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represent the standard deviation. Analysed using the Kruskal-Wallis test 
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test. KD - knockdown. Indicators for non-statistically significant results are 
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from 7 embryos; Stretched + NuMA KD: n=21 cells from 3 embryos. . . . . 74
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KD conditions. Error bars represent the standard deviation. Analysed us-
ing the Wilcoxon test. p<0.0001****, 0.0038**. KD - knockdown. Un-
stretched: n=53 cells from 8 embryos; Stretched: n=62 cells from 7 em-
bryos; Stretched + NuMA KD: n=21 cells from 3 embryos. . . . . . . . . . 77
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3.9 Examples of angle tracks. Examples of tracks deemed to be A) and B) os-
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nificant are denoted by the red dotted line. The identified frequency of os-
cillation is indicated by 𝑓. The threshold height (red double-headed arrow) 
and peak amplitude (magenta double headed arrow) are used to define the 
goodness measure of the identified oscillation. Peaks corresponding to fre-
quencies which result in periods within 95% of the track duration were dis-
carded as trend artefacts. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.10 Oscillations of the mitotic spindle through metaphase. A) The frac-
tion of spindles which oscillate in the unstretched, stretched, and stretched 
NuMA KD tissues. Sample count data analysed using Fisher’s exact test. 
Unstretched: n=53 cells from 8 embryos; Stretched: n=62 cells from 7 
embryos; Stretched + NuMA KD: n=21 cells from 3 embryos. B) Com-
parison of the dominant periods of the oscillating spindles in each condi-
tion. Error bars represent the standard deviation. Samples analysed using 
the Kruskal-Wallis test and post hoc Dunn’s multiple comparisons test. C) 
Comparison of the goodness of the oscillations detected across the three 
conditions. Error bars represent the standard deviation. Samples anal-
ysed using the Kruskal-Wallis test and post hoc Dunn’s multiple compar-
isons test. D) A scatterplot comparing the goodness measure of oscillations 
against the period of the oscillations. All three conditions present on the 
same plot. E) Comparison of the goodness measure of oscillations against 
the corresponding cell’s metaphase time. F) Comparison of the period of 
oscillation with metaphase time. D,E,F) all use the same legend. Data 
analysed using the Spearman rank correlation test. Statistical significance 
represented by A) p=<0.0001****, 0.0312* (unstretched compared with 
stretched),0.0145* (unstretched compared with stretched NuMA KD). B) 
p=0.0387*. KD - knockdown. Indicators for non-statistically significant re-
sults are omitted. B), C), D), E) and F) from Unstretched: n=40 cells from 
8 embryos; Stretched: n=34 cells from 6 embryos; Stretched + NuMA KD: 
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3.12 The effect of circularity on oscillations. Comparison of periods of oscil-
lation in elongated and circular cells in A) unstretched, B) stretched, and 
C) stretched NuMA KD conditions. Error bars represent the standard de-
viation. Data analysed using the Mann-Whitney test. D) Scatter graph of 
the goodness of oscillation compared with cell circularity for unstretched, 
stretched and stretched NuMA KD tissues. Data analysed using the Spear-
man rank correlation test. KD - knockdown. Indicators for non-statistically 
significant results are omitted. Unstretched, elongated: n=11 cells from 
7 embryos; Unstretched, circular: n=29 cells from 7 embryos; Stretched, 
elongated: n=17 cells from 4 embryos; Stretched, circular: n=17 cells from 
6 embryos; Stretched + NuMA KD, elongated: n=8 cells from 2 embryos; 
Stretched + NuMA KD: n=13 cells from 3 embryos. . . . . . . . . . . . . 85

3.13 Spindle oscillations in early and late metaphase. A) A comparison of 
the fraction of oscillating spindles during early and late metaphase. Sample 
count data analysed using Fisher’s exact test. Unstretched: n=53 cells from 
8 embryos; Stretched: n=62 cells from 7 embryos; Stretched + NuMA KD: 
n=21 cells from 3 embryos. B) C) D) Comparison of periods of spindle os-
cillation detected in early and late metaphase in B) unstretched, C) stretched 
and D) stretched NuMA KD tissues. Error bars represent the standard de-
viation. Data analysed using the Mann-Whitney U test. E) F) G) The good-
ness of oscillation of the identified oscillations in early and late metaphase 
in E) unstretched, F) stretched, G) stretched NuMA KD tissues. Error bars 
represent the standard deviation. Data analysed using the Mann-Whitney 
U test. Statistical significance represented by p=0.01**. KD - knockdown. 
Indicators for non-statistically significant results are omiitted. Unstretched, 
early metaphase: n=15 cells from 8 embryos; Unstretched, late metaphase: 
n=29 cells from 8 embryos; Stretched, early metaphase: n=8 cells from 4 
embryos; Stretched, late metaphase: n=16 cells from 7 embryos; Stretched 
+ NuMA KD, early metaphase: n=13 cells from 2 embryos; Stretched + 
NuMA KD: n=12 cells from 2 embryos. . . . . . . . . . . . . . . . . . . . 87

4.1 Simplification of relevant protein complexes for modelling A) Protein 
complexes G𝛼i/LGN/NuMA anchor motor protein dynein to the cell cortex. 
Dynein imparts a force on the spindle pole through interactions with astral 
microtubules which emanate from the spindle pole. B) The G𝛼i/LGN/NuMA 
complex is mathematically described as an elastic linker between motor 
protein head dynein and the cell cortex. The entire elastic linker/motor pro-
tein head assembly is referred to as a force generator. . . . . . . . . . . . . 99
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4.2 Diagram of spindle pole in three conditions. A) The spindle pole (green) 
lies between the upper and lower cortex at position 𝑧(𝑡). Force generators 
(orange) at each cortex comprise a motor protein head and an elastic linker 
which produce pulling forces 𝐹 ±. B) The movement of the spindle pole 
will affect the linker extensions of the motor proteins. Movement away 
from the upper cortex will lengthen the linkers of the upper force genera-
tors while compressing the linkers of the lower force generators. C) Force 
generators with more extended linkers have an increased unbinding rate. 
Unbound generators cannot produce a pulling force (indicated by a grey 
force generator). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 Graphical map of extension states for unbound and bound force gen-
erators. A) Unbound generators in state ̄𝑦(𝑛)±,𝑖

u may extend or retract with 
probabilities ̄𝑓 (𝑛)±,𝑖

u and ̄𝑟(𝑛)±,𝑖
u . Bound generators in state ̄𝑦(𝑛)±,𝑖

b may ex-
tend or retract with probabilities ̄𝑓 (𝑛)±,𝑖

b and ̄𝑟(𝑛)±,𝑖
b . Bound generators may 

unbind or vice-versa with rate constants ̄𝑠(𝑛)±,𝑖
b and ̄𝑠(𝑛)±,𝑖

u respectively. 
Diagrams of force generators show corresponding extension and bind-
ing states. Each individual force generator 𝑛 exists within these states. B) 
Concatenated list of rate triplets to show numbering regime. Probabilities 
from ̄𝑎1 to ̄𝑎3𝑁 correspond to force generators 1 → 𝑁 which exist in the 
upper cortex. Probabilities ̄𝑎3𝑁+1 to ̄𝑎6𝑁 correspond to force generators 𝑁 + 1 → 2𝑁 which exist in the lower cortex. . . . . . . . . . . . . . . . . 103

4.4 Reducing the computational expense of the stochastic model. Compar-
ison between solutions of (left) the full solution and (right) the solution 
when rate coefficients are updated every 𝐽w = 10 timesteps and when ̄𝑧Thld̄𝑡 = 0.2. A) A plot of the spindle pole velocity d ̄𝑧

d ̄𝑡 at each timestep taken 
by the stochastic model. B) Plots of the probabilities ̄𝑟(𝑛)+,𝑖=1

b , ̄𝑓 (𝑛)+,𝑖=1
b

and ̄𝑠(𝑛)+,𝑖=1
b as a function of the number of steps taken by the stochastic 

simulation for a short test case. C) Graphs in (B) over a shorter time-frame, 
illustrating that the probabilities are slowly varying over short time. D) The 
resulting solutions of spindle pole position ̄𝑧 ( ̄𝑡). Parameters: 𝑁 = 15, 𝛼 =0.08, 𝛽 = 0.04, Γ = 20, 𝜔̄on = 0.005, 𝜔̄0 = 0.001, 𝛾 = 2, 𝐾 = 0.005 . . . . 111
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4.5 A stochastic model results in spontaneous oscillations of the spindle 
pole position. A) Evolution of the non-dimensionalised spindle pole posi-
tion through time. B) The number of bound force generators in the i) upper 
(+) and ii) lower (-) cortex (left 𝑦-axis) through time. The average exten-
sions of the bound (magenta) and unbound (blue) force generators in the i) 
upper (+) and ii) lower (-) cortex are also shown (right 𝑦-axis). C) A sin-
gle period of oscillation of the spindle pole position. Dots correspond to 
moments in the cycle of interest and correspond colour-wise with the dots 
and diamonds plotted in D). D) Average extension of the bound generators 
in the upper and lower cortices as a function of pole position. Parameters: 𝑁 = 15, 𝛼 = 0.08, 𝛽 = 0.04, Γ = 20, 𝜔̄on = 0.003, 𝜔̄0 = 0.001, 𝛾 = 2, 𝐾 = 5 × 10−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.6 Oscillations decrease in amplitude and regularity for fewer force gen-
erators. A) Evolution of the non-dimensionalised spindle pole position 
through time. B) The number of bound force generators in the i) upper (+) 
and ii) lower (-) cortex (left 𝑦-axis) through time. The average extensions 
of the bound (magenta) and unbound (blue) force generators in the i) up-
per (+) and ii) lower (-) cortex are also shown (right 𝑦-axis). C) A single 
period of oscillation of the spindle pole position. Dots correspond to mo-
ments in the cycle of interest and correspond colour-wise with the dots and 
diamonds plotted in D). D) Average extension of the bound generators in 
the upper and lower cortices as a function of pole position. Parameters: 𝑁 = 5, 𝛼 = 0.08, 𝛽 = 0.04, Γ = 20, 𝜔̄on = 0.003, 𝜔̄0 = 0.001, 𝛾 = 2, 𝐾 = 5 × 10−2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.7 Factors which affect the oscillatory dynamics of the spindle pole. Evolu-
tion of the non-dimensionalised spindle pole position through time for dif-
ferent parameters. A) An example solution when the unbinding of the force 
generator is no longer tension-sensitive: 𝑁 = 15, 𝐾 = 5 × 10−2, 𝛾 = 0. 
B) An example solution when the restoring force is increased by a factor of 
100: 𝑁 = 15, 𝐾 = 5, 𝛾 = 2. C) An example solution for reduced numbers 
of force generators and an increased restoring force: 𝑁 = 5, 𝐾 = 5, 𝛾 = 2. 
Remaining parameters: 𝛼 = 0.08, 𝛽 = 0.04, 𝜔̄on = 0.003, 𝜔̄0 = 0.001, Γ = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
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4.8 The effect of varying the magnitude of diffusion in the PDE descrip-
tion. A,E) Example solution to equations (4.25a),(4.25b),(4.32) using the 
method of lines, showing the pole position, ̄𝑧 in time ̄𝑡. Diffusion parame-
ters 𝛼, 𝛽 are a factor of 10 smaller in right column than in the left column. 
B,F) Heat map of ̄𝑃 +

u in time. Colour indicates the amplitude of ̄𝑃 +
u ( ̄𝑦, ̄𝑡). 

C,G) Heat map of ̄𝑃 +
b in time. Colour indicates the amplitude of ̄𝑃 +

b ( ̄𝑦, ̄𝑡). 
D,H) Probability density functions in the upper cortex at two instances of 
time. Solid line: ̄𝑡 = ̄𝑡min, when the spindle pole is at ̄𝑧 = 0 and moving 
toward its minimum value ( ̄𝑧 ̄𝑡 < 0). Dotted line: ̄𝑡 = ̄𝑡max, when the spindle 
pole is at ̄𝑧 = 0 and moving toward its maximum value ( ̄𝑧 ̄𝑡 > 0). The peak 
widths depend on the magnitude of the diffusion parameters 𝛽 12 and 𝛼 12 . 
H) The three regions used to reduce the system of ODEs to PDEs in Sec-
tion 5.5 are indicated by roman numerals I, II, and III. The behaviour of the 
probability density functions in the lower cortex are in antiphase to the be-
haviour seen here. Solutions were obtained using parameters 𝐾 = 5×10−2, 𝜔̄on = 3 × 10−3, 𝑁 = 25, 𝛾 = 2, 𝜔̄0 = 1 × 10−3, ̄𝜉 = 6.25 × 10−1. A-D) 𝛼 = 8 × 10−2 and 𝛽 = 4 × 10−2, E-H) 𝛼 = 8 × 10−3 and 𝛽 = 4 × 10−3. . 124

4.9 Dynamics of bound probabilities in the upper and lower cortex ( ̄𝑃 ±
b ) 

through one whole cycle of spindle pole oscillation. A) Example oscil-
lation of ̄𝑧. Plotted points denote key time points used in the bound proba-
bilities in the B) upper and C) lower cortex. Colours of lines in B) and C) 
correspond to time points indicated in A). Parameters: 𝐾 = 5 × 10−2, 𝜔̄on = 3 × 10−3, 𝑁 = 45, 𝛾 = 2, 𝜔̄0 = 1 × 10−3, ̄𝜉 = 6.25 × 10−1. A-D) 𝛼 = 8 × 10−3 and 𝛽 = 4 × 10−3 . . . . . . . . . . . . . . . . . . . . . . . 125

4.10 Increasing the number of force generators 𝑁 available to the system 
affects the magnitude, period and shape of the oscillations. A) Spindle 
pole position ̄𝑧 in time ̄𝑡. B) ̄𝑦±

c as a function of pole position ̄𝑧. C) Peak ̄𝑃 ±,max
b as a function of ̄𝑦±

c . Line colours correspond to solutions in each 
cortex (blue = upper, orange = lower). The solution loops are taken from 
a segment of the solution where a maximum amplitude of spindle pole os-
cillation has been achieved. All solutions have been truncated to the time 
shown here for ease of comparison between different 𝑁 values. D) Period 
of oscillation 𝑇 as a function of 𝑁, shown for two different values of 𝜔̄on. 
Dots correspond to solutions, with the trend given by the line of best fit. Pa-
rameters: 𝐾 = 5 × 10−2, 𝜔̄on = 3 × 10−3, 𝛾 = 2, 𝜔̄0 = 1 × 10−3, ̄𝜉 = 6.25 × 10−1, 𝛼 = 8 × 10−3 and 𝛽 = 4 × 10−3 . . . . . . . . . . . . . 127
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4.11 Relaxation oscillations emerge when the restoring force is reduced. A) 
Spindle pole position ̄𝑧 in time ̄𝑡. B) Peak of the probability density func-
tion for bound force generators ̄𝑃 ±

b in time ̄𝑡. C) Central position of the ̄𝑃 ±
b

peak ̄𝑦c in time ̄𝑡. D) ̄𝑦c as a function of pole position ̄𝑧. E) Peak ̄𝑃 ±,max
b

as a function of ̄𝑦c. Figures A-C) share a time axis. Line colours corre-
spond to solutions in each cortex (blue = upper, orange = lower) Parame-
ters: 𝐾 = 5 × 10−4,𝑁 = 15, 𝜔̄on = 3 × 10−3, 𝛾 = 2, 𝜔̄0 = 1 × 10−3, ̄𝜉 = 6.25 × 10−1, 𝛼 = 8 × 10−3 and 𝛽 = 4 × 10−3 . . . . . . . . . . . . . 130

4.12 Stability boundary between oscillatory and non-oscillatory solutions.
Numerically solving the Fokker-Planck system reveals the boundary in 
(𝑁, 𝜔̄on) space which separates oscillatory from non-oscillatory solutions. 
Each scatter point represents a numerical solution, labelled in magenta if 
the spindle pole has sustained oscillations and blue if the spindle pole po-
sition decayed to 𝑧 = 0 (non-oscillatory). The points with green bound-
aries are the example solutions used throughout this chapter. Parameters: 𝐾 = 5 × 10−2, 𝛾 = 2, 𝜔̄0 = 1 × 10−3, ̄𝜉 = 6.25 × 10−1, 𝛼 = 8 × 10−3 and 𝛽 = 4 × 10−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.13 Non-oscillating spindles may become oscillatory for higher diffusion 
and lower restoring forces. Spindle pole position ̄𝑧 in time ̄𝑡 for 𝑁 = 15
A) 𝛼 = 8 × 10−3, 𝛽 = 4 × 10−3 and 𝐾 = 5 × 10−2; B) 𝛼 = 8 × 10−1, 𝛽 = 4 × 10−1 and 𝐾 = 5 × 10−2; C) 𝛼 = 8 × 10−3, 𝛽 = 4 × 10−3 and 𝐾 = 5×10−4. Constant parameters: 𝜔̄on = 3×10−3, 𝛾 = 2, 𝜔̄0 = 1×10−3, 
and ̄𝜉 = 6.25 × 10−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.1 Exploring the stability boundary between oscillatory and non-oscillatory 
solutions in the ODE model. A) (Solid curve) The threshold separating 
oscillatory solutions (magenta) from non-oscillatory solutions in (𝑁, 𝜔̄on) 
space, determined from (5.62) for parameters: 𝐾 = 5 × 10−2, 𝛾 = 2, 𝜔̄0 =1 × 10−3, ̄𝜉 = 6.25 × 10−1. (Dashed curve) The same threshold in the 𝐾̂ → 0 limit determined by (5.64). B) A heat map of the value of the upper 
threshold 𝜔̄†

on by (5.69) which 𝜔̄on asymptotically approaches for large 𝑁 as 
parameters 𝜔̄0 and 𝛾 vary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2 The period of oscillation. A) The period of oscillation as calculated from 
(5.60), in non-dimensionalised time as in Section 4, showing the bound-
ary between oscillatory and non-oscillatory solutions (white). B) The re-
lationship between the period of oscillation and the binding rate 𝜔̄on using 
(5.60), along the neutral stability curve (5.62). The period ̄𝑇 is reported 
in the non-dimensionalised time used in the stochastic simulations and 
Fokker-Planck system and is unbounded as 𝜔̄on → 𝜔̄†

on. Parameters used: 𝛾 = 2, 𝜔̄0 = 1 × 10−3, ̄𝜉 = 6.25 × 10−1. A) and B) (Solid curve) 𝐾 = 5 × 10−2, B) (Dashed curve) 𝐾 = 5 × 10−4 . . . . . . . . . . . . . . 148
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5.3 Comparison of PDE and ODE solutions for equivalent parameters.
PDE and ODE solutions for equivalent parameters are presented, with non-
equivalent solutions separated by a dotted line. A and C) represent solu-
tions of the PDEs. B) D) and E) represent solutions of the ODEs. First 
column: spindle pole position ̄𝑧. Second column: the centre of the bound 
probability density function as a function of pole position ̄𝑦±

c ( ̄𝑧). Third 
column: the amplitude of the bound probability density function as a func-
tion of the location of its centre ( ̄𝑃 ±

b ( ̄𝑦c) for PDE solutions A,C); 𝐵± =𝐵̂±/√2𝜋𝛼 for ODE solutions B, D, E). PDE solutions were obtained using 
parameters 𝛼 = 8 × 10−3, 𝛽 = 4 × 10−3, ̄𝜉 = 6.25 × 10−1, 𝜔̄0 = 1 × 10−3, 𝜔̄on = 3 × 10−3, 𝛾 = 2, 𝜈 = 1 × 103 A) 𝐾 = 5 × 10−2 and 𝑁 = 45 and C) 𝐾 = 5 × 10−4 and 𝑁 = 15. ODE solutions obtained using B) equivalent 
parameters to A); D) equivalent parameters to C); and E) Equivalent param-
eters to A) with 𝑁 = 1000. Line colours correspond to solutions in each 
cortex (blue = upper, orange = lower). . . . . . . . . . . . . . . . . . . . . 150

5.4 Decreased binding rates increase the non-linearity of the oscillations in 
ODE solutions. The centre of the bound probability density function ̄𝑦c as 
a function of the normliased pole position ̄𝑧/ ̄𝑧max for A) 𝜔̄on = 0.003, B) 𝜔̄on = 0.006, using all other parameters equivalent to Figure 5.3E. . . . . . 151

5.5 Overlaid phase portraits for the scaled solutions obtained by solving the 
ODE system (blue) and PDE system (magenta) for equivalent parameters 
where A) 𝐾̂ = 0.01, B) 𝐾̂ = 0.007. The inverted function 𝐺 (black) given 
in (5.74) represents the expected limit cycle as 𝐾̂ → 0. PDE parameters: 𝐾 = 5 × 10−4, 𝛼 = 8 × 10−3, 𝛽 = 4 × 10−3, ̄𝜉 = 6.25 × 10−1, 𝜔̄0 = 1 × 10−3, 𝜔̄on = 3 × 10−3, 𝛾 = 2, 𝜈 = 1 × 103 A) 𝑁 = 15, B) 𝑁 = 25. ODE parameters are equivalent. . . . . . . . . . . . . . . . . . . 152

5.6 Estimation of oscillation amplitude using 𝐺. A) ODE solutions and B) 
PDE solutions of pole position, with the amplitude predicted by ±𝐺max/𝐾̂
(5.76) indicated by the red dashed lines. The parameters used are as in Ai) 
Figure 5.3B. Aii) Figure 5.3D. Bi) Figure 5.3A. Bii) Figure 5.3C. . . . . . . 153

A.1 2D spindle schematic. A) The spindle array, showing the microtubule an-
gular width Θ, the spindle orientation vector n (𝜙), the spindle centre Rs

and the spindle length 𝑙. B) The geometry of microtubule-cortex interac-
tions from spindle pole p2. The cell edge is parametrised by arclength 𝑠 and 
described by function 𝑟 (𝑠). The microtubule at an angle 𝜃 from the hori-
zontal has length 𝜆p2 and orientation vector m. The angular width of the 
microtubule fan contacts the cell periphery at 𝑠p2,− < 𝑠 < 𝑠p2,+, defining 
the interaction zone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
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Abstract

Cell division is vital for the growth and homeostasis of tissues. The outcome of division, 
for example a contribution to tissue spreading or tissue stratification, depends upon its spa-
tial orientation within the tissue. In turn, the external environment of the tissue feeds back 
to determine cell division orientation, with divisions commonly aligning with an axis of 
greatest tensile force. Division orientation is determined by the orientation of the mitotic 
spindle. From its assembly until chromosome segregation, the spindle dynamically rotates 
and explores the cell by the interaction of its astral microtubules with protein complexes 
at the cell periphery. The nuclear mitotic apparatus protein (NuMA) is one such element 
implicated in spindle positioning which is localised dynamically to the cell cortex during 
cell division and to the spindle poles during cell division. As such, NuMA has been high-
lighted as a key candidate in driving the orientation of division with external force. Recent 
unpublished work in the Woolner lab has revealed that NuMA localisation to the cortex is 
sensitive to tissue tension and is perturbed in cells experiencing an externally applied force, 
though the precise mechanism by which NuMA functions to orient divisions with external 
force remains unclear.

To determine how mechanosensitive spindle orientation is regulated, we used a combina-
tion of biological and mathematical approaches to analyse dynamic movements of the mi-
totic spindle. We utilised the tightly adhered epithelial layer of the Xenopus laevis animal 
cap to study spindle movements in stretched and unstretched tissues to assess the impact 
of stretch on the spindle rotational and translational dynamics. We find that the mitotic 
spindles undergo oscillatory movements as they seek out their division axis. The period of 
these oscillations is insensitive to external forces but we see an affinity for oscillating which 
is higher in unstretched tissues rather than stretched tissues. Crucially, the period of oscilla-
tion is sensitive to the depletion of NuMA.

We develop a model of spindle pole displacements due to cortical pulling forces and microtubule-
based restoring forces, using stochastic simulations, Fokker-planck equations, ODEs and an 
algebraic formulation. By systematically reducing the mathematical system we highlight 
the key relationships between parameters which promote dynamic movements of the spin-
dle pole. We also show that oscillations in the position of a single spindle pole may occur 
in a select region of parameter space. Our results suggest that depletion of NuMA reduces 
the restoring force acting on the spindle which allows the spindle to oscillate with a longer 
period at lower numbers of cortical pulling elements. We highlight new avenues to explore 
to determine the role of NuMA in mechanosensitive orientation, through the use of interdis-
ciplinary techniques that allow us to vary properties of cortical force generators in silico.

21



Declaration of originality

I hereby confirm that no portion of the work referred to in the thesis has been submitted in 
support of an application for another degree or qualification of this or any other university 
or other institute of learning.

22



Copyright statement

i The author of this thesis (including any appendices and/or schedules to this thesis) 
owns certain copyright or related rights in it (the “Copyright”) and s/he has given The 
University of Manchester certain rights to use such Copyright, including for adminis-
trative purposes.

ii Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, 
may be made only in accordance with the Copyright, Designs and Patents Act 1988 
(as amended) and regulations issued under it or, where appropriate, in accordance 
with licensing agreements which the University has from time to time. This page must 
form part of any such copies made.

iii The ownership of certain Copyright, patents, designs, trademarks and other intellec-
tual property (the “Intellectual Property”) and any reproductions of copyright works in 
the thesis, for example graphs and tables (“Reproductions”), which may be described 
in this thesis, may not be owned by the author and may be owned by third parties. Such 
Intellectual Property and Reproductions cannot and must not be made available for use 
without the prior written permission of the owner(s) of the relevant Intellectual Prop-
erty and/or Reproductions.

iv Further information on the conditions under which disclosure, publication and com-
mercialisation of this thesis, the Copyright and any Intellectual Property and/or Re-
productions described in it may take place is available in the University IP Policy (see 
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420), in any 
relevant Thesis restriction declarations deposited in the University Library, The Uni-
versity Library’s regulations (see http://www.library.manchester.ac.uk/about/
regulations/) and in The University’s policy on Presentation of Theses.

23

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/
http://www.library.manchester.ac.uk/about/regulations/


Acknowledgements

I would like to begin by thanking my two incredible supervisors Sarah Woolner and Oliver 
Jensen. Their support and guidance through this PhD has been unparalleled. I can’t imag-
ine I could have been blessed with a better team.

The Woolner lab members who have kept me going through the day-to-day challenges of 
lab work and particularly in writing this thesis: Georgina Goddard, Nawseen Tarannum, 
Iona Norwood, Irwin Phanada, Natasha Cowley, Emma Johns, and Lucy Cheeseman. Some 
of whom have left but are forever cherished. I’m so sorry they had to teach me how to ex-
cise animal caps - I can only imagine how many times they considered suggesting I become 
a full time mathematician before I became competent.

A massive thank you to Peter March, Roger Meadows and Steve Marsden, for all of their 
help with microscopy. I am also incredibly grateful to Joseph Pennock and Vicky Taylor, 
who care so much for the frogs and were always willing to answer my numerous questions. 
Also a thank you to the frogs, without them this wouldn’t have been possible.

Of course I need to thank the C-Wing darlings: Mukti Singh, Samantha Borland, Christina 
Hayward, Joan Chang. All truly wonderful women and scientists, who make being a woman 
in STEM something to be proud of. I also thank the QBBees. Special mentions to Hel Ray, 
Ellie Appleton, Jess Forsyth, and Josh Hawley. They have all played such a large part in my 
life over the course of this PhD. An additional thank you to Chris Revell, who provided ex-
cellent technical and emotional support over the years.

Thank you to Laura Jones and Abigail Higton. They’ve been with me from my undergradu-
ate degree through to now. They’ve brought me care packages, love and laughter, and I am 
forever grateful. A special thank you goes to the Stockport Spartans and extended weightlift-
ing friends - my strong team. They kept me going when times were particularly rough. Par-
ticular acknowledgements to James Stonehewer, head coach and my biggest supporter. With-
out him, life would be considerably worse. Sean Mcloughlin, who’s been with me from the 
very beginning of this PhD. Without his love and friendship I wouldn’t be half the person 
I am today. Thank you. Georgie Rastall - her (literally) daily support and validation can 
never be repaid.

And finally a thank you to the families that supported me. Thank you to the Scrase fam-
ily, who took me in during the scariest time and showed me unwavering love and kindness. 
Thank you to my own family, who have never let me believe I wasn’t good enough to do 
anything I wanted to do. They bring me joy, love and laughter. And a final and most im-
portant thank you to Antonio Capavanni (and Bonnie) who has been my rock, particularly 
while writing this thesis.

24



Preface

Dionn Hargreaves has an undergraduate masters in mathematics and physics (MMath&Phys) 
from the University of Manchester.

25



Chapter 1

Introduction

Embryos develop, on the most basic level, as a result of one cell dividing into two cells. In 
a tissue, the orientation of cell division is an important factor in determining either the out-
come for the daughter cells (e.g. cell fate) or the tissue as a whole (e.g. tissue and organ 
architecture) [1], [2]. During the course of development, the dividing cells are subject to a 
host of different environments and forces as the tissues and organs are formed [3]–[7]. How 
cells perceive and ultimately respond to the changing mechanical environment is impor-
tant for robust development [8]–[11]. Studies into the effect of mechanical forces on cell 
division have begun to unpick the processes at play, although there is still uncertainty into 
exactly what the exact mechanisms may be.

In recent years, many studies have shown that cell divisions will align along an axis of ten-
sile (stretching) stress [4], [12]–[15]. However, a clear example of uncertainty in this area 
of study is whether or not the direction of cell division is directly regulated by mechani-
cal forces [12], [13], [16], or whether it is regulated indirectly via changes to the cell shape 
[17]–[20]. Indeed, the application of an external mechanical force in the form of a uniax-
ial stretch is sufficient to deform the shape of even tissue-bound cells [8], [12], [15], [17], 
[21]. As such, force-based and shape-based effects are inextricably linked. As both cell di-
vision rate and orientation are shown to be altered under mechanical perturbation [15], we 
will consider in this thesis whether or not other cell-intrinsic processes are altered under 
mechanical stretch. In particular, we aim to explore the effect that mechanical perturbation 
has on mitotic spindle dynamics.

The mitotic spindle is the structure which segregates the genetic material of a cell into two 
daughter cells, and its orientation within the cell determines the orientation of division. 
While much is known about the functions involved in spindle orientation [22], [23], the 
detailed response to external forces is less well established. A key player involved in spin-
dle positioning is the nuclear mitotic apparatus protein (NuMA), which has roles in main-
taining spindle integrity [24], [25] and in spindle positioning due to its association with 
dynein/dynactin and LGN at the cell cortex [26]. Crucially, recent unpublished work in the 
Woolner lab has implicated NuMA in tension-sensitive spindle orientation and position-
ing [27], owing to its tension sensitive localisation to the cell cortex and its ability to orient 
spindles with cell shape in stretched tissue cells [27].

We aim to contribute to the understanding of mechanosensitive spindle positioning by per-
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forming detailed spindle movement analysis in stretched and unstretched epithelial tissues. 
Furthermore, we will investigate how depletion of NuMA in stretched tissues alters these 
spindle dynamics. To help interpret the results from our biological experiments, we will 
develop mathematical models of spindle pole movements which combine pulling forces 
from the cortical NuMA/dynactin/dynein machinery with restoring forces by growing mi-
crotubules, and use these models to explore the properties of the spindle orienting machin-
ery which affect spindle dynamics. We will then combine the results of the mathemati-
cal model with the results of our experiments in order to elucidate how spindle dynam-
ics are impacted by tissue stretch and shed new light on the role that NuMA may play in 
mechanosensitive spindle orientation.

1.1 Cell division: An overview

The cell cycle is the sequence by which cells are prepared for and commit to division. The 
progression through the cycle is controlled by cyclins which activate cyclin-dependent pro-
tein kinases (CDKs) to trigger cell-cycle events [28]. Following chromosome duplication in 
S-phase, the M-phase (mitosis) is triggered by an increase in mitotic CDK (M-CDK) activ-
ity which sets in motion the process of chromosome segragation into two complete daugh-
ter cells [28].

1.1.1 Mitosis

Mitosis can be divided into five main phases: prophase, prometaphase, metaphase, anaphase 
and telophase. These are followed by cytokinesis where the cell is physically separatated 
into two new daughter cells [28]. These phases are distinguished from one another based 
on the behaviour of the chromosomes. Here we describe the processes which define the five 
phases and also introduce the mitotic spindle; an array of microtubules which connects to 
the chromosomes and plays a central role in their positioning and segregation into the two 
daughter cells. The structure and function of the mitotic spindle will be explored in more 
detail in section 1.2.

At prophase, the duplicated chromosomes condense and the mitotic spindle begins to form 
between the two centrosomes [28], [29]. In many animal cells, the cell undergoes a dra-
matic rounding due to an increase in actomyosin contractility (actomyosin contractility is 
discussed further in section 1.3.1) [30]. This is followed by prometaphase which is char-
acterised by the M-CDK mediated breakdown of the nuclear envelope, allowing the as-
sociation of the condensed chromosomes with the mitotic spindle via their kinetochores 
[28], [29]. At metaphase, the chromosomes have aligned at the spindle equator to form 
what will be referred to as the ‘metaphase plate’ for the duration of this work [28]. Then the 
anaphase-promoting complex (APC/C) targets the protein securin for destruction, which re-
sults in the activation of securin’s binding partner separase [28]. Separase cleaves the dupli-
cated chromosomes from one another resulting in their separation at anaphase. The upreg-
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Figure 1.1. Stages of mitosis. Diagram of mitotis from prophase to cytokinesis. The mitotic spindle 
assembles at prometaphase. The chromosomes line up to create the metaphase plate for metaphase where the 
spindle aligns itself in the cell. The chromosomes are cleaved at anaphase and pulled to the spindle poles at 
telophase. Cytokinesis completes cell division by cleaving the cell in two.

ulation of APC/C to trigger anaphase depends on the spindle assembly checkpoint, which 
ensures that all kinetochore attachments are correctly captured by the spindle prior to the 
cleavage of the chromosomes [28]. This spindle-assembly checkpoint ensures that equal ge-
netic material is allocated to the two daughter cells. Segregation of the chromosomes to the 
spindle poles in anaphase is followed by telophase, where the separated chromosomes de-
condense and the nuclear envelope reforms around them to create two nuclei on opposite 
ends of the mother cell. The cell is then cleaved in two by a contractile actin ring to create 
two daughter cells, each containing one nucleus (Figure 1.1). [28].

As the chromosomes are segregated to the spindle poles upon anaphase onset, which de-
fines the locations of the daughter nuclei, the positioning of the mitotic spindle is paramount 
for determining the orientation and size of the resulting daughter cells. Cell division can ei-
ther be defined as symmetric or asymmetric. Symmetric divisions produce two daughter 
cells of equal size, containing the same intracellular components (e.g. proteins, mRNA). 
Alternatively, asymmetric divisions result in daughter cells of either unequal size, unequal 
cellular components, or both. Both asymmetric and symmetric divisions are generally de-
termined by the placement and orientation of the mitotic spindle [28]. We will next discuss 
the importance of cell division orientation.

1.1.2 Consequences of oriented cell divisions

The orientation in which cells divide has an important role in maintaining tissue organi-
sation, as the position of the daughter cells can have implications for their fate [31]. The 
placement of cells can affect their exposure to extracellular environments [20], [32], [33]. 
For example, the neural progenitor cells in the spinal cord neuroepithelia of chicks divide 
such that one daughter cell is ejected and allowed to differentiate while the other remains 
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in the ventricular zone to continue dividing [34]. Disruption of this process, such that the 
progenitor cell is also ejected from the ventricular zone, results in the erroneous continued 
proliferation of the progenitor due to the lack of external signalling [35]. In the epidermis, 
cell divisions perpendicular to the plane of the tissue result in tissue stratification (Figure 
1.2A) [32], [36].

Asymmetric divisions due to the asymmetric segregation of cellular material also affect cell 
fate [37]. In the C. elegans zygote, asymmetric divisions are mediated by polarity proteins 
PAR-1 and PAR-2 at the cell posterior, and proteins PAR-3, PAR-6 and PKC-3 at the an-
terior which determine the postioning of pulling forces acting on the spindle [37]. During 
angiogenesis, the asymmetric division of tip cells has been shown to promote cell migration 
and correct tip/stalk selection of the resulting daughter cells [38].

Alternatively, symmetric in-plane divisions are important for tissue elongation and spread-
ing, particularly in epithelia [39]–[41] (Figure 1.2A). In epithelia, polarity protein Par-3 
apically localises aPKC, which restricts the spindle movements to the plane of the epithe-
lium by excluding LGN, a component of the spindle-orientation machinery [37]. In these 
tissues, the orientation of the mitotic spindle within the tissue plane can also have an impact 
on tissue structure. Germ band extension of Drosophila is driven by neighbour-neighbour 
switching (e.g. T1 transitions), but oriented divisions are needed as a supplement to this 
process for proper growth (Figure 1.2B)[39], while a mixture of oriented and random in-
plane divisions in the mouse lung epithelium are required for maintaining the correct tissue 
architecture [8], likely due to randomly oriented divisions facilitating tissue spreading (Fig-
ure 1.2C).

The choice of division orientation is historically attributed to Hertwig’s long axis rule [42], 
whereby cells divide perpendicular to their axis of largest elongation. Indeed, the long axis 
of the cell has been identified in a number of studies as the best predictor for division ori-
entation [15], [17], [18], [43], [44], although there are also many exceptions to the rule [8], 
[12], [13], [16], [19], [45]. Minc et al. (2011) measured spindle orientation in sea urchin 
zygotes placed in microfabricated chambers with unique geometries [19]. In contrast to the 
long-axis expectation, often cells divided such that the daughter cells were placed along the 
direction of greatest geometric symmetry, away from the strict long-axis [19]. Elsewhere, 
re-shaping of oval cells into circular cells by stretching resulted in reliable re-orientation of 
divisions along the stretch axis, where Hertwig’s rule would assume random divisions ori-
entations for circular cells with no defined long axis [13].

Thus the orientation of divisions has important implications for the daughter cells as well 
as the architecture of the tissues they occupy. Further, the orientation of cell division is not 
easily explained by cell shape alone. To explore the factors which determine cell division 
orientation, we present the structure and function of the mitotic spindle whose function dur-
ing cell division is vital for determining division orientation.
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Figure 1.2. The orientation of division has implications for tissue architecture. A) Symmetric divisions in 
epithelia lead to tissue extension, while asymmetric divisions lead to tissue stratification and cells of different 
cell fates (green vs cream). B) Cell divisions within the epithelial plane aligned along the same axis leads to 
tissue elongation. C) Cell divisions within the epithelial plane with a random distribution of orientations leads 
to tissue spreading.

1.2 Mitotic spindle structure and interactions

1.2.1 Structure of the mitotic spindle

The mitotic spindle is a large microtubule (MT)-based structure which forms during mitosis 
and is instrumental to generating two daughter cells of equal genetic components [47], [48]. 
There are three types of MTs which make up the spindle structure: the kinetochore MTs, 
the interpolar MTs, and the astral MTs (Figure 1.3A). All three emerge from two spindle 
poles, with the interpolar MTs forming an anti-parallel overlap at the spindle centre, while 
the kinetochore MTs interact with and bind to the chromosomes to form the metaphase 
plate [28], [47], [49]. In order to pass through the mitotic checkpoint to anaphase, each 
chromosome must be correctly aligned at the equator with one attachment to each spin-
dle pole via the kinetochore MTs [28]. The characteristic fusiform shape of the spindle 
achieved by the kinetochore and interpolar MTs is flanked by the astral MTs which extend 
away from the overlapping area to contact the cell cortex (Figure 1.3).

The microtubules themselves are rigid, hollow tubes assembled from 𝛼- and 𝛽-tubulin het-
erodimers, which stack together to create long polarised protofilaments which are then folded 
into a tube formation [28]. Ring-shaped structures of 𝛾-tubulin reside at the centrosome 
and promote nucleation of microtubules by association with 𝛼𝛽-tubulin dimers [50]. Both 𝛼- and 𝛽- tubulin bind to guanosine triphosphate (GTP), which is stable in 𝛼-tubulin but 
open to hydrolysis to guanosine diphosphate (GDP) in 𝛽-tubulin. GDP promotes the dis-
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Figure 1.3. Microtubules in the mitotic spindle A) A schematic of the mitotic spindle, with labelled 
interpolar, kinetochore and astral microtubules. The chromosomes (red) are held central to the spindle by 
interactions with kinetochore microtubules. Interpolar microtubules overlap in this central region and stabilise 
the fusiform shape. Astral microtubules extend outward and contact the cell cortex. All three populations of 
microtubules nucleate from the spindle poles (the centrosomes) from their minus ends. B) The difference 
between hinged and clamped nucleation points for microtubules which are moved along the direction 
indicated by the arrows. A hinged microtubule can change its angle at the nucleation site, while clamped 
microtubules are held at a constant angle of nucleation. Dotted microtubules indicate the position of the 
microtubule prior to movement. C) (Adapted from [46]) The dynamic instability of microtubules, comprising 
of phases of polymerisation (growing) and depolymerisation (shrinking). Transitions between these phases 
are termed ‘catastrophe’ (growing → shrinking) and ‘rescue’ (shrinking → growing). Polymerisation is 
stabilised by the GTP-tubulin cap which allows the addition of more GTP-tubulin. Without the GTP-tubulin 
cap, the GDP-tubulin lattice rapidly disassociates.
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association of 𝛽-tubulin from the microtubule lattice resulting in depolymerisation of the 
microtubule [46], [51], [52]. Alternatively, GTP-bound tubulin dimers are stable and pro-
mote microtubule growth. A GTP ‘cap’ at the plus end of microtubules stabilises micro-
tubule growth until the rate of addition of new GTP-tubulin dimers drops below the rate 
of hydrolysis, resulting in the loss of the cap and an entry into the depolymerisation phase. 
This switching between growing and shrinking is called ‘catastrophe’ while switching from 
shrinking to growing is called ‘rescue’ (Figure 1.3C). The dynamic switching between the 
two phases is called dynamic instability and facilitates MT-based force generation [18], 
[53], [54], the modelling of which we will discuss in section 1.5.2. With reference to cell 
division in particular, it has been shown in HeLa cells that a reduction of dynamic instabil-
ity delays anaphase onset [18], highlighting its importance for cell division.

1.2.2 Interactions of the mitotic spindle

The mitotic spindle structure is maintained by interactions between MTs and associated 
proteins. The kinetochore microtubules are highly bundled at their plus ends into K-fibres 
by association with short lengths of anti-parallel MTs and MT-associated proteins such as 
PRC1 which binds overlapping MTs [49], [55]. Motor proteins dynein and kinesin associate 
with MTs and ‘walk’ along them with directed motion due to the microtubule polarity [28]. 
Kinesins are plus-end directed motors (toward the quickly polymerising or depolymeris-
ing MT end), such that overlapping microtubules, both associating with kinesins, will slide 
away from one another [56], [57], a mechanism which is thought to aid in the association 
of anti-parallel interpolar MTs at the spindle cortex [57]. Dyneins are minus-end directed 
(toward the spindle pole) [51] and have been implicated in spindle pole focusing and bal-
ancing of kinesin-mediated outward pushing of the spindle poles to maintain a stabilised 
spindle shape [58]–[60]. Dynein has been shown to have slip-bond behaviour with the MT, 
whereby increased load on dynein will increase its unbinding rate [61]. However, further 
studies have indicated that this slip-bond behaviour may be directional, with unbinding un-
der load toward the plus end of microtubules being more resistant to unbinding [62]. This 
directional differential unbinding could assist minus-end directed motion by providing re-
sistance against net forces away from the minus end [62].

Dynein’s function as a motor protein is modulated by its association with activator dyn-
actin and cargo proteins [63]. At the spindle pole this cargo is NuMA, which is required for 
proper spindle focusing and stabilisation (Figure 1.4A) [25]. Dynein also interacts with as-
tral microtubules at their plus-ends [64]–[66]. Dynein/dynactin is held at the cortex by as-
sociation with the G𝛼i/LGN/NuMA tertiary complex (Figure 1.4B) [64], [67]–[69], whose 
anchoring to the cell edge allows dynein’s minus-end directed motion to result in a net pulling 
force on the spindle [64]–[66]. Dynein in the cytoplasm is also thought to contribute to 
spindle pole positioning, due to the drag forces created in the cytoplasm as dynein moves 
its cargo along the microtubule length [70], [71]. This cytoplasmic pulling is thought to 
be the main driving force for spindle positioning in oocytes, where the cell is too large for 
astral microtubule-cortex interactions [70]. The association of dynein at the cortex with as-
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Figure 1.4. The microtubules of the spindle interact with dynein and NuMA at the spindle poles and the 
cell cortex. A) NuMA binds to microtubules and dynein at the spindle poles to facilitate spindle focusing and 
maintain the bipolar spindle structure. B) Dynein is held at the cortex by association with the 
G𝛼i/LGN/NuMA complex. Dynein’s minus-end directed motion along the microtubule exerts a pulling force 
on the microtubule towards the cell cortex.

tral microtubule plus ends is one of the main driving forces for this project. In particular, 
NuMA’s role in spindle formation and positioning is of particular interest. We will further 
discuss NuMA in section 1.4.

