced by the system. We presume that the discourse analysis could 
group the sentences into data events and non-data events sentences. For example, 
valid data events sentences should be only about methods and experiments, not about 
background or goals. If all the true positive data events have no Background func-
tion, and this function is only found in true negatives, then we could exclude the sen-
tences with this function. We also hypothesise that Elaboration spans could be re-
moved and the only the main part of the sentence is processed.

In case the system extracts invalid data events, we presume that there are some dis-
course patterns could be extracted and then used , as a post-processing step, to min-
imise this kind of invalid events.

5.3 Results

5.3.1 Data events’ components extraction

Using ODNoR, we produced around 1,800 components with 1,200 relations from the 
corpus of 25 documents.
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5.3.2 Workflow construction

Using ODNoRFlow, we obtained 694 events, with an average of 28 events in each 
document. The data events for each document are linked to form the workflow of the 
that document. As a result we constructed 25 workflows, one for each of the papers.

5.3.3 Workflow representation

The data events are represented to include the text that comprises the components of 
the main events. For example, the data events extracted from the article with PMCID
PMC3735399 are as follows:

1. GSE35957 was downloaded from Gene Expression Omnibus

2. Microarray probe annotation information was downloaded

3. The original data were preprocessed by Affymetrix

4. LIMMA [9] package in R language was used to identify the differentially ex-
pressed genes between the expression profile

5. Multiple testing correction

6. FDR < 0.01 and | logFC | > 1 were chosen as thresholds

7. thresholds for screening the differentially expressed genes

8. HitPredict software (http://hintdb.hgc.jp/htp/) to search the differentially ex-
pressed genes

9. protein-protein interactions with high confidence to find interactions between the 
differentially expressed genes

10. Cytoscape [12] to visualize the interaction relationships

11. MCODE to mine the modules from the protein-protein interaction network with 
degree > 2

12. annotate each module based on the hypergeometric distribution (FDR < 0.05

13. GENECODIS was used to perform biological pathway enrichment analysis of 
all genes in the interaction network with FDR < 0.05

These data events are represented as components in different formats. For example, 
Figures ( 5.3 and 5.4 ) and Table 5.4 show the BRAT, network graph and CSV repre-
sentations respectively of the above workflow (article with PMCID PMC3735399).
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Table 5.4. An example of a workflow in the CSV format. The columns represent the sentence ID, event 
ID, operation, input data, output data, software or database. If there is more than one set of data, 

software or database involved in the event, they are separated by commas.

sent 
ID

event 
ID

operation input data output data SWs DBs

1 1 downloaded GSE35957 Gene Ex-
pression 
Omnibus

2 2 downloaded Microarray 
probe annotation 
information

4 3 preprocessed The original data Affymetrix
5 4 identify the expression profile differentially 

expressed genes
LIMMA

6 5 Multiple 
testing cor-
rection

7 6 chosen as FDR < 0.01,
|logFC| > 1 thresholds

7 7 screening the differentially ex-
pressed genes, thresholds

9 8 search differentially expressed 
genes

HitPredict

13 9 find

high confidence,
protein-protein interactions,
differentially expressed
genes

interactions

13 10 visualize interactions interaction rela-
tionships

Cytoscape

15 11 mine

modules,
degree > 2,
protein-protein interaction
network

MCODE

16 12 annotate
module,
hypergeometric distribution,
FDR < 0.05

17 13 biological 
pathway en-
richment 
analysis

interaction network,
all genes,
FDR < 0.05

GENECODIS
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Figure 5.3. An example of data event annotations in the BRAT format. The series of data events comprise the workflow 
of the article’s method. The operations text is highlighted in green. Data are highlighted in pink, with the databases in 

red and software in yellow. A data event is annotated to contain all the text that combines the event’s components. These 
components are connected by arrows representing the relations that we defined in the BRAT’s Events. This includes one 
process with a zero or more than one input data, output data, software or databases. A sentence could include more than 
one data event (e.g. the sentence in line 17). If the databases and software are annotated outside an event context, they 

will not be included in any events (e.g. the sentences in lines 14, 15, 16 and 20.)
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Figure 5.4. An example of a workflow in a network graph produced using Gephi software. The nodes are operations, 
data, software and databases as annotated from the text. We use the same colour schema as the used for the BRAT 
presentation above. The flow of the data events is shown with direct black arrows. We have another four types of 

links, green for output data from an operation, purple for input data to an operation, yellow between the software and 
operation and finally red between database and data. For example, there is a recursive arrow to the same operation 
download to express the first and second events. The condition FDR < 0.05 are used as input data for annotate and 

biological pathway enrichment analysis operations.

5.3.4 Workflow evaluation

For the workflow completeness, we evaluated each data event based on the evalua-
tion categories. The result of the evaluation is shown in Table 5.5. It represents the 
distribution of the 25 documents’ data events based on the evaluation categories. We 
obtained an F-score of 93.56%, 77.30% and 61.04% for the lenient, intermediate and 
strict evaluations, respectively. Table 5.6 shows the precision, recall and F-score for 
the retrieved data events. Appendix C includes the workflow evaluation for the article 
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PMC3735399. The 25 documents evaluations with analysis behind the false positives 
and false negatives data events are in additional file 1. 

Table 5.5. The distribution of data events for each evaluation category for all 25 documents.

Category No. of data events
Good 398
Partial 212

Missing 22
Spurious 62

Table 5.6. Data event F-scores for different type of evaluation.

Category Lenient Intermediate Strict
Precision 90.77 75 59.23

Recall 96.52 79.75 62.97
F1 93.56 77.30 61.04

For inter-annotator specific agreement, the two raters agreed by 89.3% on the good 
data events and 77.4% on the partial events, with 80% on the missing and spurious 
cases. Table 5.7 shows the confusion matrix between two annotators, while Table 5.8
shows the specific agreement for each category.

Table 5.7. Confusion matrix of four categories and two annotators for five documents.

Annotator 2
Good Partial Missing Spurious Total

Annota
tor

 1 Good 88 9 0 1 98
Partial 11 36 0 1 48

Missing 0 0 2 0 2
Spurious 0 0 2 0 2

Total 99 45 4 2 150

Table 5.8. General observed agreement and category-specific agreement grouped by categorises

Type of agreement Estimate
General observed agreement 0.84
Category specific Agreement
Good 0.893
Partial 0.774
Missing 0.667
Spurious 0.000
Category specific agreement (three groups)
Good 0.893
Partial 0.774
Poor (Missing+Spurious) 0.800
Category specific agreement (two groups)
Good (Good+ Partial) 0.993
Poor (Missing+Spurious) 0.800

For sequentiality of events in a workflow, 98.86% of the data events that are manu-
ally annotated are correctly ordered, which means the flow of the data events as they 
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reported in the text is the flow of how the are performed. For the events extracted by 
the system, 89.68% of the detected events are in the correct order. The false positives 
data events are incorrectly ordered and this minimises the correctly ordered events 
percentage. Here we provide two examples of the incorrectly reported order.

Example 12 (PMC4438953)

“Microarray data were obtained from three datasets, which consisted of 18, 57 and 
38 appropriate samples, respectively. The miRNA microarray series contained data 
from 15 tumor samples and three healthy control samples, the mRNA microarray test 
series contained data from 26 tumor samples and 12 healthy control samples, and 
the mRNA microarray confirmation series contained data from 37 tumor samples and 
20 healthy control samples. The three series were accessed at the National Centers 
for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database 
(http://www.ncbi.nlm.nih.gov/geo/), and the accession numbers were GSE28100, GSE9844 
and GSE13601, respectively.”

The system annotates the data events as follows:

Data event 1: Microarray data were obtained from three datasets

Data event 2: The three series were accessed at the National Centers for Biotechnol-
ogy Information (NCBI) Gene Expression Omnibus (GEO) database , and the acces-
sion numbers were GSE28100, GSE9844 and GSE13601

However, the logical order is that the event in the second sentence happens before 
the events in the first sentence: we would obtain the accession numbers first, then we 
would retrieve the data.

Example 13 (PMC2919724)

“To test enrichments of TFs targeting protein complexes, we constructed protein–pro-
tein interaction modules for each TF target.”

The system annotates the events as follows:

Data event 1: test enrichments of TFs targeting protein complexes

Data event 2: constructed protein to protein interaction modules for each TF target 

However, the logical order is first to construct, then to test. Since the system followed 
the order of the text, it rendered them in an incorrect order.

(http://www.ncbi.nlm.nih.gov/geo/)
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5.3.5 Data events and discourse analysis

We first present the results of considering the discourse analysis as a pre-processing 
step, and then as a post-processing step. We can say we cannot group the valid or in-
valid data events into two different groups of discourse and thus we cannot use the 
functional or RST discourse neither as pre-process nor post-process to improve the 
quality of the extracted data events.

Discourse as a pre-processing step

Functional discourse. In Chapter 3 we studied the functional discourse patterns in Meth-
ods section. It contains the distribution of functional discourse over a larger corpus. 
We have a general pattern that most of the Methods section functions follow: Methods, 
Experiment and Models, but it also could have other functions like Result, Observation
and Background. We analysed the sentences that have data events and the sentences 
that have none, and found that they could be allocated to any kind of functions. Ex-
ample of sentences that have valid data event and sentences that have none with the 
same discourse function are provided here.

First example, here are two sentences annotated as Method function. The first sen-
tence has data event of expression correlation analysis done by Arabidopsis co-expression 
tool (ACT). The second sentence describes the method of the tool, but not part of the 
main work.

Example 14 (PMC3123201)

“An expression correlation analysis was performed for PSY using the freely avail-
able Arabidopsis co-expression tool (ACT).” ... ... “Importantly, the ACT tool uses 
NASC/GARNet data sets that were labeled, hybridized and analyzed using a stan-
dardized procedure thus providing a homogeneous and readily comparable data set.”

Second example, here are two sentences with Background function. The first sen-
tence has a valid data event, while the second does not.

Example 15 (PMC4550637)

“In this study, the gene expression microarray data set GSE4612 was downloaded 
from the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/). GSE4612 
[8] is a gene expression profile data including six Mdr2 knockout (Mdr2-KO) mutant 
mice samples(3-month-old and 12-month-old) and six control mice samples(3-month-
old and 12-month-old).”
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Rhetorical structure theory. Elaboration comprised (80%) over all satellite rela-
tions. Eliminating part of sentences with this relation will eliminate a large part of the 
events. Table 5.9 shows the percent of each function from the corpus used in Chapter 
3.

Table 5.9. RST annotation result.

Relation count percent (100)
contingency 1 0
restatement 2 0
background 3 0
enablement 4 0
summary 5 0
interpretation 6 0
definition 12 0
evidence 20 0
evaluation 31 0
comment 37 0
consequence 38 0
result 117 0.01
antithesis 581 0.05
concession 635 0.05
example 747 0.06
reason 1,768 0.15
explanation 1,886 0.16
comparison 2,131 0.18
manner 3,028 0.25
condition 12,435 1.03
temporal 12,584 1.04
circumstance 30,499 2.52
means 36,872 3.04
attribution 43,730 3.61
purpose 89,282 7.37
elaboration 974,946 80.48
Total 1,211,441 100

Discourse as a post-processing step

Following are examples of spurious data events with their discourse analysis by func-
tional discourse and RST. Valid data events are also found for the same discourse 
function or relation. Therefore, we cannot use functional discourse as an eliminating 
criterion for spurious events.

Example 16 (PMC4709009)

“The identified genes, periodicity and cluster assignment for both NPSG and CCS 
studies are presented in S1 Table. All reads found with the probes for Prochlorococ-
cus, Synechococcus, SAR11 and Ostreococcus are listed in S2 Table.”
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In the above example, the two sentences are Elaboration and Result sentences. 
However, we cannot exclude the Result sentences, since some contain true positives: 
the next example contains true positive data event that are annotated as Result.

Example 17 (PMC2998528)

“ This generates information-less probesets while keeping the properties of the origi-
nal probe intensity distribution.”

Data event : <operation:generates, output data: information-less probesets>

An example of spurious data event with an Elaboration (RST) relation:

Example 18 (PMC4709009)

“Metatranscriptome sequence data, analyzed in this study, was obtained from NCBI 
Short Read Archive database”

The system annotates two data events:

Data event 1: <operation:obtained, output data: Metatranscriptome sequence data,
database: NCBI Short Read Archive database>

Data event 2: <input data : Metatranscriptome sequence data, operation :analyzed,
database: NCBI Short Read Archive database>

The second data event is a spurious data event, since the analysis was an Elaboration
to the main part of the sentence.

5.4 Discussion

The accuracy of the extracted workflows is affected by the accuracy of the modules 
involved in extracting and connecting the components that comprise an event. It is 
possible that the main event’s components are detected but the relations between them 
are connected incorrectly, for example, the output data depicted as input data. The re-
lations to databases or software could be missed or linked to incorrect data and opera-
tions.

The workflow completeness is mainly affected by the accuracy of the data annota-
tions (rather than operations). 48% ( 30 out of 62) of the spurious events (false posi-
tives) are caused by either annotating incorrect data, or the correctly annotated data
failing to be connected to the operation of the related event. In either case, a false 
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positive implicit data event is generated to represent data that are mentioned without 
an operation.

The reason behind missing the link between data and operation is caused mainly by 
the sentence detection system that failed to find the correct sentence boundaries. A 
further 25% (16 out of 62) of the spurious data events (false positives) are caused by 
annotating other people’s work mentioned in the method description, descriptions of 
tools used or methods, or annotating a result context rather than a process one.

A total of 81% of the partial data events occurs mainly if one sentence contained more 
than one data event, and the span of one data event incorrectly includes more data, 
software or database that belongs to another data event. E.g.

Example 19 (PMC3123201)

“POCO tool was used to identify enriched elements and the POBO tool was used to 
verify the presence of identified elements in the PSY promoter.”

The correct data events should be as follows:

Data event 1: POCO tool was used to identify enriched elements

<operation:identify, output data:enriched elements, software:POCO>

Data event 2: POBO tool was used to verify the presence of identified elements in the 
PSY promoter

<operation:verify, input data:the PSY promoter, output data:the presence of identi-
fied elements, software:POBO >

But the system annotates them as follows:

Data event 1: POCO tool was used to identify enriched elements and the POBO tool 
was used to verify the presence of identified elements in the PSY promoter

<operation:identify, input data:identified elements,the PSY promoter, output data:en-
riched elements, software:POCO,POBO>

Data event 2: POBO tool was used to verify the presence of identified elements in the 
PSY promoter

<operation:verify, input data:identified elements,the PSY promoter,enriched ele-
ments, software:POCO,POBO>

Data event 1 includes the same text as Data event 2. While the operations are cor-
rectly identified, the data and software are not.
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In our inner-annotator agreement evaluation, the good and partial data events are more 
frequent than the missing and spurious data events. This creates imbalanced classes 
that will always give low value of the chance-adjusted agreement measure, like Co-
hen’s kappa or Scott’s pi, although the agreement is high [174, 165]. Cicchetti and 
Feinstein [175] suggested using a specific agreement category as a solution for this 
problem, and we applied that in our inner-annotator agreement. As a result, instead 
of having one value, the evaluation of the agreement will have different value for each 
category and we used that in our evaluation.

The functional discourse analysis did not show a significant improvement because 
the annotated data events can be reported in sentences belonging to any type of func-
tional discourse. For example, the Result function can be matched with both correct 
and incorrect events. The Rhetorical Structure Theory did not show a significant im-
provement either. For example, there are true positive and false positive data events 
that have Elaboration relations. While the discourse analysis (especially the RST) 
is a useful methodology from a theoretical aspect. The current state of the art in dis-
course annotation tools cannot provide an acceptable accuracy.

