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Abstract

Blockchain is a promising cross-industry technology. With the rapid evolution of the tech-
nology, academia and industry are exploring the applicability of blockchain in various do-
mains, including healthcare, supply chain management, and Internet of Things. This tech-
nology, with its characteristics of decentralization, anonymity, persistency, and auditabil-
ity, delivers a new way to enforce trust among distrusted business partners. It combines
cryptography, peer to peer networking, data management, consensus protocols and incen-
tive mechanisms to support optimal execution of transactions between involved parties.
Blockchain applications are complex, heterogeneous, and require cooperation and interop-
eration with non-blockchain systems. Their complexity is further exacerbated by the lack
of a clear understanding of their composition, as well as the stringent demand on functional
and non-functional requirements. This thesis aims to address these shortfalls and is set out
to gain an understanding of blockchain applications from architectural and business process
perspectives. This understanding is elaborated through several relevant, yet independent, re-
search contributions: a taxonomy, software patterns and pattern languages, and a process-
aware framework design and implementation. These artifacts are supported by compre-
hensive datasets of Industry-developed and Academia-researched blockchain applications,
as well as a set of event logs related to these applications. Several research methodologies
were adopted to produce the contributions, including literature review, software decompo-
sition, domain analysis, and automated business process discovery. The research was val-
idated through a mixed method approach which proofs that such understanding can better
inform software architects and developers in their analysis, design and implementation of
blockchain applications.
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Chapter 1

Introduction

1.1 Research Motivation

A blockchain is a secured management system in which business transactions are stored as
chains of blocks [1]. Blockchains are considered highly secure due to their anonymity, per-
sistency, auditability, and decentralization. Originally developed to record cryptocurrency
transactions [2], this technology gains popularity with applications in diverse domains that
extend far beyond cryptocurrencies [3]–[6]. These domains include education [7], health-
care [8], energy supply [9], and supply chain management [10].

Blockchain technology brings new opportunities for organizations to re-imagine business
models [11], [12]. This technology offers the ability of a peer-to-peer (P2P) business man-
agement and eliminates the complex and hierarchical management of business transactions.
It helps to ensure the integrity of business processes and data without involving a trusted
third party [12], [13]. Encoding organizational business processes within smart contracts
allows for confidential execution and monitoring of the processes [14], [15]. As blockchain
technology enables cross-organizational processes, blockchain applications can be inte-
grated with legacy systems [16].

However, developing such applications is obstructed by several challenges [17], [18]. First,
blockchain applications are highly complex and heterogeneous, involving cooperation and
interoperation between non-blockchain and blockchain systems. Thus, the lack of a de-
tailed understanding of the composition of blockchain systems hinders the design and im-
plementation of highly interoperable blockchain systems [19]. There is a large number of
blockchain taxonomies have been proposed in the literature [19]–[28]. However, a compre-
hensive classification of blockchain systems is still missing.

Second, there is a stringent demand on non-functional requirements (NFRs) or quality re-
quirements, such as performance, scalability, portability, interoperability, reliability, pri-
vacy, and security [29]. A good software architecture can aid in the design of a software
system that will satisfy key quality requirements, but a bad one can be disastrous [30]. Work
on software architectures for blockchain applications is rather limited, as it has primarily
been focused on computing networks of blockchain systems using the P2P architecture [29],
[31].
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Third, defining proper smart contracts and solution architecture requires a tight connection
between analysis and design phases [32]. Current practices of blockchain application devel-
opment face a difficulty of communicating functional requirements (FRs) in the design of
the application [33], [34]. The lack of requirement analysis makes it challenging to identify
which requirements, if they are addressed by smart contracts, constitute value to stakehold-
ers. Current research focuses mainly on software design, rarely on requirement analysis, or
advances to implementation and overlooking the requirements [32], [35], [36].

Finally, Process Mining (PM) [37] can help in recovering FRs embedded as business pro-
cesses within smart contracts. However, the cryptographic format and heterogeneous struc-
tures of event data generated by different smart contracts require technical expertise to ex-
tract encoded transactions data from blockchain networks and transform the data into a for-
mat adequate for PM tools [38], [39]. There are a number of approaches have been pro-
posed to generate useful event logs from blockchain data. However, a detailed discussion
on how to extract and decode event data before formatting them is lacking. Moreover, the
availability of event data is constrained by the process awareness of a blockchain applica-
tion, which is under-reported by the literature.

This thesis aims to address the aforementioned shortfalls by providing a systematic under-
standing of blockchain applications from architectural and business process perspectives.

1.2 Research Aim and Objectives

The fundamental assumption of my Ph.D. thesis is that it is possible to identify recurring
architecture and business process patterns from different blockchain applications. Based on
this assumption, my research aim is to discover reusable architectural and business process
patterns from existing blockchain applications and to validate using these patterns to sup-
port the design of blockchain applications. In line with this research aim, my thesis has five
objectives:

• Objective 1: To study different types of blockchain application systems and their char-
acteristics from industry and academia

• Objective 2: To synthesize characteristics of blockchain application systems in a com-
prehensive taxonomy

• Objective 3: To identify architectural patterns for blockchain application development

• Objective 4: To develop a framework to support process mining from blockchain ap-
plications

• Objective 5: To identify reusable business process patterns for blockchain application
development
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1.3 Research Methodology and Contributions

To achieve the above objectives, I have adopted a range of research methods, including do-
main analysis, case study, literature review, peer-review, automated business process dis-
covery, conformance checking, and prototyping. The output resulted from each objective
aims to make a research contribution. Figure 1.1 outlines my research contributions and
their interrelationships. In what follows, I summarize the research methods used to achieve
my objectives and the resulting contributions.

Figure 1.1. An overview of thesis contributions and their interrelationships

• Contribution 1: A comprehensive catalog of blockchain applications from industry
and academia. The datasets are published open access on Zenodo. This catalog con-
sists of three datasets: a) 400 Industry-developed applications [40], b) event logs of
101 applications [41], and c) 63 publications on blockchain applications [42]. This
contribution resulted in a data paper. The paper is submitted to Data in Brief and pre-
sented in Chapter 2. The datasets were systematically collected using a mixed method
approach. The industry-developed applications were manually selected based on a set
of Inclusion/Exclusion criteria. This dataset was then filtered based on their process-
awareness, in which the event logs were automatically generated for the filtered appli-
cations. The set of publications was selected through snowballing [43].

• Contribution 2: A component-based taxonomy for characterizing blockchain system
applications. This taxonomy is comprehensive, characterizing a blockchain system us-
ing three subsystems, eight fundamental components, 83 aspects, and 198 features.
This contribution resulted in a research article that is published in IEEE ACCESS
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[44] and presented in Chapter 3. To build the proposed taxonomy, a blockchain sys-
tem was decomposed into a hierarchy of components. At the top level, the system is
organized into three subsystems: an External Subsystem, an Internal Subsystem and
an Execution Environment Subsystem. Then, these subsystems were decomposed into
eight fundamental components. Each component is further divided into different as-
pects, and each aspect is characterized by different features. The aspects and features
are identified inductively and deductively, following Nickerson et al.’s approach for
taxonomy development [45].

• Contribution 3: An architectural pattern language (APL) to support the architectural
design of blockchain applications. This pattern language consists of 12 patterns orga-
nized within three architectural views: Structural, Interactional, and Transactional.
This contribution resulted in a research article that is submitted to Information and
Software Technology and presented in Chapter 4. To build the proposed pattern lan-
guage, the set of Industry-developed applications were analyzed based on the proposed
taxonomy to identify their architectural components. Then, these components and
their relationships were mapped onto the known software architecture patterns [46],
[47] to identify a set of architectural patterns for blockchain applications.

• Contribution 4: A process-aware framework (PAF) to support identifying process-
aware blockchain applications and to support generating useful event logs for these
applications. This framework consists of two modules: 1) Process Awareness Recog-
nizer (PAR), a rule-based classifier to assess the process awareness of a given blockchain
application, and 2) Event Log Generator (ELG), an automated batch processing model
to generate useful event logs from extracted event data from blockchain networks.
This contribution resulted in a research article that is submitted to the special issue
of Artificial Intelligence for Process Mining in Engineering Applications of Artifi-
cial Intelligence and presented in Chapter 5. Based on a domain analysis [48], which
identified several challenges of mining business process from blockchain applications,
the framework was designed, instantiated, and tested [49].

• Contribution 5: A software application to extract event data from blockchain net-
works compatible with Ethereum Virtual Machine (EVM) and to generate useful event
logs from these data. This contribution is a proof of concept prototype of the PAF,
which is described in Chapter 5. The prototype is called a Blockchain Event Log App
(BELA) and is documented on GitHub [50]. The software is implemented in JavaScript
as a Node.js1 application.

• Contribution 6: A business process modeling pattern language (BPMPL) to support
requirement analysis of blockchain applications. This pattern language consists of
nine data-driven patterns organized into two categories: Token-Oriented Patterns and
Smart Contract-Oriented Patterns. This contribution resulted in a research article that
is submitted to Requirements Engineering and presented in Chapter 6. This study
applies PM techniques to identify the patterns. The business process models were first

1https://nodejs.org
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recovered through automated business process discovery on an analysis subset of the
event logs dataset. Then, the discovered models were generalized and, finally, vali-
dated through models conformance checking on a validation subset of event logs.

1.4 Thesis Structure and Chapter Overview

This thesis is written in the journal format in accordance with the University of Manchester
policy for thesis presentation2. The main chapters within this thesis, i.e. Chapters 2 — 6,
contain five papers that are formatted using the template of the journals to which they are
submitted. The order of these chapters represents the trajectory of my research and how the
early chapters influence the latter chapters, as Figure 1.1 shows. However, as each chapter
reports a stand-alone research contribution, it discusses related work in the context of the
reported research; it also describes the methodology used, research findings, and limita-
tions. The remaining chapters of this thesis are organized as follows:

• Chapter 2: A Catalog of Blockchain Applications Dataset. This chapter contains a
submitted journal paper that describes the collection, curation, and significance of the
datasets.

• Chapter 3: A Taxonomy for Characterizing Blockchain Systems. This chapter
contains a published research article [44]. The paper proposes a taxonomy for char-
acterizing blockchain applications and demonstrates its utility on a set of real-world
blockchain systems. It presents a holistic background on blockchain technology and
its fundamental characteristics. It, also, reviews related work on blockchain-oriented
taxonomies.

• Chapter 4: An Architectural Pattern Language for Blockchain Application De-
velopment. This chapter contains a submitted research article that describes and vali-
dates the proposed architectural pattern language. It synthesizes findings on blockchain
application types and shows how this classification helps to understand blockchain ap-
plication architectures. The chapter reviews related work on blockchain architectures
and software patterns.

• Chapter 5: A Process-Aware Framework to Support Process Mining from Block-
chain Applications. This chapter contains a submitted research article that describes
and validates the proposed framework. It presents a demonstration of using BELA
to produce useful event logs. It, also, reviews related work on process mining from
blockchain applications.

• Chapter 6: A Business Process Modeling Pattern Language for Blockchain Ap-
plication Requirement Analysis. This chapter contains a submitted research article
that describes, validates, and discusses the implications and limitations of the pro-
posed pattern language. The chapter is supplemented by a running example of design-

2http://www.regulations.manchester.ac.uk/pgr-presentation-theses
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ing a blockchain application using the proposed pattern language. The chapter also
reviews related work on blockchain-oriented software patterns.

• Chapter 7: Conclusion. This chapter concludes the thesis by summarizing the achieve-
ments and limitations of my Ph.D. research and outlining some work that I wish to
carry out in the future.
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Chapter 2

A Catalog of Blockchain Applications

Dataset

Research Objective

Objective 1: To study different types of blockchain application systems and their character-
istics from industry and academia

Thesis Context

This chapter provides a comprehensive resource of software-, process-, and application-
centric datasets that are analyzed in and produced by the contributions in Chapters 4, 5, and
6. This chapter is based on a paper that has been submitted to Data in Brief. The full refer-
ence of this paper is as follows:

F. Alzhrani, K. Saeedi, and L. Zhao, “A data catalog of blockchain applications,” Data in
Brief, Under Review.

CRediT authorship contribution statement

Fouzia Alzhrani: Conceptualization, Data Curation, Methodology, Software, Writing -
Original Draft, Writing - Review& Editing. Kawther Saeedi: Conceptualization, Super-
vision, Writing - Review & Editing. Liping Zhao: Conceptualization, Supervision, Writing
- Review & Editing.
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A Catalog of Blockchain Applications Dataset
Fouzia Alzhrania,b, Kawther Saeedia and Liping Zhaob,∗

aKing Abdulaziz University, Jeddah, Saudi Arabia
bThe University of Manchester, Manchester, United Kingdom

A R T I C L E I N F O
Keywords:
event log
business process management
process mining
software applications
Ethereum Virtual Machine

A B S T R A C T
This catalog is a collection of systematically curated and processed blockchain applications data.
The data are organized into three sub datasets: industry-developed applications, event data and
logs generated from process-aware industry-developed applications, and academia-researched
applications. The data were systematically collected through a mixed method approach. The
collection process is semi-automated by implementing a reusable software application to extract,
decode, and format event data from blockchains. This catalog allows research on understanding
blockchain applications from architectural and business process perspectives. In particular, three
research contributions were made based on the analysis of data in this catalog. Further insights
and results could be obtained from this dataset on aspects related to blockchain applications,
business process management, and machine learning.

Specifications Table

Subject: Software Engineering
Specific subject area: Blockchain research and blockchain application development
Type of data: Table
How the data were acquired: The set of industrial applications were manually collected from online blockchain application

repositories. A systematically selected subset of these applications were used to generate the
event logs. These logs were automatically generated using a software application specifically
developed for extracting and encrypting event data from blockchain networks. The set of
academia-researched applications were manually collected via snowballing from online
databases.

Data format: Raw, Analyzed, Processed
Description of data collection: The data were collected through a mixed method approach according to a set of inclusion

and exclusion criteria for each sub dataset and at different time frames.
Data source location: State of The Dapps, IBM Code Pattern, R3 Marketplace, IEEE Xplore, PubMed, ScienceDi-

rect, Google Scholar, ACM Digital Library, Wiley Online Library, MDPI, SpringerOpen,
SpringerLink, Ethereum blockchain, POA blockchain

Data accessibility: Repository name: Zenodo.
1) A Collection of Industry-Developed Blockchain-Based Applications:
Data identification number:10.5281/zenodo.4268952
Direct URL to data: https://doi.org/10.5281/zenodo.4268952
2) A Collection of Event Logs of Blockchain-Based Applications:
Data identification number:10.5281/zenodo.6637059
Direct URL to data: https://doi.org/10.5281/zenodo.6637059
3) A Collection of Papers on Blockchain Business Applications:
Data identification number: 10.5281/zenodo.7564584
Direct URL to data: https://doi.org/10.5281/zenodo.7564584

∗Corresponding author
feaalzhrani@kau.edu.sa (F. Alzhrani); ksaeedi@kau.edu.sa (K. Saeedi); liping.zhao@manchester.ac.uk (L. Zhao)

ORCID(s): 0000-0002-5780-0469 (F. Alzhrani)
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Value of the Data
• This dataset contains raw business process data that are encrypted and have not been preprocessed, allowing

researchers and analysts to perform any preprocessing. As such, evaluating encryption algorithms and generating
new event logs from different viewpoints.

• The processed (decrypted) event logs are readily-available for process mining tools. They can be reused to
accelerate research on business process management to study blockchain applications. This eliminates the need
for technical expertise to extract and process event data from blockchains, which is a challenging task [1, 2].

• Researchers can use data in this catalog to evaluate consensus algorithms based on transactions event data. For
example, researchers can use the companion software [3] to generate new event logs from the new version of
Ethereum networks that uses Proof-of-Stake protocol, and then, conduct comparative analysis with the provided
event data in this catalog that are produced by Proof-of-Work networks.

• Future research can benefit from this catalog to perform analysis of blockchain applications based on historical
data. For example, the event logs can stimulate research in developing blockchain monitoring systems and new
techniques to analyze user/customer behaviors, also based on prices.

• The data are structured and labeled, making them a comprehensive resource for data mining and machine
learning research.

• The datasets can be collectively analyzed through different approaches to produce valuable results. For example,
by analyzing the datasets in this catalog, we were able to identify a set of interrelated business process modeling
patterns [4] through the application of process mining techniques [5] and a set of interconnected architectural
patterns [6] through software decomposition based on the blockchain systems taxonomy by Alzhrani et al. [7].

1. Objective
This catalog was built to support research on understanding blockchain applications from architectural and business

process perspectives.

2. Data Description
The collected blockchain applications datasets fall into three major categories: Industry-developed applications,

event data logs, and academia-researched applications. First, DApps Open Dataset.xlsx contains a list of 400
industry-developed blockchain applications. These applications are listed in Zenodo [8]. The attributes of this dataset
are described in Table 1. The selected applications are built on nine different platforms: Ethereum, Steem, EOS,
Blockstack, Klaytn, POA, Hive, Corda, and Hyperledger Fabric. The distributions of these applications across the
different platforms and sources are listed in Table 2. The distribution of the applications across different development
stage, application domains, and license are shown in Fig. 1, Fig. 2, and Fig. 3, respectively.

Figure 1: The distribution of blockchain applications across different development stages

Second, there are 232 event data files in Comma Separated Values (CSV) format. They are listed in Zenodo [9].
They were extracted for 101 blockchain applications selected from the 400 ones. For each application, there are two

Alzhrani et al.: Preprint submitted to Elsevier Page 2 of 8



Table 1
Attributes of the industrial blockchain applications dataset

Attribute Meaning

ID Identifier of the application in the dataset
Application Name Name of the application as provided by its source
Source Repository where the application is listed
Webpage A URL to the application’s web page
Email Developers’ contact email address
Twitter Link to the application’s Twitter account
Facebook Link to the application’s Facebook account
LinkedIn Link to the application’s LinkedIn account
Medium Link to the application’s Medium account
Application Domain Business industry, classified by the researcher
Category Application category, classified by the source repository
Blockchain Type Type of hosted blockchain network (public, private, consortium)
Development Stage Development status/version of the application
License Software license of the application
Source Code Link to application’s source code
Platform Name Name of the host blockchain platform

Table 2
The distributions of blockchain applications across the different platforms and repositories

Repository Platform Number of Applications

State of The DApps Ethereum 230
Steem 20
EOSIO 29
Blockstack 1
Klaytn 18
POA 5
Hive 5

R3 Marketplace Corda 75
IBM Code Hyperledger Fabric 17

files: 1) raw event data file named as original-network-application, where network is the host blockchain network
and application is the application name. 2) decoded event data decrypted into a human-readable format named as
decoded-network-application, where network is the host blockchain network and application is the application name.
If the application is hosted on multiple blockchain networks, then there are two event log files (encoded and decoded)
for each network. In total, the dataset has 116 encoded and 116 decoded event logs. The attributes of this dataset are
described in Table 3. Fig. 4 shows the distribution of event logs per blockchain network.

In addition, this dataset has Event Registry from Contract ABIs.csv file contains a comprehensive list of event
names and their signatures calculated by our developed software for the 101 applications.

Finally, list-of-papers.xlsx contains a list of 63 peer-reviewed publications published between 2016 and 2020
inclusively. These publications are listed in Zenodo [10]. The attributes of this dataset are described in Table 4. There
are 53 journal papers, 8 conference papers, and 2 book chapters. The yearly distribution of the publications is shown
in Fig. 5. The publications are from nine databases and 11 publishers. The databases are IEEE Xplore, PubMed,
ScienceDirect, Google Scholar, ACM Digital Library, Wiley Online Library, MDPI, SpringerOpen, SpringerLink.
The publishers are IEEE, Springer, Elsevier, MDPI, Edward Elgar Publishing, Korean Society of Medical Informatics,
Taylor and Francis Ltd., Inderscience Enterprises Ltd., John Wiley and Sons Ltd., Oxford University Press, and ACM.

Alzhrani et al.: Preprint submitted to Elsevier Page 3 of 8



Figure 2: The distribution of blockchain applications across different application domains

Figure 3: The distribution of blockchain applications across different licenses

Table 3
Attributes of the event logs dataset

Attribute Meaning

address Smart contract address
topics Encrypted event name and indexed parameters
data Non-indexed parameter of event
blockNumber Number of the block in a particular chain
timeStamp Time of block confirmation
gasPrice Amount of ETH that must be paid to miners for processing transactions on the network
gasUsed the Sum of the gas for each operation executed by the Ethereum Virtual Machine
logIndex Index of the event in the block logs
transactionHash Unique identifier used to identify a particular transaction
transactionIndex Index of the transaction in the block

The distribution of the publications across these databases is shown in Fig. 6 whereas Fig. 7 shows the distribution
across different publishers.

3. Experimental design, materials and methods
The process of building this catalog consists of three activities: 1) select Industry-developed applications, 2)

generate event logs, and 3) select academia-researched applications. Fig. 8 shows the process, illustrated in Integration
DEFinition (IDEF0) notation for process modeling [11]. In what follows, we elaborate each activity.
3.1. Select blockchain applications

We manually selected 400 blockchain applications between September 2019 and February 2020 from these nine
different blockchain platforms: Ethereum, Steem, EOS, Blockstack, Klaytn, POA, Hive, Corda, and Hyperledger

Alzhrani et al.: Preprint submitted to Elsevier Page 4 of 8



Figure 4: The distribution of event logs per blockchain networks

Table 4
Attributes of the blockchain academia-researched applications dataset

Attribute Meaning

No. number of publication record in the dataset
Reference Type type of the publication (Journal Article, Conference paper, Book Section)
Author list of authors of the publication
Title title of the publication
Year publication year
Journal venue of the publication
Database publication source database
Publisher publisher of the publication
Application Scope scope of blockchain applications discussed by the publication (general, specific)

Figure 5: The yearly distribution of the publications per type

Fabric. They were selected from three blockchain application repositories: State of The DApps1, R3 Marketplace2,
and IBM Code Pattern3. The set of industrial applications were selected based on the following criteria:

• Include applications with smart contract functionality, i.e. Blockchain 2.0 and Blockchain 3.0
• Include applications built on open source blockchain platform
• Include applications built on cross-industry blockchain platform
• Exclude Blockchain 1.0 applications
1https://www.stateofthedapps.com, last accessed: July 2022
2https://marketplace.r3.com, last accessed: November 2020
3https://developer.ibm.com/patterns, last accessed: July 2022

Alzhrani et al.: Preprint submitted to Elsevier Page 5 of 8



Figure 6: The distribution of the publications across different databases

Figure 7: The distribution of the publications across different publishers

• Exclude applications lack supporting documents
• Exclude other applications that are related to protocols, application programming interfaces, and software

development kits
The naming of application Category is inconsistent between the application repositories. Therefore, we have created
a list of business domains and mapped the selected applications to the list, as in Application Domain. In particular,
Finance, Exchanges, High risk are mapped to Economy, Development, Wallet, Security, IoT, Technology, Storage, Asset
Management, Identity, Business and Information, Property are mapped to Information Technology, and Marketplace
is mapped to eCommerce.
3.2. Generate event logs

Based on the findings from [12], we identified a set of criteria that identifies process-aware blockchain applications.
We then applied these criteria on the Industry-developed application set and identified 103 process-aware blockchain
applications4. The set of event logs were generated for applications that meets the following criteria:

• Host blockchain platform is Ethereum Virtual Machine EVM-Compatible
• Host blockchain platform supports defining smart contract events
4As of July 2020
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Figure 8: The methodology of building the catalog of blockchain applications dataset

• Host blockchain network is accessible
• Application has at least one verified smart contract
• The smart contract has programmer-defined events
For the 103 applications, we collected their smart contract addresses during 24-30 July 2020. There were a total

of 252 contract addresses. The process of extracting event data from blockchains and generating useful event logs was
automated via developing an event log extractor application, BELA [3]. BELA is documented on GitHub, however,
we briefly describe the workflow of BELA as follows:

1. Generate dynamic Remote Procedure Calls (RPCs) to blockchain networks
2. Retrieve contract Application Binary Interface (ABI) for a verified contract address
3. Calculate event signature - topic0 - for each event in the contract ABI
4. Retrieve event data for each event in the contract ABI
5. Decode event data:

• Convert timestamps from Unix to UTC format
• Match and replace topics[0] with the relevant calculated event signature topic0
• Convert blockNumber, gasPrice, gasUsed, logIndex, transactionIndex from hexadecimal to string format

item Decode data from detected types to string
6. Generate an event log file in CSV format for an application.
The event logs were retrieved in January 2021 from five blockchain networks: Ethereum Mainnet, POA Core,

Ropsten, Kovan, and Rinkeby 5. Two APIs were used as BaseAPI: Etherscan API6 for Ethereum Mainnet and Testnets
(i.e., Ropsten, Kovan, and Rinkeby), and Blockscout API7 for POA Core. By default, the APIs returns the 1000 most
recent event data records. Therefore, we maximized the number of retrieved records by executing five RPCs per event.
The first RPC starts from first block and the subsequent RPCs start from the last retrieved block in the preceding
call. All RPCs are to latest block. In sum, a set of 252 addresses of 103 applications was ingested into the extractor
application, and a total of 232 event logs were produced (116 raw, 116 processed).
3.3. Select peer-reviewed publications on business applications

In 2022, we systematically selected a set of 63 publications on blockchain business applications. We adapted a
snowballing approach [13]. The start set was identified by selecting highly cited papers from Google Scholar. The set
has 16 papers. Then we performed several iterations of backward and forward snowballing to identify relevant papers.
The set of publications were selected based on the following criteria:

5In 2022, Ropsten, Kovan, and Rinkeby were depricated
6https://etherscan.io/apis
7https://blockscout.com/poa/core/api-docs
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• Include Peer-reviewed research articles, conference proceedings papers, book chapters, review papers.
• Include publications that discuss business applications of blockchain technology
• Exclude non-English articles, articles with missing abstracts, notes, editorials
• Exclude generic articles related to the blockchain technology and/or blockchain architecture
• Exclude software-oriented articles related to the blockchain technology
• Exclude articles addressing technical aspects of blockchain technology
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ABSTRACT Since its inception more than a decade ago, blockchain technology has been quickly adopted
by a large number of sectors, including finance, healthcare, energy supply, and logistics, due to its numerous
benefits, such as decentralization, persistency, anonymity and auditability. However, blockchain applications
are intrinsically complex, as they are heterogeneous in nature and require cooperation and interoperation
with non-blockchain systems. The complexity of the blockchain systems is further exacerbated by the lack
of a clear understanding of their composition. This paper aims to bridge this knowledge gap by proposing a
taxonomy for characterizing blockchain systems. The proposed taxonomy classifies a blockchain system
into a hierarchy of components: At the top level, the system is organized into an external subsystem,
an internal subsystem and an execution environment subsystem. These subsystems are then decomposed
into eight fundamental components: Platform, Network, Distributed Ledger, Smart Contract, Consensus
Protocol, Digital Wallet, Token, and Node. Each component is further divided into different aspects and each
aspect is characterized by various features. This taxonomy thus provides a comprehensive understanding of
the composition of a blockchain system, which can better inform software developers in their design and
implementation of blockchain systems. The paper presents and illustrates the proposed taxonomy through
some application scenarios and a case study.

INDEX TERMS Blockchain taxonomy, blockchain applications, blockchain systems, blockchain compo-
nents, blockchain characteristics.

I. INTRODUCTION
Blockchain technology is a decentralized transaction and
data management technology capable of providing security,
anonymity, and data integrity without any third-party orga-
nization in the control of the transactions [1]. Originally
developed for Bitcoin cryptocurrency, blockchain technology
has now been applied to a wide variety of applications in
diverse domains [2], [3], such as education [4], [5], healthcare
services [6], smart cities [7], energy supply [8], agriculture
and food [9], supply chain management [10], and Inter-
net of Things (IoT) [11]. The great potential of blockchain
technology lies in its key characteristics of decentralization,

The associate editor coordinating the review of this manuscript and

approving it for publication was Aasia Khanum .

persistency, anonymity, and auditability [12], which make it
possible for transactions to be carried out securely without the
involvement of a third party. Such a decentralized environ-
ment ensures independent control of transactions and data,
providing security, anonymity, and data integrity.

However, despite its great potential, developing blockchain
applications faces many technical difficulties, as such appli-
cations are highly complex and heterogeneous, involving
cooperation and interoperation between non-blockchain and
blockchain systems. These difficulties are further exacerbated
by the lack of a detailed understanding of the composition
of blockchain systems. This knowledge gap is considered
to be the main obstacle in the design and implementation
of highly interoperable blockchain systems [13], [14]. With
the increased importance of blockchain technology, there is
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an urgent need for a common terminology to describe the
detailed components of blockchain systems.

Although a large number of blockchain taxonomies have
been proposed in the literature [13], [15], [16], [17], [18],
[19], [20], [21], [22], [23], a comprehensive classification of
blockchain systems is still missing. This paper aims to bridge
this knowledge gap by proposing a taxonomy for character-
izing blockchain systems. The proposed taxonomy classifies
a blockchain system into a hierarchy of components: At the
top level, the system is organized into an external subsystem,
an internal subsystem and an execution environment subsys-
tem. These subsystems are then decomposed into eight funda-
mental components: Platform, Network, Distributed Ledger,
Smart Contract, Consensus Protocol, Digital Wallet, Token,
and Node. Each component is further divided into different
aspects and each aspect is characterized by different fea-
tures. The aspects and features are identified inductively and
deductively [24]. This taxonomy thus provides an elaborate
and comprehensive understanding of the composition of a
blockchain system, which can be used to inform software
developers in their design and implementation of blockchain
systems.

The remainder of this paper is organized as follows:
Section II provides a brief overview of the blockchain tech-
nology and its fundamental characteristics, while Section III
reviews related work on blockchain taxonomies. Section IV
presents our taxonomy. Section V illustrates the proposed
taxonomy through some application scenarios and a case
study. Section VI discusses the results and observations
through a comparative analysis of the proposed taxonomy
and the reviewed literature. Finally, Section VII concludes the
paper and suggests future research.

II. OVERVIEW OF BLOCKCHAIN TECHNOLOGY
Since its inception in 2008, blockchain technology has
gone through five generations of transformations [25], [26],
known as Blockchain 1.0, Blockchain 2.0, etc., as depicted
in Figure 1. In 2008, the first generation of blockchain tech-
nology was developed to support the transfer of Bitcoin.1

Blockchain technology was used to create an immutable,
distributed ledger – a record-keeping system – to store
data and perform transactions with minimal trust require-
ments. Business logic is used to exchange cryptocurrencies.
In 2013, smart contracts and blockchain were combined
in a proposal by Ethereum2 to allow for more complex
financial transactions than simple payments and transfers.
Such transactions include loans, mortgages, bonds, and stock.
Blockchain 2.0 was for money transfer and was based only
on cryptocurrencies. In 2015, it became possible to store and
exchange physical world assets on blockchains via tokeniza-
tion, which marked the evolution of Blockchain 3.0; IOTA3

is one such example [27]. In 2018, consensus protocols in

1https://bitcoin.org/en/
2https://ethereum.org/
3https://www.iota.org/

blockchain systemswere empowered by artificial intelligence
in Seele4 as Blockchain 4.0. In 2019, Blockchain 5.0 emerged
via Relictum Pro.5 It restructured blockchains by offering
N-dimensional smart contracts. It has expanded blockchain
possibilities to enable the formalization of any activity in
human life.

According to the literature [28], [29], [30], [31], [32],
[33], blockchain technology has these four fundamental
characteristics:

1) A Distributed Transactional Platform Supported by a
Peer-to-Peer Network. Due to the limited trust and
transparency in traditional business models, interme-
diaries and third parties are required. This require-
ment makes these models process heavy. Blockchain
offers the ability to trust peer-to-peer exchange and
automated execution of business contracts. This elimi-
nates the third party and ensures the integrity of pro-
cesses and data with security and cryptography. The
elimination of intermediaries drives a new ecosys-
tem of players and fosters the creation of new profit
pools, microeconomies, competitors, consumers, and
distributed ecosystems [30]. In general, transactions on
blockchains can be in the form of transfers, broad-
casts, or contract calls. Transfer transactions can be
one- or two-way transactions. A one-way transfer is
when one participant moves value to another partic-
ipant with no need to receive value in return, such
as ownership transfer and right transfer. A two-way
transfer is an exchange between two or more partic-
ipants, such as cryptocurrency, data, and digital asset
exchange. A broadcast is when one participant updates
the ledger with value not intended for the participant,
such as contract creation transactions. In contract call
transactions, an implemented function within a smart
contract is invoked by another contract.

2) Computational Capability through Smart Contracts.
Blockchain technology offers computational capabili-
ties via smart contracts. A smart contract is a program
that defines a set of functions to express highly complex
transaction logic [34]. These functions enable vari-
ous blockchain applications in various domains. The
capability of a smart contract depends on its operating
platform, including its programming language and exe-
cution machine. Although smart contracts are assumed
to be deterministic by nature, the availability of the
required information upon executing a smart contract
can affect its determinism [35]. When a smart con-
tract requires information from the external world of
blockchains, it becomes nondeterministic. Blockchain
technology serves two purposes when multiple organi-
zations are involved. First, the correctness of the flow
controls and workflow structure is guaranteed as being
a repository for business process descriptions. Second,

4https://seele.pro/
5https://relictum.pro/
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FIGURE 1. Blockchain revolution timeline.

it guarantees the validity of operations as the generated
process executions are encoded into smart contracts.
Global platform and application-specific rules in smart
contracts are used to validate the consistency of trans-
actions in blockchains [28], [29], [30], [31], [32].

3) Security by Design for Immutability, Integrity, and
Transparency. The most commonly reported proper-
ties of current blockchains are immutability, integrity,
and transparency [25], [28], [32], [36], [37], [38].
Once transactions are confirmed, data are permanently
stored in the ledger, tamper-proof and immutable.
Cryptographic mechanisms in blockchains ensure
data integrity. Transparency is achieved through pub-
lic access to the stored data. In addition to these
nonfunctional properties, the two significant function-
alities of blockchain systems are data storage and
computational infrastructure. In addition, blockchain
systems can offer data and computation communi-
cation, coordination, and facilitation mechanisms as
software connectors [28], [29], [36]. Given these
characteristics, we can claim that blockchain tech-
nology has been architected to be secure by design.
Its in-built security is derived from the assumption
that the peers involved in a transaction are trustless.
It was structured from the beginning to safeguard these
transactions. In terms of design, blockchain technol-
ogy includes cryptography and distributed consensus
as preventive mechanisms to reduce the risks of cyber-
attacks. Cybersecurity is necessary to safeguard trans-
actions from external threats.

