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2. Table of Figures 

Figure 2.1. Second database of complex pictures, divided into four categories (18 pictures within 

each category), two of them are negative emotional and two neutral. The first neutral category (N1) 

represents people talking on the phone and the second one (N2) people hanging the laundry. The 

first emotional category (E1) depicts poverty scenes, the second one (E2) car accidents. The full 

set of pictures can be found at https://dtalmi.wixsite.com/website/resources ............................... 37 
Figure 2.2. Example of the triad (left) and pairwise task. Triad tasks are forced-choice similarity 

judgement tasks, because participants have to choose which stimulus (1 or 2) is more similar to 

the target. In this situation, the similarity between the target and 2 is reduced, because of the 

presence of stimulus 1. In pairwise tasks, each pair is rated independently. This allows participants 

to consider also differences in similarity between categories. ....................................................... 38 
Figure 2.3. Graphical description of the different processing steps in the RSA framework. After a 

conventional temporal and spatial preprocessing (‘preprocessing pipeline’), normalised images 

from each voxel were analysed using the general linear model (GLM). Each stimulus was modelled 

as a separate event beginning with stimulus presentation onset, and included in the model as 

regressor of interest (‘individual GLM’). From this GLM analysis, we obtained a single beta image 

for each stimulus within each voxel (‘individual response pattern’). Next, we computed the 

correlational distance (1-Spearman’s correlation) across betas of all the voxels in a ROI associated 

with the stimuli in each pair. These represented the entries of an n x n neural RDM, wherein the 

rows and the columns are the experimental stimuli (‘neural RDM’). This is symmetrical about a 

diagonal of zeros that represented the dissimilarity of each stimulus with itself. Blue colours denote 

low dissimilarity (high similarity). Other than investigating differences in neural dissimilarity among 

experimental conditions (‘ROI RSA’), it is also possible to combine neural and behavioural RDMs 

computing the Spearman’s correlation among them, and then convert it into correlational distance 

(‘Brain-behaviour correlation’). This results in n x n RDM, wherein the rows and the columns 

indicate the behavioural and neural data, respectively, associated with each stimulus, and each 

cell the dissimilarity between neural and behavioural data.  This RDM is not symmetrical, as the 

diagonal indicates the dissimilarity of the same stimulus between the different neural and 

behavioural data. ............................................................................................................................ 43 
Figure 3.1. Graphical representation of the task structures, conditions of interest and key 

hypotheses.  During the task, participants rated the similarity among all the possible combinations 

of 20 faces (5 disgust, 5 fear, 10 neutral) on a 7 points scale (1=low similarity, 7 high similarity). 

The similarity ratings were standardized, transformed into dissimilarity measures (correlational 

distance) and entered in a 20 x 20 representational dissimilarity matrix (RDM). In the RDM, the 

rows and the columns represented the stimuli (disgust: 1 to 5; fear: 6 to 10; neutral: 11 to 20), and 

each cell a correlational distance between faces in each pair. In the RDM, the violet squares 

represent the dissimilarity within emotional pictures (EE), calculated by averaging the dissimilarity 

within disgusted (EE_D) and fearful (EE_F) faces; EE_DF, is the dissimilarity between disgusted 

and fearful faces, and NN, the dissimilarity within neutral faces; ID, depicted in grey colour, 

indicates the dissimilarity between emotional and neutral faces, with the same identity, and EN the 

dissimilarity between emotional and neutral faces, with different identities. We expected an 

asymmetric effect of emotional expression and identity on similarity judgements, resulting in higher 

similarity (lower dissimilarity) in EE, EE_DF and NN compared to ID. .......................................... 56 
Figure 3.2. Top. Similarity Judgements task. Left: Representational Dissimilarity Matrix (RDM) of 

the similarity ratings of 20 faces (5 disgust, 5 fear, 10 neutral), averaged across participants. It is 

symmetric about a diagonal of zeros, the rows and the columns represent the stimuli, and each 

cell the dissimilarity (measured as correlational distance: 1- standardized similarity ratings) 

between stimuli within each specific pair. Yellow colours denote high dissimilarity, blue colours low 

dissimilarity. Centre: differences in dissimilarity (measured as correlational distance) among 

conditions during the similarity judgements task: average dissimilarity within emotional faces 

(averaged across disgusted and fearful faces) (EE), between emotional faces (EE_DF), within 

neutral faces (NN), between emotional and neutral faces of the same identity (ID), and between 

emotional and neutral faces (with different identities) (EN). Right: The Multidimensional Scaling 

(MDS) plot of the 20 faces in a bidimensional space. Stimuli from E1_d to E5_d represented 5 
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disgusted faces, from E6_f to E10_f 5 fearful faces, and from N1 to N10 10 neutral faces. Bottom. 

Visual similarity. Left:  Representational Dissimilarity Matrix (RDM) of the visual similarity of 20 

faces (5 disgust, 5 fear, 10 neutral). It is symmetric about a diagonal of zeros, the rows and the 

columns represent the stimuli, and each cell the correlational distance between stimuli within each 

specific pair. Yellow colours denote high dissimilarity, blue colours low dissimilarity. Right: 

differences in visual similarity (measured as correlational distance) among conditions. Error bars 

represent ±2 SEM; *pFWE<0.05; **pFWE<0.001. Abbreviations: E, Emotional; f, fearful faces; d, 

disgusted faces; N, neutral faces. .................................................................................................. 58 
Figure 4.1. Graphical representation of the experimental procedure. In experiments 1-2, 

participants performed the same behavioural task. They were presented with a pair of pictures and 

rated their similarity on a 7-points scale (low to high similarity). In experiment 1, participants judged 

all the possible combinations from the 1st database, which consisted of 20 complex pictures (10 

emotional and 10 neutral) selected from the NAPS. We expected as main finding lower dissimilarity 

(higher similarity) between emotional (EE) than neutral (NN) pictures. In experiment 2, participants 

judged the similarity between emotional and neutral pictures from the 2nd database. It consisted of 

72 pictures from 4 semantic categories (18 pictures in each category), two emotional (E1 and E2) 

and two neutral (N1 and N2). Participants only rated E12, N12 and few EN pairs only: E12 

represented the similarity between E1 and E2, N12 between N1 and N2, and EN between 

emotional and neutral pictures. We expected lower dissimilarity (higher similarity) in the former. In 

both experiments 1-2, EN comparisons served as manipulation checks. The same database was 

used in experiment 3, wherein participants first judged the subjective visual complexity of each 

picture during a functional magnetic resonance imaging (fMRI) scan, and then judged the similarity 

among all the pictures by arranging them in a circular arena. We tested the same hypothesis as in 

experiment 2, and extended it also to the neural data. The violet square in the dissimilarity matrix 

represents the ‘emotional similarity space’, and the green one the ‘neutral similarity space’. ...... 69 
Figure 4.2. A) Representational Dissimilarity Matrix (RDM) of 20 complex pictures (10 emotional, 

10 neutral), averaged across participants. It is symmetric about a diagonal of zeros, the rows and 

the columns represent the stimuli, and each cell the dissimilarity, measured as 1- standardized 

similarity ratings between stimuli within each specific pair. Yellow colours denote high dissimilarity, 

blue colours low dissimilarity. B) The average dissimilarity within emotional pictures (EE), within 

neutral pictures (NN), and between emotional and neutral pictures (EN, grey). Error bars represent 

±2 SEM; **p<0.001. C) The Multidimensional Scaling (MDS) plot of the 20 pictures in a 

bidimensional space. Additional information supporting Figure 4.2 can be found in Figure 2-1. .. 81 
Figure 4.3. A) Representational Dissimilarity Matrix (RDM) of 72 complex pictures (Emotional 

categories: E1, poverty (1 to 18); E2, car accidents (19 to 36); Neutral categories: N1, laundry (37 

to 54); N2, phone call (55 to 72), averaged across participants. It is symmetric about a diagonal of 

zeros, the rows and the columns represent the stimuli, and each cell the dissimilarity (measured 

as Euclidean distance) between stimuli within each specific pair. Yellow colours denote high 

dissimilarity, blue colours low dissimilarity. B) The average dissimilarity within emotional pictures 

(averaged across E1 and E2) (EE), within neutral pictures (averaged across N1 and N2) (NN), 

between emotional pictures (E12), between neutral pictures (N12), and between emotional and 

neutral pictures (EN). Error bars represent ±2 SEM; *, pFWE<0.05; **, pFWE<0.001. C) The 

Multidimensional Scaling (MDS) plot of the 72 pictures in a bidimensional space. Additional 

information supporting Figure 3 can be found in Figure 3-1. ......................................................... 82 
Figure 4.4. Differences in BOLD signal change between emotional and neutral categories, across 

4 sessions (GLM 2, left) and in session 1 only (GLM 3, right). Only regions that survive correction 

for multiple comparisons using pFWE < 0.05 are reported. Small volume correction using the ROI 

mask was applied in both analyses. .............................................................................................. 84 
Figure 4.5. A) Correlation between the entire (72 x 72) stimulus space (named as ‘all RDM’) and 

the brain. Significant correlations were observed between the behavioural ‘all RDM’ and clusters 

in the bilateral ITC, right FFA, and the right Prec.  Correlational coefficients were Fisher’s z 

transformed, and entered as dependent variables in a one side t test (separately for each brain 

region), testing the null hypothesis of no correlation between the participants’ similarity space and 

the neural activation patterns. The resulting p values were thresholded to control for the false-

discovery rate (FDR). **, pFDR< 0.001. B) Differences in neural dissimilarity (measured as 

correlational distance) between emotional and neutral stimuli in different brain clusters, including 
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the bilateral ITL, and the right FFA. The dissimilarity between emotional categories (E12) was 

calculated by averaging the dissimilarity between E1 and E2, and the dissimilarity between neutral 

categories (N12) by averaging the dissimilarity between N1 and N2, for each participant. These 

were entered as dependent variables in paired t tests, one for each brain cluster (p<0.05). **, p< 

0.001. Abbreviations. ITC, Inferior Temporal Cortex; FFA, Face Fusiform Area; L, Left; R, Right.

 ....................................................................................................................................................... 85 
Figure 4.6. A) Correlation between the emotional (36 x 36) similarity space (named as ‘emotional 

RDM’) and the brain. Significant correlations were observed between the behavioural ‘emotional 

RDM’ and clusters in the bilateral OPA, PPA, FFA, EVC, Prec, dACC, and left aIns. Correlational 

coefficients were Fisher’s z transformed, and entered as dependent variables in a one side t test 

(separately for each brain region). For simplicity, we averaged the left and the right sides of the 

clusters wherein both sides were significant. The resulting p values were thresholded to control the 

false-discovery rate (FDR). **, pFDR< 0.001.  B) Differences in neural dissimilarity (measured as 

correlational distance) between emotional and neutral stimuli in different brain clusters, including 

the bilateral EVC, Prec, dACC and left aIns. The dissimilarity between emotional categories (E12) 

was calculated by averaging the dissimilarity between E1 and E2, and the dissimilarity between 

neutral categories (N12) by averaging the dissimilarity between N1 and N2, for each participant. 

These were entered as dependent variables in paired t tests, one for each brain cluster (p<0.05). 

*, p< 0.05. Abbreviations. OPA, Occipital place area; PPA, Parahippocampal place area; FFA, 

Face fusiform area; EVC, Early visual cortex; Prec, Precuneus; dACC, Dorsal anterior cingulate 

cortex; aIns, Anterior insula; L, left; E12, dissimilarity between emotional categories; N12, 

dissimilarity between neutral categories. ....................................................................................... 86 
Figure 4.7. A) Correlation between the neutral (36 x 36) similarity space (named as ‘neutral RDM’) 

and the brain. Significant correlations were observed between the behavioural ‘neutral RDM’ and 

clusters in in the bilateral OPA, PPA and left FFA. Correlational coefficients were Fisher’s z 

transformed, and entered as dependent variables in a one side t test (separately for each brain 

region). For simplicity, we averaged the left and the right sides of the clusters when both sides 

were significant. The resulting p values were thresholded to control the false-discovery rate (FDR).  

*, pFDR< 0.05; **, pFDR< 0.001. B) Differences in neural dissimilarity (measured as correlational 

distance) between emotional and neutral stimuli in different brain clusters, including the bilateral 

OPA, PPA and left FFA. The dissimilarity between emotional categories (E12) was calculated by 

averaging the dissimilarity between E1 and E2, and the dissimilarity between neutral categories 

(N12) by averaging the dissimilarity between N1 and N2, for each participant. These were entered 

as dependent variables in paired t tests, one for each brain cluster (p<0.05). *, p< 0.05; **, p< 

0.001. Abbreviations. OPA, Occipital place area; PPA, Parahippocampal place area; FFA, Face 

fusiform area; L, left;  E12, dissimilarity between emotional categories; N12, dissimilarity between 

neutral categories........................................................................................................................... 87 
Figure 5.1. Top: experimental stimuli for Experiment 1-2. We selected images and sounds of 

animals from two superordinate categories (‘mammals and ‘birds’), and divided them into 8 basic-

level categories: cow, horse, pig, sheep, duck, hen, turkey and sparrow. For each participant, two 

basic-level categories within each superordinate category served as CS and two as GS. In this 

case, images of cow and horse served as CS+ (light red square), and images and sounds of pig 

and sheep as GS+ (dark red square); images of duck and hen represented the CS- (light blue 

square), and images and sounds of turkey and sparrow as GS- (dark blue square). Bottom: Number 

of trials for each experimental condition, divided into experiment 1 and 2, averaged across 

sessions. The number of stimuli in experiment 2 (n=160 within each sensory modality) is doubled 

than those in experiment 1 (n=80 within each sensory modality). Abbreviations: CS, conditioned 

stimuli; GS, generalisation stimuli. ............................................................................................... 100 
Figure 5.2. Top: general procedure in experiment 1. After receiving 50 Israeli shekels (NIS) and 

being instructed for the task, 20 participants judged the similarity of images of animals by 

performing the multi-arrangements task before and after aversive conditioning task. They dragged 

and dropped the images into circular arenas, one for each condition (‘mammals, ‘birds’, and ‘mixed’ 

with ‘mammals’ and ‘birds’ in it), wherein the proximities reflected the similarity among images. The 

order of the arenas was counterbalances across subjects, such that half judged first the ‘mammals’ 

and then the ‘birds’, and half the opposite. The order for each participant was the same before and 

after the conditioning. In between, participants performed an aversive conditioning task, which has 
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the same structure of the fMRI task in experiment 2. The entire experiment lasted approximately 

one hour. Bottom: general procedure in experiment 2. We instructed 40 participants about the fMRI 

aversive conditioning task, after giving them 250 NIS and asking to fill the STAI_S and STAI_T 

questionnaire. During the scan, they learned the association between images (VG) or sounds (AG) 

and money loss vs saving. The aversive conditioning task was divided into 4 sessions (two VG and 

two AG), and their order was counterbalanced across participants, such that half performed first 

VG and then AG, and half the opposite. After the MRI, participants performed a surprise valence 

and arousal rating task outside the scan. The entire experiment lasted approximately 2 hours. 

Abbreviations: CS, conditioned stimuli; GS, generalisation stimuli. ............................................ 101 
Figure 5.3. Top. In experiment 1, we expected higher similarity within than between categories, 

and that aversive conditioning would increase the similarity in CS+/GS+ than CS-/GS-. The 

similarity in CS+/GS+ was calculated as Euclidean distance between items from CS+/GS+ 

category in the ‘CS+/GS+’ arena (in this case, the ‘mammals’), pre and post conditioning. The 

similarity in CS-/GS- was calculated as Euclidean distance between items from CS-/GS- in the ‘CS-

/GS-’ arena (in this case, the ‘birds’), pre and post conditioning. The similarity between CS+/GS+ 

and CS-/GS- was calculated as Euclidean distance between ‘CS+/GS+’ and ‘CS-/GS-’ in the 

‘mixed’ arena. Blue colour denote high similarity (low Euclidean distance), and yellow low similarity 

(high Euclidean distance). Bottom. In experiment 2, we predicted higher neural similarity in GS+ 

than GS- (denoted with pink circles), within visual modality and across visual and auditory sensory 

modalities. In the RDM within visual GS and within auditory GS, the similarity in GS+ and GS- was 

measured as correlational distance (1- Spearman’s correlation) in GS+ and in GS-, respectively, 

averaged across sessions, in VG and AG separately. These conditions were also valid in the RDM 

between visual and auditory GSs (e.g., GS+ represented the similarity between visual and auditory 

GS+). In the latter matrix, we also tested as manipulation check higher similarity in GS+ than in 

vGS+/aGS- and vGS-/aGS+. The same was valid for GS-. vGS+/aGS- and vGS-/aGS+ were 

measured as correlational distance (1- Spearman’s correlation) between visual GS+ and auditory 

GS-, and between visual GS- and auditory GS+, averaged across sessions. Abbreviations: M, 

Mammals; B, Birds; CS, Conditioned stimuli; GS, generalisation stimuli; BTW, Between CS+ and 

CS-/ Between GS+ and GS-; CS (+,-) within Conditioned stimuli; GS (+,-) within Generalisation 

stimuli; BTW CsGs (+,-), between CSs and GSs; vGS+/aGS-, between visual GS+ and auditory 

GS-; vGS-/aGS+, between visual GS- and auditory GS+............................................................ 106 
Figure 5.4. Experiment 2: Learning performance and pupil diameter (PD) during Pavlovian 

Conditioning (PC) trials, distributed across the 4 scanning sessions (10 trials within each session: 

5 CS+ and 5 CS-). Accuracy was measured by dividing the number of correct answers for the 

number of stimuli within each condition, separately for CS+ and CS-, within each session. The RTs 

were also measured within each condition, separately for CS+ and CS-, within each session. Both 

accuracy and RTs were averaged across CS+ and CS- in the top left plot. PD measures at 

response time and when the US was delivered were z-scored transformed, by subtracting from the 

raw data the mean PD within each session across conditions, and dividing it by its standard 

deviation.  Error bars represent ±2 SEM. *, p<0.05. Abbreviations: RTs, Reaction times; PD, pupil 

diameter. ...................................................................................................................................... 114 
Figure 5.5. Experiment 2: Participants performance during Visual (VG) and Auditory (AG) 

generalisation trials. Accuracy was measured by dividing the number of correct answers for the 

number of stimuli within each condition, then averaged across GS+ and GS-, within each session. 

The RTs were measured in the same manner. The dash line represents the chance level. Error 

bars represent ±2 SEM. *, p<0.05. **, p<0.001. Abbreviations: GS, generalisation stimuli; VG, 

visual generalisation; AG, auditory generalisation; RTs, Reaction times. ................................... 115 
Figure 5.6. Experiment 2: differences in valence (top) and arousal (bottom) ratings between CS+ 

and CS-, and GS+ and GS-, averaged across participants. On the right, Spearman r between 

STAI_T and Valence GS+, and STAI_T and arousal GS+, averaged across participants. Error bars 

represent ±2 SEM. **, p< 0.001. *, p<0.05. Abbreviations: CS, Conditioned stimuli; GS, 

generalisation stimuli.................................................................................................................... 116 
Figure 5.7. Experiment 1: Average dissimilarity between subordinate-level categories of 

threatening (CS+ and GS+) and not threatening (CS- and GS-) stimuli, before and after 

conditioning. Dissimilarity was measured as average Euclidean distance between subordinate-
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level categories of threatening (CS+ and GS+) and not threatening (CS+ and GS+) visual stimuli. 

Error bars represent ±2 SEM. ...................................................................................................... 117 
Figure 5.8. Experiment 2: differences in BOLD signal change between GS+ and GS- across 

sessions, during visual (left) and auditory (right) generalisation in the ROIs mask. Top: brain 

regions associated with higher activation for GS+ than GS- conditions. Bottom: brain regions 

associated with lower activation for GS+ than GS- conditions. Results were corrected for multiple 

comparisons using pFWE < 0.05. Small volume correction was applied in the analyses. We also 

computed the Spearman’s correlation between brain activations and emotional ratings to GS+ and 

GS-. Abbreviations: Abbreviations: OFC, Orbitofrontal cortex; MiFG, Middle frontal gyrus; R, right; 

L, left. ........................................................................................................................................... 118 
Figure 5.9. Experiment 2: Differences in correlational distance during visual generalisation within 

GS+ and within GS- in different brain regions, including the bilateral FG, ITC and DMPFC. The 

dissimilarity within GS+ and within GS- were calculated by averaging the dissimilarity within GS+ 

and within GS- across sessions, for each participant. These were entered as dependent variables 

in paired t tests, one for each brain cluster (p<0.05). *, p<0.05. Abbreviations: dissimilarity wGS+, 

within GS+; wGS-, within GS-; FG, Fusiform gyrus; ITC, Inferior temporal cortex; DMPFC, 

Dorsomedial prefrontal cortex; L, left; R, right. ............................................................................ 119 
Figure 5.10. Experiment 2: Differences in dissimilarity (measured as correlational distance) 

between visual- auditory GS+ and visual-auditory GS- in the bilateral insula. The dissimilarity 

between visual-auditory GS+ and visual-auditory GS- calculated by averaging the dissimilarity 

within GS+ and within GS- across sessions, for each participant. These were entered as dependent 

variables in paired t tests, one for each brain cluster (p<0.05). *, p<0.05. Abbreviations: GS+, 

dissimilarity between visual and auditory GS+; GS-, dissimilarity between visual and auditory GS-
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3. Table of tables  

Table 4.1. Differences in visual and emotional measures between emotional (n=10) and neutral 

(n=10) pictures (experiment 1). The mean and the standard deviation of each measure are shown, 

as well as the t, the p value and Cohen's d as effect size measure for each difference. **, pFWE< 

0.001. ............................................................................................................................................. 66 
Table 4.2. Differences in visual and emotional measures among categories. The mean and the 

standard deviation of each measure are shown, as well as the F, the p value and the partial eta 

squared for each difference. Abbreviations: E1, Emotional category 1 (poverty scenes, n=18); E2, 

Emotional category 2 (car accidents, n=18); N1, neutral category 1 (laundry scenes, n=18); N2, 

neutral category 2 (telephone scenes, n=18) (experiment 2-3). .................................................... 67 
Table 4.3.  Differences in dissimilarity among categories (validation study). The mean and the 

standard deviation of each condition of interest are shown, as well as the F, the p value and the 

partial eta squared for each difference. Abbreviations. Dissimilarity within: E1, emotional category 

1 (poverty scenes, n=18); E2, Emotional category 2 (car accidents, n=18); N1, neutral category 1 

(laundry scenes, n=18); N2, neutral category 2 (telephone scenes, n=18). Dissimilarity between: 

E12, emotional categories; N12, neutral categories; EN, emotional and neutral categories. ....... 68 
Table 4.4. Differences in visual complexity ratings among categories. The proportion of high 

complexity ratings within each category (total number of ‘high complexity’ responses divided by 18) 

was averaged across sessions. Mean and standard deviation of each category, and the statistics 

of the difference among them are reported at the top of the table. Bonferroni post hoc corrections 

for multiple comparisons (p<0.05) are summarized at the bottom. *, pFWE< 0.05; **, pFWE< 0.001.

 ....................................................................................................................................................... 75 
Table 4.5. Differences in the variance in similarity judgements between emotional and neutral 

stimuli. The variance averaged across participants for each conditions, and the statistics of each 

difference between conditions are reported. In experiment 1, EE and NN represent the variance 

within emotional, and within neutral stimuli, respectively, averaged across participants. In 

experiment 2-3, E12 and N12 signify the variance between the two emotional, and the two neutral 

categories, respectively, averaged across participants. Finally, in experiment 3, EE and NN 

represent the variance within E1 and E2, and within N1 and N2, averaged across participants. . 83 
Table 4.6. Differences in BOLD signal change between emotional and neutral categories. Only 

regions that survive correction for multiple comparisons using pFWE < 0.05 are reported. Small 

volume correction using the ROI mask was applied in both analyses. .......................................... 83 
Table 4.7. Brain-behaviour correlations. Top: correlations between the entire (72 x 72) stimulus 

space (named as ‘all RDM’), the and the brain. Significant correlations were observed in the 

bilateral ITC, right FFA, and the right Prec.  Middle: correlations between the emotional (36 x 36) 

similarity space (named as ‘emotional RDM’) and the brain. Significant correlations were observed 

in the bilateral EVC, OPA, PPA, FFA, Prec, dACC and left aINS. Bottom: correlations between the 

neutral (36 x 36) similarity space (named as ‘neutral RDM’) and the brain. Significant correlations 

were observed in the bilateral OPA, PPA, and left FFA. In all these analyses, correlational 

coefficients were Fisher’s z transformed, and entered as dependent variables in a one side t test 

(separately for each brain region), testing the null hypothesis of no correlation between the 

participants’ similarity space and the neural activation patterns. The resulting p values were 

thresholded to control for the false-discovery rate (FDR). **, pFDR< 0.001. Abbreviations. ITC, 

Inferior Temporal Cortex; FFA, Face Fusiform Area; Prec, Precuneus; EVC, Early visual cortex; 

OPA, Occipital place area; PPA, Parahippocampal place area; dACC, dorsal anterior cingulate 

cortex; aINS, anterior insula. L, Left; R, Right. .............................................................................. 85 
Table 4.8. Effect of emotions on neural dissimilarity. Difference in neural dissimilarity (measured 

as correlational distance) among conditions. The dissimilarity between emotional categories (E12) 

was calculated by averaging the dissimilarity between E1 and E2, and the dissimilarity between 

neutral categories (N12) by averaging the dissimilarity between N1 and N2, for each participant. 

These measures were first computed in brain clusters significantly involved in the representation 

of the whole (72 stimuli) participants’ similarity space (top of the table). Then, we computed E12 

and N12 in brain clusters significantly involved in the representation of the emotional (middle of the 

table) and neutral (bottom of the table) participants’ similarity space. We entered them as 
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dependent variables in paired t tests, one for each brain cluster. Bonferroni post hoc corrections 

for multiple comparisons (p<0.05) are summarized at the bottom. *, pFWE< 0.05; **, pFWE< 0.001. 

Abbreviations. E12, neural dissimilarity between emotional categories; N12, neural dissimilarity 

between neutral categories. ITC, Inferior temporal cortex; FFA, Face fusiform area; Prec, 

Precuneus; EVC, Early visual cortex; OPA, Occipital place area; PPA, Parahippocampal place 

area; dACC, Dorsal anterior cingulate cortex; AI, Anterior insula; L, left; R, Right. ....................... 88 
Table 4.9. Differences across participants in the variance in neural dissimilarity between emotional 

and neutral stimuli. The variance averaged across participants for each conditions within each 

cluster, and the statistics of each difference between conditions are shown.  E12 and N12 represent 

the variance between the two emotional, and the two neutral categories, respectively, averaged 

across participants. For simplicity, we averaged the left and the right sides of the clusters. 

Abbreviations. ITC, Inferior Temporal Cortex;  EVC, Early visual cortex; OPA, Occipital place area; 

PPA, Parahippocampal place area; FFA, Face fusiform area; Prec, Precuneus; dACC, Dorsal 

anterior cingulate cortex; aIns, Anterior insula; L, left; E12, dissimilarity between emotional 

categories; N12, dissimilarity between neutral categories. ............................................................ 89 
Table 5.1. Experiment 2: Differences in BOLD signal change between GS+ and GS- during visual 

and auditory generalisation in the ROIs mask. Results were Bonferroni corrected for multiple 

comparisons using pFWE < 0.05. Small volume correction was applied in the analyses. 

Abbreviations: OFC, Orbitofrontal cortex; MiFG, Middle frontal gyrus; R, right; L, left. ............... 117 
Table 5.2. Experiment 2: Effect of aversive conditioning on neural dissimilarity during visual 

generalisation. Difference in neural dissimilarity (measured as correlational distance) among 

conditions. The dissimilarity within GS+ and within GS- were calculated by averaging the 

dissimilarity within GS+ and within GS- across sessions, for each participant. These were entered 

as dependent variables in paired t tests, one for each brain cluster (p<0.05). *, p<0.05. 

Abbreviations: dissimilarity GS+, within GS+; GS-, within GS-; FG, Fusiform gyrus; ITC, Inferior 

temporal cortex; DMPFC, Dorsomedial prefrontal cortex; L, left; R, right. .................................. 119 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

11 
 

4. Abstract 

Emotional similarity refers to the tendency to group stimuli together according to 

the feelings they evoke in us. The study of emotional similarity is relevant for the 

semantic memory research and overgeneralisation bias in anxiety disorders and 

may have impact on psychological well-being. Most of the studies on similarity 

have focused on non-emotional stimuli, and fewer on simple stimuli (e.g., shapes, 

objects) that acquired an emotional value following fear conditioning. Very little is 

known about what makes us perceive real-life emotional experiences as similar. 

We assumed a similarity space of several integrated dimensions, with emotions 

as the most influential. We predicted emotional stimuli to be judged as more similar 

to each other than neutral stimuli, as they shared low scores in valence and high 

scores in arousal, and thus they were more salient. We also expected this to be 

underpinned by higher similarity in the neural activation patterns of emotional than 

neutral stimuli. We combined different similarity judgements tasks and fMRI to test 

our hypotheses, and analysed the data using RSA. Our results suggest an 

important role of emotion on similarity perception. Even though two expressions of 

the same person were objectively more similar to each other than the faces of two 

different individuals who expressed the same emotion, participants judged both 

types of face pairs to be just as similar to each other. However, the similarity 

between faces expressing similar emotions was lower than between neutral faces. 

In addition, we found no differences between images of the two emotional than the 

two neutral categories of real-life events. Similar findings were replicated using 

stimuli that acquired an emotional value after aversive conditioning, suggesting 

that emotion is as relevant as visual and semantic dimensions in perceived 

similarity. Despite this equivalence in similarity perception, emotions were more 

influential in the neural similarity space, resulting in higher similarity among the 

neural representations of emotional compared to neutral stimuli. We observed this 

in brain clusters located in the ventral visual stream underlying semantic 

processing and categorisation, and in regions involved in affect representations 

(i.e., precuneus, insula) and modulation (i.e., dorsal anterior cingulate cortex, 

dorsomedial prefrontal cortex). This pattern of findings suggest that emotions 

might trigger local (within a brain region) and distant (between brain regions) 

synchronisation processes, such that a stable mental representation, which 
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encoded the ‘relevance’ of the stimulus, emerges and is shared among emotional 

experiences.  
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8. Rationale  

 

Emotional similarity refers to the tendency to group stimuli together because they 

evoke the same feeling in us. Emotional similarity is a fundamental principle in 

cognition, as it supports core cognitive functions, such as categorisation, semantic 

memory and learning. Research on emotional similarity may have clinical 

implications in anxiety disorders. After a traumatic event, patients overgeneralise, 

as they consider later experiences as similar to the original fearful one not because 

of their ostensible meaning, but their emotional similarity. In addition, it might help 

to shed more light on the neurobiological mechanisms underlying semantic 

cognition.  

In this thesis, we explored when and why we judge two emotional experience to 

be similar to each other, and whether we represent them differently from non-

emotional experiences. We assumed a similarity space that comprises of several 

integrated visual, semantic and emotional dimensions, with the latter being the 

most influential to overall perceived similarity. We also expect this to be 

underpinned by higher similarity among neural representations of emotional than 

neutral stimuli. This would enable individuals to differentiate emotionally relevant 

stimuli from those that are not as function of survival.  

In chapter 1, we summarised major findings in similarity judgements research, 

focusing on the semantic (section 1.2) and emotional (section 1.3) facets of 

similarity. We also highlighted the main limitations in the similarity judgements 

literature, and proposed different ways to overcome them in future studies (section 

1.4). This literature review has been published in Brain Topography (2019). In 

chapter 2, we revised the experimental procedures and data analyses mostly 

used in similarity literature. We first described the stimulus sets generally used in 

similarity tasks, by focusing on visual stimuli (section 2.1) and the experimental 

procedures, whereby direct and indirect similarity estimates can be derived 

(sections 2.2 - 2.3). Finally, we defined neural similarity in the context of 

Representational Similarity Analysis (section 2.4), concluding with a summary of 

the statistical analyses we conducted on behavioural and neural data (section 2.5). 

In chapters 3, 4, 5 we tested our hypotheses using two similarity judgements tasks 

(i.e., pairwise ratings and multi-arrangements tasks) and several databases of 
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stimuli that differed in visual complexity (e.g., pictures of animals, complex scenes) 

and on emotional dimensions (e.g., fearful faces; scenes of car accidents). 

Particularly, in chapter 3 we studied whether emotionally similar faces were rated 

as more similar than neutral faces. We published the results of this experiment in 

the journal Symmetry (2021). The same hypothesis was tested using real-world 

photographs that differed in valence and arousal in chapter 4. Specifically, in 

experiment 1, we tested our main hypothesis using two datasets of stimuli, the 

second of which allowed us an exquisite control over semantic similarity. In 

experiment 3, we also investigated whether the neural representations of 

emotional stimuli were more similar than those associated with neutral stimuli. This 

full chapter was adapted as paper and it has been accepted for publication in the 

Journal of Neuroscience (2022). Finally, in chapter 5 we explored whether 

aversive conditioning was associated with an increase in behavioural (experiment 

1) and neural (experiment 2) similarity measures between threatening than not 

threatening images and sounds of animals. In chapter 6, we discussed our results 

and their impact on memory and semantic cognition literature as well as in anxiety 

disorders.  
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1. Chapter: Introduction 

This chapter has been published in  Brain Topography (Martina Riberto, Pobric, & 

Talmi, 2019). 

 

‘A group of people, books, whether of a certain kind and certain states of mind are 

all grouped together as alike [...] What holds them together […] is the evocation of 

a defining affective response’ (Bruner & Austin, 1986).  

 

Emotional similarity refers to the tendency to group stimuli together according to 

the feelings they evoke in us. It is a fundamental principle in cognition, as it 

supports core functions, such as categorisation (Barrett, 2017; Barsalou, 2017), 

memory and learning (Leal, Tighe, Jones, & Yassa, 2014; Leal & Yassa, 2018; 

Talmi & McGarry, 2012). Research on emotional similarity may have clinical 

implications for the overgeneralisation bias in anxiety disorders. After a traumatic 

event, patients consider later experiences as similar to the original fearful one not 

because of their ostensible meaning, but their emotional similarity (Ahrens et al., 

2016; Laufer, Israeli, & Paz, 2016). The majority of research on similarity 

perception that has been conducted to date has focused on non-emotional stimuli. 