Non-motor proteins are also involved with spindle assembly and dynamics. The kinases, 
Polo-like kinase 1 (Plk1) and Aurora-A, are vital at the spindle poles to maintain spindle in-
tegrity [72], [73]. Plk1 also affects spindle dynamics by its ability to phosphorylate cortical 
NuMA [74], causing delocalisation of dynein from the cortex upon close proximity of the 
spindle pole [26]. A chromosome-derived RanGTP gradient is also involved in maintain-
ing spindle structure [72], [75] and spindle positioning due to its ability to exclude cortical 
LGN [26], [75], [76].

1.2.3 Spindle dynamics

The mitotic spindle is a dynamic structure, the movements of which have been attributed to 
the spindle finding the approriate division axis in the cell before division, either along the 
long axis [18], [77], or due to polarity proteins [37]. This makes understanding these move-
ments crucial for understanding how its positioning is controlled to determine the ultimate 
orientation.

The dynamics of spindles can be broadly divided into translational movements, rotational 
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movements, and oscillatory movements. Most often, spindles will exhibit combinations of 
these within a single division. Biphasic dynamics have been reported in multiple systems 
involving rotational phases and maintenance phases [18], [77]. In HeLa cells the rotational 
phase was described as a rotation from spindle assembly to the cell long axis, followed by 
a maintenance phase where the orientation toward the long axis was held [18]. These same 
two phases were observed in the epithelium of Xenopus embryos, though within the main-
tenance phase the spindle was revealed to oscillate about the division axis [77]. It is unclear 
whether the same oscillations existed but were undetected in the HeLa cells studied in [18], 
as these cells were imaged at a temporal resolution of 4 minutes per frame as opposed to 
the 5 s per frame resolution employed in [77]. Interestingly, Corrigan et al. (2013) reported 
translational oscillations of the spindle pole along the pole-pole axis, and these oscillations 
ceased upon depletion of LGN [18].

The dynamics of the posterior mitotic spindle pole in the single cell C. elegans embryo 
have been well characterised [78], [79]. As metaphase proceeds, the spindle is displaced 
towards the posterior of the cell and this displacement coincides with highly conserved os-
cillations of the posterior pole as a result of increased force generation by cortical dynein 
[78], [80]. Interestingly, the posterior pole experiences a build-up of oscillations before 
they die back down, suggesting that the mechanisms by which the posterior pole oscillates 
change upon the approach of anaphase [78]. Pécréaux et al. (2006) attribute this amplifi-
cation and cessation of oscillations to the activity of dynein, which they suggest increases 
as metaphase proceeds [78]. The mechanism which could modulate dynein’s activity is un-
clear but is potentially attributed to LIN-5, the C. elegans equivalent of NuMA [67], [81].

Analysis of monopolar spindles has also shown that the localisation of LGN, NuMA’s cor-
tical binding partner, is dynamic due to its exclusion from the vicinity of the chromosomes, 
a result of a chromatin-derived RanGTP gradient [76]. The monopolar spindles were shown 
to ‘chase’ regions of high LGN intensity, while the constant relocation of LGN upon near-
ing of the chromosomes kept the spindle pole in motion. In particularly elongated cells, 
this resulted in a spindle pole which oscillated along the length of the cell [76]. This study 
highlights that spindle positioning is a dynamic process, with monitoring of the current 
cell state a crucial component in orienting the spindle. Indeed, the dynamic action depends 
upon presence of the astral microtubules [76]. Astral microtubules are key for spindle dy-
namics, as depletion of them by treatment with low dose nocodazole results in erroneous 
spindle centring and orientations, as well as reduced spindle velocity [13], [19], [26], [44], 
[64], [79], [82]–[84]. Thus the mitotic spindle requires the interaction of astral microtubules 
with cortical elements for proper spindle orientation and dynamic movements.

Interestingly, in the developing airway epithelium of mouse, two distinct spindle dynamic 
behaviours have been observed. Cells were identified within a single population to have 
either ‘fixed’ spindles (spindles which rotate to their final orientation within 6 minutes of 
metaphase and cease movements after this), or ‘rotating’ spindles (spindles which continue 
to move and dynamically change their angle throughout metaphase). The fixed spindles 
tended to result in divisions along the longitudinal axis of the airway, while rotating spin-
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dles divided with a random orientation [8]. Thus the two populations of cells have separate 
functions in tissue growth, with rotating spindles contributing to tissue spreading and fixed 
spindles contributing to tissue elongation. Upregulation of ERK signalling in these tis-
sues resulted in more ‘rotating’ spindle phenotypes even in more elongated cells [8]. ERK-
signalling is upregulated in stretched cells [85] and produces a contractile response within 
the cell [86], thus the increase in ERK-signalling creating a spindle response suggests that 
mechanical tension may have an effect on measurable spindle dynamics, especially in a tis-
sue context.

1.3 Cellular responses to mechanical tension

1.3.1 Transduction of forces in tissues

In order to understand how cells divide in response to tension, it is useful to first consider 
how cells, and specifically epithelial cells, experience force.

Epithelial tissues are cell layers of tissue which define the structure of organs and compart-
ments within organisms and act as barriers between the ‘inside’ and ‘outside’ [10]. Cells 
in an epithelial tissue are connected to neighbouring cells via cell-cell junctions to form a 
cohesive barrier [28]. A number of different types of junctions exist within the epithelial 
cells for cell-cell communication and barrier maintenance. One such junction is the ad-
herens junction, which connects cytoskeletal components of neighbouring cells, allowing 
mechanical stress to be communicated between cells in the tissue [10], [28]. A core com-
ponent of the adherens junction is E-cadherin, a transmembrane protein which clusters at 
junctions to knit with the E-cadherin molecules of the neighbouring cell [10]. E-cadherin 
associates with p120-catenin and 𝛽-catenin, which in turn mediate binding with 𝛼-catenin 
and the actin cytoskeleton [28]. In the absence of force, 𝛼-catenin exists in a closed con-
firmation such that it associates only with 𝛽-catenin and F-actin. However, upon the ap-
plication of an external force by the neighbouring cell, 𝛼-catenin is stretched into an open 
conformation which exposes a vinculin-binding domain [87]–[89]. The binding of vinculin 
further promotes the recruitment of more actin to stabilise the junction and increase acto-
myosin contractility [28], [89], [90].

Actomyosin contractility generates forces inside the cell. Actomyosin, a complex of actin 
and the motor proten myosin, is capable of both responding to and creating mechanical ten-
sion [91]. In particular myosin II is required for generating tension and resisting mechanical 
stress in tissues by inducing a sliding motion of antiparallel F-actin leading to a contrac-
tion force [92]–[95]. Actomyosin contractility can be upregulated by the tension-activated 
Rho GTP-ase RhoA [96]. Active RhoA activates ROCK1 to increase myosin II acivity, as 
well as promoting actin polymerisation via formins [83], [97]. It has been shown that opto-
genetic activation of RhoA in HeLa cells can cause measurable cell shape deformities due 
to asymmetric tension created by localised actomyosin contractility [83]. Also, the afore-
mentioned connection of the contracting actin cytoskeleton to E-cadherin provides a means 
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of transferring intracellular forces to the neighbouring cells through the adhesion site [98], 
[99]. Thus cells are capable of generating tension intrinsically through actomyosin contrac-
tility, as well as responding to forces through adhesions.

As well as cell-cell communication through connections of the actin cytoskeleton, mechan-
ical stretch can also alter cell behaviour by activating specific mechanosensitive ion chan-
nels in the membrane [100], [101]. Stretch-activated ion channels such as Piezo1 cause in-
flux of Ca2+ ions which upregulate ERK signalling to activate cyclin-B and cause the cell 
to enter mitosis [100]. Mechanical stretch has been shown to increase division rate in the 
epithelial tissue of the Xenopus laevis animal cap [15]. However, ERK is also an upregula-
tor in the pathway to promoting actomyosin contractility [86]. Thus mechanosensitive ion 
channels can also induce cell contractile behaviour in response to stress.

1.3.2 Cell division under mechanical tension

As cells have been shown to be able to both generate and respond to tension [28], [40], [90], 
and tension has been implicated in affecting spindle dynamics [8], we next introduce spe-
cific examples of the impact of tension on cell division orientation. Cell shape changes are 
linked to the direction of applied tension [4], [12], [13], [15], [17], [21], [43], so determin-
ing the important factor is difficult and the topic of much debate. As such we also introduce 
examples of division orientations determined to arise from cell shape factors.

Cell divisions attributed to cell tension

In individual HeLa cells, optogenetic cortical recruitment of RhoA to increase localised ac-
tomyosn contractility was shown to induce a spindle response, whereby mitotic spindles ac-
tively rotated away from regions of high cortical contractility [83]. To reduce the impact of 
shape-effects, the analysis was limited to cells showing only a very small augmentation in 
shape due to the contractility, thus the dramatic change in spindle orientation was attributed 
to cell tension effects [83].

In tissues, sites of adhesion are important for directed cell divisions, in particular the E-
cadherin at adherens junctions has been shown to be vital for maintaining in-plane divi-
sions in the epithelia of MDCK cells [102]. Thus cortical cues are likely to play a role in 
determining division orientation in tissue cells. Indeed, cortical cues have also been shown 
to determine division orientation even in single HeLa cells plated on fibronectin-coated 
micropatterns [45]. Adhesive retraction fibres connect the cell to the micropatterns to re-
shape the cell, and maintain a memory of this shape as the cell rounds up during mitosis 
[45]. These retraction fibres were shown to act as a spindle guide to orient the mitotic spin-
dle and resulting cell division, and laser ablation of the fibres has been shown to create a 
spindle re-orientation response away from the ablation site [13] suggesting that the tension 
propagating through the fibres is the important factor for controlling spindle orientation. 
Further, the behaviour of the mitotic cells to round up further highlights the importance of 
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the adhesive cortical cues, as without them the spindle would otherwise have oriented it-
self randomly if the shape of the cell during mitosis were the important factor [45]. Simi-
larly, adhesion of cells onto oval-shaped micropatterns which could be stretched into a cir-
cle showed an orientation response of cells along the direction of stretch, rather than the 
expected random distribution for shape-based effects (Figure 1.5A) [13], highlighting that 
tension can also impact cell division orientation in single cells.

In tissues, disentangling shape and force is more difficult as neighbour-neighbour interac-
tions and actomyosin contractility could impact local mechanical tensions [15], [21]. The 
detailed complexity added by neighbour-neighbour interactions makes the application of 
a global stretch on tissues an interesting experimental method for exploring the impact of 
tension on cells [12], [15], [17]. Hart et al. (2017) use a uniaxial stretch system on conflu-
ent MDCK monolayers to show that cell divisions re-orient along the stretch axis indepen-
dently of cell shape when monolayers are subject to a 12% stretch [12]. The low percentage 
of stretch (measured by displacement of nuclei upon application of the stretch) was used 
to decrease the shape-change effect they might impart on the cells, as they determined that 
a 12% stretch was not sufficient to create a significant change in cell shape [12]. However, 
this level of tension was sufficient to create a myosin II response, which was recruited to 
and amplified at the cortical regions perpendicular to the application of stretch indicating 
an actomyosin response through E-cadherin mediated force transduction (Figure 1.5B) [12], 
[89]. Divisions perpendicular to actomyosin cables were also described by Scarpa et al.
(2018) at compartmental boundaries of the Drosophila embryo during segmentation [14]. 
These divisions aligned perpendicular to the compartmental boundaries unless the shape 
was significantly elongated, an observation which was also reported by Hart et al. (2017).

The impact of tension on cell division has also been investigated without the application 
of an artificial stretch. The Drosophila wing pouch has both regions of stretch at the tis-
sue periphery and compression at the tissue centre [4]. Interestingly, in this tissue, myosin 
II was polarised tangent, rather than perpendicular, to the stretch [4]. The divisions in the 
Drosophila wing pouch occurred parallel to the actomyosin cables [4]. This was similar to 
what was seen in the Drosophila notum, where the extensile peripheral cells also aligned 
their divisions with the axis of stretch [16]. Importantly, in the crowded midline of the no-
tum, cells were unable to orient their divisions with their long axis, which implicates ten-
sion as the important factor for determining division orientation [16].

Thus, while tension has been implicated as an important factor for determining cell division 
orientation, the cellular mechanisms remains unclear. The contrasting observations of the 
regions of accumulated myosin II combined with the relative spindle orientation suggests 
that myosin II does not directly contribute to cell division orientation, but it may instead be 
working indirectly through internal changes to the cell. Interestingly, significantly elongated 
cells showed division orientations along the long axis of the cell not aligned with global 
tension [12], [14], suggesting that cell shape is an important factor.

37



Figure 1.5. Cell divisions according to external tension and cell shape. A) Reorientation of the mitotic 
spindle in a cell plated on an oval adhesive surface and stretched into a circle. The spindle reorients according 
to the stretch axis [13]. B) Alignment of divisions with the axis of tissue stretch, perpendicular to regions of 
accumulated myosin II [12]. C) Observed cell division orientation in a sea urchin zygote confined to a 
rectangular well. The expected orientation by Hertwig’s long axis rule is in contrast to the symmetric 
orientation observed [19]. D) Localised Mud (NuMA’s homolog) in the Drosophila pupal notum tissue. Mud 
localisation provides a spatial landmark for the cell shape according to the TCV position upon cell rounding 
[43].
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Cell divisions attributed to cell shape

A similar cell-stretch experiment to that described in [12] but with a much greater stretch 
of 30% showed that when cells were elongated away from the applied stretch they contin-
ued to divide along their long axis, seemingly unaffected by the global tension of the tissue 
[17]. Interestingly, using a vertex-based model to infer local stresses of tissue-bound cells, 
it has been shown that the local stress axis of individual cells within a tissue are aligned 
with the elongation of the cell shape, if the cell shape is defined in terms of the tricellular 
vertices (TCVs, the points where three or more cells meet) [21]. Analysis of division orien-
tations in the Xenopus laevis animal cap epithelial tissue shows an alignment with the shape 
of the cell when defined in this way, with the presence of the protein LGN at the TCVs ap-
pearing to be important for this orientation [15]. The alignment of division with the TCVs 
is perturbed upon the overexpression of cadherin, which results in the relocation of LGN to 
the cell edges, upon which cell division aligned best with cell shape as determined by the 
cell perimeter rather than TCVs [15]. This again highlights the importance of cell-cell ad-
hesions to neighbours in generating a spindle response, and thus the shape-based cues may 
arise from neighbour-neighbour interactions [15].

The positions of the TCVs have also been implicated as key regions for proper spindle align-
ment in Drosophila tissues [43]. Mud, the Drosophila homolog of NuMA, is key for spin-
dle alignment and is localised to the TCVs of cells in this tissue. Upon entry into mitosis 
the cells round up and the static Mud localisation provides spatial landmarks which allow 
the spindle to align with the long axis of the cell (Figure 1.5D). Computational modelling 
was used to indicate that the position of Mud at the TCVs could provide a cell-shape based 
mechanism to explain how cell divisions align with tissue stretch [43].

In single cells, the sea urchin zygote was shown to orient its divisions away from the cell 
long axis as determined using the Hertwig long axis rule (Figure 1.5C) [19]. However, this 
new division orientation could be described by a MT-length minimising function, which 
places the spindle at the orientation of maximum symmetry with minimised MT lengths 
extending from the spindle poles, revealing a new way of measuring cell shape [19].

A recent PhD thesis from the Woolner lab has shown that an applied cell tension aids cell 
division orientation along the cell long axis, and that this alignment with cell shape under 
tension requires NuMA at the cell cortex [27]. Importantly, upon depletion of NuMA pro-
tein levels, spindle align less well with cell shape, but only in stretched, not in unstretched, 
tissues. Thus shape-based and force-based effects may be more subtle than previously thought, 
with an external tension creating an additional cell-based response which allows the spindle 
to align with the cell’s long axis [27].

We previously described how the mitotic spindle is positioned due to the interactions of the 
astral microtubule with elements at the cell cortex (Section 1.2.2), and spindle positioning 
has been shown to be a dynamic process which depends upon these interactions (Section 
1.2.3). Importantly, the resulting cell division orientation is shown to be tension-sensitive, 

39



though whether or not this sensitivity is due to force-based or shape-based effects is unclear 
(Section 1.3.2). A key player in spindle orientation is NuMA, which has roles both at the 
spindle poles [25] and at the cell cortex [64], [103].

1.4 Nuclear mitotic apparatus (NuMA) protein

The large (≈ 240 kD) protein NuMA is important for the spindle orienting mechanism [32], 
[36], [64], [65], [69], [104], [105] and is instrumental as a spindle-pole focusing protein 
[24], [106], [107]. This section aims to explore some of the basic properties of NuMA with 
regard to its structure and function. In doing so, NuMA will be highlighted as a key player 
in the spindle orienting mechanism with an argument for its potential function in translating 
extrinsic mechanical cues to intrinsic effects in the form of spindle movements.

1.4.1 NuMA functions at the cortex and the spindle poles

Following the breakdown of the nuclear envelope at prometaphase, NuMA localises to the 
spindle poles in a characteristic crescent shape [107] as a result of its association with both 
dynein and microtubules [108]. Here, the association of NuMA with dynein, dynactin, mi-
crotubules and its ability to form dimers focuses the microtubule bundles to create the fusiform 
shape of the bipolar spindle (Figure 1.4A).

The spindle also interacts with NuMA at the cell cortex, where it is found in conjunction 
with LGN and G𝛼i (Figure 1.4B) [4], [64], [69]. This ternary complex provides a tether for 
dynein which can transfer pulling forces to the spindle through association with astral mi-
crotubules. It is NuMA’s recruitment to the cortex and subsequent recruitment of dynein 
that is important for spindle positioning, with LGN and G𝛼i acting as cues for precise lo-
calisation [36], [64].

1.4.2 Binding domains and interactions

NuMA contains two globular head and tail domains separated by an unusually long coiled-
coil of approximately 210 nm (Figure 1.6A) [106], [109]–[112]. NuMA resides mainly in 
the nucleus when cells are not undergoing mitosis [106], [108], [110], in contrast to Mud, 
which doesn’t localise to the nucleus and is localised to the cell cortex prior to prophase 
[43]. The presence of dynein [4], microtubule [113], [114], and LGN [113], [115] binding 
domains give function to NuMA at both the spindle poles and the cell cortex.

At the spindle poles, NuMA interacts with both dynein and microtubules to form a rigid 
spindle pole architecture [24], [25], [110], [112]. While at the poles, NuMA may also dimerise 
with other NuMA molecules due to hydrodynamic interactions between neighbouring coiled-
coil regions, which aids in NuMA’s function as a pole focusing factor [116], [117]. NuMA 
at the spindle pole may be phosphorylated by kinase Aurora-A, which results in increased 
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mobility of NuMA at the spindle poles and relocation of NuMA to the cell cortex [118]. 
LGN binding has also been shown to result in the translocation of NuMA from the spindle 
poles, likely due to the overlapping LGN and MT binding domains which disrupt NuMA’s 
association with microtubules at the spindle pole [113], [115], [119].

NuMA’s localisation to the cortex is spatially coincident with the localisation of LGN [32], 
[120] and stabilised by interactions of NuMA with F-actin through a 4.1-binding domain 
[103]. This localisation is independent of microtubule binding [32], [120]. What’s more, 
the depletion of NuMA-microtubule interactions results in misalignment between spindle 
orientation and NuMA/LGN localisation [120]. Therefore, while NuMA’s cortical locali-
sation is microtubule-independent, NuMA-MT interactions are important for spindle po-
sitioning. Interestingly, NuMA-MT interactions should be abolished when bound to LGN 
[113], [115]. The presence of a second microtubule binding domain has been suggested 
which could explain how NuMA at the cortex can associate with both LGN and micro-
tubules [118]. Although as the LGN-MT binding domain overlap has been implicated in 
the dynamic exchange of NuMA at the spindle poles when cytoplasmic LGN competes 
NuMA away from the microtubules [113], [115], [119], the mechanism of the second bind-
ing domain is unclear. Interestingly, it has also been observed that NuMA can localise to 
the cell periphery without LGN/G𝛼i through a direct membrane binding domain, although 
this action is inhibited by CDK1-mediated phosphorylation until chromosome segregation 
events occur at anaphase [121].

NuMA-phosphorylation by spindle-pole residing Polo-like kinase (Plk1) results in the ex-
clusion of NuMA from the cortex [26], [74], while the RanGTP gradient from the chromo-
somes disrupts the association of LGN-NuMA with the cortex, increasing the complexity of 
the dynamic localisation of NuMA [26], [76].

1.4.3 Structure and the coiled-coil

The coiled-coil domain of NuMA is largely unexplored in terms of function. This section 
of the protein is unusually long, arranged in an 𝛼-helix [106], [109]–[112] with two parallel 
strands. The presence of discontinuities in the phasing of the heptad structure are likely to 
affect the propensity of the conformation to kink, bend or deform [109], [111]. The coiled-
coil can also give rise to NuMA dimerisation through hydrophobic interactions [116], [117], 
and this dimerisation is thought to aid in the spindle-pole focusing function [116].

Dynein binds to the N-terminal end of the coiled-coil, overlapping with the coiled-coil re-
gion (Figure 1.6A) [4]. Computational studies into the mechanical responses of coiled-coils 
have suggested that the binding of molecules to coiled-coils can introduce a displacement in 
one of the helices, which results in an amplified bending displacement of the coil. The he-
lical structures respond to local perturbations with amplified bending responses, where the 
magnitude of amplification increases with coiled-coil length [122]. It is thus possible that 
dynein binding to NuMA induces a conformational change to its structure, or that mechan-
ical perturbations as a result of cortical tension can be amplified down the coil to affect its 
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Figure 1.6. NuMA’s key binding domains and cortical localisation. A) The structure of NuMA showing 
two golobular N- and C- terminals and a large central coiled-coil region. The dynein, 4.1 and LGN binding 
domain locations along NuMA. aa - amino acids. B) The temporal recruitment of NuMA to the cell cortex in 
unstretched and stretched cells, as seen in unpublished work from the Woolner lab [27].

binding affinity.

1.4.4 Implications in tension-sensitive spindle orientation

NuMA clearly has a central role in spindle orientation, as disruption of the NuMA-dynein-
MT interactions reliably result in spindle orientation defects [12], [16], [26], [43], [64], 
[103]. What is less clear is NuMA’s role in tension-sensitive spindle orientation.

Bosveld et al. (2016) observe NuMA’s Drosophila homolog Mud at the TCVs of the pupal 
notum epithelium. At the TCVs, Mud colocalises with tricellular junction proteins, which 
connect neighbouring cells lie at the TCVs in this tissue, and are thus locations likely to 
contribute to neighbour-neighbour force communication [43]. Laser ablation of the micro-
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tubules of the mitotic spindles showed that pulling forces towards the TCVs were reduced 
upon depletion of Mud, as characterised by the recoil velocity of the centrosome connected 
to the ablated microtubules. This increased pulling force towards the TCVs was simulated 
mathematically, showing that amplification of pulling forces at the sites of Mud localisa-
tion are sufficient to orient the mitotic spindle according to TCV anisotropy [43]. How-
ever, unlike Mud, which localises to the cortex at the TCVs throughout mitosis, NuMA is 
only localised to the cell cortex during metaphase [27], [81]. In the Woolner lab, recent un-
published quantitative analysis of the localisation of GFP-NuMA in Xenopus laevis shows 
that NuMA localises preferentially to the cell edge rather than the TCVs, with an accumu-
lation that builds through metaphase until anaphase [27]. Thus NuMA’s dynamic localisa-
tion increases the complexity of spindle positioning in vertebrate tissue. Further, the tem-
poral accumulation of NuMA to the polar cortex (aligned with the spindle pole-pole axis) 
was found to be tension-sensitive, showing an earlier relocation from the equatorial cor-
tex (aligned with the metaphase plate) to the polar cortex in stretched tissues compared to 
unstretched tissues (Figure 1.6B) [27]. Thus NuMA’s localisation is not only dynamic but 
linked to applied tensions.

Keratinocytes also showed a NuMA-mediated spindle reorientation response which was re-
quired to reorient spindles under a uniaxial stretch [103]. The application of stretch resulted 
in NuMA localisation perpendicular to the axis of stretch [103], a phenotype which has also 
been observed in stretched MDCK monolayers [12]. Knockdown of NuMA resulted in a 
loss of reorientation of the spindle along the stretch axis [103], indicating that NuMA may 
be important for stretch-induced cell division orientation. The localisation of NuMA was 
shown to depend upon its 4.1-binding domain, which stabilises NuMA’s interaction to the 
cortex when associated with LGN. This stabilisation function was shown by deletion of the 
4.1 binding domain, which resulted in an increased mobility of NuMA at the cortex and im-
paired spindle orientation. Thus it is suggested that NuMA requries association with both 
LGN and F-actin through the 4.1 binding domain to function correctly [103].

Interestingly, Kelkar et al. (2022) show that an induced localised cortical contraction is 
sufficient to displace the mitotic spindle without affecting the localisation of NuMA [83]. 
NuMA was depleted in these cells by application of the chemical inhibitor MLN8237 which 
targets Aurora-A kinase activity [83], [123]. As Aurora-A is required to phosphorylate NuMA 
at the spindle poles, leading to its relocation to the cell cortex, MLN8237 reduces cortical 
localisation by inhibiting sequestering from the poles [118]. Interestingly, while the lo-
calisation of NuMA in these cells was not a predictor for spindle orientation, depletion of 
cortical NuMA resulted in a cessation of spindle rotation. Rotations were considered to be 
a result of pulling forces which were reduced upon cortical contraction [83]. Actomyosin 
contractility has been shown to not affect NuMA localisation [103], thus this suggests that 
contractile forces may decrease NuMA’s function without affecting its localisation.

Recent unpublished work from the Woolner lab shows that NuMA may respond specifically 
to anisotropic tension [27]. Tarannum (2022) showed in their recently submitted thesis that 
cell division orientation with the cell long axis is improved in Xenopus laevis animal cap 
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tissue subject to a uniaxial stretch, and that this improvement depends on NuMA. Depletion 
of NuMA, using a morpholino knockdown approach, disrupted division orientation align-
ment with cell shape. By analysing division orientation in stretched and unstretched tissues 
subject to a NuMA knockdown (KD), it was shown that NuMA-mediated spindle orienta-
tion was most important for stretched tissues to align their divisions with cell shape. De-
pletion of NuMA caused spindles to align less well with cell shape, but only in stretched, 
and not unstretched, tissues [27]. However, analysis of the spindle translational velocities 
showed that spindles moved more slowly in the absence of NuMA, and this effect was in-
dependent of the applied tension [27]. Interestingly, the NuMA-mediated spindle reorienta-
tion specifically responded to anisotropic tension rather than isotropic tension, further com-
plicating our ideas for NuMA’s functioning mechanism [27].

While NuMA is a key player in tension-sensitive spindle orientation, its specific response to 
anisotropic rather than isotropic tension, combined with the spindle velocity response both 
with and without stretch, raises questions about the mechanisms by which NuMA may be 
functioning. We wish to explore NuMA’s function as a spindle orientation factor by using 
mathematical modelling to elucidate the factors which may be perturbed under stretch.

1.5 Mathematical modelling of the mitotic spindle

To help determine NuMA’s precise role in tension-sensitive spindle orientation and to un-
derstand how tissue stretch regulates spindle dynamics more generally, we turn to mathe-
matical modelling. Mathematics allows for the disentanglement of correlative and causative 
effects in systems where the decoupling of processes or mechanisms is difficult. By build-
ing a model based on current assumptions and testing this model in experimentally replica-
ble conditions, the model — and the initial assumptions on which the model was built — 
are put to the test. A number of mathematical models of spindle orientation have thus been 
developed and explored in various ways and the many mechanisms suggested for correct 
cell division orientation make for a rich literature of the various methods used to test these 
mechanisms [124]–[126]. However, NuMA’s role in this process has not yet been fully ex-
plored. Here we introduce a number of the mathematical models that have been used to de-
scribe the components of the mitotic spindle and its positioning in the cell.

1.5.1 Cell division orientation due to geometry of the cell

Cell division orientation has been studied in terms of the cell and tissue geometry [15], 
[127]. In the epithelial layer of Xenopus laevis, the cells form a polygonal lattice due to 
their close packing. Shape tensors may be defined to describe the cell shapes in terms of 
the cell area, the cell perimeter, and the tricellular vertices (TCVs, the points where 3 or 
more cells meet). These tensors allow the principal axes of the shape to be determined (the 
short and long axes of the cell), from which the cell circularity may be extracted as the ra-
tio of their corresponding eigenvalues. By using these shape measures, it was shown that 
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the cell division orientation aligned well with the long axis of the cell determined from the 
TCV shape tensor [15]. Interestingly, over-expression of adhesion-protein cadherin resulted 
in cell division orientations which aligned best with the long axis of the cell determined 
from the perimeter shape tensor instead. Cadherin over-expression also led to a redistribu-
tion of cortical LGN from the TCVs to the entire cell edge [15], suggesting that the shape 
tensors may be used to describe the distribution of spindle-orienting machinery within the 
cell in order to predict the resulting cell division orientation. This model may therefore be 
used to determine which spatial localisation of spindle-orienting components dominates in 
cells, though the details of the components and how they act to produce a spindle effect are 
omitted. Thus a more intricate model is needed to describe the mechanical processes hap-
pening inside the cell.

1.5.2 Modelling the microtubules

The microtubules (MTs) are the structures which make up the mitotic spindle. They nu-
cleate from the spindle poles (the centrosomes) at their minus ends, and grow at their plus 
ends towards either the cell cortex (astral MTs) or the spindle equator. At the spindle equa-
tor they interact with the chromosomes (kinetochore MTs) or MTs from the opposite pole 
(interpolar MTs) (Figure 1.3A) (see section 1.2). As MTs are a core component in the cell 
division machinery, their correct mathematical description is vital to be able to create a 
working model of the movements of the mitotic spindle. Here we introduce some of the 
ways MTs have been modelled. Many more studies have been done outside of the direct mi-
totic spindle context due to their role in positioning other cellular components, such as the 
nucleus prior to nuclear envelope breakdown and the formation of the spindle pole [19], 
[71], [128]–[130]. These studies provide insights which may be applied to the action of 
MTs during cell division because the processes are similar. The formation of the bipolar 
spindle and the various forces involved are well studied [124], particularly with reference 
to the stabilisation of the chromosomes and the subsequent entry into the spindle-assembly 
checkpoint [131], [132]. However this aspect of microtubule function is not the subject of 
this study, thus we instead focus on the modelling of microtubules in a force-generation 
context.

MTs are long, thin filaments with a high flexural rigidity and thus may be considered to be 
relatively rigid structures over the length scale of an average cell [133]–[135]. It has been 
shown experimentally that a MT of length 𝐿 will buckle under an applied load if the load 
exceeds a critical value 𝑓𝐸 [133], [136], given by 𝑓𝐸 = 𝑎 𝜅𝐿2 , (1.1)

for flexural rigidity 𝜅 (units Nm2) and constant 𝑎. The value of 𝑎 varies based on the MT 
nucleation point (a smaller value if hinged, where the MT may rotate freely about its end, 
or a larger value if clamped, where the angle of the MT end is held constant (Figure 1.3B)) 
[137]. Then the maximum resistive force a MT may supply is 𝑓𝐸, and this is increased for 
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short, rigid, clamped MTs. The high flexural rigidity then gives MTs the ability to provide 
pushing forces against approaching surfaces and boundaries.

In a mathematical study into the elasticity of interpolar and kinetochore MTs, the flexu-
ral rigidity was cited as being elevated due to the bundling of MTs in these populations by 
crosslinking proteins, with further elevation of rigidity if the bundling interactions were 
strong [135]. The elastic stiffness 𝐾 can be predicted in silico by solving for the shape of 
a filament with flexural rigidity 𝜅 being acted on by a range of tangentially applied forces 𝐹. 
Then by Hooke’s law 𝐾 = −Δ𝐹Δ𝑙 (1.2)

for Δ𝐹 the difference in force magnitude required to produce a difference Δ𝑙 in inward dis-
placement between the ends of the MT [135]. This elastic stiffness is shown to decrease for: 
i) bundles of fewer MTs, ii) weaker cross-linking between MTs within the bundle, iii) hing-
ing at the nucleation point, and iv) buckling [135]. Results i) and ii) arise due to their effect 
in decreasing the flexural rigidity of the MT bundle, while iii) was described above in its 
augmentation of the critical force leading to buckling.

The length-dependence of the buckling force is additionally complicated by the dynamic 
nature of MTs. They go through phases of growing and shrinking, termed ‘dynamic insta-
bility’ [51], [52]. Dynamic instability (described in section 1.2) is driven by GTP, which 
is incorporated into the MT plus end via binding to tubulin dimers, and eventually hydrol-
ysed within the micotubule lattice into GDP. The structure of the MT lattice is stable for 
GTP-tubulin subunits, promoting growth, and unstable for GDP-tubulin subunits, promot-
ing shrinkage [46], [51], [52]. Microtubules are considered to have a GTP-cap, a sequence 
of tubulin dimers at the growing tip which are bound to GTP and which stabilise the MTs 
growth. Loss of the GTP-cap, by reduced binding of new tubulin subunits or by hydroly-
sis of the cap into GDP, results in rapid depolymerisation of the microtubule (Figure 1.3C) 
[46], [51], [52]. Monte Carlo kinetic simulations based on the binding affinities and dis-
assembly rates of GTP and GDP sub-units show that biologically-relevant rate constants 
result in slow growth of microtubules with GTP-caps, and the rapid disassembly of mi-
crotubules whose caps have been hydrolysed into GDP [138]. Both of these phases were 
shown to exist in a wide range of tubulin concentrations and highlighted that the biphasic 
behaviour could be explained entirely by the binding affinities of the component sub-units.

Mogilner and Oster (1999) described the growth-related pushing forces using a Brownian 
Ratchet theory, such that thermal fluctuations between the barrier and the end of the grow-
ing microtubule allow for the addition of tubulin sub-units which create a force on the bar-
rier [139]. The stall force, the maximum force a growing microtubule may exert on a bar-
rier in this way, has been predicted to depend upon the number of filaments which make up 
the microtubule [139]–[141] as well as the strength of the lateral interactions between the 
filaments [141]. This mirrors the dependence of the flexural rigidity of a MT bundle on the 
number of MTs and the strength of the cross-linking proteins [135]. The predicted force-
velocity relationship due to tubulin addition matched those measured experimentally [136]. 
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Together, these stall forces may create pushing forces against cellular components in order 
to orient the mitotic spindle, and stochastic mathematical models may be used to describe 
the pushing effect.

While the growth of a microtubule may be modelled mathematically to as fine a scale as 
the stochastic addition of individual tubulin sub-units, when more macroscale properties of 
the structure are considered, individually modelling each microtubule becomes laborious 
and computationally expensive. This is especially true when considering the interactions 
between whole microtubules and other cellular components. As such, cellular-level mod-
els often take the main results of the molecular-level models and represent them in more 
simple forms which capture the most important characteristics. The dynamic instability of 
microtubules can be described alternatively by considering the relative rates of catastrophe 
(the growing→shrinking transition) and polymerisation (the shrinking→growing transi-
tion), combined with experimentally-derived growing and shrinking velocities [137], [142], 
[143].

Dynamic instability [137], [143] has been implicated in displacement mechanisms for the 
MT organising centre (MTOC) from which the MTs nucleate (e.g. the centrosomes). The 
MTs in the growing phase are considered to grow against a barrier and supply a force equal 
to their stall force, before undergoing catastrophe and entering their shrinking phase [137], 
[143]. The dynamic catastrophe and recovery ensures that a central stable point exists for 
the spindle, because as long as nucleation and MT growth rates are constant in all direc-
tions, then at the centre of a cell there will be equal probability for pushing events to oc-
cur from all directions. In the case of an off-centre spindle, then the side closest to the cell 
membrane will have a larger chance of experiencing pushing events as more MTs can grow 
and contact the cortex in a given time [137]. This dynamic MT array effect can be thought 
of as a spring, where the spring constant is inversely proportional to the distance of the 
spindle from the cortex such that smaller MTs act as stiffer springs that can thus provide 
more force. The simplification of modelling MTs as restoring springs has been used previ-
ously [78]–[80]. However, the ‘spring system’ described in [80] reads similarly to a force 
from a potential energy: the further away from the centre of the range of motion the MT-
attached spindle pole moves, the greater the restoring force provided. As cell edge locations 
are not specified in this 1D model of spindle pole motion, the restoring force could perhaps 
best be described as a pulled, extended spring from the centre of cell, rather than a pushing 
spring from the compressed microtubules.

In all, it has been determined by the use of stochastic simulations [139], [141], [142] as 
well as deterministic models [137], [139] that dynamic instability is an intrinsic behaviour 
of MTs that emerges as a result of the binding and hydrolysis of GTP-tubulin at the growing 
plus ends of microtubules. This dynamic instability is required to produce pushing forces 
against stationary barriers and can be used to calculate an effective spring constant for the 
MT array. Additionally, external forces may bend MTs, which have also been shown to re-
spond elastically [133], [135]–[137] Taken together, the dynamic instability and elasticity 
of microtubules gives them an overall centring mechanism within the cell due to their abil-
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ity to push against rigid obstacles, acting as a restoring spring which could be incorporated 
into a model as a general centring force.

1.5.3 Modelling motor proteins

Motor proteins are also a source of forcing on the mitotic spindle. The motor proteins dynein 
and kinesin interact with the MTs of the spindle and produce forces based on their direc-
tion of motion. Dynein, a minus-end directed protein, has motion toward the centrosome, 
while kinesin is a plus-end directed protein and thus has motion away from the centrosome. 
The simultaneous binding of dynein and kinesin to MTs and other structures within the cell 
(such as the cell cortex or cargos within the cytoplasm) creates a force on the microtubule 
which can then be transferred to the centrosome [47]. Indeed, the magnitude of these forces 
and the resulting effect on spindle orientation are significant, such that in large cells where 
the MTs are too small to contact the cell edge, motor proteins are determined to be respon-
sible for spindle centring [70]. As kinesins are generally thought to have more of an impact 
on the establishment of the spindle shape rather than its position, they will be largely omit-
ted from the future discussion: we will focus instead on the impact of dynein and the differ-
ent ways it has been modelled.

Many mathematical models of cell division are based solely upon the pulling action of dynein 
[19], [43], [45], [144], while others consider dynein to be just one contribution in a balance 
of pulling and pushing forces [129], [137], [143], [145]–[147]. We again note that some of 
the models introduced are concerned with the positioning of the nucleus or single centro-
somes as opposed to mitotic spindles, as the mechanisms are considered to be similar. We 
will introduce how pulling forces by motor proteins have been described and implemented 
in other mathematical models.

One incorporation of dynein-related forces is by way of a force that is proportional to MT 
length [19], [130], [143], [148]. This length-dependence fits well with a cytoplasmic pulling 
description, where dynein transporting cargo along an MT creates a force directed away 
from the centrosome due to drag (opposite to the direction of dynein motion). The length-
dependence comes in here as more dyneins may load onto a longer MT. Kimura and On-
ami (2005) studied the positioning of the pronuclear complex (PNC) by comparing push-
ing by microtubules and pulling by cytoplasmic dynein [130]. They show that the models 
of pulling best replicated the distance-time graphs of the PNC obtained through experi-
ment [130]. Cytoplasmic pulling could lead to centring as a spindle perturbed Δ𝑥 to the 
right from the centre of a symmetric cell will have MTs up to 2Δ𝑥 longer on the left than 
the right. Thus more dyneins will be able to load onto the left and create a net pulling force 
to the left, back to the centre of the cell. Pulling by cytoplasmic dynein has been shown to 
lead to the centring of centrosomes in the C. elegans embryo [71].

Alternatively, pulling by dynein has also been described in terms of concentrations. In-
creasing the concentration of ‘force generation’ at experimentally-identified sites of mo-
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tor protein activity [43], [45], [148] best describes cortical force generation by cortically-
located dynein (by interactions with LGN/NuMA or Pins/Mud).

Describing cortical and cytoplasmic pulling in these ways simulates the net effect of the 
pulling force without detailed concern for the biological processes which create the forces. 
More detailed models incorporate pulling by considering the stall force of dynein as a pa-
rameter in the determination of the force it exerts along the microtubule [128], [129], [144]–
[146]. That is, in general 𝑓dyn = 𝑓0 (1 − 𝑣𝑣0 ) (0 ≤ 𝑣 ≤ 𝑣0) (1.3)

for some stall force 𝑓0, unloaded dynein walking velocity 𝑣0 and the magnitude of the loaded 
velocity of dynein 𝑣, loaded with a force 𝑓dyn. The stall force is the applied force at which a 
motor protein will cease its motion, thus when 𝑓dyn = 𝑓0, then 𝑣 = 0. This force determi-
nation may be used for cortical dynein [144]–[146] and cytoplasmic dynein [128]–[130], 
[145], [146]. A similar formulation for dynein pulling in C. elegans describes the velocity 
of cortical dynein along a microtubule as 𝑣 = 𝑣0 − 𝑘𝑣0𝑓0 𝑦 − d𝑧

d𝑡 (1.4)

for 𝑘 the stiffness of the elastic linker with extension 𝑦 which binds dynein to the cortex, 
with d𝑧

d𝑡 describing the velocity of approaching spindle pole (and thus the velocity of the mi-
crotubule) (Figure 1.7) [80]. This can be compared to (1.3) by writing the force 𝑓 = 𝑘𝑦, 
then 𝑓 = 𝑓0 (1 − 𝑣𝑣0 − 1𝑣0 d𝑧

d𝑡 ) . (1.5)

This force is different to 𝑓dyn alone as it incorporates pulling from dynein’s walking veloc-
ity as well as dynein’s strength of binding to the cortex via GPR-1/2/LIN-5, which is here 
taken to have an elastic response. We will explore the model in [80] in more detail in Chap-
ter 4.

The affinity for dynein’s binding and unbinding is incorporated explicitly in few models 
[80], [128], [145], [146]. It has been shown that dynein forms a slip bond with microtubules 
[61], therefore increased loads should also increase the unbinding rate. This can be accounted 
for with an unbinding rate with an exponential dependence on load 𝜔off ∝ 𝑒𝑓/𝑓off , (1.6)

where 𝜔off is the unbinding rate and 𝑓off is the characteristic force which controls the sen-
sitivity of unbinding to load [80], [145], [146]. The affinity for binding has also been in-
cluded in some studies, where binding is increased in previously-identified regions of high 
localisation of LGN/NuMA/Dynein (or their homologues) [145]. This is similar to the de-
scription of pulling by way of concentrations, by allowing the concentration of pulling mo-
tors to accumulate as a result of the higher binding affinity rather than by an artificial pulling 
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Figure 1.7. Modelling dynein attachment to the cortex with an elastic linker. Diagram showing how 
dynein is modelled as an motor protein head attached to the cell cortex via an elastic linker with extension 
length 𝑦. Dynein binds with microtubules (green line) extended from the spindle pole, which lies at position 𝑧(𝑡). The velocity of the microtubule-bound dynein away from the cortex, 𝑣, depends on the relative velocity 
of the spindle pole and on the restoring force provided by the elastic linker [80].

from those identified regions.

As the description of force generators become more complex, the methods by which the 
resulting force acts on the spindle are calculated will become more complex to accommo-
date, in particular when variable binding and unbinding affinities are of concern. Simpler 
descriptions in the form of length-dependent or concentration-based forces lend themselves 
to being solved analytically in order to determine the states of lowest energy for the system 
to reside in, while complex dynamic interactions between motors travelling along micro-
tubules with velocities require numerical and time-dependent approaches to solving the re-
sulting spindle dynamics.

Following this introduction into methods of describing both microtubules and force genera-
tors, we introduce how combinations of pushing through microtubules and pulling through 
motor proteins have been incorporated studies into the correct positioning of cellular com-
ponents such as the PNC, centrosomes, and mitotic spindle.

1.5.4 Modelling positioning due to pushing and pulling

The above sections have highlighted cortical pushing (by MTs), cortical pulling (by cortical 
dynein) and cytoplasmic pulling (by cytoplasmic dynein) as the main mechanisms by which 
the stable orientation and positioning of the mitotic spindle within the cell may be achieved. 
Indeed, it could be argued that all three play an important role, though often only one or 
two are considered to dominate in particular circumstances. For example, in very large cells 
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such as the Xenopus laevis or zebrafish single cells, the astral MTs may be unable to contact 
the cortex [70] and thus unable to produce or be subject to any cortical forces. Thus cyto-
plasmic pulling is expected to dominate in this regime.