4) Complementary Technology through Interoperability.
Blockchain technology is a sophisticated complement
to current technologies rather than replacing them.
Although systems built on top of blockchains can
operate alone, there is a need to communicate with
other centralized or distributed systems in real busi-
ness. To a large extent, a blockchain system needs

to be interoperable with other blockchain or non-
blockchain systems. However, the closed execution
environment of a blockchain system does not allow
smart contracts to interact directly with external servers
or states. Thus, unique approaches to blockchain inter-
operability have been developed [39]. They are ora-
cles [28], [36], hash locking [40], [41], [42], notary
[41], [42], relays [41], [42], and application program-
ming interface (API) gateways [43], [44]. Blockchain
interoperability approaches can be classified into three
categories. The first is non-blockchain to blockchain,
where data are passed from traditional systems to
blockchain systems. The second is a blockchain-to-
compatible blockchain, where cross-chain data transfer
is enabled between compatible blockchains. The last
category is blockchain-to-non-compatible blockchain,
where cross-chain data transfer is enabled between
non-compatible blockchains.

Through our literature study we found that regardless of
their variations, all blockchain systems are based on the
following eight fundamental architectural components [16],
[28], [32], [38], [45], [46], [47]:

• Platform: A computing environment inwhich blockchain
applications are executed.

• Peer-to-Peer Network: A computer network formed by
two or more interconnected computer systems (nodes).
The systems on the network are equal (thus called peers)
and can share resources without requiring a central
server.

• Distributed Ledger: A shared, decentralized database
system in the blockchain network that provides a
transparent, immutable, and cryptographically verifi-
able transaction record. The ledger has built-in mech-
anisms that prevent unauthorized transaction entries and
enforce consistency in the shared view of the recorded
transactions. Unlike traditional distributed databases,
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distributed ledgers do not have central data storage or
special administrative functionality.

• Consensus Protocol: A set of rules based onwhich users
of a blockchain application can reach an agreement or
consensus.

• Smart Contract: A computer program that can automat-
ically execute transaction agreements between multiple
participants.

• Token: A digital asset that represents cryptocurrency or
a real-world object.

• Digital Wallet: A program that stores and manages dig-
ital keys and digital assets for blockchain users.

• Node: A computer system on the blockchain network.
Nodes are used to store the aforementioned distributed
ledgers, consensus protocols, smart contracts, tokens,
and digital wallets.

III. RELATED WORK
Numerous studies have attempted to classify the characteris-
tics of the blockchain technology. Ankenbrand et al. [21] pro-
posed a universal taxonomy of asset characteristics. It aims to
bridge traditional finance and emerging cryptographic assets
by providing a consistent view and standardized terminology
for different asset types. It extends existing crypto-assets
classification frameworks and summarizes the findings in
a morphological box. The taxonomy consists of 14 dimen-
sions: claim structure, technology, underlying, governance,
consensus/validation mechanism, legal status, information
complexity, legal structure, information interface, total sup-
ply, issuance, redemption, transferability, and fungibility. The
taxonomy consists of 14 dimensions and 44 characteristics.
The utility of this taxonomy was demonstrated through an
illustrative scenario using six crypto assets.

Schulze et al. [17] proposed a taxonomy of blockchain
platforms. The taxonomy consists of 10 dimensions and
26 characteristics organized in a morphological box. The
dimensions are orientation, system architecture, ownership,
interaction, governance, access, transaction validation, con-
sensus difficulty, codebase, and reference type. The utility
of the taxonomy was illustrated using a single blockchain
platform.

In the context of distributed trust and reputation manage-
ment systems (DTRMS), blockchain technology has been
addressed by Bellini et al. [18]. The authors aimed to provide
a guide for adapting blockchain technology in DTRMS. For
this purpose, they developed two taxonomies: the first one is
for blockchain technology, and the other one is for DTRMS.
Then, a formal concept analysis was applied to the proposed
taxonomies to identify the most stable and recurrent features
between both taxonomies. The study identified nine dimen-
sions and 24 characteristics organized in a tree structure.
The dimensions are openness, access management, business
logic, data, ledger distribution, fee, tokenization, consensus
protocols, and type. The utility of the taxonomy was not
demonstrated.

Another contribution to crypto-assets was due to
Arslanian and Fischer [22], who addressed the lack of a
universally accepted classification system for such assets and
proposed a simplified crypto-asset taxonomy. Their taxon-
omy consisted of two nested dimensions and five character-
istics, which were organized into a hierarchy. The taxonomy
was not evaluated.

The study by Tasca and Tessone [13] contributed to the
standardization of the classification of blockchain technol-
ogy. It provided a hierarchical classification of blockchain
characteristics. This study aimed to understand the architec-
tural configurations of the technology. Blockchain systems
were decomposed into functional and logical components.
However, the taxonomy-building approach and the classifi-
cation basis were not described. Their proposed taxonomy
consists of eight dimensions: consensus, transaction capa-
bilities, native currency/tokenization extensibility, security
and privacy, codebase, identity management, and charging
and rewarding system. The taxonomy consisted of 37 nested
dimensions and 72 characteristics. However, the utility of the
taxonomy was not demonstrated.

The work by Wieninger, Schuh and Fischer [15] provided
different variations in blockchain systems beyond the pop-
ular classification of public, private, and hybrid systems.
It enabled the differentiation of blockchain types by sys-
tematically classifying the fundamental characteristics of the
technology in a morphological box. The proposed taxonomy
consisted of 11 dimensions: authorization to view transac-
tions, right of proposal, validation of transactions, awareness
of identities, type of token, incentive for validation, location
of the asset, possibility of change, source code, consensus
mechanism, and Turing-complete. In total, the taxonomy
consisted of 11 dimensions and 27 characteristics. The utility
of the taxonomy was illustrated using a single blockchain
platform.

With the goal of investigating blockchain characteristics
similar to ours, Sarkintudu et al. [19] developed a taxon-
omy of financial blockchain platforms. That taxonomy aimed
to address the complexity of blockchain implementation to
enable access to its full potential. The taxonomy was struc-
tured as a table with five columns (dimensions): Operation
mode, visibility, task, design architecture, and consensus
mechanism. In total, the taxonomy consists of five dimen-
sions and 15 characteristics. The utility of the taxonomy was
demonstrated using 24 blockchain platforms.

An earlier taxonomy that addressed the characteristics and
classifications of tokens was proposed by Oliveira et al. [23].
The proposed taxonomy was organized into four dimensions:
purpose, governance, functional, and technical. In total, the
taxonomy consisted of 17 nested dimensions and 40 charac-
teristics. This taxonomy was evaluated through a case study.

The study by Tönnissen and Teuteberg [20] focused on
smart contracts as the fundamental blockchain components.
The study aimed to systematically classify terminology
related to smart contracts in order to facilitate the investi-
gation of current use cases and future challenges of smart
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TABLE 1. A comparison of existing taxonomies based on the eight fundamental components (Y=Yes, N=No).

contracts. The taxonomy consisted of nine dimensions and
24 characteristics which were organized into a table. The
dimensions were subject matter, function of contracts, time
horizon, ability to renegotiate terms, involvement of con-
sumers, existence of mutual trust, sub-categories of contracts,
trigger, and cost of altering. This taxonomy was evaluated by
interviewing experts.

One of the earliest works on blockchain classification was
by Xu et al. [16]. It aimed to address architectural consider-
ations about blockchain and blockchain-based systems. The
proposed taxonomy captured major blockchain architectural
characteristics. The taxonomy grouped these characteristics
into four main dimensions: decentralization, blockchain con-
figuration, storage and computation, and other architectural
designs and deployment. Within each dimension, a classifi-
cation system was structured as a table. A total of 30 nested
dimensions and 42 characteristics were identified. Although
blockchain examples were used to illustrate the taxonomy,
no evaluation was carried out.

Table 1 summarizes the above reviewed taxonomies based
on the eight fundamental architectural components described
early. As can be seen, none of these taxonomies has consid-
ered all these components. Our taxonomy aims to provide
a comprehensive blockchain taxonomy based on these eight
components.

IV. THE PROPOSED TAXONOMY
An overview of the proposed taxonomy is given in Subsection
A. Subsections B to D present a thorough analysis of the
blockchain components and their characteristics.

A. OVERVIEW
The proposed taxonomy classifies a blockchain system into
five levels, as shown in Figure 2, comprising the system-
level, the subsystem-level, the component-level, the aspect-
level, and finally, the feature-level. At the system-level,
a blockchain system is decomposed into three subsystems,
made up of an Execution Environment, an Internal and an
External subsystem. At the subsystem-level, a subsystem is
divided into a set of architectural components, based on the

FIGURE 2. The hierarchical decomposition of blockchain systems.

eight fundamental components of blockchain systems intro-
duced in Section II. At the component-level, a component
is divided into a set of aspects (or sub-components). At the
aspect-level, each aspect is instantiated by a specific feature
(or characteristic), selecting from a set of alternative features.
Some features may be further divided into sub-features. The
top three levels of our taxonomy are shown in Figure 3.

In what follows, we describe our taxonomy for each sub-
system and the relationships (Compositional or Alternative)
between its various constituents.

B. EXECUTION ENVIRONMENT SUBSYSTEM
The Execution Environment subsystem consists of a Net-
work, one or more Distributed Ledgers, and a Platform.
Each of these components is decomposed into several aspects
and each aspect is composed of one or more features.
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FIGURE 3. The high-level view of the proposed taxonomy.

The classification of this subsystem is depicted in
Figure 4 and described as follows.

1) NETWORK
A blockchain system is based on a peer-to-peer (P2P) com-
puter network. This network is characterized by six main
aspects: Openness, Chain Structure, Access Control, Mem-
bership Entity, Member Registration, and Member Identity.
Each of these aspects is characterized by a set of features. For
example, the Openness aspect of the network is characterized
by the features of Public, Private and Federated. Based on
these features, a blockchain network can be either public,
private or federated. Public networks are open-access and,
typically, all the participating nodes can read from and write
to their respective ledgers. Private networks are restricted
and owned by an organization, where the permission to read
and write is maintained within the organization’s members.
Federated networks are private networks shared by multiple
organizations.

The Chain Structure aspect of the network is charac-
terized by Single Chain and Multi Chain. Based on these
features, a blockchain can be composed of a single chain
or multiple chains. The remaining three aspects, Member-
ship Entity, Member Registration, and Member Identify, are
used to describe different characteristics of the participants
of the blockchain applications, such as if a participant is
a single organization or joint multiple organizations; if the
identity of the participants is known to the network or not,
as Figure 5 shows.

2) DISTRIBUTED LEDGER
Distributed ledgers are key to the blockchain technology.
They record all the transactions committed by the participants
of a blockchain network [28], [29]. The ledger component
is characterized by four aspects: Ledger Architecture, Data
Structure, Transaction Model, and Access Control. There are

three types of ledger architecture [47]: Single-Ledger Based,
Multi-Ledger Based, and Interoperability Based. These three
architecture types are briefly described here:

The Single-Ledger Based architecture was introduced as a
public permissionless solution to serve different application
industries, such as supply chains and transportation. Two
modifications were made to this public architecture to enable
private and hybrid settings. First, a handshaking mechanism
and a certificate authority are added to the architecture to
solve the issue of openness in public settings. Thus, the archi-
tecture can fit into private settings. Second, a constellation
component was introduced into the public architecture to
make it applicable to hybrid settings [47].

The Multi-Ledger Based architecture is explicitly intro-
duced for private and federated networks to allow confiden-
tial transactions within a consortium or single organization.
This architecture involves more encryption and decryption
operations than hybrid networks with single-ledger-
based architectures. The Interoperability Based architec-
ture has been introduced as a solution to the issue of
interoperability between incompatible single-ledger-based
blockchains. It can also be adapted for multi-ledger-based
blockchains [47].

The data structure of a ledger can be classified as Chain-
Based or Directed Acyclic Graph (DAG)-Based [28], [38],
[48], [49]. Under the Chain-Based structure, a ledger is struc-
tured as a list of blocks. DAG-Based structure links data in a
directed acyclic graph in a tree instead of a list.

The Transaction Model aspect has three features:
Transaction-Based, Account-Based, and Token-Based.
Under the stateless Transaction-Based model, tokens are
stored in a list of unspent transaction outputs (UTXO). Exist-
ing UTXOs are used as inputs for new transactions, which
subsequently produce new outputs in their place. Under the
stateful Account-Based model, tokens are stored as a balance
within an account controlled by a private key or a smart
contract. under the stateful Token-Based model, each token
has independent data space to store the complete history of
the token’s ownership.

3) PLATFORM
The blockchain platform provides an operational context
and an execution environment of blockchain systems [50].
The platform component contains nine aspects, as Figure 4
shows. The Architectural Design aspect of the platform
can be divided into three features: Monolithic, Polymor-
phic, and Modular. A monolithic platform offers services as
a bundle with no distinctive architectural separation. A poly-
morphic platform provides a clear separation of different
functions of the platform. A modular platform offers a mean
of customization.

The Supported Solutions aspect characterizes if a
blockchain platform is Permissioned or Permissionless.

The Energy Consumption aspect has two features: Power
Intensive and Energy Saving. The Incentive Mechanism
aspect has two sub-aspects: Fee and Reward. The Fee aspect
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FIGURE 4. Classification of blockchain systems based on their execution environment subsystem components.
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has two sub-aspects: Eligibility and Calculation. The Eligibil-
ity characterizes if transaction fees on a blockchain platform
are Mandatory, Optional, or Zero. The Calculation deter-
mines if a fee is calculated Per Byte, Per Operation, or None.
The Reward aspect has four features: Block Reward, Partici-
pation Reward, Archiving Reward, and Not Applicable.

If the platform supports the execution of smart contracts,
it has specifications for the programming language and
execution machines. The Smart Contract Support aspect con-
tains four sub-aspects: Execution Machine, Programmabil-
ity, Programming Languages, and Turing Completeness. The
Execution Machine aspect has four features: Native, Virtual
Machine, Container, and Not Supported. The Programma-
bility aspect has three features: Built-in, Programmable, and
None. The Programming Languages aspect has three fea-
tures: Single Language, Multiple Languages, and None. The
Turing Completeness aspect has two features: Turing Com-
plete and Turing Incomplete.

The Asset Support aspect has two compositional features:
Native Token and Custom Token. The Permission Support
aspect characterizes different levels of permissions that are
supported by a blockchain platform, if any. This aspect has
four features: Network-level, Smart Contract-Level, Ledger-
level, and None.

The Technical Support aspect consists of three sub-aspects:
Deployment, License, and Governance. The Deployment
aspect characterizes if a blockchain platform is deployed
On Premise or Blockchain-as-a-Service. The License aspect
characterizes if a blockchain platform is Open Source
or Closed Source. The Governance aspect characterizes
if a blockchain platform is supported by a Community,
an Alliance, or a Foundation.

The Business Support aspect consists of two sub-aspects:
Purpose and Industry. The Purpose aspect has two features:
General Purpose and Specific Purpose. The Industry aspect
has two features: Cross-Industry and Industry-Specific.

C. INTERNAL SUBSYSTEM
The Internal Subsystem is characterized by three main com-
ponents: Consensus Protocol, Smart Contract and Token,
as Figure 5 shows. These components and their classifications
are described as follows.

1) CONSENSUS PROTOCOL
This component is described by four aspects: Consensus
Mechanism, Finality, Network Access Control, and Trusted
Hardware Utilization. The Consensus Mechanism imple-
ments the contractual agreement between the network mem-
bers. This aspect has several features: Computation-Based
relying on a node’s computation power, Factor-Based relying
on a factor to prioritize nodes for mining and validation,
Voting-Based relying on the number of votes cast by peer
nodes in the network, or Combination-Based built on differ-
ent mechanisms, such as a combination of Factor-Based and
Voting-Based.

The Finality aspect refers to the property in which a valid
block cannot be pruned once it is appended to the blockchain.
It has two features: Probabilistic and Absolute. Under this
aspect, a consensus protocol can be characterized as Proba-
bilistic or Absolute. Typically, the consensus finality is abso-
lute in voting-based protocols, whereas it is probabilistic in
computation-based protocols. The finality of the factor- and
combination-based protocols is determined based on their
implementation.

The Network Access Control aspect has two features:
Permissioned and Permissionless. Different consensus mech-
anisms are applied in public and private network set-
tings [51], [52]. Under this aspect, a compatible blockchain
network can be characterized as a permissioned or
permissionless.

The Trusted Hardware Utilization aspect indicates whether
a specialized hardware is required for implementing the con-
sensus mechanism, such as Intel SGX or ARM TrustZone.
It has two features: Required and Not required.

2) SMART CONTRACT
A smart contract source code is deployed on the blockchain
by passing its code as transaction data, and the code then
becomes immutable. Each contract is represented in the
blockchain using a unique address. This address is used to
invoke functions inside the contract. These functions can
examine conditions, express logic, create new contracts,
or terminate their containing contract [28], [38]. A smart
contract source code consists of functions and events. When
a smart contract is terminated, the contract remains on the
blockchain, although the contract no longer responds to trans-
actions. This is evident because of the immutability of the
blockchain, where the smart contract code is its data. This
immutability of a smart contract gives it the characteristic of
being a firmware program. For a smart contract to be updated,
its current version must be terminated, and then a new version
must be deployed on the blockchain.

It is worth mentioning that smart contracts should not
be miscategorized as legal contracts. On one hand, a legal
contract exists as an agreement between two or more parties.
On the other hand, a computer program is a collection of
functions and procedures within a source code executed by
a computer machine. However, smart contracts are programs
that can conditionally transfer digital assets between parties
predictably and transparently, which may provide evidence
of the ability of smart contracts to facilitate the execution of
a legal contract [28].

This component is characterized by five aspects: Host-
ing Network, Type, Interaction, Events, and License. It is a
programming language-agnostic classification that aims to
describe concrete smart contract instances. The smart con-
tract execution environment is discussed earlier in this paper
as part of the blockchain platform. This taxonomy focuses on
classifying concrete instances of smart contracts that deliver
business logic to the blockchain systems. The Hosting Net-
work aspect characterizes if a smart contract is deployed
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FIGURE 5. Classification of blockchain systems based on their internal subsystem components.
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on a Mainnet or Testnet. The Type aspect characterize the
business logic implemented in the smart contract. Under this
aspect, a smart contract can be characterized as Legal, Appli-
cation, Token, Organization, or Thing contract. Smart Legal
contracts encode legally enforceable agreement terms among
multiple parties as smart contracts on the blockchain [53].
Application contracts express the possible business logic and
functions of DApps. Organization contracts refer to decen-
tralized autonomous organizations (DAO). They are complex
smart contracts that encode an organization’s management
and operational rules to allow autonomous operation without
the need for a central authority [54]. Thing contracts are smart
contracts used to register and manage IoT devices [55], [56].

The Interaction aspect has two features: Machine-to-
Machine and Human-to-Machine. In the former, smart con-
tracts are invoked and executed by node devices with no
human interactions, such as contracting devices in the IoT.
In the latter, the invocation of a smart contract involves
human interaction, such as in the application and smart legal
contracts. These interactions can be recorded in terms of the
events.

The Event aspect indicates if there are any events defined
by the programmer in the smart contract. It has two features:
Defined and Not defined. The License aspect characterizes if
a smart contract is open- or closed-source.

3) TOKEN
Blockchain systems offer the distinctive ability to record the
existence and transfer of digital assets [28]. These assets are
known as tokens and can represent real-world objects [38].
Numerous taxonomies of digital assets have been proposed
in the literature as well as in the industry, such as those
by the International Token Standardization Association6 and
Enterprise Ethereum Alliance.7 In addition, a token design
decision tree has been proposed to aid the design process of
digital tokens when developing blockchain applications [23].
This component is characterized by 13 aspects: Layer, Pur-
pose, Standard, Fungibility, Underlying, Underlying Asset
Ownership, Transferability, Expiry, Flow, Offerings, Supply,
and Issuance.

The Layer aspect considers the technical foundation of
the token. It has two features: Native and Secondary. Native
tokens are platform-specific tokens that are implemented as
a core component of the platform, mostly as a cryptocur-
rency, The second-layer tokens support the application func-
tions and are called application tokens. Application tokens
can be created if the platform supports programmable smart
contracts. In some cases, these tokens are implemented on
side-chains rather than on the main chain. Hence, they are
called side-chain tokens. An application token or a side-
chain token; is a secondary token implemented on top of the
blockchain main layer.

6https://itsa.global/
7https://entethalliance.org/

The Purpose aspect has three features: Utility, Stability,
and Security. The Standard aspect considers if the token is
implemented according to a token standard [57], such as
Ethereum Request for Comments 20 (ERC20)8 and Simple
Asset Standard [58]. This aspect has two features: Standard-
ized and No Standard. The Fungibility aspect characterizes a
token as Fungible or Non-fungible.

The Underlying aspect characterizes the assets repre-
sented by a token, if any. It has three features: No Underly-
ing, A Cryptographic Asset, and Non-Cryptographic Asset.
In addition, because tokens can represent real-world assets,
the ownership of the underlying assets should be considered.
The Underlying Asset Ownership aspect refers to the divis-
ibility of the assets represented by the token. For example,
multiple people can own a piece of art. Whole ownership
means that an asset is owned by one party. By contrast,
fractional ownership means that the asset is logically divided
into pieces, and a different party owns each piece. Tokens in
the blockchain represent this ownership. This aspect has three
features: Whole, Fractional, and Not Applicable.

The Transferability, Expiry, and Flow aspects consider the
circulation of a token. The Transferability aspect has two fea-
tures: Transferrable and Non-transferrable. The Transferrable
feature has two sub-features: Absolute and Constrained. The
Expiry aspect characterizes the lifetime of the token. Under
this aspect, a token is characterized as Expirable or Non-
Expirable. The Flow aspect has two features: Linear and
Circular.

The Offerings, Supply, and Issuance aspects consider eco-
nomical foundation of a token. For example, some tokens
are issued in a limited or unlimited manner, some are issued
when a condition is met, such as mining, whereas others
are issued all at once in advance [57], [59], [60], [61]. The
Offering aspect has four alternative features: Initial Coin—
Or Token—Offering (ICO/ITO), Initial Exchange Offering
(IEO), Security Token Offering (STO), and Revenue Models.
The Supply aspect has two alternative features: Limited and
Unlimited. The Issuance aspect has two alternative features:
Once and Conditional.

D. EXTERNAL SUBSYSTEM
The External Subsystem is characterized by two main com-
ponents: Node and Digital Wallet, as Figure 6 shows. These
components and their classifications are described as follows.

1) NODE
Nodes are the fundamental elements and communication
devices in blockchain networks. They retain ledgers, host
smart contracts, execute transactions, and generate blocks.

Ideally, a single-blockchain network can have multiple
node types. However, logically, a single full node can operate
the network. Nodes and clients are closely related. A node
is a hardware device (e.g., computer system) in the net-
work whereas a client provides the interface for the node.

8https://eips.ethereum.org/EIPS/eip-20
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FIGURE 6. Classification of blockchain systems based on their external subsystem components.
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For example, Raspberry Pi4 is a node hardware where Geth
Ethereum client software can be installed.

This component is characterized by 10 aspects: Cate-
gory, Role, Operation, Ledger Copy, Ledger Synchroniza-
tion, Hardware Requirements, Chain Support, Deployment,
Access Centralization, and Geolocation.

The Category aspect has four features: Full, Light, Pruned,
and Service. The Full nodes are responsible for supporting
consensus and verifying transactions or mining, as they store
a full copy of the blockchain. The Light nodes rely on full
nodes to acquire the required information when communicat-
ing with the blockchain. The Pruned nodes store a full copy
of a subset of transactions according to a predefined limit and
store transaction headers for old transactions. Finally, the Ser-
vice nodes coordinate the workflow between the network’s
nodes and do not update the ledger.

The Role aspect has four features: Archive, Block Valida-
tion, Data Verification, and Utility. Archive nodes are full
nodes that store a complete historical copy of the ledger.
Validator nodes are full nodes responsible for consensus and
block generation, such as miner and notary nodes. The data
verification nodes are light nodes that do not validate blocks.
Thus, they need only transaction headers to verify transac-
tions as in simple-payment-verification clients, or possibly
no data are synchronized as in minimal verification clients
such as incubed (IN3) clients. Finally, service nodes provide
utility to the network in aspects other than ledger-oriented
operations. For example, proxy nodes in the Klaytn network
coordinate the transmission of information between other
nodes in the Klaytn network.

The Operation aspect characterizes the operations per-
formed by a node. It has two features: Ledger-Oriented and
Network-Oriented. The full, pruned, and light nodes perform
ledger-oriented operations that uses and update ledger data.

The Ledger Copy aspect has four features: Full, Partial,
Headers only, and None. In contrast to full and pruned nodes,
light nodes do not store a copy of blockchains; thus, they
cannot validate the blocks. However, they can broadcast
transactions and query the blockchain [45], [62]. Although
archive and validator nodes store a full copy of the ledger,
the data stored in archive nodes include intermediate states to
build the history of the blockchain.

Nodes may need to maintain a copy of their ledger accord-
ing to their role. Thus, they need to be synchronized in differ-
ent ways [63], [64], [65]. Regardless of the approach adopted,
data to be synchronized and synchronization starting point are
fundamental aspects from a classification perspective. The
Ledger Synchronization aspect has three sub-aspects: Req-
uisite, Data, and Starting Point of synchronization. The Req-
uisite aspect has two features: Required and Not Required.
The Data aspect has four aspects: Block Header, Block Data,
Intermediate States, and None. The Starting Point aspect has
three features: Genesis, Checkpoint, and None.

Nodes can be any electronic device with sufficient power
and technical requirements to perform a job on the network.
The Hardware Utilization aspect characterizes the machine

used for a node. Under this aspect, a node is characterized
as Servers, Computers, Mobile Devices, or IoT Devices. The
Chain Support aspect consider the number of networks a node
can operate. This aspect has two alternative features: Single
Chain and Multiple Chains.

Nodes and clients can be deployed locally on a user’s quali-
fiedmachine, remotely on the cloud in a kind of centralization
as the cloud provider controls it, or on a decentralized pre-
configured node. Multiple nodes of a single network can be
in different geographical locations. The Deployment aspect
has two features: On Premise and Node-as-a-Service. The
Access Centralization aspect has two features: Centralized
3rd Party and Decentralized. The Geolocation aspect has
seven features: Asia, Africa, North America, South America,
Antarctica, Europe, and Australia.

2) DIGITAL WALLET
A digital wallet is used to manage digital assets in
blockchains. This component is characterized by 10 aspects:
Tangibility, Type, Recovery Mechanism, Custody, Inter-
net Connection, Signing, Supported Tokens, In-Wallet
Exchange, Deployment, and Integration Capability. The Tan-
gibility and Type aspects describe the nature of a digital
wallet. The Tangibility aspect has two features: Tangible and
Intangible. The Type aspect has eight features: Hardware,
Paper, Smart Contract, Web, Mobile, Desktop, Browser-
based, and Interface. The Browser-based feature has two
sub-features: Built-in and Extension. Tangible digital wallets
include hardware and paper wallets. The hardware wallets
are devices used to store public and private keys in an air
gapped environment. A paper wallet is simply a piece of
paper with encrypted digital keys printed on it. Intangible
wallets are software programs. Smart contract wallets use
smart contracts to store assets, adding a unique capability for
security and recovery [66].

A user’s private key is the only way to manage their digital
assets. If lost, it cannot be recovered unless the anticipated
wallet has a mechanism for key recovery. The Recovery
Mechanism aspect has five features: Passphrase, Guardian,
Seed Phrase, Password-Derived Keys, and None.

The Custody aspect has two features: Custodial and Non-
Custodial. Custodial wallets are centralized key stores in
which users’ private and public keys are stored on a server.
Users must provide valid passwords to access their wallets
and retrieve their keys to manage their own digital assets.
In contrast, non-custodial wallets do not save users’ data
remotely. Instead, public and private keys are stored in a user-
managed storage.

The Internet Connection aspect has two features: Hot and
Cold. Whenever a wallet requires an Internet connection to
be accessed, it is a hot wallet. This is in contrast with cold
wallets, which are air gapped. For example, hardware and
paper wallets are cold wallets, whereas software wallets are
hot ones. However, there are situations in which software
wallets support cold storage when used in an air-gapped
environment.
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The Signing, Supported Tokens, and In-Wallet Exchange
aspects consider the transaction management. Although typ-
ical blockchain transactions require only one signature, there
are situations in which multiple signatures are required for
a single transaction. Hence, a multi-signature (or multi-sig)
wallet is required. The Signing aspect has two features:
Single-Signature and Multi-Signature.

A digital wallet can support one or more types of digi-
tal assets. The Supported Tokens aspect has two features:
Cryptocurrency, which is further categorized as Single Cryp-
tocurrency and Multi Cryptocurrency, and Crypto Assets,
i.e., non-cryptocurrency tokens. In addition, some wallets are
capable of token exchange. The In-Wallet Exchange aspect
has two features: Supported and Not Supported.

The Deployment aspect considers where a wallet is
deployed. Under this aspect, a digital wallet is characterized
as In-App or Stand-alone. Stand-alone wallets are further cat-
egorized as Local or Remote. Digital wallets can be integrated
with other wallets. The Integration Capability aspect has
two features: Integrable and Non-Integrable. The Integrable
feature characterizes if the integrated wallet is a Hardware
Wallet or Software Wallet.

V. DEMONSTRATING THE PROPOSED TAXONOMY
In this section, we demonstrate our taxonomy by using it
to characterize real-world blockchain systems. Based on the
design science methodology [67], in the following subsec-
tions, we first characterize individual software components
in different blockchain systems; we then provide a case study
for characterizing a specific blockchain system.

A. CHARACTERIZING INDIVIDUAL BLOCKCHAIN
COMPONENTS USING THE PROPOSED TAXONOMY
In this subsection, the proposed taxonomy is used to classify
different software components in 80 different blockchain
application systems and components we found from the Inter-
net. They are listed in Table 2.

1) CHARATERIZING EXECUTION ENVIRONMENT
COMPONENTS
a: NETWORK

From the list of blockchain systems presented in Table 2,
we identified 10 state-of-the-art blockchain networks for
characterization. The results of the characterization using
our taxonomy are presented in Table 3. Table 3 shows that,
in terms of the Openness, out of the 10 networks, five
are public networks (Bitcoin, Etherum, Ardor Parent Chain,
Ardor Child Chain, andKlaytn Service Chain), two are purely
federated (Corda and Hyperledger Iroha), one is private only
(Ardor Private Child Chain), and two allow for both pri-
vate and federated implementations (Hyperledger Fabric and
Klaytn Service Chain). With respect to the Chain Structure,
three out of the five (3/5) public networks and one out of the
four (1/4) federated networks are single chains, whereas the
other six networks are multi-chained. For the Membership

Entity, five networks are open for individuals, three are for
single organizations, and four are for multiple organizations.
Finally, for the Access Control, Member Registration, and
Member Identity, we can see an equal distribution of the
features for each network. For example, for the Access Con-
trol aspect of the network, five networks require permission
whereas another five do not.

b: DISTRIBUTED LEDGER

From the list of blockchain systems presented in Table 2,
we identified 10 state-of-the-art blockchain distributed
ledgers for characterization. The results of the characteri-
zation using our taxonomy are presented in Table 4. For
conciseness, the analysis of this table is omitted, but a similar
analysis as for Table 3 applies.

c: PLATFORM

From the list of blockchain systems presented in Table 2,
we identified 10 state-of-the-art blockchain platforms for
characterization. The results of the characterization using
our taxonomy are presented in Table 5. In Table 5, for the
Architectural Design aspect, four platforms are Monolithic,
four are Polymorphic, and two are Modular. For example,
Hyperledger Sawtooth is a Modular Platform for enterprise
solutions.

For the Supported Solution, six support the implemen-
tation of Permissioned applications, three support Permis-
sionless applications, and one supports both. Furthermore,
of the seven platforms supporting permissioned solutions, one
supports permissions on all the three permission levels, one
platform supports only network-level permissions, and five
platforms support network and ledger permissions.

In term of Energy Use, eight platforms are based on
Power Saving, whereas only two are Power Intensive. For
the Incentive Mechanism, six platforms calculate transaction
fees per operation, where the fees are mandatory in five other
platforms. Whereas the Reward mechanism is not applica-
ble to five platforms, block rewards are applicable to four
other platforms, participation rewards are applicable to two
platforms, and archiving rewards are applicable to only one
platform.

For the Smart Contract Support, seven platforms support
programable smart contracts, of which five execute such
contracts in virtual machines, whereas two execute them in
containers. For the Asset Support, two platforms support only
native tokens, five platforms support only custom tokens, and
three platforms support both native and custom tokens. For
the Business Support, all the 10 platforms are cross-industry,
including seven general-purpose and three purpose-specific
platforms.

Finally, for the Technical Support, nine platforms are
open-source and to be deployed on premises, whereas seven
of them are governed by a community of developers, one is
governed by an alliance, and one is governed by a foundation.
IBM Blockchain is the only closed-source platform.
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TABLE 2. Blockchain systems and components in the evaluation sample (Y=Yes, N=No).
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TABLE 3. Characterizing 10 real-world blockchain networks using the proposed taxonomy.

TABLE 4. Characterizing 10 real-world distributed ledgers using the proposed taxonomy.