We found that for some cases the argumentative zoning (AZ) [99] could help in dif-
ferentiating between main work and other work by the two relations Own and Other. 
Applying AZ could help in filtering out the sentences that are solely talk about the 
other work that are not part of the work conducted. Here is an example.

Example 20

“HitPredict is a resource for high confidence protein-protein interactions. It collects 
protein-protein interactions from IntAct, BIOGRID and HPRD databases; annotates 
these interactions; and assigns a reliability score for each interaction according to 
the likelihood ratio using naïve Bayesian networks combining sequence, structure and 
function annotations of the interacting proteins [11].”

The second sentence in the above example is a description of the methods applied by 
the resource mentioned in the first sentence. The second sentence contains two spu-
rious data events with operations <collects/assign>. This sentence is, however, a de-
scription of other work and could be discovered by the AZ discourse and then filtered 
out.

5.4.1 Limitations

The method presented here has several limitations, which we discuss below.
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1. Data events are linked only to previous and subsequent data events based on 
the order of their appearance in the text. There is no differentiation between 
data events that can go in parallel and the ones that must go in sequential or-
der. Nested data events are also not shown in the abstract workflow, and are not 
marked with sub-order to show the main data event they belong to. Here is an 
example.

Example 21 (PMC2374988)

“Datasets were further normalized, if necessary, by transforming them onto a 
common log2 scale and shifting the median of each array to zero”

The sub-processes are done for one purpose, normalisation but this will be ex-
tracted as three sequential data events.

2. The main components of a data event are combined only if they are mentioned 
in same the sentence. Any involved component mentioned later will not be added 
to the same data event. For example, if the mention of a software used was in the 
following sentence, the main data event will miss it.

Example 22 (PMC4201588)

“We perform feature selection based on the training data within each iteration 
of validation. We use existing MATLAB implementations of these algorithms 
[8], [42].”

In this case, the first sentence contains the following data event:

<operation: feature selection, input data: training data>, and the second sen-
tence contains the software used, MATLAB. The main data event is failing to 
include the software mentioned in another sentence. Capturing related compo-
nents outside the sentence boundary will improve the context of implicit data 
events and relate the data with the process applied to it.

The same scenario applied to data. We did not keep track of them out side the 
sentence. For that, we are not sure if the data mentioned in multiple sentences 
and share the same syntax, is the same data. This clearly shown in the directed 
network graph where the same syntax data are represented in the same node. 
For example, in Figure 5.4, the output data deferentially gene expression are 
used as input for another two operations search and find. This usage was sepa-
rated by three processes. Although, the data have the same syntax in the three 
sentences they are mentioned in, we are not sure if they are the same actual data.

3. Data events are constructed and analysed at the sentence level. Constructing 
data events at upper levels, for example, at a paragraph or subsections level, might 
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introduce interesting patterns for independent tasks and facilitate the understat-
ing of the methods conducted.

4. We did not handle the coreferring expressions neither at data event nor at work-
flow level. Addressing the coreference for data will help in tracking all the pro-
cesses happened to a specific data, in case it is referred by another expression, 
all over the workflow. It will also provide a better understanding of produced 
workflow.

5. Some of the false positives operations refer to work conducted by other people. 
Using argumentative zoning [129] could enhance the result but we did not test 
the feasibility of using this type of discourse.

6. We evaluated the data events as an indicator of the accuracy of a workflow. More 
metrics and evaluation methods should be considered to test how far the work-
flow reflects what is reported in the paper.

7. In some cases, data will lose the meaning if read alone without backing to the 
whole data event.

Example 23 (PMC3735399)

“This study used the protein-protein interactions with high confidence to find 
interactions between the differentially expressed genes..”

input data: protein-protein interactions

input data: high confidence

input data: differentially expressed genes

output data: interactions

The condition of high confidence loses its purpose if it is not read in the context.

5.5 Conclusions

In this paper, we introduced and evaluated ODNoRFlow, an automated method pro-
cessing which accepts plain text from the literature and produces a workflow in a 
representation of linked data events that express the steps of the work reported in the 
text. Abstract workflows were represented in different readable formats that could en-
hance the understandability of the work conducted and enable indexing the literature 
for further analysis.
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Workflows were extracted with an acceptable F-score between 61% and 93%. 88% of 
extracted workflows were reasonable (good and partial data events), while 12% (84 
out of 694) were not acceptable (missing and spurious).

We also studied the feasibility of using the discourse analysis to improve the accu-
racy of abstract workflows. Although discourse analysis can be used as a supportive 
mechanism to understand the result of the extracted data events, the current discourse 
analysis results obtained cannot be used to cluster valid and invalid data events, and 
hence are not useful at present.

5.6 Additional Files

5.6.1 Additional file 1 — Data events evaluation

Additional file shows the data events evaluation based on the categories (good, par-
tial, missing or spurious) and analysis of missing and spurious data events for 25 doc-
uments. 
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Abstract

Background Scientific methods are important. The information as to how they are 
used in research, however, is mostly trapped in the literature. Having methodologies 
described in a computational form would enable a series of questions to be asked 
about the methodological landscape, and would allow researchers to understand how 
methodologies in a particular area develop over time. This is of specific interest in 
computational domains, where methodologies applied to data change rapidly.

Objective This study aimed to examine computational methodologies reported in the 
microarray literature on a large scale. We focused on data events (i.e. operations ap-
plied to what data) and their components, and analysed frequent patterns as reported 
in the method sections in a corpus of primary literature.

Methods We have previously developed a text mining system that extracts data events 
from the literature. A data event contains an abstract representation of the work con-
ducted in terms of input data, output data, operations, and if there are any software
or databases involved. The system is applied to the Methods section in a corpus of 
16,604 papers from 1998 to 2021 from the microarray analysis literature. We anal-
ysed the extracted data events to determine the frequency of each component and the 
frequent relationships between the components.

Results We extracted 751,106 data event mentions and analysed 1,042,007 data, 616,144
operations, 63,508 software and 54,121 databases as mentioned in the literature. We 
found some significant data event patterns: for example, data are most frequently re-
trieved from the GEO database and processed by R. Statistical calculation
has a significant relation with the SPSS software.

Conclusion Large-scale text mining and data event extraction can be used to extract 
and explore the patterns and trends in data usage and processing in the microarray 
analysis literature.

159
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6.1 Introduction

Understanding scientific methods is an essential step to evaluate and reuse them. Re-
searchers are faced by a large number of publications with methods rarely represented 
in a computationally-readable form (such as executable papers or executable work-
flows) but are rather described in prose in scientific publications. A computational 
representation of methods could reduce the time and effort required to read the de-
tailed information in publications, and would enhance the ability to keep track of ex-
isting and recently published methods. Having methodologies described in a compu-
tational form would enable a series of questions to be asked about the methodological 
landscape, and would allow researchers to explore and understand how methodolo-
gies in a particular area develop over time.

This is of specific interest in computational domains, where methodologies applied 
to data change rapidly. We carried out this investigation on the computational analy-
sis of microarray data. Microarray analysis has been used extensively in the last two 
decades. Within this period of time, methods for analysing the huge amount of the 
generated biological data have been continually developed [13, 14]. Capturing mi-
croarray data and developing the analytical instruments has produced a significant 
amount of software, a number of packages and databases [176].

We have previously developed a text mining system, ODNoR (Chapter 4) that extracts 
and normalises main data event entities reported in a research paper, and ODNoR-
Flow (Chapter 5) that organises entity mentions and relations in linked data events to 
form an abstract workflow that demonstrates the work reported in a paper.

A data event is an operation on data. These data could be retrieved from a database 
so, that operations could be performed by a software. As a result, a representation of 
a data event contains an operation, data, software and databases involved in the data 
event. An abstract representation of a data event is:

<input data: data, operation: operation, output data: data, software: software,

database: database>

Example 24 (PMC3735399)

“This study used the protein-protein interactions with high confidence to find inter-
actions between the differentially expressed genes, and used the Cytoscape [12] to 
visualize the interaction relationships.”

The above sentence has two data events. The second data event will be as following:
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Data Event:<input data: interactions, operation: visualize, output data: the interac-
tion relationships, software: Cytoscape, database: NA>

The data event with a layer of normalisation:

Data Event:<input data: Atom interaction data ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_0906

operation: Visualisation ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛_0337,

output data: Protein interaction record ℎ𝑡𝑡𝑝 ∶ //𝑒𝑑𝑎𝑚𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦.𝑜𝑟𝑔/𝑑𝑎𝑡𝑎_0906,

software: biotools:cytoscape>

Here, we used ODNoRFlow to survey data events usage in a corpus of microarray 
analysis literature. This will help to give insights into the common practices of the 
microarray field and how they change. We used the system to extract data events from 
the literature, and then used these results to perform the following analyses:

1. Analyse the mentions of data event components.

2. Contrast how the relative usage of different components has changed over the 
last 20 years.

3. Analyse the frequent and significant relations between data event components 
across the whole corpus.

4. Analyse the trending components and if there are any increases or declines in 
the usage of the most frequent operations, data, software and databases.

6.2 Methods

We used ODNoRFlow to extract the data events from the corpus used previously in 
Chapter 4. We then performed the analysis to find data events usage and relation pat-
terns as specified below.

6.2.1 Dataset

PubMed central [135] was searched in March 2021 for articles that were published 
between 1𝑠𝑡 January 1998 and 31𝑠𝑡 March 2021 using the MeSH term microarray 
analysis. In addition, to obtain full text articles, we restricted the PubMed search to 
include only those in the PubMed Central Open Access subset. The query used was:

``microarray analysis''[MeSH Terms] AND (``1998/01/01''[PubDate] : 
``2021/03/31''[PubDate]) AND ``open access''[filter]
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6.2.2 Data event extraction

Data events appearing in the Methods section of each paper from the microarray anal-
ysis corpus were extracted using ODNoR and ODNoRFlow (Chapter 4 and 5). The 
extracted data events were used for all the analyses below.

We expected to have data events with components representing the work reported in a 
paper. An abstract example of the data event:

<input data: data, operation: operation, input data: data, software: software,

database: database>

The extracted data, operations, and software were normalised to the knowledge re-
sources. Mentions of data was mapped to EDAM’s Data, Topic ontologies and Eu-
rope PMC annotation, operation mapped to EDAM’s Operation ontology [34], and 
the software to bio.tools [153].

We had already implemented the rules of the normalisation in Chapter 4. They are 
mainly to match a mention to a syntax similar class that has a cosine distance within 
a given threshold. In case a mention failed to be mapped by one of the rules, it was 
mapped to the top class of the ontology searched.

6.2.3 Data event analyses

We first explored the data event components (i.e. data, operation, software and database) 
as a stand-alone component: how are these were distributed over the Methods section, 
what the relations between them are, and the usage trends of these components. Then 
we look more closely into the relations between more than one component. The fol-
lowing shows how we performed these analyses.

Distribution

We measured the minimum, maximum, median and mean for the component men-
tions. For data and operations components we defined unique mentions at different 
levels. There is a unique text, where the mentions are written with the same syntax in 
the text; lemma, where different mentions share the same lemma; class name, where 
different mentions share the same name of an EDAM class; class ID, where differ-
ent mentions share the same ID of an EDAM class regardless of the class name. This 
class ID refer to all mentions mapped to one of the class ID’s synonyms. We will 
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use Data EDAM classes for data mentions and Operation EDAM classes for opera-
tions mentions. We will use the preferred name when we refer to the class ID for an 
easy read. Example of class ID is Statistical calculation refers to a group of 
synonyms classes that includes Significance testing, Hypothesis testing, 
Statistical analysis, Statistical testing, etc.

We were interested to compare between the mentions usage at the mention level and 
document level. The mention level is the total number of mentions of a component in 
the corpus. We calculated the mean of a component mention per document as:

Mean (C, Doc, men-level) = Number of all C mentions
Number of all Doc

where C is the component, Doc is the documents that have a method section.

The document level metric is the number of documents that contain at least one men-
tion of a component. We calculated the mean of a component mention per document 
as:

Mean (C, Doc, doc-level) = Number of Doc that have at least one C mention
Number of all Doc

where C is the component, Doc is the documents that have a method section.

Owing to the limited space, we are going to report the results for lemma mentions 
and class ID mentions.

Relative usage

We measured each data event component’s relative usage for each year at the mention 
and document levels. It was the same mean formulas explained above except that it 
specifically considered the mentions and documents at year level. Relative usage of a 
component for a specific year (mention level):

Relative usage (C, Doc, Y, men-level) = Number of all C mentions in Y
Number of all Doc in Y

Relative usage (C, Doc, Y, doc-level) = Number of Doc in Y with at least one C mention
Number of all Doc in Y
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where C is the component ,Y is the year, Doc is the documents that have a method 
section.

Due to the large amount of data given by the relative usage, we plotted only the rela-
tive usage of the top six entities for each component. We plotted the results of lemma 
mentions and class ID mentions.

Trends

We examined the usage trend for key concepts in each component. We checked if 
the forecasted usage matched the actual one. We used local regression methodol-
ogy (loess), originally proposed by Cleveland [177] and further developed by Cleve-
land and Devlin [178], that uses neighbouring data to forecast future usage. The loess 
method is based on locally linear smoothing and can handle outlier relationships where 
nonlinear but smooth relations exist between data. We specifically used ‘geom_smooth()‘, 
implemented in ggplot2 package [179] in R, with the method = ‘loess’ and formula ‘y 
∼ x’.

From the produced fitted line predicted by this method, we can tell how an individual 
component trends up or down and when over the years.

Association rules

We studied the relations between the components using association rules. We anal-
ysed the rules in two aspects; the document level and event level. The first aspect 
is at the document level, where the relations are extracted between all unique men-
tions in documents. In terms of association rules, the transactions will be documents 
and items are all components in that document. The second approach is at the event 
level, where the relations are extracted based on the unique mentions in each event. In 
terms of association rules; the transactions will be data events and the items are the 
components that have relations in the data events. We used class ID for data and oper-
ations and text for database and software as mentions for components.

Association rules are an unsupervised learning method that finds a relation or asso-
ciation between two items; when derived from a large dataset, an association rule 
shows how item Y is dependant on the appearance of item X: if an item X is used (or 
mentioned), then item Y will be used (or mentioned). Rules depend on support, con-
fidence and lift. Support is a measure of how frequently X and Y occur together com-
pared to all transactions. Confidence is a measure of how often items in Y appear in 
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transactions that contain X only. Lift is the rate of the confidence to the expected con-
fidence. It will measure how much our confidence has increased that Y will be used 
given that X was used. Greater lift values indicate stronger associations. Beside these 
measures, we used Fisher’s exact test with a correction to find the significant rules 
[180]. This was to improve the quality of the returned rules and show only the rules 
that had strong relations.

Support(𝑋 ⟶ 𝑌 ) = Number of transactions that contain (𝑋 → 𝑌)
Total number of transactions

Confidence(𝑋 ⟶ 𝑌 ) = Number of transactions that contain (𝑋 → 𝑌)
Total number of transactions that contain 𝑋

Lift(𝑋 ⟶ 𝑌 ) = Confidence
Support (𝑌)

= Support
Support (𝑌) ∗ Support (𝑋)

Lift(𝑋 ⟶ 𝑌 ) =

⎧{{
⎨{{⎩

> 1 positive relationship 

1 X and Y are independent 

< 1 negative relationship  

We used the Apriori algorithm [181] in R to calculate the required metrics and derive 
the rules. We used arulesVis R package [182] to visualise the significant rules. To vi-
sualise a large number of rules, we used group matrix visualisation [183] that clusters 
the rules to view them in one figure. It shows them as a matrix, where the left hand 
side of the rules are clustered and shown as columns, and the right hand side rules are 
shown in the rows. The circle in the intersection between a row and column shows 
there are rules. The size of a circle shows the support and the density of the colour 
shows the lift. The rules are organised where the rules with the highest lift are plotted 
first (left corner).