Different models have been proposed to explain how we represent semantic 

concepts, and judge the similarity among them. However, very little is known about 

what makes us perceive real-life emotional experiences as similar.  

In this chapter, we first introduced the construct of emotional similarity, the 

possible relationships with semantic similarity, its relevance in memory research 

and anxiety disorders (section 1.1). Second, we reviewed the literature about 

semantic (section 1.2) and emotional (section 1.3) similarity, focusing on 

neuroimaging studies aimed at developing neurobiological model of semantic 

cognition and emotional categorization. Third, we highlighted the limitations in 

emotional similarity literature, possibly due to confounding factors during stimulus 

selection process (section 1.3.1).  Finally, we proposed future directions in 

emotional similarity research to improve our understanding of the cognitive and 

neural mechanisms of this core construct. A multi-modal and overarching 

approach, which combine behavioral and neural data, would be the key to further 

unveil what makes emotional experiences similar to each other (section 1.4). This 
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chapter has been published as literature review in Brain Topography (Martina 

Riberto et al., 2019) and served as general background for the experimental 

chapters (chapters 3, 4 and 5).  

 

1.1 Background 

Emotional similarity refers to the similarity between the feelings that stimuli evoke 

in us. Poets and storytellers routinely use the power of emotional similarity to 

convey the emotional tone of a situation by analogy, for example, when the 

sadness that follows the breakup of a relationship is likened to that we feel when 

the weather is bad. As the famous song goes, it is ‘stormy weather, since my man 

and I ain’t together, keeps raining all the time…’. According to Bruner, stimuli that 

are very different visually and semantically may nevertheless be perceived as 

similar to each other because of the feelings they evoke in us  (Bruner & Austin, 

1986). For example, we may judge an image of a homeless person begging for 

food and an image of a businesswoman talking on the phone as different, even if 

the pictures are taken at the same street corner, because one evokes a negative 

feeling and one a neutral feeling. On the contrary, the same image of a beggar 

and an image of a person injured in a car accident may be evaluated as more 

similar if both evoke negative feelings, even if the pictures are taken in different 

places around the world. In Bruner’s discussion, emotional similarity is considered 

an orthogonal dimension to the visual and semantic dimensions of a stimulus. 

Alternatively, the emotional facet of our experience of a stimulus may be 

considered part of its semantic meaning; in that case, emotional similarity may be 

reduced to a specific form of semantic similarity.  

We define emotional similarity as the similarity between the emotional dimensions 

of stimuli in the representational space. This space is in part objective and shared 

among individuals, and in part subjective and in continuous interaction with our 

experience.  

The majority of research on similarity perception that has been conducted to date 

has focused on non-emotional stimuli, such as words, object, shapes, faces and 

scenes. In these studies (Goldstone, Medin, & Halberstadt, 1997; Golonka & 

Estes, 2009; Greene, Baldassano, Esteva, Beck, & Fei-Fei, 2014; Iordan, Greene, 

Beck, & Fei-Fei, 2015; King, Groen, Steel, Kravitz, & Baker, 2019), participants 
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were involved in explicit similarity judgement tasks. In others (Bruffaerts et al., 

2013; Clarke & Tyler, 2014; Guntupalli, Wheeler, & Gobbini, 2016; Haxby et al., 

2001; Haxby et al., 2011; N. Kriegeskorte, M. Mur, & P. A. Bandettini, 2008b; 

Neyens et al., 2017), the main interest was the neural similarity, namely the 

similarity among neural representations associated with non-emotional stimuli 

during tasks not related to the similarity judgements. By contrast, less is known 

about what makes people perceive richer, life-like events as similar, and even less 

when these are emotional. Understanding the cognitive and neural mechanisms 

underlying emotional similarity may have implications for research on 

categorisation (Barrett, 2004, 2017; Barsalou, 2017), memory of emotional 

experiences (Leal, Tighe, Jones, et al., 2014; Leal & Yassa, 2018; Talmi & 

McGarry, 2012), and generalisation (Dunsmoor, Kragel, Martin, & LaBar, 2013; 

Laufer & Paz, 2012; Schechtman, Laufer, & Paz, 2010). From a clinical 

perspective, the study of emotional similarity could help in understanding why 

patients with anxiety disorders overgeneralise and judge a variety of subsequent 

experiences to be similar to the original fearful one (Laufer et al., 2016; Lissek et 

al., 2009).  

Below, we review the major findings and debates in the literature on similarity, with 

the goal of placing the concept of ‘emotional similarity’ within the context of 

relevant research. With this aim, we will summarise two lines of research, one 

focused on explicit similarity judgements and the other on neural similarity. This is 

because both of them provide interesting information about what makes two stimuli 

similar, in terms of both cognitive dimensions and neural mechanisms. First, we 

will focus on semantic similarity, namely the similarity among non-emotional 

stimuli. We will use this literature as background for the emotional facet of the 

similarity, and to ask how the emotional similarity could be incorporated. Is 

emotional similarity a facet of semantic similarity or is a further dimension in a 

complex semantic space? We will end by proposing future directions in this 

research field.  

 

1.2 Semantic similarity  

We may judge two stimuli, such as a blue circle and a blue ellipse, as similar, 

because they share some features (the rounded shape and blue colour). Because 
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of the number of properties that they share, we will consider them more similar 

than a blue ellipse and a pink square. This is line with the ‘contrast model’, which 

posited that similarity between two items is a function of their common features 

weighed against their distinctive features (Tversky, 1977). The ‘contrast model’ is 

limited in that it fails to consider the relationships among features (Gentner & 

Markman, 1994, 1997; Markman & Gentner, 1993). These include thematic and 

taxonomic relationships, which widely contribute to semantic memory and 

similarity judgements (Hoffman, Ralph, & Rogers, 2013; E. L. Lin & Murphy, 2001; 

M. A. L. Ralph, Sage, Jones, & Mayberry, 2010; Schwartz et al., 2011).  

Milk paired with jam is an example of thematic relationship. Thematic relationships 

are defined as any temporal, spatial, causal, or functional relationships between 

objects, which perform complementary roles in the same scenario or event (e.g., 

breakfast) (Estes, Golonka, & Jones, 2011). It is widely known in the semantic 

memory literature that people judge thematically related stimuli to be more similar 

to each other than other stimuli (Chen et al., 2013; Estes et al., 2011; Golonka & 

Estes, 2009; Simmons & Estes, 2008). The paradigmatic stimuli are natural, 

complex pictures (Lang, Bradley, & Cuthbert, 2008; Marchewka, Żurawski, 

Jednoróg, & Grabowska, 2014). For these stimuli, thematic relationships can arise 

from affordances (Maguire, Maguire, & Cater, 2010), namely the possible actions 

that a person can perform in a specific situation. As shown by Greene et al. (2014), 

affordances may even be the most salient dimension in the categorisation of 

natural scenes. In that study, participants categorised natural complex pictures 

mainly according to affordance, rather than visual or taxonomic similarity (Greene 

et al., 2014).  

Labrador and Chihuahua are taxonomically similar. While visually these animals 

are different (different colour, size, etc.), they are also similar, because they share 

some features (both bark and are four-legged), which once related bring out the 

category dogs. Thus, we group these items in the same category, dogs, and judge 

them as more similar than items from different categories (Chen et al., 2013; 

Wisniewski & Bassok, 1999; Xiao, Dong, Chen, & Xue, 2016; Xu et al., 2018). 

People also generalise these properties to new items with similar features (e.g., 

German Shepherd), and attribute to these items extra features that define the 

category, even if those were never directly experienced (Jackson, Hoffman, 

Pobric, & Lambon Ralph, 2015). Features-based categories are organised 
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hierarchically in semantic memory (Rosch, Mervis, Gray, Johnson, & Boyes-

Braem, 1976). Within this hierarchy, it is often possible to distinguish between 

different levels: the broadest level is the superordinate (e.g., mammals), then the 

basic (e.g., dogs) and then the subordinate (e.g., Labrador). Although some 

examples do not fit this neat classification (e.g., screwdriver or lawnmower) and 

there are a number of contradictory findings (Rogers & Patterson, 2007; Taylor, 

Devereux, Acres, Randall, & Tyler, 2012), many studies showed that participants 

are more accurate and faster in categorising objects at the basic level than at the 

superordinate and the subordinate level (Anglin, 1977; Horton & Markman, 1980; 

Iordan et al., 2015; Mack, Wong, Gauthier, Tanaka, & Palmeri, 2009; G. L. Murphy 

& Brownell, 1985). Many of the stimuli in the emotional cognition literature have 

taxonomic relationships. In the IAPS set, for example, a picture of a man pointing 

a gun and a man wielding a knife are subordinates of the basic level ‘aggravated 

assault’. Emotional events are the core of our life stories and their categorisation, 

as well as the similarity among them, are fundamental to make them meaningful. 

However, most of the studies focused on the neural mechanisms underlying the 

perception of similarity among neutral stimuli and on the neural representations of 

non-emotional stimuli during cognitive and perceptual tasks.  

 

1.2.1 Neuroimaging studies  

It is possible to map in the brain the similarity structure observed at behavioural 

level, by using innovative Multivariate Pattern Analysis (MVPA) methods. Among 

them, Representational Similarity Analysis (RSA) gained popularity in 

neuroscience in the last decade to investigate the cognitive and neural 

mechanisms of perceived similarity. This technique allows combining neural 

evidence with behavioural and computational data by calculating their correlation. 

In this way, it is possible to test whether and where the similarity structure 

observed at behavioural level is represented in the brain. In addition, this 

correlational-based technique examines the correlation between the neural 

representations of stimuli, as it is measured through the BOLD signal during 

cognitive tasks in fMRI, to draw conclusions about their similarity (Kriegeskorte & 

Mur, 2012; Kriegeskorte, Mur, et al., 2008b; Nili et al., 2014). In a recent MVPA 

study, Iordan et al. (2015) explored how the different levels of semantic categories 
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are represented across the occipitotemporal cortex. They hypothesised that 

categorisation may be an emergent property of the human ventral visual system. 

In order to test this hypothesis, they calculated the category boundary effect as 

the difference between cohesiveness (within-category neural similarity) and 

distinctiveness (between-categories neural similarity). This quantity provides a 

measure of how well categories are separated at each taxonomic level. For 

example, at the basic level, cohesion for ‘dogs’ is defined as the average 

correlation between voxel activations associated with the presentation of a ‘dog’ 

and any other type of ‘dog’. On the other side, at the basic level, distinctiveness 

for ‘dogs’ is defined as average correlation between voxel activations associated 

with the presentation of a ‘dog’ and, for example, a ‘flower’. They found high 

cohesiveness in V1, such that patterns elicited by subordinates are not 

distinguishable. As we move up in the ventral visual stream (i.e., lateral occipital 

cortex, posterior middle temporal gyrus, inferior temporal gyrus), the categories 

become more sharply distinguishable at basic level (Iordan et al., 2015). This is in 

line with other studies, which showed that inferior temporal regions are involved in 

semantic categorisation and perceived similarity of objects (Charest, Kievit, 

Schmitz, Deca, & Kriegeskorte, 2014; R. Epstein & Kanwisher, 1998; Grill-Spector, 

Kushnir, Edelman, Itzchak, & Malach, 1998; Kriegeskorte, Mur, Ruff, et al., 2008; 

Malach et al., 1995; Martin, Wiggs, Ungerleider, & Haxby, 1996) and faces 

(Guntupalli et al., 2016; Haxby et al., 2001; Haxby et al., 2011). Thus, according 

to these studies, semantic knowledge is not ‘located in’ one brain area, but it arises 

from distinct patterns of response that are distributed across brain regions (Haxby 

et al., 2001).  

A similar perspective is reflected in the ‘hub and spoke’ model (Rogers et al., 2004) 

, an influential model of semantic memory. According to this model, semantic 

categorisation is the result of an interaction between different modality-specific 

cortices (i.e., the ‘spokes’) distributed across the brain, and a transmodal ‘hub’, 

located in the ventral part of the anterior temporal lobe (vATL) (Lambon Ralph, 

2014; Patterson, Nestor, & Rogers, 2007; M. A. L. Ralph et al., 2010). In particular, 

the ‘hub’ integrates sensory, motor and verbal information that together define a 

concept, and which are encoded in the different ‘spokes’. It also extracts inter-

stimulus relationships that go beyond visual similarities, such as taxonomic and 
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thematic relationships, and generalise these relationships to new stimuli with 

similar features. Many neuropsychological and neuroimaging findings, both in 

patients with semantic dementia (Bozeat, Ralph, Patterson, Garrard, & Hodges, 

2000; Guo et al., 2013; Jefferies, Patterson, Jones, Ralph, & Matthew, 2009; P. J. 

Nestor, Fryer, & Hodges, 2006; M. L. Ralph, Lowe, & Rogers, 2007) and in healthy 

controls (Pobric, Jefferies, & Ralph, 2007; M. Visser, Jefferies, Embleton, & 

Lambon Ralph, 2012) support this model. The vATL interacts also with other brain 

regions, which are part of the semantic control (SC) network, to generate context-

dependent semantic representations. This network include the posterior middle 

temporal gyrus, the prefrontal cortex, the intraparietal sulcus, the pre-

supplementary motor area and the anterior cingulate cortex (for a review on this 

topic, see (M. A. L. Ralph, Jefferies, Patterson, & Rogers, 2017)). Finally, as 

reviewed by Rice et al. (2018)  the ATL is also involved in processing socially 

relevant semantic concepts, including person face knowledge and emotional 

concepts (Collins & Olson, 2014; Olson, McCoy, Klobusicky, & Ross, 2013; Pobric, 

Lambon Ralph, & Zahn, 2016; Wang et al., 2017; Zahn et al., 2009; Zahn et al., 

2007), because of its connection with the amygdala and orbitofrontal regions 

through the uncinate fasciculus (Highley, Walker, Esiri, Crow, & Harrison, 2002; 

Von Der Heide, Skipper, Klobusicky, & Olson, 2013). These regions might be 

thought as ‘emotional spokes’, which interact with the ATL to generate emotional 

concepts. Future studies are needed to test this hypothesis.  

To summarise, semantic similarity supports core cognitive functions, such as 

semantic categorisation and semantic memory. Recent neuroimaging findings 

showed that conceptual knowledge is a widely distributed neural network, which 

include occipitotemporal and prefrontal regions. Different models have been 

proposed to explain the cognitive and neural mechanisms of semantic knowledge 

and similarity judgments (Caramazza, Hillis, Rapp, & Romani, 1990; A. R. 

Damasio, 1989; Riddoch, Humphreys, Coltheart, & Funnell, 1988). However, to 

our knowledge, these perspectives are limited to non-emotional stimuli, and have 

never been tested in the context of emotional similarity and categorisation.  
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1.3 Emotional similarity 

While the majority of the studies about similarity judgements focused on non-

emotional stimuli, a vast literature in emotion research asks what makes two 

emotional stimuli similar. To answer this question, participants are often asked to 

sort simple stimuli, such as words or faces, according to their similarity, or to rate 

the similarity among them on a Likert scale (Calvo & Nummenmaa, 2008; Jamin 

Brett Halberstadt & Niedenthal, 1997; Jamin B Halberstadt, Niedenthal, & 

Kushner, 1995; Koch, Alves, Krüger, & Unkelbach, 2016; Osgood, 1952; Roberts 

& Wedell, 1994; Russell & Bullock, 1985; Russell & Pratt, 1980; Said, Moore, 

Engell, Todorov, & Haxby, 2010; Schlosberg, 1952; van Tilburg & Igou, 2017). The 

paradigmatic finding is that participants judge the similarity according to two 

dimensions, the valence and the arousal of the stimuli. These dimensions are not 

explicitly used during the similarity judgements, but rather they represent implicit 

components of the cognitive structure underlying these stimuli (Barrett, 2004). We 

can map this cognitive structure by using Multidimensional Scaling (MDS) 

procedure. When represented in a geometric space, defined by valence and 

arousal as orthogonal axes, emotional stimuli are placed along the perimeter of a 

circle. This is the core idea of Russell’s ‘circumplex model of emotion’ (Russell & 

Pratt, 1980) and other dimensional theories of emotion (Bradley, Greenwald, 

Petry, & Lang, 1992; Mehrabian, 1980; R. Plutchik, 2001; Watson & Tellegen, 

1985), which have been widely used in emotion research (Barrett & Russell, 1999; 

A. Damasio, 2003; Kuppens, Tuerlinckx, Russell, & Barrett, 2013; Lang et al., 

2008; Mäntylä, Adams, Destefanis, Graziotin, & Ortu, 2016; Marchewka et al., 

2014; Yu et al., 2016; Zevon & Tellegen, 1982). In this representational space, the 

distance among stimuli reflects their similarity, with short distances representing 

high similarity. The multi-arrangement method, a direct way to measure similarity, 

is based on this principle (Kriegeskorte & Mur, 2012). This quick and efficient task 

is used  for experiments with a relatively large set of stimuli, because participants 

simultaneously judge the similarity among many stimuli displayed together 

(Chavez & Heatherton, 2015; Chikazoe, Lee, Kriegeskorte, & Anderson, 2014), as 

opposed to a pairwise presentation.  

Emotional similarity can be also quantified indirectly. Asking participants to rate 

the semantic relatedness between words (Talmi & Moscovitch, 2004) or pictures 
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(Gallo, Foster, & Johnson, 2009; Sison & Mather, 2007; Talmi, Luk, McGarry, & 

Moscovitch, 2007; Talmi & McGarry, 2012) is an example of an indirect measure 

of similarity. This is because the higher the relatedness between concepts in 

semantic memory, the higher the similarity between them. These studies suggest 

that emotions increase the semantic relatedness, resulting in higher ratings among 

negative emotional stimuli compared to neutral ones. This might lead to a better 

organisation of emotional stimuli, and might explain the advantage they have in 

immediate memory tests (Talmi, 2013; Talmi & McGarry, 2012).  

The findings above indicate that emotion increases perceived similarity between 

stimuli. Greater perceived similarity among emotional stimuli might be related to 

the effect of arousal on hippocampal pattern separation, the ability to store similar 

experiences in distinct and non-overlapping representations. This might explain 

why participants find it harder to discriminate between targets and similar lures 

when those are emotional (Leal, Tighe, Jones, et al., 2014; Leal & Yassa, 2018; 

Mattar & Talmi, 2019; Segal, Stark, Kattan, Stark, & Yassa, 2012; Zheng et al., 

2019). Other studies suggested that the arousal might also increase the 

generalisation among neutral stimuli during fear condition paradigms, both in 

healthy controls (Dunsmoor et al., 2013; Laufer & Paz, 2012; Schechtman et al., 

2010) and in patients with anxiety disorders (Laufer et al., 2016; Lissek et al., 

2009). The generalisation is another example of indirect measure of similarity, 

because the higher the similarity between stimuli, the wider the generalisation 

between these stimuli.  

 

1.3.1 Neuroimaging studies  

The number of neuroimaging studies in emotional similarity research is limited. To 

our knowledge, no neuroimaging studies have investigated neural differences in 

explicit judgments of similarity among the prevalent stimuli in research of 

emotional cognition, namely, natural, complex neutral and emotional picture 

scenes. Only a handful of studies have combined behavioural measures of 

similarity with neural data by using RSA. The results of these studies might help 

in understanding the brain regions which code the similarity among emotional 

stimuli. In these studies, during the fMRI scan participants were asked to attend to 

pictures while performing non-emotional rating tasks (e.g., ratings of indoor versus 
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outdoor scenes). This was combined with behavioural judgements of similarity 

among the experimental stimuli. They found that brain activity patterns in regions 

involved in emotional processing, such as the insula and the ventromedial 

prefrontal cortex (VMPFC), represent the similarity structure between emotional 

and neutral stimuli observed at behavioural level (Chavez & Heatherton, 2015; 

Levine, Wackerle, Rupprecht, & Schwarzbach, 2018).  

Additionally, indirect evidence about what make two emotional stimuli similar to 

each other at neural level is gleaned from neuroimaging investigations of 

emotional processing and categorisation. These mainly aimed at investigating how 

the brain codes the relationship between specific emotions, supporting either a 

categorical (Ekman & Friesen, 1976), a dimensional (Russell & Pratt, 1980), or a 

constructionist view (Barrett, 2017). In these studies, participants were asked 

either to passively look at images, to attend to the feelings they evoke, to rate the 

valence and the arousal of these feelings, or to rate the valence and arousal of the 

picture and categorise it according to emotional labels (Baucom, Wedell, Wang, 

Blitzer, & Shinkareva, 2012; den Stock, Vandenbulcke, Sinke, & de Gelder, 2014; 

Edmiston et al., 2013; Hrybouski et al., 2016; Machajdik & Hanbury, 2010; 

Motzkin, Philippi, Wolf, Baskaya, & Koenigs, 2015; Ohira et al., 2006; Sakaki, Niki, 

& Mather, 2012; Yuen et al., 2012). The results of these studies were discrepant, 

probably because of the different perspectives of emotions adopted and methods 

used to elicit the emotions (Wager et al., 2015). In particular, locationist studies 

attempted to discover the unique brain feature associated with each emotional 

category, by adopting a one (brain region)-to-one (emotion) approach. For 

example, fear has been consistently localised in the amygdala (LaBar, Gatenby, 

Gore, LeDoux, & Phelps, 1998; LeDoux, 2007; Öhman, 2009), disgust in the 

anterior insula (Calder, 2003; Jabbi, Bastiaansen, & Keysers, 2008; Wicker et al., 

2003), sadness in the anterior cingulate cortex (F. C. Murphy, Nimmo-Smith, & 

Lawrence, 2003; Phan, Wager, Taylor, & Liberzon, 2002), anger in the 

orbitofrontal cortex (F. C. Murphy et al., 2003; Vytal & Hamann, 2010), and 

happiness in the dorsomedial prefrontal cortex (DMPFC) (Lindquist, Wager, 

Kober, Bliss-Moreau, & Barrett, 2012). As highlighted by Lindquist et al. (2012), 

supports for a locationist account would be found if instances of an emotion 

category (e.g., fear) are consistently and specifically associated with increased 

activity in a brain region (or in a set of regions within a network) across multiple 
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published studies. However, first, many studies showed that the aforementioned 

regions are associated with multiple categories of emotions (Lindquist et al., 2012), 

and during many other sensory, perceptual and cognitive functions (LeDoux, 2012; 

Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011). Second, it is not clear 

whether the findings from the locationist literature are reliable enough or consistent 

across studies (Wager et al., 2015). For these reasons, a psychological 

constructionist approach to emotion is preferable. According to this perspective, 

emotions are ‘situated conceptualisations’, that is, subjective interpretations of 

what is happening around us. Emotions arise from the interaction among many 

brain regions, interconnected in large-scale networks, according to a many-to-one 

approach. These brain regions are implicated not only in emotional processing, 

but also in more ‘cognitive’ functions, such as conceptualization (simulation of 

previous experiences), language (representation and retrieval of semantic 

concepts), and executive attention (attention and working memory).  

However, this represents only indirect evidence of the neurobiological 

underpinnings of emotional similarity. The neural mechanism that allows emotion 

to influence overall perceptions of similarity is still unknown, as are putative neural 

differences during explicit judgements of similarity between natural, complex 

neutral and emotional events. 

 

1.3.2 Limitations in emotional similarity literature  

Although the emotional similarity literature provided interesting and relevant 

results, it is also limited in several important ways. First, most studies used 

decontextualized, simple stimuli, such as emotional faces, or words, a choice that 

yields more experimental control at the cost of ecological validity. This is 

particularly important because the known influence of context on emotional 

categorisation (Barrett, 2017). For example, Avierez et al. (2008) observed this 

effect in a study about emotional categorisation, where participants were asked to 

indicate the category that best describes the facial expressions. They were less 

accurate in categorising sad faces embedded in a fearful than in a sad context: 

they were more likely to categorise sad faces as fearful when the faces appeared 

in a fearful context than when they appeared in a sad context. The same effect 

was observed in the categorisation of disgusted faces embedded in a pride context 
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(Aviezer et al., 2008). Future studies in emotional similarity should adopt complex 

stimuli, which depict both emotional and neutral real-world scenes, such as those 

provided in well-validated datasets, the International Affective Picture System 

(IAPS) (Lang et al., 2008) and the Nencki Affective Picture System (NAPS) 

(Marchewka et al., 2014). So far, these more complex stimuli have seldom been 

used to study emotional similarity (Chavez & Heatherton, 2015; Chikazoe et al., 

2014; Gallo et al., 2009; Levine et al., 2018; Talmi & McGarry, 2012).  

As implied above, one of the reasons that research on semantic memory and 

emotional similarity shied away from these more life-like picture scenes might be 

because there are many factors to control for during the stimuli selection. To 

mention some of them: the low-level visual measures (e.g., luminance, contrast, 

and color), the visual complexity of the pictures, the different degrees of similarity 

among taxonomic levels, the action(s) that the situation can afford, and the 

thematic similarity within emotional stimuli. In particular, as explained by Talmi and 

McGarry (2012), emotional stimuli are more thematically inter-related than the 

neutral stimuli found in validated datasets. For example, the term car accident may 

be related to hospital, and then to death in a common scenario, while neutral 

stimuli, such as architecture, telephone and laundry, are less inter-related 

thematically. In addition, the range of themes within the set of negative and 

arousing pictures (e.g. death, violence, car accidents, hospital scenes, and 

assaults) is reduced compared to those within the neutral images. This is also in 

line with higher ratings of content overlap among arousing (both positive and 

negative) than neutral IAPS stimuli, observed by Gallo et al. (2009) (Gallo et al., 

2009).  

To our knowledge, there are no studies which controlled for all these factors, and 

this represent a further limitation in emotional similarity literature. For example, few 

recent studies have controlled complex pictures (positive, negative, neutral) for 

visual properties, as well as for some elements of semantic similarity – animacy 

(Chikazoe et al., 2014) and social/non-social (Chavez & Heatherton, 2015). 

However, like other studies (Levine et al., 2018; Yuen et al., 2012), they did not 

control the stimuli for thematic similarity. In the study by Chavez et al. (2015), the 

negative categories (i.e., social: ‘depiction of pain’ and ‘people crying’; non-social: 

‘polluted water’ and ‘dirty toilet’) look more thematically related compared to 

neutral (i.e., social: ‘person at a computer’ and ‘person on the phone’; non-social: 
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‘a stack of book’ and ‘a spoon’) (Chavez & Heatherton, 2015). It is paramount to 

control for these factors to be able to decouple the effect of emotions and of other 

factors (e.g., thematic similarity) on the overall perception of similarity, both at 

behavioural and at neural level. For example, in an unpublished pilot study, we 

hypothesised higher similarity ratings within 10 negative versus 10 neutral 

complex pictures, randomly selected from the NAPS database. The results 

supported our hypothesis. However, we could not conclude whether this effect was 

related to the emotional nature of the pictures or to a bias in the stimulus selection. 

This is because we did not control for the higher thematic similarity within the 

emotional pictures: the range of emotional themes was reduced compared to that 

in the neutral set. The same reasoning would be valid at the neural level, if we 

observe higher similarity within the activity patterns in occipitotemporal regions 

associated with emotional than neutral stimuli. Indeed, without a method to select 

natural scenes in a way that is representative of their frequency in the environment 

it is difficult to conclude that emotional stimuli are represented as more similar at 

neural level than neutral stimuli. To our knowledge, no studies investigated 

behavioural or neural differences between neutral and emotional complex stimuli 

during direct similarity judgements. 

 

1.4 Conclusion and future directions  

Emotional similarity is a core construct in neuroscience, because it supports many 

cognitive functions, including categorization, memory, and learning. It is also 

involved in mechanisms underlying psychiatric conditions, such as anxiety 

disorders. However, very little is known about what makes us perceive real-life 

emotional experiences as similar. At the behavioral, or computational, level, most 

of the studies showed that we implicitly consider the valence and the arousal as 

relevant dimensions during similarity judgements. Although these studies were 

very successful in relating behavioral and neural data using innovative MVPA, they 

mainly used very simple and ‘non-naturalistic’ emotional stimuli.  

At the neural, or implementation level, we gleaned indirect evidence about brain 

regions involved in emotional similarity from research on the structure of the 

emotional representation of complex stimuli. However, they do not explain which 



 
 

32 
 

mechanisms lead to the activity associated with those stimuli. As suggested by 

Barsalou (2017), this is a common mistake in neuroscience; most studies are 

related to the computational and the implementation levels. They ignore the 

algorithmic level, namely the latent mechanisms within the ‘system’ brain ‘that 

performs the task’ (Barsalou, 2017). Future studies should combine all these levels 

of explanation in MVPA emotional similarity studies, which will benefit of new and 

well-controlled set of stimuli. This may help in unveiling the influence of emotional 

similarity on the overall perception of similarity. Finally, we might discover any 

neural and behavioral differences in perceived similarity between emotional and 

neutral real-life events, to understand whether emotional similarity is a facet of 

semantic similarity or a further dimension in a complex semantic space. 
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2. Chapter: Materials and methods 

  

Measuring similarity is complex because it relies on a series of stimulus 

characteristics (e.g., visual, semantic, emotional). Estimates of similarity are also 

affected by inter-individuals differences (e.g., appraisal factors, past and present 

experiences), and the different experimental contexts (e.g., the set of items in a 

choice situation) (Martina Riberto et al., 2019). In the last decade, similarity has 

been studied at behavioural and neural level, using a variety of experimental 

procedures, ranging from pairwise ratings to multi-arrangements methods. In 

behavioural tasks, it has been estimated using direct (e.g., similarity judgements) 

or indirect (e.g., generalisation) measures. Neural similarity is computed as 

correlation among neural patterns associated with the experimental conditions. 

Similarity judgements tasks have been mainly conducted using visual stimuli, 

including datasets of simple (e.g., shapes) and more complex (e.g., scenes) 

stimuli.   

In this chapter, we summarised the experimental procedures and data analyses 

mostly used in similarity literature. First, we described stimulus sets generally used 

in similarity tasks, focusing on visual stimuli, and highlighting their confounding 

factors and limitations (section 2.1). Then, we explained the experimental 

procedures in similarity literature (section 2.2), whereby explicit (section 2.2.1) and 

implicit similarity estimates can be derived (section 2.2.2). We also defined neural 

similarity in the context of Representational Similarity Analysis (section 2.3), 

concluding with a summary of the statistical analyses conducted (section 2.4).  

 

List of abbreviations  

 

Abbreviations Meaning 

RSA Representational Similarity Analysis 

RDM Representational Dissimilarity Matrix 

CS Conditioned stimulus 

GS Generalisation stimulus 
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US Unconditioned stimulus 

fMRI Functional magnetic resonance imaging 

MA Multi-arrangements 

PC Pavlovian conditioning 

ROI Region of interest 

MDS Multidimensional scaling 

VG Visual generalisation 

AG Auditory generalisation 

 

2.1 Materials 

In similarity tasks, materials ranged from simple and visually complex stimuli, 

including words (Roberts & Wedell, 1994; Talmi & Moscovitch, 2004), shapes 

(Goldstone et al., 1997), faces (Said et al., 2010; van Tilburg & Igou, 2017), objects 

(Charest et al., 2014; Kriegeskorte, Mur, Ruff, et al., 2008), and scenes (Greene 

et al., 2014; Levine et al., 2018). Fewer studies on similarity judgements have been 

conducted in auditory (Marks, 1987; Sloutsky & Napolitano, 2003), tactile (Gaißert, 

Bülthoff, & Wallraven, 2011; Marks, 1987) and olfactory (Carrasco & Ridout, 1993; 

Davis, 1977) sensory modalities.  

In the emotional similarity literature, research mainly focused on emotional 

categorisation and learning. Stimuli were either emotional per se’ (e.g., fearful 

face, image of car accidents) or being emotionally conditioned (e.g., fear, reward). 

Authors explored how emotional concepts were organised in a bidimensional 

space, with valence and arousal as orthogonal dimensions (Russell & Bullock, 

1985) or how the generalisation gradient changed according to the similarity 

between different items and the conditioned stimulus (Lissek et al., 2009). Recent 

studies used similarity-based techniques (e.g., RSA) to investigate how levels of 

valence (e.g., negative and positive) or basic emotions (e.g., fear, disgust) are 

encoded into stable neural patterns. They mainly adopted simple emotional stimuli 

(Liu, Liu, Zheng, Zhao, & Fu, 2021), and fewer complex scenes (Chavez & 

Heatherton, 2015; Chikazoe et al., 2014), probably because of the variety of 
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confounding factors (e.g., low-level visual measures, taxonomic and thematic 

relationships) to control for. One way to take them into account is to match the 

experimental conditions (e.g., negative and positive emotions) on low-level visual 

measures, such as luminance, colour, visual complexity, and on semantic 

similarity. Most of the studies on emotional similarity controlled for visual similarity, 

omitting the latter. In this thesis, we controlled for both of them, as differences in 

similarity between emotional and neutral stimuli might be better explained by 

differences in visual or semantic than emotional features. For example, Madan et 

al. (2018) observed that highly-arousing pictures were subjectively rated as more 

visually complex than non-emotional pictures, namely arousal-complexity bias 

(Madan, Bayer, Gamer, Lonsdorf, & Sommer, 2018). They suggested to control 

emotional and neutral images using objective (e.g., JPEG compression) rather 

than subjective measures of visual complexity. Moreover, it is important to note 

that high-level aspects of scenes (e.g., depicted theme, category) and low-level 

features (e.g., colour) are inextricably linked (Groen, Silson, & Baker, 2017). For 

example, the ‘red’ value on the RGB spectrum of emotional pictures depicting 

bloody scenes of violence will be higher than for non-emotional pictures. Finally, 

negative emotional stimuli are more semantically related than randomly-selected 

neutral stimuli (Talmi, 2013), as they co-occur more frequently than neutral stimuli 

in the same theme or scenario (e.g.., violence, death). A poor control of semantic 

similarity might result in a strengthening in similarity among emotional stimuli that 

are more related to thematic than emotional similarity.  