2) CHARATERIZING INTERNAL COMPONENTS
a: CONSENSUS PROTOCOL

From the list presented in Table 2, we identified 11 state-of-
the-art consensus protocols for characterization. The results
of the characterization using our taxonomy are presented

in Table 6. Of these protocols, two are computation-based
with probabilistic finality for permissionless networks, one is
combination-based with probabilistic finality for permission-
less networks, four are voting-based with absolute finality for
permissioned networks, and four are factor-based, including
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TABLE 5. Characterizing 10 real-world blockchain platforms using the proposed taxonomy.

one with absolute finality for both permissioned and permis-
sionless networks, and three with probabilistic finality, where
two of them are for permissionless networks and one is for
both permissioned and permissionless networks. Only one
protocol requires the utilization of trusted hardware.

b: SMART CONTRACT

Table 7 presents the characterization of 11 smart contracts
listed in Table 2. Of the 11 smart contracts given in Table 7,
six are application contracts deployed on a Mainnet for
Human-to-Machine interactions, four are token contracts for
Human-to-Machine interactions including three are deployed
on a Mainnet and one is deployed on a Testnet, and one is a
thing contract deployed on a Testnet for Machine-to-Machine
interactions. All the 11 smart contracts are open source and
include user-defined events.

c: TOKEN

We randomly selected 11 tokens from the systems listed in
Table 2. The characterization of these tokens is presented in
Table 8. Some of these tokens are briefly introduced here:
Ether (ETH) is the cryptocurrency of Ethereum. CryptoKit-
ties CK is the application token of CryptoKitties DApp.
STEEM, Steem Power SP, and Steem Dollar tokens are fun-
damental asset classes of the Steem blockchain. DTC is the
application token of Dtube DApp, a Steem-based application
for video sharing. AFIT is the application token of ActiFit,
a Steem-based mobile DApp for promoting healthy habits.
Geon coin GC and Geon token GT are application tokens
of Geon, an augmented reality application provides location-
based incentives by rewarding its users for physical presence
and other real-world location activities. SPiCE is a security
token provided by SPICE VC, a venture capital firm that
uses the blockchain technology to solve the liquidity problem.

IMMO is the application token of Blockimmo, a decentral-
ized marketplace for tokenized property in Switzerland.

Of these 11 tokens, five are Native Tokens, of which
three are for utility, one for stability, and one for secu-
rity. The remaining six tokens are Secondary, including four
for utility, one for stability, and one for security. Of the
11 tokens, eight are Standardized Fungible Tokens, two
are Non-Standardized, and one is a Standardized Non-
Fungible token. Six tokens are not the representations of
an underlying asset, whereas two represent wholly ownable
cryptographic assets, two represent wholly ownable non-
cryptographic assets, and one represents fractionally ownable
non-cryptographic assets. In terms of the Expiry aspect, nine
tokens are non-expirable where eight are transferable in a
circular flow and one is constrainedly transferable in circular
flow. Two of the 11 tokens are expirable and transferable
in circular flow absolutely for one and constrainedly for the
other.

For the four tokens offered via ICO\ITO, one token has
a limited supply issued all at once, and three tokens have
an unlimited supply issued conditionally. All three tokens
offered via a revenue model are issued conditionally, where
two tokens have limited supply and one token has an unlim-
ited supply. The two tokens offered via STO have a limited
supply, where one is issued conditionally, and the other is
issued all at once. The last two tokens are offered via IEO
and issued conditionally with a limited supply for one token
and an unlimited supply for the other token.

3) CHARATERIZING EXTERNAL COMPONENTS
a: NODE

Ablockchain network usually contains multiple nodes. Based
on the client environment, each node may have different
characteristics. Thus, nodes as individual components are
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TABLE 6. Characterizing 11 consensus protocols in real-world systems using the proposed taxonomy.

typically classified by their owners, as the owners have the
knowledge of the client environment. In this paper, we char-
acterize the network nodes through the Publicly Accessible
Environment Sensor Use Case from IN3 Network.9 This use
case describes the use of different nodes and clients in IoT
applications in the city of Stuttgart. The characterization of
the primary nodes in the use case is given in Table 9.

Of the four nodes, one performs ledger-oriented oper-
ations, two perform network-oriented operations, and one
performs both operations. For the chain support, one node
supports a single chain which is a light node, and three
nodes support multiple chains including two service nodes
and one full node. Of the four nodes, two are servers, one
is a computer, and the other is an IoT device. One node
requires synchronization of the block data from the gene-
sis block to participate in block validation. Another node
requires synchronization of block headers from a checkpoint
to participate in data verification. The remaining two nodes
do not require ledger data. On premises and node-as-a-service
deployments are in an equal measure. The access to all the
four nodes is decentralized.

b: DIGITAL WALLET

An example of applying the digital wallet features to a set
of state-of-the-art digital wallets is presented in Table 10.
Of the 13 wallets, two are tangible hardware and 11 are
intangible. Of the 11 intangible wallets, three are mobile
app wallets, two are web app wallets, two are smart contract

9https://in3.readthedocs.io/en/develop/intro.html

wallets, and one wallet for each other types. For the recovery
mechanism, the seed phrase has a significant number of
eight wallets, three wallets have no recovery mechanism, and
the other mechanisms have equal measures of one wallet
each. Most of the wallets are non-custodial, totaling 12 out
of the 13 wallets. Out of 13, seven wallets support both
multi-currency and crypto-assets, five wallets support only
cryptocurrencies including one wallet supports only a single
cryptocurrency, and one wallet supports only crypto-assets.
Only one of the 13 wallets supports multiple signatures. The
in-wallet exchange is supported by seven wallets out of the
13. For the wallet deployment, eight wallets support local
deployment, two wallets support remote deployment, and
two wallets support both deployments. For the integration
capability, six out of the 13 wallets are non-integrable, six
are integrable with other software wallets, and five wallets
are integrable with other hardware wallets.

B. CASE STUDY: CHARACTERIZING AN ENTIRE SYSTEM
USING THE PROPOSED TAXONOMY
In this case study, we use our taxonomy to characterize
the CryptoKitties application system,10 a blockchain based
computer game for breed-able virtual cats known as Cryp-
toKitties (CK) tokens. The game was developed to support
blockchain technology education through gamification, as its
key mechanism is tied to crypto-assets and smart contracts.
CryptoKitties is a featured decentralized gaming application
and has been used in several studies [48], [77], [78]. Here

10https://www.cryptokitties.co/
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TABLE 7. Characterizing 11 smart contracts in real-world systems using the proposed taxonomy.

we characterize CryptoKitties in terms of its fundamental
components, aspects and features.

1) EXECUTION ENVIRONMENT COMPONENTS
The Execution Environment of CryptoKitties consists of the
EthereumMainnet (see Table 3), Ethereum distributed ledger
(see Table 4), and Ethereum platform (see Table 5).

2) INTERNAL COMPONENTS
The application’s internal components consist of PoW as a
consensus protocol (see Table 6); five smart contracts: Kitty
Core, Siring Clock Auction, Sale Clock Auction, Gene Sci-
ence, and Offer: (see Table 7); and two tokens: ETH and CK
(see Table 8).

3) EXTERNAL COMPONENTS
The application has no built-in wallet. Therefore, players
must use a stand-alone wallet that supports cryptocurrencies
and crypto-assets to use the DApp (see Table 9). Players
do not need full nodes to play. However, if a player wants
to participate in block validations and, hence, in the overall
security of the chain, there is a need to deploy an Ethereum
node. The CryptoKitties frontend is a web-based client-server
application. It uses relational databases to replicate on-chain
data related to the events emitted by the smart contracts. Play-
ers must purchase ETH to start buying, selling, and breeding
kitties. It requires users to create accounts for the first time.
They can then log in using their digital wallets.

CK is non-fungible and represents unique virtual kitties
with different visual appearances at varying levels of rarity.
These kitties can be sold, bought, gifted, and never die.

Ethereum requires fees to be paid in ETH per transaction
on its network. Thus, players must pay fees to place a bid
or cancel an offer. This has implications for the game logic
of CryptoKitties. On the one hand, an innovative auction
mechanism is designed to minimize on-chain transactions
and achieve a better user experience. It is a descending clock
auction where sellers pay gas fees to initiate an auction, and
buyers pay gas fees, in addition to the offer value, only when
they complete a purchase of a CK.

However, CryptoKitties requires players to pay additional
fees to cover the cost of transactions performed for them as
part of the game logic. For example, a birthing fee is required
each time the players breed their own kitties. The fee is paid
by the player, collected by CryptoKitties smart contracts, and
paid to the network miners when a new CK is generated and
written to the blockchain. Because the application is based
on a distributed ledger with a single-ledger-based architec-
ture, there is a potential for an increasing number of game
transactions to crowd out and be delayed by other businesses
that use Ethereum.

When CryptoKitties was first released in 2017, the Gene
Science contract was a closed-source, whereas the other four
contracts were open-source. In 2019, the Gene Science con-
tract was open sourced. The game logic is split between the
application backend and frontend. Complicated game func-
tions that require periodically calling of the smart contracts,
such as generating new CK tokens (i.e., kitty birth), are han-
dled by the blockchain, whereas other simpler functions, such
as rendering images of kitties according to their identified
genetic makeup in the smart contract, are handled by the
frontend. The frontend handles mapping from CK genotypes
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TABLE 8. Characterizing 11 tokens using the proposed taxonomy.

(i.e., token Ids) stored on the blockchain to phenotypes stored
in the relational database. Transaction data are sent from the
frontend to Ethereum via the Web3 API, whereas on-chain
and off-chain data are retrieved via a RESTful interface.
To this end, and at a high-level of abstraction, we can con-
clude that the architecture of CryptoKitties consists of an on-
chain backend, an off-chain backend, and a frontend. Linking
the CryptoKitties backend to its frontend components offers
several insights, as discussed in Section VI.

VI. DISCUSSION
Although we have demonstrated the applicability of the pro-
posed taxonomy through diverse examples found in real-
world systems, the taxonomy has not been validated by
blockchain systems developers. While validating the taxon-
omy will be our ongoing research, this section discusses our
general observations obtained from using the taxonomy to
characterize the blockchain systems and offers our sugges-
tions for some key decisions for the design of blockchain
systems.

A. OBSERVATIONS
Blockchain platforms are largely general-purpose, open-
source platforms and are governed by communities of devel-
opers. In agreement with [79], incentive mechanisms should
consider rewarding full nodes, such as archival nodes, despite
being miners. In addition, full nodes that solve computa-
tional problems and do not win block rewards consume
sufficient storage and power with no reward. Blockchain
systems are not fully decentralized. Although their execution
environment is intended to be decentralized, there are other

components that affect the decentralization of the final appli-
cation, such as custody of the digital wallet and centralized
frontends.

Moreover, three expertise areas are essential for devel-
oping blockchain applications. The first area of expertise
is smart contract development, which focuses on the pro-
gramming and testing of smart contracts. This area requires
a new thinking vector that differs from conventional soft-
ware development [80], [81]. More importantly, smart con-
tracts are deployed as transactions in the blockchain. Thus,
deployed smart contracts are immutable, irreversible, and
non-modifiable. It is crucial to test smart contracts, ideally
on test networks, before actual production of blockchain
systems. The second area of expertise is infrastructure set-
ting. This area focuses on configuring and establishing a
blockchain system execution environment. It involves work-
ing with blockchain platforms and making decisions con-
cerning architectural design such as scalability and data
privacy [82], [83]. The last area of expertise is front-end
development. This area generally focuses on conventional
software development, including the UI and user experience
design. It also focuses on establishing communication ser-
vices to the application’s backend.

B. DESIGN DECISIONS
From a software developer’s perspective, there are some
design decisions that should be considered when developing
blockchain application systems:

1) At least three licenses should be considered for a single
blockchain application. The first is the license of the
blockchain platform, the second is the license of smart
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TABLE 9. Characterizing the network nodes found the publicly accessible environment sensor use case using the proposed taxonomy.

TABLE 10. Characterizing 13 digital wallets using the proposed taxonomy.

contracts, and the last is the license of the frontend
application.

2) For a single blockchain application, four deployments
should be considered. The first is the deployment of
the blockchain platform whether on a local node or as
a service; the second is the deployment of the smart
contracts, whether on a production or test network and
whether on a single chain or multiple chains; the third
is the deployment of the frontend application whether
local on users’ devices or remote on web servers; and
the last is the deployment of the digital wallet whether
embedded within the DApp, local on users’ devices,
or remote on web servers.

3) For a single blockchain application, there are at least
four access-control levels. In addition to the network,
ledger, and smart contracts permissions, the frontend
can be open access or restricted, for example, to a
specific geolocation.

4) Membership supported by the backend network is dif-
ferent from the membership supported by the frontend
application. For example, a DApp may constrain the
members’ registration to a certain group of people
although the underlying blockchain network is open
and its membership is not controlled.

VII. CONCLUSION
In this paper we have made three major contributions to the
research and development of blockchain systems:

First, we propose a novel taxonomy for blockchain sys-
tems. The taxonomy is comprehensive, characterizing a
blockchain system using 3 subsystems, 8 fundamental com-
ponents, 83 aspects, and 198 features. Such a detailed char-
acterization can better inform software developers in their
design and implementation of blockchain systems. Based on
our literature review, we believe this is the first comprehen-
sive taxonomy for blockchain systems.

Second, we show that the taxonomy is flexible and adapt-
able to the characterization of individual software compo-
nents from a wide range of real-world blockchain systems.
Using this taxonomy, we can gain a systematic understanding
of a blockchain system or their components.

Finally, we offer our observations and insights to
blockchain systems developers. We intend to provide this
taxonomy as a service, making it accessible by the blockchain
researchers and practitioners, so that it can be validated and
used in practice. This may also open up collaboration oppor-
tunities to extend and standardize the taxonomy. Based on
this taxonomy, our future work will research and develop
reference software architectures for blockchain systems.
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A B S T R A C T
Context: Blockchain technology has recently gained popularity in diverse applications far beyond
finance transactions, but the development of blockchain application systems is hard, facing the
stringent demand on quality requirements, such as performance, scalability, reliability, portability,
interoperability, privacy, and security. Software architecture has long been recognized to be highly
critical to realizing key quality requirements. However, as blockchain application development is still
a new field, little work has been carried out on software architectures for blockchain applications.
Objective: This paper aims to make a contribution in blockchain application software architectures
by proposing a set of interconnected architectural patterns.
Method: These patterns, which are collectively called a pattern language, are identified from 400
real-world blockchain applications. These patterns cover three aspects or viewpoints of blockchain
application architectures: Structure, Interaction and Transaction. This paper describes these patterns
and demonstrates their applicability by reverse-engineering three real-world blockchain applications.
Results: This paper identifies 12 interconnected architectural patterns for blockchain applications.
These patterns can aid in the design of blockchain application architectures from three different
perspectives, comprising structural, international and transactional. The patterns can also be used
to review and detect quality issues when designing blockchain applications.
Conclusions: This paper makes a novel contribution to blockchain application architecture research
and shows the importance of architectural patterns for supporting application-specific quality require-
ments.

1. Introduction
A blockchain is a secured transaction management sys-

tem in which business transactions and digital assets are
stored as chains of blocks [1]. Originally developed to record
cryptocurrency transactions [2], blockchains are considered
highly secure due to their anonymity, auditability, persis-
tency, and decentralization. Blockchain technology has been
steadily gaining popularity, with applications in diverse do-
mains that extend far beyond finance and digital payments
[3, 4, 5, 6]. These domains include voting, healthcare, supply
chain management, and the Internet of Things (IoT) [7].

However, developing blockchain applications faces a
large number of technical challenges [7] and the stringent
demand on non-functional requirements (NFRs), particu-
larly quality requirements, such as performance, scalability,
reliability, portability, interoperability, privacy, and security
[8].

Software architecture has long been recognized as a crit-
ical construct in software development. A good architecture
can aid in the design of a software system that will satisfy
key quality requirements, but a bad one can be disastrous
[9]. As blockchain application systems are still new, work
on software architectures for these systems is rather limited.
To date, most work has primarily been focused on computing
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networks of blockchain hardware systems using the Peer-to-
Peer (P2P) architecture [10, 8]. In this paper, we aim to make
a contribution in this area by proposing a set of intercon-
nected software architectural patterns as design constructs
for blockchain application development. We call this set
of architectural patterns a pattern language, a terminology
commonly used in the software patterns community [11, 12].

In particular, our pattern language consists of 12 archi-
tectural patterns, extracted from 400 real-world blockchain
applications hosted on different online blockchain platforms
[13]. These patterns cover three aspects or viewpoints of
blockchain application architectures: structural, interac-
tional and transactional. They aim to help blockchain ap-
plication architects and developers to make design decisions
about how to structure key application components and
their interactions. Such decisions can then impact on the
fulfillment of application-level quality requirements.

The rest of the paper reports our pattern language, which
is organized into the following sections: Section 2 reviews
related work on blockchain architectures, whereas Section
3 gives an overview and background of blockchain appli-
cations. Section 4 describes a set of core blockchain ap-
plications components which serve as the foundations for
the patterns in our pattern language. Section 5 presents our
pattern language. Section 6 evaluates this pattern language
by using it to describe the architectures of three real-world
blockchain application systems. Section 7 discusses our
research limitation. Finally, Section 8 concludes the paper.
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2. Related Work
Literature shows that some efforts have been made to

document reusable design patterns for blockchain applica-
tions. Some of the proposed patterns focus on designing
generic applications [14] [14, 15, 16, 17, 18, 19], whereas
others are collected for specific contexts [20, 21, 22, 23].
The selection of appropriate design patterns is supported by
seven decision models proposed by Xu et al. [24]. The mod-
els support design decisions related to data management,
performance, security, oracle, and smart contract. However,
there is a significant lack of research on the architectural
patterns for blockchain applications.

Liu et al. [25] proposed a reference architecture for gov-
ernance of blockchain systems, focusing on how governance
fits in the development and use of blockchain. The proposed
reference architecture consists of four layers: infrastructure,
platform, API, and user layers. Within each layer, the study
suggested a set of design patterns to address governance-
related issues in blockchain systems. The architecture was
evaluated using two real-world blockchain platforms.

In the context of Multi-Tenant Blockchain-Based Sys-
tems, Weber et al. [26] proposed a platform architecture
to ensure data integrity of permissioned blockchains while
maintaining privacy and performance isolation. This was
achieved via anchoring the consensus state of each per-
missioned blockchain periodically to a public blockchain.
The proposed architecture was implemented in a proof-of-
concept prototype based on Ethereum.

A study by Wöhrer et al. [27] discussed design guid-
ance for blockchain integration. It focused on operational
and integration aspects of public permissionless blockchain-
based applications. The study elaborated a number of de-
sign options related to decentralization, identity provision-
ing, transaction handling, key management, transaction state
synchronization, blockchain connection, frontend provision-
ing, application logic, off-chain interaction, rich querying,
and confidential storage.

On the other hand, few attempts have explicitly focused
on analyzing Industry-developed blockchain applications.
The survey in [28] investigated a specific type of blockchain
application: digital games. This survey aimed to statistically
analyze blockchain game trends. It identified four funda-
mental benefits of blockchains in the digital game industry:
rule transparency, asset ownership, asset reusability, and
user-generated content. In addition, the survey provided a
high-level block-diagram architecture for blockchain-based
games. This architecture provides a high-level view of the
interactions between game players and blockchain networks
through smart contracts. Although the dataset in [28] con-
sisted of 23 game applications from the Bitcoin, Ethereum,
EOS, TRON, and Nebulas platforms, the study mainly ana-
lyzed Ethereum and EOS games.

Another descriptive analysis was presented in [29]. It
mainly focuses on analyzing transaction data from Ethereum
applications. Specifically, the study investigated the pop-
ularity of blockchain applications, the openness of their
source codes, and the costs of deploying and executing smart

contracts. The findings in this study offer an overview of the
Ethereum applications market and provide implications for
its end-users and developers. The architecture presented in
this study describes high-level interactions between clients
and the smart contracts of Ethereum applications. Further-
more, it identifies three interaction patterns: direct, indirect,
and mixed. The architecture comprises five layers: the DApp
client, smart contract, DApp service, DApp server, and
Ethereum blockchain. The study’s dataset consists of 995
blockchain applications on the Ethereum platform.

At the repository level, the study in [30] presented a
quantitative analysis of five public repositories of blockchain
applications. The study examined consistency in terms of
schema and content across these repositories. In this regard,
the study defined a blockchain application as a decentralized
application consisting of a front-end and smart contract.
A basic three-layer architecture (application, contract, and
service layers) was proposed for blockchain applications.
It is a refinement of the two-layer architecture presented
in [31]. Although the dataset used in [30] included 4760
blockchain applications, only the top 10-ranked applications
on Ethereum were selected for smart contract analysis.

The reviewed literature either proposed design patterns
or presented comprehensive statistical analyses of Ethereum
applications. In contrast, this study addresses the architec-
tural concerns of blockchain applications via an in-depth
analysis of existing blockchain applications built on top of
nine different blockchain platforms. This paper presents an
architectural pattern language for blockchain applications.
Although the dataset in this study contains a smaller number
of blockchain applications than those in [29] and [30], it
offers a broader range of blockchain platforms representing
all the typical blockchain types: public, private, and consor-
tium.

3. Types of blockchain applications
Our analysis of 63 research papers [13] on blockchain

business applications has identified the following three
broad application types. This categorization of blockchain
business applications allows understanding application-specific
architectures.

1. Consumer-Centric applications. They are use cases
where independent entities would like to collaborate
without relying confidentially and electronically on
trusted intermediaries. Such use cases involve individ-
uals’ interactions and thus require high transparency.
Various blockchain use cases from different business
domains have been designed as Consumer-Centric
applications [7, 32, 33, 34, 35]. For example, cryp-
tocurrency exchange allows individuals to carry out
currency transactions in a secure, trustworthy, and
transparent environment [36, 37]. Furthermore, tok-
enization enables the exchange of values and data in
the same manner as cryptocurrency exchanges. The
idea of tokenization provides endless opportunities for
innovative applications.
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2. Enterprise-Centric applications. These applications
offer the ability of trusted peer-to-peer exchange and
automated execution of business contracts. This abil-
ity eliminates the need for third parties and ensures
the integrity of the processes and data with secu-
rity and cryptography. The elimination of intermedi-
aries drives a new ecosystem of players and fosters
the creation of new profit pools, microeconomics,
competitors, consumers, and distributed ecosystems
[38]. Enterprise-Centric blockchain applications are
use cases designed for inter- and intra-organizational
procedures such as auditing, monitoring, enterprise
authentication and authorization, enterprise integra-
tion, and regulatory requirements. For example, de-
mand forecasting in supply chain management is a
collaborative and coordinated approach to forecasting
future demand by supply chain members. A crucial
prerequisite for demand forecasting is data exchange
between the supply chain members. Blockchain offers
a permissioned and trusted exchange system between
supply chain members to ensure data integrity and
privacy [39].

3. IoT-Based blockchain applications. The IoT ecosys-
tems enable a diverse range of smart physical ge-
olocated devices to communicate over the Internet
to accomplish specific tasks. These digital transac-
tions between smart devices demand high security
for sensitive data and interactions, which is challeng-
ing to meet in traditional centralized development.
Blockchain technology can effectively secure these
transactions, ensure their safety and efficiency, save
costs, automate IoT complex workflows, and promote
resource sharing [7, 34, 40]. IoT-Based blockchain
applications are use cases that incorporate machine-
to-machine interaction. For example, a smart grid
combines electric power transmission and information
technology to form a power supply network consist-
ing of distributed users (e.g., consumers and produc-
ers) and smart devices (e.g., smart meters, energy re-
sources, and smart appliances). Therefore, smart grid
solutions must support security, privacy, and trans-
parency [7, 40, 41]. Blockchain has the potential to
transform smart grids into decentralized and transpar-
ent processes. It offers opportunities for energy trading
between participants, dynamic energy pricing based
on availability and consumption, demand response for
balancing energy demand and supply [34, 35, 42].

4. Blockchain application components as basis
for our architectural patterns
To identify the architectural patterns, we manually se-

lected 400 blockchain applications between September 2019
and February 2020 from these nine different blockchain plat-
forms: Ethereum, Steem, EOS, Blockstack, Klaytn, POA,
Hive, Corda, and Hyperledger Fabric. These applications
and their sources are listed in Zenodo [43]. We mapped

the applications to the three application categories. Table
1 shows their distributions on the nine different platforms.
The selection of these applications is based on the following
inclusion and exclusion criteria:

• Include applications with smart contract functionality,
i.e. Blockchain 2.0 and Blockchain 3.0

• Include applications built on open source blockchain
platform

• Include applications built on cross-industry blockchain
platform

• Exclude Blockchain 1.0 applications
• Exclude applications with no supporting documents
• Exclude other applications that are related to proto-

cols, application programming interfaces, and soft-
ware development kits

From these 400 applications, we first identified a set of
nine core components and organized them into a taxonomy
[44]; we then mapped these components and their relation-
ships onto the known software architecture patterns [45],
[46] to identify a set of architectural patterns for blockchain
applications. The mapping of these components to the iden-
tified architectural patterns in this pattern language. In what
follows, we briefly describe these nine core components:

1. Smart Contracts. These are programmable commands
that can conditionally transfer digital assets between
parties predictably and transparently [47]. A smart
contract is written in a blockchain platform-specific
language. For example, Solidity is a standard pro-
gramming language for smart contracts based on
EVM, such as Ethereum and POA. Go, Java, and
JavaScript are programming language choices for
smart contracts in Hyperledger Fabric. Some plat-
forms offer the ability only to command pre-built
smart contract modules. In this case, application-
specific smart contracts are tied to predefined func-
tions in the platform’s modules, such as Hyperledger
Iroha. However, some blockchain platforms, such
as EOS, provide pre-built smart contracts and al-
low user-defined contracts. In this case, the pre-built
modules are used for core operations. Accordingly,
some blockchain platforms execute smart contracts
on specialized machines, whereas others run them
natively within the platform architecture.

2. Tokens. Digital assets are known as tokens in the
blockchain ecosystem. They are cryptographic assets
that may represent cryptocurrencies or real-world ob-
jects [1, 48]. Tokens are primarily native – proto-
col - or application tokens. Native tokens are tied
to a blockchain platform, whereas application tokens
are linked to a blockchain application. For example,
an Ethereum-based application must use ETH for
transaction fees. However, it can also implement its
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Table 1
An overview of the analyzed blockchain applications in this study

Application Category Blockchain Platform Network Type Number of Applications Source

Consumer-Centric Applications Blockstack Public 1 State of the DApps1

EOS Public 29 State of the DApps
Ethereum Public 171 State of the DApps
Hive Public 5 State of the DApps
Klaytn Public 14 State of the DApps
POA Public 2 State of the DApps
Steem Public 18 State of the DApps

Enterprise-Centric Applications Corda Consortium 67 R3 Marketplace2

Ethereum Public 56 State of the DApps
Hyperledger Fabric Private 12 IBM Code Patterns3

Klaytn Public 3 State of the DApps
POA Public 3 State of the DApps
Steem Public 2 State of the DApps

IoT-Based Applications Corda Consortium 8 R3 Marketplace
Ethereum Public 3 State of the DApps
Hyperledger Fabric Private 5 IBM Code Patterns
Klaytn Public 1 State of the DApps

1 https://www.stateofthedapps.com, last accessed: July 2022.
2 https://marketplace.r3.com, last accessed: November 2020.
3 https://marketplace.r3.com, last accessed: November 2020.

application-specific tokens through smart contracts.
Application tokens are application-specific tokens that
are implemented as smart contracts. These are second-
layer tokens defined and programmed by smart con-
tract developers. There are several standards for appli-
cation tokens. For instance, ERC20 and ERC721 are
standards for fungible and non-fungible EVM-based
application tokens, respectively [49].

3. Digital Wallets. A digital wallet stores and manages
digital keys and crypto assets in a blockchain system.
Digital wallets can involve cold or air-gapped storage,
which is used offline, or hot software applications,
which may offer in-wallet exchanges of cryptocurren-
cies. Digital wallets have various forms. The high-
level classification of digital wallets is either tangi-
ble or intangible. Another classification is based on
how a digital wallet is implemented. Hardware, pa-
per, desktop, mobile, web, browser-based, and smart
contract wallets are implemented independently of a
blockchain application. Hardware wallets are separate
devices used by end-users to manage their digital
keys and crypto-assets. Software wallets can either
be embedded within the blockchain application as a
primary service or a stand-alone software program,
such as desktop, mobile, or web applications. It is also
possible that a digital wallet can be another decentral-
ized application [44].

4. Permission Management. This component is respon-
sible for authorizing access to other blockchain com-
ponents, such as joining the network, invoking smart
contracts, and reading from or writing to ledgers. A
permission component is essential in the consortium

and private networks to encapsulate transactions and
data within the consortia, and to maintain data privacy
between consortia members themselves, as each mem-
ber should have access to specific data only [1, 48].

5. Incentive Mechanism. Primarily, this mechanism ap-
plies to public blockchains where peer nodes are in-
centivized to contribute to the blockchain network,
such as mining blocks [1]. The incentive mechanism
has two components: fees and rewards. The system fee
is payable by the users of a blockchain application to
the system, whereas the reward fee is payable by the
system to the miners.

6. Distributed Ledgers. These digital ledgers serve as
record keepers for all transactions that occur in the
network. They are synchronized between the involved
peers [1, 48, 50, 51]. Blockchain platforms adopt
different architectures of distributed ledgers. There are
mainly two architectures of the distributed ledgers:
single- and multi-ledger. Not all distributed ledgers
are chains of blocks, although most are. For example,
Corda is a chain of transactions. A valid transaction
in Corda is confirmed and attached in real-time to
the chain of transactions it depends on, instead of
bundling a set of unrelated transactions in a block.
Referencing the dataset, eight out of nine blockchains
are chain-based. Moreover, not all distributed ledgers
are chain-based. There are other distributed ledgers
where a set of transactions or blocks are linked in a Di-
rect Acyclic Graph DAG [52]. An example of a DAG-
based distributed ledger is IoTA’s ledger known as the
Tangle [44]. Thus, distributed ledgers could be a chain
of blocks, a chain of transactions, a DAG of blocks, or

Alzhrani et al.: Preprint submitted to Elsevier Page 4 of 21



An Architectural Pattern Language for Blockchain Application Development

a DAG of transactions. World state databases are used
to store the state of the digital ledgers.

7. Consensus. These mechanisms are used to agree on
the validity of transactions between trustless entities.
These protocols have a significant impact on the per-
formance of a blockchain network [53]. Consensus
is a mechanism to achieve agreement among dis-
tributed peers on a single value or state. Different
consensus mechanisms have been applied in pub-
lic and private network settings [54]. For example,
computation-based protocols, such as PoW, rely heav-
ily on a node’s computation power. Voting-based pro-
tocols rely on the number of votes cast by peer nodes
in the network, such as PBFT. Many other algorithms,
such as Proof of Stake (PoS) and DPoS, attempt to
overcome the power-intensiveness limitation of the
computation-based algorithms in the public networks.
Although most consensus algorithms are hardware-
independent, there is an exception such as Proof of
Elapsed Time (PoET) which requires trusted hardware
such as SGX or ARM TrustZone.

8. Peer-to-Peer (P2P) Networks. A blockchain network
is a communication medium that allows participants
to communicate in a P2P manner [1, 10, 48]. There
are three main types of blockchain networks: public,
private, and consortium. Public blockchains are per-
missionless networks that offer equal rights to all peers
to read from and write to the distributed ledger. Private
blockchains encapsulate transactions and data within
a single organization. Read and write privileges are
managed using a permission management component.
An extension of this private setting allows multiple
organizations to participate as a consortium.

9. Peer Nodes. These nodes are the hardware and soft-
ware representations of users participating in the
blockchain network. A node can be any electronic
device with the required technical specifications to
perform its job within a blockchain network, including
servers, laptops, mobile phones, and IoT devices
[44]. Three main types of nodes perform ledger-
oriented operations: full, pruned, and lightweight
nodes. A significant difference is the ability of a
node to participate in the transaction validation and
block generation. These features require a full copy
of the distributed ledger, as in full nodes, or at least
a full copy of transaction headers, plus a partial
detailed copy of some transactions, as in pruned
nodes. However, lightweight nodes store only trans-
action headers and do not participate in consensus
and block generation processes. Lightweight nodes
represent the nodes of an application’s end users.
Although full and pruned nodes perform the same job
within a blockchain network, they are distinguished
because full nodes are mandatory components for
the existence and operation of a blockchain network.
However, pruned nodes are a good choice for other
peers with insufficient storage capacity to store the

full history of the network. The implementation of
these nodes is platform-independent. Any hardware
device with minimum requirements for hosting and
operating a full or pruned node can be used. In addi-
tion, a blockchain network may use service nodes for
network-oriented operations to coordinate the general
workflow between other nodes, such as proxy servers.

5. The architectural pattern language
Based on our understanding of core blockchain appli-

ation compoments and their interactions, this section pro-
poses an architectural pattern language for blockchain ap-
plication development. The pattern language contains 12
patterns, classified into three categories, consisting of seven
structural patterns, one interactional and four transactional
patterns. Each pattern category represents a specific archi-
tectural view that helps blockchain application developers
to focus on one design aspect. Table 2 summarizes these
patterns and show their related patterns and their relation-
ships. These patterns are described in detail in the following
subsections.
5.1. Structural view

This view abstracts the logical and physical dissem-
ination of the blockchain application components. From
this perspective, a blockchain application is viewed as a
number of distributed components among multiple tiers in a
networked ecosystem. It addresses the concerns of how the
components of a blockchain application are decoupled from
and interact with each other, with a focus on their physical
arrangement. There are seven patterns related to this view.
5.1.1. Distributed client-server pattern
Summary: This pattern provides a global view of a blockchain
application as a constituent of distributed client and server
nodes.
Context: A blockchain application is a software application
that delivers data and services from its backend servers to its
frontend clients as multiple client-server relationships.
Solution: A blockchain application can be depicted from a
high level of abstraction into a client-server architecture, as
shown in Figure 1. The client is a lightweight node com-
prising the application front-end served by the server-side
components. The server side is the backend of the blockchain
application. By design, a single archival full blockchain
node should be able to serve multiple client peer nodes.
Oppositely, multiple full nodes can serve a client peer node.
This pattern introduces a multiple client-server relationship.
Any node in a blockchain application can be interchangeably
a client, a server, or both. Thus, when some nodes are clients,
other nodes become servers for those clients. This allows for
various architectural patterns for the server and client sides.
Known Uses: - Dtube is a video-sharing application. Its
client-side consists of the web application, and its server-side
consists of centralized and distributed logic and data servers.
When the client-side run as a full node, it can serve other
clients on Steem blockchain, and thus, it becomes a server.