6.3 Results

6.3.1 Dataset

We have collected a total of 17,736 documents retrieved from PubMed using Entrez. 
Using the Section Tagger [139], a Methods section was identified in 16,604 docu-
ments, which were used in the experiments below. Table 6.1 shows some character-
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Table 6.1. Corpus statistics.

Characteristics Value
Number of articles 16,604
Number of sentences in the method section 1,147,882
Maximum number of sentences in a single document 469
Average number of sentences per document 69
Median number of sentences 63

Table 6.2. Number of extracted events from the corpus.

Characteristics Value
Number of events in the Methods section 751,106
Average number of events per document 45
Median of events 42

istics of the corpus. The average and median numbers of sentences are 69 and 63, re-
spectively.

6.3.2 Data event extraction

We have extracted 751,106 data events from the corpus, with an average of 45 data 
events per paper (see Table 6.2).

The normalisation of data shows a modest mapping result. 47.87%, 38,81% and 5% 
of unique data mentions (text) find a corresponding match in Data, Topic EDAM on-
tology and Europe PMC annotation, respectively.

The normalisation of operations shows a better result since 81.83% of unique men-
tions (text) match a class in Operation EDAM ontology.

6.3.3 Individual components analyses

Data

Distribution We have extracted a total of over a million data mentions from the cor-
pus (the average of 63 per document and two per sentence) (see Table 6.3 for 
more detailed statistics).

Table 6.4 further shows frequent mean mention-level and document-level based 
on the lemmatised mentions and normalised class ID. The major observations 
are as follows:

• gene, datum, sample and p value are top lemmas respectively.
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• Data, Expression Data, Gene ID (GeneDB) and Experimental 
measurement are top class IDs respectively.

• At the mention level, class ID Data has a very high mean (33.84) com-
pared to means of corresponding lemmas (datum and dataset) and other 
class ID mentions. This is because most of the data mentions mapped to 
this class ID.

• 81% of the documents in the corpus contains at least one mention that is 
normalised to class ID Expression data (mean at the document level is 
0.81). This class has synonyms names such as Microarray data, Gene 
expression data, Gene product profile, Protein expression 
data, Protein profile, RNA-seq data, etc.

• 40% of the documents in the corpus statistically test their data by P-value.

• Sequence and dbProb ID are more frequent in documents than Concentration, 
while the latter is more frequent at the level of the corpus.

• Class ID E-value with a synonym class Expectation value matched to, 
a statistical estimate score, E-value, and also could be matched, by cosine 
similarity, to lemma value or a mention ends with lemma value. Both the 
class ID and the lemma of value appeared to be frequent based on the mean 
of the mentions.

Relative usage Figure 6.1 shows the relative usage of the top unique mentions (lem-
mas and class ID) at mention and document levels. The major observations are 
as follows:

• Data and Expression data are the most popularly used data over the 
years of the corpus with a mean always greater than 0.7 (class ID at the 
document level).

• At the mention level, the relative usage of top class ID mentions, apart from
Data, shows relatively steady usage over the years.

• For lemmas at mention level, gene has a higher relative usage over the years 
compared to other lemmas apart from datum. This relative usage declined 
over the years. It goes from a mean mention level of 2.65 to 1.13. At the 
document level, the mean of documents that contains gene declined as well, 
35% of documents in 2017 compared to 59% in 2006 and 2007.
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• The relative usage of lemmas p, p value and the corresponding class P-
value are rising over the time. At the document level, 46% of the docu-
ments contain a mention of P-value (years 2019 and 2020). This indicates 
a tendency to analyse the data using statistical significance tests.

Trends Figure 6.2 shows the fitted lines for the top six data mentions (class ID) learnt 
by local regression methodology (loess). If we look at the trends over time, we 
can see the following observations:

• Although the high use of the Expression data was noticeable, it fluctu-
ated over the years.

• Gene ID reached its peak usage in the first five years, and was trending 
down slowly after then.

• P value usage increased sharply until 2010 then continued increasing 
slowly.

• The usage of E-value class stayed relatively stable over the years.

• Sample ID showed a consistent growth all over the years in the corpus.

Association relations

We obtained 201 significant rules that show the relations between data mentions 
(class ID) over the document. Figure 6.3 plots the first ten significant relations 
ordered by support value. Data is always co-used with Expression data, 
Sequence, Experimental measurements, GeneID and many other kinds 
from the data classes.

We tested the significant rules after removing the Data class from the testing 
set and the number of significant rules reduced to nearly a quarter of the origi-
nal (59 rules). The rules are shown in grouped matrix format in Figure 6.4. The 
right hand side of the rules contains the classes Experimental measurements, 
Expression data and GeneID, the left hand side shows the classes in groups 
of rules. Some examples :

• An example of a high lift rule is that, Gene ID (GeneDB) and Sequence 
set are significantly mentioned in the same document with Experimental 
measurement.

• Database search results, Score and Expression data

• Root-mean-square deviation and Expression data
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Table 6.3. Statistics of data mentions in the corpus.

Characteristics Data
Total mentions 1,042,007
Unique mentions (text) 405,466
Unique mentions (lemma) 274,375
Unique mentions (class name) 1,115
Unique mentions (class ID) 735
Mean of total mentions per document 62.76
Median of total mentions per document 56
Minimum mentions in a single document 1
Maximum total mentions in a single document 425
Number of sentences with at least one mention 488,484
Percent of sentences with at least one mention 42.56%
Mean of total mentions per sentence 2.13

Table 6.4. Frequent mention-level mean and document level mean for data lemmas and class ID. 
Sample data has a document level mean as 0.33 and 0.52 for lemma and class ID

Data lemmas Data EDAM concepts
Mention level Document level Mention level Document level

mention mean mention mean mention mean mention mean
gene 1.37 datum 0.52 Data 33.84 Data 1
datum 0.92 gene 0.49 Expression data 3.03 Expression data 0.81

sample 0.55 sample 0.33 Gene ID (GeneDB) 2.81 Experimental
measurement 0.71

p value 0.49 p value 0.32 Experimental
measurement 2 Gene ID (GeneDB) 0.64

p 0.38 p 0.26 Sample ID 1.21 Sample ID 0.52
rna 0.37 rna 0.26 E-value 1.19 E-value 0.51
probe 0.37 gse 0.22 P-value 0.73 P-value 0.4
gse 0.29 value 0.19 Sequence 0.7 Concentration 0.34
value 0.27 result 0.19 dbProbe ID 0.69 Citation 0.32
result 0.24 probe 0.19 Concentration 0.56 Sequence 0.3
array 0.23 array 0.17 Matrix 0.53 Matrix 0.3
sequence 0.23 primer 0.17 Score 0.53 dbProbe ID 0.27

primer 0.22 microarray
datum 0.16 Citation 0.5 Image 0.25

dna 0.21 sequence 0.14 Image 0.43 Database search
results 0.25

Analysing the non-significant rules with high lift shows that it is also common to 
have:

• Pathway or network associated with P-value.

• Q-value and P-value are frequently mentioned together, where Q-value
has synonym classes such as FRD and Adjusted P-value.

• Database search results and Sample ID are also frequently found 
together.
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(a) Mention level: lemmas (b) Mention level: class IDs

(c) Document level: lemmas (d) Document level: class IDs

Figure 6.1. Relative usage over the years 2000 to 2020 at the mention level and document level of the 
top six mentions for data lemmas and class ID. The relative usage of document level ranged from 0 to 

1 while it could be more than 1 in mention level. For example: the lemma gene mentioned at least once 
in yearly documents (mean at mention level range between 2.56 and 1.13 (a)). The lemma gene

mentioned in 59% to 35% of the corpus documents over the 20 years (document level(c)).

Operations

Distribution We have extracted a total of over a 600K operation mentions from the 
corpus (the average of 37 per document and one per sentence) (see Table 6.5 for 
more detailed statistics).

Table 6.6 goes further and shows frequent mean mention-level and document-
level based on the lemmatised mentions and normalised class ID. The major ob-
servations are as follows:

• calculate, analyse, determine, obtain and identify are top lemmas at the two 
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Figure 6.2. Trending of top six data mentions (class ID). The points are the actual relative usage of a 
mention in a year. The curve shows the forecasted usage based on previous actual usage.

levels of mentions respectively.

• Calculation is the frequent class ID. 94% of the documents in the corpus 
includes calculation processes. One document has a mean of 5.26 for this 
kind of process.

• Visualisation and Statistical calculation have the same mean at 
the document level (0.25). However. the Visualisation is more frequent 
at the mention level which means the results are more often visualised than 
analysed statistically in the same document.

• Assigning Role with lemmas select, use and consider are frequently 
used as operations mentions.

• Analysis, Validation, Standardisation and normalisation and
Filtering are frequent operations that show additional processing on the 
data used in the study.

Relative usage Figure 6.5 shows the relative usage of the top unique mentions (lem-
mas and class ID) at mention and document levels. The major observations are 
as follows:
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Figure 6.3. Correlations between data mentions (class ID). We plotted the first ten significant relations 
(ordered by support value); the size of the circle depends on the support value, the density of the 

colour shows the lift value. Example of two significant relations are: 1) with a high support Data and
Expression data are mentioned in the same document, 2) with a lift >1 E-value and Gene ID 

(GeneDB) are mentioned in the same document with Data.

• EDAM classes Calculation, Assigning Role, Data retrieval, Operation
and Analysis are highly used in data events all over the years. This usage 
is increased by years of the corpus.

• Calculation has the highest usage over the years and rose steadily by 
10% every 5 years to 2010, but by a modest 4 % after then. The lemma 
calculate as well, except for the period of years between 2011 and 2019 at a 
document level where the highest preference was for the lemma analyse .

• Comparison is the least popular operation among the top operations. The 
usage over years stay steady.

Trends Figure 6.6 shows the trends over time. The main observations are:

• The trend of Analysis reached its peak in year 2015 and going down after 
that.

• Assigning Role and Data retrieval are steeply trending up over the 
time.
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Figure 6.4. Data EDAM classes significant association rules without Data class. The number of rules 
are reduced to nearly the quarter. Data EDAM classes significant association rules. The left hand side 
of the rules are clustered and shown as columns, and the right hand side are shown in the rows. In the 
matrix, the size of a circle shows the support and the dense of the colour shows the lift. The rules are 
organised where the rules with the highest lift plotted first (left corner). For example, with a high lift,
Gene ID (GeneDB) and Sequence set are significantly mentioned in the same document with

Experimental measurement

• Operation sharply trends up until 2008 which climbing more slowly by 
then.

• Calculation gently trending up while Comparison bending down at the 
end of the period.

Association relations We obtained 83 significant rules that show the relations be-
tween operation mentions (class ID) over the document. Figure 6.7 plots an ex-
ample of the first ten significant relations ordered by support value. Figure 6.8
shows a grouped matrix for 83 significant rules. The main remarks are that:
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Table 6.5. Statistics of operation mentions in the corpus.

Characteristics Operations
Total mentions 616,144
Unique mentions (text) 28,202
Unique mentions (lemma) 17,799
Unique mentions (class name) 748
Unique mentions (class ID) 399
Mean of total mentions per document 37.11
Median of mentions per document 35
Minimum mentions in a single document 1
Maximum total mentions in a single document 209
Number of sentences with at least one mention 455,364
Percent of sentences with at least one mention 39.67%
Mean of mentions per sentence 1.35

• Data retrieval, Calculation and Analysis are significantly used 
with a considerable number of operations.

• Annotation and Normalisation are strongly associated, as well Mapping
and Comparison.

Analysing the non-significant rules, we found that:

• Assigning Role, Comparison, Data retrieval, Filtering, Entity 
identification, Operation, Standardisation and normalisation
and Calculation are mentioned in the same article with a high degree of 
confidence.

• Analysis, Expression analysis, Standardisation and normalisation
and Quantification are highly used in the same context as well.

• The majority of the association rules are with a high order, which means 
the rule includes between five and seven operations. Focusing on relations 
between two operations, Filtering is highly mentioned with (Mapping 
and Clustering), (Annotation and Feature selection).

Software

Distribution There are 63,508 software mentions with 1,508 unique (text), of which 
only 873 can be mapped to bio.tools.

Table 6.7 shows the mean of mention level and document level of software men-
tions. R and Bioconductor are the top mentions for software.

Relative usage Figure 6.9 shows the relative usage of the top mentions at mention 
and document levels. The main observations are:
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Table 6.6. Frequent mention-level mean and document level mean for operation lemmas and class ID. 
calculate is highly mentioned in a document with a mean of 1.44 at a mention level and 0.61 at a 

document level.

Operation lemmas Operation EDAM concepts
Mention level Document level Mention level Document level

mention mean mention mean mention mean mention mean
calculate 1.44 analyse 0.63 Calculation 5.26 Calculation 0.94
analyse 1.35 calculate 0.61 Assigning Role 2.88 Analysis 0.85
determine 1.03 determine 0.53 Analysis 2.8 Assigning Role 0.84
identify 0.78 obtain 0.43 Operation 2.11 Operation 0.8
select 0.75 identify 0.43 Data retrieval 1.88 Data retrieval 0.76
obtain 0.73 normalize 0.42 Comparison 1.46 Comparison 0.69

compare 0.64 select 0.42 Validation 1.15 Standardisation and
normalisation 0.59

assess 0.64 consider 0.4 Standardisation and
normalisation 1.1 Validation 0.57

measure 0.64 compare 0.4 Generation 1.02 Correlation 0.56
normalize 0.63 use 0.4 Correlation 0.97 Generation 0.53
use 0.61 assess 0.38 Filtering 0.94 Filtering 0.47

consider 0.6 measure 0.36 Named-entity and
concept recognition 0.78 Prediction and

recognition 0.44

generate 0.59 generate 0.36 Feature selection 0.77 Quantification 0.44

• Bioconductor was the most second popular software, by the year 2015 the 
preference was for SPSS and DAVID.

• SPSS usage was very low at the beginning of the period, it passed the usage 
of all software, other than R, by the year 2015.

• Cluster showed a low but stable relative usage over years at the document 
level.

Trends Figure 6.10 shows the trends over time. The main observations are:

• R usage grew strikingly overall the period of the corpus.

• SPSS rose steadily by 1% every year to 2015, followed by a noticeable in-
crease in the last five years.

• Bioconductor appeared in 2002, its usage reached its peak 2012 and it 
decreased by then evenly.

• DAIVID trend up steadily until 2015 and then trend down.

Association relations We minimised the support value to get rules. We identified 
ten significant association rules between software. All of the software shown in 
these rules are associated with R. Removing R produced zero significant rules. 
Examples of significant relations:
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(a) Mention level: lemmas (b) Mention level: class IDs

(c) Document level: lemmas (d) Document level: class IDs

Figure 6.5. Relative usage over the years 2000 to 2020 at the mention level and document level of the 
top six mentions for operation lemmas and class ID. The relative usage of document level range from 0 

to 1 while it could be more than 1 in mention level. Calculation, Assigning Role, Data 
retrieval, Operation and Analysis usages are increased by years of the corpus (d).

• DAVID, Cytoscape and Network are strongly associated with R.

• Bioconductor and BLAT are significantly related with R,

• Ensembl and MySQL are significantly related with R.

• with a high lift, the affy and gcrma packages are significantly related to R.

Analysing the non-significant rules with a high lift degree, we found that:

• TreeView and Cluster software come together frequently.

• The affay package and Bioconductor are commonly mentioned together 
and with R.
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Figure 6.6. Trending of top six operation mentions (class ID). Assigning Role, Calculation and
Data retrieval classes are trending up. Comparison and Analysis ended by trending down.