We tested any differences in behavioural and neural similarity measures between 

emotional and neutral experiences both using simple and visually complex stimuli. 

In chapter 3, we selected 10 neutral and 10 emotional faces, evoking different 

basic emotions (i.e., disgust and fear) from the Karolinska Directed Emotional 

Faces (KDEF) dataset (Lundqvist, 1998). This allowed us to control for semantic 

similarity, as stimuli were all from the same semantic category (e.g., faces) and for 

apparent visual differences between faces (e.g., gender), as we selected only 

male faces. In chapter 4, we used emotional and neutral real-world photographs 

from the Nencki Affective Picture System (NAPS) database (Marchewka et al., 

2014) and Google Images. These images contain a lot of information beyond the 

persons themselves, placing them in a rich and realistic context. In experiments 

involving complex pictures, we instructed participants to focus on the overall 
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meaning of each picture, discarding irrelevant visual details during the 

judgements. We created two datasets of negative and neutral scenes, the second 

of which afforded to control for semantic and visual attributes. For the first dataset 

(experiment 1), we randomly selected scenes from the same semantic category 

(‘people in outdoor situations’), half of them evoke negative emotions and half 

were neutral. Emotional and neutral pictures were comparable on low-level visual 

measures. However, the range of emotional themes was reduced compared to 

that in the neutral set. Thus, in the second dataset (experiments 2-3), we controlled 

for difference in thematic similarity, by selecting natural scenes in a way that all 

the categories depicted realistic events that do not co-occur in the environment. It 

consisted of 72 real-world colour photographs, which represented one or more 

people in outdoor situations. We divided them into 4 categories according to the 

scene that was depicted, resulting in 18 images per category. Two of the 

categories were neutral, and two were emotionally-arousing and negatively 

valenced, as revealed by valence and arousal ratings provided by an independent 

sample of participants. These latter categories represented either poverty scenes 

(Emotional category 1, E1) or car accidents (Emotional category 2, E2). The 

neutral categories portrayed either people talking on the phone (Neutral category 

1, N1) or hanging laundry to dry (Neutral category 2, N2). The full set of pictures 

can be found in Figure 2.1.  
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Figure 2.1. Second database of complex pictures, divided into four categories (18 pictures within each 

category), two of them are negative emotional and two neutral. The first neutral category (N1) represents 

people talking on the phone and the second one (N2) people hanging the laundry. The first emotional category 

(E1) depicts poverty scenes, the second one (E2) car accidents. The full set of pictures can be found at 

https://dtalmi.wixsite.com/website/resources 

 

 Finally, in chapter 5, we opted for conditioning simple stimuli, ensuring an optimal 

control of visual and semantic similarity, and for this specific semantic category 

(i.e., animals). We adopted visual and auditory stimuli, as we focused on similarity 

across sensory modalities in an aversive conditioning paradigm. Specifically, in 

experiment 1, we selected 80 images and 80 vocalisations of animals (i.e., 

‘mammals’ and ‘birds’), which belonged to 8 basic-level categories (e.g., cow, 

sparrow). Four of them served as CS, and the remaining four categories as GS. 

Each basic-level category consisted of 10 images and 10 sounds of different 

exemplars (e.g., different breeds). As experiment 2 involved an fMRI task that 

required a rich conditions design (Nili et al., 2014), we doubled the number of both 

visual and auditory stimuli. Images were selected in Google Images, and 

vocalisations from www.soundsnap.com, www.epidemicsound.com and publicly 

available resources on the internet.   

 

https://dtalmi.wixsite.com/website/resources
http://www.soundsnap.com/
http://www.epidemicsound.com/
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2.2 Experimental paradigms 

2.2.1 Explicit similarity judgements tasks  

In similarity judgement tasks, participants are asked to judge the stimuli according 

to which features they share. Stimuli are presented in triads, or in pairs, or around 

the perimeter of a circular ‘arena’. In forced-choice triad tasks (Jackson et al., 

2015; Niedenthal, Halberstadt, & Innes-Ker, 1999; Simmons & Estes, 2008), three 

stimuli (one target and two options) are displayed together, and participants 

choose the option more similar to the target.  

For example, in the triad 

presented in Figure 2.2, 

participants would choose 

option 1, because both depict 

cats. However, they would 

underestimate the similarity 

between categories, as the 

target is also similar to 2, 

because both are feline. 

Conversely, in pairwise tasks 

(Pollak, Cicchetti, Hornung, & 

Reed, 2000; Russell & 

Bullock, 1985; Wisniewski & Bassok, 1999), each pair is independently rated, 

generally on a 7-point scale. We opted for the pairwise than triad presentation, 

because participants can also focus on differences in similarity between 

categories. However, one of the limits of pairwise similarity judgement tasks is the 

relatively long duration, and thus it is feasible for stimulus sets with a small number 

of items (Kriegeskorte & Mur, 2012).  

An alternative task in experiments with relatively large number of stimuli is the MA 

task. Participants have unlimited time to drag and drop the stimuli in a low-

dimensional space (circular ‘arena’) according to their similarity, such that similar 

stimuli were placed close to each other and dissimilar stimuli apart. In each trial, 

participants focused on a specific subset of stimuli, which are usually positioned 

along the perimeter of the arena. A trial ended when participants arrange all the 

stimuli in the arena. The task is concluded when participants judged all the 

Figure 2.2. Example of the triad (left) and pairwise task. Triad tasks 

are forced-choice similarity judgement tasks, because participants 
have to choose which stimulus (1 or 2) is more similar to the target. 
In this situation, the similarity between the target and 2 is reduced, 
because of the presence of stimulus 1. In pairwise tasks, each pair 
is rated independently. This allows participants to consider also 
differences in similarity between categories. 



 
 

39 
 

possible combinations. Kriegeskorte and Mur (2012) also showed the high test-

retest reliability (r=0.81) as well as external validity with pairwise tasks 

(Kriegeskorte & Mur, 2012). One of the drawbacks of the MA task, especially in 

emotional similarity research, is the reduction of emotion differentiation to locations 

in a bidimensional valence and arousal space (Grandjean, Sander, & Scherer, 

2008). In our experiments, part of this was taken into account by testing the same 

research question using different similarity tasks.  

We opted for the pairwise rating task in experiments with a small number of stimuli 

(chapter 3; chapter 4: experiment 1). Also, experiment 2 in chapter 4 required 

ratings of paired complex images. However, because of the high number of stimuli, 

we divided the 72 pictures into two subsets (‘even’ and ‘odd’, n=36 within each 

subsets) and we focused on the pairs of interest (170 total pairs). Conversely, in 

the other experiments that involved a rich stimulus design for fMRI tasks, we 

investigated similarity perception using MA task. In particular, in chapter 4 

(experiment 3), after a visual complexity rating fMRI task, participants arranged in 

the similarity space subsets of complex pictures. The total duration of the task was 

approximately 50 minutes. Finally, in chapter 5 (experiment 1), participants 

performed the MA task before and after the aversive conditioning paradigm. 

Because of time constraint, we divided the images into ‘even’ and ‘odd’ and each 

subject was randomly assigned to one of the subsets. In order for participants to 

focus on the similarity both within and between basic-level categories, we opted 

for splitting the images into 3 different arenas, one for mammals, the other for 

birds, and one ‘mixed’ arena with few exemplars of both mammals and birds. The 

purpose of the mixed arena was to compare within-category and between-

category similarity. The task ended after approximately 20 minutes.  

In these tasks, similarity is estimated directly, because participants are asked to 

judge explicitly the similarity among stimuli.  As our main research question 

concerned differences in similarity perception between emotional and neutral 

stimuli, we choose direct measures of similarity for most of the experiments. 

Specifically, in chapter 3 and 4 (experiments 1-2) we used the similarity ratings, 

and the Euclidean distance between stimuli in the arena in the MA task in chapter 

4 (experiment 3) and chapter 5 (experiment 1). However, implicit measures of 

similarity can be derived from these tasks, including the reaction times (RTs), 

reasoning that participants are quicker in judging the similarity between stimuli that 
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share very few common aspects (Chen et al., 2013; Iordan et al., 2015) and the 

semantic relatedness, which refers to the degree to which two concepts or words 

are related in semantic memory. The more semantically related two items are, the 

more similar they are (Talmi & Moscovitch, 2004). Finally, participants’ accuracy 

in categorisation and generalisation are further implicit similarity measures. This is 

because stimuli in the same category are more similar than stimuli from different 

category (Greene et al., 2014), and the higher the similarity between stimuli, the 

wider the generalisation between them (Dunsmoor, Prince, Murty, Kragel, & 

LaBar, 2011). 

 

2.2.2 Implicit similarity tasks: aversive conditioning paradigms  

In chapter 5, we also included implicit measures of similarity, that is, participants’ 

accuracy in categorising the CSs into CS+ and CS- and in generalising this learned 

associations to similar GSs. We selected this specific implicit similarity measure, 

because using the semantic relatedness between stimuli would have biased 

participants to focus on the semantic similarity, and the RTs would allow us to pick 

up only big differences in similarity between stimuli.  We used aversive 

conditioning to induce an emotional impact on images of animals and to explore 

its effect on the similarity among stimuli that resemble the CS+. We instructed 

participants that their goal was to understand which images and sounds of animals 

predicted the US (loss vs the saving of 2 Israeli shekels, NIS). In case of a loss, 

the money was taken from the initial amount that they received before starting the 

experiment. Participants learned the association in a series of PC and GS trials. 

The former included visual stimuli only, whereas the latter both visual (in VG) and 

auditory (in AG) stimuli. During PC trials, images of each CS were displayed on a 

blank screen. Participants rated whether they predicted either the loss or the 

saving of 2 NIS (i.e., lose vs saving) and their degree of confidence (i.e., sure vs 

almost sure). Then, according to the nature of the CS, a feedback appeared on 

the screen (CS+: ‘you lost 2 NIS’; CS- ‘you saved 2 NIS’). As previously 

mentioned, GS trials were identical to PC trials, except that the US was not shown. 

While participants were conditioned using visual stimuli, generalisation trials 

included either visual or auditory stimuli. The purpose of PC trials was to enable 

learning, but otherwise, they were not the focus of our main hypotheses, and they 
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were therefore fewer in number than GS trials. We were interested in neural 

measures of similarity between threatening and not threatening GS, which were 

computed in the context of Multi-voxels pattern analysis (MVPA) techniques, such 

as Representational similarity analysis (RSA).  

 

2.3 Representational similarity analysis (RSA) 

In the last decade, similarity-based techniques have been used to investigate how 

stimuli from different categories are encoded in stable neural representations in 

specific brain regions. This assumes that high neural similarity corresponds to high 

correlation among neural activity patterns associated with the experimental stimuli. 

Among these techniques, RSA has been gaining popularity in the neuroimaging 

literature. It can be conceived as a hub that relates findings from the three major 

branches of neuroscientific research (e.g., behavioural, neural and computational 

data) by computing the correlation among them (Kriegeskorte, Mur, et al., 2008b). 

RSA allows for establishing a second-order isomorphism between behavioural and 

neural data, that is, unveiling the brain regions involved in representing inter-

stimulus relationships observed at behavioural level, by computing the correlation 

among them. We will refer to this as ‘brain-behaviour correlation’. In case of 

computational data, it is also possible to map which brain regions carried out the 

computations simulated in the model, through correlations between neural 

patterns and the computational model (brain-model correlations). Alternatively, we 

can investigate how different experimental conditions are encoded in specific 

ROIs, and the differences among their neural representations, corresponding to 

differences in neural similarity. We will refer to this as ‘ROIs RSA’. Using ROIs 

RSA, we can also compare how different stimuli are encoded in coherent neural 

patterns across sensory modalities. Finally, adopting a functional coupling 

perspective, it is also possible to explore neural encoding across brain regions, an 

approach named ‘representational connectivity’ (Nili et al., 2014). This allows to 

explore the neural similarity across brain regions that are functionally connected.  

As shown in Figure 2.3, after conventional fMRI preprocessing, the first step 

requires the estimation of a RDM for each data type that indicates the degree to 

which each pair of conditions is distinguished. It is an n x n matrix, wherein the row 

and the columns represented n experimental stimuli, and each cell a dissimilarity 
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measure between stimuli in each pair. Dissimilarity measures included 

correlational distance (1 minus the correlation between patterns), which ranges 

from 0 to 2 (0 for perfect correlation, 1 for no correlation, and 2 for perfect 

anticorrelation)  (Haxby et al., 2001). Alternative measures are the Euclidean 

distance (Edelman, 1998), the Mahalanobis distance (Kriegeskorte, Goebel, & 

Bandettini, 2006) and the absolute value of the regional-average activation 

difference in fMRI analysis. The latter is sensitive only to the overall level of 

activation, whereas the correlation distance (1 − correlation) normalizes for both 

the overall activation (which could be attributed e.g., to attention) and the variability 

of activity across space. The Euclidean distance combines sensitivity to pattern 

shape, spatial-mean activity level, and variability across space. Using the 

Euclidean distance yields an RDM resembling both the one obtained with 

correlation distance and the one obtained with absolute activation difference.  

In light of these considerations, in fMRI experiments we chose the rank-correlation 

distance as measure of neural dissimilarity (1- Spearman’s correlation), as it is not 

sensitive to the global activity level and we did not wish to assume a normal 

distribution underlying dissimilarity estimates (Kriegeskorte, Mur, et al., 2008b). 

As depicted in Figure 2.3, in a RDM on behavioural data, the dissimilarity 

measures consisted either in standardizing the similarity ratings and subtracting it 

from 1 (to obtain a dissimilarity estimate), or the Euclidean distance between 

stimuli in the low-dimensional space.  In a neural RDM, the correlational distance 

is computed as correlation across betas (or t values) of all the voxels in a ROI 

associated with the stimuli in each pair. An alternative is using the ‘searchlight 

RSA’, a very precise localisation technique, wherein 3 × 3 × 3 voxels spherical 

cluster is moved throughout the brain and at each location a correlational distance 

(among betas or t values) is assigned to the central voxel of the sphere. This 

measure quantified the dissimilarity across voxels in a given searchlight sphere for 

each specific pair. As a consequence, each RDM was symmetrical about a 

diagonal of zeros that represented the dissimilarity of each stimulus with itself. The 

only exception to this is an RDM resulting from correlation between RDMs. This is 

the case with RDM across ROIs, sensory modalities (e.g., visual and auditory), 

data type (e.g., behavioural and neural), time points (e.g., before and after 

aversive conditioning), as the diagonal indicates the dissimilarity of the same 

stimulus between the different experimental conditions.  
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Figure 2.3. Graphical description of the different processing steps in the RSA framework. After a conventional 

temporal and spatial preprocessing (‘preprocessing pipeline’), normalised images from each voxel were 

analysed using the general linear model (GLM). Each stimulus was modelled as a separate event beginning 

with stimulus presentation onset, and included in the model as regressor of interest (‘individual GLM’). From 

this GLM analysis, we obtained a single beta image for each stimulus within each voxel (‘individual response 

pattern’). Next, we computed the correlational distance (1-Spearman’s correlation) across betas of all the 

voxels in a ROI associated with the stimuli in each pair. These represented the entries of an n x n neural 

RDM, wherein the rows and the columns are the experimental stimuli (‘neural RDM’). This is symmetrical 

about a diagonal of zeros that represented the dissimilarity of each stimulus with itself. Blue colours denote 

low dissimilarity (high similarity). Other than investigating differences in neural dissimilarity among 

experimental conditions (‘ROI RSA’), it is also possible to combine neural and behavioural RDMs computing 

the Spearman’s correlation among them, and then convert it into correlational distance (‘Brain-behaviour 

correlation’). This results in n x n RDM, wherein the rows and the columns indicate the behavioural and neural 

data, respectively, associated with each stimulus, and each cell the dissimilarity between neural and 

behavioural data.  This RDM is not symmetrical, as the diagonal indicates the dissimilarity of the same 

stimulus between the different neural and behavioural data. 
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In all our experiments, we used RSA to estimate measures of behavioural and 

neural similarity, and to establish a second-order isomorphism between them. 

Specifically, in experiments involving pairwise ratings task (i.e., chapter 3; 

chapter 4:  experiments 1-2), we first standardized the similarity ratings, by 

subtracting 1 (the lowest similarity rating) from each rating x, and then divided by 

6 (highest similarity rating - lowest similarity rating), and then we transformed them 

into dissimilarities, by subtracting the ratings from 1. In experiments with MA task 

(chapter 4: experiment 3; chapter 5: experiment 1), we used the Euclidean 

distance as dissimilarity measure. These distances represented the entries in the 

behavioural RDMs. In chapter 4: experiment 3, we combined ROIs RSA and a 

brain-behaviour correlation approach to unveil which brain regions represented 

participants’ similarity space (brain-behaviour correlations), and whether the 

neural representations of emotional and neutral stimuli in these regions differed 

(ROIs RSA). We adopted the searchlight RSA to compute the neural RDMs. 

Finally, in chapter 5: experiment 2, we explored differences in neural similarity 

between threatening and not threatening stimuli, within and across sensory 

modalities, adopting a ROIs RSA approach. Data from both the neural and 

behavioural RDMs are then subjected to different statistical analyses, wherein the 

mean and the standard deviation of the conditions of interest are extracted from 

each RDM, and then compared at group-level according to the research questions.  

 

2.4 Statistical data analysis 

2.4.1 Similarity measures 

In all our experiments, for each participant, we extracted the mean and the 

standard deviations of the conditions of interest from each RDM to investigate 

differences in behavioural and neural similarity between emotional and not 

emotional stimuli. In case of neural data, this procedure is performed in each ROI 

separately. In chapter 3, we compared the similarity among faces expressing 

different emotions (i.e., fear and disgust) with the similarity of visually different 

neutral faces (NN), and visually identical faces (Identity), which differed on 

emotionality (i.e., one of them is emotional and the other one is neutral). In chapter 

4 (experiment 1), we compared the similarity between emotional (EE) and neutral 
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(NN) stimuli, and in chapter 4 (experiments 2-3) between the two emotional (E12) 

and the two neutral (N12) categories. The latter was also performed at neural level 

in chapter 4 (experiment 3). Finally, in chapter 5 (experiment 1), we tested 

differences in similarity perception after aversive conditioning between threatening 

(i.e., CS+ and GS+) and not-threatening (i.e., CS- and GS-), and in chapter 5 

(experiment 2) differences in neural similarity between GS that were semantically 

related to the CS+ (GS+), with those that belonged to another semantic category 

(GS-). The means of each condition were then entered in paired t-tests or 

repeated-measures ANOVAs (according to the number of levels of each within-

subject factor), testing the null hypothesis of no differences in (behavioural or 

neural) similarity between emotional and non- emotional conditions. Bonferroni 

post hoc corrections for multiple comparison are used to explore the nature of the 

effects.   

In brain-behaviour correlation analyses, the similarity between brain and 

behavioural RDMs for each stimulus was estimated using pairwise Spearman’s 

correlations. This provides a correlational map between the behavioural and the 

brain RDMs for each subject, which reveals where the similarity space is best 

represented in the brain (highest correlation). The correlational coefficients were 

Fisher's z transformed, and inference was performed at each voxel by performing 

a one side signed rank test across subjects, testing the null hypothesis of no 

correlation between brain and behaviour RDMs. The resulting p values 

(uncorrected) were thresholded to control the false-discovery rate (FDR).  

In order to visualize how the stimuli are displaced in a low-dimensional space 

according to their similarity, we performed MDS analysis. When rendered in the 

space by MDS procedure, the similarity among stimuli map the cognitive structure 

of those stimuli (Barrett, 2004). We performed it on the behavioural data, although 

it is extendible to any similarity measures. Specifically, we entered as input the 

similarity estimates amongst stimuli, and the output is a geometric space, wherein 

proximities reflect the similarity among stimuli. This space is defined by a number 

of dimensions (or axes), and the stimuli are represented by their coordinates on 

these dimensions. The dimensions characterise implicit components of the 

cognitive structure of the experimental stimuli. The fit of the MDS solution is 

typically determined by an iterative process, in which a goodness-of-fit measure 

(Stress) is estimated (Shinkareva, Wang, & Wedell, 2013). This measure 
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represents how far the observed data are from the predicted data, therefore, low 

values demonstrate a better fit of the MDS representation. Stress is closely related 

to the number of dimensions included in the model: it increases with fewer 

dimensions, but using fewer dimensions could result in a distortion of the true 

structure. Conversely, Stress decreases with many dimensions, whereas this 

solution could lead to an overfitting of the data. A Stress value below 0.15 reflects 

an adequate fit and below 0.10 is an excellent fit (Shinkareva et al., 2013).  

 

2.4.2 Aversive conditioning (i.e., accuracy, latency and pupil diameter) and 

emotionality ratings 

In chapter 5, indirect measures of similarity (i.e., accuracy in generalisation of loss 

expectancy) and latency were used as measures of aversive conditioning. We 

calculated accuracy scores by dividing the number of correct answers, that is, 

when participants rated they were either sure or almost sure to lose money in a 

CS+/GS+ trials (and vice versa for CS-/GS-), by the number of stimuli within each 

condition. Accuracy was measured separately for PC and GS trials. Successful 

learning was defined as an accuracy score higher than chance level (50%) across 

CSs during PC trials. In a similar manner, we defined successful generalisation as 

above-chance accuracy, computed separately for visual and auditory modalities. 

We analysed learning and generalisation with three one sample t-tests (separately 

for PC, VG and AG), testing the null hypothesis of no difference between the 

average accuracy and the chance level (50%). We also expected increased 

accuracy scores and decreased RTs over time in each of these three conditions. 

We tested this hypothesis by entering average accuracy and latency within the 

first and the second half of the task in three repeated-measures ANOVAs 

(separately for PC, VG and AG, one for accuracy and one for latency), with time 

as within-subject factors.  

Additional measures of successful conditioning included neurophysiological 

indicator of arousal, such as the pupil diameter (PD). In chapter 5 (experiment 2), 

we recorded it using eye-tracking as manipulation check of aversive conditioning, 

expecting wider PD associated with threatening than not-threatening stimuli. We 

predicted that this effect might follow trial onset, response time, and US time. In 

order to test this, we estimated average PD for our conditions of interest, 
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separately for each sensory modality, that is, PD GS+ (onset), PD GS+ 

(response), PD GS- (onset), and PD GS- (response). The same conditions were 

valid in PC trials, with the addition of PD when US was delivered (i.e., PD CS+ 

(US) and PD CS- (US)). We entered them as dependent variables in different 

paired t-tests with stimulus type as within-subject factor, one for each segment 

(separately for PC, VG, AG).  

Finally, in chapter 4 we estimated average valence and arousal ratings for 

emotional and neutral stimuli, and chapter 5 (experiment 2) for CS+, CS-, GS+ 

and GS-, following the procedure suggested by Lang et al. (2008) (Lang et al., 

2008). Participants viewed one of images presented in the centre of the screen, 

and rated each picture on two 9-points scale (valence scale: 1, negative emotions; 

9, positive emotions; 5 neutrals. Arousal scale: 1, relaxed; 9, aroused; 5 neutral). 

We instructed participants to respond as quickly as possible by clicking the 

appropriate number key, and informed them that there was not a right or wrong 

answer. We considered emotional pictures as rated less than 4 in the valence 

scale (negative valence) and more than 6 in the arousal scale (high arousal), 

whereas the neutral images ranged from 4 to 6 in both dimensions. Valence and 

arousal ratings were entered as dependent variables in paired t-tests or repeated-

measures ANOVAs (according to the number of levels of each within-subject 

factors), separately for valence and arousal, testing the null hypothesis of no 

differences in these dimensions between emotional and not emotional conditions.   
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3. Chapter: Symmetry in emotional and visual similarity 

between neutral and negative faces 

 This chapter has been published in Symmetry (Martina Riberto, Talmi, & Pobric, 

2021).  

Abstract  

Is Mr Hyde more similar to his alter ego Dr Jekyll, because of their physical identity, 

or to Jack the Ripper, because both evoke fear and loathing? The relative weight 

of emotional and visual dimensions in similarity judgements is still unclear. We 

expected an asymmetric effect of these dimensions on similarity perception, such 

that faces that express the same or similar feeling are judged as more similar than 

different emotional expressions of same person. We selected 10 male faces 

posing different expressions. Each male posed one neutral expression and one 

emotional expression (5 disgust, 5 fear). We paired these expressions, resulting 

in 190 pairs, which differed either in emotional expressions, physical identity, or 

both. Twenty healthy participants rated the similarity of paired faces on a 7-points 

scale. We report a symmetric effect of emotional expression and identity on 

similarity judgements, suggesting that people may perceive Mr Hyde to be just as 

similar to Dr Jekyll (identity) as to Jack the Ripper (emotion).  We also observed 

that emotional mismatch decreased perceived similarity, suggesting that emotions 

play a prominent role in similarity judgements. From an evolutionary perspective, 

poor discrimination between emotional stimuli might endanger the individual.   
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3.1 Introduction 

Emotional similarity refers to the tendency to group stimuli together because they 

evoke the same feelings in us, even when they are visually different. For example, 

we may judge two different individuals with fearful faces either as similar, because 

they both express negative emotion, or different, because visually they do not look 

alike. At present, it is not clear whether different stimulus attributes (i.e., emotional 

expression, visual features) have a symmetrical or asymmetrical influence on 

similarity perception. In other words, is Mr Hyde more similar to Dr Jekyll, because 

they have the same facial features (same identity), or to Jack the Ripper, because 

of the emotions they trigger in witnesses of their crimes?  

The investigation of emotional similarity has a long tradition, with both replicated 

and controversial results. First, as framed by Russell’s circumplex model, 

participants rate the similarity between emotional stimuli according to their 

resemblance in valence and arousal. These orthogonal dimensions (valence and 

arousal) define participants’ emotional similarity space, wherein proximities reflect 

the similarity among stimuli (Russell & Pratt, 1980). This was replicated both in 

adults and children (Hoemann, Xu, & Barrett, 2019; Russell & Bullock, 1985; 

Tseng et al., 2014), using simple stimuli, such as words (Cowen & Keltner, 2017; 

Koch et al., 2016; Talmi & Moscovitch, 2004), objects  (Biondi, Franzoni, Li, & 

Milani, 2016; Leclerc & Kensinger, 2008), and faces (Aviezer et al., 2008; Jamin 

Brett Halberstadt & Niedenthal, 1997; Mondloch, Nelson, & Horner, 2013; van 

Tilburg & Igou, 2017), and with more complex stimuli, such as real world 

photographs (Chavez & Heatherton, 2015; Gallo et al., 2009; Levine et al., 2018). 

Based on this line of research, an increasing number of studies aim to decode the 

nature of emotions in the brain (Kragel & LaBar, 2016), particularly where and how 

valence and arousal are represented, by computing the correlation between 

behavioural and neural measures of similarity (Chikazoe et al., 2014; King et al., 

2019; Todd, Miskovic, Chikazoe, & Anderson, 2020; Yuen et al., 2012).  

One of the most controversial findings in the emotional similarity literature is 

related to asymmetries in similarity judgements between different levels of valence 

(i.e., negative vs positive). Specifically, in a series of experiments Koch et al. 

(2016) demonstrated that ‘good is more alike than bad’, that is, there is higher 

similarity among positive than negative emotional stimuli (Koch et al., 2016; 
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Mondloch et al., 2013). By contrast, others report higher semantic relatedness 

among negative than randomly-selected non-emotional pictures (Talmi, 2013) and 

wider generalisation in conditioned than unconditioned stimuli in healthy controls 

(Starita, Kroes, Davachi, Phelps, & Dunsmoor, 2019). One of the reasons for these 

mixed results might be related to differences in semantic similarity among the 

various levels of valence of the experimental stimuli used. This may confound the 

relationship between emotional dimensions and perceived similarity (Martina 

Riberto et al., 2019). One way to control for this confounding factor is to select 

simple stimuli, possibly from the same semantic category, such as faces.  

Many datasets of prototypical emotional and neutral faces are available to date 

(Ekman & Friesen, 1976; Lundqvist, 1998; Mollahosseini, Hasani, & Mahoor, 

2017; Tottenham et al., 2009). These are widely used in emotion cognition 

research to uncover how facial expressions are processed and perceived. In 

general, evidence from neural data shows that regions in the occipitotemporal 

lobe, including the fusiform face area, the inferior temporal cortex, and the superior 

temporal sulcus, encode facial identity and similarity among facial expressions 

(Charest et al., 2014; Guntupalli et al., 2016; Haxby et al., 2011). In addition, Said 

et al (2010) observed a positive correlation between neural similarity in the 

posterior superior temporal sulcus and affect-based similarity ratings (Said et al., 

2010). In behaviour, faces depicting basic emotions, which share the same 

valence and arousal, elicited similar subjective experiences in healthy participants 

(R. E. Plutchik & Conte, 1997; Posner, Russell, & Peterson, 2005). Among basic 

emotions, happiness is the one mostly recognized with high accuracy and low 

ambiguity (Leppänen & Hietanen, 2004; Palermo & Coltheart, 2004). Anger and 

disgust (Pochedly, Widen, & Russell, 2012), as well as fear and surprise (Palermo 

& Coltheart, 2004) are most frequently confused, probably because of an 

perceptual overlap, with lowered eyebrows in anger and disgust, and raised 

eyebrows in fear and surprise (Matsumoto & Ekman, 2008). This similarity in 

emotional expression and physical appearance might explain part of the overall 

similarity observed between faces expressing different emotions in the face 

similarity space (Valentine, Lewis, & Hills, 2016). This is in line with the results 

from Said et al. (2010) who instructed two groups of participants to rate either the 

visual or the emotional similarity among faces, and reported high correlation 



 
 

51 
 

(r=0.93) between the visual and the affect-based similarity ratings (Said et al., 

2010).  

However, these studies have so far failed to investigate the relative weight of 

emotional expression and visual identity in global similarity judgements among 

faces, since they did not ask participants to focus on one of these features. Only 

a handful of studies (Jamin Brett Halberstadt & Niedenthal, 1997; A. Nestor, Plaut, 

& Behrmann, 2016; Valentine et al., 2016; Wegrzyn, Vogt, Kireclioglu, Schneider, 

& Kissler, 2017) explored the latter effect. Among them, Wegrzyn et al. (2017) 

asked participants to recognize emotions from faces that depicted two identities 

(one male and one female), which expressed 7 different emotions. Faces were 

masked by a grid of white tiles, which started with one tile randomly shown and 

subsequently one additional tile was revealed every second. Participants were 

instructed to click a button below the image when they recognized the facial 

expression, and to select the labelled button corresponding to it in a forced-choice 

decision task. The Multidimensional scaling (MDS) analysis of the emotions 

recognition task revealed that faces clustered according to the emotion they 

expressed in similarity space. Conversely, the MDS with the low-level visual 

features (light intensity in each pixel) of the faces as input showed that faces were 

displaced according to the identity they depicted.  However, in this study 

participants were not asked to process inter-stimulus relationships. Conversely, 

Halberstadt and Niedenthal (1997) manipulated emotions by instructing 

participants to watch either emotional (positive or negative) or neutral movies, and 

then to judge the similarity among faces. Participants in the emotional compared 

to the non-emotional states weighted the emotional dimension of faces more than 

the gender or head orientation. Taken together, these studies suggest that the 

relevance of emotional expression and identity may be malleable according to task 

instructions, and that both are salient features that define participants’ face 

similarity space. However, it seems that these dimensions interact during 

subjective similarity judgement tasks.  

One promising technique to disentangle emotional and visual facial features is to 

compute objective measures of visual similarity among faces, as in the eigenfaces 

method (Valentine et al., 2016).   According to this approach, the visual similarity 

among faces is conceptualized as correlation between pixel values of light 

intensity; the eigenfaces are extracted by performing principal component analysis 
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(PCA) on the correlations among faces, and represent unique visual features of a 

set of human faces as dimensions, which define the face-space (Sirovich & Kirby, 

1987). This approach has been widely adopted in the context of face recognition 

and identification, because of the speed of recognition and a higher success rate 

in comparison to other computational methods (üge Çarıkçı & Özen, 2012). 

Several studies (Hsu, Tseng, Kang, & Wang, 2013; Sharma et al., 2018; üge 

Çarıkçı & Özen, 2012; Yuan, Mcdonough, You, & Luo, 2013) used eigenfaces to 

predict the emotions evoked from images. Success is greater when this method is 

used, compared to low-level visual features (e.g., GIST, colour histograms). For 

example, Yuan et al. (2013) developed a novel algorithm based on eigenfaces, 

Sentribute, which reached a level of accuracy of 82% in predicting image 

sentiments based on mid-level attributes (Yuan et al., 2013). A similar approach 

was adopted in another study by Hsu (2013), wherein authors automatically 

identified and discriminated emotions according to the two-dimensional subspace 

of valence-arousal (Hsu et al., 2013).  

We computed objective measures of visual similarity, in order to control for visual 

similarity as confounding factor of the effect of interest: asymmetry between 

emotional expression and identity features on similarity judgements. In particular, 

we expected that paired faces with different identity that express the same or 

similar emotions (Mr Hyde and Jack the Ripper) would be perceived as more 

similar than faces with the same identity, but different emotional expressions (Mr 

Hyde vs Dr Jekyll), as showed in Figure 3.1. With this aim, we selected negative 

and neutral faces, which differed in either emotional or visual aspects. We also 

expected higher similarity ratings for faces with the same emotional expression or 

same identity (similarity within-category) than for faces with different emotional 

expressions and identities (similarity between categories). The first prediction 

represents our main hypothesis; the second one serves as manipulation check, 

since a good category boundary simultaneously maximizes the within-category 

similarity, and minimizes the between categories similarity. 

  

3.2 Materials and methods 

Participants  
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A total of twenty healthy participants (13 females, 7 males; mean age 32.10 ± 

10.17) were recruited from the University of Manchester to take part in the study. 