Alzhrani et al.: Preprint submitted to Elsevier Page 5 of 21



An Architectural Pattern Language for Blockchain Application Development

Table 2
An overview of the proposed architectural pattern language for blockchain application development

Architectural View Pattern Related Pattern Relationship

Structural Distributed Client-Server Distributed Backend Composition
Layered Client Application Composition

On-Chain/Off-Chain Blockchain Broker Complement
Distributed Backend Distributed Client-Server Composition

P2P On-Chain Backend Composition
Distributed Off-Chain Backend Composition
Centralized Off-chain Backend Composition

P2P On-Chain Backend Distributed Backend Composition
Distributed Off-Chain Backend Complement
Centralized Off-chain Backend Complement

Centralized Off-Chain Backend Distributed Backend Composition
P2P On-Chain Backend Complement
Distributed Off-Chain Backend Alternative

Distributed Off-Chain Backend Distributed Backend Composition
Centralized Off-chain Backend Alternative
P2P On-Chain Backend Composition

Blockchain Broker On-Chain/Off-Chain Complement
Interactional Layered Client Application Distributed Client-Server Composition
Transactional On-Chain Pipe-Filter Chain-of-Blocks Complement

Replicated Repository Chain-of-Blocks Instantiation
Chain-of-Blocks Chain Fork Variant

On-Chain Pipe-Filter Complement
Replicated Repository Instantiation

Chain Fork Chain-of-Blocks Variant

Figure 1: The Distributed client-server pattern for blockchain
applications.

- PUML is a health and fitness loyalty program. Its client-
side consists of a mobile application, and its server-side
consists of centralized and distributed logic and data servers.
Since mobile devices are not adequate to store the full copy
of the ledger, it is unlikely to be a server.
- CryptoFlip Cars is a card-trading game. Its client-side
consists of a web application, and its server-side consists of
centralized and distributed logic and data servers. When the
client-side run as a full node, it can serve other clients on
Ethereum blockchain, and thus, it becomes a server.
Related Patterns: Communication between the server and
client components is achieved through the Blockchain Bro-
ker pattern. The server-side can be realized using Distributed
Backend pattern as a combination of P2P On-Chain Backend
pattern, Distributed Off-Chain Backend pattern, and Cen-
tralized Off-Chain Backend pattern. The client side can be
realized using the Layered Client Application pattern.
5.1.2. On-Chain/Off-chain pattern
Summary: This pattern addresses the physical organization
of blockchain application components as a multi-tier system.
Context: A software application utilizes blockchain technol-
ogy.

Solution: This architecture provides a global view of blockchain
applications. A blockchain application is separated into five
logical and physical tires, as shown in Figure 2. First, the
presentation tier hosts the application front-end and handles
the static and dynamic presentation of the user interface.
It can be a remote web server or a local device such as
smartphones and wearable. Second, the off-chain logical
tier coordinates the interaction between the off-chain data
and presentation tiers. It performs off-chain computation
and business logic on data collected from the presentation
tier, and passes data from and to the off-chain data tier.
Source code files can be written in conventional server-
side languages and run in dedicated frameworks. Third, the
off-chain data tier is where off-chain data are stored and
retrieved from, to the off-chain logic tier and eventually to
the presentation tier. It can be a database or a file system.
Fourth, smart contracts perform on-chain computations and
business logic through the on-chain logical tier. Finally, the
on-chain data tier stores on-chain data in distributed ledgers.
This architectural pattern is sophisticated in that each tire has
several variant architectures.

The blockchain application components can be deployed
in a plug-and-play manner. There are three main deployment
approaches for the different tiers: pure local, pure remote,
and a combination of both. In pure local deployment, all tiers
are deployed to a local machine and connected to the test
network of the blockchain platform. This approach is suit-
able for pre-production and testing environments to evaluate
application features and assess smart contract execution. In
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pure remote deployment, all tiers are deployed on remote
machines and are accessed through RPCs. For example,
the off-chain tier is deployed on a remote web server, and
the on-chain tier is deployed to a remote blockchain node
as a service, such as DappNode. Usually, this approach is
used in a production environment in which the application
is deployed on the production network of the blockchain
platform. Hybrid deployment can occur in several ways.

For example, a remote off-chain local on-chain deploy-
ment occurs when a blockchain node hosts the on-chain tier
on a local computer machine connected to the blockchain
network, and the off-chain tier is hosted on remote servers. In
contrast, when the off-chain tier is a mobile app installed on
users’ phone devices connected to the blockchain network,
the on-chain tier is deployed to remote nodes as a local off-
chain remote on-chain approach. The hybrid deployment is a
customized approach that allows the articulation of different
deployment styles for each tier.

Figure 2: The On-Chain/Off-chain pattern for blockchain
applications.

Known Uses: - Dtube is a video-sharing application. It
consists of presentation and off-chain logic tiers as a web
application hosted on a centralized server, an off-chain data
tier that adopts centralized and distributed third-party data
stores, and on-chain logic and data tiers hosted on the Steem
and Hive blockchains.
- PUML is a health and fitness loyalty program. It consists of
presentation and off-chain logic tiers combined in a mobile
application hosted on users’ mobile devices and an off-chain
data tier that adopts third-party data stores. PUML’s on-
chain logic and data tiers are hosted on the EOS blockchain
and PUML’s private side chain.
- CryptoFlip Cars is a card-trading game application. It
consists of a presentation, off-chain data, and off-chain logic
tiers combined as a web application hosted on a centralized
server. The application’s on-chain logic and data tiers are
hosted on the Ethereum blockchain.
Related Patterns: Communication between the off-chain
and on-chain components is achieved through the Blockchain
Broker pattern.
5.1.3. Distributed backend pattern
Summary: This pattern articulates the backend of a blockchain
application as a constituent of on-chain and off-chain server
components.
Context: Articulating the backend components of a blockchain
application as a distributed Client-Server application.

Solution: The server-side of a blockchain application con-
sists of off-chain and on-chain backend components, as
shown in Figure 3. The off-chain backend consists of appli-
cation and data servers that provide services related to the
external world (of a blockchain system) to the application
frontend, such as off-chain business logic processing and
data management. The on-chain backend consists of peer
nodes that consensually provide blockchain-related services
such as immutable data storage and transparent business
logic processing. These services can be on single or multiple
chains.

Figure 3: The Distributed backend pattern for blockchain
applications.

Known Uses: - Dtube is a video-sharing application. Its off-
chain backend consists of application and data servers, and
its on-chain backend is the Steem blockchain.
- PUML is a health and fitness loyalty program. Its off-chain
backend consists of application and data servers, and its on-
chain backend is the EOS blockchain and PUML sidechain.
- CryptoFlip Cars is a card-trading game application. Its off-
chain backend consists of application and data servers, and
its on-chain backend is the Ethereum blockchain.
Related Patterns: This pattern can be realized using a com-
bination of P2P On-Chain Backend pattern, Distributed Off-
Chain Backend pattern, and Centralized Off-Chain Backend
pattern. The communication between the off-chain and on-
chain components is achieved through the Blockchain Bro-
ker pattern.
5.1.4. P2P on-chain backend pattern
Summary: This pattern addresses concerns regarding the
decentralized communication of backend components within
the internal environment of the blockchain.
Context: A software application utilizes blockchain technol-
ogy.
Solution: This is the typical architecture of blockchain sys-
tems, as shown in Figure 4. A blockchain network consists
of multiple decentralized peer nodes, in which each node
has the same capabilities and responsibilities. For exam-
ple, blockchain participants have equal reading and writing
rights to the blockchain distributed ledger. However, permis-
sion components can manage these rights in certain cases.
The propagation of blocks and transactions typically follows
a gossip strategy. There are different protocols adopted by
blockchain networks to manage the propagation of data
between peers. For example, Ethereum Mainnet nodes run
different protocols, such as the Light Ethereum Subprotocol
(LES) used by lightweight clients and the Ethereum Wire
Protocol (ETH) used by full nodes. Hyperledger Fabric
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implements a data dissemination protocol based on gRPC
and protocol buffers.

Figure 4: The P2P on-chain backend pattern for blockchain
applications.

Known Uses: - Dtube is a video-sharing application. Its
on-chain backend is the Steem blockchain, which is a P2P
network.
- PUML is a health and fitness loyalty program. Its on-chain
backend is the EOS blockchain and PUML sidechain, which
are P2P networks.
- CryptoFlip Cars is a card trading game application. Its on-
chain backend is the Ethereum blockchain, which is a P2P
network.
Related Patterns: This pattern should be complemented by
the Distributed Off-Chain Backend pattern, Centralized Off-
Chain Backend pattern, or a combination of both.
5.1.5. Distributed off-chain backend pattern
Summary: This pattern addresses concerns regarding the
decentralized communication of backend components within
the external environment of the blockchain.
Context: A blockchain application utilizes off-chain ser-
vices as a distributed system.
Solution: Off-chain backend servers provide their services
through distributed servers to distribute access to web apps
and off-chain data, as shown in Figure 5. For example, a
blockchain application may use an off-chain P2P file system,
such as the BitTorrent File System (BTFS) and Interplane-
tary File System (IPFS), for web hosting and data storage.
Instead, the application may utilize a P2P file-sharing system
for either web hosting or data storage and use a centralized
server for the other as a three-tier client-server architecture.
Known Uses: - Aragon is an Ethereum-based service for
creating Decentralized Autonomous Organizations (DAOs)
that uses IPFS for their data.
- Augur is an Ethereum-based marketplace that uses IPFS
for client application hosting and distribution.
- Dtube is a Steem-based video sharing platform that uses
IPFS and BTFS for users’ video hosting.

Figure 5: The distributed off-chain backend pattern for
blockchain applications.

Related Patterns: This pattern should complement the P2P
On-Chain Backend pattern. It can also be accompanied by
the Centralized Off-Chain Backend pattern.
5.1.6. Centralized off-chain backend pattern
Summary: This pattern addresses concerns regarding the
centralized communication of backend components within
the external environment of the blockchain.
Context: A blockchain application utilizes off-chain ser-
vices as a centralized system.
Solution: Off-chain backend servers provide their services
through centralized server machines, as shown in Figure
6. For example, a blockchain application may use a single
server for the off-chain application frontend and data or can
use separate servers for each as a three-tier client-server
architecture.

Figure 6: The centralized off-chain backend pattern for
blockchain applications.

Known Uses: - CryptoFlip Cars is an Ethereum-based game
that uses centralized servers for web hosting and data stor-
age.
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- Dtube uses centralized servers for web hosting and data
storage.
- Geon is a POA-based mobile game hosted locally by
mobile device users.
Related Patterns: This pattern should be complemented by
the P2P On-Chain Backend pattern. It can also be accompa-
nied by the Distributed Off-Chain Backend pattern.
5.1.7. Blockchain broker pattern
Summary: This pattern addresses concerns about commu-
nicating the decoupled components of a blockchain applica-
tion as a distributed system.
Context: A blockchain application consists of decoupled
off-chain and on-chain components.
Solution: The Blockchain Broker enables the communica-
tion between the decoupled components in distributed sys-
tems. As shown in Figure 7, there are two types of blockchain
broker:

1. Side-chain broker: By design, blockchains are hetero-
geneous and not able to communicate with each other
since each blockchain has its own set of rules and tools
that makes communication difficult. Side-chain bro-
ker allows blockchain interoperability through cross-
chain bridges. It enables the transfer of assets be-
tween one blockchain (on-chain) and another (side-
chain). Typically, a side-chain broker involves locking
or burning tokens through a smart contract on the
source chain and unlocking or minting equivalent
tokens on the destination chain through another smart
contract.

2. Off-chain broker: This type of service communicate
blockchain and client applications. A client API han-
dles the input from the client UI and passes it to a
dedicated blockchain endpoint. The blockchain end-
point node passes the input data to the blockchain
and returns output data to the client API, which in
turn passes the data to the UI. The client API and
blockchain endpoint API are service broker compo-
nents that connect off-chain and on-chain compo-
nents.

Figure 7: The Blockchain broker pattern for blockchain appli-
cations.

Known Uses: - Dtube is a Steem-based video-sharing ap-
plication. It uses the JSON-RPC web service and the RPC
endpoint of Steem’s public service node to communicate the
off-chain components with the Steem blockchain.

- CryptoFlip Cars is an Ethereum-based game application.
It uses the JSON-RPC web service and the RPC endpoint
of Ethereum public nodes to communicate the off-chain
components with the Ethereum blockchain.
- PUML is a health and fitness loyalty program. It uses
the JSON-RPC web service and the RPC endpoint of EOS
public nodes to communicate the off-chain components with
the EOS blockchain and the PUML side chain.
Related Patterns: This pattern shows hoe the different tiers
in the On-Chain/Off-Chain pattern are connected.
5.2. Interactional view

This view abstracts how the individual components of
a blockchain application can exchange messages while re-
taining their autonomy. From this perspective, a blockchain
application is viewed as a set of independent components
that interact with each other within an application con-
text. It addresses the concerns of how the components of
a blockchain application are decoupled from and interact
with each other, with a focus on the logical arrangement. A
layered pattern is related to this view, as described below.
5.2.1. Layered client application pattern
Summary: This pattern addresses the decomposition of
blockchain application components into interacting parts as
complex, heterogeneous entities.
Context: A software application utilizes blockchain technol-
ogy.
Solution: A blockchain application can be represented in a
generic layered architecture, as shown in Figure 8. A typical
blockchain application architecture consists of the following
layers:

• Application layer: This layer represents the use cases
of blockchain applications such as intelligent trans-
portation, supply chain traceability, artificial intel-
ligence, robotics, unmanned aerial vehicles, intelli-
gent manufacturing, business process management,
enterprise transformation, insurance processing, risk
management, cryptocurrency exchange, games, gam-
bling, social networking, community reputation sys-
tems, rights management, and data ownership.

• Presentation layer: This layer is related to front-end
components that can interact with the blockchain layer
via client APIs. This layer consists of a typical UI and
digital wallet. It serves the purpose of providing an
intuitive way for end-users to use blockchain applica-
tions.

• Support layer: This layer provides supportive services
for off-chain computation and data. Hosting services
are required for hosting and operating client applica-
tions. External storage services can also be provided
through this layer. This layer is extended with an
IoT service layer in IoT applications. It consists of
components that provide IoT-related services, such as
processing and analyzing sensor data and transferring
them to other layers.
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• Client Interface layer: This layer consists of web ser-
vices and API gateway components. The blockchain
RPC endpoints receive client API requests from the
external layers, transfer them to the internal layers,
and then send the response to the external layers.
The client interface layer is developed with libraries
and APIs in conventional UI programming languages,
such as JavaScript.

• Business logic layer: This layer handles the on-chain
computations of the blockchain application. An essen-
tial component is a smart contract. The other compo-
nents within this layer are smart contract wallets and
application tokens.

• Consensus layer: This layer comprises the necessary
components to coordinate on-chain operations and en-
sure data integrity. It consists of a consensus protocol,
transaction management, and incentive mechanisms.
Transaction management refers to the mechanisms
used to manage on-chain workflows, such as trans-
action pools, reward pools, notaries, witnesses, and
miners.

• Distributed ledger layer: This layer is the data layer.
It consists of the design and implementation of the
digital ledger. It is a design decision to determine
which data should be on the main chain and which
should be on the side-chain or off-chain. For example,
some application data can be stored off-chain, but the
blockchain ledger is either on-chain or side-chain.

• Network layer: This layer implements the P2P com-
munication between the users of the blockchain ap-
plication. It allows the messaging and ledger data
transmission between nodes to keep the ledger syn-
chronized among all the participants.

• Infrastructure layer: This layer is the foundation layer
for blockchain applications. It consists of blockchain
platforms and their native tokens. The platforms can
be viewed as the execution environment of blockchain
applications. The P2P network, consensus, and ledger
are soft components usually managed using a blockchain
platform.

• Physical layer: This layer represents the primary hard-
ware components of other layers. It consists of dif-
ferent types of nodes: full, pruned, lightweight, and
service nodes. It also includes a smart contract ex-
ecution machine and world state database servers.
Fog/Edge computing nodes can be included in IoT-
based applications.

• Security and privacy layer: This layer provides se-
curity services to the applications and users. This
layer includes user authentication, membership man-
agement, access control, and permission management
components.

Figure 8: The Layered client application pattern for blockchain
applications.

There are three concrete examples of this pattern: consumer-
centric, enterprise-centric, and IoT-based applications. The
following text describes each architecture. The differences in
the elements between the architectures are indicated in their
corresponding figures.

1. Consumer-Centric application: Blockchain technol-
ogy allows independent entities to collaborate con-
fidentially without relying on central intermediaries.
The architecture of Consumer-Centric applications
consists of 11 logical layers: application, presentation,
support, client interface, business logic, consensus,
distributed ledger, network, infrastructure, security
and privacy, and physical layers. The components
within each layer are shown in Figure 9. This type of
application benefits highly from the public blockchain
networks.

2. Enterprise-Centric application: Blockchain technol-
ogy can ensure the integrity of the processes and data
with security and cryptography by offering a trusted
peer-to-peer exchange and automated execution of
business contracts. The architecture of Enterprise-
Centric applications consists of 11 logical layers: ap-
plication, presentation, support, client interface, busi-
ness logic, consensus, distributed ledger, network, in-
frastructure, security and privacy, and physical layers.
The components within each layer are shown in Fig-
ure 10. Enterprise businesses can benefit highly from
permission management components and multichan-
nel networks supported by private and consortium
blockchain platforms. One of the notable components
of Enterprise-Centric applications is an integrated
legacy system. This type of application can exchange
data with an organization’s existing systems, such as
Enterprise Resource Planning (ERP) and Customer
Relationship Management (CRM).
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Figure 9: The layered client pattern for consumer-centric application.

3. IoT-Based application pattern: Blockchain technol-
ogy can effectively secure machine-to-machine trans-
actions, ensure their safety and efficiency, reduce
costs, promote resources sharing, and automate IoT
complex workflow. The architecture of IoT-Based
applications consists of 12 logical layers: application,
presentation, support, IoT service, client interface,
business logic, consensus, distributed ledger, network,
infrastructure, security and privacy, and physical lay-
ers. The components within each layer are shown in
Figure 11. The IoT service layer is an enabler of this
pattern. It can collect and transmit the processed data
from sensor devices to the application support layer
via cloud-computing services. One of the notable
components of IoT-Based applications is thing smart
contracts. This type of contract coordinates on-chain
machine-to-machine transactions. The design of the
application logic determines the necessity of such
contracts. For example, machine transactions can be
processed off-chain, and the resulting data are passed
to the blockchain. Thus, the thing smart contract
becomes inessential. This type of application benefits

from the Fog/Edge computing services and nodes.
Smart objects such as data sensors, smartphones, and
wearable are essential components. More granular
permissions may be required for different machines
and user accounts.

Known Uses: - Dtube is an example of Consumer-Centric
applications. It is a Steem-based video-sharing application
that rewards users for sharing their content, commenting on,
and upvoting others’ content.
- KYC-Chain is an example of Enterprise-Centric applica-
tions. It is an Ethereum-based customer onboarding appli-
cation for verifying customers’ identities and managing the
customer lifecycle.
- Hawk E-Scooter is an example of IoT-Based applications.
It is a Klaytn-based decentralized, shared scooter travel
platform.
Related Patterns: This pattern is a realization of the Dis-
tributed Client-Server pattern.
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Figure 10: The layered client pattern for enterprise-centric application.

5.3. Transactional view
This view abstracts how blockchain application compo-

nents successively process transactions as a persistent, im-
mutable, shared data. In this view, a blockchain application
is viewed as a number of subsequent transfers of the input
transaction data. It addresses the concerns of how trans-
actions on blockchain are committed and ordered. It also
addresses how distributed ledgers are accessed, updated,
and distributed. Four patterns are related to this view, as
described below.
5.3.1. On-chain pipe-filter pattern
Summary: This pattern addresses concerns regarding how
data are transferred from a client to a shared ledger while
retaining data integrity and confidentiality.
Context: A software application utilizes blockchain services
as a distributed ledger.
Solution: Data in the blockchain are processed in the form of
transactions. A transaction is a single instruction constructed
and cryptographically signed by a client external to the scope
of the blockchain. The process of adding new transactions to
the ledger is a Pipe-Filter architecture, as shown in Figure

12. A transaction passes several filters (validators/miners)
from the client (source) to the ledger (sink). The number and
types of filters differ among blockchain systems. Initially, a
transaction must be cryptographically signed at the client
application using the user’s private key. The signed trans-
actions then enter a pending pool. They are then filtered by
validators/miners. Subsequently, a certain number of valid
transactions are bundled into a block. Block size determines
the number of transactions included within a block. The
block size also differs between the blockchain systems.
Finally, a valid block is added to the ledger and synchronized
with all participants.
Known Uses: - Transactions of Ethereum-based applica-
tions are submitted to Ethereum’s pending transaction pool
and then validated by miners, who are rewarded for generat-
ing new blocks.
- Transactions of Hyperledger Fabric-based applications are
validated by endorsing, ordering, and committing peers.
- Transactions of Steem-based applications are submitted
to Steem’s pending transaction pool and then validated by
witnesses, who are rewarded for producing new blocks.
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Figure 11: The layered client pattern for IoT-based application.

Figure 12: The on-chain pipe-filter pattern for blockchain applications.

Related Patterns: The generated blocks can be linked as in
the Chain-of-Blocks pattern
5.3.2. Replicated repository pattern
Summary: This pattern addresses concerns regarding dis-
tributing on-chain data as a replicated ledger.
Context: A software application utilizes blockchain services
as a distributed ledger.
Solution: A blockchain is a digital archive of transactions
that are replicated and broadcast across the blockchain net-
work nodes. Every time a new block is committed, a copy of
that block is added to the ledgers of the other participants, as
shown in Figure 13. Because each participant, except light
clients, has its copy, ledgers on the blockchain are replicated
rather than shared. Although nominated public nodes share
their replica with other nodes and clients in permissionless

networks, any newly added block is replicated and broadcast
among all network participants. Reading from and writing to
these replicas are granted equally to all nodes in the network.
In permissioned networks, broadcasting is performed for a
subset of the network participants based on their granted
permissions. This permission-based replication allows com-
plex ledger structures in enterprise applications. In such
cases, each member in a consortium has a digital ledger,
and any subset of members of the consortium can have a
mutual replica. Finally, there is a master replica among all
the consortium members. The replicated records are also at
varying transparencies to ensure data confidentiality in the
private environment.

Alzhrani et al.: Preprint submitted to Elsevier Page 13 of 21



An Architectural Pattern Language for Blockchain Application Development

Figure 13: The replicated repository pattern for blockchain
applications.

Known Uses: - The Ethereum network is permissionless,
and its digital ledger is replicated among all Ethereum nodes
as a single-ledger-based architecture.
- The Hyperledger Fabric network is permissioned, and its
digital ledger is replicated per channel, allowing for a multi-
ledger-based architecture.
- The Corda network is permissioned and allows for shared
ledger structures.
Related Patterns: The data in a replicated ledger can be
linked as in the Chain-of-Blocks pattern.
5.3.3. Chain-of-blocks pattern
Summary: This pattern addresses concerns regarding struc-
turing on-chain data.
Context: A software application utilizes blockchain services
as a distributed ledger.
Solution: Confirmed transactions in the blockchain are
grouped into blocks. Each block has a unique number,
known as the block height. A block typically consists of two
parts common to all blockchains: a block header and block
data. The block header contains, among other information,
a link to its preceding block, which allows the blocks to
be chained in a strict order. Such a link is typically a hash
of the preceding block. A block hash is cryptographically
derived from the block’s data. The block data contain a list
of confirmed transactions. Thus, a block can be searched for
by its block number or hash. Additional parts are customized
per blockchain platform for the block structure. Usually,
these data are not included in the block hash calculation. The
time interval, or block interval, is the time allowed to add a
new block to the chain. This time differs between blockchain
systems based on the blockchain protocol specifications. For
example, Steem produces blocks every three seconds. Figure
14 illustrates this pattern.

Figure 14: The chain-of-blocks pattern for blockchain applica-
tions.

Known Uses: - Ethereum is chain-based, and its block
structure consists of a block header, block data, and a list
of ommers. The blocks are connected to a single chain.
- Hyperledger Fabric is chain-based, and its block structure
consists of a block header, data, and metadata. The blocks
are connected to a restricted shared chain.
- Klaytn is chain-based, and its block structure consists of a
block header, block data, and a list of uncles. The blocks are
connected to a single chain.
Related Patterns: The chain of blocks in the blockchain is
synchronized between the network participants as a Repli-
cated Repository pattern. When more than one block has the
same block height, that is, they are mined at nearly the same
time, there could be a Chain Fork pattern.
5.3.4. Chain fork pattern
Summary: This pattern addresses concerns regarding struc-
turing on-chain data on conflict.
Context: A software application utilizes blockchain services
as a distributed ledger.
Solution: To create a blockchain, the chain of blocks re-
ceives information from the blocks that preceded them.
The block relationship can be viewed as a parent-child
relationship, where each parent block has one child. The
hash of the parent block is included in the header of the
child block. Blockchain participants must follow common
rules to maintain the history of the blockchain. When the
participants are not in agreement or the rules are changed,
alternative chains may emerge as chain forks. A chain fork
occurs by splitting a chain of blocks into two paths. There
are two main methods for such a split, as shown in Figure
15.

The first occurs unintentionally at the consensus level
when different blockchain participants disagree on the block
validity. For example, when two blocks are mined simul-
taneously, they include the hash of their parent block and
produce two different hashes for their blocks’ data. This
affects the validity of the chain. Therefore, only one block
must be integrated into the chain. To decide which child
block to include, the participants are allowed a temporary
split with both conflicting child blocks. The miners then
continue producing blocks based on each conflicting block.
The conflicting block with the longest chain is then accepted.
The other conflicting block becomes a stale/ommer block,
and all its dependent blocks are discarded and returned to
the pending transaction pool for validation to be included in
the chain. The effect of a consensus-level chain fork on a
blockchain application is that it affects referential integrity
with transaction finality.

The second occurs intentionally at the protocol level
when the blockchain is upgraded or changes its rules. This
change causes a permanent split in the chain. When a
blockchain changes its rules, the existing chain is considered
invalid in the new network. Thus, an alternative chain
should be created according to the new rules. Therefore,
the validator nodes must be upgraded to the new network.
If some validator nodes insist on following the old rules, a
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Figure 15: The chain fork pattern for blockchain applications.

permanent divergence version of the chain is created. One
path follows the new version of the blockchain, and the
other follows the old one. The effect of a protocol-level chain
fork on a blockchain application is that the application may
remain on the old chain, or move completely to the forked
chain, or can be available on both chains.
Known Uses: - Ethereum was forked into Ethereum Classic
(old) and Ethereum (new) as a protocol level split.
- Hive is forked from Steem as a protocol level split.
- Dtube is a Steem-based video-sharing application runs on
both blockchains: Steem and its forked chain Hive.
Related Patterns: The forked chain is a Chain-of-Blocks
synchronized between the network participants as a Repli-
cated Repository pattern.

6. Evaluating the proposed pattern language
In this section, we evaluate our proposed pattern lan-

guage by using it to describe the architectures of three
real-world blockchain applications. These three applications
are: Cryptokitties [55], which is a consumer-centric gam-
ing application on Ethereum; IBM Food Trust (IFT) [56],
which is a enterprise-centric Software-as-a-Service (SaaS)
solution; Actifit [57], which is an IoT-based Steem-based fit-
ness tracker mobile application aimed at rewarding physical
activity.
6.1. Using the pattern language to describe the

architecture of Cryptokitties
CryptoKitties is a popular marketplace game for buy-

ing, selling, and breeding virtual cats called CryptoKitties.
The architecture of CryptoKitties can be described using
the proposed architectural pattern language for blockchain
applications as follows:
6.1.1. Structural view of CryptoKitties architecture

At a high level of abstraction, CryptoKitties is a Dis-
tributed Client-Server application whose server-side is built
as a combination of the P2P On-Chain Backend and Central-
ized Off-Chain Backend patterns. CryptoKitties’s P2P on-
chain backend is the Ethereum Mainnet. The application’s
centralized off-chain is realized by hosting the CryptoKitties
frontend web application on a centralized hosting service
and storing the off-chain data in a relational database server.

The CryptoKitties’s presentation tier compromises a web
application hosted on Cloud Flare servers. Game logic is
distributed between the off-chain and on-chain logic tiers.

Off-chain data correspond to the off-chain logic and the
client application. These data are stored in PostgreSQL. On-
chain data correspond to the on-chain logic are stored in the
Ethereum distributed ledger. CryptoKitties can be deployed
using various approaches. The off-chain tier is deployed
remotely from a game player’s perspective. It compromises
the presentation, off-chain logic, and off-chain data tiers. The
on-chain logic tier is deployed on the EVM.

The deployment of the on-chain data tier depends on
the player’s choice. If the player wants to interact with
CryptoKitties as a lightweight client, it is not required to
deploy its own Ethereum node. However, if the player is
an Ethereum miner, it must have its own Ethereum node.
However, it is possible to deploy its full node as a remote
Node-as-a-Service instead of being deployed locally. The
former is a pure remote deployment, and the latter is a hybrid
approach in the form of remote off-chain local on-chain.

This analysis realizes the application of the On-Chain/Off-
Chain pattern on the CryptoKitties application. The off-
chain and on-chain tiers communicate via RPCs initiated
from the CryptoKitties client application to the Ethereum
Mainnet public node endpoints using JSON-RPC web ser-
vices. This communication realizes the Blockchain Broker
pattern.
6.1.2. Interactional view of CryptoKitties architecture

CryptoKitties is a gaming application; thus, its architec-
ture is mapped to the layered client application pattern of
the consumer-centric application. Figure 16 illustrates the
mapping of CryptoKitties architecture to the architecture of
Consumer-Centric applications.
6.1.3. Transactional view of CryptoKitties architecture

Game transactions are initiated by players at the Cryp-
toKitties’ web front. These transactions involve buying, sell-
ing, transferring, or generating CK tokens. The client first
signs the transaction by using the player’s digital keys via
their digital wallet. The signed transaction is then broad-
casted to Ethereum mempool, a pool for pending transac-
tions, and made available for miners to be validated. Miners
are not necessarily players in CryptoKitties. Usually, they
are application-independent and contribute to the Ethereum
network through block validations. The miner then selects
the transactions for validation. Usually, those with higher
gas fees are selected because they turn into higher mining
rewards. Subsequently, a set of validated transactions is
bundled to generate a block. Once this block is validated,
it is added to the miner’s ledger. The miner is then rewarded
with the deserved amount of Ether for the validated blocks.
There are no separate transaction pipes for the different
applications in Ethereum.

Ethereum has a single ledger for all transactions that
occurred on its Mainnet, and miners select the set of trans-
actions to validate; thus, CryptoKitties transactions may be
bundled with transactions from other applications within a
single block. Every time a new block is generated, it is at-
tached to its preceding blocks in the Ethereum Mainnet in the
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Figure 16: The Mapping of CryptoKitties architecture to the layered pattern of Consumer-Centric application.

form of the Chain-of-Blocks pattern. It is then broadcasted
to all Ethereum participants, even though these nodes are
not CryptoKitties players, as in the Replicated Repository
pattern.
6.2. Using the pattern language to describe the

architecture of IBM Food Trust
IBM Food Trust (IFT) is a Software-as-a-Service (SaaS)

solution built on Hyperledger Fabric and powered by the
IBM Blockchain, a Platform-as-a-Service (PaaS) for Hy-
perledger Fabric. This application is aimed at facilitating
food supply chain management (IBM Food Trust 2020).
It provides controlled information sharing and convenient
data publishing through a permission-based shared view
of food information. The architecture of the IFT can be
described using the proposed architectural pattern language
for blockchain applications as follows:
6.2.1. Structural view of IBM Food Trust architecture

At a high level of abstraction, IFT is a Distributed
Client-Server application where its server-side is built as a
combination of the P2P On-Chain Backend and Distributed

Off-Chain Backend patterns. The IFT’s P2P on-chain back-
end is the Hyperledger Fabric network. The application’s
distributed off-chain backend is realized by hosting the IFT
frontend on IBM Cloud, providing the solution as a service.

The IFT’s presentation tier comprises a web application
hosted in the IBM Cloud. The application logic is distributed
between the off-chain and on-chain logic tiers. Off-chain
data correspond to data from ERP systems. These data are
stored in the external data stores of an organization. On-
chain data correspond to the on-chain transactions and are
stored in the Hyperledger Fabric restricted shared ledger of
the food supply chain network. Because the IFT is a SaaS
powered by a PaaS, it is deployed in a purely remote de-
ployment approach. The application’s off-chain components
are accessed via the IBM Cloud portal. The IFT’s on-chain
components are deployed on the IBM Blockchain.

This analysis realizes the application of the On-Chain/Off-
chain pattern on the IFT application. The off-chain and
on-chain tiers communicate via RPCs initiated from the
IFT client application to the Hyperledger Fabric network
using Fabric Gateway, IFT REST APIs, and Fabric gRPC
web services. This communication realizes the Blockchain
Broker pattern.
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Figure 17: The Mapping of IBM Food Trust architecture to the layered pattern of Enterprise-Centric application.

6.2.2. Interactional view of IBM Food Trust
architecture

The IFT is a food supply chain management application;
thus, its architecture is mapped to the layered client applica-
tion pattern of the enterprise-centric application. Figure 17
illustrates the mapping of IFT application architecture to the
architecture of Enterprise-Centric applications.
6.2.3. Transactional view of IBM Food Trust

architecture
The IFT transactions are initiated by organization mem-

bers of the food supply chain through the IFT’s web front.
When the user initiates a transaction, the IFT client applica-
tion first verifies the transaction using client SDK. It uses the
user’s cryptographic keys to sign the transaction and broad-
casts this transaction proposal to the organization channel’s
endorser peers. Next, the endorsing peers verify each trans-
action proposal for the form of the transaction, submission
newness, validity of the signature, and authorization of
the submitter to perform a write operation on the channel.
Approved transactions are signed by the endorsing peers,
accompanied by read sets from the current state database,

and sent back to the client. The IFT client verifies endorser
peers’ signatures and compares the received responses.

The application then composes the transaction proposal
and the response into a transaction message. This message
and channel ID are broadcast to the ordering service. The
ordering service receives transactions from all channels in
the food supply chain network. For each channel, the order-
ing service chronologically orders transactions and creates
blocks of transactions. The transactions within a block are
validated and tagged as valid or invalid. These blocks are
sent to all the participants in the channel. The peers append
and replicate the block to the channel’s chain. Finally, write
sets are committed to the current state database for each valid
transaction in the block.