Table 6.7. Mention level mean and document level mean for software. R has a mean of 0.64 at mention 
level and 0.31 at the document level.

Software
Mention level Document level

mention mean mention mean
R 0.64 R 0.31

Bioconductor 0.18 Bioconductor 0.13
SPSS 0.14 SPSS 0.1

DAVID 0.1 DAVID 0.07
SAM 0.09 SAM 0.05

UCSC Genome Browser 0.07 Cluster 0.04
BLAST 0.06 GraphPad Prism 0.04
Ensembl 0.06 UCSC Genome Browser 0.04
Partek 0.05 BLAST 0.04
Cluster 0.05 Ensembl 0.04

GraphPad Prism 0.05 Network 0.04
Network 0.04 limma 0.03

• Biocoductor and R association relation has the highest support.

Databases

Distribution There are 54,121 database mentions. There are 1,577 unique mentions 
(text). Table 6.8 shows the mean of mention level and document level of some 
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Figure 6.7. Correlations between operation mentions (class ID). We plotted the first ten significant 
relations (ordered by support value); the size of the circle depends on the support value, the density of 

the colour shows the lift value. Example of two significant relations are: 1) with a high lift
Standardisation and normalisation class is significantly mentioned with Annotation, 2) with 

a high support Annotation is mentioned with Analysis.

annotated databases. GEO (Gene Expression Omnibus) has the highest 
mean mentions at both levels (0.52 and 0.28 respectively). GO (Gene Ontology), 
ATCC (American Type Culture Collection), KEGG (Kyoto Encyclopedia 
of Genes and Genomes) and GenBank are the top used databases based on 
the mean of the mentions.

Relative usage Figure 6.12 shows the relative usage of the top mentions at mention 
and document levels. The main observations are:

• At the mention level, in the first eight years GO was the most used database. 
This was overtaken by GEO which reached its peak in 2013 then slowly de-
clined but still had a relatively high usage compared to other databases. At 
the document level, GEO was the highest since 2004 and remained so until 
the end of the period.

• ATCC document level usage was higher than GO from the period of 2013 till 
2018. GO returned to its higher usage by then until the end of the period.

• GeneBank usage declined since 2005. The mean of relative usage went 
from 0.25 to 0.05 in 2019.
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Figure 6.8. There are 83 significant association rules between operations mentions (class ID). An 
example of grouped relations Standardisation and normalisation on right hand side of the 

relation has six relations. Two with a high support (size of the circle) Annotation and 180 
labeling. The other four relations with high lift (colour of the circle) with Annotation, 

Assigning Role, Calculation and Classification.
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(a) Mention level (b) Document level

Figure 6.9. Relative usage of top software. R is the most frequent used software over the corpus. SPSS
overcome the usage of all software, other than R, by the year 2015.

Figure 6.10. Trending of top six software. R and SPSS are trending up. Bioconductor and DAIVD end 
up by trending down.
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Figure 6.11. Correlations between software mentions (text). We plotted the ten significant relations; 
the size of the circle depends on the support value, the density of the colour shows the lift value. 

Example of two significant relations are: 1) Bioconductor and BLAT are significantly related to R, 2) 
with a high lift, the affy and gcrma packages are significantly related to R.

Trends Figure 6.13 shows the trends over time. The main observations are:

• The usage of GEO had a steep upward trajectory from nearly zero to nearly 
33% in the first 11 years, it then declined slowly by around 10% at the end 
of the period.

• GO usage fluctuated over the years but ended up with upward usage in the 
last five years.

• ATCC and KEGG showed a similar slow increase in usage.

• GeneBank usage trended down slowly all over the years.

Association relations

We minimised the support as we did in software association relations. There are 
five significant association rules between databases mentions (see Figure 6.14).

• Gene Expression Omnibus (GEO) is significantly associated with 9
databases.

• DEG and KEGG are associated with GEO with a high support among the rela-
tions.
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• GO and WGCNA are associated with GEO with a high support and high lift 
among the relations.

Analysing the non-significant rules with a high lift degree, we found that:

• The Biomolecular Interaction Network Database (BIND) and
Human Protein Reference Database (HPRD) are highly mentioned 
within the same documents.

• dbEST and GenBank are highly mentioned within the same documents.

• The five databases, Gene Ontology (GO), Gene Ontology Annotation 
(GOA), AmiGO, GEO and Kyoto Encyclopedia of Genes and Genomes 
(KEGG), are frequently mentioned in the same document.

(a) Mention level (b) Document level

Figure 6.12. Relative usage of the top six databases. GEO is the most popular database. Mention level 
of GO was more than GEO until 2007.

6.3.4 Linking components 

We studied the relations between two pairs of components then between all compo-
nents. We studied the relations at two levels; document level and data event level.

Operation and Data

Document level

Examples of significant relations between operations and data:
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Figure 6.13. Trending of top six databases. Most showed a slow upward trending. GenBank is trending 
down.

Table 6.8. Mention level mean and document level mean for databases. GEO has a mean mention level 
of 0.52 and a mean of 0.28 at the document level.

Databases
Mention level Document level

mention mean mention mean
GEO 0.52 GEO 0.28
GO 0.25 GO 0.11

ATCC 0.18 ATCC 0.11
KEGG 0.09 KEGG 0.06

GenBank 0.08 GenBank 0.05
FACS 0.08 FACS 0.04
GSEA 0.06 RefSeq 0.03
RefSeq 0.05 Guide 0.03
Guide 0.03 GSEA 0.03
MEM 0.03 Blue 0.02

UniGene 0.02 MEM 0.02
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Figure 6.14. Correlations between database mentions (text). We plotted the first ten significant 
relations (ordered by support value); the size of the circle depends on the support value, the density of 
the colour shows the lift value. Example of a significant relation is GO and WGCNA are associated with

GEO with a high support and high lift among the relations.

Rel<operation: Comparison, data: Cultivation parameter, Score>

-Cultivation parameter class includes classes such as Temperate, Cultivation 
conditions, etc.

Rel<operation: Visualisation, Statistical calculation data: Gene 
ID (GeneDB)>

Rel<operation: Annotation, Conversion, Alignment, Assignment data:
Expression data>

Examples of frequent but non-significant relations:

Rel<operation: Design, Comparison, data: Expression data, PCR primers>

Rel<operation: Editing, data: Expression data, Gene ID (GeneDB), 
P-value>

Rel<operation: Editing, Standardisation and normalisation, data:
Expression data, P-value>

Rel<operation: Named-entity and concept recognition, data: Pathway 



CHAPTER 6. SURVEY DATA EVENTS 185

or network>

Event level

Rel<operation: Editing, data: Q-value, P-value>

Rel<operation: Ontology visualisation, data: Gene ID (GeneDB)>

Rel<operation: Classification, data: GO concept ID, Gene ID (GeneDB)>

Rel<operation: Statistical calculation, data: Experimental measurement>

Operation and Software

Document level There are no significant relations on the document level since the 
operations mentions (class ID) are more frequent at the document level than software. 
We removed the frequent operations Calculation and Analysis.

Examples of significant relations between operations and software:

Rel<operation: Data retrieval, SW: R>

Rel<operation: Standardisation and normalisation, Data retrieval, 
Operation, SW: Bioconductor>

Examples of frequent but non-significant:

Rel<operation: Standardisation and normalisation, Comparison, Operation,
SW: R>

Event level For example, the operation is frequently mentioned in the same events 
with the software.

Rel<operation: Clustering, SW: Cluster, TreeView>

Rel<operation: Standardisation and normalisation, SW: R, limma >

Rel<operation: Expression analysis, Statistical calculation, SW:
R, Bioconductor >

Rel<operation: Design, SW: Primer3>

Rel<operation: Gene functional annotation, SW: DAVID >
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Operation and Databases

Document level There are no significant relations at the document level since the op-
erations mentions (class ID) are more frequent at the document level than databases. 
We removed the frequent operations Calculation and Analysis to obtain some sig-
nificant relations with other classes. Example of a significant relation:

Rel<operation: Data retrieval, DB: GEO>

Example of non-significant but a high lift relation:

Rel<operation: Deposition, Operation, DB: GEO>

Event level Examples of non-significant but a high lift relation:

Rel<operation: Pathway analysis DB: KEGG(Kyoto Encyclopedia of Genes 
and Genomes))>

Rel<operation: Beacon Designer, DB: Design>

Data and Software

Document level Example of frequent relations:

Rel<data: Experimental measurement, P-value, Gene ID (GeneDB),

Expression data, SW: R, Bioconductor >

Event level Example of frequent relations:

Rel<data: PCR primers, SW: Primer Premier>

Rel<data: PCR primers, SW: Primer3>

Rel<data: P-value, Q-value, SW: R>

Rel<data: Pathway or network, Protein interaction data, SW: Cytoscape>

Rel<data: Gene expression profile, Expression data, Gene ID (GeneDB),
SW: Cluster, TreeView>

Data and Databases

Document level Example of frequent relations:
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Rel<data: Expression data, P-value, Gene ID (GeneDB), DB: GEO >

Rel<data: Expression data, Gene ID (GeneDB), DB: GO >

Event level Example of frequent relations:

Rel<data: PCR primers, DB: Beacon Designer>

Rel<data: Gene symbol, DB: HGNC(HUGO Gene Nomenclature Committee)>

Rel<data: Sequence, DB: dbEST, GenBank>

Rel<data: Mathematical model, Pathway or network, DB: KEGG>

Rel<data: Raw microarray data, DB: GEO >

Rel<data: Expression data, Accession, GEO accession number, Sample 
ID, Protocol, File name, DB: GEO >

This relation is a group of five relations. At the event level, database GEO and Expression 
data have an extra relation with different data such as Accession, GEO accession 
number, Sample ID, Protocol and File name

Software and Databases

Document level We lowered the support and remove the frequent software (R and
Bioconductor) to have different frequent relations. Examples of non-significant but 
lift>1 are:

Rel<SW: Entrez Gene, DB: GO, NCBI Entrez>

Rel<SW: Cytoscape, SPSS, DB: GO, KEGG>

Rel<SW: Cluster, TreeView, DB: GEO>

Event level

Examples of non-significant but lift>1 are:

Rel<SW: ArrayExpress, DB: GEO>

Rel<SW: MINT, IntAct, DB: BIND (The Biomolecular Interaction Network 
Database), HPRD (Human Protein Reference Database)>
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Operation, Data, Software and Databases

Document level

Extracting significant rules for all components generates thousands of rules asso-
ciated with the most frequent components. We removed the frequent components 
such as R, Data and Calculation and obtained 1,643 rules. Figure 6.16 shows the 
grouped matrix for these rules. The right hand side of the significant rules is GEO, 
Expression data or Analysis. Figure 6.15 plots ten examples of these rules. Here 
are some examples:

Rel<data: Expression data, operation: Read pre-processing, SW:
Bioconductor DB: GEO>

Rel<data: Expression data, operation: Data retrieval, SW: MATLAB
DB: GEO>

Rel<data: Expression data, operation: Data retrieval, SW: UCSC Genome 
Browser DB: GEO>

Rel<operation: Data retrieval, data: Gene ID (GeneDB), Expression 
data, SW: Entrez Gene>

Rel<operation: Analysis, data: Gene ID (GeneDB), Expression data,
SW: NetAffx>

Rel<operation: Data retrieval, Analysis, data: Gene ID (GeneDB),
DB: DEG>

Event level

To analyse links between all data event components, we removed the Data and R since 
they are frequent in events. There were no significant links identified, but the frequent 
ones were for example:

Rel<data: Microarray data, operation: Deposition, DB: GEO>

Rel<data: Gene ID (GeneDB), operation: Analysis SW: DAVID, DB: GO>.

Rel<data: Network, operation: Visualisation, Construction, SW: Cytoscape>

For the lift measurement, the events with higher value included:

Rel<data: Array, Pathway over-representation report, SW: DAVID,
DB: GO, DEG, KEGG>
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Figure 6.15. Example of 10 significant association rules between all components at the document level 
shown in parallel coordinates. We removed frequent components such as Data, R and Calculation. 
An example: Bioconductor (position 3), Expression data (position 2), Read pre-processing (position 1) 

=> GEO(rhs) this relation can be represented as Rel<data: Expression data, operation:
Read pre-processing, SW: Bioconductor DB: GEO>

Rel<data: File name,Gene expression profile identifier, SW: affy, 
Bioconductor, DB: GO, DEG, KEGG>

6.4 Discussion

The corpus shows that 40% of the sentences of Methods section describes the work 
conducted by mentions of operations and data. It also shows that each sentence has 
an average of one operation and two data instances, which is expected (input/output 
data instances linked by an operation).

The normalisation of operations shows a better result than data normalisation in terms 
of mentions left to be mapped to the top classes Operation and Data (18% versus 
52% at unique text mentions). Although with a modest mapping result, normalising 
the data to EDAM concepts gives an idea of type of classes used in microarray analy-
sis such as Expression data, Gene ID, Sequence, dbProb ID, etc. and we can 
also follow whether the usage of these classes are trending up or decline through the 
year of the corpus.
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Figure 6.16. Significant association rules between all components at the document level. We removed 
frequent components such as Data, R and Calculation and we used class ID mentions for data and 

operations.

This survey produced more normalisation classes than the one produced in Chapter 4. 
This normalisation result needs to be analysed to write more normalisation rules that 
would find better class match to a mention. For example, data mentions such as RNA, 
DNA, cDNA found an exact match in Topic EDAM but matched to class Data since 
the possible similar classes are not within an acceptable similar syntax distance. RNA, 
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could be matched to RNA-seq data, RNA profile or RNA sequence Data classes.

From the mean of the mention level, the same operation or data could be repeated 
more than once in the same document. The mean at the mention level of the soft-
ware and databases mentions did not indicate the same thing. Moreover, most of the 
databases and software mentions have a low document level usage compared to other 
components. It is noticeable that the usage of operations and data in describing the 
work conducted is more than mentioning the software or database used.

Studying the rules at two different levels shows different level of relations. At the 
document level we can have a general idea of frequently mentioned components at 
the document level. This can be filtered by significant measurement as well. At the 
event level we were zoning the study group between the components that have re-
lation in data events. We did not obtain significant relations, but we could spot the 
relations that were hidden by frequent components at the document level. For exam-
ple, Expression data with database GEO are frequent at the document level. At the 
event level, they are combined with more data that are not appeared at the level of 
document.

Studying the significant rules is important, however, non-significant but frequent rules 
show interesting results as well. For example, P-value is frequently mentioned with
FDR as class name, a synonym to class ID Q-value. These two data are usually han-
dled by software R.

Although we visualised the relations in group matrices, we cannot explore all the sig-
nificant or frequent relations. However, if we are interested in a specific component, 
we can investigate its relations through the produced rules.

Duck et al. [11] stated that the usage of software is significantly different among dif-
ferent biomedical literature fields; the mentions of software and databases are high 
in bioinformatics. We found that in this paper domain, microarray analysis, the men-
tions of the software and databases are less than the mentions reported by Duck et al. 
[11] in their survey. They also showed that 78% of the surveyed resources were used 
only once over 15 years. In our analysis, 44% of resources were mentioned once over 
20 years.

6.5 Conclusion

In this paper, we have demonstrated the feasibility of using the large-scale automat-
ically extraction of methodology (i.e. operations, data, databases and software) to 
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identify the usage patterns from a large corpus of microarray articles. Our survey 
highlights the changes over 20 years where new “types” of data events emerged and 
old ones declined. For example, Data retrieval, Assigning role, Sample 
ID, P value, R, SPSS and KEGG show no sign of levelling off.