This sample size is comparable  to other publications on this topic (Gray, Adams, 

Hedger, Newton, & Garner, 2013; Leal, Tighe, & Yassa, 2014). All participants had 

normal or corrected-to-normal vision, and were older than 18 years. Participants 

provided informed consent prior to the experiment and were reimbursed for their 

participation. The exclusion criteria were: a history of neurological (e.g., head 

injury or concussion) or psychiatric (e.g., depression, anxiety) conditions, drug or 

alcohol abuse, or regular medication that could influence emotional processing.  

The study was approved by the ethics board number 2018-3619-5928 of the 

University of Manchester. 

Stimuli 

Twenty images of faces (562 x 762 pixels) were selected from the Karolinska 

Directed Emotional Faces (KDEF) dataset (Lundqvist, 1998), which comprises 490 

colour pictures of human facial expressions from 70 selected individuals (35 

women and 35 men), each displaying six basic emotions (angry, fearful, disgusted, 

happy, sad, and surprised) and a neutral facial expression. Each expression is 

photographed from the front. In particular, we selected 10 emotional (five disgust, 

IDs:  02, 06, 10, 17, 27; five images of fear, IDs: 04, 08, 11, 23 28) male facial 

expressions, and their neutral equivalents (n=10), which corresponded to the 

same IDs. We chose fear and disgust to have one emotion that is expressed more 

on the ‘upper face’ (fear) and one on the ‘lower face’ (disgust). We chose this to 

minimise the visual similarity between emotional faces, such that their similarities 

were more related to emotional features. Males were selected in order to exclude 

gender as an additional dimension to consider in the judgement of similarity, which 

is beyond the scope of this experiment.  

 

Experimental procedure 

Participants viewed all possible pairs of the 20 images, resulting in 190 different 

combinations, presented side by side on a blank screen. Participants were 

instructed to rate the similarity of each pair by using a 7-point scale (1= low 

similarity, 7= high similarity). Each trial started with a central fixation cross for 500 

ms, the task cue (‘how similar do you think these pictures are?’) was presented at 
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the top of the screen, and the judgement scale at the bottom. Participants were 

told to respond as quickly as possible by clicking the appropriate number key, and 

were informed that there was not a right or wrong answer. The task ended after 

approximately twenty minutes. 

Data analysis 

Similarity ratings. We analysed the similarity ratings using Representational 

Similarity Analysis (RSA) (N. Kriegeskorte, M. Mur, & P. Bandettini, 2008a), 

implemented in Matlab R2018, and SPSS. A graphical representation of the 

conditions of interest and key hypotheses is shown in Figure 3.1. Specifically, the 

similarity ratings were entered into a 20 x 20 similarity matrix for each participant. 

The rows and the columns represent the experimental stimuli, and each cell 

reflects the similarity rating for each pair. Then, for each subject, a 

Representational Dissimilarity Matrix (RDM) was computed. We first normalized 

the similarity ratings, by subtracting 1 (the lowest similarity rating) from each rating 

x, and then dividing by 6 (highest similarity rating - lowest similarity rating). Second, 

we transformed them into correlational distances, by subtracting the ratings from 

1. These values were entered into each cell of the RDM. The RDM is therefore 

symmetric about a diagonal of zeros. Next, we extracted from the single-subject 

RDM the mean dissimilarities and standard deviations of our conditions of interest, 

shown in Figure 3.1: within emotional faces (EE), calculated by averaging the 

dissimilarity within disgusted (EE_D) and within fearful (EE_F) faces; within neutral 

faces (NN); between emotional and neutral faces with the same identity (ID); 

between emotional and neutral faces with different identities (EN). The latter 

served as measure of dissimilarity between categories, the first three as within-

category dissimilarity. We also considered the dissimilarity between fearful and 

disgusted faces (EE_DF) as part of dissimilarity within-category, because the 

faces in this condition shared negative valence and high arousal. We included this 

measure to further test our main hypothesis with a dimensional approach to 

emotions. The dissimilarity measures were entered as dependent variables in two 

one-way repeated- measures ANOVAs, with conditions as grouping factor. The 

main hypothesis was tested in the first ANOVA, which included the conditions EE, 

NN, EE_DF, and ID, and used a planned contrast to test lower similarity (higher 

dissimilarity) in ID compared to the other conditions, as displayed in Figure 3.1. 
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The second ANOVA used a planned contrast to test lower similarity (higher 

dissimilarity) in EN than in EE, NN, EE_DF and ID. Bonferroni post hoc corrections 

for multiple comparisons (p<0.05) were used to explore the nature of the effect. 

Multidimensional Scaling (MDS) analysis. In order to visualize the structure of the 

similarity space, we performed a Multidimensional Scaling (MDS) analysis on the 

similarity ratings, where proximities reflect similarities among stimuli and are 

measured on an ordinal scale. The rank order of proximities determines the 

dimensionality of the space and the metric configuration of the points representing 

the stimuli (Shinkareva et al., 2013). In line with previous studies in this research 

field, we assumed this space to be two-dimensional, with valence and arousal as 

orthogonal dimensions (Russell & Bullock, 1985). The goodness-of-fit of the MDS 

representation was estimated with the Stress measure. We expected that faces 

clustered according to their similarity in emotional expression rather than identity 

in the bidimensional face space.  

Visual similarity. We measured the visual similarity among faces by computing the 

Pearson correlations between pixel values of light intensity for each pair of faces. 

This was done to exclude the possibility that differences in similarity judgements 

among conditions were due to visual similarity.  In particular, we first prepared the 

dataset of images by transforming them into grey scale and applying histogram 

equalization to enhance the contrast of the image and maximize the prominence 

of discernible features. Second, each image was converted into an n*n matrix, 

where n is the number of pixels of the image and each entry represented a pixel 

value of light intensity. Then, we computed a covariance matrix (n*n)*m of the set 

of images (where m is the total number of images), and transformed it into 

correlational matrix. In order to obtain always positive values, we converted the 

correlation coefficients into correlational distances (1 - Pearson correlation). These 

were entered in a 20 x 20 representational dissimilarity matrix, wherein the row 

and the columns represented the faces and each cell the correlational distance 

between faces in each specific pair. We extracted from this matrix the mean and 

the standard deviation of each condition of interest, which resembled those in the 

similarity ratings matrix. These were used as dependent variables in a one-way 

repeated- measures ANOVA, wherein we used a planned contrast to test the same 

main hypothesis, that is, lower similarity (higher dissimilarity) in ID compared to 

EE, NN and EE_DF (p<0.05). 
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Figure 3.1. Graphical representation of the task structures, conditions of interest and key hypotheses.  During 

the task, participants rated the similarity among all the possible combinations of 20 faces (5 disgust, 5 fear, 
10 neutral) on a 7 points scale (1=low similarity, 7 high similarity). The similarity ratings were standardized, 
transformed into dissimilarity measures (correlational distance) and entered in a 20 x 20 representational 
dissimilarity matrix (RDM). In the RDM, the rows and the columns represented the stimuli (disgust: 1 to 5; 
fear: 6 to 10; neutral: 11 to 20), and each cell a correlational distance between faces in each pair. In the RDM, 
the violet squares represent the dissimilarity within emotional pictures (EE), calculated by averaging the 
dissimilarity within disgusted (EE_D) and fearful (EE_F) faces; EE_DF, is the dissimilarity between disgusted 
and fearful faces, and NN, the dissimilarity within neutral faces; ID, depicted in grey colour, indicates the 
dissimilarity between emotional and neutral faces, with the same identity, and EN the dissimilarity between 
emotional and neutral faces, with different identities. We expected an asymmetric effect of emotional 
expression and identity on similarity judgements, resulting in higher similarity (lower dissimilarity) in EE, 
EE_DF and NN compared to ID. 

 

3.3 Results 

In contrast to our hypothesis, we did not observe lower similarity ratings in ID 

compared to EE, F (1, 19)=1.80, p=0.20, ηp
2=0.09; EE_DF, F(1, 19)=0.65, p=0.43, 

ηp
2=0.03; and NN, F(1, 19)=2.30, p=0.15, ηp

2=0.11), indicating a symmetric rather 

than an asymmetric effect of emotional expression and identity on similarity 

judgements. Crucially, in post-hoc tests we did observe higher dissimilarity in 

EE_DF than NN (p<0.001) and EE (p<0.001), suggesting that any mismatch in 

emotion results in lower similarity judgements. As predicted, the manipulation 

check revealed higher dissimilarity in EN compared to EE, F(1, 19)=77.83, 

p<0.001, ηp
2=0.80; EE_DF, F(1, 19)=35.34, p<0.001, ηp

2=0.65; NN, F(1, 

19)=54.49, p<0.001, ηp
2=0.74; and ID, F(1, 19)=37.20, p<0.001, ηp

2=0.66. Given 

the small sample size, we calculated the inter-raters reliability, which resulted in a 

very good Cronbach's Alpha (α= 0.97). We also measured the visual similarity 
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among faces by computing the correlational distance among pixel values of light 

intensity for each pair of faces, in order to exclude the possibility that differences 

in similarity judgements among conditions were due to visual similarity. We found 

higher visual similarity (lower correlational distance) in ID compared to EN_DF, 

F(1, 9)=33.93, p<0.001, ηp
2=0.79; and NN, F(1, 9)=18.02, p=0.002, ηp

2=0.67, but 

only a trend towards significance was observed between ID and EE, F(1, 9)=4.01, 

p=0.08, ηp
2=0.31. The MDS solution showed that the faces were clustered 

according to their similarity in valence and arousal (but not visual similarity) in a 

two-dimensional space. It had a Stress value of 0.04, indicating a good fit for this 

model. These findings are reported in Figure 3.2. 
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Figure 3.2. Top. Similarity Judgements task. Left: Representational Dissimilarity Matrix (RDM) of the similarity 

ratings of 20 faces (5 disgust, 5 fear, 10 neutral), averaged across participants. It is symmetric about a 
diagonal of zeros, the rows and the columns represent the stimuli, and each cell the dissimilarity (measured 
as correlational distance: 1- standardized similarity ratings) between stimuli within each specific pair. Yellow 
colours denote high dissimilarity, blue colours low dissimilarity. Centre: differences in dissimilarity (measured 
as correlational distance) among conditions during the similarity judgements task: average dissimilarity within 
emotional faces (averaged across disgusted and fearful faces) (EE), between emotional faces (EE_DF), within 
neutral faces (NN), between emotional and neutral faces of the same identity (ID), and between emotional 
and neutral faces (with different identities) (EN). Right: The Multidimensional Scaling (MDS) plot of the 20 
faces in a bidimensional space. Stimuli from E1_d to E5_d represented 5 disgusted faces, from E6_f to E10_f 
5 fearful faces, and from N1 to N10 10 neutral faces. Bottom. Visual similarity. Left:  Representational 
Dissimilarity Matrix (RDM) of the visual similarity of 20 faces (5 disgust, 5 fear, 10 neutral). It is symmetric 
about a diagonal of zeros, the rows and the columns represent the stimuli, and each cell the correlational 
distance between stimuli within each specific pair. Yellow colours denote high dissimilarity, blue colours low 
dissimilarity. Right: differences in visual similarity (measured as correlational distance) among conditions. 
Error bars represent ±2 SEM; *pFWE<0.05; **pFWE<0.001. Abbreviations: E, Emotional; f, fearful faces; d, 
disgusted faces; N, neutral faces. 
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3.4 Discussion 

In this study, we investigated the asymmetric effect of emotional expression and 

identity on the perception of similarity between faces. We explored whether 

participants relied more on emotional or visual features while judging the similarity 

between emotional and neutral faces, without instructing them on which aspect to 

focus. We report two new findings. First, emotional and visual features had the 

same relevance in similarity judgements: Mr Hyde is perceived as equally similar 

to Jack the Ripper and to his alter ego Dr Jekyll. This result suggests a symmetric 

rather than an asymmetric effect on similarity perception. Second, similarity ratings 

were not fully explained by the visual similarity of faces, evident in that NN and EE 

were less visually similar (higher correlational distance) than ID, yet participants 

did not perceive these conditions to be different from each other in similarity. We 

also found that emotional similarity among faces may influence overall similarity 

perception, given the higher dissimilarity in conditions with an emotional mismatch 

(i.e., EE_DF and EN) compared to those with emotional congruency (i.e., EE and 

NN).  Below we discuss the implications of these findings.  

Symmetrical effects of emotional and visual features on similarity judgements 

provide additional evidence for the relevance of emotion in similarity judgements. 

Further support comes from the observation that an emotional mismatch (i.e., EN 

and EE_DF conditions) makes people perceive faces as less similar compared to 

conditions with emotional congruency (i.e., EE and NN). As previously proposed 

(Jamin Brett Halberstadt & Niedenthal, 1997; Wegrzyn et al., 2017), this process 

is evolutionarily advantageous: poor discrimination among emotional expressions 

that have the same meaning (expressions of disgust, for example) possibly would 

not endanger the individual; however, when the stimulus is emotional, small 

dissimilarities can create large differences in similarity perception and action 

planning (e.g., fight or flight). Disgusted and fearful faces in the EE_DF condition 

have similar values in valence and arousal (low scores in valence and high scores 

in arousal). This is also the case for the neutral faces in the NN condition (medium 

scores in both valence and arousal). Yet, small variations in valence and arousal 

were more relevant when the faces were emotional, rather than neutral. Emotions 

convey specific information about one’s internal and external environment that 

each individual takes into consideration for congruent action planning and decision 
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making. This is made possible by selectively focusing attention to the emotional 

aspects of the world, and it will probably result in a lower latency in detecting the 

emotional content of any stimulus and increased discriminability of stimuli 

exhibiting those features. Furthermore, for the first time we disentangled emotional 

and visual similarity, by computing the latter in an objective rather than in a 

subjective way. We observed lower visual similarity between emotionally similar 

faces, both neutral and negative emotional, than between faces with the same 

identity but different emotions. This suggests that the symmetric effect observed 

in the similarity ratings task is not explained by visual similarity.  

Our study has several limitations that can be addressed in future work. First, we 

studied only two negative emotions, neglecting positively-valenced emotions. We 

chose this to increase the statistical power in terms of number of trials per 

condition, while keeping the experiment short enough to ensure participants’ 

attention. It would be relevant in future studies to examine whether the same 

effects are replicated with positive emotions. Second, we only selected male facial 

expressions. This was a deliberate choice, to ensure that participants would focus 

on the visual and emotional similarity among faces. However, it would be 

interesting to include gender as an additional dimension in face space and to 

explore its relative weight in similarity judgements. Finally, our sample size was 

quite small, even though the inter-raters reliability was very high. However, given 

the significance and applicability of the findings, it would be appropriate to replicate 

the experiment by increasing its sample size, and by including an equal number 

of male and female faces. This would test whether gender moderates the 

previously reported effects.   

Overall, in the present study we report a symmetrical effect of emotional 

expression and identity on similarity judgements. Mr Hyde is equally similar to Dr 

Jekyll and to Jack the Ripper, despite the higher visual similarity to the latter. 

Determining the relative importance of identity and emotion in similarity 

judgements is of paramount importance to combine the emotion cognition and 

computer science literatures to fill the ‘affective gap’ between facial visual features 

and their psychological representations in human observers (Zhao et al., 2018).   
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4. Chapter: The neural representations of emotional 

experiences are more similar than those of neutral 

experiences 

This chapter has been accepted for publication in the Journal of Neuroscience 

(2022).  

Abstract 

Stimuli that evoke the same feelings can nevertheless look different and have 

different semantic meanings. Although we know much about the neural 

representation of emotion, the neural underpinnings of emotional similarity are 

unknown. One possibility is that the same brain regions represent similarity 

between emotional and neutral stimuli, perhaps with different strengths. 

Alternatively, emotional similarity could be coded in separate regions, possibly 

those sensitive to emotional valence and arousal. In behaviour, the extent to which 

people consider similarity along emotional dimensions when they evaluate the 

overall similarity between stimuli has never been investigated. While the emotional 

features of stimuli may dominate explicit ratings of similarity, it is also possible that 

people neglect emotional dimensions as irrelevant to that judgement. We 

contrasted these hypotheses in (male and female) healthy controls using two 

measures of similarity and two picture databases of complex negative and neutral 

scenes, the second of which afforded exquisite control over semantic and visual 

attributes. The similarity between emotional stimuli was greater than between 

neutral stimuli in the inferior temporal cortex, the fusiform face area, and the 

precuneus. Additionally, only the similarity between emotional stimuli was 

significantly represented in early visual cortex, anterior insula and dorsal anterior 

cingulate cortex. Intriguingly, despite the stronger neural similarity between 

emotional stimuli, the same participants did not rate them as more similar to each 

other than neutral stimuli. These results contribute to our understanding of how 

emotion is represented within a general conceptual workspace and of the 

overgeneralisation bias in anxiety disorders. 

  



 
 

62 
 

4.1 Introduction 

We may judge an image of a homeless person and of a car accident as different 

because of their different meanings, or as similar because both evoke negative 

feelings. Emotional similarity refers to the tendency to group stimuli together 

because they evoke the same feelings (Martina Riberto et al., 2019). The extent 

to which similarity along emotional dimensions influences perceived similarity 

between complex experiences is unknown. It is important to understand the effect 

of emotion on similarity because aberrant similarity perception influences 

psychological well-being (Puccetti et al., 2021) and is clinically relevant in anxiety 

and posttraumatic stress disorders (Laufer et al., 2016). For example, after a 

traumatic event patients may consider later experiences to be similar to the 

original, fearful one not because of their ostensible meaning, but their emotional 

similarity. 

All stimuli can be described according to their location on orthogonal dimensions, 

valence and arousal, with their proximities reflecting aspects of their relationship 

(Russell, 1980). This perspective suggests that entirely-neutral stimuli, at the axes’ 

origin, may be perceived to be just as similar as stimuli at the extremes. Yet 

similarity inferred from single-stimulus judgements on single attributes (e.g., 

shape, valence) rarely explains more than half the variance in explicit ratings of 

similarity  (Iordan, Ellis, Osherson, & Cohen, 2017). Indeed, highly-arousing 

negative stimuli may be perceived less similar to each other than neutral ones if 

they evoke qualitatively different emotions (e.g., fear, anger). Previous 

comparisons reveal increased ratings of similarity among negative pictures than 

among randomly-selected neutral pictures (Talmi, 2013) and among positive than 

negative stimuli (Koch et al., 2016). Unfortunately, previous rating studies 

employed semantically-related emotional stimuli, thereby confounding emotion 

and semantic similarity. Nevertheless, in conditioning paradigms, where semantic 

similarity is not a confound, wider generalisation of aversively-conditioned stimuli 

has been observed (Laufer & Paz, 2012). Therefore, we hypothesized that 

negative emotional stimuli will be perceived as more similar than neutral stimuli.  

Recent neuroimaging studies observed low specificity for discrete emotions, and 

provided evidence against a locationist perspective to the study of emotions 

(Hoemann et al., 2019). Instead, emotional stimuli are likely represented in 
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distributed networks of cortical and subcortical regions, which are not functionally 

specific to affect (Chang, Gianaros, Manuck, Krishnan, & Wager, 2015) but carry 

out emotion-relevant computations: the occipitotemporal regions, visual-semantic 

processing of emotional and neutral categories (Kragel, Reddan, LaBar, & Wager, 

2019); the insula and the anterior cingulate cortex, awareness of bodily sensations 

and visceral regulation necessary for a core affective state representation; and the 

ventral prefrontal cortex, positive valence (Lindquist et al., 2012). No previous work 

has directly compared the neural underpinnings of emotional and neutral similarity 

for complex, realistic stimuli, but a handful of studies employed simple stimuli. 

Representational similarity analysis (RSA) maps similarity perception in the brain 

by correlating neural and behavioural data (Kriegeskorte, Mur, et al., 2008b). This 

technique revealed increased neural similarity between  conditioned stimuli in the 

amygdala (R. M. Visser, Scholte, Beemsterboer, & Kindt, 2013), the 

occipitotemporal cortex  (Dunsmoor et al., 2013) and the superior frontal gyrus (R. 

M. Visser, Scholte, & Kindt, 2011), and increased similarity between stimuli that 

predict reward (Zeithamova, Gelman, Frank, & Preston, 2018) and pain (Wagner, 

Rütgen, & Lamm, 2020) in the hippocampus. Following from this theoretical and 

empirical work, we hypothesized that neural similarity will differ as a function of 

stimulus emotionality. Specifically, we hypothesized that the neural similarity 

among emotional stimuli will be greater than among neutral stimuli - expressing 

the predicted pattern of behavioural ratings. Emotion may increase neural 

similarity in any region that encodes participants’ self-reported similarity space, but 

may do so more strongly in regions that serve emotion-relevant operations.  

We tested these hypotheses in a series of experiments that present several 

strengths compared to the state-of-the-art. We used different similarity judgements 

tasks and picture databases, one of which permitted, for the first time, control over 

taxonomic and thematic similarity, and narrowed our search volume through 

innovative searchlight approaches. 

 

4.2 Materials and Methods 

Participants  
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A total of 90 participants were recruited from the University of Manchester (UK), 

and from the Weizmann Institute of Science (Israel) to take part in the study (age 

range, 20–54 years; mean age, 30.14 years; SD, 7.17) (Experiment 1: 20 

participants, 10 females; Experiment 2: 40 participants, 20 females; Experiment 3: 

29 participants, 12 females; one participant was excluded, because he did not 

follow the instructions of the task). The sample size was selected according to 

previous publications in this research field (Charest et al., 2014; Chikazoe et al., 

2014; Giordano et al., 2021). All participants had normal or corrected-to-normal 

vision, and were older than 18 years. They gave informed consent prior to the 

experiment and have been reimbursed for their participation (£5 for the 

behavioural experiments, £22 for the MRI experiment). The exclusion criteria 

were: a history of neurological (e.g., head injury or concussion) or psychiatric 

conditions (e.g., depression, anxiety), drug or alcohol abuse, or regular medication 

that could influence emotional processing.  The study was approved by the ethics 

board of the University of Manchester and of the Weizmann Institute of Science 

(protocol number 0287–09-TLV).  

Materials 

First database of complex pictures  

In experiment 1, we selected 20 images taken from the Nencki Affective Picture 

System (NAPS) database (Marchewka et al., 2014). Picture IDs that we selected 

in experiment 1 are reported in Figure 4.2-1. NAPS has been validated for use in 

emotional research (Riegel et al., 2016; Wierzba et al., 2015) and consists of 1,356 

realistic, high-quality photographs divided into five categories (people, faces, 

animals, objects, and landscapes). In order to control for visual similarity, we 

matched the pictures for low-level visual features, that, unlike subjective ratings of 

visual complexity, are not affected by the arousal complexity bias (Madan et al., 

2018) and by the vividness bias (Todd, Schmitz, Susskind, & Anderson, 2013). 

These measures included the luminance (the average pixel value of the greyscale 

image) and the contrast (the standard deviation across all the pixels of the 

greyscale image) (Bex & Makous, 2002). In order to quantify the colours within 

each image, we computed the quantity of red (R), green (G) and blue (B), 

according to the RGB colour model. Finally, the JPEG size and the entropy of each 
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greyscale image were used as indices of the overall visual complexity of each 

image (Donderi, 2006). The JPEG size was determined with a compression quality 

setting of 80 (on a scale from 1 to 100). Perceptually simple images are highly 

compressible and therefore result in smaller file sizes. The entropy, H, is computed 

from the histogram distribution of the 8-bit grey-level intensity values x: H =–

Σp(x)log p(x), where p represents the probability of an intensity value x. H varies 

with the ‘randomness’ of an image. High-entropy images are noisier and have a 

high degree of contrast from one pixel to the next, whereas low-entropy images 

have rather large uniform areas with limited contrast. The sample of images 

included 10 emotional and 10 neutral images. The designation of images to this 

category was based on the NAPS ratings of valence and arousal on a 9-points 

scale provided by 204 European participants. We considered emotional pictures 

as rated less than 4 in the valence scale (negative valence) and more than 6 in 

the arousal scale (high arousal), whereas the neutral images ranged from 4 to 6 

in both dimensions. To validate the NAPS norms, we also asked our participants 

to rate the valence and the arousal of the picture before the main task. Figure 4.2-

1 (supplementary information, SI) showed the picture IDs from the NAPS database 

(‘people’ category), divided into emotional and neutrals. Table 4.1 showed the 

mean and the standard deviation of the different visual and emotional measures 

for emotional and neutral pictures, as well as the differences between them. We 

controlled to some extent for semantic similarity, namely the similarity both in the 

theme (e.g., violence) each picture depicts, other categories it belong to (e.g., 

outdoor scene), and its specific meaning. With this aim, we choose images that 

included more than one person in an outdoor scene from the same category - the 

‘people’ category. These images contain a lot of information beyond the persons 

themselves, placing them in a rich and realistic context. The matching we achieved 

between emotional and neutral conditions exceeds that in most published studies 

and represents the current state-of-the-art in controlling emotional and neutral 

stimuli in research. However, the range of emotional themes was reduced 

compared to that in the neutral set. Therefore, emotional pictures might be rated 

as more similar, because of the higher thematic similarity compared to neutrals.  
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Table 4.1. Differences in visual and emotional measures between emotional (n=10) and neutral (n=10) 

pictures (experiment 1). The mean and the standard deviation of each measure are shown, as well as the t, 
the p value and Cohen's d as effect size measure for each difference. **, pFWE< 0.001. 

 

Second database of complex pictures  

In experiments 2-3, in order to control the emotional and neutral pictures for 

thematic similarity, we selected natural scenes in a way that all the categories 

depicted realistic events that do not co-occur in the environment.  In particular, we 

chose 72 real-world colour photographs using Google images, which represented 

one or more people in outdoor situations. We divided them into 4 categories 

according to the scene that was depicted, resulting in 18 images per category.  

Two of the categories were neutral, and two were emotionally-arousing and 

negatively valenced. These latter categories represented either poverty scenes 

(emotional category 1, E1) or car accidents (emotional category 2, E2). The neutral 

categories portrayed either people hanging laundry to dry (neutral category 1, N1) 

or talking on the phone (neutral category 2, N2). The full set of pictures can be 

found in Figure 4.3-1 (SI). We minimised the thematic similarity between emotional 

categories, by selecting for each of the emotional categories action-context 

combinations that do not normally occur in a common theme or scenario. The 

same was true for the two neutral categories. To control for taxonomic similarity to 

some extent, all the pictures we selected shared two semantic features, they 

depicted people outdoor. Second, we controlled the pictures for affordance, 

namely the action that a scene can afford, by selecting pictures that depicted only 

one type of action – and therefore, affordances - in each category. Specifically, in 

 
 

Categories Statistics 

 Emotional Neutral t p d 

Visual 

measures 

Luminance 89.42 ± 27.31 110.13 ± 36.06 -1.45 .16 
-3.68 

Contrast 61.97 ± 1.16 62.19 ± 1.14 -.49 .96 
-0.07 

R 93.24 ± 26.06 111.62 ± 26.67 -1.48 .17 
-3.48 

G 88.99 ± 27.92 110.12 ± 37.84 -1.41 .19 
-3.69 

B 82.58 ± 26.54 105.95 ± 41.24 -1.56 .15 
-4.04 

JPEG 
337121.90 ± 

90579.45 

277070.50 ± 

69785.15 
1.66 .11 3.86 

Entropy 7.50 ± .28 7.49 ± .24 .11 .91 
0.02 

Emotional 

measures 

Valence 1.985 ± .743 4.840 ± .976 -10.22 .000** 
-3.09 

Arousal  7.170 ± 1.389 4.840 ± 1.219 8.93 .000** 
2.04 
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E1, people sit on the ground while begging; in E2, accident victim(s) lay either on 

a surface (the ground) or a crashed car; in N1, people stand hanging and drying 

clothes; in N2, they stand or walk talking on the phone in the street. Although these 

actions and affordances differed across the 4 categories, the design ensures that 

these differences did not influence comparisons across the two neutral and two 

emotional categories. Finally, we controlled the stimuli for visual properties, as in 

experiment 1. An independent sample of 10 healthy participants rated the valence 

and the arousal of the stimuli, and another independent sample of 20 participants 

judged the similarity of the pictures. Table 4.2 showed the mean and standard 

deviation of visual and emotional measures for each category as well as the 

differences among them. Table 4.3 showed the mean and standard deviation of 

similarity measures within and between categories, as well as the differences 

among them.  

 

Table 4.2. Differences in visual and emotional measures among categories. The mean and the standard 

deviation of each measure are shown, as well as the F, the p value and the partial eta squared for each 
difference. Abbreviations: E1, Emotional category 1 (poverty scenes, n=18); E2, Emotional category 2 (car 
accidents, n=18); N1, neutral category 1 (laundry scenes, n=18); N2, neutral category 2 (telephone scenes, 
n=18) (experiment 2-3). 

 

 

 

 
Categories Statistics 

E1 E2 N1 N2 F p ηp
2 

Luminance 
105.39 ± 

21.37 
95.68 ± 
26.27 

106.45 ± 
29.79 

106.22 ± 
25.11 

0.73 0.54 0.31 

Contrast 
58.63 ± 
10.80 

62.52 ± 6.09 
64.99 ± 
11.12 

63.54 ± 
12.69 

1.22 0.31 0.05 

R 
115.07 ± 

20.73 

98.84 ± 

26.71 

114.15 ± 

31.11 

109.28 ± 

26.30 1.47 0.23 0.06 

G 
102.18 ± 

21.99 

94.14 ± 

26.23 

104.88 ± 

30.71 

105.40 ± 

26.07 0.70 0.55 0.03 

B 
96.50 ± 

23.29 

95.35 ± 

28.25 

94.32 ± 

28.11 

102.96 ± 

28.94 0.37 0.77 0.02 

Jpeg 
66701.89 ± 

11078.33 

63614.83 ± 

11967.82 

59643.05 ± 

12220.83 

67011.28 ± 

28005.71 0.70 0.55 0.03 

Entropy 7.58 ± 0.25 7.56 ± 0.26 7.54 ± 0.29 7.52 ± 0.22 0.20 0.90 0.00 

Valence 2.91 ± 1.42 1.97 ± 1.02 4.91 ± .26 5.13 ± .30 46.93 0.00 0.84 

Arousal 6.64 ± 1.40 7.74 ± 1.34 4.72 ± 1.37 4.53 ± 1.26 27.37 0.00 0.75 
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Dissimilarity 

Within category 

Dissimilarity 

Between categories 

E1 E2 N1 N2 E12 N12 EN 

.004±.002 .003±.003 .004±.003 .004±.003 .017±.003 .019±.002 .024± .001 

Statistics 

Manipulation check 

Statistics 

Main HP 

 

F p ηp
2 F p ηp

2 

292.56 <0.001 0.94 4.11 0.06 0.18 

Table 4.3.  Differences in dissimilarity among categories (validation study). The mean and the standard 

deviation of each condition of interest are shown, as well as the F, the p value and the partial eta squared for 
each difference. Abbreviations. Dissimilarity within: E1, emotional category 1 (poverty scenes, n=18); E2, 
Emotional category 2 (car accidents, n=18); N1, neutral category 1 (laundry scenes, n=18); N2, neutral 
category 2 (telephone scenes, n=18). Dissimilarity between: E12, emotional categories; N12, neutral 
categories; EN, emotional and neutral categories. 

 

Experimental design  

A graphical representation of the general experimental design is shown in Figure 

4.1. In all the experiments, we asked participants to judge the similarity of a set of 

complex pictures to test our main hypothesis for the behavioural data: that the 

perceived similarity between emotional compared to between neutral pictures will 

be higher. As shown at the top of Figure 4.1, in the first two experiments 

participants performed a pairwise similarity rating task. In experiment 1, after rating 

the valence and arousal of each picture from the first dataset, participants rated all 

the possible combinations among the stimuli. In experiment 2 we focused on the 

ratings of interest (denoted with red circles at the bottom of Figure 4.1), and 

therefore, participants only rated the similarity between emotional categories (E12) 

and between neutral categories (N12) of pictures from the second dataset, as well 

as between emotional and neutral categories (EN), with the latter pairs serving as 

catch trials. Experiments 1-2 ended after approximately twenty minutes. In 

experiment 3, after a functional Magnetic Resonance Imaging (fMRI) scan, 

participants performed a surprise multi-arrangements (MA) task to judge the 

similarity of the 72 pictures on a bidimensional space, as depicted at the top right 

of Figure 4.1  (duration: approximately one hour).  
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Figure 4.1. Graphical representation of the experimental procedure. In experiments 1-2, participants 

performed the same behavioural task. They were presented with a pair of pictures and rated their similarity 
on a 7-points scale (low to high similarity). In experiment 1, participants judged all the possible combinations 
from the 1st database, which consisted of 20 complex pictures (10 emotional and 10 neutral) selected from 
the NAPS. We expected as main finding lower dissimilarity (higher similarity) between emotional (EE) than 
neutral (NN) pictures. In experiment 2, participants judged the similarity between emotional and neutral 
pictures from the 2nd database. It consisted of 72 pictures from 4 semantic categories (18 pictures in each 
category), two emotional (E1 and E2) and two neutral (N1 and N2). Participants only rated E12, N12 and few 
EN pairs only: E12 represented the similarity between E1 and E2, N12 between N1 and N2, and EN between 
emotional and neutral pictures. We expected lower dissimilarity (higher similarity) in the former. In both 
experiments 1-2, EN comparisons served as manipulation checks. The same database was used in 
experiment 3, wherein participants first judged the subjective visual complexity of each picture during a 
functional magnetic resonance imaging (fMRI) scan, and then judged the similarity among all the pictures by 
arranging them in a circular arena. We tested the same hypothesis as in experiment 2, and extended it also 
to the neural data. The violet square in the dissimilarity matrix represents the ‘emotional similarity space’, and 
the green one the ‘neutral similarity space’. 

 

Valence and arousal rating task 

The two dimensions of valence and arousal are considered to be key to the 

conceptual representation of semantic concepts as well as emotional stimuli. 