Each organizational member in the supply chain has its
channel. Every time a new block is generated in the channel,
it is attached to its preceding blocks in the same channel in
the form of the Chain-of-Blocks pattern. It is then broadcast
to the privileged participants in a channel-based Replicated
Repository pattern.
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6.3. Using the pattern language to describe the
architecture of Actifit

Actifit is a Steem-based fitness tracker mobile appli-
cation aimed at rewarding physical activity. It incentivizes
people to become active and healthy. It introduces the “Proof
of Activity” concept for reward on Steem. Users must pro-
vide proof of their daily movements and receive rewards
accordingly. Actifit is available as Android and iOS mobile
applications with support for Fitbit and Apple smartwatches
[58]. The architecture of Actifit can be described using
the proposed architectural pattern language for blockchain
applications as follows.
6.3.1. Structural view of Actifit architecture

At a high level of abstraction, Actifit is a Distributed
Client-Server application where its server-side is built as a
combination of P2P On-Chain Backend pattern and Cen-
tralized Off-Chain Backend pattern. Actifit’s p2p on-chain
backend is the Steem Mainnet. The application’s centralized
off-chain is realized by hosting the Actifit frontend mobile
application and its associated off-chain logic and data on
centralized mobile devices.

The Actifit’s presentation tier compromises a fitness-
tracking mobile app for Android and iPhone OS smart-
phones. The application logic is distributed between the off-
chain and on-chain logic tiers. Off-chain data correspond
to off-chain computation and the client applications. These
data mainly track the users’ physical steps collected using
the device’s sensors and paired wearables. Depending on the
collected data, the application calculates the rewards. The
application stores its data using SQLiteDB. The application
uses AWS to process sensor data and update the user’s ac-
count on the Steem blockchain accordingly to the calculated
rewards. On-chain data correspond to on-chain transactions,
such as managing the user’s account balance and redeeming
the reward tokens stored on the Steem distributed ledger.

Actifit is deployed in a hybrid approach as a local off-
chain remote on-chain. The off-chain tier is deployed on
the users’ mobile devices. It comprises the presentation,
off-chain logic, and off-chain data tiers. On-chain logic is
executed natively on the Steem platform. Thus, the on-chain
logic and data tiers are deployed on Steem public nodes. This
analysis realizes the application of the On-Chain/Off-chain
pattern on the Actifit application. The off-chain and on-chain
tiers communicate via RPCs initiated from the Actifit client
application to the Steem Mainnet public node endpoints us-
ing JSON-RPC web services. This communication realizes
the Blockchain Broker pattern.
6.3.2. Interactional view of Actifit architecture

Actifit is a sensor-based health-service application; thus,
its architecture is mapped to the layered client application
pattern of the IoT-based application. Figure 18 illustrates the
mapping of Actifit Android app architecture to the architec-
ture of IoT-Based applications.

6.3.3. Transactional view of Actifit architecture
User activities are recorded automatically using the sen-

sors on the user’s mobile device. Alternatively, activity data
can be automatically synchronized using a paired smart-
watch. The application generates activity report cards daily.
The user can post the card to the Steem network to get
rewarded via the mobile app interface. The user can also
read, comment, and upvote on others’ reports, where each is
a transaction. In either case, the submitted transactions are
signed using the user’s private key. Then, the transaction is
broadcast to the transaction mempool on the Steem network,
pending validation by Steem witnesses.

A witness is a node elected by the community of Steem
and is responsible for transaction and block validation. The
witness selects a set of pending transactions for validation.
The user is rewarded for its validated activities from an
assigned reward pool. The reward for the daily activity report
is auto-evaluated according to a multitude of factors: activity
count from 5000 to 10000 (25%), report card content quality
(20%), community engagement (20%), moderator review on
the report card (10%), and the user rank from 0 to 100 (25%).
The rewards are in HIVE, STEEM, and AFIT tokens, plus
partner tokens such as SPORT and APX, tokens of the Sport
Talk Social platform. The validated transactions are bundled
into one block, signed by the witness’s private key. The valid
block is then appended to the witness’s ledger. There are no
separate transaction pipes for different applications in Steem.

Steem has a single ledger for all transactions that oc-
curred on its network, and it is up to the witnesses to select
the set of transactions to validate; thus, Actifit transactions
may be bundled with transactions from other applications
within a single block. Every time a new block is generated,
it is attached to its preceding blocks in the Steem ledger in
the form of the Chain-of-Blocks pattern. It is then broadcast
to all Steem participants, even though these nodes are not
Actifit users, as in the Replicated Repository pattern. Actifit
adapts its existence on Steem and Hive blockchains simul-
taneously by mirroring users’ accounts and rewards on both
chains as a result of the Chain Fork pattern of Steem and
Hive blockchains.

7. Research limitation
As blockchain technology is constantly evolving, new

patterns may emerge from new developments. Consequently,
the pattern language presented in this paper is a work in
progress. Furthermore, the patterns in this language will
inevitably evolve, where some patterns may be replaced by
new patterns.

Another limitation is concerned with the evaluation
of the pattern language, as we have only selected three
blockchain applications to demonstrate the language. We
have not involved industries in evaluation.

Finally, a major limitation of our pattern language is that
none of the proposed patterns describes the design of the
architectural components that support security and trust. Our
future work will focus on this aspect.
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Figure 18: The Mapping of Actifit architecture to the layered pattern of IoT-Based application.

8. Conclusion
This paper proposed an architectural pattern language

for the design of blockchain applications. The 12 patterns
in this pattern language were derived from 400 industrial
blockchain applications. The pattern language describes the
architecture of a blockchain application from three architec-
tural views. Within each view, this pattern language provides
a set of architectural patterns and their relationships. The
proposed patterns are intended to be general and applicable
to a broad range of blockchain applications. The feasibility
of this pattern language was demonstrated through three case
studies by illustrating how it can be used to describe the
architecture of real-world blockchain applications.
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Applications

Research Objective

Objective 4: To develop a framework to support process mining from blockchain applica-
tions

Thesis Context

This chapter uses the results in Chapter 3 to characterize a process-aware blockchain ap-
plication. The implementation of the proposed framework in this chapter results in BELA,
which is then used to examine the Industry-developed applications and produce the event
logs datasets in Chapter 2. This chapter is based on a paper that has been submitted to En-
gineering Applications of Artificial Intelligence. The full reference of this paper is as fol-
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A B S T R A C T
Blockchain technology offers the ability of a trusted peer-to-peer exchange and automated execution
of business contracts through smart contracts. This offer needs to be examined on the operational
level to gain objective insights of workflow embedded within smart contracts. Several studies have
been conducted to demonstrate the application of Process Mining (PM) techniques to blockchain
application event data. However, research on process awareness of blockchain applications seems to
be lacking. This study proposes a framework to support mining business processes from blockchain
applications. The framework consists of two modules: Process Awareness Recognizer (PAR) and
Event Log Generator (ELG). PAR is a rule-based classifier to assess the process awareness of a given
blockchain application. ELG is an automated batch processing model consisting of three methods: 1)
Extractor: an algorithm for event data retrieval from blockchain networks, 2) Decoder: a data decoding
algorithm to transform the extracted event data to a human-readable format, and 3) Formatter: an
algorithm to produce event log files in a format that is compatible with PM tools. The framework
supports Ethereum-compatible applications. It was validated by implementing a proof-of-concept
application with an input set of 201 real-world applications. The results approved the feasibility and
applicability of the framework. This study aims to accelerate PM practices on blockchain event data by
providing a methodology to assist in selecting, retrieving, and transforming event data of blockchain
applications.

1. Introduction
Blockchain technology has the potential to revolutionize

e-business by delivering a new way to enforce trust among
distrusted business partners. It brings new opportunities
for organizations to re-imagine business models by en-
hancing current models and creating new ones (Mendling
et al., 2018; Arun et al., 2019). As an enabler of cross-
organizational processes, blockchain applications can be in-
tegrated with traditional, non-blockchain applications (Sousa
and Corentin, 2019). Blockchain technology can transform
the centralized structure of traditional businesses into a
distributed and shared one. This helps to eliminate the com-
plex and hierarchical management of business transactions.
Business processes can be encoded into smart contracts to
ensure the integrity of the processes and data with security
and cryptography (Arun et al., 2019; Viriyasitavat and
Hoonsopon, 2019).

This potential needs to be examined on the operational
level to gain objective insights of workflow embedded within
smart contracts. Process Mining (PM) enables a fact-based
analysis through processing event logs by state-of-the-art
algorithms, techniques, and tools (Burattin, 2015; Aalst,
2012; Reinkemeyer, 2020). PM arose as a result of merging
techniques from process science and data science to en-
able evidence-based business process management (van der
Aalst, 2016; Aalst, 2012; Burattin, 2015; dos Santos Garcia
et al., 2019). It is a data-driven process-centric approach
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aiming to accelerate process improvements by automatically
extracting knowledge from captured process traces available
in a system’s log files (Sousa and Corentin, 2019).

In 2012, IEEE Task Force on Process Mining published
a manifesto to encourage the topic of PM. van der Aalst
et al. (2012) defines PM as: "techniques, tools, and methods
to discover, monitor and improve real processes (i.e., not
assumed processes) by extracting knowledge from event
logs commonly available in today’s (information) systems".
There are three techniques of PM: process discovery, confor-
mance checking, and process enhancement. PM techniques
use event data to discover processes, compare process vari-
ants, check conformance, analyze bottlenecks, and suggest
improvements (Reinkemeyer, 2020; van der Aalst et al.,
2012).

Event logs are the technical foundation and starting point
of PM (van der Aalst, 2016; Aalst, 2012; Reinkemeyer,
2020). Reinkemeyer (2020) defines an event log as:"a collec-
tion of events which have taken place in order to perform a
business process. Each event refers to a specific activity that
took place at a certain moment in time and can be assigned to
a unique case". PM algorithms require an event log to have at
least three attributes: case ID, activity name, and timestamp.
Case ID is a numeric identifier of a single instance of the pro-
cess, activity name is a specification of what happened, and
timestamp indicates the precise time an activity happened
on (dos Santos Garcia et al., 2019; Reinkemeyer, 2020).
These event logs are generated by process-aware systems
(PASs). A PAS system is a software system that produces
correlated activities as a process instance representing a
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complete execution of a business process (van der Aalst,
2016).

Mining business processes from blockchain applications
is obstructed by several challenges related to the quality of
event data produced by the applications and to the process
awareness of those applications in the first place. The cryp-
tographic format and heterogeneous structures of event data
generated by different smart contracts require technical ex-
pertise to extract encoded transactions data from blockchain
networks and transform the data into a format adequate for
PM techniques (Wirawan et al., 2021; Mühlberger et al.,
2019). Several approaches for event log generation from
blockchain data have been proposed in the literature. They
imply three steps: extracting, decoding, and formatting event
data. However, the discussion focused on the formatting
step and overlooked the preceding steps, which are of equal
importance. Moreover, the availability of event data is con-
strained by the process awareness of a blockchain applica-
tion, which is under-reported by the literature.

This study aims to address these challenges in the context
of Ethereum Virtual Machine (EVM)-compatible platforms.
In particular, it proposes a framework to assist in identifying
suitable blockchain applications for PM and in generating
event logs for those applications. The framework consists
of two modules: Process Awareness Recognizer (PAR) and
Event Log Generator (ELG). PAR is a binary rule-based
classifier aims to assess the process awareness of a given
blockchain application. ELG is a batch process model, con-
sisting of three ordered methods: Extractor, Decoder, and
Formatter, aims to automated event log generation from
blockchain data. Moreover, this study provides a reusable
implementation of the framework which can be used for
EVM-compatible applications.

The remainder of this paper is organized as follows.
Section 2 reviews related studies. Section 3 represents the
motivation of this study. Section 4 presents our proposed
framework. Section 5 presents a proof-of-concept applica-
tion of the proposed framework and analyzes the results.
Section 6 highlights findings and limitations of the study.
Finally, Section 7 concludes the paper.

2. Related work
There are very few studies on mining blockchain pro-

cesses. The scope of these studies varies from proposing
event log generation techniques from blockchains process
data to demonstrating the use of extracted process data for
different purposes. For example, Corradini et al. (2019)
and Ivković and Luković (2021) applied PM to validating
and evaluating smart contracts. The study by Di Ciccio
et al. (2020) applied PM techniques to enable monitoring of
business processes executed on the blockchain. Müller and
Ruppel (2019) demonstrated the use of PM on platform-level
data. Hobeck et al. (2021) assessed the business value of
mining blockchain processes through an in-depth case study
analysis of a blockchain application.

One of the studies that focused on event log genera-
tion from blockchain data is presented by M’Baba et al.
(2022). The study proposes a new format for event logs
known as Artifact Centric Event Log (ACEL). In ACEL,
blockchain applications are viewed as artifact-centric rather
than activity-centric applications. However, the proposed
format is not yet supported by PM tools. The extractor by
Mühlberger et al. (2019) is a proof-of-concept application
written in Python. It also focused on transforming the event
data retrieved from the blockchain into eXtensible Event
Stream (XES) format. The tool was implemented for the
transactions of the incident management process stored on
Ethereum Mainnet and produced by the execution engine
described in the study (Weber et al., 2016).

The event log generation method proposed by Klinkmüller
et al. (2019) focused on formatting blockchain event data
into XES format. First, a manifest describing how to in-
terpret logged data from a process perspective has to be
prepared, ideally by the smart contract’s developer. Then,
the extractor algorithm takes two command-line inputs:
a blockchain’s remote node URL to get log data of the
smart contract and the manifest specification. Afterward, the
algorithm transforms the retrieved data into XES according
to the specified rules in the manifest. The extractor was
implemented in JavaScript and tested using a sample real-
world application.

The reviewed methods for event log generations focus on
the data transformation task. Also, they require retrieving
event data from the blockchain one at a time for each
smart contract. The mechanism of retrieving the data from
a blockchain network and the mechanism of decoding the
retrieved data are overlooked. Moreover, all of the reported
literature assumed that blockchain applications are process
aware, an assumption that needs to be validated.

3. Challenges of blockchain-oriented process
mining

3.1. Process awareness
Smart contracts’ capability to efficiently express busi-

ness logic depends on their operating platform. There are
different logging levels supported by blockchain platforms.
Generally, EVM-compatible platforms support two types of
logs: system events and smart contract events. The system
events are low-level logs generated by a node to monitor
the node’s status, independent of a business domain (Hyper-
ledger Besu community, 2022; The go-ethereum Authors,
2022). The smart contract events are high-level custom
events which are platform-independent and for a specific
business case (Wood, 2022). Events in a smart contract are
defined by its programmer, produced by the application,
and stored in the host blockchain network. Some of these
events are business-relevant that capture the business pro-
cesses and workflow of the application. Thus, a process-
aware EVM-based application is a system that its constituent
smart contracts perform operational processes on the basis
of process models interpreted by business-relevant events
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in the smart contract source codes. That is, not all EVM-
based applications are process-aware. For example, there
are applications where the blockchain is used as a registry,
without the business logic that characterizes a business
process, although its smart contracts have a set of events.
3.2. Event log quality

Generating event logs from blockchain application data
is challenging (Klinkmüller et al., 2019). The challenges are
summarized as follows:

• Data extraction: It requires a clear understanding of
which and where a log is stored, and access to all
necessary data (Reinkemeyer, 2020). Running a local
node is not simple, it requires technical expertise and
computing resources. It comes with the cost of main-
taining storage and network bandwidth and having to
divert engineering time and resources. Alternatively,
event data can be retrieved relying on remote nodes via
Remote Procedure Calls (RPCs) to the blockchain net-
work, then receiving event data as a response. A single
blockchain application may have more than one smart
contract. For example, the Vdice application has 49
contract addresses on Ethereum Mainnet. Therefore,
at least 49 RPCs should be sent to get the event data
of the application.

• Data format: Further effort is needed to transform the
extracted data into an appropriate format for PM by
decrypting the encrypted data and formulating process
traces. It would be a time and energy-consuming task,
especially for applications with multiple smart con-
tracts. For example, a log record includes a topic array
to describe an event. The first topic, i.e., 𝑡𝑜𝑝𝑖𝑐𝑠[0]
includes the event signature, which is the event name
and its parameter types hashed using keccak256 hash
function. To decode the event signatures into activities
of process traces, the Application Binary Interface
(ABI) of a smart contract should be retrieved from
the Ethereum network to get event names, calculate
their signatures, and then match these signatures with
𝑡𝑜𝑝𝑖𝑐𝑠[0] in the event log.

• Data availability: To be able to retrieve a contract
ABI, the smart contract must be verified on the
blockchain network. Not all smart contracts are ver-
ified. Thus, no ABI will be available for unverified
contracts. Therefore, no event logs will be available
for systems with unverified smart contracts.

4. The proposed framework
The proposed framework has two objectives: 1) to sup-

port identifying the right case for PM; and 2) to automate
the workflow of generating event logs from blockchain data.
It consists of two modules: Process Awareness Recognizer
(PAR) and Event Log Generator (ELG). Figure 1 is a graph-
ical representation of the framework. The input of PAR is
a set of blockchain applications to be examined for their

process awareness, and the output is two sets of applications
classified as process-aware and process-unaware. The set, or
a subset, of process-aware applications are then ingested into
ELG as an input set of smart contracts and the output is a
set of event log files readily available for PM tools. In what
follows, we describe each module.
4.1. Process awareness recognizer

The PAR module is a human-in-the-Loop model where
the user (PAR-H) and the machine (PAR-M) collaborate to
decide if a given blockchain application is process-aware and
suitable for PM or not. That is, there could be blockchain
applications that are process-aware but not suitable for PM
and vise versa, as described in the consequent subsections.
PAR consists of a rule base and an inference engine. In what
follows, we describe each component.
4.1.1. Rule base

The Rule Base is based on a decision tree consisting
of an ordered set of rules that characterizes a process-
aware blockchain application. The tree is shown in Figure
2 with five nodes to classify applications into two classes:
Valid and Not Valid. Valid class represents applications that
are process-aware and suitable for PM, whereas Not Valid
class represents applications that are not. Given a set of
applications:

1. The first node examines the capability of operat-
ing platforms to support defining business-relevant
events within programmable smart contracts. If a non-
supporting platform is found, then all applications
belong to that platform are excluded from a further
analysis.

2. The second node examines if a network is reachable
and the user is authorized to access event data on the
network or not. If an inaccessible network is found,
then all applications deployed on that network are
excluded from a further analysis.

3. If the network is accessible, then the verification status
of the application’s smart contracts should be exam-
ined, as in the third node. Unverified smart contracts
are excluded from further analysis.

4. The fourth node scans the smart contract ABI for
defined events. Contracts with no defined events are
excluded.

5. The fifth node determines if the detected events are
business-relevant or not.

6. At the end, only applications that pass all the condi-
tions are valid. The inclusion rule can be expressed
as:
IF (platform supports smart contract events) ∧ (net-
work is accessible) ∧ (smart contract is verified) ∧
(smart contract has events) ∧ (events are business-
relevant)
THEN the application is Valid
ELSE the application is Not Valid
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Figure 1: The proposed framework for supporting mining business processes from blockchain applications

4.1.2. Inference engine
This is a binary classification engine which consists of

PAR-H representing the human expert and PAR-M repre-
senting the automation algorithm which supports decision-
making by the PAR-H. The engine follows a forward chain-
ing strategy starting with data provided by the user, selecting
rules by pattern-matching and executing the corresponding
actions. Due to the hyperdevelopment of blockchain technol-
ogy, the first, second, and fifth decisions are assigned to the
domain expert.

For a given set of subject applications, PAR-H starts the
process by examining the platform’s capability and network
accessibility. Smart contracts of the applications that pass
the two criteria are then ingested into PAR-M to examine
the contract verification status and the existence of events.
These two decisions require communication with dedicated
blockchain networks to get the ABIs of the subject smart
contracts. The pseudocode of PAR-M is presented in Algo-
rithm 1. It takes as input a manifest contains three attributes
for each smart contract: 𝑠𝑐𝐼𝐷 represents the contract ad-
dress, 𝑎𝑝𝑝𝑁𝑎𝑚𝑒 represents the name of a blockchain appli-
cation, and 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 refers to the blockchain network where

the smart contract is deployed. It classifies smart contracts
into two classes: 𝐼𝑛𝑐𝑙𝑢𝑑𝑒 and 𝐸𝑥𝑐𝑙𝑢𝑑𝑒. The 𝐼𝑛𝑐𝑙𝑢𝑑𝑒 class
contains smart contracts that satisfy the inclusion rule. The
𝐸𝑥𝑐𝑙𝑢𝑑𝑒 class contains smart contracts that violate the
inclusion rule for one of the following reasons:

• The smart contract is not verified
• The smart contract does not have events
The output of this algorithm is a manifest that contains,

in addition to the input data, classification result, reason for
the classification, contract verification status and the event
list where applicable. PAR-H then takes the role to decide
valid applications for PM by examining the events within
the included smart contracts. The smart contract addresses
of the valid applications can be then ingested to the ELG
module to generate their event logs.
4.2. Event log generator

This module is an automated method to generate log
files from process-aware blockchain applications’ event data.
It consists of three algorithms: Extractor, Decoder, and
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Figure 2: The decision tree to support identifying process-
aware EVM-based blockchain applications

Formatter. These algorithms are described in the following
subsections.
4.2.1. Extractor

This algorithm retrieves event data from blockchain net-
works, see Algorithm 2. It relies on end point nodes of
the networks. It supports batch retrieval of event logs by
dynamically generating RPCs to dedicated blockchain net-
works for a defined set of contract addresses. By default, it
starts extracting data from the first block to the latest. Then,
it adjusts these parameters depending on the received re-
sponse. The maximum number of extracted activity records
for a single application is determined by four factors: net-
work’s API limit (𝐿𝑖𝑚𝑖𝑡𝐴𝑃𝐼 ), number of constituent smart
contracts (𝐶𝐶𝑜𝑢𝑛𝑡𝑆 ), number of events defined within each
smart contract (𝐸𝐶𝑜𝑢𝑛𝑡𝐶 ), and number of RPCs per event
(𝑅𝑃𝐶𝐶𝑜𝑢𝑛𝑡𝐸). First, the maximum number of records for
a single event is calculated as in Equation 1. Second, the
maximum number of records for a single smart contract is
calculated as in Equation 2. Finally, the maximum number
of records for a single blockchain application is calculated as
in Equation 3. For example, assume we have an Ethereum-
based application consists of five smart contracts, each con-
tract has four events, we set 𝑅𝑃𝐶𝐶𝑜𝑢𝑛𝑡𝐸 to 15; and we use
an API with a limit of 1000 records per RPC, then we can
get an event log file with a maximum of 300,000 records.
For each event, the algorithm executes RPCs as many as
𝑅𝑃𝐶𝐶𝑜𝑢𝑛𝑡𝐸 . The output of this algorithm is an encrypted
log object. It passes the log and the event list vector to
Decoder (Algorithm 3).

𝑅𝑒𝑐𝑜𝑟𝑑𝑠𝐸 ≤ 𝐿𝑖𝑚𝑖𝑡𝐴𝑃𝐼 × 𝑅𝑃𝐶𝐶𝑜𝑢𝑛𝑡𝐸 (1)

Algorithm 1: PAR-M
Input : A finite set of smart contracts 𝐴 = {𝑎1,⋯ , 𝑎𝑛}. 𝑎 ∈ 𝐴 |

𝑎={𝑎𝑝𝑝𝑁𝑎𝑚𝑒, 𝑠𝑐𝐼𝐷, 𝑛𝑒𝑡𝑤𝑜𝑟𝑘}
Output: A finite set of smart contracts 𝐵 = {𝑏1,⋯ , 𝑏𝑛} | |𝐵| =

|𝐴|. 𝑏 ∈ 𝐵 | 𝑏={appName, scID, network, scStatus,
events, class, reason } 𝑣 ∈ 𝑏.𝑒𝑣𝑒𝑛𝑡𝑠 | 𝑣.𝑣𝑎𝑙𝑢𝑒 is the
event name and 𝑣.𝑖𝑛𝑑𝑒𝑥 is the event signature

B ← {};
b ← {};
foreach 𝑎 in 𝐴 do

abiURL ← RPC url for 𝑎;
send RPC Request(abiURL);
if isSuccessfule(RPC) then

b ← a;
abiJSON ← RPC result;
flag ← false;
eventList ← {};
repeat

if ′𝑡𝑦𝑝𝑒′ of current abiJSON item = "event" then
flag=true

end if
until end of abiJSON OR flag=true;
if flag=true then

foreach i in abiJSON do
if i.type="event" then

signtr ← encodeEventSignature(i.name);
eventList[signtr] ← i.name;

end if
end foreach
b.events ← eventList;
𝑏.𝑐𝑙𝑎𝑠𝑠← "Include";
𝑏.𝑟𝑒𝑎𝑠𝑜𝑛← "Contract is verified and has events";

else
𝑏.𝑐𝑙𝑎𝑠𝑠← "Exclude";
𝑏.𝑟𝑒𝑎𝑠𝑜𝑛← "Contract is verified but no defined

events";
end if

else
𝑏.𝑐𝑙𝑎𝑠𝑠← "Exclude";
𝑏.𝑟𝑒𝑎𝑠𝑜𝑛 ← "Contract is not verified";

end if
B ← B + b;

end foreach

𝑅𝑒𝑐𝑜𝑟𝑑𝑠𝐶 ≤ 𝑅𝑒𝑐𝑜𝑟𝑑𝑠𝐸 × 𝐸𝐶𝑜𝑢𝑛𝑡𝐶 (2)

𝑅𝑒𝑐𝑜𝑟𝑑𝑠𝑆 =
𝐶𝐶𝑜𝑢𝑛𝑡𝑆
∑

𝑛=1
𝑅𝑒𝑐𝑜𝑟𝑑𝑠𝐶𝑛

(3)

4.2.2. Decoder
This algorithm intends to transform raw event data,

received from Extractor, into a human-readable format. The
Decoder is shown in Algorithm 3. It takes as input an
encoded log object and a related event list. The log ob-
ject has the following attributes: 𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑡𝑜𝑝𝑖𝑐𝑠, 𝑑𝑎𝑡𝑎,
𝑏𝑙𝑜𝑐𝑘𝑁𝑢𝑚𝑏𝑒𝑟, 𝑡𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝, 𝑔𝑎𝑠𝑃 𝑟𝑖𝑐𝑒, 𝑔𝑎𝑠𝑈𝑠𝑒𝑑, 𝑙𝑜𝑔𝐼𝑛𝑑𝑒𝑥,
𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐻𝑎𝑠ℎ, 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥. Apart from 𝑎𝑑𝑑𝑟𝑒𝑠𝑠
and 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐻𝑎𝑠ℎ, the data are decoded into apprope-
riate formats. The Unix timestamp is converted to Uni-
versal Time Coordinated (UTC) format. The event names
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Algorithm 2: Extractor
Input : A finite set 𝐴 = {𝑎1,⋯ , 𝑎𝑛} of blockchain applications.

𝑎 ∈ 𝐴 | 𝑎={𝑎𝑝𝑝𝑁𝑎𝑚𝑒, 𝑠𝑐𝐼𝐷, 𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 𝑒𝑣𝑒𝑛𝑡𝑠}
Output: A finite set 𝐿 = {𝑙𝑜𝑔1,⋯ , 𝑙𝑜𝑔𝑛} of event logs. 𝑙 ∈ 𝐿

such that 𝑙𝑜𝑔={𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑡𝑜𝑝𝑖𝑐𝑠, 𝑑𝑎𝑡𝑎, 𝑏𝑙𝑜𝑐𝑘𝑁𝑢𝑚𝑏𝑒𝑟,
𝑡𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝, 𝑔𝑎𝑠𝑃 𝑟𝑖𝑐𝑒, 𝑔𝑎𝑠𝑈𝑠𝑒𝑑, 𝑙𝑜𝑔𝐼𝑛𝑑𝑒𝑥,
𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐻𝑎𝑠ℎ, 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥}.

Param : 𝑅𝑃𝐶𝑃𝑎𝑟𝑎𝑚𝑠 = {𝑎𝑝𝑖, 𝑚𝑜𝑑𝑢𝑙𝑒 = 𝑙𝑜𝑔𝑠,
𝑎𝑐𝑡𝑖𝑜𝑛 =′ 𝑔𝑒𝑡𝐿𝑜𝑔𝑠′, 𝑓𝑟𝑜𝑚𝐵𝑙𝑜𝑐𝑘, 𝑡𝑜𝐵𝑙𝑜𝑐𝑘, 𝑎𝑑𝑑𝑟𝑒𝑠𝑠,
𝑡𝑜𝑝𝑖𝑐0, 𝑎𝑝𝑖𝐾𝑒𝑦}

𝐿← {};
𝑙 ← {};
𝑓𝑟𝑜𝑚𝐵𝑙𝑜𝑐𝑘← 1;
𝑡𝑜𝐵𝑙𝑜𝑐𝑘← latest;
𝑟𝑜𝑢𝑛𝑑𝑠 ← integer value;
foreach a in A do

if |𝑎.𝑒𝑣𝑒𝑛𝑡𝑠| > 0 then
l.log ← {};
foreach event in a.events do

repeat
𝑎𝑝𝑖 ← api for 𝑎.𝑛𝑒𝑡𝑤𝑜𝑟𝑘;
𝑎𝑝𝑖𝐾𝑒𝑦 ← api access key for 𝑎.𝑛𝑒𝑡𝑤𝑜𝑟𝑘
𝑡𝑜𝑝𝑖𝑐0← index of event;

𝑙𝑜𝑔𝑈𝑅𝐿← fill 𝑅𝑃𝐶𝑃𝑎𝑟𝑎𝑚𝑠 with 𝑎𝑝𝑖 +
𝑓𝑟𝑜𝑚𝐵𝑙𝑜𝑐𝑘 + 𝑡𝑜𝐵𝑙𝑜𝑐𝑘 + 𝑎.𝑠𝑐𝐼𝐷 + 𝑡𝑜𝑝𝑖𝑐0;

send RPC Request(logURL);
if isSuccessfule(RPC) then

logJSON ← RPC result;
l.log ← l.log + logJSON;

end if
fromBlock ← last block number in 𝑙.𝑙𝑜𝑔+1;
Decoder(𝑙.𝑙𝑜𝑔, 𝑎.𝑒𝑣𝑒𝑛𝑡𝑠);

until finish 𝑟𝑜𝑢𝑛𝑑𝑠;
end foreach
L ← L + l;

end if
end foreach

are identified by matching 𝑡𝑜𝑝𝑖𝑐𝑠[0] with the calculated
signatures in the event list. The other attributes are converted
from Hexadecimal format to String format. The output of
this algorithm is a decoded log object passed to Formatter
(Algorithm 4).
4.2.3. Formatter

This algorithm generates a local file in a format readable
by PM tools. The algorithm is depicted in Algorithm 4.
It takes as input the encoded log object resulted from the
Decoder. Then, it converts the object into a format that is
acceptable by PM tools. The current industry-wide event
data standard is eXtensible Event Stream (XES) (IEEE,
2016). However, this traditional format is to be evolved to
Object-Centric Event Data (OCED) (van der Aalst and Berti,
2020; Berti and van der Aalst, 2022). According to IEEE
Task Force on Process Mining (personal communication,
9 September 2022), the meta model of OCED is under
development and its reference implementation is planned to
be available in 2023. As many PM tools support Comma
Separated Values (CSV) files as an intermediate format, we
settle for this format in the meantime. The rows in a CSV
file correspond to events and the columns correspond to
attributes of the events. The columns should indicate the case

Algorithm 3: Decoder
Input : A finite set of event logs 𝐿 = {𝑙1,⋯ , 𝑙𝑛}. 𝑙 ∈ 𝐿 |

𝑙={Object 𝑙𝑜𝑔={𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑡𝑜𝑝𝑖𝑐𝑠, 𝑑𝑎𝑡𝑎, 𝑏𝑙𝑜𝑐𝑘𝑁𝑢𝑚𝑏𝑒𝑟,
𝑡𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝, 𝑔𝑎𝑠𝑃 𝑟𝑖𝑐𝑒, 𝑔𝑎𝑠𝑈𝑠𝑒𝑑, 𝑙𝑜𝑔𝐼𝑛𝑑𝑒𝑥,
𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐻𝑎𝑠ℎ, 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥}, Object 𝑒𝑣𝑒𝑛𝑡𝑠}

Output: A finite set of decoded event logs 𝐷 = {𝑙𝑜𝑔1,⋯ , 𝑙𝑜𝑔𝑛}
foreach l in L do

𝑒𝑣𝑒𝑛𝑡𝐿𝑖𝑠𝑡 ← l.events;
𝑒𝑛𝑐𝑜𝑑𝑒𝑑𝐿𝑜𝑔 ← l.log;
𝑑𝑒𝑐𝑜𝑑𝑒𝑑𝐿𝑜𝑔 ← [];
foreach record in encodedLog do

𝑑𝑒𝑐𝑜𝑑𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑 ← {};
for 𝑖 ← 0 to eventList.length-1 do

if record.topics = eventList[i].key then
𝑑𝑒𝑐𝑜𝑑𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑.𝑡𝑜𝑝𝑖𝑐𝑠 ← 𝑒𝑣𝑒𝑛𝑡𝐿𝑖𝑠𝑡[𝑖];
return

end if
end for
𝑑𝑒𝑐𝑜𝑑𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑.𝑑𝑎𝑡𝑎 ← decodeLogs(𝑟𝑒𝑐𝑜𝑟𝑑.𝑑𝑎𝑡𝑎);
𝑑𝑒𝑐𝑜𝑑𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑.𝑏𝑙𝑜𝑐𝑘𝑁𝑢𝑚𝑏𝑒𝑟 ←

hexToNumberString(𝑟𝑒𝑐𝑜𝑟𝑑.𝑏𝑙𝑜𝑐𝑘𝑁𝑢𝑚𝑏𝑒𝑟);
𝑑𝑒𝑐𝑜𝑑𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝←

unixToUtc(𝑟𝑒𝑐𝑜𝑟𝑑.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝);
𝑑𝑒𝑐𝑜𝑑𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑.𝑔𝑎𝑠𝑃 𝑟𝑖𝑐𝑒 ←

hexToNumberString(𝑟𝑒𝑐𝑜𝑟𝑑.𝑔𝑎𝑠𝑃 𝑟𝑖𝑐𝑒);
𝑑𝑒𝑐𝑜𝑑𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑.𝑔𝑎𝑠𝑈𝑠𝑒𝑑 ←

hexToNumberString(𝑟𝑒𝑐𝑜𝑟𝑑.𝑔𝑎𝑠𝑈𝑠𝑒𝑑);
𝑑𝑒𝑐𝑜𝑑𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑.𝑙𝑜𝑔𝐼𝑛𝑑𝑒𝑥 ←

hexToNumberString(𝑟𝑒𝑐𝑜𝑟𝑑.𝑙𝑜𝑔𝐼𝑛𝑑𝑒𝑥);
𝑑𝑒𝑐𝑜𝑑𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑.𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥 ←

hexToNumberString(𝑟𝑒𝑐𝑜𝑟𝑑.𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥);
𝑑𝑒𝑐𝑜𝑑𝑒𝑑𝐿𝑜𝑔.push(𝑑𝑒𝑐𝑜𝑑𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑);

end foreach
Formatter(𝑑𝑒𝑐𝑜𝑑𝑒𝑑𝐿𝑜𝑔);

end foreach

identifier, the activity name, and the timestamp of an event,
and any other attributes.