We explore the relations between components operations, data, databases and soft-
ware and found some interesting patterns such as genes or expression data could be 
deposited to GEO database and retrieved using UCSC Genome Browser or Entrez 
Gene. The networks could be visualised by Cytoscape.

Overall, the result obtained gives an insight into the data events components charac-
teristics and provides a general overview of core computational biology common pro-
cesses and data.
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This chapter discusses the various topics covered within this thesis, in particular high-
lighting the key findings that answer the research questions, and explores the chal-
lenges and limitations of this work, as well as potential future work.

Identifying, following and understanding methodologies reported in the plethora of 
publications demands huge effort as these methods are usually represented in prose in 
scientific publications. Representing methodologies in a computational model would 
offer a great opportunity to search, analyse and better understand the methodological 
landscape in a given domain. Figure 7.1 provides an overview of the primary steps 
developed and discussed in this thesis:

1. Corpus generation and filtering

2. Document pre-processing

3. ODNoR operation and data name recognition, normalisation and relation extrac-
tion

4. ODNoRFlow workflow extraction

5. Workflow storage and representation

6. Pattern generation to identify commonly used operations, data, software and 
databases in the extracted workflows.

Figure 7.1. Graphical representation of the thesis’ primary steps.
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7.1 How our findings answer the research questions

7.1.1 Revisiting the research questions and objectives

The main hypothesis of this thesis is that — by using text mining techniques — we 
will be able to automatically identify, extract and represent computational biology 
methods that are reported in individual scientific articles. To check that hypothesis, 
we aimed to design, develop and evaluate a methodology to extract and represent data 
event workflows from the computational biology literature, using microarray analysis 
as a case study.

Overall, we have found that — in the microarray analysis literature — we can extract 
an abstract representation of method workflows. We now review each objective and 
list the relevant findings that help answer our research questions and reach our aim.

• Objective 1: To conduct a survey of how methods sections are written.

This objective answered the first research question. We surveyed the microar-
ray analysis literature in Chapter 3 to explore how methods sections are writ-
ten in terms of functional discourse. Discourse functions were extracted by the
SAPIENTA system. We found that most of the Methods section discourse func-
tions are Methods and Experiments, with few mentions of Models and Results. 
We identified six common patterns (listed below in the SPS format with short-
ened names for the functions: Bac, Met, Mod, Exp, Mot, Goa, Hyp, Obj, Obs, 
Res, Con as short for Background, Method, Model, Experiment, Motivation,
Goal, Hypothesis, Object, Observation, Result and Conclusion).

Pattern P1 (Met,1)-(Exp,19)-(Met,13)-(Exp,4)-(Met,2).

Pattern P2 (Met,13)-(Bac,1)-(Met,6)-(Res,3)-(Met,14)-(Res,1)-(Exp,14)-(Obs,1).

Pattern P3 (Obj,1)-(Met,1)-(Res,2)-(Exp,13)-(Res,1)-(Met,2)-(Res,1)-(Met,4)-
(Exp,23)-(Res,3)-(Exp,13)-(Bac,1).

Pattern P4 (Exp,2)-(Res,5)-(Met,7)-(Exp,1)-(Res,1)-(Exp,6)-(Met,9)-(Res,4)-
(Exp,17)-(Res,2)-(Mod,6)-(Exp,5)-(Met,7).

Pattern P5 (Res,3)-(Con,2)-(Bac,4)-(Mot,1)-(Res,3)-(Con,1)-(Res,5)-(Met,2).

Pattern P6 (Bac,7)-(Met,22)-(Exp,11)-(Met,29)-(Res,2).

We explored and reported the usage of these patterns over the years that were 
covered by the corpus. We also reported the patterns usage in the top four mi-
croarray analysis journals. Moreover, we demonstrated the relation usage be-
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tween the discourse functions over the paper’s section. We found 12 statisti-
cally significant relations that show there was a high chance when a number 
of sentences of one function was increased in a section, that the other function 
was increased as well. We found that there is a strong positive relationship be-
tween (Model and Method), (Goal and Object), and finally between (Result
and Observation). There is also a fairly strong positive relationship between 
(Method and Experiment), (Background and Motivation), (Conclusion
and Hypothesis), (Hypothesis and Result), (Observation and Object), 
(Observation and Goal), (Object and Result) and finally between (Goal
and Result).

We explored and reported the transition probabilities between the functions. We 
could say that in the Methods section, the functions that belong to the approach 
category (i.e. Experiment, Method and Model) are highly probable to come in 
a successive pattern. It is also noticeable from the state diagram that the transi-
tion for any function has a high chance of being to Method.

As reported in Chapter 5, the rhetorical structure theory (RST) shows that the 
majority of the Method sections sentences have a discourse relation of Elaboration, 
which makes no significant difference to reporting or using them in finding the 
writing structure patterns.

• Objective 2: To explore the use of text mining techniques, such as named 
entity recognition (NER), discourse analysis (DA) and domain relation ex-
traction (RE) to identify data events.

This objective targeted the second research question, which we addressed by 
exploring text mining techniques in Chapter 2, applying named entity recogni-
tion and relation extraction techniques in Chapter 4 and the discourse analysis in 
Chapter 3.

At the early stages of the project, we explored rule-based NER and studied the 
syntax of the text to design rules that could extract the data and operations. How-
ever, it gave a modest result compared to the machine and deep learning tech-
niques. We used the transformers pre-trained on a large number of data: specif-
ically, we used BioBERT, which is a BERT model trained on PubMed articles, 
obtaining an F-score between 78% and 92%.

We used bioNerDS [71] to extract the other two main components of the work 
reported: software and databases.

We linked these main components with four types of relations: input data, out-
put data, by software and from database. Relation extraction was performed by 
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using machine learning and rule-based systems, and we obtained an F-score be-
tween 62% and 92%.

We also explored the benefits of discourse analysis. In Chapter 5, we tested the 
functional and RST discourse outcomes to improve the result extracted by the 
ODNoR system. Using one type of discourse did not enhance the result. Com-
bining multiple types of discourse could improve the accuracy of the extracted 
events to some extent. However, the level of the accuracy of the current state-
of-the-art systems is not sufficient to be applied reliably to the computational 
biology field.

Overall, the results we obtained in this thesis indicate that text mining can be 
used to identify data events, but that the accuracy may still be relatively low for 
recognising and linking specific components.

• Objective 3: To model the data events mentioned in methods by defining 
templates that contain information about processes conducted and reported 
in the text.

This objective targeted the third question and was addressed in Chapter 5. We 
defined a data event as the operation on data performed by operator(s). In our 
context, the data is processed by operators that can be software (e.g. BLAST), 
tools (e.g. Microsoft Excel) or different specific methods (e.g. Student’s t-test).

The representation of a data event was inspired by the representation of the events 
in discourse analysis [97]. A template for a data event was based on the sug-
gestions reported in [102]. We represented the semantic roles of an event as the 
components involved in accomplishing a task. They are operations, input data,
output data, software and databases. An abstract representation of the data 
event is:

<input data:data, operation:operation, input data:data, software:software,
database:database>

We defined two types of data events. The first type records explicit events done 
by operators; we refer to these simply as data events. Another type is called im-
plicit data events, which keep track of a reference to the data used without an 
accompanying task in the same sentence.

• Objective 4: To represent extracted data events in abstract workflow dia-
grams, and evaluate the workflow construction in a case study on microar-
ray analysis research.
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This objective targeted the third research question and was addressed in Chap-
ter 5. Data events from a paper’s Methods section are combined in a sequence 
order to construct the workflow of that paper. The events are ordered as they are 
mentioned in the Methods section. The workflow can be viewed as a directed 
connected graph, a sequence of records in a CSV file or a sequence of events in 
the BRAT format. Figure 7.2 represents an abstract workflow for a main article’s 
Method section shown in Appendix C.

Figure 7.2. An example of a workflow abstract in a network graph.

Evaluation of generated workflows was a challenge. We separately evaluated 
each step that was required to be performed before constructing the abstract work-
flow in Chapter 4. Operations, data, software and databases annotations are 
evaluated. Relations between the components (input data, output data, by soft-
ware and from database relations) were also evaluated. We manually evaluated 
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the workflows by examining completeness (which relates to entities and rela-
tions inside an event , and sequentiality of events in a workflow (which relates 
to the order of the data events in the workflow) in Chapter 5. For completeness, 
we considered how well the extracted data events represent i.e. capture a data 
event against the manual annotation. We obtained an F-score between 61% and 
93.56% with a substantial inter-annotator agreement.

• Objective 5: To demonstrate how the computational data event workflows 
can be used to identify common patterns of method over time. 

This objective targeted the fourth research question and was explored in Chap-
ter 6. We were able to extract and analyse the abstract workflows for the mi-
croarray analysis papers over the last 20 years. We analysed the distribution and 
relative usage of data, operations, software and databases over time. We ex-
plored the trending of some key concepts for each component.

We presented data events components association relations as reported in doc-
uments and as they appeared in the extracted data events. We first presented the 
patterns of each component separately, and then we found the patterns of pairs 
(e.g. data and operations) and all four components together.

7.2 Challenges

In undertaking this work, the following challenges were met:

1. The ambiguity of free-text data is one of the main concerns in extracting an ab-
stract workflow. The literature refers to the data and operations in a narrative 
style rather than in a form of a standardised schema or ontology. This is a well-
known problem in particular in the field of life sciences. For example, Thessen 
and Patterson [37] stated that there are no “comprehensive” standards, no in-
tention to share data, and there is no common data infrastructure for the life sci-
ences.

2. The writing structures are different between sentences; extracting the operation
and data from plain text using a rule-based approach was challenging and time-
consuming. An operation could be a subject, verb or object. It could be com-
bined with data in the same noun phrase. It also could come in the context of 
the purpose of introducing a task or using the software. Data could be any noun 
that is required or produced by a process. Collecting all the nouns that could be 
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data and trying to normalise them to well-known resources (e.g. Data EDAM - 
Topic EDAM - Europe PMC annotation) did not produce an effective result in 
the data annotation. Although we overcame this challenge and obtained a rea-
sonable result in annotation using transformer technology, some of the annotated 
data failed to find corresponding concepts that represented them in knowledge 
resources like EDAM.

3. The processes of manual annotation and the quality evaluation of each single 
step are subject to human frailty and subjectivity. These processes need a con-
siderable amount of time and multiple annotators and evaluators to obtain a good 
judgement of the results obtained.

4. We did our best to benefit from the previously implemented systems and to em-
ploy them to perform the required tasks. However, this process was challenging, 
starting from searching the available and working systems, testing them, and in-
tegrating them with our system.

7.3 Limitations

The work presented in this thesis has the following limitations:

1. Abstract workflows are extracted only from a subset of the open-access PMC - 
that is, the field of microarray studies. Drawing a broader conclusion from our 
results needs testing in other fields and on other papers.

2. The accuracy of entity annotation, relation extraction and the integrated systems 
affected the overall system and might cast some doubt on some of the conclu-
sions drawn.

3. Data detection and normalisation require further work to improve the accuracy 
of the extraction and mapping of data. Metadata can be added as well to en-
hance the knowledge of the extracted data.

4. We did not handle the coreferring expressions neither at data event nor at work-
flow level. Addressing the coreference for data will help in tracking all the pro-
cesses happened to a specific data, in case it is referred by another expression, 
all over the workflow. It will also provide a better understanding of produced 
workflow.

5. There is no difference between operations as being a task or a method. Adding 
a layer of annotation or metadata will enable extracting the methods’ names and 
analysing them.
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6. The writing style patterns and abstract workflows are extracted to represent se-
quential sentences in the Methods section without considering to divide or or-
ganise them based on the reported subsections in the Methods section. No fur-
ther temporal information processing has been performed.

7.4 Future work

1. Improving data extraction, modelling and classification.

Data can be an item that has a value and, potentially, can be an input to or an 
output from a database, a software process or an algorithm calculation. It is im-
portant to improve the level of the data annotation, classification and metadata. 
For example, increasing the level of granularity of extracted data would increase 
the accuracy of the annotated data and thus enhance the normalisation precision.

Data instances can be named, unnamed data or metadata. Named data can be re-
ported in the text as a group or individual instances. Group named data refers to 
a dataset in form of a file format, supplementary file or DOI. Individual named 
data refers to individual instances such as accession number (reference to a database), 
term name, term short name or sequence pattern. Unnamed data is used for data 
that are mentioned as a general concept (e.g. protein sequences, transcripts). 
Metadata is either for data about data or for software parameters. Adding a layer 
of metadata could help in constructing a standardisation environment that or-
ganises data usage and exchange. An example of metadata is classifying the in-
stances where data are mentioned in the text into a taxonomy of instances types. 
The possible instances of data in microarray analysis literature are presented in 
Figure 7.3.

Another kind of metadata is to classify the annotated instances based on the gen-
eral data type defined in the computational community (e.g. string, integer or 
records). The OntoDT ontology [184] can be used to define this kind of data 
type. It is a general datatype ontology that adopts the ISO/IEC 11404 standard 
for representing the datatypes. The definition of a datatype in computer sci-
ence comprises possible types of data, their potential values and how they are 
stored and operated [185]. The OntoDT datatype class has three main features: 
value, operations, and datatype property (Figure 7.4). The latter defines whether 
the datatype is numeric, ordered, bounded, etc. For example, positive integer 
data type is numeric, ordered and the minimum value is bounded by zero. The 
datatype taxonomy is divided into three main datatypes: primitive, generated 
and user-defined (Figure 7.5). A primitive datatype includes twelve subclasses 
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Figure 7.3. Data instance mentions in the microarray analysis literature

(real, scaled, integer, complex, rational, date-and-time, enumerated, ordinal, 
character, discrete, boolean and void datatypes). A generated datatype is a di-
rective information entity that defines the conceptual operations that result in a 
datatype. There are nine subclasses: table, class, tuple, array, sequence, bag, set, 
pointer, choice and procedure datatypes. A user-defined datatype depends on 
what a user wants to define, for example, a tree or a directed cyclic graph.

2. Moving from an abstract workflow to an executable workflow.

This will need an assessment of the available executable workflow environment 
like Galaxy [27], Kepler [28] and Taverna [29] and build an exchange medium 
to convert from the annotated events to the format the workflow environments 
can accept.

Building an environment that easily explains/replicates someone’s work would 
significantly accelerate the process of applying other people’s methods with a 
different range of data and comparing the results obtained by the old one.

Prior to that, there is a need to enhance the current state of the extracted work-
flows. This includes improving the relation extraction accuracy, the sequences of 
data events and showing clearly the dependency between them and grouping the 
related events that are doing one task or referring to commonly used methods 
within the literature.
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Figure 7.4. The datatype schema definition is a subclass of data representation model defined in 
Ontology for Biomedical Investigations (OBI) and has operation (h_o) defined by operations, has 

quality (h_q) of some properties and has attributes (h_a) of values. Image is taken from Panov et al. 
[184].

Figure 7.5. OntoDT taxonomy, which includes three main datatypes: primitive, generated and 
user-defined datatypes. Each type has a number of subtypes. The total number of defined datatypes is 

25. Image is taken from Panov et al. [184].
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The classification of input data and output data achieved a modest accuracy in 
our system. It is good to know, with a high level of accuracy, what is the exact 
input of an operation, and what output data the software can produce. If we can 
infer this kind of information, we could generalise this relation over the literature 
and use it to build small, executable workflows.

It is also important to find the co-reference between data and link them to build 
a relation over the document, track the changes done over the data and whether it 
is an output from one process and used as input for another.

The flow of the dependent events could be enhanced by applying temporal ex-
traction techniques and changing the subject discourse to differentiate between 
dependent and independent events.