Therefore, we used these for stimulus selection, such that those selected for the 

emotional condition differed from those selected to the neutral condition along both 

valence and arousal dimensions. To validate the designation of pictures from the 

two datasets to emotional and neutral conditions, participants completed a valence 

and arousal rating task, following the procedure suggested by Lang et al. (2008) 

(Lang et al., 2008). Each trial started with a central fixation cross for 500 ms. Then, 
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participants viewed one of images presented in the centre of the screen, and rated 

each pictures on two 9-points scale (valence scale: 1, negative emotions; 9, 

positive emotions; 5 neutrals. Arousal scale: 1, relaxed; 9, aroused; 5 neutral). We 

instructed participants to respond as quickly as possible by clicking the appropriate 

number key, and informed them that there was not a right or wrong answer. 

Pictures from the first dataset were rated by participants in experiment 1 prior to 

commencing that experiment, while the ratings of pictures from the second dataset 

was completed by a separate group of participants. 

 

Behavioural measures of similarity 

The data from the behavioural experiments were used as measures of perceived 

similarity, that is, similarity ratings in experiment 1-2, and Euclidean distance in 

experiment 3. To make sure that the behavioural findings were independent of the 

specific instructions participants were given two separate task instructions 

(pairwise ratings in experiment 2, multi-arrangement in experiment 3).  

Pairwise similarity rating task 

In experiment 1-2, participants rated the similarity of paired pictures on a 7-points 

scale (1= low similarity, 7= high similarity). In experiment 1, they rated all possible 

pairwise combinations (190 pairs), resulting from the database of 20 complex 

pictures.  In experiment 2, because of time constraint, we divided the 72 pictures 

into two subsets (‘even’ and ‘odd’, n=36 within each subsets); in addition, we 

focused on pairs in E12 and N12, as well as some in EN as catch trials (total pairs= 

170; 81 in both E12 and N12, and 8 in EN). We chose the pairwise presentation, 

because each pair is independently rated and also small differences in similarity 

judgements can be detected, compared to a triad ‘forced-choice’ similarity task, 

wherein only binary responses are provided (Goldstone et al., 1997; Miller, 1994). 

We instructed participants to base their judgment on the overall meaning of the 

picture, without considering any visual details (e.g., the background colour, the 

number of people). We also informed them that there was not a right or wrong 

answer. We purposefully did not bias them to emphasize any dimension because 

we wanted our laboratory measure of behavioural similarity perception to quantify, 

as closely as possible, ‘natural’, holistic similarity perception outside the lab. 
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Finally, to make sure that the behavioural findings were independent of the specific 

instructions, participants followed two separate task instructions (pairwise ratings 

in experiment 2, multi-arrangement in experiment 3).  

Multi-arrangements task 

In the validation study of the second database and in experiment 3, participants 

judged the similarity among all the pictures by using the multi-arrangements (MA) 

task. We chose it because it is a quick and efficient task for acquiring similarity 

judgements in experiments with a relatively large number of stimuli. Kriegeskorte 

and Mur (2012) established the MA test-retest reliability (r=0.81) as well as 

external validity (Kriegeskorte & Mur, 2012). The task comprised different trials. In 

each trial, a subset of 16 stimuli was presented along the perimeter of a circle, or 

‘arena’, on a computer screen. Participants had unlimited time to drag and drop 

the stimuli in the arena according to their similarity, such that similar stimuli were 

placed close to each other and dissimilar stimuli apart. In other words, the distance 

among stimuli in the arena reflected their dissimilarity. We instructed participants 

to focus on the content of the pictures and to ignore visual details (e.g., the colour 

of the background, the number of people in the scene). A trial ended when 

participants arranged all the stimuli in the arena.  Subsequent trials started with 

another subset of stimuli to be arranged, selected by using the ‘Lift-the-weakest 

algorithm for adaptive design of item subsets’ (Kriegeskorte & Mur, 2012). This 

method optimises trial efficiency by adaptively selecting item subsets whose 

dissimilarity estimates presented the weakest evidence. The task ended after 

approximately one hour, when participants judged all the possible combinations 

among stimuli.  

MRI procedure 

In experiment 3, images were acquired on whole body MRI scanner (Trio TIM, 

Siemens, Germany) with a 12-channel head coil. Functional images were acquired 

with a susceptibility weighted EPI sequence (TR/TE=2000/30 ms, flip angle=75 

degrees, voxel dimensions=3x3x3.5 mm, 192 slices) in 4 separate scanning 

sessions (up to two minutes between sessions). Anatomical T1-weighted images 

were acquired after the functional scans (MPRAGE, Repetition time (TR)/Inversion 



 
 

72 
 

delay time (TI)/Echo time (TE)=2500/900/2.32 ms, flip angle=8 degrees, voxel 

dimensions=1 mm isotropic, 32 slices).  

As shown in Figure 4.1, during the fMRI scan, participants viewed the 72 complex 

pictures on a blank screen (size 800 x 800 pixels, visual angle: 64°); we asked 

them to rate their visual complexity to make them focus on the stimuli, by pressing 

the right or the left button of the response box, respectively. Images were 

presented in a random order for 3 seconds, during which participants had to make 

their ratings, interleaved with a black fixation cross (mean jitter 3 seconds). The 

task was divided into 4 runs, during which every picture was presented once, thus 

resulting in 4 repetitions for each picture, and a total duration of approximately 50 

minutes. We instructed participants that there was not a right or wrong answer in 

the task; rather, they had to focus on their subjective perception during the ratings. 

In order to guide participants in the ratings, we suggested to them that ‘a picture 

of few objects, colours, or structures would be less complex than a very colourful 

picture of many objects that is composed of several components’ according to 

Madan et al. (2018). Behavioural and fMRI tasks instructions differed, as it is not 

possible to measure both neural representational similarity and behavioural 

similarity using the same instructions. Similar procedures were also adopted in 

previously published papers in this research field (Chavez & Heatherton, 2015; 

Chikazoe et al., 2014; Kriegeskorte, Mur, Ruff, et al., 2008). This is because to 

compute the neural representation of each picture (and then feed it into the RSA), 

in the MRI session we need participants to focus on one picture at a time; but 

behavioural measures of similarity perception requires that participants consider 

picture pairs.  

Statistical data analysis 

In the similarity judgements tasks, we expected higher similarity (lower 

dissimilarity) within-category than between categories. We also expected higher 

similarity (lower dissimilarity) between emotional than between neutral conditions, 

as showed at the bottom of Figure 4.1. The first prediction serves as manipulation 

check, since a good category boundary simultaneously maximize the within-

category similarity, and minimize the between categories similarity; the second 

prediction represents our main hypothesis, and applies also for the neural data. In 

experiment 1, EN was calculated by averaging the dissimilarity between emotional 
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and neutral pictures, and the dissimilarity within-emotional (EE) and within-neutral 

(NN) categories by averaging the dissimilarity between emotional, and between 

neutral pictures, respectively, for each participant. In experiment 3, EE 

represented the averaged dissimilarity within E1 and within E2, NN the averaged 

dissimilarity within N1 and within N2, and EN across both E1 and E2, and N1 and 

N2, for each participant. Finally, in experiments 2-3, E12 was measured by 

averaging the dissimilarity between the two emotional categories, and N12 

between the two neutral categories. The conditions of experiment 3 are the same 

in the validation study. Additional details about the statistical analyses are reported 

in the following sections.  

Behavioural data analysis 

We analysed these data by using Representational similarity analysis (RSA). 

Specifically, in experiment 1, the similarity ratings were entered as input in a 20 x 

20 similarity matrix for each participant. The rows and the columns represented 

the experimental stimuli, and each cell reflected the similarity rating for each pair. 

Then, for each subject, a Representational Dissimilarity Matrix (RDM) was 

computed. We first standardized the similarity ratings, by subtracting 1 (the lowest 

similarity rating) from each rating x, and then divided by 6 (highest similarity rating 

- lowest similarity rating). Second, we transformed them into correlational 

distances, by subtracting the ratings from 1. The correlational distance ranges 

from 0 to 2 (0 for perfect correlation, and thus high similarity; 1 for no correlation; 

2 for perfect anticorrelation), and was entered as input in each cell of the RDM. As 

a consequence, the RDM is symmetric about a diagonal of zeros. Next, we 

extracted from the single-subject RDM the mean dissimilarity and the standard 

deviation of the conditions of interest as mentioned in the key hypotheses. These 

were entered as dependent variables in a repeated-measures ANOVA, with the 

conditions as grouping factor (experiment 1: EE, NN, and EN; experiment 2: E12, 

N12, EN). In the validation study and in experiment 3 (MA task), similarity was 

measured as Euclidean distance between stimuli in the arena.  Specifically, at the 

end of each trial, a partial RDM is estimated, showing the Euclidean distance 

between stimuli within each trial. At the end of the task, a global 72 x 72 RDM is 

estimated by averaging the partial RDMs with an iterative rescaling. This scaling 

procedure takes into account that in each trial participants focused on a specific 



 
 

74 
 

subset, and that, therefore, there is not a permanent relationship between screen 

distance and dissimilarities across trials (see (Kriegeskorte & Mur, 2012) for 

details). Then, we extracted from each participant’s global RDM the mean and the 

standard deviation of the conditions of interest mentioned in the section about the 

key hypotheses. These were entered as dependent variables in a repeated- 

measures ANOVA, which served to test lower dissimilarity in EE and NN than in 

E12, N12 and EN, and the main hypothesis (lower dissimilarity in E12 than N12). 

Bonferroni post hoc corrections for multiple comparisons (p<0.05) were used to 

explore the nature of the effect. The results of the validation study are shown in 

Table 4.3. 

We conducted additional analyses to test differences in the variance across 

participants in the judgements of similarity between emotional than neutral stimuli. 

With this aim, we conducted two-samples F-tests for variance, one for each 

contrast of interest:  experiment 1: EE vs NN; experiment 2: E12 vs N12; 

experiment 3: EE vs NN, and E12 vs N12.  

Multidimensional scaling (MDS). We performed the MDS to visualise the structure 

of the similarity space, wherein proximities reflect similarities among stimuli and 

are measured on an ordinal scale. The rank order of proximities determines the 

dimensionality of the space and the metric configuration of the points representing 

the stimuli (Shinkareva et al., 2013). As reported in previous studies in this 

research field, we assumed this space to be bidimensional, with valence and 

arousal as orthogonal dimensions (Russell & Bullock, 1985). The goodness-of-fit 

the MDS representation is estimated with the Stress measure. 

Analysis of emotional (valence and arousal) and visual complexity ratings. Valence 

and arousal ratings were entered as dependent variables in two repeated-

measures ANOVAs, with picture type (emotional vs neutral) as a within-group 

factor in experiment 1, and category as a within-group factor in experiment 2-3. 

Moreover, we analysed the visual complexity ratings from the fMRI task by 

transforming them into a continuous variable. Specifically, for each subject we 

calculated the proportion of ‘high complexity’ responses, by dividing the number of 

‘high complexity’ responses within each category by 18 (the number of pictures 

within each category), and then averaged them across sessions. These were 

entered as dependent variables in a repeated-measure ANOVA, with category 
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(i.e., E1, E2, N1, and N2) as grouping factor. The results from the valence and 

arousal ratings of experiment 1 are reported in Table 4.1, those from experiment 

2-3 in Table 4.2. The results of the visual complexity rating task are shown in Table 

4.4. Data analyses were conducted in Matlab R2018 (MATLAB 2018a, The 

MathWorks, Inc., Natick, Massachusetts, United States), and SPSS (IBM SPSS 

Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp). 

 

 

 

Table 4.4. Differences in visual complexity ratings among categories. The proportion of high complexity 

ratings within each category (total number of ‘high complexity’ responses divided by 18) was averaged across 
sessions. Mean and standard deviation of each category, and the statistics of the difference among them are 
reported at the top of the table. Bonferroni post hoc corrections for multiple comparisons (p<0.05) are 
summarized at the bottom. *, pFWE< 0.05; **, pFWE< 0.001. 

 

Neuroimaging data analysis 

Preprocessing.  

Neuroimaging data were pre-processed and analysed using Statistical Parametric 

Mapping (SPM12) (http://store.elsevier.com/product.jsp?isbn=9780123725608) 

and MATLAB R2018a (MATLAB 2018a, The MathWorks, Inc., Natick, 

Massachusetts, United States). Functional images were slice-time corrected to 

reduce the mismatching between acquisition timing of different slices, and 

realigned to a reference (mean) image to minimize the variance due to head 

movements. These were then coregistered to the high-resolution T1-weighted 

structural image, which was coregistered and normalized to MNI space. Finally, 

functional images were normalized to a standard template volume based on the 

Montreal Neurological Institute (MNI) reference brain to achieve a more precise 

comparison across individuals. Spatial smoothing was performed only on 

functional data analysed with a conventional univariate approach using a 6-mm 

full-width at half-maximum isotropic Gaussian kernel. No spatial smoothing was 

carried over on the multivariate functional data, according to the standard practices 

for MVPA studies (Haxby et al., 2001; Kriegeskorte, Mur, et al., 2008b). The 

preprocessing for the univariate tests was identical to the one for the RSA with the 

Categories Statistics 

E1 E2 N1 N2 F p  ηp
2 

.308 ± .163 .728 ± .211 .297 ± .187 .267 ± .170 5.34 <.001** 0.63 

 Post hoc 

E1 vs E2 E1 vs N1 E1 vs N2 E2 vs N1 E2 vs N2 N1vs N2 

-.42, .000** .01,.1.00 .04,.1.00 .43,.000** .46,.000** .03,1.00 
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exception of using a 6-mm FWHM Gaussian smoothing kernel (Kriegeskorte et al., 

2006). 

 

Individual-level model for RSA analysis 

After preprocessing, functional data from each voxel were analysed using the 

general linear model (GLM). Each stimulus was modelled as a separate event 

beginning with picture presentation onset, using the canonical function in SPM12, 

and included in the model as regressor of interest (72 regressors per session). Six 

motion correction parameters were also modelled within each session, and 

included in the model as regressor of no interest. From this GLM analysis, we 

obtained a single beta image for each stimulus. Contrast images for each stimulus 

against the implicit baseline were generated based on the fitted responses, and 

averaged across sessions. The resulting 72 T-contrast images were used as 

inputs for RSA.  

Individual-level models for univariate analyses 

Although our hypotheses were specific to the multivariate representations, we also 

performed three conventional univariate analyses, referred to as GLM1, 2 and 3. 

GLM1 was performed as a manipulation check, to evaluate the probability that any 

differences in the RSA analysis were due to differences in the average univariate 

activations among conditions.  For this reason, GLM1 used individual-level models 

that were almost identical to those used for the RSA, the only difference being that 

instead of modelling 72 stimuli, here each category (i.e., E1, E2, N1, N2) was 

modelled as separate condition (4 regressors per session) beginning with each 

picture presentation onset, using the canonical function in SPM12.  

GLMs 2-3 were performed as a second manipulation check, to test whether our 

study replicated previous findings showing higher recruitment of emotional regions 

during the processing of emotional than neutral stimuli, across the 4 sessions 

(GLM 2) and within session 1 only (GLM 3). For this reason, individual-level 

models were altered to be maximally sensitive to the difference between emotional 

and neutral stimuli. Specifically,   in GLM 2-3 we included the temporal derivative, 

to take into account temporal differences in the BOLD signal between emotional 

and neutral conditions (Calhoun, Stevens, Pearlson, & Kiehl, 2004; Friston et al., 
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1998; Heinzel et al., 2005). GLM3 was performed on session1 data only to check 

whether any ROI was significantly more activated in session 1 only and then 

decreased its activation after further repetition.  

ROIs definition.  

We defined the ROIs by using the Automated Anatomical Labelling (AAL) template 

in WFU Pickatlas toolbox   (https://www.nitrc.org/projects/wfu_pickatlas) and 

Anatomy toolbox (https://www.fil.ion.ucl.ac.uk/spm/ext/#AAL), and constructed 

with MarsBaR 0.43 (http://marsbar.sourceforge.net). We used WFU_Pickatlas 

toolbox to define the bilateral early visual cortex (EVC) as Broadmann (Ba) 17, the 

Dorsomedial Prefrontal cortex (DMPFC) corresponded to the Ba 8 and 9, the 

Ventromedial Prefrontal cortex (VMPFC) to the Ba 10, and the (dorsal and ventral) 

Anterior Cingulate Cortex (ACC) to the Ba 32 and 24.The Retrosplenial cortex 

(RSC), the occipital place area (OPA) and the Parahippocampal place area (PPA) 

were respectively defined: the bilateral RSC as Ba 29 and Ba 30; the OPA as an 

8 mm sphere around the coordinates reported by Julian et al. (2016) (Julian, Ryan, 

Hamilton, & Epstein, 2016) (left OPA: -34, -77, 21; right OPA: 34, -77, 21) (Julian 

et al., 2016); the PPA as an 8 mm sphere around the coordinates reported by 

(Henson & Mouchlianitis, 2007) (left PPA: -27, -45, -12; right PPA 30, -42, -9). The 

Face Fusiform Area (FFA) was defined as an 8 mm sphere around the coordinates 

reported by (Henson & Mouchlianitis, 2007) (left FFA: -42, -51, -18; right FFA: 42, 

-45, -21). The medial Temporal lobe (MeTL) comprised the Entorhinal cortex 

defined with Anatomy toolbox, and the bilateral Hippocampus, the Perirhinal 

cortex, the Parahippocampal cortex defined with AAL. The same toolbox was used 

for the bilateral Inferior Temporal cortex (ITC), the anterior temporal lobe (ATL), 

the Amygdala, the Thalamus, the Insula, the Precuneus and the bilateral 

Orbitofrontal cortex (superior, middle, inferior and medial OFC). We combined 

these ROIs into one ‘ROIs mask’, which was used in the searchlight RSA.  

Univariate group analyses 

From each individual-level GLM, we obtained a single beta image for each 

condition. We then compared emotional and neutral conditions (emotional > 

neutral), thereby producing one contrasted image for each subject. The contrasted 

image from each subject was then entered as dependent variable in a one sample 

http://marsbar.sourceforge.net/
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t-test. Both the univariate and the multivariate results were inclusively masked to 

only include our Regions of Interest (ROIs) involved in the visual, semantic and 

emotional processing of complex pictures, as defined in the paragraph about ROIs 

definition. 

RSA group analyses: quantifying neural similarity  

Brain- behaviour correlations. In order to test our main hypothesis (i.e., higher 

neural similarity between the two emotional than the two neutral categories), we 

first conducted a very precise localisation technique, the searchlight RSA, to 

investigate which brain regions (within the ROIs mask) represented the 

participants’ similarity space. This was carried out by computing the Spearman’s 

correlation between brain activation-patterns RDMs and behavioural RDMs 

(second order isomorphism). The behavioural RDM represented the participants’ 

similarity space resulted from the MA task, created as explained in the paragraph 

about the behavioural data analysis. Three separate analyses were conducted. 

The first used the entire RDM (with all the 72 stimuli, ‘all RDM’); the second 

focused exclusively on the emotional stimuli (36 stimuli, ‘emotional RDM’), and the 

third on the neutral stimuli (36 stimuli, ‘neutral RDM’), depicted as violet and green 

squares at the bottom of Figure 4.1, respectively. We conducted these latter two 

analyses to explore whether any brain region was involved in the representation 

of either the emotional or the neutral categories. For the purpose of these three 

analyses, three brain activation-pattern RDMs were constructed for each 

participant in the same way. The participant’s brain activation-pattern RDMs were 

computed by entering the T-contrast images into a matrix with all the voxels in the 

rows, and the experimental stimuli in the columns. Then, for each subject and each 

of the three analyses, 3 × 3 × 3 voxels spherical cluster was moved throughout the 

brain and at each location in the ROIs mask a correlational distance (among T 

values) was assigned to the centre voxel of the sphere, resulting in a (x, y, z, 

number of pairs) brain activation patterns RDM for each subject. This measure 

quantified the dissimilarity across voxels in a given searchlight sphere for each 

specific pair. The number of pairs represented all the possible combinations 

between experimental stimuli (2556 pairs with 72 stimuli, 630 with 36 stimuli). 

Next, for each stimulus, the similarity between brain and behavioural RDMs was 

estimated using a pairwise Spearman’s correlation. This provides a correlational 
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map between the behavioural and the brain RDMs for each subject, which reveals 

where the similarity space is best represented in the brain (highest correlation), 

and an ‘n map’, wherein the number of voxels that contributes to each correlational 

value is reported in each entry. The correlational coefficients were Fisher's z 

transformed, and inference was performed at each voxel by performing a one side 

signed rank test across subjects, testing the null hypothesis of no correlation 

between brain and behaviour RDMs. The resulting p values (uncorrected) were 

thresholded to control the false-discovery rate (FDR). We performed two different 

FDR correction procedures, to yield a more conservative as well as a more lenient 

set of results. In both procedure, the p-values (uncorrected) were first ordered 

such that p1 ≤ p2 ≤ pn. Then, in the most conservative procedure we divided the 

rank number (of each p-values) by the total number of voxels in the ROIs mask 

and multiplied it for alpha. In the more lenient procedure, we divided the rank 

number (of each p-values) by the number of voxels that contribute to each 

correlational value (between brain and model RDM), and multiplied it for alpha. 

The number of voxels was extracted from the n map associated with the 

correlational map.  

Differences in neural dissimilarity between emotional and neutral categories. We 

conducted a second set of analyses to test our main hypothesis, that is, higher 

neural similarity (lower dissimilarity) between the two emotional compared to the 

two neutrals categories (similarity E12>N12). We tested this effect in the brain 

clusters that we observed to be involved in representing both the entire (72 stimuli) 

and partial (36 stimuli) participants’ similarity space. With this aim, we created 

different masks, one for each significant cluster. In case of ROIs that were 

significantly correlated with both the emotional and the neutral similarity space, we 

selected the clusters correlated with the neutral similarity space. Then, for each 

subject and each mask, we computed a brain activation-pattern RDM, where each 

entry represented the correlational distance (1- Spearman’s correlation) between 

brain activations across voxels within that mask, and the rows and the columns 

represented the experimental stimuli. We will refer to this as ROI RDM. It is 

symmetric about a diagonal of zeros, and resulted in 2556 cells in the lower 

triangular part that reflected the pairwise dissimilarity of the response patterns 

associated with the stimuli for each ROI. Then, within each participant ROI RDM, 
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we calculated the mean of the conditions of interest (E12 and N12), and entered 

them as dependent variables in paired t- tests, one for each cluster (p<0.05). The 

RSA was performed using the MRC-CBU RSA toolbox for MATLAB 

(http://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes).   

As in the behavioural experiments, we tested any differences in the variance 

across participants in the neural dissimilarity between E12 and N12. We explored 

this effect in brain clusters wherein we observed significant differences in neural 

dissimilarity between E12 and N12. We conducted different two-samples F-tests 

for variance, one for each cluster.  

4.3 Results 

In a series of experiments with different datasets of real-world pictures, we 

explored whether emotions are associated with increased perceived similarity, 

both subjective (ratings) and objective (neural) similarity. We hypothesised that for 

both dependent measures, perceived similarity will be higher (dissimilarity lower) 

(I) within category, compared to between categories, and (II) between the 

emotional categories compared to the neutral categories.  

Behavioural evidence for increased similarity between emotional stimuli  

Experiment 1 confirmed our hypotheses. We observed a significant main effect of 

our conditions (F (2, 18) = 91.00, p<0.001, ηp
2= 0.83), with lower dissimilarity within 

(i.e., EE and NN) than between (i.e., EN) categories (p<0.001), and in EE than in 

NN (p<0.001). When represented in the similarity space, emotional pictures were 

displaced closer to each other than neutral pictures. This resulted in a Stress value 

of 0.05, indicating a good fit of this model. These findings are shown in Figure 4.2. 

http://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes
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Figure 4.2. A) Representational Dissimilarity Matrix (RDM) of 20 complex pictures (10 emotional, 10 neutral), 

averaged across participants. It is symmetric about a diagonal of zeros, the rows and the columns represent 
the stimuli, and each cell the dissimilarity, measured as 1- standardized similarity ratings between stimuli 
within each specific pair. Yellow colours denote high dissimilarity, blue colours low dissimilarity. B) The 
average dissimilarity within emotional pictures (EE), within neutral pictures (NN), and between emotional and 
neutral pictures (EN, grey). Error bars represent ±2 SEM; **p<0.001. C) The Multidimensional Scaling (MDS) 
plot of the 20 pictures in a bidimensional space. Additional information supporting Figure 4.2 can be found in 
Figure 2-1.  

In experiment 2, with the second dataset, which controlled for the higher thematic 

similarity between emotional pictures, we observed different results. Specifically, 

we found lower dissimilarity in E12 and N12 compared to EN (F (2, 38) = 27.40, 

p<0.001, ηp
2= 0.41), but no differences in similarity ratings between the two 

emotional and the two neutral categories. The same results were replicated using 

the MA task in experiment 3. Our manipulation check revealed lower dissimilarity 

within category (i.e., EE and NN) than between categories (i.e., E12, N12, EN) (F 

(4, 26) = 214.76, p<0.001, ηp
2= 0.88), but no difference due to emotion in the 

critical comparison between E12 and N12. In the bidimensional space, the 

proximities between the two emotional, and between the two neutral categories do 

not differ.  The Stress value was 0.10, indicating a fair fit of this model. This 

reduction in the goodness of fit compared to experiment 1 might suggest that the 

weight of the semantic dimension in subjective similarity may have been higher in 

experiments 2-3, where four categories were included, compared to experiment 1, 

where stimuli were not grouped by semantic category. These findings are shown 

in Figure 4.3. 
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Figure 4.3. A) Representational Dissimilarity Matrix (RDM) of 72 complex pictures (Emotional categories: E1, 

poverty (1 to 18); E2, car accidents (19 to 36); Neutral categories: N1, laundry (37 to 54); N2, phone call (55 
to 72), averaged across participants. It is symmetric about a diagonal of zeros, the rows and the columns 
represent the stimuli, and each cell the dissimilarity (measured as Euclidean distance) between stimuli within 
each specific pair. Yellow colours denote high dissimilarity, blue colours low dissimilarity. B) The average 
dissimilarity within emotional pictures (averaged across E1 and E2) (EE), within neutral pictures (averaged 
across N1 and N2) (NN), between emotional pictures (E12), between neutral pictures (N12), and between 
emotional and neutral pictures (EN). Error bars represent ±2 SEM; *, pFWE<0.05; **, pFWE<0.001. C) The 
Multidimensional Scaling (MDS) plot of the 72 pictures in a bidimensional space. Additional information 
supporting Figure 4.3 can be found in Figure 3-1.  

Finally, in all the experiments, we did not observe any significant differences in the 

variance across participants between emotional and neutral conditions. This 

allows us to exclude an alternative explanation of the behavioural results, that is, 

that the similarity between emotional pictures can be affected by individuals’ 

emotional granularity (Barrett, Gross, Christensen, & Benvenuto, 2001). High-

granular individuals would be more aware of the differences of their emotional 

experiences when viewing pictures from the two emotional categories and may 

rate them as less similar, while low-granular individuals may rate them as more 

similar, ultimately masking the difference between emotional and neutral 

categories. However, if this explanation was correct, we would expect increased 

variance in ratings of emotional pictures. Instead, there were no significant 

differences in rating variance between emotional and neutral categories. These 

results are reported in Table 4.5.    

Behavioral experiments Conditions  F value F critical P value 

Experiment 1 
EE 

0.04 
NN 
0.03 

1.28 2.53 0.36 

Experiment 2 E12 N12 0.72 1.89 0.16 
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0.05 0.07 

Experiment 3 

EE 
0.000 

NN 
0.000 

0.79 2.13 1.00 

E12 
0.000 

N12 
0.000 

1.34 2.13 0.44 

Table 4.5. Differences in the variance in similarity judgements between emotional and neutral stimuli. The 

variance averaged across participants for each conditions, and the statistics of each difference between 
conditions are reported. In experiment 1, EE and NN represent the variance within emotional, and within 
neutral stimuli, respectively, averaged across participants. In experiment 2-3, E12 and N12 signify the 
variance between the two emotional, and the two neutral categories, respectively, averaged across 
participants. Finally, in experiment 3, EE and NN represent the variance within E1 and E2, and within N1 and 

N2, averaged across participants. 

 

Manipulation check: Univariate differences between the emotional and 

neutral conditions  

In GLM 1, no clusters (number of voxels > 10) survived the correction for multiple 

comparisons, suggesting that RSA results are unlikely to be contaminated by 

mean signal differences. Conversely, we replicated previous findings in GLM 2-3; 

these results are reported in Table 4.6 and Figure 4.4.  

 

Analysis p FWE K p uncorr T x y z Label 

GLM2 
Emo>Neu, 
all sessions 

0.001 197 <0.001 8.33 36 -46 -19 FFA R 

0.023 114 0.002 8.16 -39 -46 -19 FFA L 

0.039 100 0.003 6.72 -39 -82 11 OPA L 

0.003 178 <0.001 5.49 33 26 -4 Insula R 

<0.001 107 <0.001 4.89 -27 23 -4 Insula L 

GLM3 
Emo>Neu 
Session1  

0.014 104 0.001 6.92 6 -13 -1 
Thalamus 
R 

0.029 88 0.002 6.24 -39 -46 -19 FFA L 

0.003 138 <0.001 5.65 39 -64 -10 
Temporal 
inferior R/ 
FFA R 

0.002 146 <0.001 5.58 -36 20 2 Insula L 

0.038 82 0.002 5.26 -39 -82 11 OPA L 

0.026 90 0.002 4.59 48 35 -10 OFC R 

Table 4.6. Differences in BOLD signal change between emotional and neutral categories. Only regions that 

survive correction for multiple comparisons using pFWE < 0.05 are reported. Small volume correction using 

the ROI mask was applied in both analyses. 
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Figure 4.4. Differences in BOLD signal change between emotional and neutral categories, across 4 sessions 

(GLM 2, left) and in session 1 only (GLM 3, right). Only regions that survive correction for multiple comparisons 
using pFWE < 0.05 are reported. Small volume correction using the ROI mask was applied in both analyses. 

 

Brain- behaviour correlations       

We carried out a searchlight RSA to investigate the brain regions within the ROIs 

mask that represented the participants’ self-reported similarity space. First, we 

tested whether the neural-pattern similarity within the ROIs mask was significantly 

correlated with the entire (72 x 72) similarity space, comprised of neutral and 

emotional categories. These data only survived our more lenient correction for 

multiple comparisons (pFDR<0.05) (see Materials and Methods). We observed that 

clusters in the bilateral ITC, the right FFA, and the right Precuneus represented 

the participants’ similarity space. These findings are reported in in Table 4.7 and 

Figure 4.5A.  

Analysis Regions x y z n voxels t pFDR d 

ALL RDM 
(72 x 72) 

ITC L 11 -61 -9 154 38.81 <0.001** 3 

ITC R 46 -63 -9 21 40.5 <0.001** 10 

FFA R 42 -47 -19 69 29.64 <0.001** 4 

Prec R 3 -57 20 32 13.11 <0.001** 3 

Emotional RDM 
(36 x 36) 

EVC L -13 -86 4 72 15.1 <0.001** 1.82 

EVC R 6 -93 -1 21 16.17 <0.001** 4.28 

OPA L -34 -80 18 103 117.25 <0.001** 11.43 

OPA R 34 -80 18 103 74.97 <0.001** 7 

PPA L -21 -43 -10 32 58.57 <0.001** 11.25 

PPA R 24 -43 -16 29 89.19 <0.001** 16 

FFA L -36 -49 -22 41 25.38 <0.001** 5 

FFA R 39 -49 -22 34 26.18 <0.001** 4 

Prec -2 -60 40 1249 109.58 <0.001** 4 

dACC L -3 27 1 18 27.79 <0.001** 2.5 
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dACC R 3 15 42 20 29.18 <0.001** 7.5 

aINS L -35 27 1 18 27.79 <0.001** 7.5 

Neutral RDM 
(36 x 36) 

OPA L -29 -78 20 11 20.44 <0.001** 6.67 

OPA R 36 -79 16 43 57.2 <0.001** 10 

PPA L -30 -49 -10 17 18.7 <0.001** 4 

PPA R 25 -46 -13 10 7.19 <0.001** 4.28 

FFA L -42 -52 -13 10 7.19 <0.001** 2.25 

Table 4.7. Brain-behaviour correlations. Top: correlations between the entire (72 x 72) stimulus space (named 

as ‘all RDM’), the and the brain. Significant correlations were observed in the bilateral ITC, right FFA, and the 
right Prec.  Middle: correlations between the emotional (36 x 36) similarity space (named as ‘emotional RDM’) 
and the brain. Significant correlations were observed in the bilateral EVC, OPA, PPA, FFA, Prec, dACC and 
left aINS. Bottom: correlations between the neutral (36 x 36) similarity space (named as ‘neutral RDM’) and 
the brain. Significant correlations were observed in the bilateral OPA, PPA, and left FFA. In all these analyses, 
correlational coefficients were Fisher’s z transformed, and entered as dependent variables in a one side t test 
(separately for each brain region), testing the null hypothesis of no correlation between the participants’ 
similarity space and the neural activation patterns. The resulting p values were thresholded to control for the 
false-discovery rate (FDR). **, pFDR< 0.001. Abbreviations. ITC, Inferior Temporal Cortex; FFA, Face 
Fusiform Area; Prec, Precuneus; EVC, Early visual cortex; OPA, Occipital place area; PPA, Parahippocampal 
place area; dACC, dorsal anterior cingulate cortex; aINS, anterior insula. L, Left; R, Right. 

 

Figure 4.5. A) Correlation between the entire (72 x 72) stimulus space (named as ‘all RDM’) and the brain. 