Nazockadast et al. (2017) study the hydrodynamic interactions between MTs while posi-
tioning the PNC, comparing the resulting cytoplasmic flows from purely pushing, purely 
cortical pulling and purely cytoplasmic pulling regimes [128]. This model includes: i) push-
ing from microtubules by treating them as hinged linear springs; ii) cortical pulling by dynein 
with constant unbinding rates and spatially-varying binding rates based on previous ob-
servations of locations of increased binding of dynein, and a force as in (1.3); and iii) cy-
toplasmic dynein with constant binding and unbinding rates and a force as in (1.3), with 
an additional viscous term to account for the transport of a cargo through a viscous fluid. 
The resulting flows were similar for both cortical forcing methods (pushing and pulling) 
but markedly different for the cytoplasmic pulling model. Experimentally, the cytoplasmic 
flow has not been fully investigated, although if all three play a part in the positioning of the 
PNC then likely a flow field combining features from all three regimes would be observed. 
However, other studies suggest that microtubule pushing and cytoplasmic pulling are the 
dominant forces in the centring of the PNC [129]. As the flow fields for cortical pushing 
and pulling were very similar, it is likely that the observed flow fields in a combined pulling 
and pushing mechanism would look similarly. The positioning of the PNC is a smooth cen-
tring process with a translation and a rotation to the final position, and this is recapitulated 
in these models [128], [129]. However the movements of the mitotic spindle in Xenopus 
laevis tissue cells have been shown to be dynamic, particularly toward anaphase [77], thus 
it may not be appropriate to directly apply the models of the PNC to the spindle.

To determine the cell division orientation, some studies calculated the torque incident on 
the spindle due to pulling forces [19], [43], [45]. In these studies, the pulling forces were 
assumed to come from either MT length-dependent forces [19], or concentration-based 
forces [43], [45]. Common to all three is that the pulling forces were assumed to be static, 
and that the probability distribution of spindle orientations, 𝑃(𝛼) were of the form 𝑃 (𝛼) ∼ 𝑒𝑤/𝑑 (1.7)

for spindle orientations 𝛼, 𝑤 the energy due to torque, and 𝑑 a noise parameter. From this 
the most likely spindle orientation could be determined on a cell-by-cell basis from an en-
ergy minimisation perspective. While these models were successful in determining the 
cell division orientation for a variety of interesting geometries, we highlight that due to the 
omission of explicit force sources, it is still unclear whether pulling alone is responsible for 
the movement of the spindle. In particular, the length-dependent force employed by Minc 
et al. (2011) may be a combination of pushing and pulling, where pushing is increased in 
shorter microtubules and thus the balance of pushing and pulling is such that there is a net 
decrease in pulling force. Alternatively, length-dependent forces may be describing cyto-
plasmic pulling alone [19]. The precise mechanism behind this length-dependent force is 
thus unclear. Interestingly, increasing pulling forces based on the intensity of GFP-Mud, 
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a NuMA homologue, at the tricellular vertices of the cells in Drosophila tissues resulted 
in division orientations which closely matched experiment. Alternatively, cells cultured 
on adhesive micropatterns such that they took the shape of interesting geometries also di-
vided in orientations that matched closely with simulated cells when pulling forces were 
enhanced at regions of high retraction fibre density [45]. Together, these confirm that in-
creased pulling forces at locations of known dynein accumulation may orient the spindle. 
Though again, the mechanistic detail is lost in the simplification of the forces, as explicitly 
MT-based forces are not described. Further, the dynamic detail of the spindle positioning is 
lost. Interestingly, Corrigan et al. (2005) use a similar method of force amplification at dis-
crete cortical locations in rounded cells to produce noisy rotational spindle dynamics [149]. 
Their stochastic description of cortical cue activation and de-activation simulates noisy ro-
tation toward the long axis as defined by the anisotropy in the placement of the cortical cues 
[149], highlighting the importance of cortical pulling elements in creating dynamic move-
ments of the spindle. However the time-resolution of these dynamic movements is low, re-
flecting well the dynamics of spindles imaged at frame intervals of 3 minutes. Interestingly, 
despite the stochastic model timestep being orders of magnitude smaller than this (0.2 s), 
the model matched these dynamics well [18], [149]. This is interesting as dynamic spindle 
oscillations have been observed at finer timescales of imaging in other systems [77]–[79], 
suggesting that cortical cues alone cannot account for the dynamic spindle oscillations at 
finer time resolution.

Akiyama et al. (2018) propose a model which includes both length-dependent and concentration-
based forces on the spindle [148]. This model accurately reproduces cell division orien-
tations leading to cyst and early embryo development, while also having a temporal ele-
ment to the determination of the spindle pole positioning [148]. The orientations of the 
spindle were determined by describing the concentration of active cortical force generators 
(dynein) by a function 𝐺 which varies according the locations of adhesive regions of the 
cell, while also incorporating a MT-length dependence on the strength of the pulling force 
from contributions of cytoplasmic dynein [148], [150]. By describing the central spindle 
array (centrosome→centrosome) as a spring, both 2D and 3D motion of the spindle is de-
termined and its stable end-position taken as the orientation of the cell division. The rel-
ative simplicity of this model highlights that detailed descriptions of the mechanisms in-
volved in positioning the spindle are not required to successfully determine the final ori-
entation of cell division. However, once again the spindle dynamics which have been ob-
served experimentally elsewhere [8], [18], [79] may require a more detailed mathematical 
description.

Li and Jiang (2017) use a stochastic model to explicitly describe the interactions of MTs 
with chromosomes, motor proteins and boundaries to create self-assembled spindles within 
cells [146]. This model has been used and adapted to investigate spindle orientation. Using 
band domains of adhesion where the binding rate of dynein is increased, MTs and chromo-
somes self-assemble into a mitotic spindle and orient within the simulated cells as a result 
of a combination of pushing forces and dynein-mediated pulling forces at both the cortex 
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and the cytoplasmic domain. Dynein was considered to unbind with a load dependence 
(1.6), and produce a force as in (1.3). This resulted in spindles which aligned with the ad-
hesion sites [145] similarly to what has been shown in simpler models [43], [45]. However, 
the spindle was shown to align with the cell long axis instead if the cell was particularly 
elongated, with the adhesion sites located away from the long axis [145]. We suggest this 
competition between cell shape and cell adhesion arises due to the adhesion-independent 
pushing of the microtubules, which will try to align the spindle along the long axis of the 
cell, vs. the pulling by dynein which is elevated at sites of increased adhesion. Then for 
very elongated cells the microtubule pushing will ‘win’ against the pulling from dynein. In-
terestingly, the simulated spindles were shown to form already in line with their final divi-
sion axis, with no characteristic movements of the spindle once assembled. This is in con-
trast to what has been observed of spindle dynamics experimentally [8], [77], [78] which 
leads to the question of what is different between the assumed interactions of the compo-
nent structures used in [145] and in these cases where prolonged spindle dynamics are ob-
served. The large-scale stochastic model described in [145], [146] has a great number of 
variables which may be adjusted to account for experimentally observed spindle dynamics, 
but elucidating exactly which parameter is the most important would be difficult. We thus 
turn to the model described by [80], which looks specifically at the balance between push-
ing and pulling forces at the cell cortex, such that we might determine if it is this balance 
that is the most important for creating dynamic spindle movements.

The Grill et al. (2005) model [80] is a one-dimensional model which describes the oscil-
lation of the posterior pole of the spindle in the first cell division of C. elegans. The oscil-
lation arises due to the interactions of the force generators (dynein) attached to the cortex 
by an elastic linker (GRP-1/2/LIN-5), with a constant binding rate and a load-dependent 
unbinding rate similar to (1.6), though it is instead implemented as an extension-sensitive 
unbinding rate, as the loading force is due to the load provided by the bound elastic linker 𝑓 = 𝑘𝑦, with extension 𝑦 and elastic stiffness 𝑘. Dynein does not provide the force on 
the mitotic spindle alone, but works together with the elastic linker to pull on the spindle 
with a force given by (1.5). By considering separate populations of dynein-linker com-
plexes (termed ‘force generators’) which exist above and below the spindle pole, Grill et al.
(2005) describe how the probabilities of force generators binding and unbinding with exten-
sions 𝑦 evolve in time using a system of Fokker-Planck equations. The spindle pole is posi-
tioned by a combination of pulling from the populations of force generators and a restoring 
force which is considered to arise from the bending elasticity of MTs [80]. However, as the 
restoring term to the spindle pole position 𝑧 is given as −𝐾𝑧, for MT bending elasticity 𝐾, 
we note that rather than a bending elasticity of compressed MTs, this best describes the sit-
uation of a spring extending from the cell centre line at 𝑧 = 0, as the MT length and sub-
sequent compression is not explicitly considered. Despite this, the model produces oscilla-
tions of the mitotic spindle pole with amplitudes and periods which match experimentally 
observed oscillations, though the experimental oscillations were much noisier. The imple-
mentation of a stochastic simulation also seemed to produce similar oscillations, though 
the details of this stochastic simulation were omitted from the paper and so cannot be prop-
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erly assessed. Further, an approximation to the Fokker-Planck equations in the form of an 
ODE model was introduced and used to determine the presence of a Hopf bifurcation at 
a critical number of force generators, which is in line with experimental observations of a 
cessation of oscillations upon the depletion of dynein [78]. The reduction of the PDEs to 
the ODEs however is very briefly described, and the full behaviour of the models for dif-
ferent parameters were not explored. Schwietert and Kierfield (2020) use Fokker-Planck 
equations to describe emergent lateral oscillations of the chromsomes at the spindle equa-
tor due to kinetochore-microtubule attachment [151]. Using similar equations, the action 
of a population of kinesins in displacing a microtubule from a harmonic trap has been de-
scribed, with the emergence of interesting dynamics such as relaxation oscillations [152]. 
Indeed, the single population of force generators interacting with a harmonic trap can give 
rise to sub-harmonic oscillations due to the complex coupling between the MT position and 
the collection motion of the motors [153]. The addition of an opposing populations of force 
generators to generate collective motions is likely to have similarly interesting dynamics 
which we wish to explore.

As the model introduced by Grill et al. (2005) describes dynamic movements of the spindle 
well, and also incorporates the slip-bond behaviour of dynein as well as a restoring force 
to denote the presence of MTs, we aim to fully explore this system in order to determine 
whether or not it may be used to describe the dynamics of the mitotic spindle in Xenopus 
laevis tissue cells. We believe that this model includes sufficient detail about the action of 
the sources of the forces acting on the mitotic spindle to create a dynamic response such 
that it can be used to direct us to the parameters which are most important to elicit dynamic 
spindle movements.

1.6 The early gastrula Xenopus laevis animal cap as a model system

Xenopus laevis is a widely used model organism for cell and developmental biology [154], 
whose presence in the lab has led historically to understanding key processes such as nu-
clear envelope breakdown and spindle formation [155]. It has been utilised in a number of 
studies into cell division and mechanical stress during development [156]. The genome of 
Xenopus has been sequenced and shown to have structural similarities to the human genome 
[157], [158], making Xenopus a choice for the study of human diseases. A number of stud-
ies highlighted in this thesis are based upon HeLa cell lines [13], [18], [45], [64], [76], [84], 
which are robust, highly proliferative, and well studied [159]. However HeLa cells are ge-
netically abnormal, containing a hyper-triploid chromosome number as well as being abnor-
mally invasive [160]. Additionally, HeLa cells have been shown to produce multipolar spin-
dles and demonstrate chromosome fragmentation upon division, even prior to perturbation 
by miRNA-targetted knockdown microtubule-associated proteins [161]. As we wish to ex-
plore the dynamics of the mitotic spindle, a system with a mitotic spindle and cell division 
process more representative of a ‘regular’ system is preferable. It is important to note also 
that the HeLa cell line is derived from a cancer cell [162], then the results of these studies 
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may be applicable to cancerous, but not healthy, cells. To fully understand the processes un-
derpinning cell division in vivo, animal models must be utilised.

A female Xenopus may be induced by hormone injection to lay eggs, and a single clutch 
may contain upwards of thousands of eggs which are fertilised and develop externally and 
synchronously [157]. This large brood size, combined with highly regulated developmen-
tal timings, facilitates the study of early embryo development by providing a large number 
of test subjects to observe. The Xenopus egg has a clear animal-vegetal axis prior to fertil-
isation [28], and this axis coincides an externally-observable pigment distribution which is 
maintained through early development [163]. For imaging purposes, albino strains of Xeno-
pus may be used. The transparency of albino embryos lend themselves to direct imaging, 
for example, neuronal growth in the developing brain can be easily imaged in vivo for stud-
ies into developmental seizures [164], [165].

Both in vitro and in vivo analysis can be done by utilising Xenopus. Egg extracts can be 
produced by centrifuging Xenopus eggs, which contain an abundance of proteins which are 
important for driving early cell divisions and are even capable of performing DNA repair 
outside of the cell [166]. Of particular use is the ability to arrest the fertilised Xenopus eggs 
at a particular stage of the cell cycle before centrifuging [167], while chemical addition of 
ions such as calcium may be selectively introduced to the extract to push the system into 
later stages of the cell cycle for controlled progression through the various stages of the cell 
cycle [168]. Egg extracts have been used to study a range of processes, including but not 
limited to, DNA repair [166], nuclear envelope assembly [169], mitotic spindle assembly 
[167], [170], and the formation and regulation of mitotic checkpoints [171].

The information gathered from Xenopus extracts is powerful, as Xenopus-specific findings 
can be taken inside the dynamic, developing tissues of the embryo. Indeed, for studies into 
morphogenesis and mechanobiology, Xenopus has proven to be an invaluable tool and its 
morphogenetic processes are well defined. For example, the large-scale cell movements 
which occur during gastrulation are well defined within the Xenopus embryo, where a pop-
ulation of cells at the involuting marginal zone (IMZ) move inwards and back toward the 
blastocoel roof as a result of apical constriction of neighbouring bottle cells (Figure 1.8A-
C) [3]. Convergent extension occurs by thinning of the IMZ radially and extension of the 
IMZ along the animal-vegetal pole, leading to an elongated body axis [3]. Thus, mechanobi-
ological processes are key during embryonic development. The forces produced during 
convergent extension have been probed by using Xenopus explants adhered to a fibronectin-
coated ‘sled’ attached to a fibre-optic probe, whose deflection can be used to measure the 
pulling forces produced by the converging cells [172]. This tractor pull assay is just one 
form of mechanical measurement which the Xenopus embryo is amenable to. Mechanical 
stresses may be measured by wounding via blade or laser ablation, where the recoil veloc-
ity magnitude and direction provides a measure and map of the forces acting on the dam-
aged site [173]–[175]. Indeed, laser ablation has been used to show that cells expressing 
the kRasV12 oncogene are hyper-contractile and generate anisotropic strain to surrounding 
tissue cells in Xenopus laevis embryos [175].
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Figure 1.8. Large scale movements in the Xenopus laevis embryo. A-C) Movements of the involuting 
marginal zone (IMZ) during gastrulation due to apical constriction of the bottle cells (green) leading to 
involution of the leading edge mesendoderm (pink). A) Bottle cells contract, and B) involution is initiated, 
leading to C) spreading of the mesendoderm along the blastocoel roof and convergent extension of the IMZ. 
D) During epiboly, intercalation of the deep layers of the animal cap (blue) leads to stretching of the tightly 
adhered superficial cell layer (orange). Figures adapted from [3].

Increasingly, non-destructive techniques have been used to probe the mechanical environ-
ment of Xenopus cells. Cantilever deflection by growing tissues can be used to provide quan-
titative measurements of tissue stiffness and contractile forces, a method used to probe the 
forces present in blastopore closure [176]. Strain mapping by analysis of cell shape and 
movements can be used to infer relative forces acting in different stages of development 
qualitatively [176]. The vertex model also provides a non-invasive method of inferring lo-
cal forces present in a tissue by analysis of the shape and size of tissue-bound cells [15], 
[21]. The vertex model has been used specifically in the Xenopus system to study cell di-
vision orientation in the epithelial layer of the animal cap tissue, relative to the local and 
global forces experienced by the dividing tissue cells [15], [175]. The cells in this epithelial 
tissue do not round upon during mitosis and tend to divide symmetrically [3], [15], then a 
two-dimensional vertex model is an acceptable description of this system without substan-
tial loss of accuracy in predictions [15], [21], [175].

As well as probing the mechanical environment present within Xenopus, it is possible to 
perturb the mechanical environment externally and observe the effects on various processes, 
including cell division [15]. Explants of tissue from the animal pole of an early gastrula 
embryo can be adhered to a fibronectin-coated PDMS membrane and will continue to di-
vide at room temperature [177]. While useful for probing the internal forces (e.g. measure-
ments of forces during convergent extension [172], above), these explants are also amenable 
to application of external forces. Using a stretching device, the PDMS membrane can be 
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stretched externally which in turn stretches the mounted explant. This system can then be 
imaged by a confocal microscope. Here we focus on the outer epithelial cells of the animal 
cap explant.

For the work in this thesis, the use of Xenopus laevis as a model organism in which to study 
cell divisions specifically has many advantages [156]. The Xenopus embryos develop at 
room temperature, which lends itself to live imaging without the need to externally incubate 
the embryo. Varying the temperature of the embryo effects the timing of development, with 
lower temperatures slowing the periods of time between divisions [157]. What’s more, the 
relatively large size of the cells make microinjection and live imaging of subcellular pro-
cesses easier [178], [179]. The combination of the size of the embryo and the temperature 
sensitivity makes the embryo amenable to studies such as that conducted by Anderson et 
al. (2017) [180], where cell divisions across the embryo were desynchronised by using a 
temperature gradient. Interestingly, the development of Xenopus is robust enough that the 
desynchronisation of cell division events across the embryo does not lead to a decrease in 
embryo viability [180]. Combined with the ease of applying global forces to excised tissue 
from the embryo, the robustness, size, and temperature-controlled developmental timings 
make the Xenopus embryo an excellent system in which to study spindle dynamics of divid-
ing cells under tension.

The application of a reproducible external force to the animal cap tissue is also biologically 
relevant. During epiboly of the Xenopus laevis embryo through blastulation and gastrula-
tion, the overlying cells in the outer epithelial layer are stretched by the intercalation of the 
deep layers, increasing the area on which the upper cells sit (Figure 1.8D) [3]. The mag-
nitude of this in vivo strain, as measured by cell aspect ratio, is analogous to the approxi-
mately 20% strain experienced by the epithelial cells in our ex vivo stretch (resulting from a 
30% strain of the PDMS) [15], [181]. Thus, applying an external stretch to the animal cap 
tissue in this way places the cells in an environment not too dissimilar to the environment 
that the cells would be experiencing in vivo. The technique by which we apply an external 
stretch has been optimised for use in the Woolner lab [182].

The animal cap explant is composed of three cell layers: apical/superficial, intermediate, 
and basal, with the intermediate and basal cells together making the deep layer. The apical 
layer is comprised of tightly adhered epithelial cells with approximately polygonal shapes 
due to the dense cell packing [183], [184] while the deep layer cells are loosely connected 
to their neighbours to allow the fluid exchange of neighbours during intercalation of the 
deep cell layers during epiboly [184]. This system is powerful as the apical divisions are 
unlikely to be directly affected by adhesion to the PDMS membrane, as the layer under ob-
servation retains its natural adhesions to the cells below it. Thus the cells under observation 
experience the applied strain through their connections with other cells rather than direct 
connection with the PDMS. This confers an advantage over cell culture monolayers, which 
must be grown directly on a substrate and thus create cell-matrix adhesions [185]. This may 
affect the resulting cell behaviour as the adhesion to the substrate may create additional 
cues for the cell to respond to. While cell-matrix adhesions are still present in the animal 
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cap explant system, the imaged superficial cells retain their natural adhesions to the deep 
layer cells. Thus, we expect that there are fewer alterations to the behaviour of the cells due 
to the basal adhesions, as the deep layer cells act as a ‘buffer’ between the superficial cells 
and the substrate.

To assess the impact of a partial NuMA knockdown on cell division, we employ the morpholino-
targetted knockdown protocol optimised within the lab to create a spindle movement re-
sponse without perturbing the integrity of the spindle pole such that it fractured into multi-
polar spindles [27]. As Xenopus is an allotetraploid organism, with genes on short (S) and 
long (L) chromosomes, the morpholino-targetted knockdown of NuMA was done in two 
stages to target both numa1.L and numa1.S [186].

1.7 Project aims

Using this model system, we aim to shed light on the mechanisms governing spindle posi-
tioning and dynamics by:

1. characterising spindle dynamics in stretched and unstretched epithelia in terms of trans-
lational and rotational movements such as oscillations;

2. developing a mathematical model of spindle movements due to contributions from mi-
crotubule pushing forces and motor protein pulling forces and exploring the parame-
ters which may affect spindle dynamics; and

3. using the mathematical model to shed light on the effect of a partial NuMA knock-
down on spindle dynamics in stretched tissue.

To address these aims, we investigate spindle movements in unstretched and stretched ep-
ithelia by using the movements of the metaphase plate as a proxy for the movements of 
the mitotic spindle (Chapter 3). We investigate spindle dynamics in terms of translational 
movements, exploring the shape path followed by the spindle over the course of metaphase, 
as well as investigating the rotational movements of the mitotic spindle and the emergence 
of oscillations in the spindle angle. These dynamics are also investigated in stretched tis-
sues subject to a partial NuMA knockdown.

We also build upon a model of spindle pole displacements due to cortical pulling forces and 
microtubule-based restoring forces introduced by Grill et al. (2005). We develop stochas-
tic simulations and Fokker-planck equations to explore the model and identify parame-
ters which impact spindle dynamics (Chapter 4). We then perform systematic asymptotic 
analysis to produce a system of ODEs, and subsequently an algebraic formulation which 
more simply describe the model (Chapter 5), building a direct link between highly coupled 
stochastic simulations and a single algebraic equation to describe dynamic spindle move-
ments. 
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Chapter 2

Materials and methods

Due to the interdiscplinary nature of this project the methods are split into the methods 
used to acquire and analyse biological data [Chapter 3], and the methods used to analyse 
the mathematical models [Chapter 4]. The computational method for each mathematical 
model introduced is included in depth in Chapter 4, whereas in this chapter we instead high-
light specifically the methods used to analyse the mathematical solutions.

2.1 Methods for Chapter 3

2.1.1 Acquisition of embryos for tissue explants

The model organism used to collect data was Xenopus laevis (African clawed frogs). Both 
pigmented and albino frogs were used in this work. Male and female frogs were both housed 
within the animal facility at the University of Manchester.

Natural mating was used to acquire embryos as follows:

1. 4-7 days ahead of egg collection: Female frogs were pre-primed by injection with 50 
units of pregnant mare’s serum gonadotrophin (PMSG) (Intervet UK) into the dorsal 
lymph sac.

2. 1 day ahead of egg collection: Male and pre-primed female frogs were primed by in-
jection of 100 units (male) and 200 units (female) of human chorionic gonadotrophin 
(HCG) (Chorulon: MSD) into the dorsal lymph sac.

3. 2-5 hours ahead of egg collection: Primed male and female frogs were transferred 
into the same tank (one tank per male/female pair) for amplexus.

4. 1 hour ahead of egg collection: Frog pairs were transferred into fresh aquarium wa-
ter, such that all collected eggs were fertilised within the same 1 hour window.

All work with Xenopus laevis was performed using protocols approved by the UK Govern-
ment Home Office under the Home Office Project Licence PFDA14F2D (Holder: Profes-
sor Enrique Amaya) and Home Office Personal Licences held by Sarah Woolner, Georgina 
Goddard, Dionn Hargreaves and Nawseen Tarannum.
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2.1.2 RNA synthesis and preparation

Proteins BFP-CAAX and mCherry-histone2B were used to visualise the cell membranes 
and chromosomes respectively. The preparation of the capped mRNA was as follows:

1. Plasmid linearisation: pCS2 plasmids were linearised with Not1 (5 𝜇g of plasmid, 
10 𝜇l of NEB buffer 3.1, 1 𝜇l of BSA (NEB, B9000S), 8 units of Not1, made up to 100 𝜇l with water) at 37∘C for 1 hour. Not1 (2 units) was added and incubated for 1 hour 
at 37∘C. Following linearisation, residual RNAses and proteins were digested by the 
addition of 5 𝜇l of 10% SDS and 5 𝜇l of proteinase K (Ambion, AM2546) at 50∘C for 
30 minutes.

2. DNA extraction: The sample was diluted with 100 𝜇l of water. DNA as extracted 
with phenol-chloroform (pH 7.9) (Ambion, AM9730) and precipitated with 40 𝜇l of 
NH4Ac and 800 𝜇l of 100% ethanol overnight (-20∘C). The DNA was then pelleted 
and washed with 800 𝜇l of 70% ethanol. Once dry, the pellet was resuspended in 10 𝜇l 
of water.

3. Capped mRNA synthesis: An in vitro transcription reaction was set up using 1 𝜇g of 
the resuspended DNA. (mMESSAGE mMACHINE SP6 transcription kit [2 𝜇l of 10X 
reaction buffer, 10 𝜇l of 2X NTP/CAP, 2 𝜇l of enzyme mix, up to 20 𝜇l with water]. 
Incubated at 37∘C for 3 hours. The reaction was terminated by the addition of 115 𝜇l 
water and 15 𝜇l NH4Ac stop solution.

4. mRNA extraction: The RNA was extracted with 150 𝜇l of phenol-chloroform (pH 
6.6) and then 200 𝜇l of chloroform. This RNA was then precipitated with 200 𝜇l of 
isopropanol at −80∘C overnight. The precipitated RNA was pelleted and washed with 200 𝜇l of 70% ethanol before air-drying at room temperature. The dried pellet was 
resuspended in 10 𝜇l of water and quantified using spectrophotometry. The mRNA 
was diluted to 1 g/l and stored at −80∘C until use.

2.1.3 Morpholino preparation

Custom-made NuMA1.S (5’ to 3’ sequence: GTCATTATGCTTCAGCACTTCTCCC) and 
NuMA1.L (5’ to 3’ sequence: GCCATTTTGTTTCACTACTTTTCCC) morpholinos (MOs) 
(Gene Tools, LLC (USA)) were resuspended in water at a stock concentration of 1 𝑚𝑀 and 
stored at −80∘C until use. Prior to microinjection, MOs were incubated for 5 minutes at 65∘C and then incubated at 37∘C until microinjection.

2.1.4 Preparation of Xenopus laevis embryos for imaging

The embryos collected from the natural matings of the frogs were prepared for imaging as 
follows:
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Experiment Stage microinjected Injected substance Needle concentration

Unstretched 2-cell
mRNA: BFPCAAX 0.1 g/l

mRNA: mCherry-Histone2B 0.1 g/l

Stretched 2-cell
mRNA: BFPCAAX 0.1 g/l

mRNA: mCherry-Histone2B 0.1 g/l

Stretched NuMA knockdown 2-cell
mRNA: BFPCAAX 0.1 g/l

mRNA: mCherry-Histone2B 0.1 g/l
MO: NuMA1.S 1 mM

4-cell MO: NuMA1.L 1 mM

Table 2.1. List of mRNAs and MOs microinjected in each experimental condition.

1. De-jellying: Collected embryos were de-jellied using 50 ml of 2% L-cysteine solu-
tion [1 g of L-cysteine (Sigma, 168149) in 50 ml of 0.1% Marc’s modified Ringer’s 
solution (MMR), NaOH added until a pH 7.9-8.0 achieved]. The 0.1% MMR solution 
was diluted from 10X MMR [1 M NaCl, 20 mM KCl, 10 mM MgCl2, 20 mM CaCl2, 
1 mM EDTA, 50 mM HEPES, up to 5 L with distilled water, pH 7.8]. The eggs were 
swirled in the L-cysteine solution until the jelly coat of the embryos was removed. The 
L-cysteine solution was then discarded and the embryos washed six times in a total 
of 200 ml of 0.1% MMR before being incubated at room temperature in fresh 0.1% 
MMR.

2. Microinjections: Healthy embryos were transferred into a dish containing 0.1% MMR 
and 5% Ficoll (Merck, F4375) and microinjected with mRNAs and/or morpholinos as 
described in Table 2.1 using a Picospritzer III Intracel injector (Parker instrumenta-
tion) (Figure 3.11A, mRNA injection indicated). Microinjection with mRNAs was 
done by Dionn Hargreaves, microinjection of morpholinos were done by Nawseen 
Tarannum. Injected embryos were washed in 0.1% MMR and incubated in fresh 0.1% 
MMR overnight at 16∘C.

3. Animal cap dissection for unstretched and stretched tissues: Animal cap explants 
were prepared from the injected embryos at the early gastrula stage (stage 10) (Figure 
3.11B). The embryos were transferred to Danilchik’s for Amy explant culture media 
(DFA) [53 mM NaCl, 5 mM Na2CO3, 4.5 mM Potassium gluconate, 32 mM Sodium 
gluconate, 1 mM CaCl2, 1 mM MgSO4, up to 1 L with MilliQ water, pH 8.3 with 
Bicine] in 0.1% BSA (Sigma, A7906). The vitelline membranes were removed from 
the embryos using forceps, and the explant removed by incisions with the forceps around 
the animal pole resulting in separation of the animal cap tissue from the embryo [187]. 
The animal caps were then transferred onto a fibronectin-coated PDMS membrane 
with the basal side in contact with the membrane to prevent balling up and held in 
place with a coverslip. The caps were then left to recover for 2 hours at 18∘C before 
imaging (Figure 3.11C) [182].

2.1.5 Preparation of PDMS membranes

The PDMS membranes were prepared as described previously [182]. In summary:
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1. Making the mixture: The Silicone Sylgard 184 kit (SLS, 63416.5S) [40 g Sylgard 
liquid and 4 g curing agent] was mixed continuously in a plastic cup for 5 minutes and 
placed in a vacuum chamber for 1 hour to remove air bubbles.

2. Creating the membranes: The de-bubbled sylgard mixture was slowly poured into 
8 membrane moulds. Bubbles from pouring were removed by popping them with a 
sharp implement. The filled moulds were incubated at 65∘C for 2.5 hours.

3. Membrane storage: Following an overnight cooling at room temperature, the mem-
branes were manually removed from the moulds and washed in 1X Phosphate buffered 
saline (PBS) and stored at room temperature until use.

4. Preparation for membrane adhesion: A day prior to the animal cap excision, the 
membranes were incubated under UV for 30 minutes and then coated in 1 ml of 10 𝜇g/ml 
fibronectin (Sigma, F1141) in 1X PBS. The membranes were incubated at 4∘C overnight 
and washed the following day (3 washes with 1X PBS, one wash with DFA in 0.1% 
BSA (Sigma, A7906). The membranes were then refilled with DFA with 0.1% BSA.

2.1.6 Stretch protocol and imaging

The PDMS membrane was mounted onto a stretch apparatus (custom made by Deben UK 
722 Limited) and subjected to a uniaxial stretch of either 0% for the ‘unstretched’ condition 
(0.5 mm displacement to ensure that the membrane remained taut under gravity and the 
weight of the animal cap) or 35% for the ‘stretched’ condition (8.6 mm displacement) [21]. 
Images were acquired every 5 seconds on a Leica TCS SP8 AOBS upright confocal using a 
20X dipping objective at 2X confocal zoom (Figure 3.11D, E)

The confocal settings were as follows: pinhole 1.9 airy unit, 600 Hz bidirectional scanning, 
format 1024 x 1024. Images were collected using hybrid detectors with the detection mirror 
settings for red and blue at 600-690 nm, and 415-516 nm respectively, using the white light 
laser with excitation at 586 nm, and 405 nm laser lines. The images were collected non-
sequentially with a 𝑧-spacing of 10 𝜇m between sections. Images were taken continuously 
without resetting for drifting in order to ensure no missing data points for dividing cells. 
The maximum imaging duration per animal cap was 2 hours.

2.1.7 Image analysis

All images were processed and analysed on ImageJ [188]. All measurements were taken 
from maximum intensity projections of the 𝑧-stack images. Source code for data analysis 
and plotting is available at github.com/dionn-hargreaves/Data_plotting_Utils.
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Figure 2.1. Experimental set up. A) Xenopus laevis embryos injected at the 2-cell stage with RNA(s) 
encoding fluorescently-labelled proteins. B) Animal cap dissected at stage 10. Epithelial tissue of the animal 
cap is indicated in red. C) Animal cap explants are adhered to a fibronectin-coated PDMS membrane. D) A 
uniaxial mechanical stretch device is used to provide a stretch of 0% (unstretched) or 35% (stretched). E) 
Epithelial cells are imaged using an upright confocal microscope.

Analysis of the mitotic spindle

To confirm that the metaphase plate could be used a proxy for spindle movements, movies 
of whole embryos with the chromosomes (mCherry-Histone2B) and the mitotic spindle 
(GFP 𝛼-tubulin) tagged were analysed [179]. Each spindle pole was manually tracked in 
each frame using the ImageJ multi-point tool, returning an 𝑥 and 𝑦 coordinate for each 
pole. These positions were then used to determine the centre of the spindle and the angle 
between the spindle and horizontal axis using a Julia script. The centre of the spindle was 
taken to be the point halfway between the measured poles, (𝑥c, 𝑦c) = 12 (𝑥1 + 𝑥2, 𝑦1 + 𝑦2). 
The angle of the spindle was determined in each frame by 𝜃 = arctan( 𝑦2−𝑦1𝑥2−𝑥1 ).

Analysis of the metaphase plate

To track translational and rotational dynamics of the spindle through metaphase, the metaphase 
plate (visualised with mCherry-histone2B) was used as a proxy. Each end of the metaphase 
plate was tracked in each frame using the ImageJ multi-point tool, returning an 𝑥 and 𝑦
coordinate for each point. These positions were then used to determine the centre of the 
metaphase plate and the angle between the plate and horizontal axis using a Julia script. 
The centre of the metaphase plate was taken to be the point halfway between the measured 
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ends, (𝑥c, 𝑦c) = 12 (𝑥1 + 𝑥2, 𝑦1 + 𝑦2). In the unstretched, stretched and NuMA KD tissues, 
to correct against drift of the tissue, the centre of the cell at the beginning of metaphase, 
R1, and the end of metaphase, R2, were used to create a linear correction to the metaphase 
plate position across metaphase time. Determination of the cell centre is described in Sec-
tion 2.1.7. The drift-corrected centre was thus defined as 

R (𝑡) = R1 + 𝑡𝑡met
(R2 − R1) . (2.1)

This ‘corrected’ centre was used to determine the metaphase plate position about the cell 
centre of mass. The angle of the metaphase plate in each frame was determined by 𝜃 =
arctan( 𝑦2−𝑦1𝑥2−𝑥1 ).

The track traced by the centre of the metaphase plate was used to define a gyration tensor, 𝑆, as 𝑆 = 1𝑁 [ ∑𝑁𝑖=1 (𝑥𝑖 − ⟨𝑥⟩)2 ∑𝑁𝑖=1 (𝑥𝑖 − ⟨𝑥⟩) (𝑦𝑖 − ⟨𝑦⟩)∑𝑁𝑖=1 (𝑥𝑖 − ⟨𝑥⟩) (𝑦𝑖 − ⟨𝑦⟩) ∑𝑁𝑖=1 (𝑦𝑖 − ⟨𝑦⟩)2 ] , (2.2)

for ⟨𝑥⟩ and ⟨𝑦⟩ the mean 𝑥 and 𝑦 positions of the metaphase plate centre, which is at posi-
tion (𝑥𝑖, 𝑦𝑖) at a time 𝑡𝑖. This tensor is a measure of rotational inertia of the hypothetical 
rigid object made up of individual particles lying at positions (𝑥𝑖, 𝑦𝑖) for all 𝑖 [189]. The 
principal axes of the track were extracted by determining the eigenvectors and eigenvalues 
(𝜆1, 𝜆2) of the gyration tensor (2.2). The orientations of the major and minor axes were de-
termined from the eigenvectors. The circularity of the tracks, 𝐶T were determined by 𝐶T = 𝜆1𝜆2 (2.3)

which takes a value between 0 and 1 (a track is more elongated toward 𝐶T = 0, a track is 
more circular toward 𝐶T = 1).

Analysis of cell shape and division orientation

Cell shapes were analysed to determine the cell centre, R, cell area, 𝐴, the cell circularity, 𝐶, and the orientation of the cell major axis, 𝜃c. Cell edges and tricellular vertices were 
manually traced at the beginning and end of metaphase using the ImageJ ‘Paintbrush tool’ 
(brush width = 1 pixel). Manual traces were used rather than automated cell segmentation 
algorithms such as Cellpose, as this algorithm had not yet been refined or trained for the 
images produced in this thesis [190]. The manual traces were processed using in-house
Python scripts to return measures of the cell area, cell circularity, and cell major axis [15], 
[21]. The measurements were made based on the polygonised cell according to the posi-
tions of the TCVs.

Cell shapes were described by their circularity, 𝐶, the ratio of the principal eigenvalues of 
the cell shape tensor. The circularity has a value between 0 and 1, with 1 representing a cir-
cular cell [15], [21], [175]. The cells were partitioned into ‘elongated’ and ‘circular’ based 
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on the threshold value of 0.6 (circular if 𝐶 > 0.6, elongated if 𝐶 ≤ 0.6). This thresh-
old value was chosen based on methods used elsewhere, where are choice of 𝐶 = 0.65
at the threshold was used [15], [27]. Here, the value was decreased from 0.65 in order to 
partition the data such that sufficient numbers of cell divisions existed within each group. 
Indeed, the threshold of 0.6 lies halfway between 𝐶 = 0.2 and 𝐶 = 1, which we argue are 
the biologically-relevant observable extremes (no cells below 𝐶 = 0.2 were recorded, and 𝐶 = 0 corresponds to a completely 1D cell).

The cell major axis orientation, 𝜃c, was determined as the angle of the major axis as deter-
mined from the cell shape tensor [15], [21].

The division orientation, 𝜃D was measured using the ImageJ ‘straight line’ tool by drawing 
a line between the two separating daughter nuclei of a dividing cell at late anaphase. The 
angle of division relative to the horizontal was calculated from this line within ImageJ.

2.1.8 Correlating spindle to chromosome movements

To confirm the correlation between spindle movements and the metaphase plate movements 
[Section 3.2.1], live images of developing Xenopus embryos provided by Sarah Woolner 
were analysed. The experimental method for the acquisition of this data by Sarah Woolner 
is as follows.

For live imaging of mitotic spindles in Xenopus embryos, both cells of two-cell embryos 
were microinjected with 5 nl of mRNA for GFP–𝛼-tubulin (needle concentration of 0.5 mg/ml) 
and Cherry–H2B (0.1 mg/ml). Embryos were incubated for 20 hours post fertilization at 16∘C and then mounted for live imaging in 0.1X Marks Modified Ringers (MMR) [10X so-
lution: 1 M NaCl, 20 mM KCl, 10 mM MgCl2.6H2O, 20 mM CaCl2.2H2O, 1 mM EDTA 
disodium salt, 50 mM Hepes, up to 5 L with distilled water], using a ring of vacuum grease 
to contain the embryos and support a glass coverslip [179]. Imaging took place at develop-
mental stages 10–11. Single focal plane live-cell images of spindles were collected at room 
temperature (21∘C) every 20 seconds using a confocal microscope (FluoView FV1000; 
Olympus) with FluoView acquisition software (Olympus) and a 60X, 1.35 NA U Plan S 
Apochromat objective. Time-lapse videos were constructed from the single focal plane im-
ages using ImageJ [60].

2.1.9 Statistical analysis

Statistical analysis was performed using GraphPad Prism 9. All samples were tested for 
normality using the Shapiro-Wilk and D’Agostino-Pearson normality tests. The normality 
test was then used to decide between parameteric or non-parametic statistical tests for all 
samples. For two samples: Welch’s t-test was used to compare the fraction of major axis 
movement in elongated and circular cells as the distributions were normal but with dif-
ferent variances and sample sizes; the Wilcoxon matched-pairs signed rank test was used 
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to analyse the distributions of cell and track circularities as the data was paired and non-
Gaussian according to the normality test; the Mann-Whitney U Test was used to analyse 
the distribution of i) periods of oscillation between elongated and circular cells, ii) peri-
ods of oscillation between the 1st and 2nd halves of metaphase, and iii) the goodness mea-
sure of the oscillations in the 1st and 2nd halves of metaphase, due to these samples being 
non-Gaussian according to the normality test. We note that for the periods and goodness 
measures of oscillations in the 1st and 2nd halves of metaphase, a small percentage of cells 
showed oscillations in both halves and thus were paired. In this case Prism reported an ex-
act p-value. Relationships between parameters were determined using the Spearman rank 
correlation test, in particular, i) bounding area of spindle movement vs metaphase time, 
ii) goodness measure of oscillation vs period of oscillation, iii) goodness measure of os-
cillation vs metaphase time, iv) period of oscillation vs metaphase time, and v) goodness 
measure of oscillation vs cell circularity, as these data failed the normality test. For three 
or more samples: the Kruskal-Wallis test and post hoc Dunn’s multiple comparisons test 
were used to analyse the distributions of i) the normalised net displacement, ii) the nor-
malised maximum displacement from the cell centre, iii) metaphase time, iv) effective spin-
dle speed, v) the alignment of cell and track major/minor axes orientations with division 
orientation, vi) period of oscillation, and vii) goodness of oscillation. All of these data failed 
the normality test and were unpaired thus the choice of a non-parametric, unpaired statisti-
cal test. Count data (fraction of oscillating spindles) was compared using Fisher’s exact test 
and represented as a fraction of the population for clarity of visualisation. For all tests, p 
values below 0.05 were considered statistically significant. All statistical tests are indicated 
in figure legends and also within the main text for significant differences.

2.2 Methods for Chapter 4

2.2.1 Computational modelling

All computational modelling was done using Julia. Stochastic simulations were run using 
The Computational Shared Facility 3 at the University of Manchester. All other simulations 
and codes were capable of being run on a personal laptop (2.2 GHz 6-Core Intel Core i7 
processor).

2.3 General methods

2.3.1 Detection of oscillations and period of oscillations

Oscillations were detected from signals (e.g. angles of metaphase plates, the position of 
the mathematically modelled spindle pole) by analysis of the periodogram produced using
Julia package QuantEcon.jl. The input data is pre-whitened (transformed such that it 
resembled white noise), analysed (periodogram created) and then re-coloured (reversing 
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the initial transformation) such that the resulting periodogram is closer to the true spectral 
density of the data without noise. A threshold value was determined from the interquartile 
range (IQR) of the spectrum data on a cell-by-cell basis, above which the spectrum peaks 
were determined to be weak outliers of the data [191]. Peaks below the threshold were as-
sumed to be random noise in the measured signals. Then values above 

Threshold = Q3 + 1.5IQR (2.4)

are weak outliers of the data and considered to correspond to an oscillation, for Q3 the up-
per quartile. Frequencies, 𝑓 of the outliers were determined from the periodogram, from 
which the periods of oscillation were determined by 𝑇 = 1/𝑓. (2.5)

Periods corresponding to 95% of the metaphase time were discarded as artefacts result-
ing from the general trend of the input data. For the presence of multiple peaks of the pe-
riodogram, only the dominant peak was reported (the peak with the largest amplitude).

In this thesis, a measure we call ‘Goodness of fit’ was calculated for each oscillatory spin-
dle, to further probe the strength of the outlier frequency. The measure was defined as the 
ratio of the weak outlier threshold (2.4) to the amplitude of the peak, 

Goodness measure = 1 − Threshold
Peak amplitude . (2.6)

The goodness measure is close to 1 for peaks far exceeding the threshold and closer to 0 
for peaks close to the threshold. This measure was chosen to reflect how far above the weak 
outlier threshold the periodogram peak lies, assuming that peaks elevated further away from 
the threshold level are more likely to reflect a ‘true’ dominant oscillation in the signal. Source 
code for data analysis and plotting is available at github.com/dionn-hargreaves/Data_plot-
ting_Utils.