Grouping related data events into a sub-workflow could be done at different lev-
els. One of them is producing an abstract workflow for each sub-section or each 
paragraph and then grouping these sub-workflows into appropriate parallel or 
sequential sequences. Another level is pre-defining sub-workflows for the com-
mon data events that could be generalised over the literature, for example, the 
one related to the statistical analysis. The part of the text that explains that group 
of data events will be mapped to one of the pre-defined sub-workflows.

3. Applying our system in a different domain.

It is of interest to know if common data events are the same or different in other 
life science domains such as specific medical or biological studies. It is also in-
teresting to see what kind of data events would be extracted from different data 
science domains.

4. Studying the context of the data events

Relations between data events and their components can be analysed in depth. 
For example, which events must precede/follow an event. Can we perform statis-
tical analysis before specifying or correcting the P value? How is this reported 
in the literature? Can we use some existing knowledge for that? Input data and 
output data for an operation and software can form pre-defined data events and 
help in “guessing” the similar data events components in a context where one 
component is missed or not reported.

We found that some resources can have a role of being software or database. For 
example, Microsoft Excel could be a tool if used to calculate computational pro-
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cesses, or a database if used as a storing/retrieving environment for data. Study-
ing the context of operations and data in data events contexts will help in classi-
fying the role of the resources used.

5. Improving the discourse analysis

We found that the currently available discourse analysis systems have a low F-
score over the microarray analysis domain. It would be important to improve 
the existing tools, train them on other fields and relations that are related to data 
events.

The available discourse analysis systems could be also combined to provide 
multi-discourse features for a data event. Some of these features will help in or-
ganising abstract workflows into parallel sub-workflows like the one find change 
in topic but is still a Method used as a part of the authors’ Own experiment. 
The relation Change in topic is from RST, function Method from functional 
discourse and function Own from argumentative zoning.

6. Classifying data events types

We introduced two data events type: a general data event and an implicit data 
event. More fine-grained classification of data event types could help in clas-
sifying which events will change data and which events will not. For example, 
retrieving, clustering or classifying data will not change the data, as it will only 
filter them based on conditions and/or could add metadata to the new subset to 
differentiate it from the source group. Representing the data will not change the 
data, but it will the change the shape of data. For example, computational data 
can be viewed as line, curve or even a graph. What should we call this type of 
data event based on the action done on data?

The type of data events that change the data can be classified as well. For exam-
ple, there are general purpose data events and field-specific data events. The top 
classes in the Operation EDAM ontology could be a good starting point to de-
fine and classify the data events types.

7.5 Summary of thesis contributions

This thesis provides the following research contributions:
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1. Extracts and analyses the common writing patterns in terms of functional dis-
course of the Methods sections (Chapter 3).

2. Provides the annotation guidelines for labelling the data and operations men-
tioned in scientific text, and manually annotates the Methods section of 25 doc-
uments that contain 740 sentences, 621 operations and 1,041 data with averages 
of 25, 42 per document and one or two per sentence, respectively (Chapter 4). 
This is a first corpus with this type of information annotated.

3. Develops and evaluates the ODNoR system (Chapter 4) that annotates opera-
tions and data reported in conducting the work reported in research papers. It 
also finds associations between data, operations, database and software men-
tions. It also links the extracted software to bio.tools, operations and data to a 
well-known resource (EDAM). There are two operation classes added to EDAM’s 
Operation ontology. The first class is Assign Role that assigns data a role in 
the context, while the second class is Assignment that assigns a value to data.

4. Develops the ODNoRFlow system (Chapter 5) that reconstructs an abstract work-
flow of the processes reported with associated data. It uses the output of ODNoR 
system to construct data events that represent the input data of an operation and 
the output data, with any involved software or databases. The analysis in (Chap-
ter 5) finds out that using one type of discourse analysis does not improve the re-
sult of data events accuracy. The current discourse annotation tools’ accuracy in 
the field of microarray analysis affects the result obtained. The discourse theo-
retical concepts hold a noteworthy interpretation of what is going on. There is a 
need to improve the implemented software and adapt them to the computational 
biology field. 

5. A survey of the full PubMed Central literature for data event components usage. 
It provides a corpus of abstract workflows of 16,604 methods section. It anal-
yses the temporal changes in usage patterns among the data event components 
and the significant relations between them (Chapter 6).

7.6 Final conclusions

The work presented in this thesis investigated various approaches to extract abstract 
workflows of the work reported in the computational biology literature. In particu-
lar, we used data events to represent the main parts of an event performed on data. 
The main parts involved operations, data, software and databases. We normalised 
these components to well-known knowledge resources. Furthermore, we extracted 
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their usage of them over 20 years. Overall, the thesis provides a new computational 
framework that contributes to the automated extraction, representation and analysis of 
methods used in the computational biology literature.
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Appendix A

Data and Operation Annotation 

Guidelines

A.1 Data Events and Data Descriptions 

A.1.1 Data events description 

Event is the operation on data performed by operator(s). In our context, the data is 
processed by a means of operators (software, methods, tools). The manual’s target is 
to annotate the data, the operations and the operands in case they are expressed as op-
erational task rather than a formal method, software or a tool. BioNerDS [71] is used 
to annotate the database and software names mentioned in the text. Figure A.1 shows 
the event components at the abstract level. Table A.1 shows the data event template 
that is going to be filled by annotated and mapped information. 

Following is a method section annotated example. The red annotation is for database, 
software, tools or methods. The blue colour is for operations and the yellow is for 
data. The method section is quoted from the article with PMCID 2662875 [186]. The 

Event template Extracted text Mapping
Event No.

Semantic Roles

data input data
output data

trigger operation

operator
software
database
methodology

Table A.1. Data event template
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Event

operand

operation

operator

An event is the operation on 
operands performed by operator(s).

Data
(Data Input)
(Data Output)

Task

Means

Figure A.1. Abstract level of an event

example is followed by filled templates of the information extracted.

Example 25 (PMC2662875)

Methods

Databases

We used Oncomine Cancer Microarray database http://www.oncomine.org[30] and 
Amazonia database http://amazonia.montp.inserm.fr/[31] to study gene expres-

sion of BAFF, APRIL, BCMA, TACI, BAFF-R and HS proteoglycans genes in 40 hu-
man tumor types and their normal tissue counterparts as indicated in Table 1 (Ad-
ditional file 1). Only gene expression data obtained from a single study using the 
same methodology were compared . All data were log transformed , median centred
per array , and the standard deviation was normalized to one per array [32].

Statistical analysis

Statistical comparisons were done with Mann-Whitney or Student t-tests .
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Event Template Text Extrac-
tion

Mapping

Event No. 1 1

Seman-
tic 
Roles

data data in -
data out gene expres-

sion data
Gene ex-
pression 
data

opera-
tion

trigger obtain Data Re-
trieval

operator
Software - -
DataBase - -
Method - -

Table A.2. Data Event 1

Event Template Text Extrac-
tion

Mapping

Event No. 2 2

Seman-
tic 
Roles

data data in gene expres-
sion data

Gene ex-
pression 
data

data out - -
opera-
tion

trigger compare Compari-
son

operator
Software - -
DataBase - -
Method - -

Table A.3. Data Event 2

Event Template Text Extrac-
tion

Mapping

Event No. 3 3

Seman-
tic 
Roles

data data in data Data
data out - -

opera-
tion

trigger log trans-
formed

Calcula-
tion

operator
Software - -
DataBase - -
Method - -

Table A.4. Data Event 3

Event Template Text Ex-
traction

Mapping

Event No. 4 4

Seman-
tic 
Roles

data data in median, 
array

Experimen-
tal measure-
ment data, 
Array

data out - -
opera-
tion

trigger centred Normaliza-
tion

operator
Software - -
DataBase - -
Method - -

Table A.5. Data Event 4

Event Template Text Ex-
traction

Mapping

Event No. 5 5

Seman-
tic 
Roles

data data in the standard 
deviation, 
one, array

Experimen-
tal measure-
ment data, 
Experimen-
tal measure-
ment data, 
Array

data out - -
opera-
tion

trigger normalized Normaliza-
tion

operator
Software - -
DataBase - -
Method - -

Table A.6. Data Event 5

Event Template Text Extrac-
tion

Mapping

Event No. 6 6

Seman-
tic 
Roles

data data in - -
data out - -

opera-
tion

trigger Statistical 
comparison

Statistical 
analysis

operator
Software - -
DataBase - -
Method Mann-

Whitney or 
Student t-tests

Table A.7. Data Event 6
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A.1.2 Operation description

In our context, the operations are a specific/concrete computational process conducted 
in an experiment and presented in a manuscript as a part of the work done by a paper. 
The operations could have data inputs and produce outputs data. It also could have 
either input or output data and in some cases it could be mentioned without any data 
but an indication that a process is done. We also has a kind of operation that did not 
do any kind of processing but assigns the data a role or identification in the context.

A.1.3 Data description

Data are items (or collections of items) that exist in digital form (i.e. representation), 
and can be potentially used as an input to or output from DB, software that processes 
those data to fulfil a specific/concrete computational processes that is conducted in an 
experiment and presented in a manuscript.

This description includes any used data in the experiment although no explicit op-
erations are mentioned in the sentence context. It excludes the abstract data that are 
used for conceptual and explanation purposes (e.g., discussion of strings, integers, 
etc.). It also excludes the real/physical data and any biological processes conducted 
on them, e.g. the temperature, unless those measurements become part of the experi-
mental data.

A.2 How to Annotate

When you read a sentence, ask: “Does it include a specific (explicit/implicit) compu-
tational process in an analytical context?”

Then if so, ask: “Is there any mention of the input/output data for the determined pro-
cess?”

if yes, then apply the operations data annotation rules (Sections A.2.1 and A.2.2) . If 
there is no data mention, then annotate the process according to the Section A.2.1.

Figure A.2 shows the annotation steps in a flowchart diagram.
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read the 
sentence

identify the 
process(es)

for each process do the following

is it in an 
analysis 
context?

is it 
explicitly 

men-
tioned?

It is part of the 
paper’s method 
and not a phys-
ical experiment 
nor a hypotheti-
cal

annotate 
process

is there 
input data?

annotate 
input data

is there 
output 
data?

annotate 
output data

is there 
textual 

operator?

annotate 
operator

stop

yes

no

yes

no

yes

no

yes

no

yes no

Figure A.2. A flowchart shows the steps of annotation
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A.2.1 How to annotate operations

As explained previously, we are looking for operations conducted in the manuscripts. 
The operations that are part of other work are out of our scope. It is also important to 
notice that operations may or may not be mentioned with a data in the text. Following 
are some cases the annotator may encounter.

1. Operations and Operators.

The operation may mentioned in the form of “a process is done using a sw/method/tool” 
or “a sw/method/tool is used/developed to perform a process”. We are interested 
in the process itself (operation) not the sw/method/tool (means or the operators).

Examples:(note here the PMC ID where the example is quoted from- the data 
is yellow highlighted - The operation is blue highlighted and the means are red 
highlighted)

Example 26 (PMC4438953)

“Fisher’s exact test and X2 test were used to classify the GO category , and 
the FDR (20) was calculated to correct the P-value ; the smaller the FDR, 

the smaller the error in judging the P-value.”

- For the first operation, the GO category is classified through the Fisher’s exact 
test and X2 test. The tests are the methods applied, but the target operation is 
“the classification”.

Example 27 (PMC4268857)

“ Otsu’s thresholding and smoothing was then performed to estimate a stromal fraction
[40].”

-note here “Otsu’s thresholding and smoothing” is a facility/mean to do the tar-
get operation “estimating”.

2. Hierarchical/nested operations.

Example 28 (PMC4268857)

“ Gene-expression-based validation of the method was performed by generating
a stromal gene list [22] and performing univariate Pearson’s correlation testing

between stromal quantification and expression .”

- note here the validation is done by generating a list and performing a test. Al-
though here the test is a kind of method that we are not interested in (Section 
A.2.1 case 1), it is annotated here since it is the only mentioned operation done 
on the data (stromal quantification and expression)
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3. A sentence may include more than one operation, either on the same data or dif-
ferent data.

Example 29 (PMC2662875)

“Only gene expression data obtained from a single study using the same method-
ology were compared . All data were log transformed , median centred per 
array , and the standard deviation was normalized to one per array [32].”

4. A sentence that has an operation that is part of the paper may include no data.

Example 30 (PMC2714961)

“We used an extension of Stouffer’s method [13] for the meta-analysis .”

5. Assign role operations

This kind of operation did do an actual action on the data and did not change nor 
filter them. It is mainly assign a role to the data. The indication of using the data 
or including it in the study.

Assign roles = include consider compromise used emply

Example 31 (PMC2374988)

“ The microarray breast cancer datasets considered in this work are described 
elsewhere [5,7,9,18,19].”

Example 32 (PMC2582621)

“In total, 355 probes are included in this study .”

Example 33 (PMC2374988)

“For these cohorts we used the normalized data , which are available in the 
public domain (see [5,7,9,18,19]).”

- please note if the assign role is mentioned with another explicit operations that 
do main action and use the data in the sentence as input or out put then there is 
no need to annotate the assign role operations

Example 34 (PMC4008137)

“For analyzing the homologous gene clusters having m:n:p relationships be-
tween species, the gene clusters having a maximum of four related genes in each 
species were considered.”

Here the operation is analysis (for analyzing). the “considered” should not be 
annotated.
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Operation exclusion rules

Make sure not to annotate any operations that are not part of the conducted ex-
periment. A kind of these operations may be mentioned in the description of 
what a method/sofware does in general in term of processing.

Example 35 (PMC3735399)

“HitPredict is a resource for high confidence protein-protein interactions. It( 
refers to a software) collects protein-protein interactions from IntAct, BIOGRID 
and HPRD databases; annotates these interactions; and assigns a reliability 
score for each interaction according to the likelihood ratio using naïve Bayesian 
networks combining sequence, structure and function annotations of the inter-
acting proteins [11].”

A.2.2 How to annotate data

1. Data gathered from a data source. The data source can be a database/dataset/data 
file/website/publication or extraction from another data set. In most cases data 
are considered output data from a retrieving process.

Example 36 (PMC2714961)

“ The GWAS data for this analysis were retrieved from the Cancer Genetic 
Markers Susceptibility (CGEMS) database, http://cgems.cancer.gov/about/ex-
ecutive_summary.asp.”

Example 37 (PMC4550637)

“In this study, the gene expression microarray data set GSE4612 was downloaded
from the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/).”

Example 38 (PMC2582621)

“ The Affymetrix Latin Square spike-in data U133A were retrieved from (12).”

Example 39 (PMC4008137)

“ Orthologous gene clusters of human, mouse and rat were generated from 
the OMA database [36].”

Example 40 (PMC4438953)

“ Microarray data were obtained from three datasets , which consisted of 18, 
57 and 38 appropriate samples, respectively.”
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Example 41 (PMC2686605)

“ Data were collected from in-house IFN-treated microarrays and more than 
28 publications (18-45) identified through literature searches where high-

throughput analysis (microarray or proteomic) was performed on cells/tissues 
treated only with IFNs.”

2. Data that are input to or output from a computational process done by a soft-
ware/method/calculation or an instrument. This include the required parame-
ters/conditions to complete the processes.

Examples:

Example 42 (PMC2582621)

“ The probe self-folding energy was computed by RNAStructure [version 4.5, 
function OligoWalk (21)].”

-“The probe self-folding energy” is output data

Example 43 (PMC2582621)

“ Duplexing energy was computed by the current NN model with the parameters
from Ref.(17).”

-“Duplexing energy” is output data. “the parameters” is input data.

Example 44 (PMC59472)

“ Data files were imported into Excel and the companies’ internal controls
were removed .”

-“Data files” and “the companies’ internal controls” are input data

Example 45 (PMC59472)

“ Intensity differences for pairs of control signals (S1-S2) were calculated , as 
well as average signals for each pair ((S1+S2)/2).”