Significant correlations were observed between the behavioural ‘all RDM’ and clusters in the bilateral ITC, 
right FFA, and the right Prec.  Correlational coefficients were Fisher’s z transformed, and entered as 
dependent variables in a one side t test (separately for each brain region), testing the null hypothesis of no 
correlation between the participants’ similarity space and the neural activation patterns. The resulting p values 
were thresholded to control for the false-discovery rate (FDR). **, pFDR< 0.001. B) Differences in neural 
dissimilarity (measured as correlational distance) between emotional and neutral stimuli in different brain 
clusters, including the bilateral ITL, and the right FFA. The dissimilarity between emotional categories (E12) 
was calculated by averaging the dissimilarity between E1 and E2, and the dissimilarity between neutral 
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categories (N12) by averaging the dissimilarity between N1 and N2, for each participant. These were entered 
as dependent variables in paired t tests, one for each brain cluster (p<0.05). **, p< 0.001. Abbreviations. ITC, 

Inferior Temporal Cortex; FFA, Face Fusiform Area; L, Left; R, Right. 

Second, we performed the same analysis separately for the emotional and neutral 

pictures to explore whether any brain region was involved in the representation of 

either the emotional or the neutral categories (see the violet and green squares in 

Figure 4.1). The results from these analyses survived the more conservative 

correction for multiple comparisons (pFDR<0.05) (see Materials and Methods). We 

found that participants’ emotional similarity space was significantly correlated with 

clusters in lower and higher-level visual processing regions, as well as regions 

involved in emotional processing. These included the bilateral EVC, bilateral OPA, 

bilateral PPA, bilateral FFA, bilateral Precuneus, bilateral dorsal ACC and in the 

left anterior Insula.  By contrast, participants’ neutral similarity space was 

significantly correlated with clusters in higher-level visual regions only, including 

the bilateral OPA, the bilateral PPA, and left FFA. These findings are reported in 

Table 4.7 and Figure 4.6 A and 4.7A.  

 

Figure 4.6. A) Correlation between the emotional (36 x 36) similarity space (named as ‘emotional RDM’) and 

the brain. Significant correlations were observed between the behavioural ‘emotional RDM’ and clusters in 
the bilateral OPA, PPA, FFA, EVC, Prec, dACC, and left aIns. Correlational coefficients were Fisher’s z 
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transformed, and entered as dependent variables in a one side t test (separately for each brain region). For 
simplicity, we averaged the left and the right sides of the clusters wherein both sides were significant. The 
resulting p values were thresholded to control the false-discovery rate (FDR). **, pFDR< 0.001.  B) Differences 
in neural dissimilarity (measured as correlational distance) between emotional and neutral stimuli in different 
brain clusters, including the bilateral EVC, Prec, dACC and left aIns. The dissimilarity between emotional 
categories (E12) was calculated by averaging the dissimilarity between E1 and E2, and the dissimilarity 
between neutral categories (N12) by averaging the dissimilarity between N1 and N2, for each participant. 
These were entered as dependent variables in paired t tests, one for each brain cluster (p<0.05). *, p< 0.05. 
Abbreviations. OPA, Occipital place area; PPA, Parahippocampal place area; FFA, Face fusiform area; EVC, 
Early visual cortex; Prec, Precuneus; dACC, Dorsal anterior cingulate cortex; aIns, Anterior insula; L, left; 

E12, dissimilarity between emotional categories; N12, dissimilarity between neutral categories. 

 

Figure 4.7. A) Correlation between the neutral (36 x 36) similarity space (named as ‘neutral RDM’) and the 

brain. Significant correlations were observed between the behavioural ‘neutral RDM’ and clusters in in the 
bilateral OPA, PPA and left FFA. Correlational coefficients were Fisher’s z transformed, and entered as 
dependent variables in a one side t test (separately for each brain region). For simplicity, we averaged the left 
and the right sides of the clusters when both sides were significant. The resulting p values were thresholded 
to control the false-discovery rate (FDR).  *, pFDR< 0.05; **, pFDR< 0.001. B) Differences in neural 
dissimilarity (measured as correlational distance) between emotional and neutral stimuli in different brain 
clusters, including the bilateral OPA, PPA and left FFA. The dissimilarity between emotional categories (E12) 
was calculated by averaging the dissimilarity between E1 and E2, and the dissimilarity between neutral 
categories (N12) by averaging the dissimilarity between N1 and N2, for each participant. These were entered 
as dependent variables in paired t tests, one for each brain cluster (p<0.05). *, p< 0.05; **, p< 0.001. 
Abbreviations. OPA, Occipital place area; PPA, Parahippocampal place area; FFA, Face fusiform area; L, left;  
E12, dissimilarity between emotional categories; N12, dissimilarity between neutral categories. 

Neural evidence for increased similarity between emotional stimuli  

We performed the ROIs RSA to explore whether the neural representations of 

emotional categories are more similar than those associated with neutral 
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categories.  This analysis was carried out in brain clusters from the above analysis, 

namely, those that significantly correlated with the whole participants’ similarity 

space (Figure 4.5B), as well as with its emotional (Figure 4.6B), and neutral (Figure 

4.7B) similarity spaces. As predicted, the neural pattern dissimilarity of emotional 

categories was lower than the one of neutral stimuli in all the previously reported 

clusters (p<0.05), apart from the right PPA. In addition, we observed trends 

towards significance in support to our hypothesis in the right EVC (p=0.11) and in 

one cluster in the left PPA (p=0.06). These findings are reported in Table 4.8 and 

in Figures 4.5B, 4.6B and 4.7B. 

Analysis ROIs E12 N12 t p d 

ALL RDM 
(72 x 72) 

ITC L  0.66 ± 0.18 0.75 ± 0.17 -7.90 <0.001** -0.51 

ITC R  0.58 ± 0.19 0.69 ± 0.19 -10.88 <0.001** -0.58 

FFA R  0.56 ± 0.17 0.64 ± 0.17 -8.89 <0.001** -0.47 

Prec R 0.80 ± 0.10 0.83 ± 0.09 -3.60 0.001* -0.32 

Emotional RDM 
(36 x 36) 

EVC L  0.57 ± 0.19 0.64 ± 0.17 -6.20 <0.001** -0.39 

EVC R  0.49± 0.16 0.53 ± 0.14 -1.65 0.110 -0.27 

OPA L 0.49 ± 0.18 0.55 ± 0.17 -4.69 <0.001** -0.34 

OPA R 0.42 ± 0.17 0.48 ± 0.17 -5.36 <0.001** -0.35 

PPA L 0.83 ± 0.09 0.85 ± 0.04 -1.93 0.064 -0.31 

PPA R 0.64 ± 0.14 0.64 ± 0.14 -0.64 0.523 0.00 

FFA L 0.64 ± 0.17 0.74 ± 0.15 -11.34 <0.001** -0.63 

FFA R 0.55 ± 0.17 0.63 ± 0.16 -8.88 <0.001** -0.48 

Prec  0.77 ± 0.15 0.80 ± 0.14 -3.56 0.001* -0.21 

dACC L  0.68 ± 0.15 0.71 ± 0.14 -3.19 0.003* -0.21 

dACC R  0.73 ± 0.16 0.76 ± 0.14 -2.40 0.023* -0.20 

aINS L  0.79 ± 0.11 0.82 ± 0.10 -2.85 0.008* -0.29 

Neutral RDM 
(36 x 36) 

OPA L  0.47 ± 0.17 0.54 ± 0.16 -7.25 <0.001** -0.42 

OPA R  0.40 ± 0.15 0.46 ± 0.16 -5.86 <0.001** -0.39 

PPA L  0.55 ± 0.13 0.58 ± 0.14 -2.79 0.009* -0.22 

PPA R  0.47 ± 0.13 0.47 ± 0.14 -0.73 0.473 0.00 

FFA L  0.64 ± 0.17 0.77 ± 0.15 -11.34 <0.001** -0.81 

Table 4.8. Effect of emotions on neural dissimilarity. Difference in neural dissimilarity (measured as 

correlational distance) among conditions. The dissimilarity between emotional categories (E12) was 
calculated by averaging the dissimilarity between E1 and E2, and the dissimilarity between neutral categories 
(N12) by averaging the dissimilarity between N1 and N2, for each participant. These measures were first 
computed in brain clusters significantly involved in the representation of the whole (72 stimuli) participants’ 
similarity space (top of the table). Then, we computed E12 and N12 in brain clusters significantly involved in 
the representation of the emotional (middle of the table) and neutral (bottom of the table) participants’ similarity 
space. We entered them as dependent variables in paired t tests, one for each brain cluster. Bonferroni post 
hoc corrections for multiple comparisons (p<0.05) are summarized at the bottom. *, pFWE< 0.05; **, pFWE< 
0.001. Abbreviations. E12, neural dissimilarity between emotional categories; N12, neural dissimilarity 
between neutral categories. ITC, Inferior temporal cortex; FFA, Face fusiform area; Prec, Precuneus; EVC, 
Early visual cortex; OPA, Occipital place area; PPA, Parahippocampal place area; dACC, Dorsal anterior 
cingulate cortex; AI, Anterior insula; L, left; R, Right.   

Finally, we did not observe any significant differences in the variance across 

participants between E12 and N12 in any brain clusters.  These results are 

reported in Table 4.9.    
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ROIs E12 N12 F value F critical P value 

ITC 0.03` 0.03 1.04 2.13 0.45 

Precuneus 0.02 0.02 1.09 2.13 0.82 

EVC 0.02 0.02 1.27 2.13 0.52 

OPA 0.02 0.02 1.02 2.13 0.97 

PPA 0.02 0.02 0.99 2.13 1.00 

FFA 0.02 0.02 1.07 2.13 0.85 

dACC 0.02 0.02 1.28 2.13 0.52 

aIns L 0.01 0.01 1.15 2.13 0.71 

Table 4.9. Differences across participants in the variance in neural dissimilarity between emotional and neutral 

stimuli. The variance averaged across participants for each conditions within each cluster, and the statistics 
of each difference between conditions are shown.  E12 and N12 represent the variance between the two 
emotional, and the two neutral categories, respectively, averaged across participants. For simplicity, we 
averaged the left and the right sides of the clusters. Abbreviations. ITC, Inferior Temporal Cortex;  EVC, Early 
visual cortex; OPA, Occipital place area; PPA, Parahippocampal place area; FFA, Face fusiform area; Prec, 
Precuneus; dACC, Dorsal anterior cingulate cortex; aIns, Anterior insula; L, left; E12, dissimilarity between 
emotional categories; N12, dissimilarity between neutral categories. 

4.4 Discussion 

We investigated behavioural and neural similarity measures between complex 

emotional and neutral stimuli using two similarity judgements tasks and two 

stimulus databases, the second of which was very tightly controlled. We report two 

novel findings. First, the similarity between neural representations of stimuli from 

two negatively-valenced, emotionally-arousing categories was greater than the 

neural similarity between stimuli from two neutral categories. This increase was 

observed while participants were processing individual stimuli rather than inter-

stimulus relationships. Some, but not all, of the clusters expressing similarity 

among emotional stimuli preferentially also expressed similarity among neutral 

stimuli. Second, once semantic similarity was controlled, participants rated the 

similarity of stimuli from two emotional categories to be equivalent to that of stimuli 

from two neutral categories. Thus, the greater neural similarity between emotional 

pictures did not influence perceived similarity in the same participants. We discuss 

the implications of these results below.  

Increased neural similarity between emotional than neutral realistic events.  

In experiment 3, we observed increased neural similarity between emotional than 

neutral categories, such that in brain clusters involved in encoding participants’ 

entire similarity space, the neural similarity between emotional categories was 

stronger than between neutral categories. These clusters were located in the 

ventral visual stream, which underpins semantic categorisation (Clarke & Tyler, 

2014), and in regions involved in affect representations (e.g., precuneus) (Kim, 
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Shinkareva, & Wedell, 2017) and modulation (e.g., dACC)(Saarimäki et al., 2018). 

To our knowledge, this is the first report of the neural underpinnings of perceived 

similarity between complex emotional stimuli, while using a pictures set controlled 

for visual and semantic attributes.  

This finding has implications for research about the neurobiological correlates of 

categorisation and generalisation. Previous studies (Dunsmoor et al., 2013; R. M. 

Visser et al., 2011) observed increased neural similarity among exemplars that 

predicted threat. They proposed that this mechanism was adaptive, enabling 

individuals to differentiate emotionally-salient stimuli from others, and supporting 

broad generalisation between items which predict fitness-relevant outcomes. 

Although our work differed from these studies, where the emotional response was 

induced though Pavlovian conditioning, we found the same effect here. This 

converging evidence suggests that it is evolutionarily more important to integrate 

emotional information in neural representations to increase the relevance and 

generalisability of stimuli that predict a negative outcome. These findings concur 

with the conclusions that emotion serves as a fundamental feature of cognition, 

such that any representation of the world is an integrated product between 

emotion, perception and thought (e.g., “That is a good thing”) rather than discrete 

and isolated psychological events (e.g., “That is a thing. I feel good”) (Todd et al., 

2020).  

We extended previous findings about brain regions involved in representing 

emotional categories and dimensions by exploring, for the first time, differences in 

the neural representations of the relationships between emotional and neutral 

stimuli. The bilateral ITC, right FFA and right precuneus represented the entire 

similarity space and exhibited greater neural similarity between the two emotional 

than the two neutral categories. As part of the hierarchical network in the ventral 

visual stream, the ITC integrates relevant low- and high-level features, resulting in 

an emergent category structure (Prince & Konkle, 2020). Accumulating research 

agrees on the inferior occipitotemporal regions as the potential neurobiological 

underpinnings of semantic categorisation of objects (Iordan et al., 2015), faces 

(Guntupalli et al., 2016) and places (R. A. Epstein & Baker, 2019). Other regions 

in the ITC involved in action observation and in representing ‘acting bodies’, 

including FFA, take part to scenes encoding (Groen et al., 2018).  Accordingly, 
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Brooks et al. (2019) demonstrated that subjects’ conceptual space predicts the 

neural pattern activation in the right FFA (Brooks, Chikazoe, Sadato, & Freeman, 

2019). We may have observed stronger neural similarity between emotional 

categories in these regions,  because of the influence of the precuneus, involved 

in valence representation and structurally connected with the ITC (Y.-H. Lin et al., 

2020).  

When we investigated the emotional and the neutral parts of participants’ similarity 

space, we observed higher emotional similarity in the EVC, OPA and PPA, as well 

as in the dACC and anterior insula. OPA and PPA relate low-level visual features 

encoded in the EVC with the high-level aspects of the scene (R. A. Epstein & 

Baker, 2019) and may be modulated by regions that are sensitive to salience 

(anterior insula, dACC) (Lindquist et al., 2012), resulting in higher similarity. 

Interestingly, our finding that the insula represented the emotional, but not neutral, 

similarity space replicate those of Levine and colleagues who reported that it 

represented similarity ratings among emotional stimuli, although they were not 

controlled for semantic similarity and the ratings were of emotional rather than 

overall similarity (Levine et al., 2018).  It would be worth exploring whether we 

would replicate the same results using Levine et al. (2018) instructions (Martina  

Riberto, Pobric, & Talmi, 2020). 

Finally, the same effect was observed in the EVC, which relies on more fine-

grained representations of the stimuli (Coutanche, Solomon, & Thompson-Schill, 

2016), and encodes low-level visual features of the stimuli that afford the decoding 

of a broad range of emotions categories (Barrett & Bar, 2009). Specific 

combinations of low-level  features (e.g., luminance) along with high-level 

information (e.g., presence of faces or scenes) can act as cues and afford specific 

categories of emotional response (Kragel et al., 2019). This might be paralleled by 

neural synchronization that connects the different neuronal populations involved 

in the processing of each feature (e.g., low and high level visual, emotional 

features) with the distant brain networks involved in each feature during the 

emotional experience (Sander, Grandjean, & Scherer, 2018).  

We also expected that the orbitofrontal, ventral and dorsomedial prefrontal cortex 

were involved in representing the similarity space or just the emotional part. 

However, we did not find significant correlations with the behavioural data there, 

perhaps due to the implicit processing of affect in experiment 3. Nor did we 
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observe correlations with the amygdala, perhaps because it habituates quickly to 

repeated stimuli (Plichta et al., 2014).  

No differences in perceived similarity between emotional and neutral 

pictures of realistic events. 

In experiment 1, when thematic similarity was not controlled, we found higher 

similarity between emotional than neutral stimuli. In a valence-arousal space, 

emotional stimuli were placed closer to each other than neutral ones. The 

goodness of fit suggested that affective features were the most salient in similarity 

judgements. This result is in keeping with dimensional perspectives on emotions 

(Barrett & Russell, 1999) and recent empirical data (Cowen & Keltner, 2017), 

although our data cannot distinguish between effects based on valence or arousal 

dimensions. Strikingly, when we controlled for the higher thematic relatedness 

between emotional stimuli, by selecting stimuli from separate semantic categories, 

the rated similarity between stimuli from the two emotional categories was 

equivalent to that between those from the two neutral categories. Ratings 

clustered according to the four categories, and the goodness of fit dropped to fair, 

suggesting that the semantic meaning of each picture – not negative emotion - 

was the most relevant feature.  

These findings accord with claims that participants’ conceptual workspace 

comprises of integrated perceptual, affective, and semantic dimensions (Prince & 

Konkle, 2020). The evolved sensitivity to emotion, evident in the neural data, may 

be dampened when the context suggests it is less relevant, in keeping with 

previous literature attesting to the strong context effects on similarity (Goldstone 

et al., 1997). The relative contribution of semantic and affective features to overall 

similarity could be tested in future by collecting separate ratings of semantic or 

emotional similarity, or by manipulating the weight of the semantic and emotional 

dimensions. This opens up a new direction in semantic cognition research, which 

so far has not considered affective dimensions as key to semantic categorisation 

(Lambon Ralph, 2014). 

Limitations 

Our study presents several limitations that can be addressed in future works. First, 

we studied only negative emotions, and only two categories within each level of 



 
 

93 
 

affect. Second, stimuli were presented during a rapid event related design. Whilst 

a common approach, it might have influenced our results by increasing across-

trial correlations (R. M. Visser et al., 2016), decreasing our statistical power. 

Finally, we cannot infer any causal role of emotions on neural similarity. Future 

studies could use TMS to further explore this aspect of the findings.  

Conclusion 

Stimuli that evoke negative feelings are perceived as more similar to each other 

unless care is taken to eliminate their taxonomic and thematic links. Once such 

semantic links are controlled, negative emotional and neutral stimuli may be 

judged as equally similar. A set of brain regions beyond those that are functionally 

specific to affect expressed emotional similarity preferentially. The stronger neural 

similarity between emotional pictures did not influence explicitly-perceived 

similarity in the same participants in the immediately-proceeding behavioural 

rating task, perhaps because the weights of the multiple dimensions of 

participants’ conceptual workspace can change dynamically. Our findings may 

illuminate the clinically-relevant overgeneralisation bias in anxiety disorders. 

People with anxiety may have increased propensity to consider later, emotionally-

similar, experiences as globally similar to the original fearful one, and thereby 

make maladaptive choices. 

4.5 Supplementary Information 

 

 

 

 

 

 

 

Figure 4.2-1. Picture IDs from the NAPS database (‘people’ category), divided into emotional and 

neutrals (experiment 1).   

Figure 4.3-1 corresponds to Figure 2.1.  

  

Emotional Neutral 

205 016 104 165 

127 038 100 035 

226 075 150 095 

238 007 066 249 

235 022 146 057 
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5. Chapter: Increased neural similarity across sensory 

modalities after aversive conditioning. 

Abstract 

Generalisation, the extent to which a conditioned response is elicited in absence 

of an unconditioned stimulus, is an indirect measure of similarity. It increases with 

the resemblance among stimuli along perceptual or non-perceptual (e.g., semantic 

knowledge) dimensions. A better understanding of the neural mechanisms 

underlying generalisation might have clinical implication in anxiety disorders. After 

a traumatic experience, patients consider later experiences as similar to the 

original fearful one not because of their ostensible meaning, but their emotional 

similarity. Most of the studies pointed at overgeneralisation bias as a failure in 

perceptual discrimination between stimuli that predicted a negative outcome. 

However, it is still unclear whether aversive conditioning affect also the perception 

of similarity between threatening stimuli. A further debate concerned experience-

dependent neural changes after aversive conditioning, and whether they 

generalised across sensory modalities. Multi-voxels pattern analyses (MVPA) 

showed a strengthening in the neural similarity structure in the occipitotemporal 

cortex of the stimuli that belonged to the same semantic category of CS+ after 

aversive conditioning. We hypothesised that these neural changes generalised 

from visual to auditory sensory modalities, and that they might underlie 

behavioural changes in similarity perception, resulting in higher similarity among 

threatening than not threatening stimuli. We tested these hypotheses in two 

aversive conditioning experiments, wherein participants rated which stimuli (i.e., 

images and vocalisation of mammals and birds) predicted money loss. In 

experiment 1, we focused on similarity perception, asking participants (n=20) to 

judge the similarity among visual stimuli before and after the conditioning.  In 

experiment 2 (n=40), we explored neural similarity among brain activation patterns 

associated with threatening stimuli. We found increased neural similarity in the 

occipitotemporal cortex between visual threatening stimuli, and in the insula 

between visual and auditory threatening stimuli, despite no differences between 

threatening and non-threatening stimuli in similarity ratings after conditioning. 

Increased neural similarity might be the result of local and distance 

synchronisation processes between brain regions involved in fear generalisation. 
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This might be an efficient and functional mechanism, which may become 

maladaptive in individuals with anxiety disorders.  
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5.1 Introduction 

Emotional similarity refers to the tendency to group stimuli together because they 

evoke the same feeling in us (Martina Riberto et al., 2019). It is a fundamental 

principle in cognition, as it supports core functions, such as categorisation (Barrett, 

2017; Barsalou, 2017), memory and learning (Leal, Tighe, Jones, et al., 2014; Leal 

& Yassa, 2018; Talmi & McGarry, 2012). Research on emotional similarity may 

have  clinical implications for the overgeneralisation bias in anxiety disorders. After 

a traumatic event, patients consider later experiences as similar to the original 

fearful one not because of their ostensible meaning, but their emotional similarity 

(Ahrens et al., 2016; Laufer et al., 2016). For example, we might judge two animals 

(e.g., cow and horse) similar, as they are both part of the semantic category 

‘mammals’. However, after an accident in a horse race, seeing (and perhaps 

hearing the sound of) a horse may trigger negative emotions (e.g., fear) and 

anxiety symptoms. Then, this reaction may be generalised to other exemplars of 

the same semantic category (e.g., cow), which became a threat too.  

Generalisation, the extent to which we have a conditioned response (CR) in 

absence of an unconditioned stimulus (US), can be conceived as indirect measure 

of similarity, assuming a positive correlation between them. One way to investigate 

these constructs in an experimental setting is through aversive conditioning 

paradigms, wherein a previously neutral stimulus (e.g., horse) can elicit a CR (e.g., 

fear response) if that stimulus has been associated with an aversive US (e.g., 

accident at the horse race), becoming a conditioned stimulus (CS) (Fendt & 

Fanselow, 1999; Pavlov, 1927). After the conditioning, participants are shown with 

new generalisation stimuli (GS), which are not paired with the US, but might 

evoked the same CR, according to their similarity to the CS. A large body of studies 

(for a review see (Dymond, Dunsmoor, Vervliet, Roche, & Hermans, 2015)) 

explored generalisation as a function of similarity along perceptual dimensions. 

They pointed at overgeneralisation bias as a failure in perceptual discrimination 

between shapes (Lissek et al., 2009; Struyf, Zaman, Hermans, & Vervliet, 2017), 

or tones (Laufer & Paz, 2012; Resnik, Sobel, & Paz, 2011; Schechtman et al., 

2010; Shalev, Paz, & Avidan, 2018) that predicted a negative (e.g., money loss, 

shock delivery, aversive pictures) than positive or neutral outcome. However, it is 

still unknown whether aversive conditioning also affect explicit similarity 



 
 

97 
 

judgements, resulting in higher similarity among threatening than not threatening 

stimuli.  

Yet, other aspects affect fear generalisation, such as emotional intensity and 

semantic knowledge. Dunsmoor et al. (2011) reported higher skin conductance 

response (SCR), a measure of physiological arousal, and wider generalisation 

among morphed faces, similar to the one paired with an electric shock (CS+), but 

only with high emotional intensity (Dunsmoor, Prince, et al., 2011). Others 

explored the role of semantic knowledge on fear generalisation, showing higher 

accuracy in memory recognition (Dunsmoor, Martin, & LaBar, 2012), and wider 

generalisation of episodic memory (Starita et al., 2019) for GS from the CS+ 

category than the CS- category. This suggest that threat learning improved 

memory recognition and promotes generalisation of episodic memory in healthy 

controls. It is an adaptive mechanism, functional to survival, which may become 

maladaptive when old threat memories are inappropriately reactivated in secure 

situations, for example in individuals with high trait anxiety.  

Studies in healthy controls showed a positive correlation between trait anxiety 

scores and memory for the CS− stimuli (Cohen et al., 2019), and with the SCR to 

the preconditioned stimulus (i.e., image of a spider) that was semantically related 

to the CS+ (i.e., image of a web) (Dunsmoor, White, & LaBar, 2011). In addition, 

others found a significant difference in valence and arousal ratings following 

conditioning between patients with social anxiety  and controls, with lower valence 

and higher arousal ratings provided by the former (Ahrens et al., 2016). However, 

no studies explored whether trait anxiety amplifies the emotional impact of the GSs 

after conditioning in healthy controls.  

Different mechanisms have been proposed as neurobiological underpinnings of 

fear generalisation, including pattern separation and pattern completion occurring 

in the hippocampus (Kheirbek, Klemenhagen, Sahay, & Hen, 2012; Lange et al., 

2017; Lissek et al., 2014). Following fear conditioning, when exposed to a GS (in 

the previous example, a cow) that resemble the CS+ (e.g., a horse), the overlap 

between patterns of brain activity representing GS and the previously encoded 

CS+ is assessed through hippocampal based ‘schematic matching’. Given 

sufficient overlap, CA3 neurons in the hippocampus induce pattern completion, 

whereby a subset of cues from a previous experience (i.e. CS+) activates the 

stored pattern representing that experience. In case of insufficient overlap 
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between neural representations of GS and the CS+, the dentate gyrus neurons 

initiate pattern separation, which takes similar patterns of neural activity and 

converts them into distinct representations (Fenton, 2007). These complementary 

computations are carried out in dynamic networks that involved different brain 

regions other than the hippocampus, including the thalamus, brain structures 

associated with fear excitation (e.g., the amygdala,  anterior insula, dACC) and 

fear inhibition (e.g., MPFC) (for a review see (Dunsmoor & Paz, 2015; Fullana et 

al., 2016; Gross & Canteras, 2012)).  

More recently, multi-voxels pattern analyses (MVPA) of fear-conditioning have 

shown that the neural representations of fear-conditioned stimuli that belong to the 

same semantic category (i.e., ‘animals’; ‘objects’) become more similar to each 

other in the occipitotemporal cortex  (Dunsmoor et al., 2013), in the amygdala (R. 

M. Visser et al., 2013) and the superior frontal gyrus (R. M. Visser et al., 2011), 

and more similar to the US in the insula (Onat & Büchel, 2015). Others reported 

increased neural similarity between stimuli associated with reward (Zeithamova et 

al., 2018) and pain (Wagner et al., 2020) in the hippocampus. This survival 

mechanism has been explored only using visual stimuli.  

However, an open research question concerns whether fear generalize across 

(visual and auditory) sensory modalities (similarity across sensory modalities), 

resulting in higher neural similarity between GSs that predict the same outcome of 

the CS+, regardless of their sensory modality. In order to answer our research 

questions, in experiment 1 we explored whether fear conditioning biased explicit 

similarity judgements, with higher similarity between threatening than not 

threatening stimuli. In experiment 2, we investigated whether this behavioural 

change is paralleled by increased neural similarity between exemplars in GS+ than 

GS- across sensory modalities following aversive conditioning in healthy controls.  

  



 
 

99 
 

5.2 Materials and Methods 

Participants  

A total of 60 right-handed participants were recruited from the Weizmann Institute 

of Science (Israel) to take part in the study (female: 30; age range, 21 –58 years; 

mean age, 30.30 years; SD, 7.34) (Experiment 1: 20 participants, 14 females; 

Experiment 2: 40 participants, 16 females). All participants had normal or 

corrected-to-normal vision, and were older than 18 years. They gave informed 

consent prior to the experiment and have been reimbursed for their participation. 

The exclusion criteria were: a history of neurological (e.g., head injury or 

concussion) or psychiatric conditions (e.g., depression, anxiety), drug or alcohol 

abuse, or regular medication that could influence emotional processing.  The study 

was approved by the ethics board of the Weizmann Institute of Science (protocol 

number 0287–09-TLV).  

Materials  

Experiment 1 comprised of 80 images and 80 sounds of animals (‘mammals’: 40 

images, 40 sounds; ‘birds’: 40 images, 40 sounds). These were grouped into 8 

basic-level categories (i.e., mammals: cow, horse, pig, sheep; birds: duck, hen, 

turkey, and sparrow). Four of them served as conditioning stimuli (CS) (e.g., 

mammals CS+: cow, horse; birds CS-: duck, hen), and the remaining four 

categories as generalisation stimuli (GS) (e.g., mammals GS+: pig, sheep; birds 

GS-: turkey, sparrow). Each basic-level category consisted of 10 images and 10 

sounds of different exemplars (e.g., different breeds). As Experiment 2 involved 

an fMRI task that required a rich conditions design (Nili et al., 2014), we doubled 

the number of both images and sounds. Specifically, we selected 160 images and 

160 sounds of animals (‘mammals’: 80 images, 80 sounds; ‘birds’: 80 images, 80 

sounds), and each basic-level category consisted of 20 images and 20 sounds of 

different exemplars, as shown in Figure 5.1.  
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Figure 5.1. Top: experimental stimuli for Experiment 1-2. We selected images and sounds of animals from 

two superordinate categories (‘mammals and ‘birds’), and divided them into 8 basic-level categories: cow, 
horse, pig, sheep, duck, hen, turkey and sparrow. For each participant, two basic-level categories within each 
superordinate category served as CS and two as GS. In this case, images of cow and horse served as CS+ 
(light red square), and images and sounds of pig and sheep as GS+ (dark red square); images of duck and 
hen represented the CS- (light blue square), and images and sounds of turkey and sparrow as GS- (dark blue 
square). Bottom: Number of trials for each experimental condition, divided into experiment 1 and 2, averaged 
across sessions. The number of stimuli in experiment 2 (n=160 within each sensory modality) is doubled than 
those in experiment 1 (n=80 within each sensory modality). Abbreviations: CS, conditioned stimuli; GS, 
generalisation stimuli. 

In both experiments each stimulus was presented only once. We selected the 

visual stimuli using Google images, the sounds from www.soundsnap.com, 

www.epidemicsound.com, and from publicly available resources on the internet. 

Images were grey-scaled and presented on a white background (300 x 200) for 3 

seconds; sounds duration was shortened to 3 seconds and noise background was 

removed using Audacity software (www.audacityteam.org). Stimuli were 

presented using Psychtoolbox-3 (http://psychtoolbox.org). The loss of 1 and 2 

Israeli shekels (NIS) served as US in Experiment 1 and 2, respectively.   

Procedure  

A graphical representation of the general experimental procedure is shown in 

Figure 5.2. Participants performed an aversive conditioning task, wherein they 

http://www.soundsnap.com/
http://www.epidemicsound.com/
http://www.audacityteam.org/
http://psychtoolbox.org/


 
 

101 
 

learned the association between CS (images only) and US (money loss), and 

generalise it to new auditory and visual stimuli (GS). In case of loss, the money 

were taken from an initial amount (Experiment 1: 50 NIS; Experiment 2: 250 NIS) 

that they received before starting the experiment. The allocation of animal to CS 

condition was counterbalanced across participants. Experiments 1-2 differed in 

few aspects. In Experiment 1 only, participants completed a multi-arrangement 

(MA) task to judge the similarity between images before and after the conditioning 

task. In Experiment 2, participants filled the STAI-T and STAI-S questionnaire 

(Spielberger, Gorsuch, Lushene, Vagg, & Jacobs, 1983), before the aversive 

conditioning fMRI task, wherein their pupil dilation was recorded through the eye 

tracking, as neurophysiological measure of aversive conditioning. After the scan, 

they performed a surprise valence and arousal rating task of some of the images. 

In the end of the experiment, we reimbursed participants for their time (Experiment 

1: 40 NIS; Experiment 2: 200 NIS), and explained them the real purpose of the 

study.  

 

Figure 5.2. Top: general procedure in experiment 1. After receiving 50 Israeli shekels (NIS) and being 

instructed for the task, 20 participants judged the similarity of images of animals by performing the multi-
arrangements task before and after aversive conditioning task. They dragged and dropped the images into 
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circular arenas, one for each condition (‘mammals, ‘birds’, and ‘mixed’ with ‘mammals’ and ‘birds’ in it), 
wherein the proximities reflected the similarity among images. The order of the arenas was counterbalances 
across subjects, such that half judged first the ‘mammals’ and then the ‘birds’, and half the opposite. The order 
for each participant was the same before and after the conditioning. In between, participants performed an 
aversive conditioning task, which has the same structure of the fMRI task in experiment 2. The entire 
experiment lasted approximately one hour. Bottom: general procedure in experiment 2. We instructed 40 
participants about the fMRI aversive conditioning task, after giving them 250 NIS and asking to fill the STAI_S 
and STAI_T questionnaire. During the scan, they learned the association between images (VG) or sounds 
(AG) and money loss vs saving. The aversive conditioning task was divided into 4 sessions (two VG and two 
AG), and their order was counterbalanced across participants, such that half performed first VG and then AG, 
and half the opposite. After the MRI, participants performed a surprise valence and arousal rating task outside 
the scan. The entire experiment lasted approximately 2 hours. Abbreviations: CS, conditioned stimuli; GS, 
generalisation stimuli.  