2.3.2 Figure assembly and illustration

Figures were assembled and illustrated using illustration software Vectornator. Images 
of tissues were opened using ImageJ and annotated in Vectornator. Raw data of chro-
mosome position (Figure 3.4Cii), angle, and the accompanying periodograms (Figure 3.9) 
were produced using the Plots package in Julia. The graphs of the biological data were 
produced using GraphPad Prism. The solutions of the mathematical models were pro-
duced using the Plots package in Julia. 
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Chapter 3

Characterising spindle dynamics in 
response to external stretch and 
depletion of NuMA

3.1 Introduction

Division orientation in cells is governed by the positioning mechanisms of the mitotic spin-
dle. The final direction of division orientation has been attributed to both cell shape [19], 
[43], [44] and cell tension [6], [12], [13]. However, the direction of local mechanical cell 
stress has been shown to align with cell shape in tissues, which makes disentangling shape-
based effects from force-based effects difficult [15]. Increasing tissue tension mechanically 
has been shown to result in divisions which are orientated along the stretch axis [12], [15]. 
Division orientation is determined by the orientation of the mitotic spindle which is posi-
tioned in the cell through interactions of its astral microtubules with the cortical network 
and associated proteins [192]. In particular, spindle positioning has been attributed to mi-
crotubule pushing [54], [78], [137], [143], [193] and pulling of astral microtubules at the 
cell cortex through interactions with the motor protein dynein. The G𝛼i/LGN/NuMA com-
plex resides at the cortex and anchors dynein to create a spindle-pulling response [43], [64], 
[79]. As a core component of the spindle orientation machinery, disruption of NuMA has 
been shown to affect the ability of cells to align their spindles effectively [12], [27], [64], 
[83], [103]. In Drosophila, NuMA’s homolog Mud is constitutively located to the TCVs of 
epithelial cells and has been shown to be important for orientation of the mitotic spindle 
with cell shape [43]. This was demonstrated using a mathematical model of spindle posi-
tioning, whereby forces acting on the spindle were amplified at the TCVs and resulted in 
spindle alignments which matched well with experiment [43]. This matched geometrical 
determinations of cell division orientation, as the locations of the TCVs were also shown to 
be good predictors for division orientation in Xenopus animal cap epithelia [15]. However, 
in recent unpublished work from the Woolner lab, NuMA has been shown to have both a 
tension-sensitive dynamic localisation to the cell cortex over the course of metaphase and 
a specific spindle-orientation response to anisotropic force rather than isotropic force [27]. 
This localisation was specifically not enriched at the TCVs, suggesting that NuMAs func-
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tion may be more complex that Muds function in Drosophila. The exact mechanism by 
which NuMA functions in tension-sensitive division orientation still remains unclear.

The morpholino-induced partial knockdown of NuMA in the Xenopus laevis animal cap 
system has been shown to affect division orientation with respect to stretch and mitotic 
spindle dynamics [27], where the inability of the spindle to align with the cell long axis co-
incided with a reduction in the translational speed of the mitotic spindle [27]. However, this 
analysis was based on time lapse movies with a coarse time resolution (30 s). It has been 
shown at a higher time resolution (5 s) in whole Xenopus laevis embryos that the mitotic 
spindle oscillates toward the end of metaphase, prior to anaphase onset [77]. This type of 
complex dynamic behaviour was not seen at the lower time resolution of 30 s, thus it was 
unclear whether or not these dynamics also existed in the animal cap tissue, or further how 
they might be perturbed by the knockdown of NuMA. In this chapter, we aim to charac-
terise the dynamics of the mitotic spindle in both unstretched and stretched animal cap tis-
sue in order to investigate the mechanical effect of stretch on spindle positioning within the 
cell. Using the same morpholino knockdown method as in [27], we also aim to characterise 
the effect that reducing the levels of NuMA has on the mitotic spindle dynamics, specifi-
cally in stretched tissue. The work presented in this chapter will be further analysed by a 
mathematical model which will be developed in chapters 4 and 5. 

3.2 Results

3.2.1 Spindle movements are correlated with chromosome movements

In order to investigate spindle dynamics in response to mechanical forces and cell shape 
changes, it was important to have a robust method of tracking the spindle movements. Over-
laying spindle movement tracking, we also needed a method to simultaneously monitor 
cell shape and to investigate key proteins which may be involved (for example, NuMA). 
To combat over-saturation of the cells with fluorescent tags, which would not only make 
imaging more difficult but also decrease the health of the embryos, we sought to minimise 
the number of structures being imaged. To this end, we used BFP-CAAX to image the cell 
membranes and mCherry-histoneH2B (cherry-H2B) to tag the chromosomes. We note also 
that cherry-H2B is often brighter than GFP-𝛼-tubulin, and less prone to moving out of the 
plane of view of the 𝑧−slices, properties which are particularly of use when imaging at 
high frame rates. The formation of the metaphase plate was used to identify entry into metaphase, 
and the movements of the metaphase plate were used as a proxy for spindle movements.

To confirm that metaphase plate dynamics could be used to infer spindle dynamics, Xenopus lae-
vis whole embryos expressing both GFP-𝛼-tubulin and cherry-H2B were live imaged by 
confocal microscopy and the resulting time lapse movies analysed (Figure 3.1A,B).

The angles of the spindle and metaphase plate about their respective mean angle were ex-
tracted from the movies (Figure 3.1C-D). In keeping with the assumption that the spindle 
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Figure 3.1. Spindle movements are correlated with metaphase plate movements. A) Time-lapse images of 
example cells showing the positions of the spindle and metaphase plate from interphase to anaphase. 
Arrowheads in the first frames indicate the nucleus of the cell of interest. Arrows in the final frames indicate 
the separation of chromosomes at anaphase. Time is chosen such that 𝑡 = 0 coincides with the formation of 
the metaphase plate. B) Schematics of the angle measurements for i) the mitotic spindle and ii) the metaphase 
plate. White lines overlayed on the confocal images connect the measured spindle pole positions and 
metaphase plate end-points. C) and D) The orientation of the spindle and metaphase plate, normalised about 
their mean angle, for two example cells. E) A violin plot of the angle between the spindle and metaphase plate 
using data from all cells at all timepoints. Median and interquartile range indicated. Analysed using the 
Wilcoxon Signed Rank Test against a hypothetical median of 90∘. H) F) G) Comparison of the fluctuations of 
the F) angle, G) 𝑥-coordinate of the centre of mass, and H) 𝑦-coordinate of the centre of mass of the spindle 
and metaphase plate. ‘Fluctuations’ are defined as the difference between two consecutive frames. Samples 
were analysed using the Spearman rank correlation test.

and metaphase plate are perpendicular, the mean angle difference measured was 90 ± 9∘
(mean±SD) (Figure 3.1E). Comparison of this distribution with the hypothetical median of 90∘ showed no statistical significance.

Comparisons of the inter-frame angle displacements show a strong correlation between 
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the metaphase plate and spindles (Figure 3.1F) (p<0.0001. Analysed using the Spearman 
rank correlation test), with a strong correlation between the centre of mass of the metaphase 
plate and the spindle in both the 𝑥 and 𝑦 directions (Figure 3.1G,H) (p<0.0001. Analysed 
using the Spearman rank correlation test). Thus we conclude that the relative movements of 
the mitotic spindle can be inferred from the metaphase plate, and from this point onwards 
we use the metaphase plate dynamics as a proxy for spindle dynamics.

3.2.2 The mitotic spindle undergoes translation movements during metaphase

In order to characterise spindle dynamics, we separated the translational movements of the 
spindle from the rotational movements of the spindle. Often, studies into spindle dynam-
ics focus on the spindle undergoing a rotation to its final orientation, without measuring 
translational dynamics [8], [18], [19], [43], [149]. We studied the translational dynamics 
by tracking the centre point of the metaphase plate through metaphase, defined as the point 
mid-way between the metaphase plate ends. Tracks cease at the onset of anaphase, where 
the chromosomes begin to separate from one another. We note that we didn’t observe sig-
nificant spindle movement following the onset of anaphase (data not shown), and this ces-
sation of movement upon anaphase onset has also been reported previously [194]. The dis-
tances travelled are normalised here by a length scale defined by the cell size, such that a 
cell of area 𝐴c has a length scale given by the diameter of a circular cell with the same area. 
A cell size normalisation was used in order to quantify the relative fraction of the cell ex-
plored by the mitotic spindle. Then spindles which travelled the entire length of a small cell 
would be measured similarly to spindles which travelled the entire length of a large cell. 
Then 𝑑 = √4𝐴c𝜋 is the length scale used to normalise the following displacements.

The final displacement of the spindles, immediately prior to anaphase onset, were com-
pared across the unstretched, stretched and NuMA KD conditions (Figure 3.2A). The cells 
entered anaphase with the spindles on average within 10% of the cell centre (fractions: 0.07±0.05 unstretched, 0.07±0.04 stretched, 0.08±0.04 stretched NuMA KD tissue, mean±SD). 
No significant difference was identified between the three conditions.

Comparison of the magnitude of the total displacement of the spindle (the distance between 
the final position and the initial position) shows that for each condition (unstretched, stretched, 
and stretched + NuMA KD), the spindle undergoes a net translation over the course of metaphase, 
though there is no significant difference between the three conditions. The net displace-
ment of the spindle over metaphase is approximately equal regardless of whether the cells 
are stretched or under a NuMA knockdown (Figure 3.2B).

We next consider the centring ability of the spindles, whereby spindles which are being 
centred are positioned closer to the cell centre at the end of metaphase than they are at the 
beginning. That is, the distance between the initial spindle position and the cell centre, 𝑑1, 
is larger than the distance between the final spindle position and the centre, 𝑑2. Thus 𝑑1 −𝑑2 > 0 if a spindle is more centred at the end of the metaphase. A population with no di-
rected centring mechanism is expected to be distributed with a median of 0, either because 
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Figure 3.2. The mitotic spindle centre is not static with respect to the cell.. A) The final distance from the 
cell centre, immediately prior to anaphase onset, normalised to each individual cell length scale. The cell 
length scale is defined as the diameter of a circular cell whose area equals the area of the measured cell, 𝑑 = √ 4𝐴c𝜋 . Data analysed using the Kruskal-Wallis test and post hoc Dunn’s multiple comparisons test. Error 
bars represent the standard deviation B) The total displacement of spindle centres normalised to each 
individual cell length scale. Analysed using the Kruskal-Wallis test and post hoc Dunn’s multiple 
comparisons test. Error bars represent the standard deviation. C) The change in distance toward the cell 
centre, normalised to individual cell length scales. Analysed using the Wilcoxon test compared with 0 change. 
Error bars represent the standard deviation. Statistical significance represented by p=0.0027** (stretched); 
0.0368* (unstretched); 0.0142* (stretched + NuMA KD). D) The maximum absolute displacement a spindle 
moves from the cell centre, normalised to each individual cell length scale. Analysed with the Kruskal-Wallis 
test and post hoc Dunn’s multiple comparisons test. Error bars represent the standard deviation. Statistical 
significance represented by p=0.0011**(unstretched compared with stretched + NuMA KD); 
p=0.0028**(stretched compared with stretched + NuMA KD). KD - knockdown. Indicators for 
non-statistically significant results are omitted. Unstretched: n=53 cells from 8 embryos; Stretched: n=62 
cells from 7 embryos; Stretched + NuMA KD: n=21 cells from 3 embryos.
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they will each undergo no net displacement either toward or away from the cell centre, or 
more likely because there will be equal numbers of spindles moving toward and away from 
the cell centre over the whole population. The stretched condition showed a significant bias 
toward centring (Figure 3.2C) (p=0.0027. Wilcoxon Signed Rank Test, compared with a 
theoretical median of 0), as did the unstretched condition (p = 0.0368. Wilcoxon Signed 
Rank Test, compared with a theoretical median of 0). Further, knockdown of NuMA did 
not affect the centring ability of the spindle (Figure 3.2C) which remained significantly bi-
ased toward a centring regime (p = 0.0142. Wilcoxon Signed Rank Test, compared with a 
theoretical median of 0). The Wilcoxon Signed Rank non-parametric test was chosen as the 
stretched condition data was not normally distributed. Comparison of the three conditions 
with one another showed that they are not statistically different to one another (Kruskal-
Wallis test and post hoc Dunn’s multiple comparisons test), suggesting that all three condi-
tions show the same overall centring behaviour. However, due to the small elevation above 
zero and the large spread of the data, more in-depth analysis on the centring behaviour would 
be beneficial moving forward.

We went on to measure the maximum displacement of the spindle from the cell centre, in 
order to determine whether the spindles in any of the conditions were more centred in gen-
eral over the course of metaphase. We found that the spindles of the cells in the unstretched 
and stretched tissues remained closer to the centre of the cell than the stretched NuMA KD 
tissue (Figure 3.2D) (p=0.0011 comparison to unstretched; p=0.0028 comparison to stretched. 
Kruskal-Wallis test and post hoc Dunn’s multiple comparisons test). Moreover, there was 
no significant difference between the unstretched and stretched conditions.

We conclude that the mitotic spindle undergoes translational movements within the cell, 
with the cells of the stretched NuMA knockdown tissues having spindles which deviate 
from the cell centre more than in unstretched and stretched conditions (Figure 3.2D). De-
spite this increased deviation, the net displacement between the final and initial positions of 
the spindle are consistent across the three conditions (Figure 3.2B), suggesting either that 
the path taken between the start and end points is not direct, or that the spindles of NuMA 
knockdown tissue are less clustered toward the centre. However, the movement of the spin-
dle has an overall bias toward the cell centre across all three conditions (Figure 3.2C).

3.2.3 Perturbation by mechanical stretch or NuMA knock down affects both metaphase 
time and the area explored by the spindle, but not the spindle velocity

We next investigated whether the increased deviation from the cell centre in the NuMA KD 
tissue was a result of the spindle having more time to explore the cell. Stretched tissue was 
shown to have a significant reduction in metaphase time compared with the unstretched tis-
sue cells (p=0.0015. Kruskal-Wallis test and post hoc Dunn’s multiple comparisons test). 
Interestingly, inducing knockdown of NuMA in stretched tissues increased the metaphase 
time significantly (p=0.0388, unstretched compared with stretched + NuMA KD; p<0.0001, 
stretched compared with stretched + NuMA KD) (Figure 3.3A).
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Figure 3.3. The impact of metaphase time. A) Metaphase time for each cell division in unstretched, 
stretched and stretched NuMA KD tissues. Error bars represent the standard deviation. Statistical significance 
represented by p=0.0388*,0.0015** and p<0.0001***. Analysed using the Kruskal-Wallis test and post hoc 
Dunn’s multiple comparisons test. B) The total distance travelled per metaphase time, defining an overall 
speed of the spindle, over the unstretched, stretched and stretched NuMA KD conditions. Error bars represent 
the standard deviation. Analysed using the Kruskal-Wallis test and post hoc Dunn’s multiple comparisons test. 
C), D) and E) Scatter graphs of the area bounding the spindle centre within the cell as function of metaphase 
time. Error bands represent the 95% confidence interval. p=0.0039** and p<0.0001****. Samples were 
analysed using the Spearman rank correlation test. KD - knockdown. Indicators for non-statistically 
significant results are omitted. Unstretched: n=53 cells from 8 embryos; Stretched: n=62 cells from 7 
embryos; Stretched + NuMA KD: n=21 cells from 3 embryos.
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This pointed to the potential for the difference in maximum displacement from the centre 
to be a result of the mitotic spindle having more time to explore the cell. Indeed, normal-
ising the total distance travelled by each spindle by its total time in metaphase defines an 
approximate spindle speed, which is not significantly different across the three conditions 
(Figure 3.3B). This is contrast to what we expected by looking at the maximum displace-
ments alone, and suggests that the spindles of the stretched NuMA KD tissue cells are able 
to become maximally displaced from the spindle centre because of their longer metaphase 
time rather than a change in their velocity.

In order to determine whether the larger displacements from the cell centre were likely to 
be a result of the increased metaphase time, we approximated the size of the space that the 
movements occupied by the maximum displacements of the 𝑥 and 𝑦 coordinates across 
metaphase and analysed this bounding area’s correlation with metaphase time (Figure 3.3C). 
The bounding area was shown to be positively correlated with metaphase time for unstretched 
and stretched + NuMA KD tissues (p<0.0001, unstretched; p=0.0039, stretched+NuMA 
KD. Spearman rank correlation test), though interestingly in stretched tissues without per-
turbation of NuMA there was no significant correlation.

We conclude that there is no significant difference in spindle velocity across either the un-
stretched, stretched or stretched NuMA KD conditions. However, due to the size of the ex-
plored area being dependent on metaphase time, we look from here on at the shape of the 
area, rather than its absolute size.

3.2.4 Inducing a NuMA KD in stretched tissue biases spindle movements along the ma-
jor axis of circular cells

In order to reduce the effect of long metaphase time, we turned to investigate the path of the 
spindle positioning with respect to the major and minor axes of the cell as calculated from 
the positions of the tricellular vertices (TCVs), the points where three or more cells meet. 
The TCVs have previously been identified as being positions which are good predictors 
for the ultimate cell division orientation [15]. Further, the elongation of the cell has been 
shown to effect the ability of the cell to orient its division with shape, with more elongated 
cells orienting their divisions with the long axis better than circular cells [15], [18], [19], 
[43], [45]. By defining the cell circularity, 𝐶 as the ratio between the magnitude of the mi-
nor and major cell axes, we have a measure of how circular or elongated a cell is. We there-
fore investigate the motion of the spindle with reference to the axes defined by the positions 
of the TCVs in elongated (𝐶 ≤0.6) and circular cells (𝐶>0.6) (Figure 3.4A).

The track followed by the spindle through metaphase was separated into components along 
the major and minor axes of the cell shape (Figure 3.4B). The mean and standard devia-
tion of each axis was calculated and used to define the bounds of the track which we used 
to determine the fraction of major axis movement. A fraction greater than 0.5 suggests the 
track bounds are a rectangle elongated along the major cell axis, while a fraction less than 
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Figure 3.4. Spindle movements with respect to cell shape. A) Cell circularity is measured, where more 
circular cells have a value of 1. B) i) The centre of the metaphase plate is ii) tracked and used as a proxy for 
spindle movements. iii) The track is defined by the bounding box aligned with the cell major axis, whose 
lengths are equal to the standard deviation of the track about the mean, along the major (L1) and minor (L2) 
axes. These are used to define the fraction of movement along the major axis. C) i) An example cell during 
metaphase, showing the defined metaphase plate (yellow line) and the metaphase plate centre (dot) at two 
time-points, with ii) the resulting track through time. D,F,H) Scatter plots of individual cells in D) 
unstretched, F) stretched and H) stretched NuMA KD tissues, showing the relationship between cell 
circularity and the fraction of movement along the cell major axis. Red dotted lines indicate the chosen divide 
between elongated and circular cells, and the divide between a track more elongated toward the major axis 
(>0.5) and the minor axis (<0.5). Shaded regions indicate the 95% confidence interval. p=0.0430*. Samples 
were analysed using the Pearson R correlation test. Unstretched: n=53 cells from 8 embryos; Stretched: n=62 
cells from 7 embryos; Stretched + NuMA KD: n=21 cells from 3 embryos. E,G,I) The same data as D,F,H) 
grouped into elongated and circular cells. Error bars represent standard deviation. Analysed using Welch’s t 
test. p=0.0207*. KD - knockdown. Indicators for non-statistically significant results are omitted. Unstretched, 
elongated: n=16 cells from 6 embryos; Unstretched, circular: n=37 cells from 7 embryos; Stretched, 
elongated: n=36 cells from 7 embryos; Stretched, circular: n=26 cells from 4 embryos; Stretched + NuMA 
KD, elongated: n=13 cells from 3 embryos; Stretched + NuMA KD, circular: n=8 cells from 2 embryos.
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Figure 3.5. The spindle track is more anisotropic than cell shape. Circularities of cells and spindle centre 
track shapes, as determined from the gyration tensor of the track, in A) unstretched, B) stretched and C) 
stretched NuMA KD conditions. Error bars represent the standard deviation. Analysed using the Wilcoxon 
test. p<0.0001****, 0.0038**. KD - knockdown. Unstretched: n=53 cells from 8 embryos; Stretched: n=62 
cells from 7 embryos; Stretched + NuMA KD: n=21 cells from 3 embryos.0.5 suggests the track bounds are a rectangle elongated along the minor cell axis. An exam-
ple cell track is shown in Figure 3.4C, with the major axis of the cell indicated by the black 
line. The major axis of the cell determined by the TCV position is likely to be more prone 
to geometric error than the major axis determined by cell perimeter or area, as the shape 
is described by fewer data points [15], and this error is likely to increase for more circular 
cells where the long axis of the cell is less well defined.

The fraction of movement along the major axis was investigated with respect to the cell cir-
cularity (Figure 3.4D,F,H). For unstretched and stretched tissues the fraction of movement 
along the major axis was not significantly different between elongated and circular cells 
(Figure 3.4E,G), indeed both cells show means around 0.5 suggesting there is no popula-
tion bias of path elongation along either the major or minor axes of the cell. However, for 
stretched NuMA KD tissues, a significant difference emerges between the elongated and 
circular cells, with circular cells tending to have a bias toward movement along the major 
cell axis, and elongated cells having a bias toward the minor cell axis (Figure 3.4I).

3.2.5 Defining the track gyration tensor reveals that the overall track shapes are more
anisotropic than the cell shapes

Following the general movement of the spindle along the major cell axis, we sought to in-
vestigate the elongation and overall orientation of the tracks by using the gyration tensor 
defined by 

𝑆 = 1𝑁 [ ∑𝑁𝑖=1 (𝑥𝑖 − ⟨𝑥⟩)2 ∑𝑁𝑖=1 (𝑥𝑖 − ⟨𝑥⟩) (𝑦𝑖 − ⟨𝑦⟩)∑𝑁𝑖=1 (𝑥𝑖 − ⟨𝑥⟩) (𝑦𝑖 − ⟨𝑦⟩) ∑𝑁𝑖=1 (𝑦𝑖 − ⟨𝑦⟩)2 ] (3.1)
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to determine the major and minor track axes. Here ⟨𝑥⟩ and ⟨𝑦⟩ represent the mean posi-
tions of the track, which is at position (𝑥𝑖, 𝑦𝑖) at time 𝑡𝑖. Determination of the eigenvectors 
v1, v2 and corresponding eigenvalues (𝜆1, 𝜆2) allows us to calculate the track circularity 𝐶T

by 𝐶T = 𝜆1𝜆2 (3.2)

which, as with the cell circularity, is 1 for circular tracks and 0 for one-dimensional tracks. 
This method of describing the track circularity and major and minor axes is the same em-
ployed to describe cell shape by the positions of the TCVs [15], [21]. Interestingly, the cir-
cularity of the tracks in all three conditions were significantly less than the circularity of 
the cells (Figure 3.5) (p<0.0001 in unstretched and stretched tissues, p=0.0038 in stretched 
NuMA KD tissues. Wilcoxon matched-pairs signed rank test). The striking difference be-
tween the elongation of the tracks with the approximately square box of the bounds along 
the major and minor cell axes (Figure 3.4E,G,I, means around movement fraction 0.5), sug-
gested that the tracks were not well aligned with the cell axes. Thus, the cell elongation 
axes were considered to be insufficient for predicting the shape of translational spindle move-
ment tracks in unstretched and stretched tissues. However, we expect that the track ma-
jor axis is more aligned with the cell major axis in circular stretched NuMA KD cells, as 
we saw a bias in spindle movements along the cell long axis when analysing movements 
specifically along and away from the cell shape axis (Figure 3.4I).

3.2.6 Spindles in circular cells have more translational movements perpendicular to the 
direction of cell division.

The alignment of cell orientation with division orientation has been observed previously 
[6], [15], [17], [27], [43], thus we sought to investigate the relationship between track orien-
tation along the track major and minor axes with cell division. The orientation of the major 
and minor track axes can be determined as the orientation of the eigenvectors v1, v2. We 
compared the difference between the division orientation 𝜃D, measured from the horizontal 
(the stretch direction in stretched tissues) and the orientations of the tracks major (+) and 
minor (-) axes (𝜃± measured from the horizontal) as well as the cell major axis (𝜃c, mea-
sured from the horizontal). Thus |𝜃D − 𝜃𝑖|=0 when perfectly aligned for 𝑖 ∈(±, C) (Figure 
3.6).

We find that in more circular cells, the minor track axis orientation is significantly closer 
to the cell division orientation than the major track axis orientation for all three conditions 
(Figure 3.6Aii,Bii, Cii) (p=0.0019, unstretched; p=0.0072, stretched; p=0.0486, stretched 
NuMA KD. Kruskal-Wallis test and Dunn’s multiple comparisons test). This significance is 
lost in stretched and stretched NuMA KD elongated cells (Figure 3.6Bi,Ci), but maintained 
in the elongated unstretched cells (p=0.0199. Kruskal-Wallis test and Dunn’s multiple com-
parisons test). We speculate that this may be because the degree of elongation of cells in 
stretched tissues are on average higher than the elongation of cells in unstretched tissues 
(can be seen in Figure 3.5) leading to a reduced effect across the elongation boundary.
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Figure 3.6. Alignment of track major and minor axes with division. Alignment of cell orientation, 
orientation of track major axis and orientation of track minor axis with the cell divsion orientation in A) 
unstretched, B) stretched, and C) stretched NuMA KD tissues, in i) elongated and ii) circular cells. Error bars 
represent the standard deviation. Samples analysed using the Kruskal-Wallis test and post hoc Dunn’s test. 
Statistical significance represented by Ai) p=0.0259* (cell orientation compared with major axis orientation), 
0.0199* (major axis orientation compared with minor axis orientation). Aii)p<0.0001****,0.0019**. Bi) 
p=0.0003*** (cell orientation compared with major axis orientation),0.0002*** (major axis orientation 
compared with minor axis orientation). Bii) p=0.0018** (cell orientation compared with major axis 
orientation),0.0072** (major axis orientation compared with minor axis orientation). Cii)p=0.0486*. KD - 
knockdown. Indicators for non-statistically significant results are omitted. Unstretched, elongated: n=16 cells 
from 6 embryos; Unstretched, circular: n=37 cells from 7 embryos; Stretched, elongated: n=36 cells from 7 
embryos; Stretched, circular: n=26 cells from 4 embryos; Stretched + NuMA KD, elongated: n=13 cells from 
3 embryos; Stretched + NuMA KD, circular: n=8 cells from 2 embryos.
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In elongated cells the cell shape orientation is a better predictor of cell division orientation 
than the track major axis orientation (Figure 3.6Ai,Bi) (p=0.0259, unstretched; p=0.0003, 
stretched. Kruskal-Wallis test and Dunn’s multiple comparisons test), though not signifi-
cantly in the stretched NuMA KD tissue (Figure 3.6Ci).

We conclude that the track minor axis aligns closer with the cell division axis in circular 
cells than the track major axis, though this orientation bias is lost in elongated cells. We 
speculate whether this is because the major axis of spindle movement cannot be aligned 
with the minor axis of cell shape in very elongated cells as it is more restricted in motion 
along the minor cell axis.

3.2.7 The mitotic spindle undergoes rotational movements during metaphase

Figure 3.7. Preliminary data of spindle angles in stretched and unstretched tissues. Example spindle 
angles through metaphase from preliminary data collection in A) unstretched tissue cells; and B) stretched 
tissue cells. The first 200 s of metaphase is highlighted as an approximate indicator of first and second half of 
metaphase (inexact - for illustrative purposes across the examples).

Following investigation into the translational movements of the spindle, we next turned 
to the rotational movements of the spindle. The spindle orientation at anaphase is the im-
portant factor for determining cell division orientation [192], and the rotation towards this 
axis is driven by pulling forces [18], [43], [44], [83]. Preliminary data looking at the spin-
dle angle through metaphase for unstretched and stretched tissues showed that the spindles 
were rotationally dynamic (Figure 3.7). In particular, the spindles in the stretched tissue ap-
peared to have an oscillatory nature (Figure 3.7B) which was in contrast to the spindles of 
the unstretched tissue (Figure 3.7A), especially if we compared the first half of metaphase 
between the two conditions (pink shaded region). The spindles of the stretched tissues ap-
peared to undergo large scale movements much earlier in metaphase, as opposed to the un-
stretched condition which appeared to have more noisy movements rather than defined co-
ordinated movements. Following these qualitative observations of the preliminary data, we 
chose to quantitatively investigate the rotational dynamics of the mitotic spindle.

To first define the general rotational dynamics of the spindle, we investigated the angular 
displacement between the initial spindle orientation and the cell division orientation (the 

80



Figure 3.8. General rotational movements of the spindle. A) Alignment of the initial spindle orientation 𝜃0
with the cell division orientation 𝜃D. Error bars represent the standard deviation. Samples analysed using the 
Kruskal-Wallis test and post hoc Dunn’s multiple comparisons test. B) The maximum angular displacement 
between the maximum angle and the minimum angle achieved for each spindle through metaphase. Error bars 
represent the standard deviation. Samples analysed using the Kruskal-Wallis test and post hoc Dunn’s 
multiple comparisons test. B) The mean angular speed of each spindle through metaphase. Error bars 
represent the standard deviation. Samples analysed using the Kruskal-Wallis test and post hoc Dunn’s 
multiple comparisons test. KD - knockdown. Indicators for non-statistically significant results are omitted. 
Unstretched: n=53 cells from 8 embryos; Stretched: n=62 cells from 7 embryos; Stretched + NuMA KD: 
n=21 cells from 3 embryos.

ultimate spindle orientation) (Figure 3.8A). Analysis of this data showed (with a Kruskal-
Wallis test and post hoc Dunn’s multiple comparisons test) no significant difference be-
tween the populations of spindles in each of the three conditions. On average, the initial 
spindles were formed within 30∘ of the ultimate division angle (unstretched: 24±3∘, stretched: 28 ± 3∘, stretched NuMA KD: 26 ± 4∘. Mean±SEM), though a sub-population of spindles 
did form initially much more displaced from the ultimate division angle in all three popula-
tions (Figure 3.8A). However, the maximum angular displacement of the spindle, defined as 
the displacement between the maximum and minimum angles achieved, was elevated from 
displacement between initial and final spindle position (Figure 3.8B), which highlights that 
the spindle does not rotate towards its final orientation along the shortest path. However, 
no statistical significance was seen between unstretched, stretched or stretched NuMA KD 
maximum displacements. The mean angular speed of the spindles in the three conditions 
were also not statistically significantly different.
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Figure 3.9. Examples of angle tracks. Examples of tracks deemed to be A) and B) oscillatory, and C) 
non-oscillatory by analysis of the associated periodograms. Thresholds above which periodogram spectrum 
peaks are considered significant are denoted by the red dotted line. The identified frequency of oscillation is 
indicated by 𝑓. The threshold height (red double-headed arrow) and peak amplitude (magenta double headed 
arrow) are used to define the goodness measure of the identified oscillation. Peaks corresponding to 
frequencies which result in periods within 95% of the track duration were discarded as trend artefacts.

3.2.8 The mitotic spindle oscillates as it is positioned during metaphase

We next investigated rotational spindle movements by seeking oscillations using a peri-
odogram to determine the dominant frequencies present in the ‘signal tracks’ (the angles 
of the spindle through time) (Figure 3.9). The peaks of the periodogram were determined 
to be significant and thus correspond to an oscillatory frequency if they surpassed a defined 
outlier threshold (Section 2.3.1). The periods within 95% of the total duration were also 
determined to be trend lines and were thus omitted from the analysis (Figure 3.9C). We as-
signed each oscillation a ‘goodness measure’, which we defined based on the ratio of the 
outlier threshold to the periodogram peak amplitude. Thus, 

Goodness measure = 1 − Threshold
Peak amplitude , (3.3)

and the goodness measure is close to 1 for peaks far exceeding the threshold and closer to 
0 for peaks close to the threshold (Figure 3.9A,B). We note that this goodness measure was 
created for this work explicitly to distinguish between oscillations which are less defined 
(just passing the threshold) and more defined (far surpassing the threshold).

The fraction of oscillatory spindles decreased in stretched tissue cells by comparison with 
unstretched tissue cells (p=0.0312, Fisher’s exact test), though all of the stretched NuMA 
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Figure 3.10. Oscillations of the mitotic spindle through metaphase. A) The fraction of spindles which 
oscillate in the unstretched, stretched, and stretched NuMA KD tissues. Sample count data analysed using 
Fisher’s exact test. Unstretched: n=53 cells from 8 embryos; Stretched: n=62 cells from 7 embryos; Stretched 
+ NuMA KD: n=21 cells from 3 embryos. B) Comparison of the dominant periods of the oscillating spindles 
in each condition. Error bars represent the standard deviation. Samples analysed using the Kruskal-Wallis test 
and post hoc Dunn’s multiple comparisons test. C) Comparison of the goodness of the oscillations detected 
across the three conditions. Error bars represent the standard deviation. Samples analysed using the 
Kruskal-Wallis test and post hoc Dunn’s multiple comparisons test. D) A scatterplot comparing the goodness 
measure of oscillations against the period of the oscillations. All three conditions present on the same plot. E) 
Comparison of the goodness measure of oscillations against the corresponding cell’s metaphase time. F) 
Comparison of the period of oscillation with metaphase time. D,E,F) all use the same legend. Data analysed 
using the Spearman rank correlation test. Statistical significance represented by A) p=<0.0001****, 0.0312* 
(unstretched compared with stretched),0.0145* (unstretched compared with stretched NuMA KD). B) 
p=0.0387*. KD - knockdown. Indicators for non-statistically significant results are omitted. B), C), D), E) 
and F) from Unstretched: n=40 cells from 8 embryos; Stretched: n=34 cells from 6 embryos; Stretched + 
NuMA KD: n=21 cells from 3 embryos.
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Figure 3.11. Microscope images of oscillations in stretched tissues. A) Time lapse images of oscillations of 
the metaphase plate (red - mCherry-Histone2B) during metaphase in stretched tissue and stretched NuMA KD 
tissue. A single oscillation is shown in each case. The cell membrane is tagged with BFP-CAAX. The 
resulting spindle angle signals from these cells are shown for the B) stretched tissue cell, and C) stretched 
NuMA KD tissue cell. KD - knockdown

KD cells were characterised as oscillatory, increased from both the stretched (p<0.0001, 
Fisher’s exact test) and unstretched (p=0.0145, Fisher’s exact test) (Figure 3.10A). The stretch 
regime had no effect on the dominant period of oscillation of the spindles (unstretched 111±18 s, 
stretched 97±13 s; mean±SD) (Figure 3.10B), though the NuMA KD stretched cells had 
spindles whose oscillations had periods significantly longer than the periods in stretched 
tissues (p=0.0387, Kruskal-Wallis test and post hoc Dunn’s multiple comparisons test) (Fig-
ure 3.10B and Figure 3.11). Due to the asymmetry of the distributions of the periods, we 
also note here the median values for each condition, unstretched 70 s; stretched 70 s; stretched 
NuMA KD 116 s. We note that the periods above 600 s are unlikely to be present in stretched 
tissues due to the decreased metaphase time.

Statistical analysis of the goodness measures over the three conditions reveals no signifi-
cant difference (Figure 3.10C). Analysis of the correlation of goodness measure with pe-
riod shows a positive correlation (Figure 3.10D) (p<0.0001 for unstretched, p=0.0032 for 
stretched, p<0.0001 for stretched + NuMA KD. Spearman rank correlation test). In order 
to determine whether or not the goodness measure was sensitive to track duration we also 
analysed the correlation of the goodness measure with metaphase time and determined that 
there was no correlation in unstretched and stretched conditions. However, the stretched 
NuMA KD condition showed a positive correlation with metaphase time (p = 0.0002. Spear-
man rank correlation test). Longer metaphase times are correlated with longer periods for 
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Figure 3.12. The effect of circularity on oscillations. Comparison of periods of oscillation in elongated and 
circular cells in A) unstretched, B) stretched, and C) stretched NuMA KD conditions. Error bars represent the 
standard deviation. Data analysed using the Mann-Whitney test. D) Scatter graph of the goodness of 
oscillation compared with cell circularity for unstretched, stretched and stretched NuMA KD tissues. Data 
analysed using the Spearman rank correlation test. KD - knockdown. Indicators for non-statistically 
significant results are omitted. Unstretched, elongated: n=11 cells from 7 embryos; Unstretched, circular: 
n=29 cells from 7 embryos; Stretched, elongated: n=17 cells from 4 embryos; Stretched, circular: n=17 cells 
from 6 embryos; Stretched + NuMA KD, elongated: n=8 cells from 2 embryos; Stretched + NuMA KD: n=13 
cells from 3 embryos.

the stretched NuMA KD tissue (p=0.0012. Spearman rank correlation test) but not for un-
stretched or stretched tissues (Figure 3.10F). We also acknowledge that longer metaphase 
times allow for the presence of longer periods to become established sufficiently that they 
may be picked out by the periodogram in a noisy signal, but more data would be needed in 
order to determine whether or not this has a significant effect on the data. By visual con-
firmation of the oscillations within the signals, we observed that the spindle oscillations 
present in stretched tissue cells (Figure 3.11B) were less noisy than the longer oscillations 
seen in NuMA KD tissues (Figure 3.11C), suggesting that they may be arising from differ-
ent mechanisms.

3.2.9 Cell circularity has no effect on the period or quality of oscillation

As in the analysis of the translational movements, we split the data into oscillations within 
elongated and circular cells. We saw no significant difference between the mean period be-
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tween the two populations (Figure 3.12A,B,C). There was also no correlation between the 
circularity and the goodness of oscillation (Figure 3.12D) (Spearman rank correlation test). 
We conclude that cell circularity has no effect on the quality of the oscillation, nor does it 
have a significant effect on the period of oscillation.

3.2.10 Oscillation period is independent of when the oscillations happen during metaphase

Our preliminary data suggested that spindles may show different rotational dynamics be-
tween early and late metaphase, in particular in unstretched tissues (Figure 3.7A), whereas 
stretched tissues seemed to have less of a difference in behaviour between the two halves 
(Figure 3.7B). Additional to this data, a previous study looking at spindle dynamics in Xeno-
pus leavis embryos described early metaphase as a rotation to the final orientation, while 
oscillations built up toward the onset of anaphase [77]. We thus sought to determine whether 
or not this difference was present in our full data sets, as well as in our stretched NuMA KD 
tissue. We saw a significant increase in the fraction of oscillating spindles between the first 
and second halves of metaphase in unstretched tissues (Figure 3.13A) (p=0.01. Fisher’s 
exact test). This trend was lost in the stretched and stretched NuMA KD tissues (Figure 
3.13A). The periods of the detected oscillations showed no significant difference between 
early and late metaphase across any of the three conditions (Figure 3.13B,C,D). Further, 
analysis of the goodness measure of the oscillations also showed no significant difference 
between early and late metaphase in either of the three conditions (Figure 3.13E,F,G).
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Figure 3.13. Spindle oscillations in early and late metaphase. A) A comparison of the fraction of 
oscillating spindles during early and late metaphase. Sample count data analysed using Fisher’s exact test. 
Unstretched: n=53 cells from 8 embryos; Stretched: n=62 cells from 7 embryos; Stretched + NuMA KD: 
n=21 cells from 3 embryos. B) C) D) Comparison of periods of spindle oscillation detected in early and late 
metaphase in B) unstretched, C) stretched and D) stretched NuMA KD tissues. Error bars represent the 
standard deviation. Data analysed using the Mann-Whitney U test. E) F) G) The goodness of oscillation of the 
identified oscillations in early and late metaphase in E) unstretched, F) stretched, G) stretched NuMA KD 
tissues. Error bars represent the standard deviation. Data analysed using the Mann-Whitney U test. Statistical 
significance represented by p=0.01**. KD - knockdown. Indicators for non-statistically significant results are 
omiitted. Unstretched, early metaphase: n=15 cells from 8 embryos; Unstretched, late metaphase: n=29 cells 
from 8 embryos; Stretched, early metaphase: n=8 cells from 4 embryos; Stretched, late metaphase: n=16 cells 
from 7 embryos; Stretched + NuMA KD, early metaphase: n=13 cells from 2 embryos; Stretched + NuMA 
KD: n=12 cells from 2 embryos.
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3.3 Discussion

Protein NuMA has been implicated in spindle positioning due to its interactions with motor 
protein dynein, which work together to pull the spindle into position [43], [64], [79]. Inter-
estingly, division orientation has been attributed to both cell shape [19], [43], [44] and cell 
tension [6], [12], [13], though elucidating which is the responsible factor is difficult as ap-
plied tensions deform cell shapes [15]. Indeed, how NuMA and dynein function differently 
under tension to create a shape-based or force-based division orientation response in un-
clear. With an aim to understand more directly how tension regulates division orientation, 
here we have investigated in detail how the application of a known tensile force impacts mi-
totic spindle dynamics in a tissue context. In addition, we have compared spindle dynam-
ics in control tissue with tissue in which the key spindle orientation protein, NuMA, has 
been knocked down. It has been shown in a recently submitted thesis from the Woolner lab 
that NuMA is required for orienting the spindle to tension and cell-shape [27], but the exact 
mechanism by which NuMA functions, especially in tension-sensitive spindle orientation, 
remains unclear. By examining spindle dynamics in detail, we aim to gather information to 
refine and improve mathematical models of spindle dynamics (Chapters 4, 5) with the ulti-
mate goal of shedding new light on how the spindle responds to external force.

Prior to embarking upon our study of mitotic spindle dynamics, we confirmed that metaphase 
plate dynamics could be used as a proxy for spindle dynamics by analysing their angles and 
positions in Xenopus laevis embryos expressing cherry-H2B and GFP-𝛼-tubulin [179] (Fig-
ure 3.1). This analysis was important to reduce the number of fluorescent tags present in 
the cell. mCherry-Histone2B was chosen to monitor the cell’s progression through mitosis, 
while BFP-CAAX could be used to measure the cell shape. Only fluorescently tagging two 
proteins of interest was important for our initial hope to also image GFP-NuMA in order to 
monitor its dynamic localisation at the cell cortex. However, GFP-NuMA proved difficult 
to image with a significant intensity (data not shown), thus imaging it at such a dynamic 
timescale of 5 s per frame was infeasible. However, we continued to pursue imaging with-
out GFP-NuMA in the hope that the imaging of NuMA could be optimised at a later date 
and subsequently re-introduced in rescue experiments. We showed that the metaphase plate 
and mitotic spindle lie perpendicular to one another (Figure 3.1E), with coordinated fluctu-
ations in both their angles and respective centre of mass’ (Figure 3.1F,G,H). Thus we con-
clude that the metaphase plate can be monitored and used to describe the accompanying 
dynamics of the mitotic spindle.

Using this imaging approach, we went on to explore the spindle dynamics in terms of its 
translational positioning within the cell. The spindle was shown to have an overall cen-
tring mechanism, by analysis of the proximity of the final positions to the cell centre (un-
stretched, and stretched within the central 0.07 ± 0.05 and 0.07 ± 0.04 fraction of the 
cell respectively, mean±SD) (Figure 3.2A) and the distance of the centre of mass of the 
metaphase plate from the cell centre between the start and end points of metaphase (Fig-
ure 3.2C). Further, the maximum displacement of the spindles from the cell centre in ei-
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ther unstretched or stretched tissue cells showed no significant difference within the condi-
tions (Figure 3.2D), suggesting that the application of a stretch does not affect the ability of 
spindles to maintain their position at the cell centre. This has important implications for the 
ability of cells in tissues to generate two daughter cells of equal size despite the mechanical 
environment, as an off-centre division will not evenly distribute cellular components [78], 
[195]. We suggest that the correct centring of the spindle despite the application of stretch 
aids in the maintenance of a population of cells of equal sizes and function.

Analysis of the effective speed, calculated by dividing the sum of the root mean squared 
displacement over metaphase time for each spindle, revealed that the spindle speed was un-
changed between the unstretched and stretched tissues (Figure 3.3B). This suggests that the 
balance of forces acting on the spindle to position it within the unstretched and stretched 
tissues are unaffected by stretch, as a shift in the balance of forces on the spindle would re-
sult in spindles which moved at a different rate. For example, less pulling by cortical dynein 
would result in spindles which moved more slowly [18], [78], [80]. By defining the bound-
ing area explored by the mitotic spindle in terms of its greatest displacements in the 𝑥 and 𝑦 coordinate space, we saw a correlation between the explored area and metaphase time in 
unstretched tissues but not in stretched tissues (Figure 3.3C), suggesting that the spindles 
in unstretched tissues explore the cell throughout metaphase until anaphase onset, while in 
stretched tissues they may undergo more directed motion toward their final position. The 
metaphase times in stretched tissue (6 ± 2 min) were also significantly shorter than in 
the unstretched tissues (8 ± 4 min, mean±SD). We speculate that cells with particularly 
long metaphase times may have internal cues which are preventing the cell from entering 
anaphase, possibly due to the spindle being unable to position itself correctly within the 
cell. This is similar to the conclusion drawn by O’Connell and Wang (2000) [44], whereby 
cells whose spindles were formed far away from the long axis of the cell were delayed in 
entering anaphase. While their suggestion of a mitotic checkpoint relating to spindle posi-
tioning was mostly based upon rotational positioning, the translational positioning of the 
spindle may also contribute to entry through the mitotic checkpoint before anaphase is able 
to proceed. This metaphase time effect could be due to either rotational or translational dy-
namics, however, the overall centring seen across both stretched and unstretched tissues 
suggests that the spindle is sufficiently positioned to enter anaphase and gives evidence to 
the existence of a spindle positioning-related mitotic checkpoint.