5. Proof of concept
To demonstrate the feasibility of the proposed frame-

work, we developed a Blockchain Event Log App (BELA).
BELA is a reusable Node.js implementation of the frame-
work. The source code of BELA and the produced event log
are publicly available (Alzhrani, 2023).
5.1. Experimental design

The experiment was performed through four steps as
follows:

1. Data collection and pre-processing: We applied the
proposed framework to Alzhrani’s dataset (Alzhrani,
2020). The dataset includes applications from nine
blockchain platforms: Corda, Hyperledger Fabric,
Ethereum, EOS, Klaytn, Steem, Hive, Blockstack, and
POA. For the purpose of this study, we only included
EVM-compatible applications. The dataset has 282
EVM-compatible applications. Also, since the dataset
does not include the smart contract addresses of the
applications, we tried to collect them. The addresses
for some applications were not publicly provided by
their developers, so they were excluded from the
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Algorithm 4: Formatter
Input : A finite set of decoded event logs 𝐷 = {𝑙𝑜𝑔1,⋯ , 𝑙𝑜𝑔𝑛}in JSON format
Output: A finite set of formatted event logs

𝐹 = {𝑙𝑜𝑔1,⋯ , 𝑙𝑜𝑔𝑛} in the required format
Param : string 𝑜𝑢𝑡𝑝𝑢𝑡𝐹 𝑜𝑟𝑚𝑎𝑡=’CSV’
foreach log in D do

𝑓𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑𝐿𝑜𝑔 ← [];
foreach record in 𝑙𝑜𝑔 do

𝑓𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑 ← {};
𝑓𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑.𝑐𝑎𝑠𝑒𝐼𝐷 ←
𝑟𝑒𝑐𝑜𝑟𝑑.𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐻𝑎𝑠ℎ;

𝑓𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑.𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ← 𝑟𝑒𝑐𝑜𝑟𝑑.𝑡𝑜𝑝𝑖𝑐𝑠;
𝑓𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑.𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒← 𝑟𝑒𝑐𝑜𝑟𝑑.𝑎𝑑𝑑𝑟𝑒𝑠𝑠;
𝑓𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑.𝑑𝑎𝑡𝑎← 𝑟𝑒𝑐𝑜𝑟𝑑.𝑑𝑎𝑡𝑎;
𝑓𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑.𝑏𝑙𝑜𝑐𝑘𝑁𝑢𝑚𝑏𝑒𝑟←
𝑟𝑒𝑐𝑜𝑟𝑑.𝑏𝑙𝑜𝑐𝑘𝑁𝑢𝑚𝑏𝑒𝑟;

𝑓𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝← 𝑟𝑒𝑐𝑜𝑟𝑑.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝;
𝑓𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑.𝑔𝑎𝑠𝑃 𝑟𝑖𝑐𝑒← 𝑟𝑒𝑐𝑜𝑟𝑑.𝑔𝑎𝑠𝑃 𝑟𝑖𝑐𝑒;
𝑓𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑.𝑔𝑎𝑠𝑈𝑠𝑒𝑑 ← 𝑟𝑒𝑐𝑜𝑟𝑑.𝑔𝑎𝑠𝑈𝑠𝑒𝑑;
𝑓𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑.𝑙𝑜𝑔𝐼𝑛𝑑𝑒𝑥← 𝑟𝑒𝑐𝑜𝑟𝑑.𝑙𝑜𝑔𝐼𝑛𝑑𝑒𝑥;
𝑓𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑.𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥←
𝑟𝑒𝑐𝑜𝑟𝑑.𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑒𝑥;

𝑓𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑𝐿𝑜𝑔.push(𝑓𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑𝑅𝑒𝑐𝑜𝑟𝑑);
end foreach
save(𝑓𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑𝐿𝑜𝑔, 𝑜𝑢𝑡𝑝𝑢𝑡𝐹 𝑜𝑟𝑚𝑎𝑡);

end foreach

analysis. As a result, 201 applications are used for this
study.

2. Applying PAR: The input of this step was the dataset
of 201 blockchain applications. Based on the pre-
defined Rule Base, 𝑃𝐴𝑅 − 𝐻 (the researchers) ex-
amined the platform and network rules. Then, 𝑃𝐴𝑅−
𝑀 examined the verification status and existence of
business-relevant events. The output was a classified
set of 𝐼𝑛𝑐𝑙𝑢𝑑𝑒𝑑 and 𝐸𝑥𝑐𝑙𝑢𝑑𝑒𝑑 smart contracts. Fi-
nally, 𝑃𝐴𝑅 − 𝐻 examined the event registry of the
𝐼𝑛𝑐𝑙𝑢𝑑𝑒𝑑 smart contract set.

3. Applying ELG: At this step, we selected a sample
blockchain application, i.e., CryptoKitties, for inves-
tigation. The application was selected due to its pop-
ularity in both, industry and academia. The input was
a set of four smart contract addresses that belongs to
CryptoKitties. The output was an event log file in CSV
format.

4. Applying PM: In this step, we used the generated event
log of Cryptokitties to perform an Automated Busi-
ness Process Discovery (ABPD) using Apromore1
tool. The goal of this PM practice is not to give a
business analysis for the application. Rather, the goal
is to validate that the generated event log by ELG is
readable by PM tools and feasible to discover business
processes.

5.2. Experimental results
In this section, we first provide statistical analysis of

the results. Then, we demonstrate the use of Cryptokitties’s
event log for ABPD.

1https://apromore.com [last accessed 1/5/2023]

5.2.1. Results analysis
The input dataset consists of 201 blockchain appli-

cations. They are on four different blockchain platforms:
Ethereum, POA, EOS, and Klaytn. Figure 3 summarizes
the results of applying PAR to the dataset. When the first
criterion was applied, we found that EOS and Klaytn plat-
forms were in older versions that do not support smart
contract events. Therefore, 47 applications were excluded.
The remaining 154 applications consist of 564 smart con-
tracts. They were investigated for the network accessibility
criterion. The applications exist on five networks: Ethereum
mainnet, POA Core, Ropsten, Rinkeby, and Kovan. Since
the Ropsten, Rinkeby, and Kovan networks are deprecated
(Protocol Support Team, 2022), 58 smart contracts were ex-
cluded. The remaining 147 applications comprises a total of

Figure 3: The results of applying Process Awareness Recog-
nizer (PAR) on the dataset

506 smart contracts. At this step, a manifest for these smart
contracts was prepared to be ingested into BELA. PAR-
M executed 506 RPCs to the two networks, i.e., Ethereum
Mainnet and POA Core. Of 506 contracts, PAR-M found
279 verified contracts of 110 applications. These contracts
were further examined for defined events. As a result, 230
contracts of 103 applications were included. Figure 4 shows
the classification results of the 506 contract addresses by
PAR-M. Then, the included applications were examined by
PAR-H for process awareness, which was resulted in 87 valid
applications.

Afterward, we applied ELG on a sample application.
CryptoKitties has four out of four verified smart contracts
with events. Three of the four contracts have an equal
number of 5 events. The fourth contract has 12 defined
events. The Extractor (Algorithm 2) was configured with
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Figure 4: Classification results produced by PAR-M for 506
smart contract addresses

𝑅𝑃𝐶𝐶𝑜𝑢𝑛𝑡 ≤ 15; for efficiency and performance. That is, if
no more event data is found for an event in the current RPC,
then stop the remaining RPCs for this event and proceed
to the next event. We used Etherscan API2 which has a
limit of 1000 records/rpc and 5 rpcs/second. Therefore, the
number of extracted log entries for CryptoKitties should be
𝑅𝑒𝑐𝑜𝑟𝑑𝑠𝐶𝐾 ≤ 1000 × 15 × 27 = 405, 000.

We prepared a manifest containing the required at-
tributes in JSON format for the four smart contracts. The
manifest was ingested into BELA to be processed by the
ELG module. The ELG successfully executed 202 RPCs to
the Ethereum Mainnet, decoded and formatted 185 JSON
responses of event data. That is, 17 RPCs did not find more
event data. As a result, a CSV event log file was successfully
generated for CryptoKitties, with an actual number of log
entries of 177,201.
5.2.2. Business process discovery

To validate the outcome of ELG by BELA, we used the
generated event log of CryptoKitties with the Apromore tool.
We are interested to gain an overview of the lifecycle process
of the kitties (i.e., non-fungible tokens), where the lifecycle
of each kitty is viewed as an independent process instance.
Therefore, the identifier of a kitty (i.e., tokenId) is used as the
𝑐𝑎𝑠𝑒𝐼𝐷. The log timeframe is from 2017-11-23 to 2022-11-
06, which is from block number 4605167 to block number
15907923. Figure 5 shows the discovered business process
model for CryptoKitties. It shows the dynamic breeding and
trading of the kitties and gives insightful information for the
game developers about the behavior of the game users. It
can be obsevered that the discovered model in this study is
consistent with, and more detailed than, the one that was
discovered in Klinkmüller et al. (2019). This indicates the
validity of our discovered model, and hence, the validity of
our proposed framework.

6. Discussion
This study addresses the aforementioned challenges of

applying PM in the context of EVM-compatible blockchain
2https://etherscan.io/apis

applications. Process awareness of a blockchain application
is impacted by multiple components. Based on a taxonomy
proposed by Alzhrani et al. (2022) to characterize blockchain
applications, we can characterize a process-aware EVM-
based blockchain application as: A system that its execu-
tion environment supports programmable smart contracts
and executed them on a Turing complete machine, and the
system’s internal components include smart contracts that
are programmed with business-relevant events. Figure 6
shows the relationship between different entities related to
the process awareness of a blockchain application.

Our proposed ELG contrasts the literature in several
points. First, our proposed method focuses on event data
retrieval and decoding steps instead of the format of the event
log. Second, once the manifest is ready, it is a fully auto-
mated method to generate event logs, with support for batch
smart contract addresses. Third, our proposed method is in-
dependent of the developers of smart contracts and the man-
ifest is prepared with minimal information: (appName, scID,
network) for PAR and (appName, scID, network, eventList)
for ELG, and no prior knowledge of a contract’s source
code or defined events is required to build the manifest.
Last, ELG relies on remote nodes eliminating the complexity
of deploying local nodes and thus, no blockchain-specific
technical expertise is required.

Since the ELG relies on RPCs, the method is impacted by
the limit of API providers. As more 𝑅𝑃𝐶𝐶𝑜𝑢𝑛𝑡𝐸 per event
as more event data are retrieved and thus, more possible
variants of a process can be discovered. However, there
should be a trade-off between the 𝑅𝑃𝐶𝐶𝑜𝑢𝑛𝑡𝐸 and the
performance for the scalability of BELA. Regarding the
event log formatting in this study, the content of the 𝑑𝑎𝑡𝑎
field is determined by the programmer of the smart contract.
Thus, different data are stored for different activities, which
complicate defining a unified set of attributes in the CSV
format.

While it is possible to provide a deep analysis of Cryp-
toKitties, the purpose of ABPD in this study is to validate the
applicability and feasibility of the proposed framework. We
successfully identified valid blockchain applications for PM,
extracted event data, decoded them into a human-readable
format, stored them in the CSV format, and discovered the
relevant process models from the generated event log. To
generate different analysis, our framework allows business
analysts to adapt a user-guided approach for PM, where the
analyst can try different attribute configurations during the
PM session to find the best model for their goals Burattin
(2015).

7. Conclusion
This study introduced the problem of process awareness

of blockchain applications. It outlined several challenges for
mining business processes from these applications. Also,
we proposed a framework to address these challenges in
the context of EVM-based blockchain applications. The
framework consists of two modules. The first is PAR, a
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Figure 5: A discovered business process model for CryptoKitties using Apromore

Figure 6: The relationship between entities related to process
awareness of a blockchain application

semi-automated model to support the decision-making about
the process awareness of a given blockchain application.
The second is ELG, an automated model to support event
log generation activities. Additionally, a Proof-of-Concept
application (BELA) was implemented as a reusable Node.js

app. It was used to validate the proposed framework on a set
of real-world blockchain applications. The results approved
the feasibility and applicability of the framework. This work
is an initial proposal and involves human decisions, which
may introduce subjectivity. In the future, we aim to improve
PAR-M to detect business-relevant events from smart con-
tract source codes. Additional future work is to evaluate the
performance of the algorithms with different input sizes.
Also, we work to generalize the framework for non-EVM-
based blockchain applications.
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A Business Process Modeling Pattern Language for

Blockchain Application Requirement Analysis

Abstract

Blockchain technology has the potential to revolutionize e-business through smart contracts. How-
ever, developing blockchain applications is obstructed by several usability challenges from a software
engineering perspective. Defining proper smart contracts and solution architecture requires a tighter
connection between the analysis and design phases. Current research on software development for
blockchain applications focuses mainly on software design, rarely on requirement analysis or advance
to implementation overlooking the requirements. Literature and industry practices on blockchain
development justified the significant lack of a common language to communicate requirements to the
software design. This study aims to address this research gap. It proposes a data-driven business
process modeling pattern language for blockchain application requirements analysis. The pattern lan-
guage consists of nine business process patterns. This study applies Process Mining (PM) techniques
in the context of software engineering. The patterns are identified using Automated Business Process
Discovery (ABPD) and validated using Conformance Checking (CC) techniques. The contribution of
this study provides a common language that connects requirements to software design to support the
development of blockchain applications.

Keywords: Blockchain, smart contract, design pattern, software design, requirements analysis, business
process modelling

1 Introduction

Blockchain technology has the potential to revolu-
tionize e-business by offering the ability of a peer-
to-peer business management system which elim-
inates the third party and ensures the integrity of
the processes and data [1]. Business processes can
be encoded within smart contracts (SCs), allow-
ing for confidential execution and monitoring of
inter- and intra- organizational business processes
[2, 3]. However, developing blockchain applica-
tions (BCApps) is obstructed by several usability
challenges from a software engineering perspective
[4].

Industry practices in blockchain development
evident the difficulty of communicating stake-
holders’ requirements in the design [5], leaving
requirement formulation and specification a tech-
nical task [6]. These difficulties are further exac-
erbated by the significant lack of requirement
analysis from a business process perspective, mak-
ing it challenging to identify which requirements,

if they are addressed by SCs, constitute value to
stakeholders. Current research on software devel-
opment for BCApps focuses mainly on software
design, rarely on requirement analysis, or advances
to implementation overlooking the requirements
[7–9]. Defining proper SCs and solution architec-
ture requires a tighter connection between analysis
and design phases [8]. Business Process Model-
ing (BPM) is profound in improving requirement
analysis [10].

This study continues the effort to address
usability issues that affect BCApp development.
The difference is that it targets the connection
between analysis and design phases not addressed
in the literature. This study aims to systemati-
cally identify business processes embedded within
SCs and document them in terms of reusable
BPM Patterns (BPMPs). Towards this, it is essen-
tial to discover business processes from Industry-
developed BCApps. Manual process discovery
from a large number of applications and systems
is subjective and requires a significant amount of

1
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time and effort [11]. Figuring out possible methods
for a single application requires multiple sessions
to use the application, read its documentation,
interview its developers, and analyze user reviews
if available.

Away from the perception-based discussion,
Process Mining (PM) [12] allows for a fact-based
analysis through the processing of the system’s
event logs by state-of-the-art algorithms, tech-
niques, and tools [13–15]. PM is a unique approach
that applies data mining to automatically extract
knowledge from captured process traces in the sys-
tem’s log files [13–17]. Experience shows that less
time is spent analyzing business processes using
the results of PM [15]. Therefore, PM arguably
allows for evidence-based pattern identification.
Instead of intuitively proposing patterns based on
experience and observations, then validating their
existence through searching available use cases,
PM allows for a data-driven pattern identification
that ensures the validity of the identified patterns
beforehand.

As a result, the main contribution of this
study is a data-driven BPMPs to assist require-
ments analysis of BCApps. This study contributes
to software engineering literature by providing
a common language that connects analysis and
design phases to support the development of
BCApps. The remainder of this paper is orga-
nized as follows. Section 2 presents a background
of BCApps, BPMPs, and PM. Section 3 reviews
related work to software patterns for BCApps.
Section 4 elucidates the research methodology.
Section 5 gives an overview of the proposed
BPMPL. Sections 6 and 7 describe the BPMPs.
Section 8 represents the validation results of the
BPMPL. Section 9 discusses the implications and
limitations of the BPMPL. Finally, Section 10
summarizes the paper.

2 Background

2.1 Blockchain applications

A BCApp is a software application that utilizes
blockchain technology. The application uses web
services to communicate the off-chain tiers with
the blockchain [18]. A BCApp is intended to
provide functionality according to use-case needs
and requirements. The business logic of a BCApp
can be implemented in three general ways: 1)

it can be implemented solely off-chain and uses
the blockchain for data storage, 2) it can be
implemented solely on-chain through SCs, or 3)
it can be distributed between the off-chain app
and SCs. Generally, a BCApp has the following
characteristics [19]:

• It operates on one or more blockchain net-
works. For example, IBM Food Trust is built on
Hyperledger Fabric and IBM Blockchain.

• It uses one or more distributed ledgers. This is
especially true for applications built on multi-
ledger architecture platforms, such as Hyper-
ledger Fabric, through the concept of channels.

• It has one or more SCs. For example, the Cryp-
toKitties Ethereum application has five SCs.

• It consists of off-chain and on-chain compo-
nents.

• Its data and computation can be on a single
chain, multiple chains (sidechain), or off-chain.
This characteristic has a significant impact on
the scalability and performance of the applica-
tion.

• Its data are immutable, in contrast to con-
ventional applications. This feature is inherited
from the immutability of the blockchain.

2.2 Business process modeling
patterns

A business process (BP) is a goal-centered
arrangement of value-added activities and
resources. It utilizes certain inputs to create
desired outputs when the activities are executed
by their relevant originators [20, 21]. A BP pat-
tern is a reusable business process model that
represents the relationship between users, the
application, and the data [11, 22, 23]. BPMPs
are generalized process models of how a business
should be run in a given context [24]. According to
Sommerville [25], patterns and pattern languages
capture experience by describing best practices
and good designs in a reusable way. The pattern
describes the recurring problem, identifies its
solution, and explains the importance of the solu-
tion. A pattern could be built as a combination
of smaller patterns and their relationships [26].

The goal of a pattern is to assist developers
in resolving recurring problems throughout the
development lifecycle by creating a body of lit-
erature for recurring problems [27]. Among the
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different types of reusable assets in software engi-
neering, the most used one is software patterns.
They are software abstractions that, if properly
documented and well applied, can aid in building
high-quality software while reducing the develop-
ment time and cost [28, 29]. As new technologies
emerge, patterns should be identified, adapted,
and used to build real applications [30].

2.3 Process mining

PM is a growing research field, and it has been
proven through several use cases [14]. PM arose
as a result of merging techniques from Data Min-
ing and BPM to enable evidence-based BPM [13,
14, 16]. PM is defined as: “techniques, tools, and
methods to discover, monitor and improve real
processes (i.e., not assumed processes) by extract-
ing knowledge from event logs commonly available
in today’s (information) systems” [17]. There are
three types of PM: process discovery, conformance
checking, and process enhancement. Process dis-
covery aims to construct a process model based
on an event log. Thus, it takes an event log as
an input, learns a process model as throughput,
and produces an as-is business process model as
an output [17].

Automated Business Process Discovery
(ABPD) is facilitated using process miners [31].
A process miner is an algorithm responsible for
producing a comprehensible process model based
on process traces in logs. Conformance Check-
ing (CC) analyzes whether a log conforms to a
model and vice versa. Thus, it takes an event log
and a reference BP model as input, compares
the log and model to each other as throughput,
and produces diagnostics as an output. Process
Enhancement (PE) aims at extending or improv-
ing a BP model based on extracted information
from a log. Thus, it takes an event log and a BP
model as input, analyzes the log to improve the
model as throughput, and produces a new BP
model as an output.

3 Related work

Numerous studies have been conducted on soft-
ware patterns for BCApps. However, most effort
has been devoted to design patterns. Table 1
summarizes the list of patterns proposed in the
reviewed literature [32–40]. In the context of

blockchain-based payments, a set of 12 patterns
is presented in [32]. In the context of blockchain-
based supply chain finance, [33] proposed five
design patterns to solve financing difficulties and
costs of enterprises through blockchain. The study
in [34] identified foundational aspects for charac-
terizing oracle patterns introduced in the litera-
ture based on data flow direction and initiator.
Subsequently, four patterns were derived through
a literature review. The study in [35] proposed
a pattern for executing legal contract clauses
by binding an off-chain legal contract, an on-
chain SC, and a business process engine to ensure
companies’ pseudonymity and business data con-
fidentiality.

A list of 12 design patterns for Ethereum
SCs was proposed in [36]. The pattern collection
in [37] focuses on the security aspects of SCs,
which consists of six security patterns to assure
the reliability of SC execution. Another work is
a collection of 15 design patterns [38], which
viewed the blockchain as a fundamental element of
large-scale decentralized systems. Solidity-based
SC patterns are also discussed in [39] and nine
patterns were identified. The study in [40] pro-
posed six trust patterns for collaborative business
processes derived from literature.

This study contrasts the literature in sev-
eral aspects. First, the literature focuses on soft-
ware design, while this study focuses on require-
ment analysis. Second, the literature identified
patterns intuitively by observation and experi-
ence, while this study follows a systematic data-
driven approach through the application of ABPD
and CC for pattern identification and valida-
tion. Third, the literature embodies a technology-
centered viewpoint [32–39], whereas this study
represents a business process-centered viewpoint.
Fourth, the literature is either aimed at process
engineers [40] or software engineers [32, 37–39],
whereas this study intends to support both busi-
ness and software engineers.

4 Methodology

This study analyzed event logs retrieved from
Ethereum and POA blockchains. These event logs
dataset is publicly available [41]. The dataset com-
prises 116 event log files produced by 101 BCApps
from five networks. An overview of the dataset is
presented in Table 2. This study used the IBM
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Table 1 A list of proposed design patterns in the
literature.

Reference
No.

Application
Context

List of Patterns

[32] Payments Token template, Token reg-
istry, Policy contract, Burned
token, Escrow, Payment
channel, Seller credential,
Stealth address, Oracle,
Multisignature, Token swap,
Authorised spender

[33] Supply
chain
finance

Pledge template, Pledge reg-
ister, Ownership challenge,
Two-way payment channel,
Transfer

[34] Data
exchange

Pull-based inbound oracle,
Push-based inbound oracle,
Pull-based outbound oracle,
Push-based outbound oracle

[35] Legal con-
tracts

On/off-chain smart-contract
binding for confidential con-
tract enforcement

[36] General Pull payment, State machine,
Commit and reveal, Oracle,
Ownership, Access restric-
tion, Mortal, Automatic dep-
recation, Data segregation,
Satellite, Contract register,
Contract relay

[37] SC security Checks-effects-interaction,
Emergency stop, Speed
bump, Rate limit, Mutex,
Balance limit

[38] General Oracle, Reverse oracle, Legal
and smart contract pair,
Encrypting on-chain data,
Tokenisation, Off-chain data
storage, State channel, Mul-
tiple authorization, Off-chain
secret, Xconfirmation, Con-
tract registry, Data contract,
Embedded permission, Fac-
tory contract, Incentive exe-
cution

[39] General Token, Authorization, Ora-
cle, Randomness, Poll, Time
constraint, Termination,
Math, Fork check

[40] Collaborative
BPs

Hash storage, Transparent
event log, Blockchain BP
engine, Smart contract activ-
ities, Blockchain-based repu-
tation system, Decentraliza-
tion

Process Mining tool to apply two of the PM
techniques: ABPD and CC. Fig. 1 illustrates the
pattern mining process in IDEF0 [42]. The steps
are as follows:

1. Preprocess dataset: The dataset is randomly
split into analysis and validation datasets.
The analysis dataset consists of 58 event log
files produced by 51 BCApps. The validation
dataset consists of 58 event log files produced
by 50 BCApps. Fig. 2 shows the distribution
of the applications per domain within each
dataset. The SCs are developed in compli-
ance with token standards of Ethereum, mostly
ERC20 and ERC271. However, as different pro-
grammers developed those SCs, events of sim-
ilar activities are named differently. For exam-
ple, a token burn event is named Burn, Burned,
Burnt, Tokens Burned, Crystal Burned, and
Kitty Burned, while they are all triggered when
a token is transferred from the token’s owner
balance to a zero address. Thus, unifying event
names of the same activity is fundamental to
ensure a valid conformance analysis. First, all
event names have been extracted from the
dataset to create a pool of events. Then, a set
of potential aliases are identified from the pool.
Finally, each alias is validated by analyzing its
role in the relevant SC source code to ensure
that the alias is triggered by a similar business
activity of the aliased event. The event aliases
are listed in Appendix A.

Table 2 The distribution of event logs per blockchain
network.

Blockchain Network Number of Event Log Files

Ethereum Mainnet 101
Kovan 4
POA Core 1
Rinkeby 2
Ropsten 8

2. Discover business processes: The ABPD was
applied to the analysis dataset to identify
recurrent business processes. Process discovery
algorithms require an event log to have at least
three properties: case ID, activity, and times-
tamp. The mapping from the event logs to pro-
cess trace data is as follows: transaction hash
is used as the case ID, log timestamp is used
as the process timestamp, and topics is used
as the activity. Examples of such topics include
Transfer, Approval, Deposit, Withdraw.
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Fig. 1 The pattern mining process

Fig. 2 The distribution of blockchain applications per application domain

3. Generalize recurrent business processes: After
discovering BPs in the preceding step, recur-
rent business processes were generalized
in Business Process Management Notation
(BPMN) models. These models became the
reference models for CC.

4. Check conformance: Later, the reference mod-
els, event aliases list, and the validation event
log files were ingested into the PM tool for
CC. The IBM Process Mining tool visualizes
the conformance between two business mod-
els using similarity and fitness indicators. The
similarity indicates how the data-derived model

compares with the reference model. The fit-
ness indicates how the data-derived model is
representative of the cases, depending on the
model details. The values are normalized from
0 (bad) to 1 (good), where values from 0.5 to
1 are satisfactory. For this study, the similar-
ity indicator plays an essential role. It indicates
to what extent the data-derived model from
a BCApp conforms to the generalized BPMN
model of the pattern under investigation. Thus,
any value from 0.5 to 1 is accepted as an
indicator of the pattern’s existence.
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5 The proposed business
process modeling pattern
language

The proposed BPM pattern language (BPMPL)
in this study consists of nine patterns classified
into two broad categories from a business pro-
cess view (BPV) perspective. The first category
is Token-Oriented Patterns (TOPs). This cate-
gory represents on-chain transactions that can be
performed on a token. It consists of three sub-
categories:Token Circulation, Token Supply, and
Token Authorization. The Token Circulation con-
sists of three patterns describing the flow of digital
assets from account to account. The Token Sup-
ply consists of two patterns describing the pro-
duction and destruction of digital assets on the
blockchain. The Token Authorization consists of
a single pattern describing authority on a token.
The second category is Smart Contract-Oriented
Patterns (SCOPs). This category represents on-
chain transactions that can be performed on an
SC. It consists of two subcategories:Smart Con-
tract Security and Smart Contract Authorization.
The Smart Contract Security consists of a sin-
gle pattern describing administrative tasks on an
SC. The Smart Contract Authorization consists of
two patterns describing access controls to govern
access to SC business logic. Table 3 summarizes
the BPMPL and interrelationship between the
patterns.

5.1 Pattern description

The collective description of the individual pat-
terns constitutes a description of the BPMPL.
The pattern descriptions follow the guidelines of
requirement and design pattern languages [43–45].
Each BPMP description encapsulates a BP model,
requirement, and design pattern. Each BPMP is
described using a standard format as follows:

• The pattern’s Name reflects the principle
behind the pattern.

• Summary gives an overview of the pattern’s
usage.

• Classification is a BPV-agnostic categorization
that indicates the type of the pattern as Trans-
fer, Lifecycle, or Accessibility.

• Context describes the situation where the pat-
tern can be applied from a design perspective.

• Applicability describes the situation(s) where
the pattern can or cannot be applied from a
requirement perspective.

• Problem expresses what the pattern intends to
solve.

• Solution describes how the problem is resolved.
• Business Process Meta-Model describes the flow
of activities and events of the solution in a log-
ical business sequence using an Event-driven
Process Chain (EPC) [46]. A reference model of
EPC notation is presented in Appendix A.

• Requirement Template represents the most
abstract expression of an FR that reflect the
pattern.

• Extended Requirement Template represents
other ways to express the requirement template,
with possible alternatives or derivative expres-
sions. Each extended requirement template is
a typical fill-in-the-blanks definition for an FR
of the business process, where <and> encapsu-
late a mandatory parameter, e.g., <mandatory
parameter>, and [ and ] encapsulates an
optional parameter, e.g., [optional parameter].
The FR list is sequentially numbered as FR1,
FR2, . . . etc.

• Implementation Considerations point out fun-
damental guidelines on how to implement the
pattern.

• Testing Considerations provide overall guide-
lines for testing the pattern’s business process.

• A running Example is used throughout the
BPMPL to showcase the application of each
pattern on a single business use case, see Section
5.2.

• Related Patterns are complementary patterns
from the same language. If none, this item is
omitted.

• Known Uses are BCApps from the validation
dataset, introduced in Appendix A, that con-
form to the pattern’s reference model.

5.2 Running example

The running example is a simple use case with
basic activities intended to demonstrate the use
of the proposed BPMPL to design a new BCApp.
This section introduces the application example
and identifies the main components and actors.
The utilization of each pattern is explained within
the relevant description in Sections 6 and 7. The
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Table 3 The business process modeling patterns and their interrelationships.

No. Pattern
Type

Category Main Pattern Related Pattern Relationship

P1

Token-
Oriented

Token Circulation
Atomic Tx P2, P3 Alternative

P2 Micro Tx P6 Requisite
P3 Macro Tx P1, P2 Alternative

P4
Token Supply

Bloom P2 Variant
P5 Digester P1, P2 Variant

P6 Token Authorization Approval P2 Prerequisite

P7 Smart
Contract-
Oriented

Smart Contract Security Switch P8, P9 Requisite

P8 Smart Contract
Authorization

Exclusive Authorization P9 Alternative
P9 Shared Authorization P8 Alternative

sample use case concerns developing an Ethereum-
based application to manage entrance passes to
a paid event. The application is a reusable solu-
tion for different events. Each event has a different
manager.

The application allows for controlling the pass
issuance process as required, such as starting the
process when the registration is open and stop-
ping pass issuance when the registration period
ends or the event is canceled. An authorized reg-
istrar only should be able to issue passes during
the registration period. The application handles
the payment of registration fees through a legiti-
mate third-party account. The fee should be paid
only when a pass is successfully issued and sent to
the requesting invitee. Once a pass is issued for an
invitee, the invitee can authorize a representative
to attend the event on behalf of the invitee.

A pass is a one-time ticket that must be inef-
fective after checking in, whether by the invitee
or their representative. The application uses two
types of tokens: Ether and PASS. Ether is a
fungible token and the native cryptocurrency in
Ethereum that is used to pay registration fees by
event invitees. PASS is a non-fungible token man-
aged by its corresponding token SC, i.e., Pass SC
(PassSC), that complies with the ERC270 stan-
dard. PASS token is used to allow invitees to check
in to the event.

The app has the following users: Manager
represents the event manager who is responsi-
ble for administering the PassSC and authorizing
other users as required, Registrar represents an

SC which acts as the event registration officer,
Accountant represents an SC wallet which acts as
the company’s financial officer, Invitee represents
an end user who can register to attend the event,
Representative represents end user who is autho-
rized to attend on behalf of Invitee, Receptionist
represents front desk staff during event check-in,
and Escrow represents an SC who handle the pay-
ment process and manage funds between Invitee
and Accountant.

6 Token-oriented patterns

TOPs comprise a collection of patterns from the
perspective of a token. The process of moving a
token between accounts on the blockchain can be
designed using the Atomic Tx, Micro Tx, and
Macro Tx patterns. These Token Transfer pat-
terns are depicted in Section 6.1. The process of
creating or destroying a token can be designed
using the Bloom and Digester patterns, respec-
tively. These Token Supply patterns are depicted
in Section 6.2. The process of authorizing non-
owner accounts to manage a token can be designed
using the Approval pattern. This Token Autho-
rization pattern is depicted in Section 6.3.

6.1 Token circulation

A transaction (Tx) is a cryptographically-signed
command created by an external actor to the
blockchain and validated by a designated actor on
the blockchain [47]. The three patterns for token
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transfer allow for the granular design of token-
centered business processes. They describe how
digital assets – fungible or non-fungible tokens
- can be transferred between accounts on the
blockchain.