Multi-arrangements task 

In Experiment 1, participants judged the similarity among the pictures by using the 

multi-arrangements (MA) task, a quick and efficient task for acquiring similarity 

judgements in experiments with a relatively large number of stimuli. According to 

Kriegeskorte and Mur (2012),  the MA has high test-retest reliability (r=0.81) as 

well as external validity (Kriegeskorte & Mur, 2012). Because of time constraints, 

images were divided into ‘even’ and ‘odd’, for a total of 40 images within each 

subset (20 mammals and 20 birds). Each participant was randomly assigned to 

one of the subsets (10 participants for each subset). In each trial of the MA task, 

14 stimuli were presented along the perimeter of a circle, or ‘arena’, on a computer 

screen. In order for participants to focus on the similarity both within and between 

basic-level categories, we opted for splitting the images into 3 different arenas, 

one for mammals and the other for birds, each with 5 exemplars for each basic-

level category, and one ‘mixed’ arena with 4 exemplars of mammals and 4 

exemplars of birds, selected randomly from each of the 8 basic-level categories. 

The purpose of the mixed arena was to compare within-category and between-

category similarity. Participants had unlimited time to drag and drop the stimuli in 

each arena according to their similarity, such that similar stimuli were placed close 

to each other and dissimilar stimuli apart. We counterbalanced the order of the 

arenas, which remained the same before and after conditioning, such that half of 

the participants arranged first the ‘mammals’ and then the ‘birds’ arenas, and half 

the opposite. The ‘mixed’ arena was always in between the others. We instructed 

participants to focus on any aspect they considered relevant for the judgements. 

A trial ended when participants arranged all the stimuli in the arena. Subsequent 

trials started with another subset of stimuli to be arranged, selected by using the 

‘Lift-the-weakest algorithm for adaptive design of item subsets’. This method 

optimises trial efficiency by adaptively selecting item subsets whose dissimilarity 
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estimates presented the weakest evidence. The task ended after approximately 

20 minutes, when participants judged all the possible combinations among stimuli 

within each arena.  

Valence and arousal rating task 

In Experiment 2, after the conditioning, participants completed a surprise valence 

and arousal rating task outside the scan, following the procedure suggested by 

Lang et al. (2008) (Lang et al., 2008). This task involved 10 randomly selected 

images for each basic-level category, presented in a pseudorandom order (total= 

80 images: 40 ‘mammals’ and 40 ‘birds’).  Each trial started with a central fixation 

cross for 500 ms. Then, participants viewed one of the images presented in the 

centre of the screen, and rated each pictures on two 9-points scale (valence scale: 

1, negative emotions; 9, positive emotions; 5 neutrals. Arousal scale: 1, relaxed; 

9, aroused; 5 neutral). We instructed participants to respond as quickly as possible 

by clicking the appropriate number key, and informed them that there was not a 

right or wrong answer.  

Aversive conditioning task  

As shown in Figure 5.2, participants took part in 4 sessions, each of which lasted 

approximately 10 minutes. Each session included 10 Pavlovian conditioning (PC, 

always visual) and 40 generalisation trials (either visual, or auditory). During PC 

trials, 2-3 visual CS for each basic-level category were displayed on a blank screen 

for 3 seconds. While the stimulus was presented, participants rated whether it 

predicts either the loss or the saving of 2 shekels (i.e., lose vs saving) and their 

degree of confidence (i.e., sure vs almost sure), by pressing one of the four keys 

on the response box. Then, according to the nature of the CS, a feedback 

appeared on the screen (CS+: ‘you lost 2 NIS’; CS- ‘you saved 2 NIS’). A fixation 

cross-followed the offset of each trial. Generalisation trials were identical to PC 

trials, except that the US was not shown. While participants were conditioned 

using visual stimuli, generalisation trials included either visual or auditory stimuli. 

Two of the sessions involved visual generalisation (VG1 and VG2), while the other 

two involved auditory generalisation (AG1 and AG2). VG1 and AG1 started with 

10 PC trials (5 CS+ and 5 CS-), followed by 40 generalisation trials (20 GS+ and 

20 GS-). In VG2 and AG2, PC and generalisation trials were intermixed. Stimuli 

were presented in a pseudorandomised order, with no more than 2 consecutive 
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items from the same category occurring in a row. The purpose of PC trials was to 

enable learning, but otherwise, they were not the focus of our main hypotheses, 

and they were therefore fewer in number than GS trials. We counterbalanced the 

order of VG and AG across participants, such that 20 participants performed first 

VG and then AG, and 20 the opposite (first AG, and then VG).  We also 

counterbalanced the allocation of category (birds or mammals) to the CS+/GS+ 

and CS-/GS2 conditions.  

We instructed participants that their goal was to understand which images and 

sounds of animals predicted the loss vs the saving of 2 NIS. In case of loss, the 

money were taken from the initial amount of 250 that they received before the 

scan. To increase engagement, participants were told that pressing the wrong key 

will double their loss. Participants received a mean estimation of their loss at the 

end of the second and of the fourth sessions. This estimation was purposefully 

false, and was included to increase the emotional impact of loss on participants. 

In the end of the task, they were reimbursed the same amount for their time, 

regardless of their performance during the task.  

The aversive conditioning task used in experiments 1- 2 were very similar, apart 

for the length of the inter-stimulus interval (ISI) (Experiment 1: 3 seconds; 

Experiment 2: 6-7 seconds), the number of stimuli (Experiment 1: 80 images and 

80 sounds; Experiment 2: 160 images and 160 sounds) and the size of the US 

(Experiment 1: 1 NIS; Experiment 2: 2 NIS).   

 

MRI data acquisition 

MRI procedure 

Images were acquired on whole body 3T MRI scanner (Trio TIM, Siemens, 

Germany) with a 12-channel head coil. Functional images were acquired with a 

susceptibility weighted EPI sequence (TR/TE=2000/30 ms, flip angle=75 degrees, 

voxel dimensions=3x3x3.5 mm, 192 slices) in 4 separate scanning sessions (up 

to two minutes between sessions). Anatomical T1-weighted images were acquired 

after the functional scans (MPRAGE, Repetition time (TR)/Inversion delay time 

(TI)/Echo time (TE)=2500/900/2.32 ms, flip angle=8 degrees, voxel dimensions=1 

mm isotropic, 32 slices).  

Eye Tracking  
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The pupil diameter was acquired with an EyeLink 1000+ eye tracker video-based 

system (SR Research).  The camera was positioned just below the monitor in the 

MRI scanner, recording binocularly pupil size (in arbitrary units) with a sampling 

frequency of 1000 Hz (Alamia, VanRullen, Pasqualotto, Mouraux, & Zenon, 2019). 

The standard five-point calibration procedure for the EyeLink system was 

conducted prior to the first session (Liao, Yoneya, Kidani, Kashino, & Furukawa, 

2016). As pupil measurements depend on the gaze angle (Hayes & Petrov, 2016),  

participants were asked to fixate either the stimulus or a fixation cross positioned 

in the centre of the screen in all experiments. No explicit free viewing or blinking 

periods were included in the tasks.  

 

Data analysis 

In Experiment 1, we expected higher similarity (lower dissimilarity) within than 

between categories. This prediction serves as manipulation check, since a good 

category boundary simultaneously maximize the within-category similarity, and 

minimize the between categories similarity. Our main hypothesis was that aversive 

conditioning increased the similarity among threatening stimuli, as showed at the 

top of Figure 5.3. This hypothesis applied also to the neural data in Experiment 2. 

Specifically, we predicted higher neural similarity in GS+ than GS- regardless of 

their sensory modality, as showed at the bottom of Figure 5.3. We tested this effect 

within visual GSs to replicate previous findings. In addition, for the first time we 

explored it across sensory modalities. We tested this effect within auditory GSs, 

and between visual and auditory GSs. In the former analysis, we investigated 

whether auditory threatening GS become more similar to each other, in the latter 

whether auditory and visual threatening GS come to be alike, following aversive 

conditioning. The last analysis allowed us as manipulation check to test higher 

similarity between the image and the sound of a mammal (i.e., GS+) than between 

the image of a mammal and the sound of a bird (i.e., vGS+/aGS-), or between the 

image of a bird and the sound of a mammal (i.e., (vGS-/aGS+). The same was 

valid for the GS-, as showed at the bottom right of Figure 5.3.  As additional 

manipulation check, we expected that these effects were paralleled by differences 

in pupil diameter (PD), BOLD signal change, and valence and arousal ratings. We 

predicted higher recruitment (higher activation) of brain regions involved in 

semantic processing and aversive conditioning associated with threatening than 
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not- threatening stimuli, wider pupil diameter as well as lower valence and higher 

arousal ratings. Additional details about the statistical analyses are reported in the 

following sections.  

 

Figure 5.3. Top. In experiment 1, we expected higher similarity within than between categories, and that 

aversive conditioning would increase the similarity in CS+/GS+ than CS-/GS-. The similarity in CS+/GS+ was 
calculated as Euclidean distance between items from CS+/GS+ category in the ‘CS+/GS+’ arena (in this case, 
the ‘mammals’), pre and post conditioning. The similarity in CS-/GS- was calculated as Euclidean distance 
between items from CS-/GS- in the ‘CS-/GS-’ arena (in this case, the ‘birds’), pre and post conditioning. The 
similarity between CS+/GS+ and CS-/GS- was calculated as Euclidean distance between ‘CS+/GS+’ and ‘CS-
/GS-’ in the ‘mixed’ arena. Blue colour denote high similarity (low Euclidean distance), and yellow low similarity 
(high Euclidean distance). Bottom. In experiment 2, we predicted higher neural similarity in GS+ than GS- 
(denoted with pink circles), within visual modality and across visual and auditory sensory modalities. In the 
RDM within visual GS and within auditory GS, the similarity in GS+ and GS- was measured as correlational 
distance (1- Spearman’s correlation) in GS+ and in GS-, respectively, averaged across sessions, in VG and 
AG separately. These conditions were also valid in the RDM between visual and auditory GSs (e.g., GS+ 
represented the similarity between visual and auditory GS+). In the latter matrix, we also tested as 
manipulation check higher similarity in GS+ than in vGS+/aGS- and vGS-/aGS+. The same was valid for GS-
. vGS+/aGS- and vGS-/aGS+ were measured as correlational distance (1- Spearman’s correlation) between 
visual GS+ and auditory GS-, and between visual GS- and auditory GS+, averaged across sessions. 
Abbreviations: M, Mammals; B, Birds; CS, Conditioned stimuli; GS, generalisation stimuli; BTW, Between 
CS+ and CS-/ Between GS+ and GS-; CS (+,-) within Conditioned stimuli; GS (+,-) within Generalisation 
stimuli; BTW CsGs (+,-), between CSs and GSs; vGS+/aGS-, between visual GS+ and auditory GS-; vGS-

/aGS+, between visual GS- and auditory GS+.  

Behavioural and neurophysiological data.  

Behavioural and neurophysiological data were analysed using SPSS (IBM SPSS 

Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp) and Matlab R2018a 

(MATLAB 2018a, The MathWorks, Inc., Natick, Massachusetts, United States).  
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Analysis of similarity (MA task).  

In Experiment 1, similarity was measured as Euclidean distance between stimuli 

in the arena.   Specifically, in the first two arenas (one for ‘mammals’ and one for 

‘birds’), a partial RDM is estimated at the end of each trial, showing the Euclidean 

distance between stimuli within each trial. After participants judged the similarity 

among all the stimuli in each arena, two global 20 x 20 RDMs (one for ‘mammals’ 

and one for ‘birds’) were estimated by averaging the partial RDMs with an iterative 

rescaling. This scaling procedure takes into account that in each trial participants 

focused on a specific subset, and that, therefore, there is not a permanent 

relationship between screen distance and dissimilarities across trials (see 

(Kriegeskorte & Mur, 2012) for details). The global 8 x 8 RDM from the ‘mixed’ 

arena (with both mammals and birds) is estimated after one trial, as participants 

judged all the possible combinations in one single trial. Then, we extracted from 

each participant’s global 20 x 20 RDMs the mean and the standard deviation of 

the conditions of interest: dissimilarity within ‘mammals’, dissimilarity between 

subordinate-level categories of ‘mammals’ (e.g., between cow and horse), 

dissimilarity within ‘birds’ and dissimilarity between subordinate-level categories of 

‘birds’ (e.g., between duck and hen), both pre and post aversive conditioning. We 

also estimated in each participant’s global 8 x 8 RDM the dissimilarity within 

‘mammals’, dissimilarity within ‘birds’ and dissimilarity between ‘mammals’ and 

‘birds’, both pre and post aversive conditioning. These were used as dependent 

variables in 2 repeated- measures ANOVAs. In the former ANOVA, we entered as 

dependent variables the mean of the conditions extracted from the 8 x 8 RDM (i.e., 

dissimilarity within ‘birds’, within ‘mammals’, and between ‘birds’ and ‘mammals’), 

and we tested the manipulation of similarity, specifically, the hypothesis that 

dissimilarity within categories will be lower than between categories. The latter (2 

x 2 ANOVA: time [pre vs post] x stimulus type [+ vs -]) was used to investigate the 

main hypothesis, that is, higher similarity (lower dissimilarity) among threatening 

stimuli (CS+ and GS+) after conditioning. We tested this hypothesis using the 

dissimilarity estimates from the global 20 x 20 RDMs.  

 

Analysis of aversive conditioning task.  

We measured aversive learning using the accuracy in ratings of loss expectancy. 

Accuracy scores were calculated by dividing the number of correct answers, that 
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is, when participants rated they were either sure or almost sure to lose money in 

a CS+/GS+ trials (and vice versa for CS-/ GS-), by the number of stimuli within 

each condition. Accuracy was measured separately for PC, VG, and AG trials, and 

averaged across sessions (4 sessions in PC trials, 2 sessions for VG and 2 

sessions for AG). Successful learning was defined as an accuracy score higher 

than chance level (50%) across CSs during PC trials. In a similar manner, we 

defined successful generalisation as above-chance accuracy, computed 

separately for the VG and AG condition. It is worth noticing that participants’ 

responses are considered ‘correct’ in the eyes of the researcher, though they are 

not objectively ‘correct’. We analysed learning and generalisation with three one 

sample t-tests (separately for PC, VG and AG), testing the null hypothesis of no 

difference between the average accuracy and the chance level (50%). We also 

expected increased accuracy scores and decreased RTs over time in each of 

these three conditions. We tested this hypothesis by entering average accuracy 

and latency within the first and the second sessions in three repeated-measures 

ANOVAs (separately for PC, VG and AG, one for accuracy and one for latency), 

with time as within-subject factors.  

Analysis of valence and arousal ratings.  

We estimated average valence and arousal ratings for CS+, CS-, GS+ and GS-. 

These were entered as dependent variables in paired t-tests (one for the CSs and 

for the GSs), separately for valence and arousal. We also estimated the 

Spearman’s correlations between valence GS+ and trait anxiety scores (STAI_T), 

expecting a negative correlation, as well as between arousal GS+ and STAI_T, 

predicting positive correlation.  

Analysis of Pupil diameter (PD) 

We measured the PD as manipulation check that the aversive conditioning 

occurred. We analysed only right-eye data, since data from both eyes showed a 

similar pattern. Time series were analysed from the beginning of the first stimulus 

presentation until the last trial. Data acquired during blinks were treated as 

missing. To obtain a mean response, we extracted data segments following trial 

onset, response time, and US time in PC trials only, and averaged these segments 

separately first within and then across participants. The first segment (i.e., onset) 

was maximum 3 seconds long; the length of the second one (i.e., response time) 
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depended on participants’ response time, thus ranging from 1 second to few 

milliseconds; the last one (i.e., US time) lasted 1.5 seconds. These were z-scored 

transformed (by subtracting the mean and dividing by the standard deviation) 

within each session to account for between-subjects variance in overall pupil size 

(Korn, Staib, Tzovara, Castegnetti, & Bach, 2017).  We expected to observe wider 

PD for threatening stimuli (i.e., CS+ and GS+) than not threatening stimuli (i.e., 

CS- and GS-). 

We predicted that this effect might follow trial onset, response time, and US time. 

In order to test this, we estimated average PD for our conditions of interest, 

separately for each sensory modality, that is, PD GS+ (onset), PD GS+ 

(response), PD GS- (onset), and PD GS- (response), averaged across sessions. 

The same conditions were valid in PC trials, with the addition of PD when US was 

delivered (i.e., PD CS+ (US) and PD CS- (US)). We entered them as dependent 

variables in different paired t-tests with stimulus type as within-subject factor, one 

for each segment (separately for PC, VG, AG).  

 

Neuroimaging data analysis 

Neuroimaging data were pre-processed and analysed using Statistical Parametric 

Mapping (SPM12) (http://store.elsevier.com/product.jsp?isbn=9780123725608) 

and MATLAB R2018a (MATLAB 2018a, The MathWorks, Inc., Natick, 

Massachusetts, United States). Functional images were slice-time corrected to 

reduce the mismatching between acquisition timing of different slices, and 

realigned to a reference (mean) image to minimize the variance due to head 

movements. These were then coregistered to the high-resolution T1-weighted 

structural image, which was coregistered and normalized to MNI space. Finally, 

functional images were normalized to a standard template volume based on the 

Montreal Neurological Institute (MNI) reference brain to achieve a more precise 

comparison across individuals. Spatial smoothing was performed only on 

functional data analysed with a conventional univariate approach using a 6-mm 

full-width at half-maximum isotropic Gaussian kernel. No spatial smoothing was 

carried over on the multivariate functional data, according to the standard practices 

for MVPA studies (Haxby et al., 2001; Kriegeskorte, Mur, et al., 2008b).  

Individual-level model for RSA analysis 
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After preprocessing, functional data from each voxel were analysed using the 

general linear model (GLM). We modelled one GLM for each sensory modalities 

(visual GLM and auditory GLM), which comprised two separate sessions (i.e., 

visual GLM: VG1 and VG2; auditory GLM: AG1 and AG2). Each GLM comprised 

of 100 stimuli (50 for each session). Each stimulus was modelled as a separate 

event beginning with picture or audio presentation onset, using the canonical 

function in SPM12, and included in the model as regressor of interest (100 

regressors for each GLM: 10 CSs and 40 GSs). Six motion correction parameters 

were also modelled within each session, and included in the model as regressor 

of no interest. From this GLM analysis, we obtained a single beta image for each 

stimulus. Contrast images for each stimulus against the implicit baseline were 

generated based on the fitted responses, and averaged across sessions. The 

resulting 100 T-contrast images within each sensory modality were used as inputs 

for RSA.  

Individual-level models for univariate analyses  

Although our hypotheses were specific to the multivariate representations, we also 

performed conventional univariate analyses as manipulation check. We tested 

whether our study replicated previous findings showing higher recruitment 

associated with threatening than not-threatening stimuli in brain regions involved 

in semantic processing and fear excitation, and lower recruitment in regions 

associated with fear inhibition. Individual-level models for univariate analyses were 

almost identical to those used for the RSA, the only difference being that instead 

of modelling 100 stimuli within each sensory modalities (visual GLM and auditory 

GLM), here each condition (i.e., CS+ and GS+, CS- and GS-) was modelled as 

separate condition (4 regressors per session) beginning with each picture/sound 

presentation onset, using the canonical function in SPM12. We included Reaction 

Times (RTs) as parametric modulator for each regressor, to take into account 

differences in latency between conditions. In the contrast images, we focused only 

on GSs stimuli, as they are of interest in this study. Contrast images for GS+ than 

GS- conditions against the implicit baseline were generated based on the fitted 

responses, and averaged across sessions, within each GLM separately. The 

resulting two T-contrast images (i.e., GS+ and GS-) within each sensory modality 

were used as inputs for univariate group analyses. 
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ROIs definition.  

We defined the regions of interest (ROIs) by using the Automated Anatomical 

Labelling (AAL) template in WFU Pickatlas toolbox 

(https://www.nitrc.org/projects/wfu_pickatlas), Anatomy toolbox 

(https://www.fil.ion.ucl.ac.uk/spm/ext/#AAL), and Stanford functional atlas  

(https://findlab.stanford.edu/functional_ROIs.html). We used WFU_Pickatlas 

toolbox to define the Dorsomedial Prefrontal cortex (DMPFC) as Brodmann area 

8 and 9, and the AAL template in WFU_Pickatlas for the bilateral Inferior Temporal 

cortex (ITC), the temporal pole (TP), the Hippocampus (HIP), the dorsal and 

ventral striatum, the Anterior and Middle Cingulate cortex (ACC, MidCC), the 

Thalamus, the Insula, the bilateral Orbitofrontal cortex (superior, middle, inferior 

and medial OFC), the Superior Frontal gyrus (SFG), and the Middle Frontal gyrus 

(MiFG). The bilateral basolateral Amygdala was defined using Anatomy toolbox, 

and the bilateral high-level auditory cortex with Standford functional atlas. Finally, 

the bilateral Inferior Occipital gyrus (IO) and the Fusiform gyrus (FG) as an 8 mm 

sphere around the coordinates reported by Dunsmoor et al. (2013) (Dunsmoor et 

al., 2013). We combined all these ROIs into a single ROIs mask to use as inclusive 

mask in the univariate group analyses. In addition, we used each ROI separately 

to investigate the main hypothesis (higher neural similarity within GS+) across 

sensory modalities, except for the ITC, FG and IO, wherein we tested the main 

hypothesis within visual modality, and the high-level auditory cortex within auditory 

modality.  

Univariate group analyses 

The individual level contrasted images were entered as input in full-factorial 

designs, one for visual and one for auditory modality, with group as between 

subject factors (i.e., whether participants performed first VG or AG) and condition 

as within subject factors (i.e., GS+ vs GS). We then compared GS+ and GS- in 

both directions (T1: GS+ > GS-; T2: GS+ < GS-) in the inclusive ROIs mask.  

RSA group analyses: quantifying neural similarity across sensory modalities 

We predicted higher neural similarity (lower dissimilarity) in GS+ than GS- across 

sensory modalities, as showed at the bottom of Figure 3. We first explored the 

https://www.nitrc.org/projects/wfu_pickatlas
https://www.fil.ion.ucl.ac.uk/spm/ext/#AAL
https://findlab.stanford.edu/functional_ROIs.html
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increased in neural similarity in visual GSs to replicate previous findings in all the 

mentioned ROIs, apart for the high-level auditory cortex that is modality specific. 

For each subject and ROI, we computed a brain activation-pattern RDM, where 

each entry represented the correlational distance (1- Spearman’s correlation) 

between brain activations across voxels in each ROI, and the rows and the 

columns represented the visual experimental stimuli. We will refer to this as visual 

ROI RDM. It is symmetric about a diagonal of zeros, and resulted in 4950 cells in 

the lower triangular part that reflected the pairwise dissimilarity of the response 

patterns associated with the stimuli for each ROI. Then, within each participant 

ROI RDM, we calculated the mean and the standard deviation of the conditions of 

interest, including dissimilarity in GS+ (GS+) and in GS- (GS-). We entered them 

as dependent variables in paired t- tests, one for each ROI, testing the null 

hypothesis of no difference between GS+ and GS-.  

Then, we investigated higher neural similarity in GS+ than GS- across sensory 

modalities. We tested this between auditory GSs, expecting higher similarity in 

auditory GS+ than GS-. We computed the auditory ROI RDM in the same way as 

the visual ROI RDM, except for the rows and the columns that represented the 

experimental stimuli in auditory modality. This effect was tested in all the 

mentioned ROI, apart for the ventral-visual stream that carried out modality-

specific computations.  In addition, we also tested fear generalization between 

visual and auditory GSs in all the ROIs with the exceptions of ventral-visual stream 

and high-level auditory cortex. To compute the RDM between visual and auditory 

GSs, for each participant we estimated the correlational distance between visual 

and auditory ROI RDMs (e.g., visual Amygdala RDM and auditory Amygdala 

RDM). This resulted in a 100 x 100 matrix, wherein each entry represented the 

correlational distance between brain activations across voxels associated with 

each stimulus in visual and auditory modality (within each ROI), the rows 

represented the experimental stimuli in auditory modality, and the columns in 

visual modality. From this RDM, we extracted the previously mentioned conditions 

of interest (GS+, GS-), the dissimilarity between visual GS+ and auditory GS- 

(vGS+/aGS-), and the dissimilarity between visual GS- and auditory GS+ (vGS-

/aGS+), as showed at the bottom of Figure 3. As manipulation check, we expected 

higher similarity (lower dissimilarity) in GS+ than vGS+/aGS-and vGS-/aGS+. The 

same was valid for GS-. In other words, we predicted higher similarity between the 
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image and the sound of a mammal (i.e., GS+) than between the image of a 

mammal and the sound of a bird (i.e., vGS+/aGS-), or between the image of a bird 

and the sound of a mammal (i.e., (vGS-/aGS+) 

We entered the conditions of interest as dependent variables in paired t- tests, one 

for each ROI and comparison of interest.  The RSA was performed using the MRC-

CBU RSA toolbox for MATLAB (http://www.mrc-cbu.cam.ac.uk/methods-and-

resources/toolboxes).  

 

5.3 Results 

Behavioural and neurophysiological data 

Accuracy and RTs 

In experiments 1-2 aversive learning was evaluated using the accuracy in ratings 

of loss expectancy, and PD in experiment 2 only. In experiment 1, on average 

participants learned the association between US and CS, evident in higher 

accuracy scores than chance level across sessions (t ( 19) = 7.94; p<0.001, d= 

1.78). In addition, accuracy scores improved over time, with higher accuracy in the 

last than in the first five trials (t (19) = -2.85; p=0.010, d= 0.65). However, we did 

not observe significant decrease in RTs over time. Successful visual (VG) and 

auditory (AG) fear generalization to new exemplars was measured as in the PC 

trials. On average, participants generalised fear to new exemplars, evident in 

higher accuracy scores than chance level, in both VG (t (19) = 10.61; p<0.001, d= 

2.35) and AG (t (19) = 20.01; p<0.001, d= 4.3). Accuracy increased over time in 

AG only (t (19) = -3.03; p=0.007, d= 0.45). As in PC trials, RTs did not change over 

time.  

In experiment 2, participants learned the association between US and CS, evident 

in higher accuracy scores than chance level across the 4 scanning sessions (t (39) 

= 11.22; p<0.001, d= 1.76). In addition, accuracy scores improved over time, with 

higher accuracy in the last than in the first sessions (F (3, 37) = 14.76; p<0.001, 

ηp
2=0.28). Additional evidence of successful acquisition was provided by a 

decrease in RTs over time, with higher RTs in the first than in the last sessions (F 

(3, 37) = 27.08; p<0.001, ηp
2=0.41). This was associated with increased PD for 

CS+ than CS- while participants were rating loss expectancy (t (39) = 2.41; p=0.02, 

http://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes
http://www.mrc-cbu.cam.ac.uk/methods-and-resources/toolboxes
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d= 0.16), and after they received the US (t (39) = 3.36; p=0.002, d= 0.22) across 

the 4 sessions. These results are shown in Figure 5.4. 

 

Figure 5.4. Experiment 2: Learning performance and pupil diameter (PD) during Pavlovian Conditioning (PC) 

trials, distributed across the 4 scanning sessions (10 trials within each session: 5 CS+ and 5 CS-). Accuracy 
was measured by dividing the number of correct answers for the number of stimuli within each condition, 
separately for CS+ and CS-, within each session. The RTs were also measured within each condition, 
separately for CS+ and CS-, within each session. Both accuracy and RTs were averaged across CS+ and 
CS- in the top left plot. PD measures at response time and when the US was delivered were z-scored 
transformed, by subtracting from the raw data the mean PD within each session across conditions, and 
dividing it by its standard deviation.  Error bars represent ±2 SEM. *, p<0.05. Abbreviations: RTs, Reaction 

times; PD, pupil diameter. 

Successful visual (VG) and auditory (AG) fear generalization to new exemplars 

was measured as in the PC trials. On average, participants generalised threat to 

new exemplars, evident in higher accuracy scores than chance level, in both VG (t 

(39) = 7.61; p<0.001, d= 1.20) and AG (t (39) = 8.14; p<0.001, d= 1.47).  We also 

observed a decrease in RTs throughout the scanning sessions, with lower RTs in 

the second than in the first sessions of VG (t (39) = 12.64; p=0.001, d=0.16) and 

AG (t (39) = 30.68; p<0.001, d= 0.31). These results are shown in Figure 5.5. 

However, we did not find significant differences in PD between GS+ and GS-, either 

while participants were seeing images of/ listening the sounds of new exemplars 

or while they were providing their ratings (p>0.05).  
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Figure 5.5. Experiment 2: Participants performance during Visual (VG) and Auditory (AG) generalisation 

trials. Accuracy was measured by dividing the number of correct answers for the number of stimuli within 
each condition, then averaged across GS+ and GS-, within each session. The RTs were measured in the 
same manner. The dash line represents the chance level. Error bars represent ±2 SEM. *, p<0.05. **, 
p<0.001. Abbreviations: GS, generalisation stimuli; VG, visual generalisation; AG, auditory generalisation; 
RTs, Reaction times. 

 

Valence and arousal ratings between threatening than not threatening stimuli, and 

STAI_T 

Further evidence that the conditioning and generalisation occurred were found in 

the valence and arousal rating task. Particularly, we observed differences in 

valence ratings between CS+ than CS- (t (39) = -5.36; p<0.001, d= 1.73) and 

between GS+ than GS- (t (39) = -3.48; p=0.001, d= 1.12), with lower valence 

scores in CS+/GS+ than CS-/GS-. Valence ratings were highly correlated across 

participants between CS+ and GS+ (Spearman's ρ= 0.72, p<0.001) and between 

CS- and GS- (Spearman's ρ= 0.57, p<0.001).  Arousal ratings also differed 

between CS+ than CS- (t (39) = 2.33; p=0.03, d= 0.51) and between GS+ than 

GS- (t (39) = 2.22; p=0.03, d= 0.50), with higher arousal scores in CS+/GS+ than 

CS-/GS-. Arousal ratings were highly correlated between CS+ and GS+ 
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(Spearman's ρ= 0.59, p<0.001) and between CS- and GS- (Spearman's ρ= 0.84, 

p<0.001).  Finally, STAI_T was negatively correlated with valence ratings in CS+ 

(Spearman's ρ= -0.36, p=0.02) and in GS+ (Spearman's ρ= -0.31, p=0.04), and 

positively with arousal ratings in GS+ (Spearman's ρ= 0.41, p=0.009). These 

findings are shown in Figure 5.6.   

 

Figure 5.6. Experiment 2: differences in valence (top) and arousal (bottom) ratings between CS+ and CS-, 

and GS+ and GS-, averaged across participants. On the right, Spearman r between STAI_T and Valence 
GS+, and STAI_T and arousal GS+, averaged across participants. Error bars represent ±2 SEM. **, p< 
0.001. *, p<0.05. Abbreviations: CS, Conditioned stimuli; GS, generalisation stimuli. 

 

No differences in similarity perception among threatening stimuli 

In Experiment 1, our manipulation check revealed lower dissimilarity within 

category (e.g., within mammals, within birds) than between categories (e.g., 

between mammals and birds) (F (2, 18) = 56.10, p<0.001, ηp
2=0.75). Crucially, 

there was no difference in similarity perception between threatening and not-

threatening stimuli after conditioning (F (1, 19) = 2.61, p=0.12, ηp
2=0.12). This 

result is shown in Figure 5.7. 
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Figure 5.7. Experiment 1: Average dissimilarity between subordinate-level categories of threatening (CS+ 

and GS+) and not threatening (CS- and GS-) stimuli, before and after conditioning. Dissimilarity was measured 
as average Euclidean distance between subordinate-level categories of threatening (CS+ and GS+) and not 
threatening (CS+ and GS+) visual stimuli. Error bars represent ±2 SEM. 

Neuroimaging data 

Manipulation check: Univariate differences between GS+ and GS- 

In VG, we observed significantly higher activation for GS+ than GS- in the right 

OFC, Insula, and  MiFG (pFWE<0.05), but not significant differences for the 

opposite contrast (i.e., GS+< GS-) in the ROIs mask. The activation in the right 

OFC during GS+ was significantly correlated with the valence GS+ ratings 

(Spearman’s ρ=-0.37, p=0.019). In AG, we found that the right Thalamus and right 

MiFG were more activated during GS+ than GS-, and that the left Putamen was 

more activated for the opposite contrast (i.e., GS+< GS-) (pFWE<0.05). These 

findings are shown in Table 5.1 and Figure 5.8. 

 

Table 5.1. Experiment 2: Differences in BOLD signal change between GS+ and GS- during visual and auditory 

generalisation in the ROIs mask. Results were Bonferroni corrected for multiple comparisons using pFWE < 
0.05. Small volume correction was applied in the analyses. Abbreviations: OFC, Orbitofrontal cortex; MiFG, 
Middle frontal gyrus; R, right; L, left. 

Analysis T Contrast p FWE K p unc T x y z Label 

VG 

CS+/ GS+ 

> 

CS-/ GS- 

0.005 21 <0.001 4.01 24 47 -13 OFC R 

0.018 25 <0.001 3.51 33 -22 14 Insula R 

0.053 22 0.001 3.24 36 17 44 MiFG R 

AG 

CS+/ GS+ 

> 

CS-/ GS- 

0.025 16 <0.001 3.52 6 -7 23 Thalamus R 

0.044 12 0.001 3.29 21 -7 38 MiFG R 

CS+/ GS+ 

< 

CS-/ GS- 

0.048 26 0.001 3.26 -27 -4 -1 Putamen L 
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Figure 5.8. Experiment 2: differences in BOLD signal change between GS+ and GS- across sessions, during 

visual (left) and auditory (right) generalisation in the ROIs mask. Top: brain regions associated with higher 
activation for GS+ than GS- conditions. Bottom: brain regions associated with lower activation for GS+ than 
GS- conditions. Results were corrected for multiple comparisons using pFWE < 0.05. Small volume correction 
was applied in the analyses. We also computed the Spearman’s correlation between brain activations and 
emotional ratings to GS+ and GS-. Abbreviations: Abbreviations: OFC, Orbitofrontal cortex; MiFG, Middle 
frontal gyrus; R, right; L, left. 