-“Intensity differences”, “average signals” are output data.

-“pairs of control signals” , “each pair” are input data.

-Note here S1 and S2 are not annotated because they are strings used for expla-
nation purposes.

3. Data that are input to or output from a previous mentioned operations(some-
times implicit operation). A hint of using this data in the methods’s experiment 
is included in the context. Notice here the usage of the data itself is the key of 
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the annotation. We are not interested in further explanation of data details and 
what the dataset could contain. Point 2 in exclusion rules (Section A.2.2) ex-
plains the case of data details with examples. Examples:

Example 46 (PMC2374988)

“We also created an automated computational pipeline (Perl scripts on a Linux 
platform) to crosslink the annotation provided for each dataset with UniGene . 
For some datasets , the linkage relied on Ensembl [48] external database identifiers . 
Thus each probe was associated with a universal gene name .”

-The second sentence gives more precise details about the data used in the oper-
ation mentioned in the first sentence.

Example 47 (PMC3074119)

“ A random forest of 1000 trees was trained using these 12 features . The out-
put consisted of the probabilities for the three classes and the class with the majority vote . 
The final prediction was made by summing over all probabilities for target gene assignments in pairwise comparisons for all pairs in the interval
and reporting the gene with the highest sum as the target gene.”

4. Labelled/defined/identified data. Data that have a role more than being input or 
output of a process. Examples:

Example 48 (PMC2686605)

“ Gene lists were analysed and genes that demonstrated 1.5-fold or more differential expression
were identified as IRGs .”

IRGs here is a kind of identified data that are labelled to be used later in the 
manuscript.

Example 49 (PMC4268857) “We subdivided tumours as negative (no staining 
in any tumour cell), weak positive (all tumour cells weakly stained compared 
to stromal cells), positive (all tumour and stromal cells equally stained) or 
heterogeneous (combination of positive and negative/weak staining) staining.”

-“tumours” is the input data.

-“negative, weak positive, positive and heterogeneous” output labelled data.

Example 50 (PMC4438953)

“Fisher’s exact test and X2 test were used to select the significant pathways , 
and the threshold of significance was defined by the P-value (<0.05) and 
FDR (<0.05) (22-24).”
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- “the threshold of significance” was defined in the context by the value of the 
annotated parameters (P-value and FDR). It is also here a kind of input data (pa-
rameter) to the tests.

Example 51 (PMC4438953)

“ A threshold was set at fold-change>4 , P<0.01 and FDR<0.01 , from 
which the TSCC-associated differentially expressed miRNAs were selected .”

Example 52 (PMC4438953)

“ The numerical data are presented as the mean+-standard deviation .”

The data in this context are not abstract data, since the presented here means cal-
culated/identified.

Data exclusion rules

1. Real/physical data mentions

Examples:

Example 53 (PMC3735399)

“A total of nine gene chips from mesenchymal cell samples, including five gene 
chips from osteoporosis patients and four gene chips from non-osteoporosis sam-
ples, were used for analysis.”

Example 54 (PMC117803)

“mRNA isolated from Wnt-3A exposed cells was reverse transcribed and labeled 
with Cy5 (red) and cDNA from CCM treated cells labeled with Cy3 (B).”

Example 55 (PMC2612032)

“Exon-skipping events were generated using experimental data kindly provided 
by Abdueva [3].”

The experimental data here are physical data.

2. Hypothetical mentions

The mention where the data are in a non event context or no computational pro-
cess is being applied on them. Such as the data in the context of demonstration 
of methods, software or previous studies, or how they are dealing generally with 
data; the data that are not used in the method manuscripts. However, if a paper 
implements a software and the method section is all about how the software 
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is dealing generally with data, then this is considered as abstract data. If the 
method used some data that go through the software and are processed to pro-
duce an output, then this is an analysis context that we are looking for. Here are 
some examples:

• Non data event context

Example:

Example 56 (PMC2582621)

“Compiled data and computational scripts used in this study are available 
upon request.”

• The purpose of using a database/software if there is no direct mention of 
the manipulated data.

Example:

Example 57 (PMC2714961)

“We used the Oncomine database http://www.oncomine.org/main/index.jsp 
to conduct a meta-analysis of the number of studies comparing gene ex-
pression in normal prostate tissue with that of localized prostate tumor tis-
sue [12].”

Example 58 (PMC2662875)

“We used Oncomine Cancer Microarray database http://www.oncomine.org[30] 
and Amazonia database http://amazonia.montp.inserm.fr/[31] to study 
gene expression of BAFF, APRIL, BCMA, TACI, BAFF-R and HS proteo-
glycans genes in 40 human tumor types and their normal tissue counter-
parts as indicated in Table 1 (Additional file 1).”

Example 59 (PMC3735399)

“HitPredict is a resource for high confidence protein-protein interactions.”

• The Explanation of how methods/software/previous studies are dealing 
with data in general. Examples

Example 60 (PMC3735399)

“It( refers to a software) collects protein-protein interactions from IntAct, 
BIOGRID and HPRD databases; annotates these interactions; and assigns 
a reliability score for each interaction according to the likelihood ratio us-
ing naïve Bayesian networks combining sequence, structure and function 
annotations of the interacting proteins [11].”
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3. Data in files/tables/figures or in the supplementary files/tables/figures.

Example:

Example 61 (PMC2714961)

“The complete list of the studies used in the meta-analysis can be found in the 
supplementary materials (Table S1).”

4. Platforms

Example 62 (PMC4550637)

“The platform of this microarray data is GPL339 [MOE430A] Affymetrix Mouse 
Expression 430A Array.”
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A.3 What to Annotate 

A.3.1 How long is the operation span?

It is recommended to annotate the one action that express the process.

A.3.2 How long is the data span?

The longest span that includes the used or resulted data.

A.3.3 How long is the event span?

The longest span that includes all the event’s parameters. The operation, the input 
data, output data, any mentioned software or databases.

A.3.4 Do we annotate the data between parentheses?

Yes, if it used as input or output to a process.

Example 63 (PMC4268857) “ Scoring was performed according to intensity (using 
stromal cells as internal positive controls ) and percentage of stained cells by two 

independent observers (FCM and MJL).”

A.3.5 How granular is the annotation? 

We are looking for a fine-grained annotation unless it divides the same data. The key 
point here is to differentiate between different inputs and outputs required for a pro-
cess.

Here are some examples:

• How to annotate between..and

– in the form “data z between data x and data y”

Example 64 (PMC4438953)

“ The differentially expressed mRNAs between the TSCC and normal control samples
were identified using the limma method (17).”
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– in the form “kindOfOperation between data x and data y”

Example 65 (PMC4268857)

“ Correlation between automated and manual scoring was performed 
using the Jonckheere-Terpstra test for trend.”

Example 66 (PMC2919724)

“We then compared the number of protein-protein interactions among 
TF targets , and between TF targets and non-targets using a cumulative 

hypergeometric test.”

• How to annotate in?

– in the form “ data z in data x”. If the data x is not a data source. The are 
both data.

Example 67 (PMC3735399)

“GENECODIS was used to perform biological pathway enrichment analysis
of all genes in the interaction network with FDR < 0.05 .”

-genes and the interaction network are both input data.

• How to annotate of?

– in the form “ data z of data x”. In the case the data x is not a data source 
and it is input data needed to produce the output data z.

Example 68 (PMC4550637)

“ Unwanted noise of the raw microarray data was filtered out in the 
preprocessing stage.”

-Unwanted noise is data output and the raw microarray data is input data.

Example 69 (PMC4550637)

“ The target mRNAs of the differentially expressed miRNAs were predicted
based on TargetScan (http://www.targetscan.org/) version 5.2.”

– In case the data z is an already calculated value of the data x then “data z 
of data x” should be annotated as one data, since they express one thing.

Example 70 (PMC2998528)

“ The behaviour of the three preprocessed procedures was analysed .”
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• How to annotate for..of.. ?

– in the form “data z is computed for data x of data y”
In case of data x and data y are two required inputs to conduct the process.

Example 71 (PMC4438953)

P-values were calculated for the GO terms of all the differentially expressed genes .

• How to annotate with

– in the form “data x with feature y”.

Example 72 (PMC2919724)

“ Predicted binding sites with a posterior probability > 0.5 were used in 
our analysis.”

Example 73 (PMC4262513)

“ Interactions with a score >0.8 were selected .”

A.4 Entities

-The main annotations are Data and Operation.

A.5 Relations

Two relations are defined between the main entities.

• inputData : an input data to an operation.

• outputData : an output data from an operation at the same sentence or a previ-
ous sentence.

There are two more relations where SW and Databases are associated with data and 
operaions. The SW and Databases are annotated through bioNerDS.

• bySW : an operation performed by a software.

• fromDB : an output data from a database.
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A.6 Annotation through BRAT

• There is an annotation schema created for operation and data and the relations. 
Stored in annotation.conf.

• The plain documents are on PlainDocs folder.

• The annotated files and relations are on BRAT_GS_ODDS_4Rel
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Verbs list for hard-code normalisation

B.1 Stem of words used for normalisation and Rule based 

We used the stem in Table to manually map operations to the corresponding EDAM 
classes.

Table B.1. Stem of words used for normalisation and Rule based.

EDAM Operation Class stem of similar words
Data retrieval referenc, obtain, download, collect, assembl, gather, consolidate, combine, extract

Assigning Role as, set, consider, take, chosen, act, acts, identify, select, include, include study,
choose, chose, used, use, use study, define, consider work

Calculation
add, insert, subtract, log transform, log2 transform, derive, scale, rescale, permut,
obtain, compute, average, centre, center, summarize, summarise, determin, shift,
shifting, test, sum, permute

Classification categoriz, categoris, defin, divide, subdivid, dichotomized, dichotomiz
dichotomis, grade, rank, segment, indicate, group

Filtering match, remove, exclude, delete, reduce, focus, discard, leav, leaving
Amplification detection amplification, amplify
Recognition find , identify
Validation evaluate, verify, verification, check
Modelling and simulation train, execut
Editing update, update extend, extend, adjust, adjustment, correct, fdr-adjuste, modifi, modify
Design implement, develop
Mapping map, link, associat, crosslink
Analysis assess, asses, reassess, reasses, assessment, reassessment, estimate, mine
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An Example of a Workflow Evaluation

C.1 Workflow evaluation 

We are going to present an example of workflow evaluation of the methods’ section 
of the article with PMCID PMC3735399. At the beginning we presented the prose of 
the methods section of the article. Then we did the completeness evaluation where le-
nient, intermediate and strict evaluations were presented. At the end we did the evalu-
ation is for sequentiality of data events in a workflow where the events order is evalu-
ated.

C.1.1 Methods section example

Example 74 (PMC3735399)

Methods

Affymetrix microarray

GSE35957 was downloaded from Gene Expression Omnibus (GEO) database (http:
//www.ncbi.nlm.nih.gov/geo/), which is based on GPL570 [HG-U133_Plus_2] 
Affymetrix Human information Genome U133 Plus 2.0 Array Platform (Affymetrix, 
Santa Clara, CA, USA). Microarray probe annotation information was downloaded 
from the Affymetrix Company, including all AffymetrixATH1(25K) gene chip probe 
information, and the probe annotation information files of the platform. A total of 
nine gene chips from mesenchymal cell samples, including five gene chips from os-
teoporosis patients and four gene chips from non-osteoporosis samples, were used for 
analysis.

Data preprocessing and analysis of differentially expressed genes

The original data were preprocessed by Affymetrix [7,8] package in R language. LIMMA 
[9] package in R language was used to identify the differentially expressed genes be-

246
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tween the expression profile of five osteoporosis patients and four non-osteoporosis 
samples. Multiple testing correction was performed by Bayesian method [10]. An 
FDR <0.01 and |logFC| >1 were chosen as thresholds for screening the differentially 
expressed genes.

Prediction of interaction between differentially expressed genes

Differentially expressed genes play a role through interacting with each other. There-
fore, we used HitPredict software (http://hintdb.hgc.jp/htp/) to search the 
differentially expressed genes that can interact with OPG gene. HitPredict is a re-
source for high confidence protein-protein interactions. It collects protein-protein in-
teractions from IntAct, BIOGRID and HPRD databases; annotates these interactions; 
and assigns a reliability score for each interaction according to the likelihood ratio 
using naïve Bayesian networks combining sequence, structure and function annota-
tions of the interacting proteins [11]. So far, HitPredict has 239584 protein-protein 
interactions across nine species, 168458 of which are predicted to be of high confi-
dence. This study used the protein-protein interactions with high confidence to find 
interactions between the differentially expressed genes, and used the Cytoscape [12] 
to visualize the interaction relationships.

Module analysis of interaction network

MCODE (Molecular Complex Detection) detects densely connected regions in large 
protein-protein interaction networks that may represent molecular complexes. In this 
study, we used MCODE to mine the modules from the protein-protein interaction net-
work with degree >2. Further, we used Bingo [13] to annotate each module based on 
the hypergeometric distribution (FDR <0.05).

Pathway enrichment analysis of interaction network

GENECODIS was used to perform biological pathway enrichment analysis of all 
genes in the interaction network with FDR <0.05. GENECODIS is a function anal-
ysis tool of gene, and it integrates different information resources (GO, KEGG or 
SwissProt), searches and arranges gene set annotation by statistical significance [14].

C.1.2 Completeness evaluation

Table C.1 shows the events workflow as extracted by manual annotation and system 
and identified them uniquely by row ID. Each system event is classified as good (true 
positive (TP)) and the row is coloured with the light green if the system event matches 
the manual annotation, as spurious (false positive (FP)) and the row is coloured with 

(http://hintdb.hgc.jp/htp/)
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the blue if the system event is mistakenly extracted by the system or as missing (false 
negative (FN)) if the system failed to extract the corresponding manual annotated 
events. Partial, if the system partially extracts the corresponding manual annotated 
events and the row is coloured by purple.

Table C.1 shows three sub tables for the abstract workflow of the Methods section of 
the article with PMC3735399.

The first three rows are false positive because in row 1 (sent ID 3) the data were phys-
ical data not computational ones. In 2,3 (sent ID 11) the operations were a descrip-
tion of how the software works in general.

The rows IDs 4-11 and 15 are true positive.

12-14 and 15 are false negative since they include extra or missing some data or soft-
ware.

In case of rows 12 and 13 (sent ID 13) the two events belong to the same sentence 
and for that some data are connected to the second operation while the should not. 
The sentence was:

Example 75 (PMC3735399/ Sentence 13)

“This study used the protein-protein interactions with high confidence to find inter-
actions between the differentially expressed genes, and used the Cytoscape [12] to 
visualize the interaction relationships.”

The system successfully extracted and related the output data to the two operations 
(find, visualize). However, for the 2nd event, all the input data were incorrect. For the 
first one, there was an extra input data.

For row 14, the number (2) was missed from the condition 14 degree > 2 and the 
software MCODE.

For row 16, GENECODIS was a missed SW.
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Table C.1. Completeness evaluation: Table (a) shows the data events evaluation based on manual 
annotation (Table (b)) and system annotation (Table (c)).