6.1.1 Atomic Tx Pattern

Summary: A single-step transfer where an
account directly moves its owned assets to another
account.
Classification: Transfer
Context: A blockchain application supports
transferable assets.
Applicability: - Use the Atomic Tx pattern to
move tokens between accounts by tokens’ owner.
- Do not use the Atomic Tx pattern to burn
tokens by their owner; use the Digester pattern
instead.
- Do not use the Atomic Tx pattern to move
tokens on behalf of their owner; use the Micro Tx
pattern instead.
Problem: How a digital asset can be moved
between two participants on the blockchain?
Solution: Blockchain technology allows business
participants to transact in a peer-to-peer man-
ner, eliminating the need for a central authority.
Thus, digital assets can be transferred directly
by their owners to other accounts as an atomic
transaction. The blockchain records the existence
of digital assets via tracking their ownership in an
immutable distributed ledger. The digital assets
are transferred through transferring their owner-
ship, reflected by changing balances of the token
receiver and sender. In the case of transferring
fungible tokens, this pattern results in decreasing
the sender balance and increasing the receiver
balance based on the number of tokens trans-
ferred. In the case of transferring non-fungible
tokens, the ownership of the transferred token
is renounced from the sender and granted to
the receiver. This pattern is the bottom line of
other transfer transactions on the blockchain. For
example, this pattern is an enabler for atomic
swaps between two types of tokens. A token swap
is a bidirectional Atomic Tx where a seller sends
tokens to a buyer as an atomic transaction, and
the buyer sends equivalent tokens to the seller as
another atomic transaction. In an atomic trans-
action, the transaction initiator is the token’s
owner, and the token transfer flows directly from

the owner’s balance to the receiver’s balance.
Business Process Meta-Model: Fig. 3 shows
the meta-model of the Atomic Tx pattern busi-
ness process.

Fig. 3 Atomic Tx pattern EPC

Requirement Template: The system shall
allow user to send and receive tokens on the
blockchain.
Extended Requirement Template:
FR1:The system shall allow <user> [on
<blockchain network>] to send <token> from
<user’s> balance to <receiver> [on <blockchain
network>] [when <conditions met>]
FR2:The system shall emit <Transferred> event
when <token> is successfully transferred [from
<owner> to <receiver>]
Implementation Considerations: Define a
method in the smart contract of a token to han-
dle token transfers by owners, e.g., transfer().
The method should get the receiver’s address and
amount or ID of tokens to be transferred as min-
imum arguments. Check that invoking address
owns the token if non-fungible and that amount
of token is within the balance of the sender if
fungible. Check that both sender and receiver are
not null addresses. After each transfer, you should
update the balances of both sender and receiver
based on the transferred tokens. You may need
to check custom transfer conditions if required.
If the blockchain platform allows for user-defined
events, consider defining completion events, such
as Transferred, with relevant arguments.
Refer to Exclusive Authorization and Shared
Authorization patterns to specify authorization
for accessing the transfer method. In the context
of multi-token applications, consider implement-
ing fungibility-agnostic token smart contracts.
That is, a single token contract represents multi-
ple types of tokens instead of having a separate
contract for each token type. This approach leads
to less gas consumption, reducing deployment
cost and complexity. You may also consider batch
transfers to allow transferring multiple tokens
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in a single transaction. In the context of mul-
tichain applications, consider specialized tools,
such as Layer 2 solutions, to process cross-chain
operations. Check your implementation against
platform-specific standards for compatibility.
Testing Considerations: Ensure only the
token’s owner can transfer the tokens. Ensure
to-be-transferred tokens are within the balance
of the sender. Ensure the token owner’s balance
is decreased after each transfer. Ensure the token
owner’s balance is decreased with the transferred
amount. Ensure the receiver’s balance is increased
after each transfer. Ensure the receiver’s balance
is increased with the transferred amount. Ensure
only existing tokens can be transferred. If defined,
ensure transfer conditions are not bypassed. If
relevant, make extra tests for cross-chain opera-
tions. If relevant, refer to Testing Considerations
of Exclusive Authorization and Shared Autho-
rization patterns for relevant hints on testing. If
defined, ensure the smart contract emits desired
events upon completion of ownership transfer.
Example: In the example application, the Invi-
tee transfers their PASS to the Receptionist at
the time of event check-in.
Related Patterns: Micro Tx and Macro Tx
patterns.
Known Uses: CryptoCrystal, Landemic, and
FOAM allow their users to transfer CC, LAND,
and FOAM tokens, respectively, as atomic
transactions.

6.1.2 Micro Tx Pattern

Summary: A single-step transfer where an
account moves assets owned by another account
directly.
Classification: Transfer
Context: A blockchain application supports
transferable assets.
Applicability: - Use the Micro Tx pattern to
move tokens on behalf of their owner. - Do not
use the Micro Tx pattern to burn tokens on behalf
of their owner; use the Digester pattern instead.
- Do not use the Micro Tx pattern to spec-
ify that an account is authorized to transact on
behalf of another account; use the Approval pat-
tern instead. - Do not use the Micro Tx pattern
to move tokens by their owner; use the Atomic Tx
pattern instead.
Problem: Transfer transactions of digital assets

on the blockchain must be approved by the assets’
owner. Sometimes, transactions need to be com-
pleted when the owner is unavailable. How can
digital assets be transferred on the blockchain
when their owner is unavailable?
Solution: This pattern allows tokens to be trans-
ferred between accounts by approved delegates on
behalf of the token’s owners. This pattern allows
for automation. For example, a user may approve
an exchange smart contract to automatically trade
a certain amount of the user’s cryptocurrency.
There is no need to wait for the user to approve
each trade transaction. This pattern can also be
seen in token sales, where a project owner can mint
an initial token supply and approve a crowd sale
smart contract to release tokens to customers on
behalf of the owner. Applying this pattern results
in decreasing both sender’s balance and delegate’s
allowance and increasing the receiver’s balance.
The transaction initiator is the delegate, and the
token transfer flows directly from the owner’s bal-
ance to the receiver’s balance.
Business Process Meta-Model: Fig. 4 shows
the meta-model of the Micro Tx business process.

Fig. 4 Micro Tx pattern EPC

Requirement Template: The system shall allow
user to transact on behalf of another user on the
blockchain.
Extended Requirement Template:
FR1:The system shall allow <delegate> [on
<blockchain network>] to send <token> from
<delegator’s> balance [on<blockchain network>]
to <receiver> [on <blockchain network>] [when
<conditions met>]
FR2:The system shall emit <Transferred> event
when <token> is successfully transferred [from
<delegator> to <receiver>]
Implementation Considerations: Define a
method in the smart contract of a token
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to handle token transfers by delegates, e.g.,
transferFrom(). The method should get the
token’s owner address as sender, receiver address,
and amount or ID of tokens to be transferred
as minimum arguments. Check that the invoking
address is an authorized delegate by the sender.
Check that the transferred tokens are within the
delegate allowance. Check that the transferred
tokens are within the sender balance. Check that
both sender and receiver are not null addresses.
After each transfer, you should update the bal-
ance of the sender, the balance of the receiver, and
the allowance for the delegate based on the spent
tokens. You may need to check custom transfer
conditions if required. If the blockchain platform
allows for user-defined events, consider defin-
ing completion events, such as TransferredBy,
with relevant arguments. Refer to Implementa-
tion Considerations of Atomic Tx pattern for
hints for multi-token and multichain implementa-
tion contexts. Check your implementation against
platform-specific standards for compatibility.
Testing Considerations: Ensure only the
authorized delegate can spend tokens from the
token owner’s balance. Ensure only the approved
allowance can be spent by the delegate from the
sender’s balance. Ensure only existing tokens can
be transferred. Ensure the delegate’s allowance
is decreased after each transfer. Ensure the dele-
gate’s allowance is decreased based on the spent
tokens. Ensure the token owner’s balance is
decreased after each transfer. Ensure the token
owner’s balance is decreased with the spent
amount. Ensure the receiver’s balance is increased
after each transfer. Ensure the receiver’s balance
is increased with the spent amount. If relevant,
make specific tests for cross-chain operations. If
defined, ensure the smart contract emits desired
events upon completion of a token transfer.
Example: In the example application, PASS is
owned by the Invitee. When the Representative
check-in at the event, PASS is transferred from the
Invitee’s wallet by the Representative on behalf
of the Invitee to the Receptionist. The applica-
tion shall allow the Representative to send PASS
from the Invitee’s balance to the Receptionist on
Ethereum when event check-in.
Related Patterns: This pattern requires the
Approval pattern. Atomic Tx and Macro Tx are
alternatives to this pattern.
Known Uses: - FOAM, Upfiring, and TimeX

allow users to transfer tokens on behalf of the
tokens’ owners.

6.1.3 Macro Tx Pattern

Summary: A multi-step transfer where tokens
are indirectly moved from owner account to
receiver account.
Classification: Transfer
Context: A blockchain application requires a
guarantee for token transfers.
Applicability: - Use the Macro Tx pattern to
move tokens in multiple steps from the token’s
owner balance to the receiver’s balance. - Do not
use the Macro Tx for simple frequent token trans-
fers; use Atomic Tx or Micro Tx instead.
Problem: In some cases, especially commercial
ones with high-value assets, there is a potential
risk of fraud. Central payment systems usually
mitigate this risk. The blockchain tends to elim-
inate the centralization of transactions. How to
guarantee the sending and receiving of digital
assets?
Solution: Blockchain eliminates the need for
central systems between sender and receiver,
using intermediary smart contracts. A token
in this pattern can be generally transferred in
two approaches: deposit-withdraw or approve-
deposit-withdraw. This pattern is a composition
of other BPMPs. The deposit-withdraw approach
is a composition of multiple sequential applica-
tions of the Atomic Tx pattern. The approve-
deposit-withdraw approach is a composition of the
Approval, Micro Tx, and Atomic Tx patterns. The
general mechanism can be described as follows.
Firstly, the sender transfer required tokens from
its balance to an intermediary smart contract as
a deposit. Alternatively, the sender can approve
the intermediary smart contract to transfer the
deposit on behalf of the sender. The intermedi-
ary smart contract holds the deposit until release
conditions are met. Then, the intermediary smart
contract transfers the deposit to the receiver as
a withdrawal. The deposited tokens are trans-
ferred back to the owner if the conditions are not
met. The token transfer flows indirectly from the
owner’s balance to the receiver’s balance, where
the initiator of the first transfer is either the
tokens’ owner or an authorized delegate, and the
second transfer is the intermediary smart con-
tract. A simple example of the deposit-withdraw
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approach can be illustrated through its applica-
tion to reduce the risk of fraud in a social media
prize draw, where a winner is chosen from sev-
eral entrants. First, prize tokens are transferred
by an influencer to an intermediary smart con-
tract via an atomic transaction. The participants
can see the deposited tokens and verify encoded
release conditions due to the transparency of
the blockchain. Next, winners can claim their
prizes within a defined period. Once verified as
an eligible winner, the intermediary smart con-
tract transfers the tokens to the winner via an
atomic transaction. By the end of the period, any
unclaimed tokens are sent back to the influencer
via an atomic transaction. A simple example of the
approve-deposit-withdraw approach can be illus-
trated through its application in a token exchange
market context. First, the token’s owner acts as
an approver and authorizes the Exchange smart
contract to transfer a certain number of tokens
on its behalf. Then, Exchange transfers the tokens
from the depositor balance to its account and
holds it for the beneficiary as a Micro Tx. Later,
the Exchange performs an atomic transaction to
transfer the deposited tokens to the beneficiary.
Requirement Template: The system shall allow
user to send tokens to another user through inter-
mediary account.
Extended Requirement Template:
FR1:The system shall allow <sender> [on
<blockchain network>] to transfer <token> to
<receiver> [on <blockchain network>] through
<intermediary> [on <blockchain network>] as
follows:
FR1.1:The system shall allow <sender> [on
<blockchain network>] to transfer <token>
to <intermediary> [on <blockchain network>]
[when <condition met>].
FR1.2:The system shall allow <intermediary> [on
<blockchain network>] to send <token> from
<sender’s> balance [on <blockchain network>]
to <receiver> [on <blockchain network>] [when
<conditions met>]
FR1.3:The system shall allow <intermediary>
[on <blockchain network>] to transfer <token>
to <receiver> [on <blockchain network>] [when
<condition met>].
FR2:The system shall emit <Deposited> event
when <token> is successfully transferred by
<sender> to <intermediary>
FR3:The system shall emit <Withdrawn> event

when <token> is successfully transferred by
<intermediary> to <receiver>
Business Process Meta-Model: Fig. 5 shows
the meta-model of the Macro Tx business process.

Fig. 5 Macro Tx pattern EPC

Implementation Considerations: Refer to the
Implementation Considerations of the Atomic Tx,
Micro Tx, and Approval patterns.
Testing Considerations: Refer to the Testing
Considerations of the Atomic Tx, Micro Tx, and
Approval patterns.
Example: In the example application, this pat-
tern is applied for registration fee payments. The
settlement procedure and conditions are specified
in the Escrow SC. Upon completion of the regis-
tration process, the Invitee must deposit the fee
in Ether to the Escrow within a specified time.
When the Escrow confirms that the fee is paid in
full and in Ether, a confirmation event is informed
to the Registrar to issue a PASS. Once the Invi-
tee receives the PASS, a confirmation event is
informed to the Escrow. The Escrow releases the
deposited fee to the Accountant when the pre-
defined conditions are met. In case the Invitee
fails to fulfill the payment conditions or with-
drawal conditions are not met, such as PASS is
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not received by the Invitee, any deposited tokens
by the Invitee are sent back.
Related Patterns: Atomic Tx, Micro Tx, and
Approval patterns.
Known Uses: FOAM, Upfiring, and TimeX.

6.2 Token supply

These patterns describe possible solutions on how
the total amount of a token on a blockchain
network can be increased or decreased.

6.2.1 Bloom Pattern

Summary: This pattern enables creating new
tokens as required.
Classification: Lifecycle
Context: A blockchain application requires a
dynamic supply of digital assets.
Applicability: Use the Bloom pattern to create
a token generation mechanism.
Problem: Token standards describe how tokens
can be used, but how can tokens be created?
Solution: Tokens can be generated in different
ways. First, fixed supply is where the total amount
of tokens is minted at the initial phase of a project
and then made available to users via a token sale.
Usually, the total supply amount is hard coded in
the token smart contract source code. Second, flex-
ible limited supply is another way where tokens
are generated when a certain condition is met,
such as mining rewards. Still, the total amount
of tokens that can be ever generated will not
exceed the maximum supply limit. Finally, flexi-
ble unlimited supply is where tokens are generated
conditionally with no upper limit for the total
amount of tokens that can be ever generated. In
the flexible supply, the token generation mecha-
nism is implemented in the smart contract source
code, declaring the maximum supply if applica-
ble. This approach affects the total supply of the
destroyed token increasingly.
Business Process Meta-Model: Fig. 6 shows
the meta-model of the Bloom business process.
Requirement Template: The system shall pro-
vide a mechanism to generate new tokens.
Extended Requirement Template:
FR1:The system shall allow <minter> [on
<blockchain network>] to send <token> from
<mint address> [on <blockchain network>] to
<receiver> [on <blockchain network>] [when
<conditions met>]

Fig. 6 Bloom pattern EPC

FR2:The system shall emit <Minted> event when
new <token> is successfully generated.
Implementation Considerations: Define a
method in the smart contract of a token to han-
dle token generation, e.g., mint(). The method
should get the receiver’s address and amount or ID
of tokens to be generated as minimum arguments.
Enforce transfer from the mint address, e.g., zero
address. Check that receiver is not a null address.
If implementing a limited supply token, check
that the total amount of existing tokens does not
exceed the token total supply limit. In the case of
non-fungible tokens, check that the to-be-minted
token ID must not exist. After each transfer, you
should update the receiver’s balance based on the
transferred tokens. You may need to check custom
transfer conditions if required. If the blockchain
platform allows for user-defined events, consider
defining completion events, such as Minted, with
relevant arguments. Refer to Exclusive Authoriza-
tion and Shared Authorization patterns to specify
authorization for accessing the mint method. In
the context of multi-token and multichain appli-
cations, refer to the Implementation Consider-
ations of the Atomic Tx pattern for relevant
guidelines. Check your implementation against
platform-specific standards for compatibility.
Testing Considerations: Ensure transfer is
always from the mint address. Ensure only non-
existing tokens can be minted. Ensure every gen-
erated non-fungible token is assigned a unique
ID. Ensure the receiver’s balance is increased
after each transfer. Ensure the receiver’s bal-
ance is increased based on the generated tokens.
If defined, ensure transfer conditions are not
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bypassed. If relevant, make extra tests for cross-
chain operations. If relevant, refer to Testing
Considerations of Exclusive Authorization, Shared
Authorization, and Atomic Tx patterns for rele-
vant hints. If defined, ensure the smart contract
emits desirable events upon completion of relevant
functions.
Example: In the example application, PASS
should be issued for the Invitee when the reg-
istration fee is paid. Since a limited number of
people will be invited, the maximum number of
PASS tokens is limited. Thus, PASS token sup-
ply should be implemented as a flexible limited
supply. The maximum supply can be defined as a
formula to suit different capacity events. Tokens
on Ethereum are generated by a null address to a
specified account. The null address (i.e., 0x0. . . 0)
is not owned by any user and is often associated
with token mint events on Ethereum.
Related Patterns: Exclusive Authorization and
Shared Authorization patterns.
Known Uses: - CryptoCrystal implemented an
initial supply of 20,000,000 for the PKX token.
CryptoStrikers implemented a mint limit for
a given checklist item, based on its tier. In
POA Bridge, transferring from POA network to
Ethereum result in minting a new POA20 token
on Ethereum.

6.2.2 Digester Pattern

Summary: This pattern enables destroying
existing tokens as required.
Classification: Lifecycle
Context: A blockchain application requires a
dynamic token supply.
Applicability: Use the Digester pattern to
destroy existing tokens, either by the tokens’
owner or an authorized delegate.
Problem: Tokens may become undesirable for
different reasons, such as expiry of the under-
lying asset, time-constrained availability, tokens
redemption, or low market value. Thus, they
must be removed. However, the immutability of
the blockchain ensures that existing tokens are
irremovable. Hence, how to prevent the use of
undesirable tokens?
Solution: Since undesirable tokens are irremov-
able, they should be made inaccessible. This can
be achieved by sending the undesirable tokens
to a receive-only address, i.e., a burn address.

Such address holds received tokens persistently
and cannot initiate transfers to other accounts.
Therefore, this process is irreversible, making
tokens inaccessible. This pattern affects the total
supply of the destroyed token decreasingly, which
increases the token market value. Also, this pat-
tern prevents unauthorized use of spent tokens,
such as when they are redeemed or expired.
Business Process Meta-Model: Fig. 7 shows
the meta-model of the Digester business process.

Fig. 7 Digester pattern EPC

Requirement Template: The system shall pro-
vide a mechanism to destroy existing tokens.
Extended Requirement Template:
FR1:The system shall allow <user> on
<blockchain network> to send <token> from
<user’s> balance to <burn address> on
<blockchain network> [when <conditions met>]
FR2:The system shall allow <user> on
<blockchain network> to send <token> from
<another user’s> balance on <blockchain
network> to <burn address> on <blockchain
network> [when <conditions met>]
Implementation Considerations: Define a
method in the smart contract of a token to han-
dle token generation, e.g., burn(). The method
should get the token owner’s address and amount
or ID of tokens to be destroyed as minimum
arguments. Enforce transfer to the burn address,
e.g., zero address. Check that sender is not a null
address. Check that the invoking address is the
owner of the to-be-burn token or an approved
delegate. Check that invoking address is an
authorized account to burn tokens. In the case of
non-fungible tokens, check that the to-be-burned
token ID must exist. After each transfer, you
should update the token owner’s balance based
on the burned tokens. After each transfer, you
may need to update the allowance of the dele-
gate, if applicable, based on the burned tokens.
You may need to check custom burn conditions
if required. If the blockchain platform allows for
user-defined events, consider defining completion
events, such as Burned, with relevant arguments.
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Refer to the Exclusive Authorization and Shared
Authorization patterns to specify authorization
for accessing the burn method. In the context of
multi-token and multichain applications, refer to
Implementation Considerations of the Atomic Tx
pattern for relevant guidelines. Check your imple-
mentation against platform-specific standards for
compatibility.
Testing Considerations: Ensure transfer is
always to the burn address. Ensure only the
token’s owner or approved delegate can burn the
tokens. Ensure only existing tokens can be burned.
Ensure to-be-burned tokens are within the bal-
ance of the token owner. Ensure to-be-burned
tokens are within the allowance of the delegate.
Ensure the token owner’s balance is decreased
after each transfer. Ensure the token owner’s
balance is decreased with the burned tokens.
Ensure the delegate’s allowance is decreased after
each transfer. Ensure the delegate’s allowance
is decreased with the burned tokens. If defined,
ensure burn conditions are not bypassed. If rele-
vant, make extra tests for cross-chain operations.
If relevant, refer to Testing Considerations of
Exclusive Authorization, Shared Authorization,
and Atomic Tx patterns for relevant hints. If
defined, ensure the smart contract emits desirable
events upon completion of relevant functions.
Example: In the example application, PASS
becomes dispensable once used at the event
check-in. Thus, it should be destroyed to pre-
vent double-spending. The Invitee provides his
PASS to the Receptionist, who is responsible for
burning PASS tokens by sending them to the
Ethereum’s null address. The null address (i.e.,
0x0. . . 0) is not owned by any user and is often
associated with token burn events on Ethereum.
Related Patterns: Approval pattern.
Known Uses: CryptoCrystal, CryptoStrikers
allows for burning their tokens as part of the
game logic. In POA Bridge, transferring POA20
from Ethereum back to POA Network result in
the burning of the POA20 token on Ethereum.

6.3 Token authorization

Patterns in this section describe possible solutions
on how accounts can be authorized to perform
token-centered business processes.

6.3.1 Approval Pattern

Summary: This pattern allows an account to
approve other accounts to transact on its behalf.
Classification: Accessibility
Context: A blockchain application requires dele-
gated token transfer transactions.
Applicability: - Use the Approval pattern to
specify that an account is authorized to spend
allowance from the balance of another account. -
Use the Approval pattern to change the allowance
of an approved delegate. - Do not use the Approval
pattern to move tokens on behalf of their owner;
use the Micro Tx pattern instead.
Problem: Micro transfer transactions are per-
formed by a third-party account (delegate) on the
balance of another account (approver). How can
blockchain verify that it is a legitimate delegate
performing a valid transaction?
Solution: Before a delegate can perform any
transaction on the approver’s balance, the token
owner must approve the delegate account through
an approval transaction, determining the number
of tokens the delegate can spend on behalf of the
approver. This way, the blockchain can verify that
the token owner authorizes the delegate and that
the number of tokens spent by the delegate is
within the allowed amount by the approver.
Business Process Meta-Model: Fig. 8 shows
the meta-model of the Approval business process.

Fig. 8 Approval pattern EPC

Requirement Template: The system shall allow
user to approve another user to transact on their
behalf on the blockchain.
Extended Requirement Template:
FR1:The system shall allow <token owner> on
<blockchain network> to approve <delegate>
on <blockchain network> to spend <allowance>
from <token owner’s> balance on <blockchain
network>
Implementation Considerations: Define a
method in the token smart contract that the token
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owner can call to approve another account, e.g.,
approve(). The method should get the dele-
gate account address and the allowed amount as
minimum parameters. Check that the allowance
is less than or equal to the approver balance for
fungible tokens. For non-fungible tokens, check
that the token exists and that the approver owns
the token or is an approved delegate to manage
the token. Check that both approver and dele-
gate are not null addresses. When changing an
allowance for an approved delegate, you should
create a mechanism to prevent the delegate from
using the new allowance in addition to the old
one; a case may occur by unfortunate transaction
ordering described in [48]. Refer to Micro Tx pat-
tern for more on managing delegate’s allowance.
If the blockchain platform allows for user-defined
events, consider defining completion events, such
as Approval with relevant arguments. In the con-
text of multichain operations, consider the Shared
Authorization pattern.
Testing Considerations: Ensure a user can
approve a delegate. Ensure a user can specify
allowance for a delegate. Ensure the application
does not bypass any defined condition. Ensure
changing an allowance for a delegate replaces the
previous allowance. If relevant, make extra tests
for cross-chain operations. If defined, ensure the
smart contract emits desired events upon comple-
tion of ownership transfer.
Example: In the example application, PASS is
issued for Invitee. The representative is approved
to use PASS on behalf of the Invitee to attend
the event. The application shall allow the Invitee
to approve the Representative to spend one PASS
from the Invitee’s balance on Ethereum.
Related Patterns: Micro Tx pattern.
Known Uses: CryptoCrystal, FOAM, and Upfir-
ing allow users to approve delegates to spend a
specified amount of tokens on their behalf.

7 Smart contract-oriented
patterns

SCOPs comprise a collection of patterns from the
perspective of an SC. The process of terminat-
ing and resuming an SC can be designed using
the Switch pattern, which is depicted in Section
7.1. The process of authorizing accounts on an SC

can be designed using the Exclusive Authoriza-
tion and Shared Authorization pattern. These SC
authorization patterns are depicted in Section 7.2.

7.1 Smart contract security

The pattern in this category describes how to
control the execution of SCs.

7.1.1 Switch Pattern

Summary: This pattern enables terminating
and resuming smart contracts as required.
Classification: Lifecycle
Context: A blockchain application requires a
controlled execution of smart contracts.
Applicability: - Use the Switch pattern to sus-
pend smart contract operations temporarily or
permanently. - Do not use the Switch pattern to
specify that an account is authorized to suspend
the smart contract; use the Exclusive Authoriza-
tion or Shared Authorization patterns instead.
Problem: Once smart contracts are deployed
on the blockchain, they become immutable and
cannot be altered. In some situations, such as
software upgrades, vulnerable contracts, or tem-
porary suspension of a token trade, there is a
need to suspend smart contract operations totally
or partially, temporarily or permanently. How to
control the execution of a smart contract running
on a blockchain network?
Solution: A flexible suspension mechanism can
be designed to terminate the execution of a
smart contract. This pattern allows for pausing
a contract or part of its methods when certain
conditions are met. When a smart contract is
paused, all its methods become inaccessible and,
thus, inexecutable. This prevents other addresses
from using business logic defined in that smart
contract. Unpausing the smart contract contrasts
the situation. This pattern can also be applied on
a method-level in which certain methods within a
smart contract are suspended. An authorization
mechanism should be applied with this pattern.
Business Process Meta-Model: Fig. 9 shows
the meta-model of the Switch business process.
Requirement Template: The system shall pro-
vide the ability to terminate and resume smart
contract operations.
Extended Requirement Template:
FR1:The system shall allow <user> to
<pause/unpause> <[method in] smart contract
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Fig. 9 Switch pattern EPC

instance> on <blockchain network>
FR2:The system shall emit <Paused> event
when <smart contract instance> is successfully
<paused>
FR3:The system shall emit <Unpaused> event
when <smart contract instance> is successfully
<unpaused>
Implementation Considerations: Define a
global variable that stores the current state of the
smart contract. If this pattern is to be applied
on a method-level, use separate variables to dis-
tinguish between terminating a smart contract
and terminating specific methods within the
contract. Use modifiers, e.g., whenPaused and
whenNotPaused, to constrain the execution of
restricted methods based on the current state
of the smart contract. Define specific restricted
methods to handle state changes of the smart
contract, e.g., pause() and unpause() meth-
ods. Refer to Exclusive Authorization and Shared
Authorization patterns to specify authorization
for accessing these methods. If the blockchain
platform allows for user-defined events, consider
defining completion events, such as Paused and
Unpaused, with relevant parameters.
Testing Considerations: Ensure required oper-
ations are stopped when they are paused. Ensure
required operations are functional when resumed.
Ensure constrained methods are accessible only
by authorized addresses. Refer to Testing Consid-
erations of Exclusive Authorization and Shared
Authorization patterns for relevant hints on test-
ing. If defined, ensure the smart contract emits
desirable events upon completion of relevant
functions.
Example: The example application is based on
Ethereum, a platform where smart contracts can-
not be paused on a protocol-level. Thus, we need
modifiers in the source code to enable and disable
smart contract operations as required. During the

registration, the PASS mint method should be
enabled for Registrar. When registration is closed,
the mint method should be disabled. When check-
ing in to the event, the burn method should be
accessible by an authorized attendee, be it reg-
istered Invitees or their Representatives. When
the event ends, the PassSC should be terminated.
Modifiers for each stage should be defined in the
PassSC source code, and their values should only
be altered by the event’s Manager. By default,
PassSC is paused. For each event, PassSC meth-
ods are enabled and disabled as required.
Related Patterns: Exclusive Authorization and
Shared Authorization patterns.
Known Uses: CryptoStrikers, Nestree, and
MyCryptons.

7.2 Smart contract authorization

Patterns in this section describe possible solutions
on how accounts can be authorized to perform
SCC business processes.

7.2.1 Exclusive Authorization Pattern

Summary: An authorization mechanism with a
single role for all privileged actions. The role is
transferable between accounts.
Classification: Accessibility.
Context: A blockchain application requires a
single administrative account of smart contracts.
Applicability: - Use the Exclusive Authoriza-
tion pattern to specify that an account on the
same chain is exclusively authorized to access
certain smart contract functions. - Do not use
the Exclusive Authorization pattern when gran-
ular permissions are required; use the Shared
Authorization pattern instead. - Do not use the
Exclusive Authorization pattern when the owner
address is on another chain; use the Shared
Authorization pattern instead.
Problem: By default, A smart contract has no
owner. No account has special privilege on a
smart contract once deployed on the blockchain,
including the smart contract’s deployer. By
default, all deployed smart contracts are accessi-
ble and callable by all accounts on the blockchain,
especially in permissionless settings. Thus, criti-
cal methods may be used maliciously. To prevent
unauthorized access to smart contracts, access
control can be embedded in smart contracts to
authenticate accounts trying to access restricted
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methods. How to authorize an account to access
restricted methods in a smart contract?
Solution: The exclusive authorization is a sim-
ple mechanism of access control with a single
account, i.e., the contract owner is authorized
for all privileged actions. It is a one-to-many
relationship where a contract owner is authorized
for all privileged actions. The current owner can
transfer the ownership of the smart contract
to another account. The current owner initially
nominates an account as a new contract owner.
Once the nominated account accepts the own-
ership, all privileges are transferred to the new
owner and revoked from the previous owner. By
default, the owner of an ownable smart contract
is its deployer, who can transfer the contract’s
ownership to another account, e.g., another orga-
nizational unit, as an atomic transaction.
Business Process Meta-Model: Fig. 10 shows
the meta-model of the Exclusive Authorization
business process.

Fig. 10 Exclusive Authorization pattern EPC

Requirement Template: The system shall
provide exclusive access control for certain smart
contracts
Extended Requirement Template:
FR1:The system shall provide exclusive access
control for <smart contract instance> on
<blockchain network>
FR2:The system shall allow <user> to own
<smart contract instance> on <blockchain
network>
FR3:The system shall allow the owner of <smart
contract instance> to transfer ownership of the
smart contract to another user on <blockchain
network>

FR4:The system shall emit <Ownership
Transferred> event when smart contract owner-
ship is successfully transferred.
Implementation Considerations: The con-
tract owner can be defined as a variable within
the smart contract source code. The variable
stores the address of the current contract owner.
Use a single modifier, e.g., onlyOwner, to
restrict method execution to the contract owner
address. Define a specific restricted function,
e.g., transferOwnership() that can modify
the owner address; to only allow the current
owner to transfer the contract’s ownership to
another account. The method should get the
new owner address as minimum parameters. You
may need to check if the nominated address
is a null address to prevent or enforce the
transferability of the contract’s ownership. If
the blockchain platform allows for user-defined
events, consider defining completion events, e.g.,
OwnershipTransferred, with relevant param-
eters.
Testing Considerations: Ensure restricted
methods are accessible only by the owner’s
address. When ownership is transferred, ensure
the previous owner can no longer access restricted
methods, and the new owner’s address can access
the restricted methods. If defined, ensure the
smart contract emits desired events upon comple-
tion of ownership transfer.
Example: Since the example application intends
to be a reusable solution for differently managed
events, Registrar SC can implement the Exclusive
Authorization mechanism in which the contract’s
ownership can be transferred between event man-
agers as required.
Related Patterns: Shared Authorization
Known Uses: FOAM, Nestree, and Upfiring.