As the area of the cell explored by the spindles in the various conditions are linked to the 
metaphase time, we moved on to analyse the spindle movements in terms of ratios of the 
directions travelled instead, such that we might shed some light on the directionality and 
shape of the tracks traced by the spindle centres (Figure 3.4). The locations of the TCVs 
have been implicated as core components in the determination of the cell division orienta-
tion [15], [43]. In particular the orientation of the cell major axis, where the cell shape is 
defined in terms of the locations of the TCVs, has been shown to align well with the cell di-
vision orientation, particularly in elongated cells [15]. Oscillations of the mitotic spindle 
along the pole-pole axis (i.e., along the axis of spindle orientation) have been previously 
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described in HeLa cells, toward sites of cortical enrichment of dynein [18], [26], however, 
movements perpendicular to the spindle orientation have also been described [77]. To ex-
plore this in our tissue, we reframed the track taken by the spindle relative to the cell major 
axis, and used the standard deviation of the path along the cell major and minor axes to de-
fine a new bounding area. We defined a fraction of major axis movement, whose value is 
above 0.5 for spindles with movements biased along the cell major axis rather than along 
the cell minor axis. The standard deviation was chosen here in order to reduce the effect of 
outlier track positions on the analysis. The aim here was to determine whether the anisotropy 
of cell shapes had an effect on the spindle movements.

The work of Dimitracopoulos et al (2020) recently showed that monopolar spindles in elon-
gated HeLa cells showed a broad range of movement similar to an oscillation along the 
length of the cell [76], due to the interactions of astral microtubules with cortical elements 
(dynein/NuMA/LGN, visualised by GFP-LGN). The presence of the chromosome-derived 
RanGTP gradient was shown to exclude LGN (and thus NuMA and dynein) from the cor-
tex upon close proximity, reducing the pulling power acting on the spindle pole from the 
regions within 4 𝜇m of the metaphase plate [76]. From this we would expect that the closer 
proximity of the metaphase plate to the cell cortex in elongated cells would result in a more 
polarised distribution of dynein/NuMA/LGN at the distant cell edges, and thus more pulling 
power resulting in movement along the major cell axis. Movements in this plane have been 
recorded for elongated cells previously [18]. Contrary to this, the experimentally measured 
spindle dynamics showed no bias towards movement along or against the cell major axis re-
gardless of circularity or stretch condition (Figure 3.4E,G). This lack of bias suggests that 
either that a) movements of the spindle do not have a directional bias with regards to the 
spindle orientation, or b) the spindles in these cells are not well aligned with the cell long 
axis for a significant fraction of metaphase, leading to more random movements. While a 
strict analysis of the movements along the orientation of the mitotic spindle over the course 
of metaphase would have been beneficial here (as in [18]), this analysis could not be com-
pleted due to time constraints.

To further explore the precise shape of the tracks taken by the mitotic spindle, in particular 
to determine whether or not there was any directional bias in the movements not related to 
the cell shape, we defined the gyration tensor of the spindle positions over all of metaphase. 
The eigenvectors of the gyration tensor were used to define the major and minor track axes, 
while their associated eigenvalues were used to define a track circularity. Interestingly, both 
unstretched and stretched tissues had spindles whose centre of mass moved along a track 
which was more elongated than the cells they were in (Figure 3.5A,B). Thus the spindle 
movements do have a directional bias - they are just not correlated with the cell shape ori-
entation (Figure 3.4E,G).

By defining the spindle track major and minor axes, we compared the spindle movements 
with the cell division orientation (Figure 3.6). Interestingly, the analysis showed that in un-
stretched tissues, the track major axis was significantly less oriented along the division axis 
than cell shape was, with the track minor axis better oriented with the division axis. This 
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significance was increased in the circular cells (Figure 3.6A). Then in unstretched tissues, 
the range of translational mitotic spindle movement is increased away from the division 
axis, rather than along it. The circular cells in the stretched tissues showed this same bias 
(Figure 3.6Bii), though in the elongated cells tissues both the major and minor axes of the 
track elongation were significantly further away from the division axis than cell shape was 
(Figure 3.6Bi). This suggests that in elongated cells the orientation of the track is randomly 
distributed with no clear bias. As we saw no clear bias between the fraction of movement 
along the cell major axis (Figure 3.4G), and we expect cell shape to be well aligned with di-
vision orientation in stretched, elongated cells [8], [15], [27], [175], this randomisation of 
the track orientation is consistent across Figures 3.4G and 3.6Bi. We suggest that the elon-
gation of the cell is the reason for this - as the spindle would be expected to be more aligned 
with the cell long axis due to geometric constraints.

If the spindle orientation machinery is such that it tends to create more movements per-
pendicular to the plane of division, but the length of the cell is significantly decreased in 
that plane due to the cell elongation, then this places a geometric restriction on the spin-
dle movements which may be redirected off-axis, creating the randomised distribution seen 
in Figure 3.6Bi. Lateral movements of the spindle toward the cell cortex would result in 
the close proximity of the metaphase plate to the cortex, which has been shown to exclude 
LGN (and thus NuMA and dynein) due to the chromosome-derived Ran-GTP gradient [76]. 
This creates localised regions of LGN/NuMA/dynein from which pulling forces could be 
acting, away from the lateral cell edges. The close proximity of the spindle to the cell cor-
tex would also decrease the angle between the astral MTs and the cortex which has been 
shown to result in dynein-mediated ‘sliding’ of the spindle along the cortex as more dyneins 
can load onto a single MT to pull it along the cell edge [82]. We therefore suggest that due 
to the asymmetry in the localisation of dynein from the chromosome-derived Ran-GTP 
gradient and sliding effects, this redirects the lateral motion of the spindle into more ran-
domised motion in the elongated cells of the stretched tissue, due to geometric constraints. 
We speculate that this effect is stronger in more elongated cells, thus the effect is not seen 
in the elongated cells in the unstretched tissue as the ‘elongated’ cells in this tissue are on 
average less elongated than those in the stretched tissue (see distribution of points below 𝐶 = 0.6 in Figures 3.4D, F). We would ideally prefer to further divide the data into degrees 
of elongation, however more data would be required to have a sufficiently large number of 
data points in each category from which to draw conclusions. An alternative hypothesis for 
this effect is that sliding interactions of the MT with cortical elements may require tension 
to create a stable substrate to transfer forces effectively [16], thus the off-axis pulling due 
to microtubule sliding could be less effective in unstretched cells. Again, more data will be 
required to fully investigate this.

We next analysed the rotational movements of the mitotic spindle, which have been the sub-
ject of more studies than the translational movements, though often at a decreased frame 
rate [8], [16], [18], [44], [82], [83]. Preliminary data confirmed that the angle of the mi-
totic spindle was rotationally dynamic in both unstretched and stretched tissues, though the 
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data in stretched tissues suggested the presence of more coherent oscillations earlier on in 
metaphase (Figure 3.7). Despite our initial expectations for this data, we found that in gen-
eral the number of oscillating spindles in stretched cells was reduced relative to in the un-
stretched conditions (Figure 3.10A) with no effect on the quality of the oscillations as de-
termined by a defined ‘goodness measure’ (Figure 3.13C). Interestingly, the application of 
stretch had no effect on any of the rotational dynamics we measured, including the net an-
gular displacement (Figure 3.8A), the mean angular speed (Figure 3.8C), nor the period 
of oscillation (Figure 3.10B). Further, the increased maximum angular displacement rela-
tive to the initial displacement from the division angle (Figure 3.8B compared with Figure 
3.8A) suggests that spindles do not take the shortest path toward their final orientation.

The circularity had no effect on the period or quality of oscillations in either stretched nor 
unstretched tissues (Figure 3.12). This is in contrast with what was reported by Tang et al.
(2018) when they investigated spindle dynamic behaviours in the mouse lung epithelium 
[8]. Their work showed that two populations of spindle dynamics existed within the tissue 
- ‘rotating’ spindles, which moved continuously through metaphase, and ‘fixed’ spindles, 
which rotated to their final orientation at the beginning of metaphase and maintain this po-
sition until anaphase. They attribute the existence of these two populations to the relative 
elongation of the cells - with elongated cells having fixed spindles rather than rotating spin-
dles [8]. We would expect that more oscillatory spindles would be considered to be ‘rota-
tional’ and thus correspond to more circular cells, while ‘fixed’ spindles would not oscil-
late. The invariance of the oscillation period and goodness of oscillation with circularity is 
in contrast to this expectation. Interestingly however, stretching the lung tissue on a silicon 
membrane caused a net elongation of the lung cells and also a greater number of fixed spin-
dles - suggesting that an external mechanical stretch reduces movement dynamics, which 
matches our observation that fewer spindles oscillate in stretched tissue (Figure 3.10A and 
Figure 3.13A). However, due to the low temporal resolution of the data obtained by Tang et 
al. (2018) (3 minutes per image) [8], our expectations for how these spindles might look at 
a higher temporal resolution is entirely speculation. Interestingly, they also show that pro-
moting ERK1/2 signalling by constitutive expression of activated BRAF resulted in more 
rotating spindles [8]. As ERK1/2 signalling is elevated in tissues experiencing tension [85] 
and has been shown to promote actomyosin contractility [196], we conclude that ERK1/2 
signalling in unstretched tissues may function separately to an externally applied tension.

We separated metaphase time into two halves in order to determine whether or not the spin-
dles build up to form oscillations in late metaphase. This behaviour was predicted from our 
preliminary data (Figure 3.7) and has also been previously observed in the epithelial tissue 
of Xenopus laevis embryos [77]. We saw a significant increase in the number of oscillat-
ing spindles in late metaphase in unstretched tissues, but this significance was lost in the 
stretched tissues (Figure 3.13A). Interestingly, the quality and period of oscillation were 
both unaffected by the timing of oscillation onset (Figures 3.13B, C, E, F). This suggests 
the existence of a barrier that needs to be overcome in order to promote oscillations, though 
once this barrier is surpassed then the resulting dynamics are invariant between conditions. 
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For example, in the first cell division of C. elegans the mitotic spindle is displaced towards 
the posterior of the embryo [197], [198], and this movement coincides with large oscillatory 
dynamics in the lateral position of the posterior pole [78]. This lateral oscillation depends 
upon a threshold number of cortical dyneins, below which oscillations cannot be sustained 
[79]. We suggest that a threshold may also exist in the Xenopus laevis animal cap tissue, 
and that threshold is more easily surpassed in unstretched tissues rather than stretched tis-
sues, and in late rather than early metaphase. Interestingly, the lack of dependence on cell 
circularity suggests that this effect may be tension-regulated rather than geometric.

To determine whether or not the movements of the mitotic spindle were perturbed upon 
knockdown of NuMA, which localises to the cell cortex during metaphase and interacts 
with dynein to produce displacements of the spindle pole [26], [64], [103], we induced a 
partial NuMA knockdown by morpholinos, using a method described and used previously 
in the Woolner lab [27]. The partial knockdown of NuMA in this way has been shown to 
affect the ability of cells in stretched and unstretched Xenopus laevis animal cap tissue to 
orient their divisions with the cell long axis [27]. Analysis of NuMA’s binding partner LGN 
shows a reduced cortical localisation signal under low tissue tension in dense MCDK mono-
layers [12], pointing to a potential tension-dependent localisation of NuMA at the cortx 
through its interactions with LGN. Tension-sensitive localisation of NuMA to the cell cor-
tex was observed and quantified by Taranuum (2022), showing a preferential recruitment 
to the cell cortex proximal to the spindle poles earlier in mitosis in stretched tissues when 
compared with unstretched tissues. This temporal and tension dependent accumulation 
of NuMA is particularly interesting, as the Drosophila homolog (Mud) is static at the cell 
cortex and localises specifically to the TCVs of tissue cells [43]. We would expect that the 
dynamic recruitment of NuMA to the cell cortex would affect spindle dynamics, as the re-
cruitment of dynein/dynactin to the cortex to position the spindle will also be dynamic. 
Indeed, Taranuum (2022) reported reduced translational speeds of spindles in NuMA KD 
tissues, though the temporal resolution of the live imaging was too large (30 s per frame) 
to determine whether this shift in speed was a result of less directed motion of the mitotic 
spindle or indeed a result of loss of cortical force generation [27]. Interestingly, our data 
showed no significant difference in the effective translational speed of the mitotic spindle in 
NuMA KD tissue (Figure 3.3B), highlighting the value of analysing the temporal dynam-
ics of the spindles at a higher frame rate. Unfortunately, due to a decline in the health of the 
Xenopus laevis embryos and time constraints, large samples of NuMA KD data could not 
be collected. As such, we were unable to include data from unstretched NuMA KD tissues 
in our analysis, and the dataset for divisions in stretched NuMA KD tissues is also smaller 
than we would have preferred (n=21, compared with n=53 in the unstretched condition and 
n=62 in the stretched condition).

The net translational movements of the mitotic spindle in the stretched Xenopus laevis ani-
mal cap tissue were unaffected by the knockdown of NuMA (Figure 3.2A, B, C). The NuMA 
knockdown spindles ended metaphase within the central 0.08 ± 0.04 fraction of the cell 
(mean±SD) (Figure 3.2A), and displayed a net centring mechanism from its initial place-
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ment in the cell upon metaphase onset (Figure 3.2C). This centring mechanism was invari-
ant between stretched or NuMA knockdown conditions, suggesting that NuMA is not re-
quired for spindle centring. This is aligned with previous studies which implicate pulling 
forces by cortical dynein//NuMA/LGN as decentring forces [54], [78], [80], while micro-
tubules pushing at the cortex have been implicated as a spindle centring mechanism [78], 
[137]. Thus, the result that a knockdown of NuMA has no effect on the centring mechanism 
suggests that the net result of the spindle position may be a result of microtubule-based 
pushing forces rather than cortical forcing by dynein.

Interestingly, the knockdown of NuMA also increased the normalised maximum displace-
ment of the spindle from the cell centre, suggesting that while an overall centring mecha-
nism may function normally, the spindle takes a more deviatoric path toward its final posi-
tion. The increased metaphase time of NuMA KD cells (Figure 3.3A) combined with the fi-
nal positioning of the spindle being at the cell centre suggests that NuMA KD impairs spin-
dle positioning, but a mitotic checkpoint may exist which requires the spindle to be prop-
erly positioned in the cell before proceeding to anaphase [44]. This increased metaphase 
time was also observed in unstretched tissues, with a positive correlation between the devi-
ation of the path from the cell centre (Figure 3.3C). Thus, due to NuMA’s tension-sensitive 
function in spindle orientation [27], we suggest that NuMA operates at the cell cortex and 
aids correct spindle centring in stretched tissues, though the NuMA-mediated mechanism 
for spindle positioning works in conjunction with another NuMA-independent mechanism 
which results in the final spindle position. Interestingly, dynein-mediated pulling of the 
spindle has shown to increase centring in cultured BS-C-1 cells [193], thus it is not nec-
essary that the presence of NuMA would de-centre the spindle as we previously thought.

Another suggestion for the increased deviation from the cell centre in NuMA KD tissues 
is that it may be due to the partial knockdown of NuMA within the cell. Rather than in a 
full knockout, small populations of force generating cortical complexes may remain in the 
cell which may impart asymmetric forces on the spindle leading to increased decentring for 
part of metaphase. NuMA has been shown to form clusters at the cell cortex due to inter-
actions in the C-domain of neighbouring NuMAs [64]. Thus, small pools of NuMA could 
accumulate to one area of the cell cortex and provide sufficient force to pull the spindle out 
of the cell centre in some cases. This could also account for the lack of change in spindle 
velocity we observed in the NuMA KD tissue (Figure 3.3B), as occasional pulling on the 
spindle from an asymmetric distribution would increase spindle velocity in the direction of 
the localised NuMA, increasing the mean velocity over the course of metaphase. We would 
have expected a reduction in NuMA to instead reduce the spindle velocity and the spindle 
displacement, as this has been reported in other systems for knockout of NuMA’s binding 
partner LGN [18], [26]. Thus it is possible that a NuMA-indepedent mode of spindle orien-
tation may be at play such as microtubule pushing [54], [78], [137], [143], [193], cytoplas-
mic pulling by dynein [70], [71], or a NuMA-independent role for LGN, though there is no 
current evidence for this. In order to gain more insight into this deviatoric path taken by the 
spindles in the NuMA KD tissue cells, we went on to look more closely at the path of the 
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mitotic spindle.

Intriguingly, knockdown of NuMA in stretched tissues showed a significant separation of 
the mode of movement between more circular and more elongated cells, with elongated 
cells having a broader range of movement along the cell minor axis than the major axis, be-
haviour which is flipped for the circular cells (Figure 3.4I). This is in contrast to what was 
seen in the unstretched and stretched tissues, where no such bias with cell shape was ob-
served in either elongated or circular cells (Figure 3.4E, G). The track taken by the spindle 
was also elongated relative to the cell shape (Figure 3.5C) and most interestingly, the track 
minor axis of orientation aligned better with the cell division orientation than the track ma-
jor axis in circular cells (Figure 3.6Cii), though not in elongated cells (Figure 3.6Ci). If 
we consider the results that the spindles in the circular cells in the NuMA KD tissue have 
a greater fraction of movement along the major axis of the cell, and also that the track mi-
nor axis is better aligned with the cell division orientation than the track major axis, then 
this suggests that the cell division axis is not well aligned with the cell shape, as is indi-
cated by the discrepancy between the cell shape orientation and the division orientation 
(‖𝜃D −𝜃C‖ = 50±30∘, mean±SD), an effect that has been more completely described previ-
ously [27]. The effect of spindle translational movements primarily occurring perpendicular 
to the plane of division is consistent in circular cells across the unstretched, stretched and 
NuMA KD conditions, suggesting that the translational movements of the spindle are inde-
pendent of NuMA and cell shape orientation in more circular cells. In elongated cells the 
track alignment is again randomised with respect to cell division angle, though primarily 
now aligned with the minor cell axis. We venture that this is a shape-based effect due to mi-
crotubule pushing forces, and hope that mathematical modelling will help to elucidate the 
mechanisms creating this effect.

We next sought to analysis the effect of a NuMA KD on rotational dynamics of the spin-
dle pole. The rotational speed was unaffected by NuMA KD in the previous analysis by 
Taranuum (2022) [27]. Our analysis of spindle angular velocity at the higher frame rate 
also showed no significant difference in the rotational speed (Figure 3.8C), though analysis 
of the means of the populations showed a 1.2-fold decrease in rotational speed between the 
stretched and stretched KD conditions. This is expected from studies into LGN, NuMA and 
dynein knockouts which also showed a reduced rotational speed [16], [83]. We suggest that 
acquiring more data may make this fold change statistically significant. Additionally, we 
saw no change between the stretch or NuMA KD conditions in either the net angular dis-
placement of the spindle (Figure 3.8A) or the maximum angular displacement achieved by 
the spindle throughout metaphase time (Figure 3.8B). When combined with the increased 
metaphase time in NuMA KD tissues (Figure 3.3A), we suggest that this decrease in angu-
lar velocity does not affect the maximum angular displacement achieved by the spindle as 
the spindle is moving for more time. However, the randomisation of the cell division angle 
with respect to cell shape (Figure 3.6C) suggests that the mechanisms which correctly ori-
ent the spindle with the cell shape are perturbed under NuMA KD, as has been shown in 
previous studies [12], [18], [26], [43], [64], [83], [103].
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By analysis of the angle through metaphase time using a periodogram, it was shown that 
stretched NuMA KD tissues all had spindles which oscillated, and the mean period of os-
cillation was elevated significantly from the periods of the oscillations in stretched tissues 
(Figure 3.10B). However, we acknowledge that the spindle oscillations detected in the NuMA 
KD tissue were less coordinated than the clear oscillations observed by eye in the unstretched 
and stretched tissue spindles (Figure 3.11) Indeed, the oscillations detected with a period of ≈ 70 s in the unstretched and stretched tissues had fewer noisy sub-movements along their 
period, while the NuMA KD large scale oscillations were often obscured by noise. This 
suggests that our use of the ‘goodness measure’ calculation was not appropriate for mea-
suring the quality of the oscillations between conditions, especially given the correlation 
between the goodness measure and increased metaphase times (Figure 3.10E). Moving for-
ward, we intend to use a Gaussian process tool to extract oscillations from the signal data 
[199]. This tool has been developed for extracting oscillations from stochastic time series’ 
and has been used to describe oscillatory dynamics in protein expression fluctuations [200]. 
The Gaussian processes method can also be used to return the amplitude of oscillation, a 
quantity which is not returned by periodogram analysis. Despite these shortcomings in the 
goodness measure of oscillation, we conclude that the modes of rotational dynamics be-
tween control and NuMA KD tissues are different, due to the marked difference in the os-
cillation period between the conditions and by visual analysis of the spindle angle through 
metaphase (Figure 3.11).

As with the stretched and unstretched conditions, we saw no significant difference between 
the oscillation period of elongated and circular cells in the NuMA KD tissue (Figure 3.12C), 
nor between the oscillation period in early and late metaphase (Figure 3.13D). Despite this, 
the trend of increasing the number of oscillating cells as metaphase progressed seen in un-
stretched tissues was lost in NuMA KD tissues (Figure 3.13A), again suggesting that the 
longer period oscillations in NuMA KD tissue are of a different form than those in the un-
stretched tissues with regular levels of NuMA. Indeed, if we consider that the partial knock-
down of NuMA results in a small population of NuMA which clusters at the cell cortex 
[64], and this population is sufficient to create an asymmetric force on the mitotic spin-
dle, we would expect a movement toward this population which would then be depleted 
upon close contact with the spindle pole due to the spindle pole-derived Plk gradient which 
phosphorylates cortical NuMA [26]. Then NuMA may be redistributed around the cortex 
far away from the spindle pole and re-clustered until it is again sufficient to displace the 
pole again, as was seen in monopolar spindles which were observed to ‘chase’ areas of high 
LGN concentration [76]. We speculate that this could cause long range noisy oscillations 
of the spindle pole due to less coordinated pulling forces acting upon the spindle, though 
given our current data we cannot confirm whether this mechanism exists. We suggest that a 
more complete reduction of cortical NuMA would help us to determine whether or not this 
happening. Application of chemical inhibitor MLN8237 onto cells has been shown to in-
hibit Aurora-A kinase [123] which in turn leads to the removal of NuMA from the cortex 
[118]. This occurs due to the inhibition of Aurora-A mediated phosphorylation of NuMA, 
which is required to displace NuMA from the spindle poles leading to its relocation to the 
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cell cortex [118]. Thus we would expect that the application of MLN8237 would lead to 
a cessation of long range spindle dynamics if they occur as a result of the partial NuMA 
knockdown.

The movements of the mitotic spindle are thus dynamic and complex. The translational 
path taken by the spindle is highly elongated in all conditions, though the orientation of 
this elongation is dependent upon cell circularity. Contrary to what was expected, the ori-
entation of spindle movements were biased away from the division axis in circular cells, 
rather than along the cell elongation axis as was expected. Further, in elongated cells this 
bias was lost, though the orientation in this case was aligned with neither the cell axis nor 
the division orientation. Interestingly, in NuMA knockdown tissues the track orientation 
maintained the same biases with respect to division orientation, but these biases now had 
components along the cell long axis in more circular cells and along the cell short axis in 
elongated cells. These results combined with the invariance in the cell centring mecha-
nisms suggested that NuMA is not required for the overall translational positioning of the 
mitotic spindle. In contrast, rotational oscillations of the spindle pole occur, likely produced 
by similar mechanisms in the unstretched and stretched tissues as indicated by the similarity 
in the periods of the oscillations. However, the number of oscillating spindles is reduced in 
stretched tissues, suggesting that the mechanism which defines the threshold at which oscil-
lations occur may be more difficult to overcome under net tension. Indeed, the NuMA KD 
tissues all showed oscillations though of a longer period than those in the control tissue, 
suggested NuMA KD spindle oscillations arise from a different mechanism to in the con-
trol tissue. Thus if NuMAs operation is modulated by tension, it could be connected to the 
oscillation threshold. In order to explore how these dynamics could be explained, we intend 
to investigate the emergence of oscillations due to a balance of microtubule pushing forces 
and cortical pulling elements using a mathematical model (Chapters 4, 5), such that we may 
shed light on the processes which promote oscillations and dynamic spindle movements.
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Chapter 4

One dimensional models of stochastic 
spindle movement reveal factors which 
promote oscillatory behaviour

4.1 Introduction

The aim of this work is to develop a model which can simulate movements of the mitotic 
spindle prior to anaphase, using information that is known (or speculated) about the mecha-
nisms which govern the final orientation of cell division. A functioning mathematical model 
based on prior observations can be used to predict responses of a system in alternative con-
ditions. These predictions can then be tested experimentally to validate the hypotheses on 
which the model is built. In the case of this work, we wish to create a mathematical model 
which can recapitulate the typical mitotic spindle movements that we have identified exper-
imentally, in particular the oscillations of the mitotic spindle combined with its overall cen-
tring mechanism (Chapter 3), and shed light on the processes that may be occurring within 
the cell to create these movements. For example, parameters which we identify as having 
a measurable effect on spindle pole movements, such as varying the magnitude of pulling 
forces by depletion of cortical elements (such as NuMA), may be measured experimentally 
to confirm whether or not similar effects are seen in vivo.

In this chapter, one dimensional (1D) model descriptions are developed and explored. By 
beginning with a more complex 1D model and simplifying it (Chapter 5), it is possible to 
maintain the required level of detail to retain interesting features which may then be applied 
to develop a two dimensional (2D) model (Appendix A).

Here a description of 1D movements is introduced. The model we investigate was initially 
developed by Grill et al. (2005) [80] to describe the lateral oscillation of the C. elegans
posterior spindle pole. The framework on which the mathematics in this section is devel-
oped has not previously been explored fully. The Grill model successfully captures the 1D 
oscillation that is characteristic to the first cell division of C. elegans. However, the inter-
esting spindle pole dynamics we have seen experimentally in 2D (Chapter 3) are less well 
characterised. It is an open question whether or not they occur due to the shape of the di-
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Figure 4.1. Simplification of relevant protein complexes for modelling A) Protein complexes 
G𝛼i/LGN/NuMA anchor motor protein dynein to the cell cortex. Dynein imparts a force on the spindle pole 
through interactions with astral microtubules which emanate from the spindle pole. B) The G𝛼i/LGN/NuMA 
complex is mathematically described as an elastic linker between motor protein head dynein and the cell 
cortex. The entire elastic linker/motor protein head assembly is referred to as a force generator.

viding cell or some intrinsic change in the spindle positioning mechanisms due to exter-
nal tension. The 1D description used by Grill et al. (2005) focuses on the action of elastic 
force generators at the cell periphery, which can be linked to the action of motor proteins 
and their corresponding linker proteins at the cortex (Figure 4.1). We choose this frame-
work as we also see oscillations in the spindle positioning (Chapter 3) which we believe to 
be a result of pulling from proteins at the cortex. Accordingly, the model explicitly simu-
lates the stochastic shortening and lengthening of the elastic linkers, as well as their ability 
to bind and unbind with microtubules in order to influence movements of the spindle (Sec-
tion 4.2). This model can also be expressed as a Fokker-Planck system of partial differential 
equations (Section 4.3) which mirror those used by Grill et al. (2005). We use this frame-
work and subsequent PDE system to provide a solid base on which to perform systematic 
asymptotic analysis to produce a system of ODEs (Chapter 5) which can then be more eas-
ily extended to a 2D model.

All model formulations explored in this chapter and the next (Chapters 4 and 5) will con-
sider the same setup (Figure 4.1) as described by Grill et al. (2005). The G𝛼i/LGN/NuMA 
complex is described as an elastic linker connecting the motor protein head (dynein) to the 
cell cortex. As a microtubule minus-end directed protein, dynein binds to and moves along 
microtubules toward the spindle pole creating a microtubule plus-end directed pulling force 
[60], [61], [64], [201]. This entire structure will henceforth be referred to as a ‘force gener-
ator’. Force generators may exist in bound or unbound states, which correspond to whether 
or not they are bound to a microtubule. Microtubule binding implies that the force genera-
tor may impart a pulling force on the mitotic spindle pole, while unbound force generators 
have no effect on the spindle pole position. We consider here the one dimensional move-
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Figure 4.2. Diagram of spindle pole in three conditions. A) The spindle pole (green) lies between the upper 
and lower cortex at position 𝑧(𝑡). Force generators (orange) at each cortex comprise a motor protein head and 
an elastic linker which produce pulling forces 𝐹 ±. B) The movement of the spindle pole will affect the linker 
extensions of the motor proteins. Movement away from the upper cortex will lengthen the linkers of the upper 
force generators while compressing the linkers of the lower force generators. C) Force generators with more 
extended linkers have an increased unbinding rate. Unbound generators cannot produce a pulling force 
(indicated by a grey force generator).

ments of a single spindle pole as a result of pulling by the populations of force generators 
which exist on either side of the pole central position 𝑧 (𝑡) = 0. The two populations will 
be referred to as existing within the ‘upper’ and ‘lower’ cortex (Figure 4.2), in reference to 
whether they are assumed to be populating the region of the cell cortex above (𝑧 > 0) or 
below (𝑧 < 0) the central position. Force generators may switch their binding state, the 
details of which will be described more explicitly below. 

4.2 Stochastic model: Simulations using the Gillespie algorithm

We first use stochastic simulations to investigate predictions of the Grill et al. (2005) model 
[80], postponing descriptions based on Fokker-Planck equations to later sections.

4.2.1 Theoretical description

The spindle pole position is influenced by pulling events acting on astral microtubules which 
emanate from the spindle pole and extend to the cell cortex. The pulling events are created 
stochastically by individual force generators which lie at the cell cortex and bind to micro-
tubules. For simplicity the 1D model considers two opposing populations of force genera-
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tors which sit in an ‘upper’ and ‘lower’ cortex, labelled ± hereafter. The force generators 
comprise a motor protein head connected to the cortex via an elastic linker of stiffness 𝑘g

(Figure 4.1A). The motor protein head can be considered to be dynein, which walks along 
the microtubules to the microtubule minus ends at the spindle pole. The populations of 𝑁
force generators will exert pulling forces toward their respective cortex with a magnitude 𝐹 ± = 𝑘g∑𝑁𝑛=1𝑦(𝑛)±

b , (4.1)

where 𝑦(𝑛)±
b is the extension of the elastic linker of bound (b) force generator 𝑛 (Figure 

4.2). Only bound generators are considered as they are connected to the spindle pole via a 
microtubule and can thus produce a pulling force. By (4.1) a force generator with a more 
extended linker will provide a greater pulling force than a force generator with a more re-
tracted elastic linker. Unbound force generators (𝑦(𝑛)±

u ) are not connected to the spindle 
pole and will thus be unable to provide any form of forcing (black force generator in Figure 
4.2C). A restoring force opposes movements of the spindle pole, representing astral micro-
tubules with stiffness 𝑘MT arising from dynamic instability and bending effects [78]–[80], 
[135], [137]. A spindle pole at position 𝑧 (𝑡) at a time 𝑡 in a viscous fluid with an effective 
friction coefficient 𝜉 will move along the ̂z direction. Its position will evolve in time accord-
ing to 𝜉d𝑧

d𝑡 + 𝑘MT𝑧 (𝑡) = 𝐹 + − 𝐹 −. (4.2)

This is an ordinary differential equation (ODE) with stochastic forcing because the linkers 
bind and unbind randomly. The movements of the spindle pole are therefore tightly coupled 
to the individual extension lengths of the force generator linkers, as they define the magni-
tude of pulling force each force generator provides. The walking action of the motor protein 
heads, which have walking velocities 

𝑣(𝑛)±
b = 𝑣0 (1 − 𝑘g𝑦(𝑛)±

b𝑓0 ) ∓ d𝑧
d𝑡 , (4.3)

provides additional complexity to the system. This expression for 𝑣(𝑛)±
b combines the spon-

taneous, unloaded walking velocity 𝑣0, which is reduced due to the effect of the tensile force 
acting upon the motor protein head by the elastic linker (𝑘g𝑦(𝑛)±

b𝑓0 ), with the relative velocity 
of the spindle pole. Here, 𝑓0 is the stall force of the force generator i.e., under no influence 
from the spindle pole; if an elastic linker was of an extension 𝑦0 such that 𝑘g𝑦0 = 𝑓0, then 
the net velocity of the motor protein head would be zero. The spindle pole velocity term ∓d𝑧

d𝑡 arises due to the force generator being connected to the moving spindle pole via the 
microtubules. As the spindle pole moves towards a bound force generator it will compress 
the elastic linker and thus reduce its relative walking velocity. Alternatively as the spindle 
pole moves away from the bound force generator it will extend the elastic linker and there-
fore increase its relative walking velocity (Figure 4.2B). This can be likened to walking 
along or against a moving walkway.

We aim to model the stochastic forcing on the mitotic spindle via the force generators, and 
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calculate the resulting spindle pole position. The pulling from the force generators due to 
the action of the walking motor protein heads will perturb the position of the spindle pole 𝑧 (𝑡) and increase the extension of the elastic linkers 𝑦(𝑛)±

b . Perturbations to 𝑧 (𝑡) will affect 
the relative velocity of the walking motor protein head by (4.3), while changes to 𝑦(𝑛)±

b will 
affect the pulling power of the force generator by (4.1) and also the relative velocity of the 
walking motor protein head (4.3). In order to capture these coupled dynamics we explicitly 
consider the length changes of the elastic linkers by discretising 𝑦(𝑛)±

b in increments of Δ𝑦
and using a Gillespie algorithm to model the stochastic extensions and retractions via the 
relative motions of the walking motor protein heads. The Gillespie algorithm will also be 
used to capture stochastic changes of the binding state of the force generators, as they bind 
and unbind from microtubules.

The Gillespie algorithm describes a small number of force generators interacting with the 
spindle pole via microtubules, rather than bulk reactions of large numbers of force genera-
tors. It allows us to look explicitly at the direct consequences to individual force generators 
and the spindle pole of discrete stochastic interactions. The extension of an elastic linker 
is discretised into states 𝑦(𝑛)±,𝑖

b(u) with 𝑖 = 0, 1 … 𝑀, separated by a fixed distance measure Δ𝑦 such that 𝑦(𝑛)±,𝑖+1
b(u) = 𝑦(𝑛)±,𝑖

b(u) + Δ𝑦 (Figure 4.3A). Each force generator 𝑛 has identi-
fiers which denote the associated cortex (±), the current extension state (𝑖), and the binding 
state (u for unbound, b for bound). The binding state will be identified in the subscript and 
written as b(u), referring to how the subscript may be either b or u. At any time, a generator 
may

• retract: 𝑦(𝑛)±,𝑖
b(u) → 𝑦(𝑛)±,𝑖−1

b(u) with a probability 𝑟(𝑛)±,𝑖
b(u) ;

• extend: 𝑦(𝑛)±,𝑖
b(u) → 𝑦(𝑛)±,𝑖+1

b(u) with a probability 𝑓 (𝑛)±,𝑖
b(u) ; or

• switch between bound and unbound: 𝑦(𝑛)±,𝑖
b ↔ 𝑦(𝑛)±,𝑖

u with a probability 𝑠(𝑛)±,𝑖
b(u) .

These state-changing events are illustrated graphically in Figure 4.3A.

Choosing values for 𝑟(𝑛)±,𝑖
b(u) , 𝑓 (𝑛)±,𝑖

b(u) , and 𝑠(𝑛)±,𝑖
b(u) is non-trivial. To begin, the switching prob-

abilities were chosen such that an unbound generator may switch to become a bound gener-
ator within a short time 𝜏 with a probability 𝑠(𝑛)±,𝑖

u = 𝜏𝜔on for a constant binding rate 𝜔on. 
This reflects the fact that a force generator is as likely to be in close enough proximity to a 
microtubule to bind with it when fully extended from the cortex (𝑦(𝑛)±,𝑖=𝑀

u = 𝑦max) as it 
would be if it were not extended at all (𝑦(𝑛)±,𝑖=0

u = 0). Here, 𝑦max is the maximum length 
an elastic linker may have. In a short time 𝜏, a bound generator may unbind with probability 𝑠(𝑛)±,𝑖

b = 𝜏𝜔0𝑒𝛾∗𝑦(𝑛)±,𝑖
b . The dynein-microtubule binding has been shown to have a slip-bond 

behaviour [61], thus the unbinding of the force generator from the microtubule was cho-
sen to be tension sensitive, where more tension acting on the force generator by the elastic 
linker increases its unbinding rate [80], [145], [146]. The constant parameter 𝜔0 sets the 
unbinding rate at zero extension, i.e. when there is no loading force on the motor protein 
head from the elastic linker. The scaling parameter 𝛾∗ defines the sensitivity of the unbind-
ing to the elastic linker extension 𝑦.
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Figure 4.3. Graphical map of extension states for unbound and bound force generators. A) Unbound 
generators in state ̄𝑦(𝑛)±,𝑖

u may extend or retract with probabilities ̄𝑓 (𝑛)±,𝑖
u and ̄𝑟(𝑛)±,𝑖

u . Bound generators in 
state ̄𝑦(𝑛)±,𝑖

b may extend or retract with probabilities ̄𝑓 (𝑛)±,𝑖
b and ̄𝑟(𝑛)±,𝑖

b . Bound generators may unbind or 
vice-versa with rate constants ̄𝑠(𝑛)±,𝑖

b and ̄𝑠(𝑛)±,𝑖
u respectively. Diagrams of force generators show 

corresponding extension and binding states. Each individual force generator 𝑛 exists within these states. B) 
Concatenated list of rate triplets to show numbering regime. Probabilities from ̄𝑎1 to ̄𝑎3𝑁 correspond to force 
generators 1 → 𝑁 which exist in the upper cortex. Probabilities ̄𝑎3𝑁+1 to ̄𝑎6𝑁 correspond to force generators 𝑁 + 1 → 2𝑁 which exist in the lower cortex.

In order to obtain expressions for 𝑟(𝑛)±,𝑖
b(u) and 𝑓 (𝑛)±,𝑖

b(u) , consider 𝑣(𝑛)±,𝑖
b(𝑢) = Δ𝑦𝜏 (𝑓 (𝑛)±,𝑖

b(u) − 𝑟(𝑛)±,𝑖
b(u) ) (4.4)

and 𝐷(𝑛)±
b(𝑢) = (Δ𝑦)22𝜏 (𝑓 (𝑛)±,𝑖

b(u) + 𝑟(𝑛)±,𝑖
b(u) ) (4.5)

as an effective drift speed and diffusion coefficient for force generators respectively. These 
facilitate comparison with the Fokker-Planck equations presented in Section 4.3 below, and 
arise from considering extension or contraction of each linker as a biased random walk. 
The bound velocity 𝑣(𝑛)±,𝑖

b may be calculated for the current system state by modifying (4.3) 
for the discretised description to give 𝑣(𝑛)±,𝑖

b = 𝑣0 − 𝜇𝑦(𝑛)±,𝑖
b ∓ d𝑧

d𝑡 . (4.6)

The parameter 𝜇 = 𝑘g𝑣0/𝑓0 captures the velocity reduction under force due to the elastic 
linker, while the velocity of the spindle pole may be calculated using (4.2). The unbound 
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velocity 𝑣u
(𝑛)±,𝑖 arises due to the motor protein head being pulled back toward the cortex 

by the elastic linker through a viscous medium (the cytoplasm) and may be determined by 
equating the potential energy stored in the elastic linker with work done against drag. The 
forces in both processes must be equal and 𝜉g𝑣u

(𝑛)±,𝑖 = −𝑘g𝑦(𝑛)±,𝑖
u . (4.7)

The expression for 𝑣(𝑛)±,𝑖
u may therefore be written 𝑣(𝑛)±,𝑖

u = −𝜈𝑦(𝑛)±,𝑖
u (4.8)

for relaxation parameter 𝜈 = 𝑘g/𝜉g. The drag coefficient 𝜉g is determined by assuming a 
Stokes’ law formulation for the viscous force. Using the largest proteins in the force genera-
tor complex (dynein, length approximately 50 nm [202], and NuMA, length approximately 
210 nm [106]), we estimate that a force generator has a Stokes radius of order 𝒪 (10−1)
smaller than the spindle pole, then 𝜉g ≈ 𝜉 × 10−1. Both (4.4) and (4.8) may be calculated 
from the current system state, while diffusive terms 𝐷(𝑛)±

b(u) in (4.5) are assumed to be con-
stants and will henceforth be labelled 𝐷b(u). Equations (4.4) and (4.5) may be rearranged 
to give probabilities 𝑓 (𝑛)±,𝑖

b(u) and 𝑟(𝑛)±,𝑖
b(u) , as summarised in Table 4.1. In order to prevent ex-

tension beyond 𝑦max or retraction through the cortex (𝑦(𝑛)±,𝑖
b(u) < 0), no flux conditions are 

enforced by setting 𝑟(𝑛)±,𝑖=0
b(u) = 0 and 𝑓 (𝑛)±,𝑖=𝑀

b(u) = 0.

The Gillespie algorithm [203] stipulates that the probability of a state-changing event (ex-
tension, retraction, or switch) happening within a short time 𝜏 is exponentially distributed 
with rates 𝑟(𝑛)±,𝑖

b(u) /𝜏, 𝑓 (𝑛)±,𝑖
b(u) /𝜏, and 𝑠(𝑛)±,𝑖

b(u) /𝜏, which sum together to give a total rate 

𝑅 = 1𝜏 2𝑁∑𝑛=1 (𝑟(𝑛)±,𝑖
b(u) + 𝑓 (𝑛)±,𝑖

b(u) + 𝑠(𝑛)±,𝑖
b(u) ) . (4.9)

Here 2𝑁 is the total number of force generators within the system (𝑁 per cortex), each of 
which is associated with either the upper (+) or lower (-) cortex, has an extension state 𝑖, 
and is either bound (b) or unbound (u). We assume that only one event for one force gen-
erator may occur, removing the possibility of simultaneous events. As 𝑟(𝑛)±,𝑖

b(u) , 𝑓 (𝑛)±,𝑖
b(u) and 𝑠(𝑛)±,𝑖

b(u) are proportional to the short time 𝜏 (Table 4.1), the rates 𝑟(𝑛)±,𝑖
b(u) /𝜏, 𝑓 (𝑛)±,𝑖

b(u) /𝜏, and 𝑠(𝑛)±,𝑖
b(u) /𝜏 (and thus 𝑅) are independent of 𝜏. A random variable 𝜁1 is chosen from a uni-

formly random distribution between 0 and 1 (𝜁1 ∼ 𝒰 [0, 1]) and the time to the next event 
is calculated using 𝜏 = 1𝑅 log (1/𝜁1). (4.10)

The rescaled rates 𝑎(𝑛)±,𝑟
b(u) (𝑖) = 1𝑅𝑟(𝑛)±,𝑖

b(u) /𝜏, 𝑎(𝑛)±,𝑓
b(u) (𝑖) = 1𝑅𝑓 (𝑛)±,𝑖

b(u) /𝜏 and 𝑎(𝑛)±,𝑠
b(u) (𝑖) =1𝑅𝑠(𝑛)±,𝑖

b(u) /𝜏 are concatenated in triplets for each force generator 𝑛, giving a list of potential 
states 𝑎𝑗 with 𝑗 ∈ [1, 6𝑁] which sum together to give ∑6𝑁𝑗=1𝑎𝑗 = 1 (Figure 4.3B). Choosing 
an independent random variable from a uniformly random distribution, 𝜁2 ∼ 𝒰 [0, 1], the 
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Dimensional Non-dimensional
Bound events Unbound events Bound events Unbound events𝑠(𝑛)±,𝑖 𝜏𝜔0𝑒𝛾∗𝑦(𝑛)±,𝑖

b 𝜏𝜔on ̄𝜏 𝜔̄0𝑒𝛾 ̄𝑦(𝑛)±,𝑖
b ̄𝜏 𝜔̄on𝑟(𝑛)±,𝑖 𝜏 ( 𝐷b(Δ𝑦)2 − 𝑣(𝑛)±,𝑖

b2Δ𝑦 ) 𝜏 ( 𝐷u(Δ𝑦)2 + 𝜈𝑦(𝑛)±,𝑖
u2Δ𝑦 ) ̄𝜏 ( 𝛼(Δ ̄𝑦)2 − ̄𝑣(𝑛)±,𝑖

b2Δ ̄𝑦 ) ̄𝜏Γ ( 𝛽(Δ ̄𝑦)2 + ̄𝑦(𝑛)±,𝑖
u2Δ ̄𝑦 )𝑓 (𝑛)±,𝑖 𝜏 ( 𝐷b(Δ𝑦)2 + 𝑣(𝑛)±,𝑖

b2Δ𝑦 ) 𝜏 ( 𝐷u(Δ𝑦)2 − 𝜈𝑦(𝑛)±,𝑖
u2Δ𝑦 ) ̄𝜏 ( 𝛼(Δ ̄𝑦)2 + ̄𝑣(𝑛)±,𝑖

b2Δ ̄𝑦 ) ̄𝜏Γ ( 𝛽(Δ ̄𝑦)2 − ̄𝑦(𝑛)±,𝑖
u2Δ ̄𝑦 )

Table 4.1. The probabilities for bound and unbound generators in spatial state 𝑖 in terms of dimensional and 
non-dimensional quantities. Parameter Δ𝑦 is the fixed distance between extension states.

next state-changing event is determined as the first 𝑗 such that ∑𝑗𝑗′=1𝑎𝑗′ > 𝜁2. (4.11)

Force generators in the upper (𝑛+) and lower (𝑛−) cortex have corresponding events 𝑎𝑗
where 𝑗 ∈ [1, 3𝑁] and 𝑗 ∈ [3𝑁 + 1, 6𝑁] respectively.