(a) data events evaluation

rowID TP(good) (partial) FN(missing) FP(spurious)
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 1
16 1

total 7 6 0 3
out of 16 16 16 16

Lenient Intermediate Strict
Precision .81 .63 0.44

Recall 1 .77 0.54
𝐹1-Scores .90 .69 0.48
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(b) Manual annotation

rowID sentID eventID eventType operation inputdata outputData SWs DBs txt

1

2

3

4 1 1 DataEvent downloaded GSE35957 Gene Ex-

pression 

Omnibus

GSE35957 was downloaded from Gene Expression Omnibus

5 2 2 DataEvent downloaded Microarray probe an-

notation information

Microarray probe annotation information was downloaded

6 4 3 DataEvent preprocessed The original data Affymetrix The original data were preprocessed by Affymetrix

7 5 4 DataEvent identify the expression profile differentially ex-

pressed genes

LIMMA
LIMMA [9] package in R language was used to identify

differentially expressed genes between the expression profile
the

8 6 5 DataEvent Multiple testing 

correction

Multiple testing correction

9 7 6 DataEvent chosen as FDR <0.01,|logFC| >1 thresholds FDR <0.01 and |logFC| >1 were chosen as thresholds

10 7 7 DataEvent screening the differentially expressed 

genes,thresholds

thresholds for screening the differentially expressed genes

11 9 8 DataEvent search differentially expressed genes HitPredict
HitPredict software (http://hintdb.hgc.jp/htp/) to search the

differentially expressed genes

12 13 9 DataEvent find high confidence,protein-protein 

interactions,differentially ex-

pressed genes

interactions
protein-protein interactions with high confidence to find

interactions between the differentially expressed genes

13 13 10 DataEvent visualize interactions interaction relation-

ships

Cytoscape Cytoscape [12] to visualize the interaction relationships

14 15 11 DataEvent mine modules,degree >2,protein-

protein interaction network

MCODE
MCODE to mine the modules from the protein-protein

interaction network with degree >2

15 16 12 DataEvent annotate module,hypergeometric distri-

bution,FDR <0.05

annotate each module based on the hypergeometric distribution

(FDR <0.05

16 17 13 DataEvent biological path-

way enrichment 

analysis

interaction network,all 

genes,FDR <0.05

GENECODIS
GENECODIS was used to perform biological pathway enrichment

analysis of all genes in the interaction network with FDR
<0.05
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(c) System annotation.

rowID SyS_sen-

tID

SyS_even-

tID

SyS_eventType SyS_operation SyS_inputdata SyS_outputData SyS_SWs SyS_DBs SyS_txt

1 3 3 DataEvent for analysis samples,nine gene chips

nine gene chips from mesenchymal cell samples, including

five gene chips from osteoporosis patients and four gene chips

from non-osteoporosis samples, were used for analysis

2 11 10 DataEvent collects interaction protein-protein in-

teractions,reliability 

score,interactions

IntAct HPRD

collects protein-protein interactions from IntAct, BIOGRID

and HPRD databases; annotates these interactions; and

assigns a reliability score for each interaction

3 11 11 DataEvent annotates protein-protein interactions,in-

teraction

reliability score,inter-

actions

IntAct HPRD

protein-protein interactions from IntAct, BIOGRID and

HPRD databases; annotates these interactions; and assigns

a reliability score for each interaction

4 1 1 DataEvent downloaded Affymetrix microar-

ray,GSE35957,Meth-

ods

Gene Ex-

pression 

Om-

nibus,GEO

MethodsAffymetrix microarrayGSE35957 was

downloaded from Gene Expression Omnibus (GEO

5 2 2 DataEvent downloaded Microarray probe 

annotation in-

formation,the 

probe annota-

tion information 

files,AffymetrixATH1(25K) 

gene chip probe 

information

Microarray probe annotation information was

downloaded from the Affymetrix Company, including

all AffymetrixATH1(25K) gene chip probe information,

and the probe annotation information files

6 4 4 DataEvent preprocessed original data R original data were preprocessed by Affymetrix [7,8] package in R

7 5 5 DataEvent identify four non-osteoporosis sam-

ples,the expression profile of 

five osteoporosis patients

the differentially ex-

pressed genes

R

R language was used to identify the differentially

expressed genes between the expression profile

of five osteoporosis patients and four non-osteoporosis samples

8 6 6 DataEvent Multiple testing 

correction

Multiple testing correction
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(c) System annotation (Cont.).

rowID SyS_sen-

tID

SyS_even-

tID

SyS_eventType SyS_operation SyS_inputdata SyS_outputData SyS_SWs SyS_DBs SyS_txt

9 7 7 DataEvent chosen as >1,differentially expressed 

genes,An FDR <0.01

thresholds
An FDR <0.01 and |logFC| >1 were chosen as thresholds

for screening the differentially expressed genes

10 7 8 DataEvent screening An FDR <0.01,differentially 

expressed genes,thresholds,>1

An FDR <0.01 and |logFC| >1 were chosen

as thresholds for screening

the differentially expressed genes

11 9 9 DataEvent search differentially expressed genes HitPredict dict software (http://hintdb.hgc.jp/htp/) to search the differentially expressed genes

12 13 12 DataEvent find
interaction relationships,the 

protein-protein interactions 

with high confidence,the differ-

entially expressed genes

interactions
Cytoscape

the protein-protein interactions with high confidence to find

interactions between the differentially expressed genes,

and used the Cytoscape [12] to visualize the interaction relationships

13 13 13 DataEvent visualize interactions, the protein-protein 

interactions with high con-

fidence,the differentially ex-

pressed genes

interaction relation-

ships

Cytoscape

the protein-protein interactions with high confidence to find

interactions between the differentially expressed genes,

and used the Cytoscape [12] to visualize the interaction relationships

14 15 14 DataEvent mine modules,the protein-protein 

interaction network,the,degree 

> ....

mine the modules from the protein-protein

interaction network with degree >

15 16 15 DataEvent annotate module,FDR <0.05,hypergeo-

metric distribution

annotate each module based on the hypergeometric distribution

(FDR <0.05

16 17 16 DataEvent biological path-

way enrichment 

analysis

FDR <0.05,genes,interaction 

network ....

biological pathway enrichment analysis

of all genes in the interaction network with FDR <0.05
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C.2 Sequentiality of data events in a workflow evaluation

Table C.2 (a) shows the order of the events from the manual annotation. It got correct 
order for all events.

Table C.2 (b) shows the order of the events from the system annotation. It got 13 cor-
rect order out of 16 system events.

Table C.2. Sequentiality of data events in a workflow evaluation: Following are Table (a) that shows 
the data events evaluation based on manual annotation and Table (b) that shows the data events 

evaluation based on system annotation.



(a) Order evaluation: manual annotation

rowID order sentID eventID eventType operation inputdata outputData SWs DBs txt

4 1 1 1 DataEvent downloaded GSE35957 Gene Ex-

pression 

Omnibus

GSE35957 was downloaded from Gene Expression Omnibus

5 1 2 2 DataEvent downloaded Microarray probe an-

notation information

Microarray probe annotation information was downloaded

6 1 4 3 DataEvent preprocessed The original data Affymetrix The original data were preprocessed by Affymetrix

7 1 5 4 DataEvent identify the expression profile differentially ex-

pressed genes

LIMMA
LIMMA [9] package in R language was used to identify

differentially expressed genes between the expression profile
the

8 1 6 5 DataEvent Multiple testing 

correction

Multiple testing correction

9 1 7 6 DataEvent chosen as FDR <0.01,|logFC| >1 thresholds FDR <0.01 and |logFC| >1 were chosen as thresholds

10 1 7 7 DataEvent screening the differentially expressed 

genes,thresholds

thresholds for screening the differentially expressed genes

11 1 9 8 DataEvent search differentially expressed genes HitPredict
HitPredict software (http://hintdb.hgc.jp/htp/) to search the

differentially expressed genes

12 1 13 9 DataEvent find high confidence,protein-protein 

interactions,differentially ex-

pressed genes

interactions
protein-protein interactions with high confidence to find

interactions between the differentially expressed genes

13 1 13 10 DataEvent visualize interaction relation-

ships

Cytoscape Cytoscape [12] to visualize the interaction relationships

14 1 15 11 DataEvent mine modules,degree >2,protein-

protein interaction network

MCODE
MCODE to mine the modules from the protein-protein

interaction network with degree >2

15 1 16 12 DataEvent annotate module,hypergeometric distri-

bution,FDR <0.05

annotate each module based on the hypergeometric distribution

(FDR <0.05

16 1 17 13 DataEvent biological path-

way enrichment 

analysis

interaction network,all 

genes,FDR <0.05

GENECODIS
GENECODIS was used to perform biological pathway enrichment

analysis of all genes in the interaction network with FDR
<0.05

correct

order

total

13 out of 13
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(b) Order evaluation: system annotation.

rowID order SyS_sen-

tID

SyS_even-

tID

SyS_eventType SyS_operation SyS_inputdata SyS_outputData SyS_SWs SyS_DBs SyS_txt

1 0 3 3 DataEvent for analysis samples,nine gene chips

nine gene chips from mesenchymal cell samples, including

five gene chips from osteoporosis patients and four gene chips

from non-osteoporosis samples, were used for analysis

2 0 11 10 DataEvent collects interaction protein-protein in-

teractions,reliability 

score,interactions

IntAct HPRD

collects protein-protein interactions from IntAct, BIOGRID

and HPRD databases; annotates these interactions; and

assigns a reliability score for each interaction

3 0 11 11 DataEvent annotates protein-protein interactions,in-

teraction

reliability score,inter-

actions

IntAct HPRD

protein-protein interactions from IntAct, BIOGRID and

HPRD databases; annotates these interactions; and assigns

a reliability score for each interaction

4 1 1 1 DataEvent downloaded Affymetrix microar-

ray,GSE35957,Meth-

ods

Gene Ex-

pression 

Om-

nibus,GEO

MethodsAffymetrix microarrayGSE35957 was

downloaded from Gene Expression Omnibus (GEO

5 1 2 2 DataEvent downloaded Microarray probe 

annotation in-

formation,the 

probe annota-

tion information 

files,AffymetrixATH1(25K) 

gene chip probe 

information

Microarray probe annotation information was

downloaded from the Affymetrix Company, including

all AffymetrixATH1(25K) gene chip probe information,

and the probe annotation information files

6 1 4 4 DataEvent preprocessed original data R original data were preprocessed by Affymetrix [7,8] package in R

7 1 5 5 DataEvent identify four non-osteoporosis sam-

ples,the expression profile of 

five osteoporosis patients

the differentially ex-

pressed genes

R

R language was used to identify the differentially

expressed genes between the expression profile

of five osteoporosis patients and four non-osteoporosis samples

8 1 6 6 DataEvent Multiple testing 

correction

Multiple testing correction
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(b) Order evaluation: system annotation (Cont.).

rowID order SyS_sen-

tID

SyS_even-

tID

SyS_eventType SyS_operation SyS_inputdata SyS_outputData SyS_SWs SyS_DBs SyS_txt

9 1 7 7 DataEvent chosen as >1,differentially expressed 

genes,An FDR <0.01

thresholds
An FDR <0.01 and |logFC| >1 were chosen as thresholds

for screening the differentially expressed genes

10 1 7 8 DataEvent screening An FDR <0.01,differentially 

expressed genes,thresholds,>1

An FDR <0.01 and |logFC| >1 were chosen

as thresholds for screening

the differentially expressed genes

11 1 9 9 DataEvent search differentially expressed genes HitPredict dict software (http://hintdb.hgc.jp/htp/) to search the differentially expressed genes

12 1 13 12 DataEvent find
interaction relationships,the 

protein-protein interactions 

with high confidence,the differ-

entially expressed genes

interactions Cytoscape

the protein-protein interactions with high confidence to find

interactions between the differentially expressed genes,

and used the Cytoscape [12] to visualize the interaction relationships

13 1 13 13 DataEvent visualize the protein-protein interactions 

with high confidence,inter-

actions,the differentially ex-

pressed genes

interaction relation-

ships

Cytoscape

the protein-protein interactions with high confidence to find

interactions between the differentially expressed genes,

and used the Cytoscape [12] to visualize the interaction relationships

14 1 15 14 DataEvent mine modules,the protein-protein 

interaction network,the,degree 

>

mine the modules from the protein-protein

interaction network with degree >

15 1 16 15 DataEvent annotate module,FDR <0.05,hypergeo-

metric distribution

annotate each module based on the hypergeometric distribution

(FDR <0.05

16 1 17 16 DataEvent biological path-

way enrichment 

analysis

FDR <0.05,genes,interaction 

network

biological pathway enrichment analysis

of all genes in the interaction network with FDR <0.05

correct

order

total

13

out of 16



Appendix D

Discourse Evaluation

D.1 Functional discourse evaluation at functions level and document 

level

SAPIENTA annotation is evaluated among the 25 documents. A denotes to SAPI-
ENTA annotation and B denotes to our annotation. Table D.1 shows the evaluation 
at the functions level while Table D.2 details the evaluation among the 25 documents.

Table D.1. Functional discourse evaluation at functions level

Annotation Match Only A Only B Overlap Prec.B/A Rec.B/A F1.0-a.
Background 5 4 38 0 0.1163 0.5556 0.1923
Conclusion 0 2 0 0 1.0000 0.0000 0.0000
Experiment 29 70 2 0 0.9355 0.2929 0.4462
Goal 2 5 1 0 0.6667 0.2857 0.4000
Hypothesis 1 0 1 0 0.5000 1.0000 0.6667
Method 346 88 144 12 0.7012 0.7892 0.7426
Model 27 11 24 1 0.5288 0.7051 0.6044
Object 2 25 15 0 0.1176 0.0741 0.0909
Observation 0 12 26 0 0.0000 0.0000 0.0000
Result 15 33 23 0 0.3947 0.3125 0.3488
Macro summary 0.4961 0.4015 0.3492
Micro summary 427 250 274 13 0.6071 0.6283 0.6175

257
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Table D.2. Functional discourse evaluation at documents level

Document Match Only A Only B Overlap Prec.B/A Rec.B/A F1.0-a.
PMC2714961.txt 4 5 5 0 0.4444 0.4444 0.4444
PMC2662875.txt 4 0 0 0 1.0000 1.0000 1.0000
PMC2686605.txt 6 4 4 0 0.6000 0.6000 0.6000
PMC2582621.txt 2 8 8 0 0.2000 0.2000 0.2000
PMC2374988.txt 23 37 37 0 0.3833 0.3833 0.3833
PMC4550637.txt 18 2 4 2 0.7917 0.8636 0.8261
PMC4438953.txt 17 22 22 1 0.4375 0.4375 0.4375
PMC4303952.txt 10 8 8 0 0.5556 0.5556 0.5556
PMC4268857.txt 32 16 16 0 0.6667 0.6667 0.6667
PMC4292761.txt 9 7 7 0 0.5625 0.5625 0.5625
PMC4289221.txt 18 6 6 0 0.7500 0.7500 0.7500
PMC4219025.txt 27 20 20 0 0.5745 0.5745 0.5745
PMC4262513.txt 19 7 7 0 0.7308 0.7308 0.7308
PMC4201588.txt 16 16 15 1 0.5156 0.5000 0.5077
PMC4149277.txt 15 17 17 0 0.4688 0.4688 0.4688
PMC4709009.txt 16 6 6 0 0.7273 0.7273 0.7273
PMC3806816.txt 36 4 4 3 0.8721 0.8721 0.8721
PMC4008137.txt 4 3 27 0 0.1290 0.5714 0.2105
PMC3735399.txt 13 4 4 1 0.7500 0.7500 0.7500
PMC3250460.txt 21 1 1 1 0.9348 0.9348 0.9348
PMC3123201.txt 11 10 9 1 0.5476 0.5227 0.5349
PMC3074119.txt 50 16 15 1 0.7652 0.7537 0.7594
PMC2998528.txt 25 17 18 1 0.5795 0.5930 0.5862
PMC2876170.txt 7 9 9 0 0.4375 0.4375 0.4375
PMC2919724.txt 24 5 5 1 0.8167 0.8167 0.8167
Macro summary 0.6096 0.6287 0.6135
Micro summary 427 250 274 13 0.6071 0.6283 0.6175
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