7.2.2 Shared Authorization Pattern

Summary: An authorization mechanism with
a separate role for each privileged action. A
role can have many authorized accounts, and an
authorized account can have many roles.
Classification: Accessibility
Context: A blockchain application requires con-
figurable authorization.
Applicability: - Use the Shared Authorization
pattern to specify that a set of accounts on the
same chain is authorized or is not authorized to
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access certain smart contract functions. - Use the
Shared Authorization pattern to specify that an
account or a set of accounts on another chain
is authorized or is not authorized to do certain
smart contract operations.
Problem: The simplicity of the exclusive autho-
rization can be useful for use cases where granular
permissions are not required. How can business
logic in a smart contract reflect complex use cases
where different authorization levels are needed?
Solution: Instead of a simple ownership
approach, each privileged action is assigned a sep-
arate role in this pattern. This pattern establishes
a many-to-many relationship between accounts
and roles. For example, an account may have a
minter and pauser role, whereas the minter role
may be assigned multiple accounts. More granu-
lar permissions can be implemented by splitting
concerns, creating complex permission structures.
For example, this pattern can be realized in sit-
uations resembling organizational charts, when
authorization is given to an account for a limited
time, or when the list of authorized addresses is
unknown beforehand. In this scheme, the con-
tract owner has a contract admin role who can
grant and revoke other roles. The dynamicity
of role allocation makes it a solution to manage
simple applications by assigning all roles to the
contract admin. In this pattern, the contract’s
administration can be transferred by assigning
the contract’s admin role to another account. In
contrast to the Exclusive Authorization Pattern,
changing the admin of the smart contract in this
pattern does not tacitly grant all the other roles
to the new admin; instead, it transfers the control
over other roles to the new admin.
Business Process Meta-Model: Fig. 11 shows
the meta-model of the Shared Authorization pat-
tern business process.
Requirement Template: The system shall pro-
vide role-based access control for certain smart
contracts.
Extended Requirement Template:
FR1:The system shall allow <default admin>
on <blockchain network> to administer <smart
contract instance> on <blockchain network>
FR2:The system shall allow <role admin> on
<blockchain network> to assign <role> to
other users for <smart contract instance> on
<blockchain network>
FR3:The system shall allow <role admin> on

Fig. 11 Shared Authorization pattern EPC

<blockchain network> to revoke <role> from
other users for <smart contract instance> on
<blockchain network>
FR4:The system shall allow <user> on
<blockchain network> to act as <assigned role>
for <smart contract instance> on <blockchain
network>
FR5:The system shall prevent <user> on
<blockchain network> to act as <unassigned
role> for <smart contract instance> on
<blockchain network>
FR6:The system shall allow <default admin>
of <smart contract instance> on <blockchain
network> to transfer administration of the
smart contract to another user on <blockchain
network>
FR7:The system shall emit <Role Granted>
event when a role is successfully granted to an
account.
FR8:The system shall emit <Role Revoked>
event when a role is successfully revoked from an
account.
FR9:The system shall emit <Role Admin
Changed> event when <role admin> is success-
fully changed.
FR10:The system shall emit <Role Admin
Changed> event when <default admin> of
<smart contract instance> is successfully
changed.
Implementation Considerations: Use a sep-
arate constant for each role, e.g., MINTER ROLE
and BURNER ROLE represent two different roles
that can be assigned to one account. Use sepa-
rate modifiers for each role to authenticate access
to restricted methods. e.g., onlyMinter and
onlyBurner can be defined to restrict access
to mint and burn functions. Define role granting
and revoking methods for each role. There should
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be a default admin role that can be authenti-
cated with an onlyAdmin modifier to restrict
the execution of administrative methods to the
contract’s admin. Be aware that bearing a role
does not imply that the role-bearer can assign
or revoke the role from other accounts. Consider
defining a role admin for each role if desired, e.g.,
to reflect an organizational chart. Define a specific
restricted function, e.g., changeAdmin(), that
can modify the contract admin address; to only
allow the current admin to transfer the contract’s
administration to another account. The method
should get the new admin address as minimum
parameters. You may need to check if a nomi-
nated admin address is a null address; to prevent
or enforce the transferability of the contract’s
administration. If the blockchain platform allows
for user-defined events, consider defining com-
pletion events, such as Role Granted, Role
Revoked, and Admin Changed with relevant
parameters. In the context of multichain applica-
tions, refer to the Atomic Tx pattern for relevant
guidelines. You may need to check your imple-
mentation against platform-specific standards for
compatibility.
Testing Considerations: Ensure a role can
access methods it has permission to. Ensure a
role cannot access methods the role is not per-
mitted to access. Ensure an authorized account
can perform the assigned role. Ensure an autho-
rized account is not able to perform unassigned
roles. Ensure a role admin can assign the role to
other accounts. Ensure a role admin can revoke
the role from an authorized account. Ensure the
contract admin can transfer contract adminis-
tration to another account. When a contract
admin is changed, ensure the new admin can do
relevant operations, and the previous admin can
no longer do so. If relevant, make extra tests for
cross-chain operations. Ensure permissions are
controlled concerning chains where authorized
addresses belong. If defined, ensure the smart
contract emits desirable events upon completion
of relevant functions.
Example: The example application requires dif-
ferent roles for different accounts. Primarily, the
Manager is the contract owner who can adminis-
ter the SC by default. The Manager can assign
roles to other accounts. A pauser role is required
to terminate and resume SC operations. This role
is kept for the Manager. A minter role should be

assigned to the Registrar to be able to issue new
PASS tokens as required. A burner role should be
assigned to the Receptionist to be able to destroy
PASS upon check-in.
Related Pattern: Exclusive Authorization pat-
tern
Known Uses: Upfiring, CryptoStrikers, and
Zinc.

8 Validation of the proposed
pattern language

The validation is performed through CC against
existing BCApps. The analysis is twofold. The
first aimed at validating the BPMPs individually
in different applications. The second aimed at val-
idating the BPMPs collectively within a single
application. The validity of the individual pat-
terns is implied by the pattern’s identification
process. That is, deriving the patterns factually
from existing applications assures the existence of
the pattern beforehand. The goal of applying CC
is to quantitatively validate the existence of the
patterns per BCApp.

Table 4 shows the number of BCApps that
conforms to each identified pattern, grouped by
application domains. The Atomic Tx pattern is
realized in 37 out of 50 applications. The Micro
Tx and Macro Tx patterns are realized in 7 out of
50 each. That is, the token transfer patterns are
realized in 40 out of 50 (80%) BCApps in the val-
idation dataset, where seven imply more than one
alternative.

The Bloom pattern is realized in 11 out of 50
applications, whereas the Digester pattern is real-
ized only in five out of 50 applications. That is,
the token supply patterns are realized in 11 out of
50 (22%) BCApps in the validation dataset, where
five imply both patterns. The Approval pattern is
realized in 26 out of 50 applications. That is, the
token authorization pattern is realized in 52% of
BCApps in the validation dataset.

The Switch pattern is realized in 8 out of 50
applications. That is, the smart contract security
pattern is realized in 16% of BCApps in the valida-
tion dataset. The Exclusive Authorization pattern
is realized in 13 out of 50 applications, whereas
the Shared Authorization pattern is realized only
in six out of 50 applications. That is, the smart
contract authorization patterns are realized in 16
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out of 50 (32%) BCApps in the validation dataset,
where three of them imply both patterns.

Most applications that imply Transfer pat-
terns are Marketplace and Game applications,
followed by Finance and Media applications. Life-
cycle patterns have a massive application in the
Game domain. Marketplace and Finance appli-
cations show a major application of Accessibility
patterns, followed by Information Technology (IT)
and Game applications.

From a different point of view, the applications
were grouped based on the count of the implied
BPMPs. The highest value of BPMPs collectively
found in a single application is six. That is, two
out of 50 BCApps realize six of the identified
BPMPs. The first is the CryptoStrikers applica-
tion that implies the Atomic Tx, Bloom, Digester,
Approval, Switch, and Shared Authorization pat-
terns. The second is the Upfiring application that
implies the Atomic Tx, Micro Tx, Macro Tx,
Approval, Exclusive Authorization, and Shared
Authorization patterns.

Contrarily, 13 out of 50 applications imply only
a single pattern of the BPMPs. DopeRaider, Lan-
demic, Mars, MoonCatRescue, PopulStay, Status,
and ZED applications realize the Atomic Tx pat-
tern. EtherHabits application realizes the Macro
Tx pattern. Ether Stake, Set, and Wibson applica-
tions realize the Exclusive Authorization pattern.
GeoEth and World of Ether applications realize
the Switch pattern. Five out of 50 BCApps imply
none of the identified BPMPs.

The other values of BPMPs collectively found
in a single application out of 50 are as follows:
five patterns are found in four applications, four
patterns are found in eight applications, three pat-
terns are found in seven applications, and two
patterns are found in 11 applications. To this
end, we can conclude that 90% of the valida-
tion applications imply 11%-67% of the identified
BPMPs.

9 Discussion

9.1 Implications

Implications of our proposed BPMPL can be
summarized into three facets: software engineer-
ing support, technology support, and literature
support. In what follows, we discuss these facets

9.1.1 Software Engineering Support

Arguably, our proposed BPMPL can support
BCApp development methodologies elaborated by
practitioners and researchers. According to [5],
most BCApp developers follow fully Agile Devel-
opment (AD) due to its flexibility. They do
not follow any modeling patterns, methods, or
frameworks for deriving their developed applica-
tions, which would be a reason for the reported
difficulty in communicating the requirements of
stakeholders who lack technical blockchain back-
ground in the design of the BCApps [5]. Besides,
Model-Driven Development (MDD) approaches
for the development of BCApps were proposed
by researchers [49]. MDD allows building soft-
ware through sequential model transformations,
starting with a business model [11]. In MDD,
the prospective software is abstracted into mod-
els that are used to communicate the intended
solution to stakeholders.

Both AD and MDD emphasize the involvement
of stakeholders in requirement elicitation. How-
ever, MDD lacks the flexibility provided by AD,
unless MDD is used in an agile-based approach,
which has been proven as a good practice in soft-
ware development [50]. Our proposed BPMPL
can support the Agile Model-Driven Develop-
ment of BCApps by providing a set of pluggable
and platform-agnostic requirement templates and
BPMs for recurrent business processes embedded
within SCs. Besides, the proposed BPMPs can be
relied on as a starting point to process reduction
techniques for BCApp development [5].

Moreover, the unmethodical development of
SCs hinders the comprehensive testing of BCApps
[51]. The need for blockchain-specific testing
methods is justified, and the lack of such meth-
ods is significant [49]. SC testing is a sophisti-
cated assignment. It requires expert knowledge of
business, scenarios, and blockchain-specific trans-
action variables. Test engineers of SCs need spe-
cialized technical and business validation skills,
including software quality assurance, security, reg-
ulatory, compliance, and business process manage-
ment skills [49, 51]. While not a testing method,
our proposed BPMPL opens doors for novel
SC testing methods. For example, the proposed
BPMPL can be considered as an enabler for SC
testing based on the requirements. Requirement-
Based Testing (RBT) is a testing method where
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test cases and conditions are derived from require-
ments [52], which has been proven in the industry
[53].

Although the description of each BPMP pro-
vides a common language between different roles
involved in developing a BCApp, certain sections
target individual roles. For the requirement engi-
neers, our proposed BPMPL impacts requirement
elicitation, modeling, and documentation. The
Business Process Meta-Model and Requirement
Template allow requirement analysts to reuse
them into requirement descriptions as a start-
ing point for writing functional requirements of
blockchain solutions.

Moreover, our proposed BPMPL supports
blockchain solution designers and developers with
Implementation Considerations. It provides imple-
mentation guidelines to satisfy the requirements
of a business process, which are derived from
industry-leading standards and generalized to be
platform-agnostic guidelines. Likewise, our pro-
posed BPMPL supports test engineers of BCApps
with Testing Considerations. They are written
primarily considering unit and user acceptance
testing, but can also be manipulated for other
software testing types.

Appendix A shows the modeling of the exam-
ple use case, the Pass Management Application,
as a result of applying the proposed BPMPL.
Although it is not a significant application, the
successful modeling of the example use case
implies the soundness of the proposed BPMPL
in analyzing and modeling the functional require-
ments of BCApps.

9.1.2 Technology Support

Our proposed BPMPL is mainly derived from SCs
executed by Ethereum Virtual Machine (EVM).
An EVM-compatible blockchain is any blockchain
platform that uses EVM, or a compatible imple-
mentation of EVM, for transactions, data, and
SC execution. According to Chain List [54], there
are approximately 285 EVM-powered blockchain
networks. This implies the applicability of our
proposed BPMPL to design almost any appli-
cation for EVM-compatible blockchains beyond
Ethereum.

Additionally, the proposed BPMPs were writ-
ten while taking interoperability into account. The
Requirement Template has a <on blockchain

network> parameter for multichain require-
ments. The Implementation Considerations and
Testing Considerations passages provide guide-
lines for designing, implementing, and testing
multichain applications.

9.1.3 Literature Support

The proposed BPMPs complement the proposed
design patterns in the literature. Access con-
trol is widely used to control which methods of
an SC an account can use. Authentication and
authorization provide a means of access control
for a system. Authentication in BCApps can be
designed using patterns proposed in the literature,
such as Access Restriction [36] and Embedded per-
mission [38] patterns. In contrast, authorization
can be designed using the Exclusive Authoriza-
tion and Shared Authorization patterns proposed
in this study.

Some design patterns in the literature are con-
sidered instantiations of some BPMPs proposed
in this study, as the former provides a technology
view of the latter, possibly in a specific context.
Two-way Payment Channel [33] and Escrow pat-
terns [32] are instantiations of the Macro Tx pat-
tern in the context of payment applications. The
Two-way Payment Channel pattern is designed for
frequent transactions between two supply chain
parties. The Escrow pattern is designed for infre-
quent high-value payments between buyer and
seller. Token Swap pattern [32] instantiates the
Atomic Tx pattern. The Token Swap pattern
allows for direct trading between two types of
tokens.

The Authorised Delegate pattern [32] com-
bines the Approval and Micro Tx patterns in the
context of payment applications. It is a design of
how a delegate account can pay another account
on behalf of the delegator. Ownership [36] and
Authorization [39] patterns are examples of the
Exclusive Authorization pattern. Termination [39]
and Emergency Stop [37] patterns are instantia-
tions of the Switch pattern. The Emergency Stop
pattern to disable sensitive methods upon attacks
on SCs. The Termination pattern is used to make
an SC unresponsive. Burned Token [32] is an
instantiation of the Digester pattern. The Burned
Token pattern allows remarking redeemed tokens
as unusable in payment systems.
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9.2 Limitations

There are some limitations of our proposed
BPMPL:

• The BPMPL considered only SC (on-chain)
functionality. The frontend (off-chain) function-
ality is out of the scope of this study.

• Although the proposed BPMPs have been val-
idated using existing applications, blockchain
solution developers would input valuable to val-
idate the proposed BPMPL in developing new
applications.

• Despite its proven support for developing appli-
cations based on EVM-compatible platforms,
the BPMPL was not tested for developing non-
EVM-compatible BCApps.

• A different sample of event logs could result in
different CC results. For example, the five appli-
cations that do not conform to any identified
BPMPs may become conformant using different
event log samples, since their contract Appli-
cation Binary Interfaces (ABIs) define similar
events to those in the event aliases list. Also,
the ERC20 and ERC271 token contracts in the
dataset that are implemented through inheri-
tance of OpenZeppelin contracts emit Transfer
events for mint and burn methods, making it
not so obvious to distinguish them from other
token transfer methods. However, improving the
event logs to include additional decoded trans-
action data such as addresses of senders and
receivers would lead to more accurate validation
results for the Bloom and Digester patterns.

10 Conclusion

The blockchain is a promising cross-industry tech-
nology that is obstructed by several usability
challenges from a software engineering perspec-
tive. In contrast to the studies conducted to
address these challenges, this study targets the
connection between analysis and design phases not
addressed in the literature. It proposed a BPMPL
derived from real-world BCApps through PM to
support the analysis of functional requirements for
BCApps.

The BPMPL consists of nine patterns orga-
nized according to two-dimensional classifica-
tion. The first dimension is BPV-oriented: TOPs
and SCOPs. TOPs consist of Token Circulation,
Token Supply, and Token Authorization patterns.

SCOPs consist of Smart Contract Security and
Smart Contract Authorization patterns. The sec-
ond dimension is BPV-agnostic. It consists of
Transfer, Lifecycle, and Accessibility patterns.
The description of each BPMP encapsulates a
requirement and design pattern accompanied by
a BP meta-model. The results proved the validity
of the proposed BPMPL.

The implications of the proposed BPMPL were
discussed in three facets: software engineering sup-
port, technology support, and literature support.
Future work aims at addressing the discussed lim-
itations of this study, with a focus on validating
the BPMPL through developing new EVM- and
non-EVM-compatible BCApps.
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Appendix A

A.1 Event Aliases List

The list of event aliases is provided in Table A1.

A.2 Event-driven Process Chain
Notation

EPC is a business process modeling method
that illustrates the relationship between events,
activities, organization roles, and information
resources. A more complex business workflow can
be described using logical operators or rules. The
elements of an EPC diagram are summarized in
Fig. A1.

A.3 Known Uses in Blockchain
Applications

The blockchain applications from the validation
dataset that are used in the descriptions of the
BPMPs are introduced in Table A2.

A.4 Modeling of Pass Management
Application

Figures A2 to A4 show the modeling of the exam-
ple use case, the Pass Management Application,
as a result of applying the proposed BPMPL.
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Fig. A1 Elements of Event-driven Process Chain. The text inside an element identifies the element. The connectors between
the elements indicate a control flow (↓), information flow (←→), or role allocation ( — ). A process path is a connection to
another process.

Table A1 The list of event aliases used in conformance checking analysis

Alias Events

Transferred TokensTransferred, TransferToParent, TransferFromParent, LogOwnerTransfer,
NewTokenGrant, PaymentTransferredToPreviousOwner, PO8Bought, TokenPurchase,

LandPurchased, PlotSectionSold, PlotPurchased, TokenSold, TokensUndelegated,
TokensDelegated, ClaimedTokens, HorseTransferredIn, HorseTransferredOut, Transfer,

LOG SuccessfulSend
OwnershipTransferred ProxyOwnershipTransferred, LogOwnerShipTransferred,

LogOwnerShipTransferInitiated, UpdaterTransferred, GDPOracleTransferred,
FeeWalletTransferred, OwnershipChanged, OwnershipTransferred

Approved ApprovalForAll, Approval, Approve
Paused Paused, LoggPaused, ContractIsPaused, Pause, Stopped, LOG ContractStopped,

LOG EmergencyAutoStop
RoleAllocated RoleRemoved, MinterRemoved, AuthorizedAddressRemoved, RemoveAllowed,

WhitelistAdminRemoved, PauserRemoved, AdminRemoved, RoleAdded, PlayerAdded,
MinterAdded, AuthorizedAddressAdded, PauserAdded, AdminAdded,

WhitelistAdminAdded, AdminUpdated, AdminChanged, ProxyAdminChanged,
ManagementChanged, Allowed, RemoveAllowed, MintingAgentChanged

Unpaused UnPaused, LogUnpaused, Unpause, LOG ContractResumed, Started
Upgraded UpgradeAgentSet, Upgraded, ContractUpgrade, , M5TokenUpgrade, M5LogicUpgrade,

FinishUpgrade, UpgradeProposal
Minted Minted, TokensMinted, Minted, CrystalMinted, CardMinted, TokenCreated, Birth, Mint
Withdrawn Withdrawal, Withdrawal, LogWithdrawal, playerWithdrawal, LogEtherWithdrawn,

LogWithdraw, ListingWithdrawn, VotingRightsWithdrawn, Withdrawn,
PaymentWithdrawn, PaymentWithdrawnByDispute, LogOperationFeeWithdraw,

WithdrawM5, Withdraw
OwnershipRenounced OwnershipRenounced
Deposited LogDeposit, DividendsDeposited, Deposit, LogEtherDeposited, playerDeposit,

ReferralDeposit, PaymentDeposited, Deposit
Burned TokensBurned, CrystalBurned, KittyBurned, Burnt, Burned, Burn
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Table A2 An overview of known uses in blockchain applications cited in patterns’ descriptions

Application Description Domain Application
Token
Symbol

Token Type

CryptoCrystal
https://cryptocrystal.io

A crystal collectible game that allows
users to mine, collect, and trade virtual
crystals

Game CC,
PKX

Non-fungible,
Fungible

Landemic
https://landemic.io/

A property collectibles game that allows
users to buy, sell and claim ownership
interest in virtual lands

Game LAND Non-fungible

FOAM
https://map.foam.space/

A consensus-driven map of the world
that enables crowdsourced verification of
points of interest and location claims.

Real Estate FOAM Fungible

Upfiring
https://www.upfiring.com

A P2P file-sharing desktop applica-
tion incentivizes users for seeding files

Media UFR Fungible

TimeX
https://timex.io/

A decentralized cryptocurrency exchange Marketplace TIME Fungible

CryptoStrikers
http://www.cryptostrikers.com

A card collectible game that allows users
to buy, sell, and trade rare sports cards

Game STRK Non-fungible

POA Bridge
https://bridge.poa.net

A bridge application that enables transfer-
ring native tokens from the POA Network
to the Ethereum network

Finance POA,
POA20

Fungible

Nestree
https://www.nestree.io

An Android and iOS reward-based
blockchain integrated messenger. Users
earn tokens for activities such as daily app
check-ins, playing games, and answering
surveys

Social EGG Fungible

MyCryptons
https://mycryptons.com

A digital collectibles game that combines
political expression and social media inter-
action with games

Game CRYPTON Non-fungible

Zinc
https://zinc.work/

A reputation system that provides an
authenticated proof of career experience
and qualifications

Information
Technology

ZINC Fungible



30

Fig. A2 Smart Contract Administration process of Pass Management Application.
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Fig. A3 PASS Token Issuance process of Pass Management Application.
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Fig. A4 Event Check-In process of Pass Management Application.



Chapter 7

Conclusion

This thesis set out to gain an understanding of blockchain applications from architectural
and business process perspectives. It defined five research objectives as goals for this un-
derstanding. The thesis described how these objectives have been achieved in Chapters 2 to
6, and what research contributions have been obtained by achieving these objectives. This
chapter concludes the thesis by summarizing the main research contributions, discussing
the limitations, and highlighting future work.

7.1 Contributions and Key Findings

In what follows, I summarize the contributions during my research, map them onto the the-
sis objectives that are listed in Chapter 1, and highlight key findings from each contribution.

7.1.1 Development of a Blockchain Applications Catalog

This thesis adopted a multi-view concept for data catalogs through building one that joins
up different, yet relevant, software-, process-, and application-centric data about blockchain
applications. There are three relevant datasets produced in this thesis: Industry-developed
applications, event logs for these applications, and Academia-researched applications. The
analysis of these datasets helped in producing the other contributions in this thesis. This
catalog fulfills the first research objective and was described in Chapter 2.

One of the main findings from this contribution is that blockchain technology and its ap-
plications are gaining significant interest in the community, however; there is a gap in ap-
plication trends between the literature and industry. The most discussed use cases in the
literature are related to healthcare, finance, energy, supply chain, and Internet of Things ap-
plications. On the other hand, the most Industry-developed applications are related to P2P
exchange, game, social, and media applications. Based on the three application categories,
identified in Chapter 4, we can conclude that the literature focuses on Enterprise-Centric
and IoT-Based applications whereas the industry focuses on Consumer-Centric applica-
tions.

Besides, although blockchain systems can operate stand-alone, in real business, there is a
need to communicate with other non-blockchain systems. This need imposes two general
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uses of blockchains. First, blockchains can be used as a data store in the form of an im-
mutable, append-only, consensus-based distributed ledger. For example, MediaChain1 is an
open universal blockchain-based media library that can be used as a data storage for rele-
vant media systems. Second, blockchains can be used as a transaction platform to automate
business processes and transactions in the form of decentralized applications. Actifit2 is an
example of a decentralized application which aims at incentivizing healthy lifestyle to pro-
vide an incentive for people to get active, healthy and fit.

7.1.2 Proposal of a Taxonomy for Characterizing Blockchain Systems

This thesis classified blockchain system characteristics into a holistic component-based
taxonomy. The taxonomy synthesizes the features and aspects of eight fundamental com-
ponents of blockchain systems into three main dimensions. The first dimension describes
the components of the Execution Environment Subsystem: network, distributed ledger, and
platform. The second dimension describes the components of the Internal Subsystem: con-
sensus protocol, smart contract, and token. The last dimension describes the components
of the External Subsystem: nodes and digital wallets. This contribution fulfills the second
research objective and was described in Chapter 3.

Chapter 3 pointed out several observations related to the development of blockchain appli-
cations, including the need for improved incentive mechanisms. It highlighted three exper-
tise areas needed for developing blockchain applications: infrastructure settings, smart con-
tract development, and front-end development. It, also, pointed out a set of design decisions
related to the licensing, deployment, access control, and membership of blockchain applica-
tions.

In addition to the aforementioned findings, we find that the proposed taxonomy would in-
crease the adoption of blockchain systems. It provides a shared language for describing,
analyzing, classifying, designing, and documenting blockchain systems. The taxonomy pro-
vides a better understanding of the interrelationships between different blockchain compo-
nents, and thus; it assists in articulating a variety of design choices of blockchain systems
and their components. Additionally, it would assist towards a homogeneous development of
blockchains and blockchain-based systems. It can be used to create robust frameworks to
enable precise comparisons of different blockchains.

Another notable finding is related to the method of developing the taxonomy. Merging soft-
ware decomposition and Nickerson et al.’s approaches in this thesis produced a novel method
for taxonomy development in the context of software engineering research. It is a reuse-
based taxonomy development approach that inherits the concept of decomposition by break-
ing down a complex knowledge domain under classification (i.e., blockchain system) into
smaller, manageable, and well-defined subject units (i.e., software and hardware compo-
nents) based on a meta-characteristic (i.e., execution point). This developed method allows

1http://www.mediachain.io
2https://actifit.io
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to systematically and incrementally build a modular taxonomy that consists of a set of rele-
vant, yet independent, sub-taxonomies.

7.1.3 Formulation of an Architectural Pattern Language for Blockchain Application

Development

This thesis proposed an APL to support the development of blockchain applications. The
APL contains 12 architectural patterns to support fulfilling NFRs and quality requirements
during the architecture design of blockchain applications. The patterns are: Distributed
Client-Server, On-Chain/Off-Chain, Distributed Backend, P2P On-Chain Backend, Cen-
tralized Off-Chain Backend, Distributed Off-Chain Backend, Blockchain Broker, Layered
Client Application, On-Chain Pipe-Filter, Replicated Repository, Chain-of-Blocks, and
Chain Fork. This pattern language can assist detecting quality issues in architecture re-
views of blockchain applications. It fulfills the third research objective and was described
in Chapter 4.

One of the main findings from this contribution is that blockchain platforms are evolving
mostly to overcome protocol-related issues such as scalability and performance. For ex-
ample, POA is a public side chain that enables cross-chain-bridging architecture within the
Ethereum ecosystem. Moreover, Hive had been forked from the Steem blockchain to offer
more decentralization and uncontrolled token ownership.

In another respect, considering reusable architectural patterns can reduce the number of
concerns that blockchain application architects and developers need to think of. The APL
provides blueprints to help the architects and developers in design decision-making and ful-
filling application-specific NFRs and quality requirements. For example, the Interoperabil-
ity of blockchain applications can be fulfilled with the Blockchain Broker pattern and the
Reliability can be accomplished with the Distributed Off-Chain Backend pattern, coupled
with the P2P On-Chain Backend. Certainly, there should be a trade-off between the differ-
ent quality requirements when designing an application according to the use case needs.

7.1.4 Development of a Process-Aware Framework to Support Process Mining

from Blockchain Applications

This thesis proposed a framework to support both, identifying process-aware blockchain
applications and generating event logs for these applications. It addressed several chal-
lenges for mining business processes from blockchains in the context of EVM-compatible
applications. The framework has two modules: PAR and ELG. PAR is a human-in-the-loop
model that allows cooperation between users (PAR-H) and the automation algorithm (PAR-
M) to recognize process-aware blockchain applications. ELG is an automation model to
generate event logs from blockchain event data via three interdependent algorithms: Extrac-
tor, Decoder, and Formatter.
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The design of this framework was instantiated by implementing BELA, a reusable software
prototype. This software application is a stand-alone contribution that implements the PAR-
M, Extractor, Decoder, and Formatter algorithms. These two contributions fulfill the fourth
objective, and were described in Chapter 5.

One of the main observations from the development of this framework is that there are two
approaches to extract event data from blockchain networks: directly and indirectly. The di-
rect approach involves extracting event data via sending RPCs to the network and receiv-
ing the event data as a response. This can be done either through block explorers or through
programmed RPCs by independent developers. For example, Etherscan3 is the official block
explorer and analytics platform for Ethereum. The indirect approach involves retrieving
event data through querying state databases such as BigQuery4, an enterprise data ware-
house that enables SQL queries to retrieve log data from its log dataset.

The proposed ELG module is an example of the direct approach through programmed RPCs.
It is worth mentioning that this thesis is not the first to support the extraction of event data
with a tool and provide a set of formatted event logs. In contrast to existing literature, the
user of our suggested algorithm has not to write a file where they describe the extraction
requirements. Thus, the user bears the risk that events are not captured in the right way or
wrong events.

Another observation is that blockchain-based business processes are more asset-centric
than activity-centric. From one standpoint, tokenization and smart contracts allow for track-
ing the existence and ownership of digital and physical assets. These assets can go through
several transformations in their lifecycles and changes in their ownership, such as in supply
chains. On the other hand, event logs are centered around the activities happened as part
of such processes, which is inadequate to track assets on blockchains that do not support
programmable smart contracts, and thus, these blockchains are not activity-centric. Accord-
ingly, it is notable that there is a need for blockchain-oriented business process management
(BPM) tools, modeling notations, and event log standards. PM techniques and tools have to
be adapted to allow for a more holistic analysis of blockchain applications.

7.1.5 Proposal of a Business Process Modeling Pattern Language for Blockchain

Application Requirement Analysis

This thesis proposed a BPMPL to support the development of blockchain applications. The
BPMPL consists of nine business process modeling patterns to support fulfilling FRs dur-
ing the requirement analysis of blockchain applications. The patterns are: Atomic Tx, Mi-
cro Tx, Macro Tx, Bloom, Digester, Approval, Switch, Exclusive Authorization, and Shared
Authorization. This contribution fulfills the fifth objective and was described in Chapter 6.

Several findings from this contribution were discussed in Chapter 6, including the BPMPL
3https://etherscan.io
4https://cloud.google.com/bigquery
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support for different software engineering practices, such as agile model-driven develop-
ment, requirement modeling and documentation, and blockchain application testing. Also,
it pointed out how the proposed BPMPL supports the design of interoperable blockchain
applications.

An additional finding from this contribution is that adapting PM to identify recurrent across-
domain business processes is a novel approach that offers a systematic way for identify-
ing software patterns in the context of software engineering. Therefore, PM is effective in
reverse engineering FRs from existing blockchain applications, and arguably, from non-
blockchain software applications.

Another remarkable finding is that PM significantly reduces the effort required to recover
business processes embedded within smart contracts compared to manual software reverse
engineering. Generating an event log using BELA, with RPCCount = 5, took an average
time of 28 seconds per contract address. When ingesting the event log into the PM tool, the
business model is immediately recovered.

7.2 Research Limitations and Future Work

The contributions of this thesis need to be considered in light of its limitations. In what fol-
lows, I discuss these limitations and future work.

7.2.1 Dataset Validity

Although we tried our best to systematically select a sufficiently comprehensive and rel-
evant set of blockchain application software and publications, the manual screening pro-
cess to filter thousands of them could have some valuable items been excluded. Moreover,
blockchain technology is rapidly evolving, making some of the software applications inac-
cessible and outdated from a technological viewpoint, which may hinder research repro-
ducibility. However, data about these applications are enduring. Data produced by these ap-
plications are stored in blockchains, and thus, they are permanent and can be retrieved from
corresponding networks.

Furthermore, this work provides more extracted event logs than in the literature, but these
logs only include a maximum of the last 5000 activities. Thus, some of them do not include
all events that are defined in the subject smart contract. For example, in Augur event log,
only the event ”Universe created” and ”Token minted” are included. Events about disputes
and market creation and closing are missing. This limitation can be overcome by running
BELA with custom configurations to extract more events. The fromBlock can be set to the
last block number in the current event log and the RPCCount can be assigned a desired in-
teger value, as described in Chapter 5.
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7.2.2 Contribution Boundary

Some of the contributions have a narrow application scope. For example, the PAF and BELA
target applications that are compatible with EVM. There is a need to generalize these so-
lutions in future work to solve similar problems of mining business processes from other
non-EVM-compatible applications. Moreover, the BPMPL considered only smart con-
tract functionality, which have been derived from and tested on EVM-compatible applica-
tions. As there are non-EVM-compatible blockchains that use smart contracts, e.g., Hyper-
ledger Fabric, the BPMPL needs to be validated on these blockchains in our future work.
On the other hand, the taxonomy and APL are blockchain-agnostic; however, they focus on
blockchain-distinct components and overlook other components that may influence archi-
tectural choices.

7.2.3 Contribution Viewpoints

Although the demonstrated results throughout this thesis showed the soundness of the con-
tributions, this thesis does not claim that the contributions are complete. For example, we
found that the applications we studied broadly fit into one of the three identified application
categories in Chapter 4: Consumer-Centric, Enterprise-Centric, and IoT-Based. We have
not identified other applications, as we think that the coarseness of our three categories has
allowed us to align the applications to one of these categories. We believe that had our cat-
egories been more fine-grained, there would be outliers that cannot fit into exactly a cate-
gory. This will be considered in our future work.

Moreover, distinguishing components and aspects when building the taxonomy is arguable.
For example, while it is possible to consider ”incentive mechanism” and ”permission man-
agement” as components, the adapted viewpoint in this thesis to identify the blockchain
system components considered them Aspects of the Platform component within the Execu-
tion Environment Subsystem. Adapting a different viewpoint for the system decomposition
would lead to a different hierarchy of components and their interrelationships, which could
be examined in future work.

In addition, the APL currently does not cover some important concerns of blockchain ap-
plications. The security concern is currently addressed in this pattern language as a funda-
mental layer in the “Layered client application” pattern, but has not been explicitly consid-
ered at the pattern level. Our future work will focus on the security patterns. Also, some
patterns are general but fundamental to structure the blockchain applications, and they are
described by other patterns.

7.2.4 Technology Constraints

Current BPM and PM tools do not support the analysis of blockchain applications from an
asset-centric viewpoint. The process-awareness of blockchain applications was discussed in
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this thesis from an activity-centric viewpoint, which maybe insufficient. Consequently, the
modeling of the proposed BPMPL is influenced by the activity-centric viewpoint to model
the business processes of the patterns. In the future, if blockchain-oriented BPM tools are
developed, we will have the chance to do a more appropriate analysis.

Additionally, the evaluation sample used to demonstrate the proposed taxonomy does not
cover some possible variations of the characteristics. For example, the token collection does
not have non-transferable tokens, although this type has been identified in the Simple Asset
Standard 5. Paper wallets are handmade by their owner and secured offline, making them
unreachable for evaluation.

7.2.5 Evaluation Context

Although this thesis has demonstrated the applicability and usability of the proposed contri-
butions through diverse real-world applications, the industry was not involved. Blockchain
solution architects and developers are invited to evaluate the proposed contributions in de-
signing new applications. The benefits of such practice are two folds. First, the contribu-
tions will be validated by independent developers that are not involved in the development
of the contributions. Second, the contributions will be evaluated in the context of forward
software engineering, instead of the reverse engineering context that is adopted in this the-
sis.

In the future, we intend to provide the contributions of this thesis as a service, making it ac-
cessible by blockchain researchers and practitioners. Thus, the artifacts can be reused, en-
hanced, and standardized. Moreover, the performance of PAF was not evaluated on algorithm-
level; as it is out of the scope of this thesis. In our future work, we will conduct a compara-
tive assessment of the existing platforms for event-log extraction from blockchains, high-
lighting the capabilities of BELA that other tools are not equipped with, with a demonstra-
tion based on experimental data.

5https://github.com/CryptoLions/SimpleAssets
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