In order to calculate the spindle pole position, we implement a forward Euler approxima-
tion of (4.2), as 𝜉𝑧 (𝑡 + 𝜏) − 𝑧 (𝑡)𝜏 + 𝑘MT𝑧 (𝑡) = 𝐹 + − 𝐹 − (4.12)

which may be used to calculate the pole position at a time 𝑡 + 𝜏𝑧 (𝑡 + 𝜏) = (1 − 𝜏𝑘MT𝜉 ) 𝑧 (𝑡) + 𝜏𝑘g𝜉 (∑𝑁′𝑛′=1𝑦(𝑛′)+,𝑖
b (𝑡) − ∑𝑁𝑛=1𝑦(𝑛)−,𝑖

b (𝑡)) . (4.13)

Here 𝑛′ and 𝑁 ′ are the equivalent of 𝑛 and 𝑁, introduced only so that we may separate the 
upper and lower cortex in this expression.

4.2.2 Non-dimensionalisation of the stochastic system

As this model is concerned with the action of force generators and their effect on the spin-
dle pole position, it is appropriate that the problem should be scaled to time and length scales 
relevant to the movements of the force generators. We set 𝑦0, the extension at which the ve-
locity of the motor protein head is zero in the absence of connection to the spindle pole, as 
the natural length scale of the problem: 𝑦0 = 𝑓0/𝑘g = 𝑣0/𝜇. Further, the timescale may be 
chosen to reflect the velocity reduction under the force of the elastic linker, 𝑡0 = 𝜇−1. Us-
ing this non-dimensionalisation we rewrite the system in terms of scaled parameters (Table 
4.3). Using these parameters, the non-dimensionalised spindle pole velocity (4.2) becomes ̄𝜉 d ̄𝑧

d ̄𝑡 = −𝐾 ̄𝑧 ( ̄𝑡) + (∑𝑁′𝑛′=1 ̄𝑦(𝑛′)+,𝑖
b ( ̄𝑡) − ∑𝑁𝑛=1 ̄𝑦(𝑛)−,𝑖

b ( ̄𝑡)) , (4.14)
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Description Parameter Value Reference Notes
Drag coefficient 𝜉 10−6 Nsm−1 [80]

Microtubule stiffness due to 
bending elasticity 𝑘MT 4 × 10−6 Nm−1 [80], [135] Baseline used, varied quantity

Elastic linker stiffness 𝑘g 8 × 10−5 Nm−1 [80]

Stall force 𝑓0 3 × 10−12 N [61], [80], [204]

Spontaneous velocity of force 
generators 𝑣0 1.8 × 10−6 ms−1 [80], [205]

Normalised spontaneous 
velocity of bound force 

generators
𝜇 50 s−1 [80] 𝑣0 per length at stall force 𝑦0

Relaxation (retraction) rate of 
unbound generators 𝜈 103 s−1 ([80], [111], [202]) Order of magnitude estimate 

relative to 𝜉 using Stokes’ law
Sensitivity of unbinding to 

linker extension 𝛾∗ 5.6 × 107 m−1 ([80]) Calculated using expression in [80]

Diffusion coefficient of bound 
generators 𝐷b 5 × 10−15 m2s−1 [80]

Diffusion coefficient of 
unbound generators 𝐷u 5 × 10−14 m2s−1 ([80]) Order of magnitude estimate using 𝐷u = 𝜈 𝑘𝑏𝑇𝑘g

with 𝑇 ≈ 310 K
Number of force generators per 

cortex 𝑁 - Varied quantity

Maximum linker extension 𝑦max 2.16 × 10−7 m ([80]) Calculated in reverse from ̄𝑦max = 6
Microtubule-generator binding 

rate 𝜔on 0.15 s−1 Baseline used, varied quantity

Microtubule-generator 
unbinding rate coefficient 𝜔0 0.05 s−1 [80]

Table 4.2. Parameter values and descriptions. References in parenthesis contain information which was used 
in order to derive the parameter value rather than explicitly stating a value.

where dimensionless quantities are barred. The non-dimensionalised pole position update 
(4.13) becomes ̄𝑧 ( ̄𝑡 + ̄𝜏) = (1 − ̄𝜏𝐾̄𝜉 ) ̄𝑧 ( ̄𝑡) + ̄𝜏 ̄𝜉 (∑𝑁′𝑛′=1 ̄𝑦(𝑛′)+,𝑖

b ( ̄𝑡) − ∑𝑁𝑛=1 ̄𝑦(𝑛)−,𝑖
b ( ̄𝑡)) , (4.15)

while the velocity of the bound generators (4.6) becomes ̄𝑣(𝑛)±,𝑖
b = 1 − ̄𝑦(𝑛)±,𝑖

b ∓ d ̄𝑧
d ̄𝑡 . (4.16)

All new probabilities are described in Table 4.1. The non-dimensional diffusive parameters 𝛼 and 𝛽 for bound and unbound generators respectively (Table 4.1) are determined from 
two different methods. For bound generators, parameter 𝐷b characterises velocity fluctua-
tions of the attached dynein molecule [80], and this coefficient is scaled by parameters re-
lating to the unloaded motor protein and the length of the elastic linker at stall force to de-
fine 𝛼. However, for the unbound force generators, the Einstein relation 𝐷u/𝜈 = 𝑘b𝑇 /𝑘g

has been used to define velocity fluctuations of the unattached dynein molecule, as it is 
pulled back toward the cell cortex by the elastic linker. Parameter 𝑘b is the Boltzmann con-
stant and 𝑇 is the temperature, taken here to be approximately 310 K. Then 𝛽 = ( 𝜇𝑣0 )2 𝑘b𝑇𝑘g

is the non-dimensionalised equivalent of 𝐷b.

The following observations may be made by considering this non-dimensionalised system.
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Non-dimensional parameter Components Interpretation̄𝜉 𝜉 𝜇𝑘g

Effective drag coefficient, ratio 
of spindle pole drag to the drag 

on a bound force generator.𝐾 𝑘MT𝑘g

Relative stiffness of 
microtubules to elastic linkers.𝜔̄on

1𝜇 𝜔on

Binding rate relative to 
normalised unloaded velocity 

of a bound force generator.𝜔̄0 1𝜇 𝜔0 Unbinding rate relative to 
normalised unloaded velocity 

of a bound force generator.̄𝑦max
𝜇𝑣0 𝑦max

Maximum elastic linker 
extension per extension at stall 

force.𝛾 𝛾∗𝑣0𝜇 Ratio of extension at stall force 
to sensitivity length-scale 1/𝛾∗.

𝛼 𝜇𝑣20 𝐷b

Diffusion coefficient for bound 
force generators, relative to 

unloaded motor protein 
velocity.𝛽 ( 𝜇𝑣0 )2 𝑘b𝑇𝑘g

Diffusion coefficient for 
unbound force generators 
relative to unloaded motor 

protein velocity.Γ 𝜈𝜇 Relaxation of unbound 
generators relative to 

normalised bound velocity.

Table 4.3. Parameters of the non-dimensionalised system in terms of the parameters from the dimensional 
system. All parameters now re-framed relative to the time and length scales set by the bound force generators 
under no external loading.

• Unbound probabilities are biased toward retraction events due to the reduction in ex-
tension probabilities 𝑓 (𝑛)±,𝑖

u for any non-negative extension of the force generator elas-
tic linker ̄𝑦(𝑛)±,𝑖

u .

• The bias toward retraction or extension for bound force generators depends upon the 
direction of the motor protein head velocity. If the velocity ̄𝑣(𝑛)±,𝑖

b is negative then the 
retraction probability will dominate over extension, and vice-versa if the velocity is 
positive.

• If diffusive terms are much larger than drift terms, extension and retraction probabili-
ties are approximately equal for both unbound and bound force generators (𝑟(𝑛)±,𝑖

b(u) ≈𝑓 (𝑛)±,𝑖
b(u) ).

• The probability of unbinding 𝑠(𝑛)±,𝑖
b increases exponentially for force generators with 

more extended elastic linkers. The sensitivity of unbinding depends upon the parame-
ter 𝛾, which measures the ratio of the stalling extension 𝑦0 = 𝑣0/𝜇 = 𝑓0/𝑘g with the 
sensitivity length-scale set by 𝛾∗.

• The ratio of microtubule stiffness to elastic linker stiffness, 𝐾, determines the strength 
of centring forces vs pulling forces in (4.14). If 𝑘MT ≪ 𝑘g, then 𝐾 ≪ 1 and the 
spindle pole dynamics will be dominated by the pulling effects from the populations 
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of force generators in either cortex, until the spindle pole is displaced sufficiently far 
from the cell centre ̄𝑧 = 0 such that the restoring force −𝐾 ̄𝑧 may be of a similar order 
of magnitude to the pulling forces. Thus towards the centre of the cell, pulling forces 
are the main source of spindle dynamics, while towards the cell periphery restorative 
centring forces will dominate.

• Force generators whose elastic linkers are extended such that the force acting on the 
motor protein head is equal to the stall force ( ̄𝑦(𝑛)±,𝑖

b = 1) have a relative velocity 
which depends entirely upon the velocity of the spindle pole (4.16).

With these observations in mind we now present the implementation of the model.

4.2.3 Computational method

In order to implement this algorithm, the following simulation method was used.

1. The list GeneratorList was created which was 2𝑁 in length with 2 elements in each 
column. Element 1 corresponded to the extension of force generator 𝑛 while element 2 corresponded to the binding state (1 for a bound generator, −1 for an unbound gen-
erator). Columns 1 → 𝑁 held the state information for force generators in the upper 
cortex while elements 𝑁 + 1 → 2𝑁 corresponded to the state information of the force 
generators in the lower cortex.

2. The list of the scaled probabilities was constructed in triplets corresponding to retrac-
tion, extension and switching events for each force generator, resulting in a 6𝑁 length 
list of probabilities (Figure 4.3B).

3. The spindle pole velocity was calculated by (4.14).

4. A random number generator was used to produce pairs (𝜁1, 𝜁2) between 0 and 1 from 
a uniformly random distribution in order to calculate time step ̄𝜏 (4.10) and event 𝑗
(4.11).

5. The chosen event was actioned inside GeneratorList and the simulation time up-
dated.

6. The new spindle position at time ̄𝑡 + ̄𝜏 was determined by (4.15).

7. The bound velocities ̄𝑣(𝑛)±,𝑖
b were recalculated and the probability values updated to 

reflect the new system state at time ̄𝑡 + ̄𝜏.

8. Steps (3-7) above were cycled until a chosen end-point time was achieved.

Source code is available (at /github.com/dionn-hargreaves/StochasticSimulation_Spindle-
Movements. We note the following computational complications based on the form of the 
probabilities (Table 4.1)

108

https://github.com/dionn-hargreaves/StochasticSimulation_SpindleMovements
https://github.com/dionn-hargreaves/StochasticSimulation_SpindleMovements


1. The unbound probability for extension, 𝑓 (𝑛)±,𝑖
u (see Table 4.1) has the potential to be-

come negative when ̄𝑦(𝑛)±,𝑖
u > 2𝛽/Δ ̄𝑦. As the maximum value that ̄𝑦(𝑛)±,𝑖

u may take is ̄𝑦max, we choose Δ ̄𝑦 < 2𝛽/ ̄𝑦max.

2. The bound probabilities for extension and retraction, 𝑓 (𝑛)±,𝑖
b and 𝑟(𝑛)±,𝑖

b , have the po-
tential to become negative when ∣ ̄𝑣(𝑛)±,𝑖

b ∣ > 2𝛼/Δ ̄𝑦.

These ‘negative probabilities’ likely arise due to the combination of continuous dynamics 
(the velocity of the spindle pole) and discrete dynamics (the actions of the stochastic force 
generators). Hybrid Gillespie algorithm methods which combine deterministic and stochas-
tic systems to describe reaction mechanisms have been shown to result in negative numbers 
of reaction species due to the balance of slow and fast dynamics being modelled [206]. In 
the case of negative retraction probabilities, this corresponds to a system state where the 
possibility for retraction is essentially impossible due to the connection of the force gen-
erator to the spindle pole. One way to circumvent this issue would be to impose an extra 
condition that probabilities which are calculated to be negative are set to zero. Another 
method, which is the method we have chosen in order to minimise external constraints on 
the system, is to ensure that our discretisation length Δ ̄𝑦 is small enough such that the con-
ditions identified in complications 1. and 2. are addressed.

We note that complication 1 is easily implemented when choosing parameters due to its 
bounding condition being formed of pre-defined constants. However, as ̄𝑣(𝑛)±,𝑖

b is affected 
by both the elastic linker extension and the spindle pole velocity, complication 2 is more 
difficult to circumvent. To estimate an upper bound on ̄𝑣(𝑛)±,𝑖

b we consider ̄𝑣(𝑛)+,𝑖
b |max = 1 − ̄𝑦max − d ̄𝑧

d ̄𝑡 ∣
max

, (4.17)

with ̄𝑦max ≫ 1 and d ̄𝑧
d ̄𝑡 |max ≫ 1. To estimate d ̄𝑧

d ̄𝑡 |max, we assume the extreme situation 
whereby 𝑧 = 0 with all force generators in the lower cortex being either unbound or at zero 
extension, ̄𝑦(𝑛)−,𝑖

b = 0, and all force generators in the upper cortex bound with maximum 
extension ̄𝑦(𝑛)+,𝑖

b = ̄𝑦max. Then by (4.14), 

d ̄𝑧
d ̄𝑡 |max ∼ 𝑁̄𝜉 ̄𝑦max, (4.18)

where “∼” denotes “scales as”. Thus, as the number of force generators 𝑁 increases, we 
expect also that the magnitude of the velocity of the spindle pole increases. Then, ̄𝑣(𝑛)±,𝑖

b |max ∼ 1 − ̄𝑦max − 𝑁̄𝜉 ̄𝑦max (4.19)

so that negative values of 𝑓 (𝑛)±,𝑖
b and 𝑟(𝑛)±,𝑖

b can be avoided provided that Δ ̄𝑦 < 2𝛼/ ∣1 − (1 + 𝑁̄𝜉 ) ̄𝑦max∣ . (4.20)
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As a result the computational cost is predicted to increase with the number of force gener-
ators 𝑁 due to both increasing the number of available events the system may choose, and 
due to a necessary reduction in Δ ̄𝑦 in order to prevent negative values of the event probabil-
ities.

4.2.4 Increasing computational efficiency

Gillespie algorithms are noted as being inefficient and computationally expensive due to 
their nature in tracking all individual events, with many studies exploring methods to in-
crease the computational efficiency in various ways [207]–[211]. Of note are the 𝜏-leaping 
method [208], the next reaction method [207] and an optimised direct method [210]. In par-
ticular, the 𝜏-leaping method is a popular choice of optimisation and has been further ex-
panded upon to become implicit [209]. Many studies combine various methods of tuning 
the time step size for scaleable simulations [211], [212].

Briefly, the 𝜏-leaping method uses a Poisson approximation to ‘leap’ over many reaction 
events and can produce accurate results so long as the propensity functions, which we re-
fer to as probabilities in this work, are slowly varying during time steps. That is, 𝜏 must 
satisfy the leap condition of being small enough such that the propensity functions do not 
change significantly in such a time [208], [209], [211], [212]. Plotting the probabilities over 
a period of time shows that indeed they are slowly varying, but discontinuous jumps occur 
occasionally in the backward and forward event parameters (Figure 4.4B). Here we have 
chosen ̄𝑟(𝑛)+,𝑖=1

b and ̄𝑓 (𝑛)+,𝑖=1
b to illustrate this effect. The unbound probabilities remain 

constant along each 𝑖 as they are uncoupled from the spindle pole. The large jumps in the 
forward and backward event probabilities coincide with large changes in the velocity of 
the spindle pole (Figure 4.4A). These discontinuities prevent us from using the 𝜏-leaping 
method to increase the efficiency of this system.

The next reaction method [207] uses dependency graphs in order to update only the re-
quired propensity functions at each timestep. Instead of calculating only the time until the 
next event, all times for all possible events are calculated and stored chronologically. The 
first time is stepped to with its corresponding event triggered, and only the possible events 
(and their corresponding times) connected to this one according to the dependency graph 
are updated. This method has been shown to be more efficient than the standard method. A 
problem with this method is that it has been developed for loosely coupled systems as op-
posed to the highly coupled system we are considering. As the bound force generators are 
each heavily coupled to the dynamics of the mitotic spindle, and unbinding or binding will 
have an effect on these dynamics, this method is likely to not be effective.

In contrast to these adaptations to the simulation algorithm, the optimised direct method in-
stead reorders the reactions in storage in order of decreasing firing frequency and combines 
this with selective updating of propensity functions according to dependencies, as in the 
next reaction method [207]. The firing frequency is the frequency of a particular event be-
ing triggered in the system and requires several tuning simulations to estimate. This method 
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Figure 4.4. Reducing the computational expense of the stochastic model. Comparison between solutions 
of (left) the full solution and (right) the solution when rate coefficients are updated every 𝐽w = 10 timesteps 
and when ̄𝑧Thld̄𝑡 = 0.2. A) A plot of the spindle pole velocity d ̄𝑧

d ̄𝑡 at each timestep taken by the stochastic 
model. B) Plots of the probabilities ̄𝑟(𝑛)+,𝑖=1

b , ̄𝑓 (𝑛)+,𝑖=1
b and ̄𝑠(𝑛)+,𝑖=1

b as a function of the number of steps 
taken by the stochastic simulation for a short test case. C) Graphs in (B) over a shorter time-frame, illustrating 
that the probabilities are slowly varying over short time. D) The resulting solutions of spindle pole position ̄𝑧 ( ̄𝑡). Parameters: 𝑁 = 15, 𝛼 = 0.08, 𝛽 = 0.04, Γ = 20, 𝜔̄on = 0.005, 𝜔̄0 = 0.001, 𝛾 = 2, 𝐾 = 0.005
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is appropriate for multiscale systems which have events which are triggered very often as 
well as events which are very rare. It allows decreased ‘search depths’ to find the next re-
action while also saving on the computation time in updating the parameters following an 
event triggering. However, due to the complexity of the system we consider, the firing fre-
quency is less well defined. Indeed the events (switching, retracting, extending) have prob-
abilities which are heavily dependent on the current binding and extension state of the in-
dividual force generators as well as the dynamics of the spindle pole position. It follows 
that the firing frequencies of particularly events in our model would also be dynamic, and 
a re-ordering of the event list for searching purposes would need to reflect this. As such, we 
combine some of the features exploited in the above optimisations and use them to produce 
a system-specific optimisation.

Considering that the average time of a single step in the stochastic model is on the scale of (5±1)×10−8 [in non-dimensional units], it was assumed that over a window of 𝐽w timesteps, 
the rate coefficients may be considered to be constant, as illustrated in Figure 4.4C. How-
ever, plotting the rate coefficients in time revealed the presence of discontinuous jumps 
which correspond to significant changes in ̄𝑧 ̄𝑡 ≡ d ̄𝑧

d ̄𝑡 (Figure 4.4A,B). In order to ensure that 
these ‘jumps’ weren’t missed, we chose to update the rate coefficients in an ad hoc mannner 
if the spindle pole velocity at timestep 𝑗 was determined to be above a threshold, ̄𝑧Thld̄𝑡 , such 
that | ̄𝑧 ̄𝑡 (𝑗) − ̄𝑧 ̄𝑡 (𝑗 − 1) | > ̄𝑧Thld̄𝑡 , as well as every 𝐽w timesteps.

To test and tune the size of this window and threshold we used a known sequence of ran-
dom variables to feed into short simulations to produce duplicate systems where the win-
dow and threshold were the only varying values. Solutions for the reduced updating method 
best matched the full solution when ̄𝑧Thld̄𝑡 = 0.2 and 𝐽w = 10 (Figure 4.4C). Larger val-
ues of 𝐽w did not incur a major loss of the solution shape but we opted to underestimate the 
size of the window needed in order to produce simulations which were as reliable as possi-
ble. These parameter values were chosen to produce the results described below. Simula-
tions were run for either 1010 timesteps or 165 hours (real time), whichever came first.

4.2.5 Results of the stochastic model

Using the parameters shown in Table 4.2, with 𝑁 = 15, the stochastic model shows the 
emergence of spontaneous oscillations, following some initial transients from the initial 
conditions (Figure 4.5A), as shown here in an example. The average extensions ⟨ ̄𝑦±

b(u)⟩ =∑𝑁𝑛=1 ̄𝑦(𝑛)±,𝑖
b(u)𝑛±

b(u)
were calculated at each timestep, with 𝑛±

b(u) the number of bound (unbound) force 
generators at time ̄𝑡. The average extensions of the bound force generators ⟨ ̄𝑦+

b ⟩ and ⟨ ̄𝑦−
b ⟩

oscillate in anti-phase to one another (Figure 4.5B). Further, the average extension of un-
bound force generators ⟨ ̄𝑦±

u ⟩ appeared to remain close to 0 following the initial transients 
(Figure 4.5B). This action can be explained by considering the movement of the spindle 
pole through one cycle of oscillation (Figure 4.5C) and the average extension of the bound 
force generators as a function of this spindle position (Figure 4.3D). It is noted that ‘gaps’ 
in the ⟨ ̄𝑦±

b ⟩ plots (Figure 4.5D) occur where there are no bound generators from which to 
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Figure 4.5. A stochastic model results in spontaneous oscillations of the spindle pole position. A) 
Evolution of the non-dimensionalised spindle pole position through time. B) The number of bound force 
generators in the i) upper (+) and ii) lower (-) cortex (left 𝑦-axis) through time. The average extensions of the 
bound (magenta) and unbound (blue) force generators in the i) upper (+) and ii) lower (-) cortex are also 
shown (right 𝑦-axis). C) A single period of oscillation of the spindle pole position. Dots correspond to 
moments in the cycle of interest and correspond colour-wise with the dots and diamonds plotted in D). D) 
Average extension of the bound generators in the upper and lower cortices as a function of pole position. 
Parameters: 𝑁 = 15, 𝛼 = 0.08, 𝛽 = 0.04, Γ = 20, 𝜔̄on = 0.003, 𝜔̄0 = 0.001, 𝛾 = 2, 𝐾 = 5 × 10−2
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extract an average (where 𝑛b = 0 in Figure 4.5B).

Consider the following phases of movement identified by coloured symbols in Figure 4.5C, 
and D.

1. Spindle moving away from the upper cortex (green to cyan). At the peak of the 
spindle pole oscillation, movement of the spindle is dominated by the microtubule 
restoring force. The bound generators are extended equally in the upper and lower cor-
tices (⟨ ̄𝑦+

b ⟩ ∼ ⟨ ̄𝑦−
b ⟩ at the green timepoint (Figure 4.5D)) though there are a greater 

number bound in the upper cortex rather than the lower (𝑛+
b > 𝑛−

b , comparison in 
Figure 4.5Bi vs Bii). The restoring force (−𝐾 ̄𝑧) is greater than the net upward pulling 
force provided by this unbalanced population ratio. As the spindle pole moves towards ̄𝑧 = 0 this restoring force decreases while the increasing spindle pole velocity results 
in a net compression of the elastic linkers on the lower cortex, due to a switch in the 
sign of ̄𝑣−

b (⟨ ̄𝑦−
b ⟩). Additionally, the spindle pole velocity increases the relative veloc-

ity of the force generators in the upper cortex, resulting in an extension of the elastic 
linkers at the upper cortex (Figures 4.5D; 4.2B), and shortening of the linkers at the 
lower cortex. Due to the tension-sensitive unbinding rate 𝜔̄0𝑒𝛾 ̄𝑦+

b , this results in a grad-
ual decrease in the number of upper bound force generators as ⟨𝜔̄0𝑒𝛾 ̄𝑦+

b ⟩ increases in 
value, while the number of bound force generators in the lower cortex increases due to 
a constant binding rate and a decreased unbinding rate (Figure 4.5B).

2. Spindle moving through the centre of its oscillating range, toward the lower cor-
tex (cyan to yellow). As the spindle moves through ̄𝑧 = 0 the restoring force steadily 
increases from 0 to −𝐾 ̄𝑧. This slows the movement of the spindle such that the ve-
locity of the force generators in the lower cortex may become positive ̄𝑣−

b (⟨ ̄𝑦−
b ⟩) > 0

which allows these elastic linkers to extend (Figure 4.5D), decreasing the relative ve-
locity of the remaining upper force generators, the average extension of which is also 
reduced due to the unbinding of those with larger extensions and binding of force gen-
erators with reduced extensions (Figure 4.5D). The number of bound generators in the 
lower cortex also begins to decline as they extend due to the increased unbinding rate 
(Figure 4.5Bii).

3. Spindle moving away from the lower cortex (yellow to magenta). This phase repli-
cates the first phase, but with the behaviours of upper and lower cortex reversed. The 
motion away from the cortex due to the restoring force results in a compression of the 
upper elastic linkers and an extension of the lower elastic linkers (Figure 4.5D), and 
a corresponding decrease in the absolute number of the bound force generators in the 
lower cortex as opposed to the increased binding observed in the upper cortex (Figure 
4.5B).

The closed loops in ⟨ ̄𝑦±
b ⟩- ̄𝑧 space are traced anti-clockwise in the lower cortex and clock-

wise in the upper cortex (Figure 4.5D). At the stall force (when ⟨ ̄𝑦±
b ⟩ ≈ 1), the direction 

of the solution loop is determined by the direction of acceleration of the spindle pole with 
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Figure 4.6. Oscillations decrease in amplitude and regularity for fewer force generators. A) Evolution of 
the non-dimensionalised spindle pole position through time. B) The number of bound force generators in the 
i) upper (+) and ii) lower (-) cortex (left 𝑦-axis) through time. The average extensions of the bound (magenta) 
and unbound (blue) force generators in the i) upper (+) and ii) lower (-) cortex are also shown (right 𝑦-axis). 
C) A single period of oscillation of the spindle pole position. Dots correspond to moments in the cycle of 
interest and correspond colour-wise with the dots and diamonds plotted in D). D) Average extension of the 
bound generators in the upper and lower cortices as a function of pole position. Parameters: 𝑁 = 5, 𝛼 = 0.08, 𝛽 = 0.04, Γ = 20, 𝜔̄on = 0.003, 𝜔̄0 = 0.001, 𝛾 = 2, 𝐾 = 5 × 10−2.

respect to the cortex. That is, a force generator in the lower cortex whose elastic linker is 
at ̄𝑦(𝑛)±,𝑖

b = 1 will be decreasing its extension as the spindle pole accelerates toward it 
(negative acceleration, green point in Figure 4.5C, D) and increasing as the spindle pole 
accelerates away (positive acceleration, yellow point in Figure 4.5C, D). This was predicted 
by the form (4.16). Figure 4.5B shows, on average, that the number of bound force gener-
ators 𝑛±

b decreases as the linkers become more extended. This is expected by the form of 𝑠(𝑛)±,𝑖
b = ̄𝜏𝜔̄0𝑒𝛾 ̄𝑦(𝑛)±,𝑖

b .

The same phases of movement are present in simulations with fewer force generators al-
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Figure 4.7. Factors which affect the oscillatory dynamics of the spindle pole. Evolution of the 
non-dimensionalised spindle pole position through time for different parameters. A) An example solution 
when the unbinding of the force generator is no longer tension-sensitive: 𝑁 = 15, 𝐾 = 5 × 10−2, 𝛾 = 0. B) 
An example solution when the restoring force is increased by a factor of 100: 𝑁 = 15, 𝐾 = 5, 𝛾 = 2. C) An 
example solution for reduced numbers of force generators and an increased restoring force: 𝑁 = 5, 𝐾 = 5, 𝛾 = 2. Remaining parameters: 𝛼 = 0.08, 𝛽 = 0.04, 𝜔̄on = 0.003, 𝜔̄0 = 0.001, Γ = 20
though the clarity of the oscillations and coupled dynamics is reduced (Figure 4.6). The 
oscillations produced when 𝑁 = 5 have a reduced amplitude (Figure 4.6A) and period 
(𝑇 ≈ 800) compared with those produced in simulations with 𝑁 = 15 force generators 
per cortex (𝑇 ∼ 900). The period and approximate amplitude of oscillations observed 
when 𝑁 = 15 are of a similar order of magnitude to those reported by Grill et al. (2005) 
in their stochastic simulation, though the details of the type of stochastic simulation used 
were omitted from the paper and so direct comparisons are difficult to make [80]. The pres-
ence of the closed loops in ⟨ ̄𝑦±

b ⟩- ̄𝑧 space remains across both 𝑁 values, as well as the anti-
phase correlation between ⟨ ̄𝑦±

b ⟩ and 𝑛±
b , though they are also much noisier when 𝑁 is re-

duced (Figure 4.6B, D).

We now assess the impact of varying some of the parameters present in the model (Figure 
4.7). Given the computational expense of the Gillespie algorithm, running a large number 
of simulations to properly explore the parameter space is infeasible. Additionally, the times-
pans achieved in these simulations are very short compared with the average metaphase 
time in Xenopus embryonic epithelial cells (Section 3.2.2) ( ̄𝑡 = 3000 is equivalent to 𝑡 =60 s whereas metaphase time was approximately between 300-900 s). Despite this, we present 
the observations of the stochastic simulations for the few parameters we could vary.

Removing the tension sensitivity of unbinding by setting 𝛾 = 0 results in spindle pole 
movements which are less well defined (Figure 4.7A), with reduced deviation from the cen-
tre ̄𝑧 = 0 when compared with the “base” case shown in Figure 4.5A. Thus the tension sen-
sitive unbinding rate is important for promoting coherent oscillations of the spindle pole, 
although noisier fluctuations of the pole may still exist due to the stochastic binding and un-
binding. We would expect that running this simulation with more force generators would 
result in less dynamic behaviour, as individual binding and unbinding for small numbers of 
force generators is expected to have a significant effect on the spindle pole position. For a 
large population of force generators, an individual stochastically binding or unbinding event 
is likely to have a smaller overall effect.
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The restoring force is modulated by the parameter 𝐾 (Figure 4.7B). By increasing the restor-
ing force we expect the spindle pole to remain more central in the cell, as the restoring force 
will outweigh the pulling forces by the cortical force generators. As expected, we observe 
a reduced deviation in the position of the spindle pole from the centre (Figure 4.7B). We 
also see a marked reduction in the clarity of the oscillations observed previously (Figure 
4.5A). Further affecting the balance of restoring and pulling forces, by reducing the number 
of force generators to 𝑁 = 5, results in a cessation of coherent movements (Figure 4.7C). 
Thus the correct balance of restoring and pulling forces is important for sustaining clear os-
cillations of the spindle pole.

4.2.6 Summary of the Gillespie simulations

The clear oscillations recovered from this model along with characteristic population dy-
namics in the upper and lower cortices reveal the emergence of collective motions and re-
sponses which we will investigate further using alternative formulations. This stochastic 
model has revealed that approximating the protein complex G𝛼i/LGN/NuMA at the cell 
periphery as a mechanical spring with a motor protein head (dynein), in conjunction with 
microtubule-based centring forces, is sufficient to create a significant dynamic movement of 
an otherwise untethered spindle pole. The resulting oscillation and force generator dynam-
ics are noisy but with clear general trends, which become less noisy as 𝑁 increases. This 
analysis suggests that only a small number of cortical force generators may be required to 
induce a dynamic mitotic spindle response. We have shown that the balance of restoring 
to pulling forces is an important factor in the outcome of the spindle pole movements, as 
increasing the restoring force or decreasing the pulling force reduces the clarity and ampli-
tude of the movements of the spindle pole, resulting in much noisier oscillations. Further, 
the tension-sensitive unbinding rate of the motor proteins is required for promoting coher-
ent oscillations. We highlight the qualitative similarity of the noisy oscillations produced 
using the Gillespie model and the oscillations of the mitotic spindle angles we measured 
experimentally (Figures 3.7 and 3.9). In particular, both the“good” experimentally mea-
sured oscillations (as quantified using the goodness measure) (Figure 3.9A compared with 
Figure 4.5A) and the less good (Figure 3.9B compared with Figures 4.6A, 4.7B) have qual-
itative similarities with the stochastic model results. We note however that the measured 
period of oscillations in the spindle angles were much longer than the periods of oscilla-
tions of the single spindle pole using the Gillespie model. This is likely due to our limited 
ability to increase 𝑁 in these simulations due to computational expense, as the period of 
spindle pole oscillation increases with 𝑁. Additionally, we acknowledge that the angle of 
the two dimensional spindle measured experimentally is not directly comparable with the 
one dimensional movement of an individual spindle pole, as it is the relative motion of the 
two spindle poles which define the rotational dynamics of the entire mitotic spindle. As 
such, we continue with our analysis of the system by using a Fokker-Planck description. 
The Fokker-Planck description will allow us to explore the parameter space more com-
pletely at a reduced computational expense.
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4.3 Stochastic model: a Fokker-Planck description

Simulating the system stochastically allows us to observe the emergence of spindle dynam-
ics from a time series of discrete events. We have shown that oscillations of the spindle 
pole may occur spontaneously as a result of opposing pulling events and restorative microtubule-
based centring forces. However, stochastic simulations are computationally expensive and 
this restricts our ability to fully explore the possibilities of the system efficiently. Further, 
as one aim is to produce a working two-dimensional model of spindle dynamics, a model 
which is computationally expensive in one dimension will become even more so in higher 
dimensions. Thus, we exploit a Fokker-Planck description of the system which mirrors that 
used previously to describe the oscillating spindle pole of early C. elegans [80]. Using this 
description, we hope to more rigorously explore the system by varying some of the many 
parameters, including the effects of diffusion (due to so-called ‘demographic noise’) and 
the relative magnitude of the centring force.

4.3.1 Theoretical description

To describe this model using a system of partial differential equations (PDEs), we consider ̄𝑃 ±
b(u) ( ̄𝑦(𝑛)±,𝑖

b(u) , ̄𝑡), the probability that the nth force generator is bound (or unbound) with an 
extension ̄𝑦(𝑛)±,𝑖

b(u) at time ̄𝑡. Using Δ ̄𝑡 = ̄𝜏, then ̄𝑃 ±
b(u) ( ̄𝑦(𝑛)±,𝑖

b(u) , ̄𝑡 + Δ ̄𝑡) − ̄𝑃 ±
b(u) ( ̄𝑦(𝑛)±,𝑖

b(u) , ̄𝑡)= ̄𝑃 ±
b(u) ( ̄𝑦(𝑛)±,𝑖+1

b(u) , ̄𝑡) 𝑟(𝑛)±,𝑖+1
b(u) + ̄𝑃 ±

b(u) ( ̄𝑦(𝑛)±,𝑖−1
b(u) , ̄𝑡) 𝑓 (𝑛)±,𝑖−1

b(u) + ̄𝑃 ±
u(b) ( ̄𝑦(𝑛)±,𝑖

u(b) , ̄𝑡) 𝑠(𝑛)±,𝑖
u(b)− ̄𝑃 ±

b(u) ( ̄𝑦(𝑛)±,𝑖
b(u) , ̄𝑡) (𝑟(𝑛)±,𝑖

b(u) + 𝑓 (𝑛)±,𝑖
b(u) + 𝑠(𝑛)±,𝑖

b(u) ) .
(4.21)

Equation (4.21) describes the probability of being in state ̄𝑦(𝑛)±,𝑖
b(u) at time ̄𝑡 + Δ ̄𝑡 as a result 

of the system state at time ̄𝑡. For example, the ̄𝑃 ±
b(u) ( ̄𝑦(𝑛)±,𝑖+1

b(u) , ̄𝑡) 𝑟(𝑛)±,𝑖+1
b(u) term represents 

retraction from state ̄𝑦(𝑛)±,𝑖+1
b(u) at a time ̄𝑡. This can be rewritten using a Taylor expansion. 

In short, as ̄𝑦(𝑛)±,𝑖+1
b(u) = ̄𝑦(𝑛)±,𝑖

b(u) + Δ𝑦, then if 𝑔± ( ̄𝑦(𝑛)±,𝑖
b(u) , ̄𝑡) ≡ ̄𝑃 ±

b(u) ( ̄𝑦(𝑛)±,𝑖
b(u) , ̄𝑡) 𝑟(𝑛)±,𝑖

b(u) we 
expand 𝑔± ( ̄𝑦(𝑛)±,𝑖+1

b(u) , ̄𝑡) = 𝑔± ( ̄𝑦(𝑛)±,𝑖
b(u) , ̄𝑡) + Δ ̄𝑦𝑔±̄𝑦 ( ̄𝑦(𝑛)±,𝑖

b(u) , ̄𝑡) + 12Δ ̄𝑦2𝑔±̄𝑦 ̄𝑦 ( ̄𝑦(𝑛)±,𝑖
b(u) , ̄𝑡) + ... (4.22)

and similarly for ̄𝑃 ±
b(u) ( ̄𝑦(𝑛)±,𝑖+1

b(u) , ̄𝑡) 𝑓 (𝑛)±,𝑖+1
b(u) , where subscripts ̄𝑦 and ̄𝑡 denote derivatives, 

giving Δ ̄𝑡 ̄𝑃 ±
b(u), ̄𝑡 = Δ ̄𝑦 ( ̄𝑃 ±

b(u)𝑟±
b(u) − ̄𝑃 ±

b(u)𝑓±
b(u)) ̄𝑦 + 12 (Δ ̄𝑦)2 ( ̄𝑃 ±

b(u)𝑟±
b(u) + ̄𝑃 ±

b(u)𝑓±
b(u)) ̄𝑦 ̄𝑦− ̄𝑃 ±

b(u)𝑠±
b(u) + ̄𝑃 ±

u(b)𝑠±
u(b) + ..., (4.23)
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where all quantities are evaluated at extension ̄𝑦(𝑛)±,𝑖
b(u) . Therefore, by (4.4-4.5) and recalling 

the non-dimensionalised parameters (Table 4.3), to leading order as Δ ̄𝑦 → 0 and Δ ̄𝑡 → 0
we may write ̄𝑃 ±

b, ̄𝑡 = − ( ̄𝑣±
b

̄𝑃 ±
b(u)) ̄𝑦 + (𝛼 ̄𝑃 ±

b ) ̄𝑦 ̄𝑦 − 𝜔̄0𝑒𝛾 ̄𝑦 ̄𝑃 ±
b + 𝜔̄on

̄𝑃 ±
u , (4.24a)̄𝑃 ±

u, ̄𝑡 = − ( ̄𝑣±
u

̄𝑃 ±
u ) ̄𝑦 + (Γ𝛽 ̄𝑃 ±

u ) ̄𝑦 ̄𝑦 + 𝜔̄0𝑒𝛾 ̄𝑦 ̄𝑃 ±
b − 𝜔̄on

̄𝑃 ±
u , (4.24b)

and thus we have recovered the Fokker-Planck equations reported by Grill et al. (2005) 
[80]. These hold assuming that ̄𝑣±

b(u), 𝛼, Γ𝛽, 𝜔̄on and 𝜔̄0𝑒𝛾 ̄𝑦 of a similar magnitude. Using 
the parameter values explored in Section 4.2 these have a range of magnitudes between 10−3 and 101, as determined using a combination of experimental measurements, estima-
tions and parameter fitting (many taken from the literature as used in [80]). While these 
may not be of strict identical order of magnitude, we argue that these terms are of similar 
enough magnitude that they should not be neglected from the analysis. Note we have used 
the non-dimensional expressions for 𝑠±

b(u) in Table 4.1, with ̄𝜏 = Δ ̄𝑡. The elastic linker ex-
tension ̄𝑦 is now considered as a continuous variable rather than one with discrete states, 
along with velocities ̄𝑣±

b(u)( ̄𝑦). The probability density functions ̄𝑃 ±
b(u) ( ̄𝑦, ̄𝑡) may be rewrit-

ten as ̄𝑃 ±
b, ̄𝑡 = 𝜔̄on

̄𝑃 ±
u − 𝜔̄0𝑒𝛾 ̄𝑦 ̄𝑃 ±

b − ̄𝐽±
b, ̄𝑦, (4.25a)̄𝑃 ±

u, ̄𝑡 = −𝜔̄on
̄𝑃 ±
u + 𝜔̄0𝑒𝛾 ̄𝑦 ̄𝑃 ±

b − ̄𝐽±
u, ̄𝑦, (4.25b)

where probability fluxes ̄𝐽±
u ( ̄𝑦, ̄𝑡) and ̄𝐽±

b ( ̄𝑦, ̄𝑡) are of the form ̄𝐽±
b = ̄𝑣±

b
̄𝑃 ±
b − 𝛼 ̄𝑃 ±

b, ̄𝑦, (4.26a)̄𝐽±
u = −Γ ( ̄𝑦 ̄𝑃 ±

u + 𝛽 ̄𝑃 ±
u, ̄𝑦) , (4.26b)

with boundary conditions ̄𝐽±
b ( ̄𝑡, ̄𝑦 = 0, ̄𝑦max) = ̄𝐽±

u ( ̄𝑡, ̄𝑦 = 0, ̄𝑦max) = 0. (4.27)

The expression for ̄𝑣±
u = −Γ ̄𝑦 has been inserted into (4.26b). Bound motor proteins have a 

relative velocity ̄𝑣±
b = 1 − ̄𝑦 ∓ d ̄𝑧

d ̄𝑡 , (4.28)

as in (4.16). The Fokker-Planck equations (4.25a-4.25b) describe the evolution of the prob-
ability density functions of the bound and unbound generator elastic linker extensions as a 
result of their respective drift (velocity terms) and diffusion, and may be used to describe 
the force generator population dynamics.

Summation of (4.25a) and (4.25b) returns ( ̄𝑃 ±
u + ̄𝑃 ±

b ) ̄𝑡 + ( ̄𝐽±
u + ̄𝐽±

b ) ̄𝑦 = 0 (4.29)
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where integration with respect to ̄𝑦 and exploiting boundary conditions (4.26a) and (4.26b) 
ensures conservation of total probabilities ∫ ̄𝑦max0 ( ̄𝑃 ±

b + ̄𝑃 ±
u ) d ̄𝑦 = 1. (4.30)

With these probability density functions, the pulling force toward each cortex (4.1) may in-
stead be calculated as an average ̄𝐹 ± = 𝑁 ∫ ̄𝑦max0 ̄𝑦 ̄𝑃 ±

b ( ̄𝑦, ̄𝑡)d ̄𝑦, (4.31)

which changes the forcing term of the spindle pole velocity (4.14) such that it reads ̄𝜉 ̄𝑧 ̄𝑡 = −𝐾 ̄𝑧 − 𝑁 (∫ ̄𝑦max0 ̄𝑦 ̄𝑃 −
b d ̄𝑦 − ∫ ̄𝑦max0 ̄𝑦 ̄𝑃 +

b d ̄𝑦) . (4.32)

With supplemental initial conditions ̄𝑃 ±
b ( ̄𝑦, 0) = ̄𝑃 ±

b0 ( ̄𝑦), ̄𝑃 ±
u ( ̄𝑦, 0) = ̄𝑃 ±

u0 ( ̄𝑦), and ̄𝑧 (0) =̄𝑧0, and boundary conditions (4.27), the coupled equations (4.25a), (4.25b), and (4.32) may 
be solved in time to return the dynamics of the spindle pole and the populations of cortical 
force generators, represented as probability densities over multiple realisations of the sys-
tem.

By the form of (4.25a), (4.25b) and the fluxes (4.26a) and (4.26b), the following observa-
tions can be made.

• For large Γ in (4.26b), (4.25b) will be dominated by the advective term which will 
quickly ‘sweep’ any unbound force generators with a non-zero extension down toward ̄𝑦 = 0. As there is no flux through this boundary by (4.27), this will result in ̄𝑃 ±

u hav-
ing a defined peak at ̄𝑦 = 0 which tapers away as ̄𝑦 increases over a width given by the 
diffusive lengthscale 𝛽 12 .