RSA: neural generalisation across sensory modalities  

In the whole sample, we did not observe differences in neural similarity in any ROI 

between GS+ and GS- in visual modality. Thus, we explored whether the same 

effect was present only in participants who generalised (n=31). As previously 

mentioned, successful generalisation was defined as an accuracy score higher 

than chance level (50%) across GSs computed separately for the VG and AG 

condition. We found higher neural similarity (lower dissimilarity) in GS+ than GS- 

in the bilateral FG (left: t (30) = -2.60, p=0.01, d= 0.05; right: t (30) = -2.15, p=0.04, 

d= 0.05), bilateral ITC (t (30) = -2.31, p=0.03, d= 0.04), and bilateral DMPFC (t 

(30) = -2.24, p=0.03, d= 0.05). These findings are shown in Table 5.2 and Figure 

5.9.  
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Table 5.2. Experiment 2: Effect of aversive conditioning on neural dissimilarity during visual generalisation. 

Difference in neural dissimilarity (measured as correlational distance) among conditions. The dissimilarity 
within GS+ and within GS- were calculated by averaging the dissimilarity within GS+ and within GS- across 
sessions, for each participant. These were entered as dependent variables in paired t tests, one for each brain 
cluster (p<0.05). *, p<0.05. Abbreviations: dissimilarity GS+, within GS+; GS-, within GS-; FG, Fusiform gyrus; 
ITC, Inferior temporal cortex; DMPFC, Dorsomedial prefrontal cortex; L, left; R, right. 

 

 

Figure 5.9. Experiment 2: Differences in correlational distance during visual generalisation within GS+ and 

within GS- in different brain regions, including the bilateral FG, ITC and DMPFC. The dissimilarity within GS+ 
and within GS- were calculated by averaging the dissimilarity within GS+ and within GS- across sessions, for 
each participant. These were entered as dependent variables in paired t tests, one for each brain cluster 
(p<0.05). *, p<0.05. Abbreviations: dissimilarity wGS+, within GS+; wGS-, within GS-; FG, Fusiform gyrus; 
ITC, Inferior temporal cortex; DMPFC, Dorsomedial prefrontal cortex; L, left; R, right.  

ROIs 

 

Conditions 

 

Statistics 

 GS+ GS- t p d 

FG L 0.74 ± 0.12 0.76 ± 0.11 -2.60 0.01* -0.05 

FG R 0.71 ± 0.13 0.73 ± 0.12 -2.15 0.04* -0.05 

ITC 0.87 ± 0.07 0.89 ± 0.06 -2.31 0.03* -0.04 

DMPFC 0.90 ± 0.06 0.91 ± 0.05 -2.24 0.03* -0.05 
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However, we did not find any significant difference between auditory GS+ and GS-

, either in the whole sample or in the subsample with only participants that 

generalised, pointing at equal similarity between auditory GS+ and auditory GS-. 

However, in the entire sample, we observed higher neural similarity across 

sensory modalities in GS+ than GS- in the bilateral Insula (t (39) = -2.37, p=0.02, 

d= -0.10), that is, higher similarity between visual and auditory GS+ than between 

visual and auditory GS-. This result is shown in Figure 5.10. The same effect was 

observed in the subsample of participants that generalised, although the effect 

was smaller (t (30) = -2.03, p=0.05, d=-0.09). However, our manipulation check of 

higher similarity between the image and the sound of a mammal (i.e., GS+) than 

between the image of a mammal and the sound of a bird (i.e., vGS+/aGS-), or 

between the image of a bird and the sound of a mammal (i.e., (vGS-/aGS+), 

revealed not significant results.  We did not observe any of these effects in the 

other ROIs.  

 

Figure 5.10. Experiment 2: Differences in dissimilarity (measured as correlational distance) between visual- 

auditory GS+ and visual-auditory GS- in the bilateral insula. The dissimilarity between visual-auditory GS+ 
and visual-auditory GS- calculated by averaging the dissimilarity within GS+ and within GS- across sessions, 
for each participant. These were entered as dependent variables in paired t tests, one for each brain cluster 
(p<0.05). *, p<0.05. Abbreviations: GS+, dissimilarity between visual and auditory GS+; GS-, dissimilarity 
between visual and auditory GS-.   

5.4 Discussion 

In a series of experiments, we investigated the effect of aversive conditioning on 

behavioural and neural measures of similarity between images and vocalisations 

of animals. We reported three findings. First, aversive conditioning increased the 

neural similarity between threatening visual stimuli, and between visual and 

auditory stimuli.  The former effect was observed in the occipitotemporal cortex 
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and in the DMPFC in participants that generalised, the latter in the bilateral insula 

in the entire sample. Second, after conditioning, participants rated threatening 

stimuli as more negative and arousing than not threatening stimuli, and these 

ratings correlated with trait anxiety scores. Finally, despite the increase in neural 

similarity and changes in emotionality ratings after aversive conditioning, we did 

not observe any change in similarity perception among images of animals in an 

independent sample. Below we discuss the implications of these findings.  

 

Increased neural similarity across sensory modalities after aversive 

conditioning  

In experiment 2, we found that aversive conditioning is associated with a 

strengthening in neural similarity in GS+ than GS- in visual modality, and across 

sensory modalities. Part of our condition manipulation was successful, evident in 

differences in emotionality ratings and univariate activations after the conditioning 

between threatening and not threatening stimuli.  Similarly to Levine et al. (2021) 

that found increased neural similarity in the superior frontal gyrus and right 

temporal pole between the CS+/GS+ superordinate- level categories (e.g., 

animals), we included images of exemplars from different subordinate-level 

categories to explore the same effect between CS+/GS+ subordinate-level 

categories (Levine, Kumpf, Rupprecht, & Schwarzbach, 2021). The novelty of our 

study was testing this effect across visual and auditory sensory modalities.  

We observed increased neural similarity in visual modality in the occipitotemporal 

cortex, replicating previous finding (Dunsmoor et al., 2013), and in the DMPFC for 

the first time. The occipitotemporal cortex is involved in neural representation of 

visual stimuli in semantic categories, as previously shown (Charest et al., 2014; 

Kriegeskorte, Mur, Ruff, et al., 2008). The DMPFC has been involved in emotion 

regulation strategies by cognitive reappraisal during emotional learning (Buhle et 

al., 2014; Kohn et al., 2014). In addition, previous neuroimaging studies showed 

that brain activations to the CS+/ GS+ vs CS-/GS- in different brain regions, 

including DMPFC, decreased as the presented GS diverges from CS+ (for reviews 

see (Etkin, Egner, & Kalisch, 2011; Sehlmeyer et al., 2009). Lissek et al. (2014) 

proposed it as a neurobiological mechanisms underlying the behavioural 

overgeneralization seen in anxiety patients (Lissek et al., 2014), and it is consistent 

with the view of the DMPFC as neural hub that influences the activity in other brain 
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regions when threats are unpredictable (Wheelock et al., 2014). We speculate that 

the DMPFC encodes the threat value associated with the GS+ stimuli, and 

modulates the neural representations of threatening semantic category in the 

ventral-visual stream via thalamus projections. This might be the result of local 

(within a brain region) and distant (between brain regions) synchronisation 

processes, underlying higher similarity among threatening stimuli (Grandjean et 

al., 2008). More specifically, a stable mental representation (of the stimuli in GS+, 

for example) emerges from the patterning of neuronal assemblies in the ventral-

visual stream, which encoded the ‘relevance’ of the stimulus (through thalamus-

amygdala connections), and it is exchanged, through functional coupling via 

thalamus, with the DMPFC. This neural representation of the new ‘threatening’ 

category pattern is shared among threatening stimuli, and might explained their 

higher neural similarity. This mechanism is functional to survival, as it supports a 

fast ‘fight or flight’ action in front of new exemplars that more resembled the CS+ 

category (Levine et al., 2018).  

In support to this, we also observed increased similarity between visual and 

auditory GS+ than GS- in the bilateral insula. Our findings are in line with those 

from Onat et al. (2015), showing a strengthening in neural similarity in the insula 

between CS+ and US in visual modality (Onat & Büchel, 2015). As part of the 

‘salience network’, the insula forms a mental representation of the internal 

homeostatic state, activated in front of emotionally relevant stimuli via bottom-up 

connections of the insula with the rest of the body (Lindquist et al., 2012; Menon 

& Uddin, 2010).  With this goal, it integrates aspects of bodily reactions triggered 

by external and internal stimuli, encoded in different neuronal subpopulations (e.g., 

cardiac, respiratory), through synchronisation process (Sander et al., 2018); it 

evaluates them and maps them into different bodily states representations (Onat 

& Büchel, 2015). The role of insula in fear generalisation across sensory modalities 

is further supported by clinical data showing that patients with anxiety disorders 

exhibit signs of impaired visceral and bodily processing (Paulus & Stein, 2006), 

and that specific phobias are associated with abnormal insular responses (Etkin & 

Wager, 2007).  

In line with the findings of experiment 2, we observed that trait anxiety scores were 

negatively and positively correlated with GS+ ratings of valence and arousal, 

respectively, after conditioning. To our knowledge, no previous studies reported 
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an association between ratings of emotional dimensions of GS+ and trait anxiety 

in healthy controls. Wiemer et al. (2021) found similar results, but for emotionality 

ratings of GS- only (Wiemer, Rauner, Stegmann, & Pauli, 2021), suggesting that 

anxiety may be related to increased responses to safety stimuli (Duits et al., 2015). 

In their study, participants were asked either to up-regulate or down-regulate their 

emotions by reappraisal, while emotional and neutral faces were shown, some of 

which were paired with a scream as US and served as CS+. One explanation 

underlying this discrepancy might be because uncertainty might worsen fear 

generalisation in participants with high trait anxiety. Indeed, authors reported 

higher accuracy in memory performance for CS+ than CS-, suggesting higher 

uncertainty among participants in the latter than former condition. Uncertainty 

might increase anxiety, especially in participants with high trait anxiety scores, to 

the point that safe stimuli are misjudged as threatening. Conversely, in our study, 

given the high number of GS trials, uncertainty was almost absent on average, as 

evident in the high accuracy in the first session of VG and AG.  Participants with 

high trait anxiety scores perceived the threatening stimuli as more negative and 

arousing, suggesting that anxiety may amplify negative emotions, resulting in 

difficulties in emotion regulations previously reported in anxious individuals (Cho, 

White, Yang, & Soto, 2019). Specifically, anxious individuals struggle in early 

stage of emotion processing (Liu, Wang, & Li, 2018), leading to choosing 

ineffective emotional regulations strategies, and even when they are effective, a 

more intense internal emotional response may nullify the benefits of that strategy 

(Soto et al., 2012). This is also in line with a previous finding that undergraduates 

with high trait social anxiety perceive negative mental images in feared situations 

as less controllable than less anxious students (Moscovitch et al., 2013).  

However, the data on neural similarity across sensory modalities present some 

limitations, as we did not observe an increase in neural similarity in auditory GS+, 

and our manipulation check for the RSA across sensory modalities did not reveale 

significant results. In other words, the neural similarity of the same condition 

across different sensory modalities (e.g., visual and auditory GS+) was not 

significantly higher than the neural similarity between different conditions across 

different sensory modalities (e.g., vGS+/aGS-). One of the reasons might be that 

Aversive conditioning acts by increasing the similarity within the conditioned 

modality (i.e., visual), and across conditioned and not-conditioned modalities, 
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rather than also within the not conditioned (i.e., auditory) one. An alternative 

explanation might be related to the low emotional impact of the US. This is also 

supported by emotionality ratings, showing that, despite the differences in valence 

and arousal ratings between GS+ and GS-, both conditions present neutral 

valence and arousal, as both measures ranged between 4 and 6. In addition, we 

did not observe any difference in pupil diameter between GS+ and GS- during 

visual and auditory generalisation, but only during Pavlovian conditioning trials, 

suggesting a decreased emotional impact over time. Given that PC trials were 

fewer compared to GS trials, and half of them were presented at the beginning of 

first session (both in auditory and visual generalisation blocks), participants were 

naïve while seeing half of the PC trials, resulting in higher emotional impact than 

in GS trials. Also, the slow-event related design (long inter-stimulus intervals), and 

possibly secondary appraisals (i.e., implications) of the GS+ stimuli might have 

contributed to the reduced emotional effect, as participants were aware they would 

have been reimbursed for their time. This is also in line with neuroimaging data, 

which did not reveal any difference in activation between GS+ and GS-, for 

example, in the Amygdala. Delgado et al. (2008) found that thinking about 

something calming in nature, while viewing a conditioned stimulus (CS+) 

predicting an aversive electric shock, reduces the triggered conditioned responses 

(i.e. skin conductance and amygdala activity) (Delgado, Nearing, LeDoux, & 

Phelps, 2008). The same might be true in our experiment, when participants 

reappraised their fear of losing money with a more reassuring thought (i.e., 

reimbursement).  

Taken together, these findings suggest that aversive conditioning occurred and 

fear generalised between CS+/GS+ subordinate-level categories, as supported by 

behavioural (accuracy, RTs, valence and arousal ratings) and neurophysiological 

(PD, BOLD signal) data. We also provided some light on the neural mechanisms 

of fear generalisation, showing that it is associated with an increase in neural 

similarity between stimuli in GS+ category within the conditioning modality, as well 

as across conditioned and not- conditioned sensory modalities (i.e., visual and 

auditory). Despite these changes, and the effect of trait anxiety scores on 

emotionality ratings of GSs, the perception of similarity among them did not 

change following conditioning.  
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Similarity perception does not change after aversive conditioning  

In experiment 1, we did not find increased similarity between subordinate-level 

categories in the threatening than not-threatening conditions following aversive 

conditioning, despite the differences between them in neural similarity observed in 

experiment 2. This might suggest that aversive conditioning does not change 

similarity perception, but it affects the neural representation of threatening stimuli, 

which are semantically similar to the CS+. From an evolutionary perspective, a 

strengthening in the neural similarity among stimuli that predict the same outcome 

(i.e., possible threat) is more efficient, as they can be grouped together in the same 

(emotional) category, encoded as regularities in neural patterns (Onat & Büchel, 

2015), rather than as separate events. However, in behaviour, when participants 

are asked to explicitly judge inter-stimulus similarity (rather than rating money loss 

expectancy of each stimulus), semantic features might be more relevant. 

Participants arranged the stimuli in the arena according to their semantic similarity, 

across the different levels of categories, before and after the conditioning. These 

results demonstrate that aversive conditioning might not affect similarity 

perception, but has an influence on emotional processing and categorisation. This 

fact is supported by differences in emotionality ratings between threatening and 

not-threatening stimuli after conditioning, their correlation with trait anxiety scores, 

and by experience-dependent changes in PD and BOLD signal among threatening 

stimuli in experiment 2. 

An alternative explanation might be that secondary negative reinforcements as US 

in an experimental setting does not have a high emotional impact on participants. 

Participants mentally represent threatening stimuli as more negative than not-

threatening, but they do not experience conscious emotional threat. However, 

previous studies using similar US (Laufer & Paz, 2012; Lissek et al., 2009) 

detected behavioural changes in fear generalisation, with the difference that they 

used simple visual or auditory GSs (i.e., shapes, tones), which differed along 

perceptual dimensions (e.g., size, pitch). In our study, we included an additional 

(not perceptual) feature into the similarity space, which might be as relevant as 

visual and emotional dimensions in judging inter-stimulus relationships (Martina 

Riberto et al., 2021).  

 

Limitations 
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Our study presents several limitations that can be addressed in future work. First, 

our materials were limited. We studied only aversive, and not reward conditioning. 

We chose this because only the former is relevant for overgeneralisation bias in 

anxiety disorder. It would be interesting in future studies to examine whether 

reward conditioning is also associated with an increase in neural similarity across 

sensory modalities. Second, the US may not have had a high emotional impact, 

as shown in the neurophysiological and neuroimaging data. This might also 

explain the small effect sizes of differences in neural similarity between GS+ and 

GS- detected in experiment 2, within and across sensory modalities. Future 

studies should explore the same research question by adopting a primary rather 

than secondary negative reinforcements (Delgado, Labouliere, & Phelps, 2006). 

Finally, we cannot infer any causal role of aversive conditioning on neural similarity 

from our study. Future studies could use TMS to further explore this aspect of the 

findings.  

 

Conclusions 

In conclusion, we observed a strengthening in the neural similarity structure of the 

stimuli that resemble the CS+ (i.e., GS+) after aversive conditioning. This effect 

was detected between visual GS stimuli in the occipital-temporal cortex and in the 

DMPFC, and between visual and auditory GS+ in the insula. These data were 

paralleled by experience-dependent changes in PD, BOLD signal and emotionality 

ratings. Despite the differences in neural similarity, the similarity perception 

between threatening stimuli remained unchanged. We speculate that increased 

neural similarity might be the result of local and distance synchronisation 

processes between brain regions involved in fear generalisation. This might be an 

efficient and functional mechanism, which may become maladaptive in individuals 

with anxiety disorders.  
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6. Chapter: General discussion 

In this thesis, our aims were twofold. First, we were interested in when and why 

two emotional experiences are similar to each other, and second, whether the 

neural representations of emotional stimuli were more similar to each other than 

those of neutral stimuli. We assumed a similarity space that comprises of several 

integrated visual (e.g., luminance, contrast), semantic (e.g., taxonomy, theme) and 

emotional (e.g., valence, arousal, appraisals) dimensions. In this space, stimuli are 

displaced according to the similarity between them along these dimensions, with 

short distances reflecting high similarity. We expected emotional features to be the 

most influential in perceived similarity, because it enables individuals to 

differentiate emotionally relevant stimuli from those that are not as function of 

survival, following primary appraisals. According to this, we predicted emotional 

stimuli (e.g., fearful and disgust faces; threatening animals; car accidents and 

poverty scenes) to be placed in the similarity space closer to each other than 

neutral stimuli (e.g., neutral faces; not threatening animals; scenes of laundry and 

phone call), as they shared low scores in valence and high scores in arousal, and 

thus more salient. We also expected this to be underpinned by higher similarity in 

the neural activation patterns of emotional than neutral stimuli. We tested our 

hypotheses using two similarity judgements tasks (i.e., pairwise ratings and MA 

tasks) and several databases of stimuli that differed in visual complexity (e.g., 

pictures of animals, complex scenes) and along emotional dimensions (e.g., 

fearful faces; scenes of car accidents). Specifically, we selected both stimuli that 

were emotional per se in chapter 3 (e.g., fearful and disgusted faces) and chapter 

4 (e.g., pictures of car accidents, poverty scenes), and in chapter 5 neutral images 

and sounds of animals stimuli that assumed an emotional value following fear 

conditioning.  

Specifically, in chapter 3 we found that, even though two expressions of the same 

person were physically more similar to each other than the faces of two different 

individuals who expressed the same emotion, participants judged both types of 

face pairs to be just as similar to each other. This suggests an important role of 

emotion on similarity perception that goes beyond the objective visual reality of the 

face. While emotion mattered to similarity perception, this was not because 

participants perceived stimuli high in emotion to be more similar than those low in 
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emotion. In fact, emotional faces were perceived to be just as similar as neutral 

faces. It was the presence of emotion that mattered: when emotionality 

mismatched (i.e., EE_DF and EN), faces were perceived as least similar, and 

when it matched (i.e., EE and NN), as most similar. We replicated the same 

findings in the behavioural experiments in chapter 4, wherein emotional mismatch 

mattered a great deal. Specifically, EN pairs were consistently judged as least 

similar compared to conditions of emotional match (e.g., EE and NN) and to those 

wherein negative emotions were qualitatively mismatched according to a ‘basic 

emotions’ approach, but similar in valence and arousal, assuming a dimensional 

perspective (e.g., E12, N12). Also, in chapter 5 (experiment 1) pairs in EN were 

judged as the least similar.  

Nevertheless, emotional dimensions were the most influential in the similarity 

space, only when thematic similarity was not controlled (chapter 4, experiment 1). 

This resulted in higher similarity ratings for emotional than randomly-selected 

neutral pictures. When semantic similarity was controlled (chapter 4, experiments 

2-3) participants subjectively perceived negative emotional stimuli to be just as 

similar as neutral stimuli. Ratings clustered according to the four categories, 

suggesting that the semantic meaning of each picture – not negative emotion - 

was the most relevant feature. The same pattern of results has been found in 

chapter 5 (experiment 1), wherein aversive conditioning was not associated with 

increase in similarity between threatening and not threatening visual stimuli.  

Despite this equivalence in similarity perception, emotional dimensions were more 

influential in the neural similarity space, resulting in higher similarity among the 

neural representations of emotional compared to neutral stimuli. In particular, in 

chapter 4 (experiment 3) we observed a strengthening in neural similarity in brain 

clusters located in the ventral visual processing stream underlying semantic 

processing and categorisation, and in regions involved in affect representations 

(i.e., precuneus and anterior insula) and modulation (i.e., dorsal anterior cingulate 

cortex). Consistently, in chapter 5 (experiment 2) we found increased neural 

similarity in the occipitotemporal cortex among threatening visual stimuli, and in 

the insula between visual and auditory stimuli that predicted a negative outcome 

(i.e., money loss), following aversive conditioning. We discuss the implications of 

these results below.  
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Increased neural similarity between emotional than neutral stimuli.  

In chapters 4 (experiment 3) and 5 (experiment 2) we observed that the neural 

representations of emotional stimuli were more similar than those associated with 

neutral stimuli. We observed this effect using visually complex stimuli, which 

evoked negative emotions per se’, and simple stimuli, which were emotional in an 

experience-dependent fashion. In both experiments, negative emotions were 

associated with a strengthening in neural similarity. This might suggest that the 

brain encodes more similarly stimuli that share an emotional value compared to 

those rated as non-emotional. In other words, neural similarity as measured by 

RSA might inform us about how different neural populations respond to the 

experimental conditions, and in line with this, are clustered in the (neural) similarity 

space. High proximity between neural representations suggest that the stimuli are 

grouped together as they share a neural pattern which emerges as stable 

representation from underlying dynamic system (e.g., signalling between neurons 

or between brain regions). The neural space is defined according to the features 

that are functional to discriminate the stimuli (e.g., low-level visual features, 

semantic meaning, valence) in a parsimonious way. Each feature is encoded in 

brain regions involved in computing different aspects of the stimuli (e.g. the 

ventral-visual stream carries out the semantic processing; the precuneus 

represents the valence). In effect, we found increased neural similarity for 

emotional than neutral stimuli in occipitotemporal cortex (e.g., ITC, FG), which 

underpins semantic processing and categorisation (Clarke & Tyler, 2014; Iordan 

et al., 2015), and in brain regions involved in affect representations (i.e., 

precuneus, insula) (Giordano et al., 2021; Kim et al., 2017) and modulation (i.e., 

dACC and DMPFC) (Kohn et al., 2014; Saarimäki et al., 2018).  

Emotion-dependent increases in neural similarity suggests that emotion might be 

the most influential dimension in the neural similarity space. According to this, we 

define what is bad or good for us, such that any representation of the world is an 

integrated product between emotion, perception and thought (e.g., ‘That is a good 

thing’) rather than isolated psychological events (e.g., ‘That is a thing. I feel good’) 

(Todd et al., 2020).  Thus, ‘bad things’ might have similar neural representations 

in the precuneus because they share (negative) valence, as well as in regions 

involved in emotions regulation, as they might induce an emotional response that 
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is more difficult to suppress than neutral stimuli. In addition, ‘bad things’ might have 

similar neural profiles in high-level and low-level visual regions as a result of top-

down neural modulation. Thus, irrespective of instructions or task demand, 

emotional similarity might be considered as a functional organising principle for 

the brain that helps to define which stimuli are more salient in the early stage of 

neural processing.   

In chapter 4 (experiment 3), we found that the similarity among the neural 

representations of emotional compared to neutral categories was higher, both in 

regions that also expressed similarity between neutral stimuli, and in unique 

regions. Specifically, the early visual cortex (EVC) and brain clusters responsible 

for affect representation and emotion regulation (i.e., precuneus, anterior insula 

and dACC) uniquely represented the similarity between emotional stimuli.  

Conversely, high-level visual regions involved in semantic processing and scenes 

categorisation (i.e., ITC, FFA, OPA and PPA) encoded the similarity between the 

two emotional and the two neutral categories, but more strongly in the emotional 

condition. OPA and PPA relate low-level visual features encoded in the EVC with 

the high-level aspects of the scene (R. A. Epstein & Baker, 2019), and like other 

ITC regions, may be modulated by regions that are sensitive to salience, such as 

anterior insula and dACC (Lindquist et al., 2012), resulting in higher similarity. 

Likewise, we may have observed stronger neural similarity between emotional 

categories in occipitotemporal regions (Kim et al., 2017) because of the influence 

of the precuneus, which is involved in valence representation and structurally 

connected with the ITC (Y.-H. Lin et al., 2020). 

In chapter 5 (experiment 2) we replicated previous studies in fear conditioning 

literature with visual stimuli (Dunsmoor et al., 2013; Levine et al., 2021; Onat & 

Büchel, 2015; R. M. Visser et al., 2011) and extended them across sensory 

modalities. Particularly, we observed a strengthening in neural similarity after fear 

conditioning among visual GS, which were semantically related to the CS+, in the 

ventral visual stream (e.g., ITC, FG) and in brain regions that carried out emotion-

relevant computations, including the DMPFC. Furthermore, we found higher 

neural similarity between visual and auditory GS+ in the insula, which encoded a 

mental representation of the internal homeostatic state. This converging evidence 

might suggest that it is evolutionarily more important to integrate the emotional 

information in neural representations in order to increase the relevance of the 
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stimulus, rather than separately encode the meaning of the stimulus and its 

emotional value. This mechanism is adaptive, because it enables individuals to 

differentiate emotionally salient stimuli from those that are not, and might support 

broad generalisation between stimuli, which predict the same fitness-relevant 

outcome.  

This increase in neural similarity might be the result of local (within a brain region) 

and distant (between brain regions) synchronisation processes (Grandjean et al., 

2008) triggered by emotional stimuli. As we suggested in previous chapters, brain 

regions that carry out emotion-relevant computations (e.g., DMPFC, insula) 

encodes the emotional value associated with each stimulus and modulates their 

neural representations in the ventral-visual stream via feedback projections. A 

stable mental representation (e.g., GS+, scenes of car accident) emerges from the 

patterning of neuronal assemblies in the ventral-visual stream (e.g., ITC, PPA), 

which encoded the ‘relevance’ of the stimulus.  This neural representation pattern 

is shared among emotional stimuli (from the same or emotionally similar category), 

and might explain their higher neural similarity. This mechanism is functional to 

survival, as it supports a fast ‘fight or flight’ action in front of new exemplars that 

more resembled previously encountered salient stimuli (Levine et al., 2018). In 

future studies, it would be worth testing differences in relatedness between brain 

data (from different regions) and computational models that simulate different 

aspects of the stimuli (e.g., visual features, tasks instructions, 

avoidance/approach), in order to provide further support to the emotional similarity 

hypothesis.  

These neural findings have implications for research about the neurobiological 

correlates of semantic categorisation and generalisation. Previous model in 

semantic cognition literature (e.g., ‘hub and spoke’ model (Lambon Ralph, 2014)) 

focused on neutral stimuli, without considering the neurobiological mechanisms 

underlying emotional categorisation. We proposed that ‘emotional spokes’ (e.g., 

the precuneus) encoded the emotional dimensions (e.g., valence) of internal or 

external stimuli, which are important for forming a coherent mental representation 

of the world, as well as for planning appropriate emotion regulation strategies 

(Buhle et al., 2014; Kohn et al., 2014). According to this perspective, emotional 

similarity might represent a further dimension in a complex similarity space rather 

than a facet of semantic similarity. However, future research is needed to test 
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whether emotional spokes other than the hub are recruited during similarity 

judgements among emotional than neutral stimuli. From a clinical perspective, it 

would be worth exploring neural differences in similarity judgements between 

patients with semantic dementia and healthy controls. It is also important to 

understand the effect of emotion on neural similarity, because aberrant similarity 

perception could impact psychological well-being (Puccetti et al., 2021) and be 

relevant for the overgeneralisation bias in anxiety and posttraumatic stress 

disorders (Dunsmoor & Paz, 2015). After a traumatic event, patients may consider 

later experiences as similar to the original fearful one not because of their 

ostensible meaning, but due to their emotional similarity (Laufer et al., 2016). This 

might be the result of increased neural similarity among stimuli that resemble the 

fearful one after the traumatic experience. This adaptive mechanism may become 

maladaptive when old threat memories are inappropriately reactivated in secure 

situations, for example in individuals with high trait anxiety.  

No differences in similarity judgements between emotional and neutral 

stimuli. 

Despite the stronger neural similarity between emotional stimuli, participants 

judged them as equally similar to neutral stimuli, in contrast to our hypothesis. We 

expected that emotional feature was the most influential not only in the neural 

similarity space, but also during explicit similarity judgements. Thus, the increased 

neural similarity between emotional than neutral stimuli would be paralleled by 

higher similarity ratings for emotional stimuli. To test this in behavioral tasks, in 

chapters 3, 4 and 5 (experiment 1) we used both visually simple stimuli (i.e., 

chapter 3: faces; chapter 5: images of animals) and more complex scenes (chapter 

4). Using simple stimuli from the same semantic category allowed us to exclude 

semantic similarity as confounding factor. Conversely, complex scenes depicting 

events in a realistic context evoked higher emotional impact than simple stimuli, 

as shown by valence and arousal ratings in chapter 4 (experiments 1-2) and 5 

(experiment 2). However, when using more complex stimuli we had to control for 

several confounders (e.g., thematic similarity). Matching emotional and neutral 

complex scenes on semantic similarity is of paramount importance in similarity 

judgements tasks, as negative stimuli are often more thematically related than 

neutral stimuli. In chapter 4 (experiment 1), these differences in thematic similarity 
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explained the higher similarity ratings among emotional than neutral pictures. 

Once semantic similarity was controlled (experiments 2-3), emotional and neutral 

pictures were rated as equally similar, and were arranged in a bidimensional 

similarity space according to the overall meaning of the pictures. These results 

suggested that participants considered the semantic dimension as the most 

relevant in the similarity space compared, for example, to the emotional features. 

This is consistent with the findings in chapter 5 (experiment 1), wherein 

participants arranged threatening and not threatening stimuli according to their 

semantic rather than emotional similarity following aversive conditioning. This 

further proved that, when semantic similarity is controlled, the meaning of each 

picture was the most relevant feature, and thus, negative stimuli were not rated as 

more similar, rather equally similar to neutral stimuli.  Aversive conditioning might 

have an influence on emotional processing and categorisation. This is  revealed  

by differences in emotionality ratings between threatening and not threatening 

stimuli after conditioning, their correlation with trait anxiety scores, and by 

experience-dependent changes in PD and BOLD signal among threatening stimuli 

in chapter 5 (experiment 2).  

In chapter 3, emotional features were found to be as relevant as visual identity 

during explicit similarity judgements tasks. According to this, paired faces with 

different identity that expressed the same or similar emotions (i.e., Mr Hyde and 

Jack the Ripper) were rated as similar as faces with the same identity, but different 

emotional expressions (i.e., Mr Hyde vs Dr Jekyll). In other words, participants 

perceived Mr Hyde to be just as similar to Dr Jekyll (identity) as to Jack the Ripper 

(emotion).  In the same experiment, we also observed that emotional mismatch 

(i.e., EN, EE_DF pairs) decreased perceived similarity. This suggests an important 

role of emotion on similarity perception that goes beyond the objective visual 

reality of the face. As proposed in previous studies (Jamin Brett Halberstadt & 

Niedenthal, 1997; Wegrzyn et al., 2017), the role of emotions in similarity 

judgements is evolutionary advantageous: poor discrimination among emotional 

expressions that have the same meaning (expressions of fear, for example) 

possibly would not endanger the individual.  

However, when stimuli convey qualitatively different emotions, as in EE_DF (e.g., 

fearful and disgusted faces) and EN (e.g., emotional and neutral faces), small 
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dissimilarities can create large differences in similarity perception and action 

planning (e.g., fight or flight).  

When and why two emotional experiences are similar to each other 

To conclude, the pattern of findings across the experiments accords with claims 

that participants’ similarity space comprises of several dimensions, including 

perceptual, semantic and emotional features. The relevance of each feature on 

the overall perceived similarity depends on the stimuli included in the experimental 

dataset and the control of possible confounding factors. Specifically, participants 

judged emotional stimuli as similar to each other, when they evoked the same 

basic emotion (e.g., fear). In chapter 3 and 5 (experiment 1), emotionally matched 

conditions (e.g., chapter 3: EE and NN; chapter 5: CS+/GS+ and CS-GS-) were 

judged as the most similar compared, for example, to emotionally or visually similar 

conditions. In addition, two negative emotional experiences are judged as similar 

to each other when they are thematically-related (chapter 4: experiment 1). This 

is because negatively-valenced and highly arousing stimuli co-occur very 

frequently in the same theme or scenario, as the range of themes within negative 

and arousing stimuli (e.g. death, violence, car accidents, hospital scenes, and 

assaults) is reduced compared to those within neutral images. The fact of sharing 

emotional dimensions, such as valence and arousal, as in the context of the 

circumplex model of emotions, also make two emotional experiences similar to 

each other. In particular, in chapter 4 (experiments 2-3) stimuli from the two 

emotional categories, which shared negative valence and high arousal, were 

perceived as more similar than stimuli from emotional and neutral categories (e.g., 

EN pairs). The same was valid for stimuli from the two neutral categories. The 

relevance of emotional features in the similarity space also depends on the 

experimental context (i.e., the set of stimuli included in the experimental situation). 

For example, when thematic similarity is not controlled, the emotional dimension 

might be the most relevant to group stimuli together. As a result, emotional stimuli 

were judged as more similar than randomly-selected neutral stimuli. When 

thematic similarity is controlled, participants relied more on semantic features.  

Conversely, the neural data in chapter 4 (experiment 3) and 5 (experiment 2) also 

confirmed the relevance of emotional dimensions on neural similarity. This might 

be the result of local (within a brain region) and distant (between brain regions) 
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synchronisation processes, which are triggered by emotional experiences. A 

stable mental representation, which encoded the ‘relevance’ of the stimulus, 

emerges from the patterning of neuronal assemblies distributed in the brain. This 

neural representation pattern might be shared among emotional stimuli (from the 

same or emotionally similar category), and might explain their higher neural 

similarity. 
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