• The velocity term ̄𝑣±
b in (4.26a) is such that ̄𝑃 ±

b will similarly have a defined peak cen-
tred at ̄𝑦c = 1 ∓ ̄𝑧 ̄𝑡 (from (4.28)) if ̄𝑦c ≪ ̄𝑦max. This peak will have a width of order 𝛼 12 .

• Varying the diffusive terms 𝛼 and 𝛽 will vary the width of the peaks described above. 
Large diffusive terms will result in wide flattened peaks while small diffusive terms 
will result in taller, narrower peaks. Relative height differences can be expected to oc-
cur due to the conservation of probabilities (4.29).

• The exponential unbinding rate 𝜔̄0𝑒𝛾 ̄𝑦 will decrease the magnitude of ̄𝑃 ±
b ( ̄𝑦) at higher 

values of ̄𝑦. How ‘large’ ̄𝑦 needs to be to induce this effect is modulated by the un-
binding sensitivity 𝛾.
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4.3.2 Computational method

Equations (4.25a-4.25b) were solved by employing the method of lines, whereby spatial fi-
nite differences in ̄𝑦 were used to create a system of ordinary differential equations which 
could be passed to an ODE solver in ̄𝑡.
To discretise in ̄𝑦, we consider discrete states ̄𝑦𝑖 separated by a fixed distance measure Δ ̄𝑦. 
That is, ̄𝑦𝑖+1 = ̄𝑦𝑖 + Δ ̄𝑦 as in Section 4.2, with ̄𝑦𝑖=0 = 0 and ̄𝑦𝑖=𝑀 = ̄𝑦max. Then using 
central finite differences on the spatial derivative, (4.25a) and (4.26a) become ̄𝑃 ±,𝑖

b, ̄𝑡 = 𝜔̄on
̄𝑃 ±,𝑖
u − 𝜔̄0𝑒𝛾 ̄𝑦𝑖 ̄𝑃 ±,𝑖

b − 12Δ ̄𝑦 ( ̄𝐽±,𝑖+1
b − ̄𝐽±,𝑖−1

b ) (4.33)

and ̄𝐽±,𝑖
b = ̄𝑣±,𝑖

b
̄𝑃 ±,𝑖
b − 𝛼2Δ ̄𝑦 ( ̄𝑃 ±,𝑖+1

b − ̄𝑃 ±,𝑖−1
b ) . (4.34)

The velocity ̄𝑣±,𝑖
b = ̄𝑣±

b ( ̄𝑦𝑖) is given explicitly as ̄𝑣±,𝑖
b = 1 − ̄𝑦𝑖 ∓ ̄𝑧 ̄𝑡 (4.35)

by insertion of ̄𝑦𝑖 into (4.28).

By using central finite differences again, (4.25b) and (4.26b) are approximated as ̄𝑃 ±,𝑖
u, ̄𝑡 = −𝜔̄on

̄𝑃 ±,𝑖
u + 𝜔̄0𝑒𝛾 ̄𝑦𝑖 ̄𝑃 ±,𝑖

b − 12Δ ̄𝑦 ( ̄𝐽±,𝑖+1
u − ̄𝐽±,𝑖−1

u ) (4.36)

and ̄𝐽±,𝑖
u = −Γ ̄𝑦𝑖 ̄𝑃 ±,𝑖

u − Γ𝛽2Δ ̄𝑦 ( ̄𝑃 ±,𝑖+1
u − ̄𝑃 ±,𝑖−1

u ) . (4.37)

These expressions hold for 𝑖 = 1, 2...𝑀 − 1.

At the ̄𝑦𝑖=0 boundary we use a forward difference approximation of the spatial derivative to 
give ̄𝑃 ±,𝑖=0

u, ̄𝑡 = −𝜔̄on
̄𝑃 ±,𝑖=0
u + 𝜔̄0𝑒𝛾 ̄𝑦𝑖=0 ̄𝑃 ±,𝑖=0

b − 1Δ ̄𝑦 ( ̄𝐽±,𝑖=1
u − ̄𝐽±,𝑖=0

u ) , (4.38a)̄𝑃 ±,𝑖=0
b, ̄𝑡 = 𝜔̄on

̄𝑃 ±,𝑖=0
u − 𝜔̄0𝑒𝛾 ̄𝑦𝑖=0 ̄𝑃 ±,𝑖=0

b − 1Δ ̄𝑦 ( ̄𝐽±,𝑖=1
b − ̄𝐽±,𝑖=0

b ) . (4.38b)

Similarly, at the ̄𝑦𝑖=𝑀 boundary we use a backward difference approximation to give ̄𝑃 ±,𝑖=𝑀
u, ̄𝑡 = −𝜔̄on

̄𝑃 ±,𝑖=𝑀
u + 𝜔̄0𝑒𝛾 ̄𝑦𝑖=𝑀 ̄𝑃 ±,𝑖=𝑀

b − 1Δ ̄𝑦 ( ̄𝐽±,𝑖=𝑀
u − ̄𝐽±,𝑖=𝑀−1

u ) , (4.39a)̄𝑃 ±,𝑖=𝑀
b, ̄𝑡 = 𝜔̄on

̄𝑃 ±,𝑖=𝑀
u − 𝜔̄0𝑒𝛾 ̄𝑦𝑖=𝑀 ̄𝑃 ±,𝑖=𝑀

b − 1Δ ̄𝑦 ( ̄𝐽±,𝑖=𝑀
b − ̄𝐽±,𝑖=𝑀−1

b ) . (4.39b)
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Recalling boundary conditions (4.27), then ̄𝐽±,𝑖=0,𝑀
b(u) = 0 (4.40)

and (4.38a-4.39b) become ̄𝑃 ±,𝑖=0
u, ̄𝑡 = −𝜔̄on

̄𝑃 ±,𝑖=0
u + 𝜔̄0𝑒𝛾 ̄𝑦𝑖=0 ̄𝑃 ±,𝑖=0

b − 1Δ ̄𝑦 ̄𝐽±,𝑖=1
u , (4.41a)̄𝑃 ±,𝑖=0

b, ̄𝑡 = 𝜔̄on
̄𝑃 ±,𝑖=0
u − 𝜔̄0𝑒𝛾 ̄𝑦𝑖=0 ̄𝑃 ±,𝑖=0

b − 1Δ ̄𝑦 ̄𝐽±,𝑖=1
b , (4.41b)̄𝑃 ±,𝑖=𝑀

u, ̄𝑡 = −𝜔̄on
̄𝑃 ±,𝑖=𝑀
u + 𝜔̄0𝑒𝛾 ̄𝑦𝑖=𝑀 ̄𝑃 ±,𝑖=𝑀

b + 1Δ ̄𝑦 ̄𝐽±,𝑖=𝑀−1
u , (4.41c)̄𝑃 ±,𝑖=𝑀

b, ̄𝑡 = 𝜔̄on
̄𝑃 ±,𝑖=𝑀
u − 𝜔̄0𝑒𝛾 ̄𝑦𝑖=𝑀 ̄𝑃 ±,𝑖=𝑀

b + 1Δ ̄𝑦 ̄𝐽±,𝑖=𝑀−1
b . (4.41d)

The expression for spindle pole velocity (4.32) is adapted such that the integral terms be-
come summations. Then ̄𝜉 ̄𝑧 ̄𝑡 = −𝐾 ̄𝑧 − 𝑁 (𝑖=𝑀∑𝑖=0 ̄𝑦𝑖 ̄𝑃 −,𝑖

b − 𝑖=𝑀∑𝑖=0 ̄𝑦𝑖 ̄𝑃 +,𝑖
b ) . (4.42)

The ODEs defined in (4.33),(4.36),(4.41a-4.41d) and (4.42) may be assembled into a ma-
trix equation 𝜕U𝜕 ̄𝑡 = 𝒜f (4.43)

for a matrix 𝒜, and a vector U whose components are the discretised ̄𝑃 ±,𝑖
u , ̄𝑃 ±,𝑖

b and ̄𝑧, con-
catenated together to give 

U = [ ̄𝑃 +,0
u … ̄𝑃 +,𝑀

u
̄𝑃 +,0
b … ̄𝑃 +,𝑀

b
̄𝑃 −,0
u … ̄𝑃 −,𝑀

u
̄𝑃 −,0
b … ̄𝑃 −,𝑀

b ̄𝑧]T .
(4.44)

The vector f has flux terms interspersed between the probability terms 

f = [ ̄𝐽+,𝑖
u

̄𝑃 +,𝑖
u

̄𝐽+,𝑖
b

̄𝑃 +,𝑖
b

̄𝐽−,𝑖
u

̄𝑃 −,𝑖
u

̄𝐽−,𝑖
b

̄𝑃 −,𝑖
b ̄𝑧]T , (4.45)

where for brevity the terms ̄𝐽±,𝑖
b(u) and ̄𝑃 ±,𝑖

b(u) have been used to represent e.g.̄𝐽+,𝑖
u = [ ̄𝐽+,0

u … ̄𝐽+,𝑀
u ]. In defining the problem in this way, the matrix 𝒜 contains el-

ements which remain constant. In particular if the flux terms were removed in order to de-
fine the entire system in terms of ̄𝑃 ±,𝑖

b(u) , such that dU
d ̄𝑡 = 𝒜HypU, the presence of ̄𝑣±,𝑖

b in 𝒜Hyp

would require a large number of elements of 𝒜Hyp to be updated. Having 𝒜 remain a con-
stant matrix increases the computational efficiency of the solver when ̄𝑦 is discretised with 
small Δ ̄𝑦.

The following method was used to solve this system.

1. Initial conditions ̄𝑃 ±
b0 ( ̄𝑦𝑖) = (√0.08𝜋)−1 𝑒−( ̄𝑦𝑖−1)2/0.08,̄𝑃 ±

u0 ( ̄𝑦𝑖) = (√0.02𝜋)−1 𝑒−( ̄𝑦𝑖)2/0.02 and ̄𝑧0 = 10 were defined.
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2. The sparse matrix 𝒜 was constructed using the Julia package SparseArrays which 
improves computational performance due to 𝒜 containing a large number of zero val-
ues.

3. Initial conditions and the matrix 𝒜 were passed to an ODE solver from the Julia pack-
age
DifferentialEquations [213]. Within the solver, the following occurred at each 
timestep:

(a) Velocity terms ̄𝑣±,𝑖
b were calculated using (4.35).

(b) Flux portions of f were defined using (4.34) and (4.37).

(c) Equation (4.43) was defined and solved using a Tsitouras 5/4 Runge-Kutta method. 
This method is the recommended method for problems in Julia of moderate stiff-
ness and utilises automatic step size selection based on the local error estimate 
[214].

4. The solver repeated steps 3(a)-3(c) until a pre-defined end-point in time.

Source code is available at github.com/dionn-hargreaves/FP_1DSpindle_methodoflines.

4.3.3 Results of the Fokker-Planck model

The solutions ̄𝑧, ̄𝑃 ±
b and ̄𝑃 ±

u show an oscillating spindle displacement ̄𝑧 (Figure 4.8) and 
an unbound probability density ̄𝑃 ±

u which remains maximal at ̄𝑦 = 0, while its ampli-
tude varies in time as a consequence of (4.30). For the bound probability density functions ̄𝑃 ±

b , the central positions ̄𝑦±
c (the positions around which the Gaussian curves are peaked), 

and amplitude ̄𝑃 ±,max
b (the value of the peak of the Gaussian curves), oscillate concurrently 

with ̄𝑧 (Figure 4.8C, G). Changing the locations of the Gaussian curve centres or widths in 
the initial conditions ̄𝑃 ±

b0 and ̄𝑃 ±
u0 had no effect on the final solutions following some initial 

transients (data not shown).

The behaviour of the peak position ̄𝑦±
c and amplitude ̄𝑃 ±,max

b mirror the behaviour of the av-
erage extension ⟨ ̄𝑦±

b ⟩ and number of bound force generators 𝑛±
b in the stochastic simulation 

(Figure 4.5B). The general dynamics of ̄𝑃 ±
b are explained as follows, breaking an oscilla-

tion down into four phases (Figure 4.9).

1. Spindle moving away from the upper cortex (1). Initially the bound generators in 
both the upper and lower cortex have the peaks of their Gaussian curves centred at the 
same extension, ( ̄𝑦+

c = ̄𝑦−
c ), but there is a higher probability that more generators are 

bound in the upper cortex than the lower ( ̄𝑃 +,max
b > ̄𝑃 −,max

b ). The upward pulling 
by the upper cortical generators is balanced by the microtubule resistance creating a 
restoring force (−𝐾 ̄𝑧 term in (4.32)) and by downward pulling. As the spindle moves 
toward the centre, ̄𝑃 ±,max

b decreases as ̄𝑦c increases due to the extension-dependent off 
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Figure 4.8. The effect of varying the magnitude of diffusion in the PDE description. A,E) Example 
solution to equations (4.25a),(4.25b),(4.32) using the method of lines, showing the pole position, ̄𝑧 in time ̄𝑡. 
Diffusion parameters 𝛼, 𝛽 are a factor of 10 smaller in right column than in the left column. B,F) Heat map of ̄𝑃 +

u in time. Colour indicates the amplitude of ̄𝑃 +
u ( ̄𝑦, ̄𝑡). C,G) Heat map of ̄𝑃 +

b in time. Colour indicates the 
amplitude of ̄𝑃 +

b ( ̄𝑦, ̄𝑡). D,H) Probability density functions in the upper cortex at two instances of time. Solid 
line: ̄𝑡 = ̄𝑡min, when the spindle pole is at ̄𝑧 = 0 and moving toward its minimum value ( ̄𝑧 ̄𝑡 < 0). Dotted line: ̄𝑡 = ̄𝑡max, when the spindle pole is at ̄𝑧 = 0 and moving toward its maximum value ( ̄𝑧 ̄𝑡 > 0). The peak widths 
depend on the magnitude of the diffusion parameters 𝛽 12 and 𝛼 12 . H) The three regions used to reduce the 
system of ODEs to PDEs in Section 5.5 are indicated by roman numerals I, II, and III. The behaviour of the 
probability density functions in the lower cortex are in antiphase to the behaviour seen here. Solutions were 
obtained using parameters 𝐾 = 5 × 10−2, 𝜔̄on = 3 × 10−3, 𝑁 = 25, 𝛾 = 2, 𝜔̄0 = 1 × 10−3, ̄𝜉 = 6.25 × 10−1. A-D) 𝛼 = 8 × 10−2 and 𝛽 = 4 × 10−2, E-H) 𝛼 = 8 × 10−3 and 𝛽 = 4 × 10−3.
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Figure 4.9. Dynamics of bound probabilities in the upper and lower cortex ( ̄𝑃 ±
b ) through one whole 

cycle of spindle pole oscillation. A) Example oscillation of ̄𝑧. Plotted points denote key time points used in 
the bound probabilities in the B) upper and C) lower cortex. Colours of lines in B) and C) correspond to time 
points indicated in A). Parameters: 𝐾 = 5 × 10−2, 𝜔̄on = 3 × 10−3, 𝑁 = 45, 𝛾 = 2, 𝜔̄0 = 1 × 10−3, ̄𝜉 = 6.25 × 10−1. A-D) 𝛼 = 8 × 10−3 and 𝛽 = 4 × 10−3

rate 𝜔̄0𝑒𝛾 ̄𝑦. In the lower cortex, ̄𝑦c decreases as ̄𝑣−
b is decreased. More generators bind 

to the microtubule as 𝜔̄0𝑒𝛾 ̄𝑦 has reduced relative to 𝜔̄on. As the spindle pole passes 
through ̄𝑧 = 0, the only forces acting on the pole are the pulling forces by the cortical 
force generators, which are larger in the lower cortex due to the decreased unbinding.

2. Spindle passing through its maximum velocity, toward the lower cortex (2). As 
the spindle passes through the fastest point of its oscillation ̄𝑧max̄𝑡 , there is a greater 
probability of force generators in the lower cortex being bound to a microtubule than 
in the upper cortex ( ̄𝑃 +,max

b < ̄𝑃 −,max
b ). This is due to the increased unbinding rate 

when the generators are extended. Motion toward the lower cortex once the spindle 
passes ̄𝑧 = 0 is slowed by an increasing restoring force as the −𝐾 ̄𝑧 term in (4.32) 
becomes positive. This in turn shifts ̄𝑣+ ( ̄𝑦) such that ̄𝑦+

c is reduced toward ̄𝑦+
c = 1, 

while ̄𝑣− ( ̄𝑦) is shifted such that ̄𝑦−
c is increased toward ̄𝑦−

c = 1. The probability peak ̄𝑃 −
b begins to decline as ̄𝑦−

c increases, due to the increase in 𝜔̄0𝑒𝛾 ̄𝑦−
c . The upper cortex 

is likely to host more bound generators as 𝜔̄0𝑒𝛾 ̄𝑦+
c decreases relative to 𝜔̄on.

3. Spindle moving away from the lower cortex (3). Phase 3 mirrors Phase 1, with the 
behaviour of ̄𝑃 +

b and ̄𝑃 −
b reversed. The probability of bound generators in the lower 

cortex now decreases below that of the the upper cortex as the spindle approaches the 
centre of its oscillation.
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4. Spindle passing through the centre of its oscillating range, toward the upper cor-
tex (4). This is as in Phase 2, again with the behaviour of ̄𝑃 +

b and ̄𝑃 −
b reversed.

In total, this can be described as a history-dependent effect on the amplitude of bound prob-
ability density ̄𝑃 ±,max

b . For example, if the spindle pole is passing through its fastest point 
of oscillation moving away from the upper cortex then the value of ̄𝑃 +,max

b is lower than it is 
when at its fastest point of oscillation moving towards the upper cortex. This is in contrast 
to the position of the Gaussian curve described by ̄𝑦+

c , which is more extended when the 
spindle pole is moving away from the upper cortex and less extended when the spindle pole 
is moving towards the upper cortex. These behaviours are the same for ̄𝑃 −,max

b and ̄𝑦−
c if we 

consider movement away and then towards the lower cortex. This dependence on the his-
tory of the pole position is a result of the extension-sensitive unbinding rate 𝜔̄0𝑒𝛾 ̄𝑦, which 
reduces ̄𝑃 ±,max

b as ̄𝑦±
c increases, while the dynamics of the spindle pole directly affect ̄𝑦±

c . 
This is the same as what we saw for the relationship between the number of bound force 
generators and their average extension in the stochastic formulation (Figures 4.5B, C, D).

As the general dynamics of the spindle pole have been retained by the Fokker-Planck de-
scription, we will now present the effects of varying different parameters in the model.

The effect of varying diffusivity

The diffusive terms 𝛼 and 𝛽 have been highlighted as modulators of the width of the peaks 
of the probability density functions ̄𝑃 ±

b(u) ( ̄𝑦). Decreasing the values of 𝛼 and 𝛽 by a factor 
of 10 results in probability density functions which are taller and narrower than for larger 
values of 𝛼 and 𝛽 (Figure 4.8D,H).

In addition, the relative motion of the peaks is also altered. When diffusive terms are re-
duced, ̄𝑃 +

b exists within a region of ̄𝑦 which is spatially separated from ̄𝑃 +
u at all times (Fig-

ure 4.8G, H). If we segment ̄𝑦 into three distinct regions (I, II and III, where region I is of 
width 𝒪 (𝛽 12 ) and encompasses the peak of ̄𝑃 +

u , region III is of width 𝒪 (𝛼 12 ) and encom-
passes the peak of ̄𝑃 +

b , and region II exists between them), then we see that the width of 
region II remains non-zero throughout the simulation (Figure 4.8H).

As well as modulating the probability density functions, the diffusive terms also affect the 
resulting dynamics of the spindle pole position. Decreasing 𝛼 and 𝛽 acts to increase the pe-
riod, 𝑇, of oscillation (using a periodogram (Section 2.3.1), 𝑇 = 890 increases to 𝑇 =1000 upon a decrease in 𝛼 and 𝛽 by a factor of 10) while decreasing the amplitude of the 
oscillation (Figure 4.8A, E). Additionally, the oscillations take more time and go through 
more oscillating cycles to build up to maximum amplitude when 𝛼 and 𝛽 are reduced (Fig-
ure 4.8A,E). Thus increasing diffusion has the effect of decreasing the period and increas-
ing the amplitude of oscillation.
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Figure 4.10. Increasing the number of force generators 𝑁 available to the system affects the magnitude, 
period and shape of the oscillations. A) Spindle pole position ̄𝑧 in time ̄𝑡. B) ̄𝑦±

c as a function of pole 
position ̄𝑧. C) Peak ̄𝑃 ±,max

b as a function of ̄𝑦±
c . Line colours correspond to solutions in each cortex (blue = 

upper, orange = lower). The solution loops are taken from a segment of the solution where a maximum 
amplitude of spindle pole oscillation has been achieved. All solutions have been truncated to the time shown 
here for ease of comparison between different 𝑁 values. D) Period of oscillation 𝑇 as a function of 𝑁, shown 
for two different values of 𝜔̄on. Dots correspond to solutions, with the trend given by the line of best fit. 
Parameters: 𝐾 = 5 × 10−2, 𝜔̄on = 3 × 10−3, 𝛾 = 2, 𝜔̄0 = 1 × 10−3, ̄𝜉 = 6.25 × 10−1, 𝛼 = 8 × 10−3 and 𝛽 = 4 × 10−3
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Varying the number of available force generators, 𝑁
The number of available force generators, 𝑁 was shown in Figures 4.5 and 4.6 to impact the 
quality of the spindle pole oscillations predicted by the stochastic model, with fewer force 
generators producing noisier oscillations with shorter periods. Varying 𝑁 in the PDE model 
also affects the oscillatory dynamics.

Increasing 𝑁 produces spindle pole oscillations with a larger amplitude and an increased 
period (Figures 4.10A, D). Decreasing 𝑁 below a threshold level leads to decaying oscilla-
tions (Figure 4.13A below). Interestingly, increasing the binding rate 𝜔̄on also increases the 
period of oscillation for a given 𝑁 (Figure 4.10D), possibly due to the increase in likelihood 
that a larger proportion of the force generator population will bind to create a pulling force 
on the spindle pole when 𝜔̄on is increased, resulting in a similar response to increasing 𝑁. 
The period also increases less rapidly as 𝑁 increases for 𝜔̄on = 0.001 than 𝜔̄on = 0.003.

Increasing 𝑁 also increases the non-linearity of the oscillation, making the structure less si-
nusoidal, as indicated by the skewed ( ̄𝑦c, ̄𝑧/ ̄𝑧max) loops of the upper and lower cortex (Fig-
ure 4.10B). As ̄𝑦±

c = 1 ∓ ̄𝑧 ̄𝑡, we expect that for ̄𝑧 a sinusoidal curve in ̄𝑡, then ( ̄𝑦c, ̄𝑧/ ̄𝑧max)
would be a symmetric loop centred at ( ̄𝑧/ ̄𝑧max) = 0, ̄𝑦±

c = 1. Thus the upper and lower cor-
tex solution loops would overlap perfectly. The skewing of the loops as 𝑁 increases shows 
that increasing the number of force generators creates oscillations which tend toward a re-
laxation oscillation structure. This may be due to the pulling forces becoming the dominant 
factor in (4.32) for a greater range of the oscillatory path. The spindle pole must be dis-
placed sufficiently far from the centre before −𝐾 ̄𝑧 is large enough to overcome the pulling 
forces to slow and eventually reverse the spindle pole velocity, resulting in a quick reversal 
of the spindle pole velocity (fast dynamics) while the path toward the opposite cortex varies 
more slowly.

The magnitude of the bound probability peaks ̄𝑃 ±,max
b span a wider range as 𝑁 increases 

(Figure 4.10C), as do the positions of the peaks ̄𝑦±
c (Figure 4.10B, C). The positions ̄𝑦±

c

begin to vary quicker at the apices of the spindle oscillation, likely due to the changing ̄𝑧 ̄𝑡
term as ̄𝑦±

c = 1 ∓ ̄𝑧 ̄𝑡. Then ̄𝑃 ±,max
b also changes due to the relative size of the tension-

sensitive off rate compared with the constant on-rate. That is, if the spindle pole is at its 
maximum displacement near the lower cortex (yellow marker) the changing pole velocity 
from ̄𝑧 ̄𝑡 < 0 to ̄𝑧 ̄𝑡 > 0 will create a net positive motor protein velocity ̄𝑣−

b which will in-
crease the extension of the bound force generators, shifting ̄𝑦−

c > 1 and thus increasing the 
unbinding rate causing a decrease in ̄𝑃 −,max

b . On the opposing cortex, the change in direc-
tion of the spindle pole will serve to decrease the extensions of the bound force generators 
due to ̄𝑣+

b becoming negative. This will decrease the relative size of the off rate as the force 
generators are less extended and thus there will be an increase in ̄𝑃 +,max

b .
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Reducing the restoring force results in relaxation oscillations

On the presumption that the emergence of potential relaxation oscillations as the number 
of force generators 𝑁 increases is due to the changing ratio of pulling to pushing (centring) 
forces, we reduce the restoring force (−𝐾 ̄𝑧) in order to shift this balance without increas-
ing pulling forces (Figure 4.11). Decreasing 𝐾 by two orders of magnitude results in the 
emergence of relaxation oscillations, characterised by the approximately linear sections of ̄𝑧 (Figure 4.11A). These linear sections correspond in time with slow phases in the time-
evolution of ̄𝑃 ±

b (Figure 4.11B) and ̄𝑦±
c (Figure 4.11C), while the rapid change in the direc-

tion of motion of the spindle pole coincides with fast changes in the extension of the force 
generator bound probability centre ̄𝑦±

c and amplitude ̄𝑃 ±
b . ̄𝑃 ±

b and ̄𝑦±
c are reminiscent of 

the structure of Van der Pol oscillators [215]. Van der Pol oscillations arise from non-linear 
damping acting upon non-conservative oscillators [216], though the exact combination of 
terms in the system used in this chapter which create this effect is unclear without further 
analysis. Non-linear damping works by forcing large amplitude oscillations to decay while 
amplifying small amplitude oscillations [216]. In this case, large amplitudes in ̄𝑃 ±

b and ̄𝑦±
c

are self-limiting by the tension-sensitive on rate, while small amplitude oscillations are am-
plified by the relative motion of the spindle pole, which can create sharp changes in the dy-
namics of ̄𝑃 ±

b and ̄𝑦±
c due to the restoring force and coupling to ̄𝑦±

c by the ̄𝑧 ̄𝑡 term in (4.28). 
We will return to address the origins of relaxation oscillations in Chapter 5.

Recovery of oscillations when N is reduced below the threshold value

Numerically solving the PDE system for a range of values of 𝑁 and 𝜔̄on, at a fixed value 
of 𝐾 = 5 × 10−2, results in a boundary in (𝑁, 𝜔̄on) space between oscillatory and non-
oscillatory solutions (Figure 4.12). Reduction of the number of force generators, leading to 
a decrease in pulling forces, results in a cessation of oscillations (Figure 4.12, blue points, 
and Figure 4.13A). A similar threshold also exists for 𝜔̄on, with the oscillatory section of 
parameter space forming a wedge shape bounded by non-oscillatory solutions (Figure 4.12). 
The lower edge of this boundary can be explained as for large N, smaller binding rates can 
result in oscillations as there is a sufficiently large number of force generators that may be 
bound at any given time. As 𝑁 decreases, the binding rate must also increase to maintain 
a population of bound force generators sufficiently large to maintain oscillations. Below a 
threshold value of 𝑁 (between 𝑁 = 20 and 𝑁 = 25 for this set of parameters), increasing 
the value of 𝜔̄on has no effect as there is insufficient pulling by the force generators avail-
able. The upper threshold arises due to the saturation of bound force generators on either 
side of the spindle pole. This wedge-shaped parameter space has been described previously 
[80], and the presence of this threshold has been experimentally validated in C. elegans em-
bryos [78].

Interestingly, a solution in this parameter space which is shown to be non-oscillatory due to 
the number of force generators being below threshold (Figure 4.13A) can be pushed back 
into an oscillatory regime by either increasing the values of the diffusive terms 𝛼 and 𝛽
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Figure 4.11. Relaxation oscillations emerge when the restoring force is reduced. A) Spindle pole position ̄𝑧 in time ̄𝑡. B) Peak of the probability density function for bound force generators ̄𝑃 ±
b in time ̄𝑡. C) Central 

position of the ̄𝑃 ±
b peak ̄𝑦c in time ̄𝑡. D) ̄𝑦c as a function of pole position ̄𝑧. E) Peak ̄𝑃 ±,max

b as a function of ̄𝑦c. Figures A-C) share a time axis. Line colours correspond to solutions in each cortex (blue = upper, orange 
= lower) Parameters: 𝐾 = 5 × 10−4,𝑁 = 15, 𝜔̄on = 3 × 10−3, 𝛾 = 2, 𝜔̄0 = 1 × 10−3, ̄𝜉 = 6.25 × 10−1, 𝛼 = 8 × 10−3 and 𝛽 = 4 × 10−3
(Figure 4.13B-D) or decreasing the strength of the restoring force 𝐾 (Figure 4.13E-G). In-
creasing the diffusion results in oscillations with a reduced period when compared with the 
period of the decaying oscillations at the same number of force generators (Figure 4.13A, 
B). We suggest that the oscillations occurring when diffusion is increased arise from noise 
in the number of force generators with longer extensions due to the flattening of the bound 
probability density functions (Figure 4.8D). That is, variability in the extension of the pop-
ulations of force generators creates enough noise in the system to continuously pull the 
spindle pole out of the central position, and the restoring force corrects this perturbation 
such that an oscillation is maintained. This is similar to what we observed in the stochas-
tic model for small values of 𝑁 (Figure 4.6). If we consider decreasing the restoring force, 
this allows the pulling forces created by smaller populations of force generators to be suffi-
ciently large to induce spindle pole displacements from the cell centre before the restoring 
force can begin to act on the spindle pole to re-centre it.

4.3.4 Summary of the Fokker-Planck analysis

The Fokker-Planck system described in this section was used to explore the effects of vary-
ing parameters in this model description of spindle pole positioning. The populations of 
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Figure 4.12. Stability boundary between oscillatory and non-oscillatory solutions. Numerically solving 
the Fokker-Planck system reveals the boundary in (𝑁, 𝜔̄on) space which separates oscillatory from 
non-oscillatory solutions. Each scatter point represents a numerical solution, labelled in magenta if the 
spindle pole has sustained oscillations and blue if the spindle pole position decayed to 𝑧 = 0 (non-oscillatory). 
The points with green boundaries are the example solutions used throughout this chapter. Parameters: 𝐾 = 5 × 10−2, 𝛾 = 2, 𝜔̄0 = 1 × 10−3, ̄𝜉 = 6.25 × 10−1, 𝛼 = 8 × 10−3 and 𝛽 = 4 × 10−3.

force generators were described in terms of their probability density functions of binding 
and unbinding at varying extensions of their elastic linkers. This description showed os-
cillatory dynamics in the amplitude of the peaks of the probability distributions, coupled 
with their most likely linker extension. Both the peak value ̄𝑃 ±

b and central extension value ̄𝑦±
c showed a hysteresis effect due to the extension-sensitive unbinding rate 𝜔̄0𝑒𝛾 ̄𝑦 which 

matched what was seen in the stochastic model. Decreasing the diffusive terms reduced 
the width of the peaks of the probability density functions but increased the period of os-
cillation and decreased the amplitude of oscillation. Perturbing the balance of restoring to 
pulling forces by either increasing 𝑁 or decreasing 𝐾 resulted in oscillations with increased 
periods and amplitudes. Significantly increasing 𝑁 and reducing 𝐾 both lead to relaxation 
oscillations, characterised by slow phases where pulling forces dominate the movement 
of the spindle pole, and fast phases where the restoring forces become sufficiently large to 
change the direction of motion of the spindle pole. Increasing diffusive terms and reducing 
the restoring force are both sufficient to restore oscillations for small 𝑁, moving the thresh-
old of 𝑁 required to induce oscillations. 

4.4 Discussion of Chapter 4

In this chapter we characterised the 1D system of pulling and pushing forces acting on the 
spindle pole to create a dynamic spindle pole response. Our aim was to establish a base 
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Figure 4.13. Non-oscillating spindles may become oscillatory for higher diffusion and lower restoring 
forces. Spindle pole position ̄𝑧 in time ̄𝑡 for 𝑁 = 15 A) 𝛼 = 8 × 10−3, 𝛽 = 4 × 10−3 and 𝐾 = 5 × 10−2; B) 𝛼 = 8 × 10−1, 𝛽 = 4 × 10−1 and 𝐾 = 5 × 10−2; C) 𝛼 = 8 × 10−3, 𝛽 = 4 × 10−3 and 𝐾 = 5 × 10−4. 
Constant parameters: 𝜔̄on = 3 × 10−3, 𝛾 = 2, 𝜔̄0 = 1 × 10−3, and ̄𝜉 = 6.25 × 10−1.

system from which we could explore the factors affecting spindle positioning, with the ul-
timate goal of being able to recapitulate the spindle dynamics seen in vivo. In particular, we 
aimed to determine the main factors promoting the emergence of oscillations in the angle 
of the mitotic spindle, and the dynamic repositioning of the spindle toward the cell centre 
seen experimentally (Chapter 3). In this summary we will recap the features of the mathe-
matical systems we have explored and also justify the model choice with respect to the lit-
erature. We postpone direct discussion of the implications of the model with respect to our 
experimental results until Chapter 6, after we have more fully investigated the mathematical 
system using a lower-order mathematical model (Chapter 5).

The system this chapter explores is that developed by Grill et al. (2005) to describe the os-
cillations of the posterior pole of the dividing single cell C. elegans embryo [80]. The Grill 
at al. (2005) system was chosen as it describes dynamic movements of the spindle pole, 
while incorporating slip-bond behaviour of dynein [61] as well as restoring forces by mi-
crotubules [133], [137]. We described the system using a stochastic model which we im-
plemented using a Gillespie algorithm and a Fokker-Planck description. While Grill et al.
(2005) show a result from a stochastic simulation, the simulation detail is ommitted from 
their description [80]. Further, the Fokker-Planck description in [80] was simplified by as-
suming that the probability distribution relaxed instantaneously to 𝑃 ±

u = 𝐴 (𝑡) 𝑒−𝑦2 , where 𝐴 (𝑡) is the amplitude of the Gaussian curve centred about 𝑦 = 0. While our analysis of 
the full Fokker-Planck equations confirmed that ̄𝑃 ±

u relaxed to ̄𝑦 = 0 (Figure 4.8B,G,D,H), 
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this result was not obvious. Indeed, our initial solutions of the problem showed a ̄𝑃 ±
u which 

was dynamic in ̄𝑦 (data not shown), though a more careful estimation of 𝜈 using Stokes’ law 
eradicated these dynamics. In general, the results presented in [80] were restricted to a very 
narrow set of parameters, thus exploration of the dynamics of the system from stochastic 
simulations through to the Fokker-Planck equations was required for proper analysis of the 
system.

The Gillespie algorithm chosen has both advantages and disadvantages. Notably, a large 
amount of computational power is needed to run different realisations of the model, and the 
scale of the model and the number of autonomous agents within it provide further burden to 
the cost of computation. In the case of this work, the problems highlighted in Section 4.2.3 
limited our ability to fully explore the parameter landscape in a timely manner. A number 
of methods of increasing efficiency were explored (Section 4.2.4) but the highly coupled 
nature of the problem prevented a straightforward implementation of a known algorithm. 
Instead, we created a system-specific optimisation that allowed us to produce simulations 
of a sensible duration, though the scope of our parameter exploration was limited. We were 
restricted to simulations with small numbers of force generators 𝑁, while diffusive terms 𝛼, 𝛽 could not be decreased significantly. We used the stochastic model to confirm the be-
haviours we expected from the simulations before describing the system using a PDE for-
mulation. We then used the PDE Fokker-Planck description to more fully explore the im-
pact of varying parameters.

Both the Gillespie and the Fokker-Planck formulations of this system resulted in oscilla-
tions in the position of the spindle pole, with coordinated dynamics between the spindle 
position and the populations of force generators in the upper and lower cortices. The num-
ber of bound force generators oscillates with the average extension of the elastic linker due 
to the effect of tension-sensitive unbinding, where more elongated linkers are under more 
net tension and thus the motor protein head dissociates from the microtubule. This oscil-
lation is in anti-phase to the oscillation of the opposing population due to their coupling 
through the connection to the spindle pole (Figure 4.5D and Figure 4.2). Here the com-
parison with the PDEs has been drawn by describing the number of bound force genera-
tors with extended elastic linkers as a probability density function of a force generator being 
bound with elastic linker length ̄𝑦±.

The stochastic simulations show that coherent oscillations are reduced for increased restor-
ing forces (by the increase of 𝐾) and decreasing pulling forces (by the reduction of 𝑁). Us-
ing values of 𝑁=15 and 𝑁=5 force generators per cortex produced simulations which dis-
played collective population dynamics from which spontaneous oscillations of the spindle 
pole emerged. As the number of force generators was decreased, the amplitude and pe-
riod of the oscillations also decreased. By re-dimensionalising the data by 𝑡 = ̄𝑡/𝜇 and 𝑧 = ̄𝑧𝑣0/𝜇, with 𝑣0 = 1.8 × 10−6 ms−1 and 𝜇 = 50 s−1, a period of 𝑇 (𝑁 = 15) ≈ 18 s 
was returned with a range of 𝑧max − 𝑧min ≈ 7 𝜇m. This oscillatory range and period is sim-
ilar to the oscillatory range seen in the C. elegans first cell division spindle oscillation in 
vivo, where an oscillatory period of the posterior pole of 19.6 ± 3.0 s has been measured 
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[78]. This period is much shorter than what was measured experimentally in the cells of the 
Xenopus laevis animal cap (Figure 3.10B). The parameters we used were chosen to be those 
used by Grill et al. (2005) in their development of this mathematical system, as we were 
unable to confidently obtain estimations for all parameters specific to Xenopus. As our ini-
tial aim was to explore the system described by Grill et al. (2005), we prioritised creating a 
working model which we could directly compare to the results they reported, such that we 
could confirm that our interpretation aligned with theirs [80]. As such, the quantitative re-
sults presented here are tuned to C. elegans rather than the Xenopus system specifically, but 
we expect the behaviour of the model to remain the same. Indeed, by exploring the model 
in different regions of parameter space, we are well placed to estimate where in parameter 
space our experimental system may lie.

Removal of the tension sensitivity of the unbinding rate 𝛾 also leads to a loss of oscilla-
tions (Figure 4.7A). Altering these same factors in the Fokker-Planck description results 
in similar effects, where decreasing restoring forces promotes oscillations (Figure 4.13) and 
decreasing the number of force generators results in the cessation of oscillations (Figure 
4.13). Numerically solving the PDE system for a range of values in (𝑁, 𝜔̄on) space reveals 
a boundary between oscillatory and non-oscillatory solutions, as was reported by Grill et 
al. (2005) [80]. Our analysis of the PDEs suggests that this boundary is dependent on the 
diffusivity of the force generators as they try to walk along the microtubule, with diffusion 
promoting oscillations (Figure 4.13B), and on the restoring force provided by the micro-
tubules (Figure 4.13C).

It was highlighted by the PDE model that altering the diffusion terms 𝛼 and 𝛽 had an ef-
fect on the resulting dynamics of the spindle pole. Increasing the diffusion parameters both 
decreased the period of oscillation of the spindle pole and increased the amplitude of the 
resulting oscillations. The promotion of oscillations as the diffusive terms 𝛼 and 𝛽 are in-
creased is of interest to us due to the inherent noise in biological processes [217]. The dif-
fusive terms represent noise in the random walk of dynein along microtubules, so that in-
creased values of 𝛼 and 𝛽 represent an increase in deviation from the directed movement 
of the bound force generator. That is, we expect a bound force generator under no exter-
nal loading to have a positive velocity along the microtubule leading to an extension of 
the elastic linker, but increasing 𝛼 increases the likelihood of this bound generator to er-
roneously slip backwards along the microtubule or stay in the same place rather than move 
forward. Increasing 𝛼 represents an imperfect system due to variations in the environment 
of the force generators that we cannot account for explicitly. This dependence of oscilla-
tion on the diffusivity parameters could explain why oscillations were still present in the 
stochastic simulations as 𝑁 was decreased below the threshold for oscillation identified us-
ing the Fokker-Planck equations (where 𝛼 and 𝛽 were reduced) (Figure 4.5 shows oscilla-
tions at 𝑁 = 15 in the stochastic simulations, despite being outside of the oscillatory solu-
tion region in Figure 4.12). However, we note that the oscillatory region determined was for 
a value of 𝛼 and 𝛽 a factor of 10 smaller than what was used in the stochastic simulations, 
as smaller values of 𝛼, 𝛽 decreased the value of Δ ̄𝑦 required to produce stochastic simula-
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tions thus making computation too expensive to generate simulations of sufficient timespan.

Comparison of the Fokker-Planck solutions with the stochastic simulations for the same 
choice of parameters, though with 𝛼 and 𝛽 an order of 10 smaller for the Fokker-Planck 
system, showed periods of 𝑇 FP ≈ 16 s vs 𝑇 G ≈ 18 s. Thus a 1.1-fold increase in the os-
cillation period using the Fokker-Planck equations. However, this comparison is not per-
fect, as the oscillations of the Fokker-Planck model were decaying (Figure 4.13A), though 
stochastic simulations with larger numbers of force generators for a more direct comparison 
were not feasible.

The range of the centre peak extension ̄𝑦±
c was narrower when compared with ⟨ ̄𝑦±

b ⟩. The 
stochastic simulations show an average extension 0 ≲ ⟨ ̄𝑦±

b ⟩ ≲ 2 when 𝑁 = 15, while the 
Fokker-Planck equations required 𝑁 = 45 before showing a similar range at small 𝛼, 𝛽. 
Thus we conclude that the Fokker-Planck description maintains characteristics of the solu-
tions to the stochastic simulations, such as appropriately shaped limit cycles and dynamics 
of the bound force generators vs their extension lengths, however oscillations are promoted 
more readily and with a greater amplitude in Gillespie simulations. As we saw more similar 
results between the two descriptions when 𝛼, 𝛽 were reduced in the Fokker-Planck formu-
lation, we conclude that increased demographic noise at small values of 𝑁 promote oscilla-
tory dynamics.

By using the Fokker-Planck description to explore the system in regions of parameter space 
where simulations were computationally expensive, we discovered the emergence of relax-
ation oscillations as the restoring force parameter 𝐾 was reduced (Figure 4.11). The result-
ing linear sections of the spindle pole oscillation correspond in time with slow phases in 
the time-evolution of ̄𝑃 ±

b and ̄𝑦±
c (Figure 4.11B, C), until the spindle pole is sufficiently dis-

placed from the centre for the restoring force to create a rapid reversal in the spindle pole 
velocity ̄𝑧t. This change in the spindle pole velocity results in a rapid increase in the value 
of ̄𝑦c on the opposite cortex, which in turn creates a rapid decrease in the value of ̄𝑃 ±

b due 
to the tension-sensitivity of the unbinding rate. The fast and slow phases of ̄𝑃 ±

b and ̄𝑦c in 
time give them the structure of Van der Pol oscillators, where their amplitudes are self-
limited by the tension-sensitive unbinding and amplified by their connection to the motion 
of the spindle pole.

The stiffness of the microtubule, 𝑘MT affects the parameter 𝐾 linearly, thus changing 𝐾 by 
two orders of magnitude is equivalent to changing the microtubule stiffness by two orders 
of magnitude. Alternatively, 𝐾 may be decreased by increasing the stiffness of the elastic 
linker connecting the force generator to the cell cortex, 𝑘g. We first focus on the stiffness 
due to the properties of the microtubule array. Here that force comes from the microtubule 
pressing against the cortex as the spindle moves towards it, due to bending and also due to 
dynamic instability of the microtubule array. Microtubules have a high flexural rigidity and 
may be considered as relatively rigid structures over the length-scale of a typical cell [133]–
[135]. The baseline microtubule stiffness 𝑘MT = 4 × 10−6 Nm−1 was chosen to match that 
used previously [80] and was also corroborated as an appropriate order of magnitude in a 

135



study into microtubule elasticity [135]. However, the mathematical model in [135] calcu-
lated the effective elastic stiffness by considering interpolar and kinetochore microtubules 
which make up the main body of the spindle (Figure 1.3A). These microtubules are bun-
dled together by crosslinking proteins [218] where strong crosslinking increases the flexural 
rigidity of the bundle like 𝑁2

MT, where 𝑁MT is the number of microtubules which make up 
the bundle. In the calculation for the bending stiffness the bundles are assumed to be highly 
crosslinked sets of 𝑁MT=10. The flexural rigidity of weakly crosslinked bundles are as-
sumed to scale like 𝑁MT, which would decrease the estimation of flexural rigidity and thus 
the elastic stiffness by a factor of 𝒪(10). Similarly, decreasing the number of microtubules 
present in the bundle would decrease the elastic stiffness due to the dependence upon 𝑁MT. 
If astral microtubules are less bundled than the interpolar and kinetochore microtubules it 
follows that the microtubule stiffness chosen here could be an overestimation of a factor 
of 10-100. Additionally, the behaviour of the microtubule at the spindle pole can affect the 
restoring force [135], [137]. If the microtubule is allowed to hinge at the spindle pole, then 
the resulting effect on the critical buckling force results in a decreased restoring force pro-
vided by the microtubule [135], [137]. As such we expect perturbations to the scaffolding 
of the spindle pole by depletion of NuMA to reduce the restoring force provided by the mi-
crotubules.

The analysis in this chapter has confirmed that this model system may be used to describe 
dynamic movements of the spindle pole, and the main characteristics promoting oscillation 
are maintained when moving from stochastic simulations to a Fokker-Planck description 
of the model. We will now further reduce the Fokker-Planck equations into a lower order 
model to further probe the behaviour of the system without incurring the cost of numerous 
numerical simulations. This lower order model also has the advantage that it will be more 
readily expanded into 2D. 
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Chapter 5

Lower order models of spindle pole 
movements estimate amplitudes and 
periods of spindle pole oscillation

5.1 Introduction

The model of spindle movements as a result of cortical pulling and restoring forces has now 
been described using stochastic simulations (Section 4.2) and the Fokker-Planck equations 
(Section 4.3). Both methods reveal the emergence of established oscillations as the num-
ber of force generators increases, with the balance of restoring and pulling forces also being 
key players in the resulting spindle dynamics. The Fokker-Planck description suggests ar-
eas of parameter space where oscillations exist, and also areas where oscillations cannot be 
sustained. In this chapter, features of the model in different regions of parameter space will 
be explored and assumptions on the scale of various parameters will be made in order to re-
duce the PDEs to a smaller system of ordinary differential equations (ODEs), while keeping 
the main features of the full description intact.

When diffusivity terms are small, the PDEs reveal distinct regions of ̄𝑦 space where the 
probability density functions ̄𝑃 ±

u and ̄𝑃 ±
b have most of their mass (Figure 4.8H). While 

varying the diffusive terms also has an impact on the oscillations, with larger diffusive terms 
promoting oscillations (Figure 4.13B), the amplitudes and periods of the more and less dif-
fusive solutions are still of a similar order. As such, we now pursue the behaviour of the 
model with lower diffusivity to create a system of ODEs. In contrast to the ad hoc model 
reduction proposed by Grill et al. (2005), [80], here the Fokker-Planck system is reduced 
to ODEs using systematic asymptotic analysis. The model reduction implemented by Grill 
et al. (2005) is only very briefly described, with the bound probability density function re-
placed with an estimated typical linker length. The two populations of force generators are 
also lost from the discussion, described only in terms of a single population [80]. As the 
path from the Fokker-Planck description of the system to the ODEs is unclear, the coupling 
between the two populations of force generators and the spindle pole also becomes unclear. 
As such, our rigorous reduction to ODEs provides us with a solid basis from which to build 
upon and extend to 2D (Appendix A), as the results in terms of spindle pole dynamics and 
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individual force generator population dynamics are retained throughout the stochastic and 
deterministic descriptions.

Stability analysis is used to determine the factors which promote oscillations, while a fur-
ther simplification of the system in the limit of small restoring forces reveals the structure 
of relaxation oscillations and provides an estimate of oscillation amplitude. 

5.2 Systematically reducing the Fokker-Planck equations into ODEs

To reduce the Fokker-Planck model to a system of ODEs, it helps to rescale using the mo-
tor protein to microtubule binding rate, writing ̄𝑡 = ̃𝑡/𝜔̄on and ̄𝑧 = ̃𝑧/𝜔̄on. Then (4.32) 
becomes ̄𝜉 ̃𝑧 ̃𝑡 = − 𝐾̄𝜔on

̃𝑧 − 𝑁 (∫ ̄𝑦max0 ̄𝑦 ̄𝑃 −
b d ̄𝑦 − ∫ ̄𝑦max0 ̄𝑦 ̄𝑃 +

b d ̄𝑦) (5.1)

and (4.25a), (4.25b) similarly become 𝜔̄on
̄𝑃 ±
b, ̃𝑡 + ̄𝐽±

b, ̄𝑦 = 𝜔̄on
̄𝑃 ±
u − 𝜔̄0𝑒𝛾 ̄𝑦 ̄𝑃 ±

b (5.2)𝜔̄on
̄𝑃 ±
u, ̃𝑡 + ̄𝐽±

u, ̄𝑦 = −𝜔̄on
̄𝑃 ±
u + 𝜔̄0𝑒𝛾 ̄𝑦 ̄𝑃 ±

b . (5.3)

The intention is to develop an approximation to the oscillating spindle system for which 𝜔̄on ∼ 𝜔̄0 ∼ 𝛼1/2 ∼ 𝛽1/2 ≪ 1. To minimise the introduction of further notation, we expand 
our solutions in terms of the small order parameter 𝜔̄on and remain mindful moving forward 
that these parameters are of similar order. Consider the range of extension values ̄𝑦 as be-
ing split into three regions (Figure 4.8H): region I over which ̄𝑃 ±

u is peaked around ̄𝑦 = 0
with a width 𝛽1/2; region III over which ̄𝑃 ±

b is peaked with a width of 𝛼1/2 but whose cen-
tre moves as ̄𝑦c = 1 ∓ ̃𝑧 ̃𝑡; and region II where advective terms dominate and the asymptotic 
limits of I and III are matched.

Solutions for ̄𝑃 ±
u and ̄𝑃 ±

b will be determined in regions I and III respectively, followed by 
matching their asymptotic limits in region II to reveal the ODE system which governs the 
time evolution of the parameters.

5.2.1 Region I

In Region I, we seek solutions ̄𝑃 ±
u ∼ ̄𝑃 ±

u0 + 𝜔̄on
̄𝑃 ±
u1 + ... where ̄𝑃 ±

u0 is a quasi-static solution 
whose shape is static but whose amplitude varies slowly in time, and 𝜔̄on is a small parame-
ter. Assume further that ̄𝑃 ±

b ∼ 𝜔̄on in this region (Figure 4.8H). Here, it is observed that ̄𝑃 ±
u

is sharply peaked about ̄𝑦 = 0 over a diffusive length-scale 𝛽 12 (Figure 4.8H). Thus, setting ̄𝑦 = 𝛽 12 𝑌 in (5.3) gives 𝜔̄on
̄𝑃 ±
u, ̃𝑡 − Γ (𝑌 ̄𝑃 ±

u + ̄𝑃 ±
u,𝑌)𝑌 = −𝜔̄on

̄𝑃 ±
u + 𝜔̄0𝑒(𝛾𝛽1/2𝑌) ̄𝑃 ±

b (5.4)
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with the boundary condition ̄𝐽±
u ( ̃𝑡, 0) = 0. This boundary condition therefore becomes ̄𝐽±

u0 ( ̃𝑡, 0) + 𝜔̄on
̄𝐽±

u1 ( ̃𝑡, 0) = 0 (5.5)

where ̄𝐽±
u0 = −𝛽1/2Γ (𝑌 ̄𝑃 ±

u0 + ̄𝑃 ±
u0,𝑌) , (5.6a)̄𝐽±

u1 = −𝛽1/2Γ (𝑌 ̄𝑃 ±
u1 + ̄𝑃 ±

u1,𝑌) , (5.6b)

which are both individually zero at 𝑌 = 0 due to (5.5). To leading order in 𝜔̄on, (5.4) be-
comes Γ (𝑌 ̄𝑃 ±

u0 + ̄𝑃 ±
u0,𝑌)𝑌 = 0 (5.7)

which may be integrated to give Γ [𝑌 ̄𝑃 ±
u0 + ̄𝑃 ±

u0,𝑌]𝑌0 = 0. (5.8)

Thus, due to boundary condition (5.5), 𝑌 ̄𝑃 ±
u0 + ̄𝑃 ±

u0,𝑌 = 0, (5.9)

(5.8) gives ̄𝑃 ±
u0 = 𝐴±( ̃𝑡)𝑒− 12 𝑌 2 (5.10)

as a solution, with 𝐴± ( ̃𝑡) an amplitude which varies slowly in time.

At 𝒪 (𝜔̄on), equation (5.4) becomes Γ (𝑌 ̄𝑃 ±
u1 + ̄𝑃 ±

u1,𝑌)𝑌 = ̄𝑃 ±
u0, ̃𝑡 + ̄𝑃 ±

u0. (5.11)

We highlight here the absence of the 𝜔̄0𝑒𝛾 ̄𝑦 ̄𝑃 ±
b term as we have assumed that ̄𝑃 ±

b ∼ 𝜔̄on in 
this region. Then (5.11) may be integrated to Γ [𝑌 ̄𝑃 ±

u1 + ̄𝑃 ±
u1,𝑌]𝑌0 = ∫𝑌

0 (𝐴±̃𝑡 + 𝐴±) 𝑒− 12 𝑌 2d𝑌 (5.12)

using the boundary conditions on flux (5.5) at 𝑌 = 0. As the 𝑌 ̄𝑃 ±
u1 term will dominate the 

left-hand side as 𝑌 → ∞, we may write Γ𝑌 ̄𝑃 ±
u1 ≈ ∫∞

0 ((𝐴±̃𝑡 + 𝐴±) 𝑒− 12 𝑌 2) d𝑌= (𝐴±̃𝑡 + 𝐴±) √𝜋2 . (5.13)

Then, ̄𝑃 ±
u1 ≈ 1Γ𝑌 (𝐴±̃𝑡 + 𝐴±) √𝜋2 , (𝑌 ≫ 1) . (5.14)
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Re-substitution of 𝑌 = 𝛽− 12 ̄𝑦 gives ̄𝑃 ±
u1 ≈ 1Γ ̄𝑦 (𝐴±̃𝑡 + 𝐴±) √𝜋𝛽2 (5.15)

when 𝛽1/2 ≪ ̄𝑦.

Now that we have an expression for how the shape of the unbound force generator proba-
bility density function varies in time in region I, we go on to seek similar solutions for the 
bound generator probability density function in region III.

5.2.2 Region III

In region III we seek solutions of the form ̄𝑃 ±
b ∼ ̄𝑃 ±

b0 + 𝜔̄on
̄𝑃 ±
b1 + .... Here, the probabil-

ity density function ̄𝑃 ±
b is sharply peaked about ̄𝑦c = 1 ∓ ̃𝑧 ̃𝑡 over a diffusive length-scale 𝛼 12 (Figure 4.8H). Both 𝛼1/2 and 𝜔̄on are assumed to be small parameters of similar order. 

Thus, in this region about the peak of ̄𝑃 ±
b , we set ̄𝑦 = 1 ∓ ̃𝑧 ̃𝑡 + 𝛼 12 ̂𝑌. By the chain rule, 𝜕𝐺( ̂𝑌 , ̃𝑡)𝜕 ̃𝑡 = d ̂𝑌

d ̃𝑡 𝜕𝐺𝜕 ̂𝑌 + d ̃𝑡
d ̃𝑡 𝜕𝐺𝜕 ̃𝑡 for any function of the two variables ( ̂𝑌 , ̃𝑡), and so 𝜕𝜕 ̃𝑡 → ±𝛼− 12 ̃𝑧 ̃𝑡 ̃𝑡 𝜕𝜕 ̂𝑌 + 𝜕𝜕 ̃𝑡 (5.16)

while also 𝜕𝜕 ̄𝑦 → 𝛼−1/2 𝜕𝜕 ̂𝑌 (5.17)

and equation (5.2) then becomes 𝜔̄on ( ̄𝑃 ±
b, ̃𝑡 ± 𝛼− 12 ̃𝑧 ̃𝑡 ̃𝑡 ̄𝑃 ±

b, ̂𝑌) + (𝛼−1/2 ̄𝑣±
b

̄𝑃 ±
b − ̄𝑃 ±

b, ̂𝑌) ̂𝑌 = 𝜔̄on
̄𝑃 ±
u − 𝜔̄0𝑒𝛾(1∓ ̃𝑧 ̃𝑡) ̄𝑃 ±

b . (5.18)

Here, the off-rate 𝜔̄off = 𝜔̄0𝑒𝛾(1∓ ̃𝑧 ̃𝑡+𝛼1/2𝑌) = 𝜔̄0𝑒𝛾(1∓ ̃𝑧 ̃𝑡)𝑒𝛾𝛼1/2𝑌 ≈ 𝜔̄0𝑒𝛾(1∓ ̃𝑧 ̃𝑡) because 𝛼1/2
is a small parameter. Recalling the expression for ̄𝑣±

b as given in (4.28) and inputting our 
expression for ̄𝑦 in this region, (5.18) may be further simplified to 𝜔̄on ( ̄𝑃 ±

b, ̃𝑡 ± 𝛼− 12 ̃𝑧 ̃𝑡 ̃𝑡 ̄𝑃 ±
b, ̂𝑌) − ( ̂𝑌 ̄𝑃 ±

b − ̄𝑃 ±
b, ̂𝑌) ̂𝑌 = 𝜔̄on

̄𝑃 ±
u − 𝜔̄0𝑒𝛾(1∓ ̃𝑧 ̃𝑡) ̄𝑃 ±

b . (5.19)

Substituting the expansion ̄𝑃 ±
b ≈ ̄𝑃 ±

b0 + 𝜔̄on
̄𝑃 ±
b1 + …, then to first order (5.19) becomes (( ̂𝑌 ∓ 𝜔̄on𝛼− 12 ̃𝑧 ̃𝑡 ̃𝑡) ̄𝑃 ±

b0 − ̄𝑃 ±
b0, ̂𝑌) ̄𝑌 = 0 (5.20)

where 𝜔̄on𝛼1/2 = 𝒪 (1) has been used. By integration, ( ̄𝑌 ∓ 𝜔̄on𝛼− 12 ̃𝑧 ̃𝑡 ̃𝑡) ̄𝑃 ±
b0 − ̄𝑃 ±

b0, ̄𝑌 = 𝐶 ( ̃𝑡) (5.21)

for 𝐶 ( ̃𝑡) some constant of integration. The boundary condition ̄𝐽±
b ( ̃𝑡, ̄𝑦 = ̄𝑦max) = 0 be-

comes ̄𝐽±
b ( ̃𝑡, ̂𝑌 → ∞) → 0, while ̄𝐽±

b ( ̃𝑡, ̄𝑦 = 0) = 0 becomes
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̄𝐽±
b ( ̃𝑡, ̂𝑌 → −∞) → 0. Then ̄𝐽±

b0 ( ̃𝑡, ̂𝑌 → −∞) + 𝜔̄on
̄𝐽±

b1 ( ̃𝑡, ̂𝑌 → −∞) → 0 (5.22)

where ̄𝐽±
b0 = 𝛼1/2 ( ̂𝑌 ̄𝑃 ±

b0 − ̄𝑃 ±
b0, ̂𝑌) (5.23)

and ̄𝐽±
b1 = 𝛼1/2 ( ̂𝑌 ̄𝑃 ±

b1 − ̄𝑃 ±
b1, ̂𝑌) (5.24)

which must both separately also tend to zero as ̂𝑌 → −∞. Using this, (5.21) may be rewrit-
ten as 𝛼−1/2 ̄𝐽±

b0 ∓ 𝜔̄on𝛼−1/2 ̃𝑧 ̃𝑡 ̃𝑡 ̄𝑃 ±
b0 = 𝐶 ( ̃𝑡) . (5.25)

Making the assumption that ̄𝑃 ±
b0 → 0 as ̂𝑌 → −∞, which enforces (5.22) at leading order, 

then 𝐶 ( ̃𝑡) = 0 and ̄𝑃 ±
b0, ̂𝑌 = − ( ̂𝑌 ∓ 𝜔̄on𝛼− 12 ̃𝑧 ̃𝑡 ̃𝑡) ̄𝑃 ±

b0. (5.26)

Integrating (5.26) gives the solution ̄𝑃 ±
b0 = 𝐵̃± ( ̃𝑡) 𝑒(− 12 ̂𝑌 2±𝜔̄on𝛼− 12 ̃𝑧 ̃𝑡 ̃𝑡 ̂𝑌 ) = 𝐵± ( ̃𝑡) 𝑒(− 12 ( ̂𝑌 ∓𝜔̄on𝛼− 12 ̃𝑧 ̃𝑡 ̃𝑡)2)

(5.27)

for some 𝐵̃± ( ̃𝑡) and 𝐵± ( ̃𝑡), where 𝐵± ( ̃𝑡) describes the amplitude of the peak of the prob-
ability density function (subject to smaller corrections) which varies in time. Returning to 
(5.19), with ̄𝑃 ±

u ≪ ̄𝑃 ±
b , then to 𝒪 (𝜔̄on)(( ̂𝑌 ∓ 𝜔̄on𝛼− 12 ̃𝑧 ̃𝑡 ̃𝑡) ̄𝑃 ±

b1 + ̄𝑃 ±
b1, ̂𝑌) ̂𝑌 = ̄𝑃 ±

b0, ̃𝑡 + 𝜔̄0𝑒𝛾(1∓ ̃𝑧 ̃𝑡)𝜔̄on

̄𝑃 ±
b0, (5.28)

which may be rewritten as (𝛼−1/2 ̄𝐽±
b1 ∓ 𝜔̄on𝛼−1/2 ̃𝑧 ̃𝑡 ̃𝑡 ̄𝑃 ±

b1) ̂𝑌 = ̄𝑃 ±
b0, ̃𝑡 + 𝜔̄0𝑒𝛾(1∓ ̃𝑧 ̃𝑡)𝜔̄on

̄𝑃 ±
b0. (5.29)

Thus using (5.27) in (5.29) and integrating gives 

[𝛼−1/2 ̄𝐽±
b1 ∓ 𝜔̄on𝛼−1/2 ̃𝑧 ̃𝑡 ̃𝑡 ̄𝑃 ±

b1]∞̄𝑌 = ∫∞̄𝑌 (𝐵±̃𝑡 ± 𝜔̄on𝛼− 12 ̃𝑧 ̃𝑡 ̃𝑡 ̃𝑡 ( ̄𝑌 ∓ 𝜔̄on𝛼− 12 ̃𝑧 ̃𝑡 ̃𝑡)) 𝑒(− 12 ( ̄𝑌 ∓𝜔̄on𝛼− 12 ̃𝑧 ̃𝑡 ̃𝑡)2)
+ (𝜔̄0𝑒𝛾(1∓ ̃𝑧 ̃𝑡)𝜔̄on

𝐵±) 𝑒(− 12 ( ̄𝑌 ∓𝜔̄on𝛼− 12 ̃𝑧 ̃𝑡 ̃𝑡)2)
d ̄𝑌 .

(5.30)

By assuming that ̄𝑃 ±
b1 → 0 as ̂𝑌 → ∞, which enforces boundary condition ̄𝐽±

b1 → 0 as 
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̂𝑌 → ∞, then 

−𝛼−1/2 ̄𝐽±
b1 ± 𝜔̄on𝛼−1/2 ̃𝑧 ̃𝑡 ̃𝑡 ̄𝑃 ±

b1 = ∫∞̂𝑌 (𝐵±̃𝑡 ± 𝜔̄on𝛼− 12 ̃𝑧 ̃𝑡 ̃𝑡 ̃𝑡 ( ̂𝑌 ∓ 𝜔̄on𝛼− 12 ̃𝑧 ̃𝑡 ̃𝑡)) 𝑒(− 12 ( ̂𝑌 ∓𝜔̄on𝛼− 12 ̃𝑧 ̃𝑡 ̃𝑡)2)
+ (𝜔̄0𝑒𝛾(1∓ ̃𝑧 ̃𝑡)𝜔̄on

𝐵±) 𝑒(− 12 ( ̂𝑌 ∓𝜔̄on𝛼− 12 ̃𝑧 ̃𝑡 ̃𝑡)2)
d ̂𝑌 . (5.31)

The left hand side (LHS) of (5.31) may be rewritten 

LHS = − ( ̂𝑌 ∓ 𝛼−1/2𝜔̄on ̃𝑧 ̃𝑡 ̃𝑡) ̄𝑃 ±
b1 + ̄𝑃 ±

b1, ̂𝑌 (5.32)

and so in the limit ̂𝑌 → −∞, (5.32) is dominated by the ̂𝑌 ̄𝑃 ±
b1 term. Rearranging the right 

hand side gives, in this limit, 

− ̂𝑌 ̄𝑃 ±
b1 ∼ (𝐵±̃𝑡 + 𝜔̄0𝑒𝛾( ̂𝑌 ∓ ̃𝑧 ̃𝑡)𝜔̄on

𝐵±) ∫∞
−∞ 𝑒(− 12 ( ̂𝑌 ∓𝜔̄on𝛼− 12 ̃𝑧 ̃𝑡 ̃𝑡)2)

d ̂𝑌
± 𝜔̄on𝛼− 12 ̃𝑧 ̃𝑡 ̃𝑡 ̃𝑡𝐵± ∫∞

−∞ ( ̂𝑌 ∓ 𝜔̄on𝛼− 12 ̃𝑧 ̃𝑡 ̃𝑡) 𝑒(− 12 ( ̂𝑌 ∓𝜔̄on𝛼− 12 ̃𝑧 ̃𝑡 ̃𝑡)2)
d ̂𝑌 .

The second integral vanishes, while the first integral can be evaluated and thus, as ̂𝑌 →−∞, ̄𝑃 ±
b1 ∼ −√2𝜋̂𝑌 (𝐵±̃𝑡 + 𝜔̄0𝑒𝛾(1∓ ̃𝑧 ̃𝑡)𝜔̄on

𝐵±) = √2𝜋𝛼1 − ̄𝑦 ∓ ̃𝑧 ̃𝑡 (𝐵±̃𝑡 + 𝜔̄0𝑒𝛾(1∓ ̃𝑧 ̃𝑡)𝜔̄on
𝐵±) . (5.33)

The asymptotic limits (5.15) and (5.33) as 𝑌 → ∞ and ̂𝑌 → −∞ respectively will now be 
matched inside region II.

5.2.3 Region II

In region II, advection terms dominate. These ‘sweep’ the bound force generators toward 
the peak of ̄𝑃 ±

b such that bound force generators will tend to have elastic linkers with an ex-
tension ̄𝑦c = 1 ∓ ̃𝑧 ̃𝑡, and the unbound force generators toward the peak of ̄𝑃 ±

u such that 
unbound force generators will tend to have an elastic linker with zero extension. Given that 
the probability density functions are peaked in regions I and II, ̄𝑃 ±

b, ̄𝑦 and ̄𝑃 ±
u, ̄𝑦 are both rela-

tively small in region II, being given by the small correction terms 𝜔̄on
̄𝑃 ±
u1 and 𝜔̄on

̄𝑃 ±
b1, ex-

pressions for which we have determined in the limits 𝑌 → ∞ and ̂𝑌 → −∞ respectively. 
Then together, using (4.26a), ̄𝐽±

b = ̄𝑣±
b

̄𝑃 ±
b − 𝛼 ̄𝑃 ±

b, ̄𝑦 ≈ ̄𝑣±
b

̄𝑃 ±
b (5.34)

and so substitution of ̄𝑃 ±
b ≈ 𝜔̄on

̄𝑃 ±
b1 when ̂𝑌 → −∞ and (4.28) returns ̄𝐽±

b ≈ √2𝜋𝛼 (𝜔̄0𝑒𝛾(1∓ ̃𝑧 ̃𝑡)𝐵± + 𝜔̄on𝐵±̃𝑡 ) . (5.35)
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Continuing, using (4.26b), ̄𝐽±
u = −Γ ( ̄𝑦 ̄𝑃 ±

u + 𝛽 ̄𝑃 ±
u, ̄𝑦) ≈ −Γ ̄𝑦 ̄𝑃 ±

u (5.36)

and so substitution of ̄𝑃 ±
u ≈ 𝜔̄on

̄𝑃 ±
u1 when 𝑌 → ∞ returns ̄𝐽±

u ≈ −𝜔̄on√𝜋𝛽2 (𝐴± + 𝐴±̃𝑡 ) . (5.37)

Then by the form of (5.35) and (5.37), to leading order ̄𝐽±
b, ̄𝑦 = 0 and ̄𝐽±

u, ̄𝑦 = 0 and therefore 
(5.35) and (5.37) are valid across the whole of region II. Further, since ̄𝐽±

b and ̄𝐽±
u are 0 at 

the boundaries (4.27), ̄𝐽±
b + ̄𝐽±

u = 0, a form of ‘detailed balance’, and thus √2𝜋𝛼 (𝜔̄0𝑒𝛾(1∓ ̃𝑧 ̃𝑡)𝐵± + 𝜔̄on𝐵±̃𝑡 ) = 𝜔̄on√𝜋𝛽2 (𝐴± + 𝐴±̃𝑡 ) . (5.38)

We will use (5.38) to construct a system of equations which describe the movements of 
the spindle in terms of the amplitudes of the peaks of the probability density functions and 
their relative diffusive widths.

5.2.4 Combining the whole system

We may now use expressions (5.10), (5.15) for ̄𝑃 ±
b and (5.27), (5.33) for ̄𝑃 ±

u , and their cou-
pling in region II (5.38) to close the system. Recalling that ∫∞0 ( ̄𝑃 ±

u + ̄𝑃 ±
b ) d ̄𝑦 = 1, then to 

leading order ∫∞
0 (𝐴±𝑒− 12𝛽 ̄𝑦2 + 𝐵±𝑒(− 12𝛼 ( ̄𝑦−1± ̃𝑧 ̃𝑡∓𝜔̄on ̃𝑧 ̃𝑡 ̃𝑡)2)) d ̄𝑦 = 1. (5.39)

The first term of this integral is easily evaluated, while the second term is more complex. 
Consider only the leading-order terms of the exponent, due to 𝜔̄on being a small order pa-
rameter. Then ∫∞

0 𝐵±𝑒(− 12𝛼 ( ̄𝑦−1± ̃𝑧 ̃𝑡∓𝜔̄on ̃𝑧 ̃𝑡 ̃𝑡)2)d ̄𝑦 ≈ ∫∞
0 𝐵±𝑒(− 12𝛼 ( ̄𝑦− ̄𝑦c)2)d ̄𝑦 (5.40)

which we know is a peak contained within region III. That is, we integrate over the Gaus-
sian, which does not intersect ̄𝑦 = 0 with any value of significance at leading order. Using 
this logic, the integral (5.40) may be evaluated and thus 

𝐴±√𝜋𝛽2 + 𝐵±√2𝜋𝛼 = 1. (5.41)

This can be used to eliminate 𝐴± from (5.38) to give 2𝜔̄on
√2𝜋𝛼𝐵±̃𝑡 = 𝜔̄on − √2𝜋𝛼 (𝜔̄0𝑒𝛾(1∓ ̃𝑧 ̃𝑡) + 𝜔̄on) 𝐵±. (5.42)

Equation (5.42) predicts that 
√2𝜋𝛼𝐵± relaxes to 𝜔̄on𝜔̄on+𝜔̄0𝑒𝛾(1∓ ̃𝑧 ̃𝑡) and (5.41) predicts that √𝜋𝛽2 𝐴±
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relaxes to 𝜔̄0𝑒𝛾(1∓ ̃𝑧 ̃𝑡)𝜔̄on+𝜔̄0𝑒𝛾(1∓ ̃𝑧 ̃𝑡) provided ̃𝑧 does not change too rapidly.

Further to this, ̄𝑃 ±
b = ̄𝑃 ±

b0 + 𝜔̄on
̄𝑃 ±
b1 + … can be put into (5.1) to obtain a leading-order 

equation for the motion of the spindle pole. This requires the evaluation of ∫ ̄𝑦max0 ̄𝑦 ̄𝑃 ±
b d ̄𝑦 ∼ ∫∞

0 ̄𝑦𝐵±𝑒(− 12𝛼 ( ̄𝑦− ̄𝑦c))2
d ̄𝑦 + ... (5.43)

where we assume ̄𝑦max is sufficiently large that it exceeds the bounds of region III and can 
thus be taken as ̄𝑦max → ∞. Again we let ̄𝑦 = ̄𝑦c + 𝛼1/2 ̂𝑌, which is where ̄𝑃 ±

b0 has a signifi-
cant value. Then ∫∞

0 ̄𝑦𝐵±𝑒(− 12𝛼 ( ̄𝑦− ̄𝑦c)2)d ̄𝑦 ∼ ∫∞
−∞ ( ̄𝑦c + 𝛼1/2 ̂𝑌 ) 𝐵±𝑒− 12 ̂𝑌 2𝛼1/2d ̂𝑌 , (5.44)

which to leading order becomes ∫∞
−∞ ( ̄𝑦c + 𝛼1/2 ̂𝑌 ) 𝐵±𝑒− 12 ̂𝑌 2𝛼1/2d ̂𝑌 ∼ 𝛼1/2 ̄𝑦c𝐵± ∫∞

−∞ 𝑒− 12 ̂𝑌 2d ̂𝑌 = ̄𝑦c𝐵±√2𝜋𝛼 + ....
(5.45)

Recalling that ̄𝑦c = 1 ∓ ̃𝑧 ̃𝑡, (5.1) becomes ̄𝜉 ̃𝑧 ̃𝑡 = − 𝐾̄𝜔on
̃𝑧 − 𝑁√2𝜋𝛼 ((1 + ̃𝑧 ̃𝑡) 𝐵− − (1 − ̃𝑧 ̃𝑡) 𝐵+) (5.46)

and thus ̄𝜉 ̃𝑧 ̃𝑡 = − 𝐾̄𝜔on
̃𝑧 − 𝑁√2𝜋𝛼 (𝐵− + 𝐵+) ̃𝑧 ̃𝑡 − 𝑁√2𝜋𝛼 (𝐵− − 𝐵+) . (5.47)

This can be rewritten as ( ̂𝜉 + 𝐵̂+ + 𝐵̂−) ̃𝑧 ̃𝑡 + 𝐾̂ ̃𝑧 = 𝐵̂+ − 𝐵̂−, (5.48)

where 𝐵̂± = √2𝜋𝛼𝐵±, 𝐾̂ = 𝐾𝜔̄on𝑁 , and ̂𝜉 = ̄𝜉𝑁 . Recalling (5.42) which may be alterna-
tively written as (1 + 𝜌𝑒𝛾(1∓ ̃𝑧 ̃𝑡)) 𝐵̂± + 2𝐵̂±̃𝑡 = 1 (5.49)

where 𝜌 = 𝜔̄0/𝜔̄on, the coupled system (4.25a), (4.25b), and (4.32) is reduced to solving 
equations (5.48-5.49) along with initial conditions ̃𝑧0 and 𝐵̂±0 .

5.3 Computational method

The following computational method was used to solve equations (5.48-5.49).

144



1. Initial conditions 𝐵̂±0 = 0.3 and ̃𝑧 = 0.05 were defined.

2. The ODEs (5.48-5.49) and the initial conditions were passed to an ODE solver from 
Julia package DifferentialEquations [213].

3. The solver continued until a predefined end-time was achieved using automatic step 
selection.

Source code available at github.com/dionn-hargreaves/ODE_1D_spindle/. We note here 
the relative ease of this method compared with the additional steps required to solve the 
stochastic and PDE methods (Sections 4.2.3 and 4.3.2).

5.4 Results for the ODEs

5.4.1 Stability analysis

The simplicity of the ODE model lends itself to performing stability analysis on the system. 
To do stability analysis, small amplitude perturbations about the steady state are considered, 
where the steady-state solution 𝐵̂∗± is determined from (5.49) to be (1 + 𝜌𝑒𝛾) 𝐵̂∗± = 1. (5.50)

We rewrite this to give 𝐵̂∗± = 𝜆−1, (5.51)

for 𝜆 ≡ 1 + 𝜌𝑒𝛾. Using (5.51) when determining the steady state solution ̃𝑧∗ by (5.48) gives ̃𝑧∗ = 0. (5.52)

To analyse the stability of this solution, consider small amplitude perturbations to (5.51) 
and (5.52) such that 𝐵̂∗± = 𝜆−1 + 𝜖 ̂𝑏± ( ̃𝑡) + … (5.53)

and ̃𝑧∗ = 𝜖 ̂𝑧 ( ̃𝑡) + … (5.54)

for small 𝜖. Additionally, 𝜌𝑒𝛾(1∓ ̃𝑧 ̃𝑡) = 𝜌𝑒𝛾(1∓(𝜖 ̂𝑧 ̃𝑡+…)) ≈ 𝜌𝑒𝛾 ∓ 𝜖 ̂𝑧 ̃𝑡𝛾𝜌𝑒𝛾 + … . (5.55)

Then to linear order in 𝜖 ≪ 1, equations (5.48-5.49) become ( ̂𝜉 + 2𝜆−1) ̂𝑧 ̃𝑡 + 𝐾̂ ̂𝑧 = ̂𝑏+ − 𝑏̂−, (5.56a)∓ ̂𝑧 ̃𝑡𝜆−1𝜌𝛾𝑒𝛾 + 𝜆 ̂𝑏± + 2 ̂𝑏±̃𝑡 = 0. (5.56b)
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Assuming exponential time-dependence 𝑏̂, ̂𝑧 ∝ 𝑒𝑠 ̃𝑡 such that d
d ̃𝑡 → 𝑠, then (5.56) may alter-

natively be written ( ̂𝜉 + 2𝜆−1) 𝑠 ̂𝑧 + 𝐾̂ ̂𝑧 = ̂𝑏+ − 𝑏̂−, (5.57a)∓𝑠 ̂𝑧𝜆−1𝛾𝜌𝑒𝛾 + 𝜆 ̂𝑏± + 2𝑠 ̂𝑏± = 0. (5.57b)

By explicitly writing the upper and lower cortex equations (5.57b) out as −𝑠 ̂𝑧𝜆−1𝛾𝜌𝑒𝛾 + 𝜆𝑏̂+ + 2𝑠 ̂𝑏+ = 0, (5.58a)𝑠 ̂𝑧𝜆−1𝛾𝜌𝑒𝛾 + 𝜆𝑏̂− + 2𝑠 ̂𝑏− = 0, (5.58b)

we can combine (5.58a)−(5.58b) to obtain an expression for 𝑏̂+ − 𝑏̂− which can be inserted 
into (5.57a). This is reduced further to (( ̂𝜉 + 2/𝜆) 𝑠 + 𝐾̂) (𝜆 (2𝑠 + 𝜆)) = 2𝑠𝛾𝜌𝑒𝛾, (5.59)

where we have assumed that ̂𝑧 ≠ 0. Seeking solutions where 𝑠 = 𝑖Ω at the onset of neutral 
oscillations, a natural frequency of 

Ω2 = 𝐾̂𝜆22 (2 + ̂𝜉𝜆) (5.60)

is returned when ( ̂𝜉𝜆 + 2) 𝜆 + 2𝜆𝐾̂ = 2𝛾𝜌𝑒𝛾 ≡ 2𝛾 (𝜆 − 1) . (5.61)

Therefore at the onset of oscillations 𝐾̂ = 𝛾𝜆 (𝜆 − 1) − 12 ( ̂𝜉𝜆 + 2) . (5.62)

Recalling that 𝐾̂ = 𝐾/𝜔̄on𝑁, 𝜆 = 1 + (𝜔̄0/𝜔̄on) 𝑒𝛾 and ̂𝜉 = ̄𝜉/𝑁, then (5.62) can be used 
to reveal the boundary in (𝜔̄on, 𝑁) space at the onset of neutral oscillations (Figure 5.1A). 
The wedge shape of the oscillatory region described by (5.62) is similar to that returned by 
analysis of the PDE solutions across the parameter space (Figure 4.12), though the lowest 𝑁 value capable of producing oscillations is increased using the ODEs from 𝑁 ≈ 25 to 𝑁 ≈ 40. Simulations of the Fokker-Planck model revealed that increasing the diffusive 
terms 𝛼 and 𝛽 promote oscillations below the stability threshold, thus the shifted threshold 
in the ODE system relative to the PDE system is likely due the assumption that diffusivity 
is low. Despite this discrepancy between the exact quantitative matching of the location of 
the stability boundary, we can use (5.62) to explore other factors which affect its location 
and shape. Interestingly, numerical solutions of the Fokker-Planck equations over (𝑁, 𝜔̄on) 
space suggests an upper stability threshold between 0.006 < 𝜔̄†

on < 0.007 for 𝑁 ≤ 80, 
which is within 80% of the calculated stability threshold if 𝜔̄†

on = 0.0074 using (5.69).

We first recall that in the Fokker-Planck model, decreasing the restoring force parameter 
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Figure 5.1. Exploring the stability boundary between oscillatory and non-oscillatory solutions in the 
ODE model. A) (Solid curve) The threshold separating oscillatory solutions (magenta) from non-oscillatory 
solutions in (𝑁, 𝜔̄on) space, determined from (5.62) for parameters: 𝐾 = 5 × 10−2, 𝛾 = 2, 𝜔̄0 = 1 × 10−3, ̄𝜉 = 6.25 × 10−1. (Dashed curve) The same threshold in the 𝐾̂ → 0
limit determined by (5.64). B) A heat map of the value of the upper threshold 𝜔̄†

on by (5.69) which 𝜔̄on
asymptotically approaches for large 𝑁 as parameters 𝜔̄0 and 𝛾 vary.𝐾 promoted oscillations in the non-oscillatory region of parameter space (Figure 4.13C). 
To explore whether this behaviour is conserved in the ODE system, we look in the limit of 𝐾̂ → 0 in equation (5.62) to describe how reducing 𝐾 affects the stability boundary. In the 
limit of 𝐾̂ → 0, (5.62) is dominated by the terms of the right hand side, so that it may be 
rewritten in this limit as ̂𝜉𝜆 + 2 = 2𝛾𝜆 (𝜆 − 1) . (5.63)

As ̂𝜉 = ̄𝜉/𝑁 is the only parameter which depends on N, then rewriting (5.63) as 𝑁 = ̄𝜉𝜆22𝛾 (𝜆 − 1) − 2𝜆 (5.64)

gives the stability boundary for small 𝐾̂ shown in Figure 5.1A (dashed line). This aligns 
with what was seen in simulations of the Fokker-Planck model, as decreasing 𝐾̂ (by reduc-
tion of 𝐾), promotes oscillations in a greater region of the (𝑁, 𝜔̄on) parameter space. As we 
cannot physically have 𝑁 < 0, as it represents the number of cortical force generators, then 
the denominator of (5.64) must also be greater than zero. Then 𝛾 (𝜆 − 1) > 𝜆, (5.65)

and since 𝜆 = 1 + (𝜔̄0/𝜔̄on) 𝑒𝛾, 𝜔̄on < (𝛾 − 1) 𝜔̄0𝑒𝛾 (5.66)

must be true for the establishment of non-decaying oscillations.

Analysis of (5.62) shows that 𝜔̄on asymptotes to this value in the limit of large 𝑁. Recalling 
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Figure 5.2. The period of oscillation. A) The period of oscillation as calculated from (5.60), in 
non-dimensionalised time as in Section 4, showing the boundary between oscillatory and non-oscillatory 
solutions (white). B) The relationship between the period of oscillation and the binding rate 𝜔̄on using (5.60), 
along the neutral stability curve (5.62). The period ̄𝑇 is reported in the non-dimensionalised time used in the 
stochastic simulations and Fokker-Planck system and is unbounded as 𝜔̄on → 𝜔̄†

on. Parameters used: 𝛾 = 2, 𝜔̄0 = 1 × 10−3, ̄𝜉 = 6.25 × 10−1. A) and B) (Solid curve) 𝐾 = 5 × 10−2, B) (Dashed curve) 𝐾 = 5 × 10−4
that 𝐾̂ ∝ 1/𝑁 and ̂𝜉 ∝ 1/𝑁, then (5.62) becomes 0 ∼ 𝛾 (𝜆 − 1) − 𝜆, (5.67)

which may equivalently be written as 𝛾 𝜔̄0𝜔̄on
𝑒𝛾 ∼ 1 + 𝜔̄0𝜔̄on

𝑒𝛾, (5.68)

because 𝜆 = 1 + 𝜔̄0𝜔̄on
𝑒𝛾. Algebraic rearrangement shows that as 𝑁 → ∞, 𝜔̄on → 𝜔̄†

on ≡ (𝛾 − 1) 𝜔̄0𝑒𝛾. (5.69)

Comparison of this result with that obtained by analysis of (5.64) is interesting as 𝐾̂ is in-
versely proportional to 𝑁, thus a large value of 𝑁 enforces a small value of 𝐾̂. However, 𝐾̂ may also become small independently of 𝑁 due to the restoring force 𝐾. Thus it is not 
trivial that the boundaries on the upper threshold of the oscillatory region are the same for 
small 𝐾̂ and large 𝑁. The expression (5.69) for the upper limit of 𝜔̄on is interesting as it 
also reveals the necessity for the tension-sensitivity parameter 𝛾 to be greater than 1 for os-
cillations to occur. Indeed, removal of the tension-sensitivity of the unbinding rate in the 
stochastic simulations lead to a reduction of the coherence of the oscillatory behaviour of 
the spindle pole (Figure 4.7A). Thus the relative area of (𝑁, 𝜔̄on) parameter space which 
hosts non-decaying oscillatory solutions (acknowledging that the area is infinite for un-
bounded 𝑁) decreases with the magnitude of 𝐾̂ (representing a reduction of restoring forces 
relative to pulling forces), but increases with the tension-sensitivity of unbinding 𝛾 and the 
unbinding rate 𝜔̄0. The effect of changing 𝜔̄0 and 𝛾 on 𝜔̄†

on is shown in Figure 5.1B.

Analysis of the natural frequency predicted in (5.60) shows that the period of oscillation in-

148



creases with both 𝑁 and 𝜔̄on (Figure 5.2A). This mirrors what was seen in the solutions of 
the Fokker-Planck equations, where the period increased with both 𝑁 and 𝜔̄on, and the solu-
tions for increasing 𝑁 increased their periods more rapidly when 𝜔̄on = 0.003 than they did 
when 𝜔̄on = 0.001 (Figure 4.10D). The period along the neutral stability curve predicted 
using (5.60) increases as 𝐾 decreases (Figure 5.2B), thus reduction of restoring forces cor-
responds to longer periods of oscillation. The rapid increase of the period as 𝜔̄on → 𝜔̄†

on co-
incides with 𝑁 → ∞. The values of the periods in Figure 5.2 have been converted into the 
non-dimensionalised time used in the stochastic and Fokker-Planck models by ̄𝑇 = (2𝜋Ω ) 1̄𝜔on

for ease of comparison between solutions.

Stability analysis of the ODEs has revealed the boundary of the oscillatory region of (𝜔̄on)
parameter space, as well as the factors which affect its position and also estimates for the 
period of oscillation along the neutral curve. We now explore how the solutions of the ODE 
model compare with the simulations of the Fokker-Planck model.

5.4.2 Comparison with simulations of the Fokker-Planck model

Using the computational method outlined in Section 5.2, we obtain solutions in time for ̃𝑧
and 𝐵̂±. We use ̄𝑦±

c = 1 ∓ ̃𝑧 ̃𝑡 to obtain values for ̄𝑦±
c for comparison with the PDE solu-

tions. Note that ODE solutions are presented in terms of ̄𝑧 and ̄𝑡 for comparison with PDE 
solutions. Our aim is to determine whether or not the ODE model can be used as an appro-
priate simplification for this system.

In general, by overall comparison of the Fokker-Planck PDE solutions with the ODE so-
lutions for equivalent parameters (Figure 5.3), the general dynamics of the solutions, most 
notably the history-dependent effect on the bound probability amplitude (Figure 5.3, third 
column), are captured in the ODE model. We will now look more closely at different fea-
tures of the solutions in various regions of parameter space.

Relaxation oscillations occur when pulling forces dominate the spindle pole movement

If we reduce the magnitude of parameter 𝐾̂, the spindle pole oscillates with relaxation os-
cillations (Figure 5.3D) which match closely with the relaxation oscillations returned by the 
PDE model with equivalent parameters (Figure 5.3C), with similar period and amplitude as 
well as shape. When the restoring force modulated by 𝐾̂ is small, the structure of the oscil-
lations in the PDE and ODE descriptions are more closely matched than in Figures 5.3A/B.

Alternatively, pulling forces may dominate if we have a very high number of force genera-
tors. The PDE model demonstrates that an increase from 𝑁 = 25 to 𝑁 = 45 leads to os-
cillations which tend to a relaxation structure (Figure 4.10). Parameter 𝑁 exists in the ODE 
model within parameters ̂𝜉 and 𝐾̂. Altering these parameters such that they are equivalent 
to the PDE model for 𝑁 = 1000 results in oscillations with a relaxation structure as ex-
pected (Figure 5.3E). Thus we conclude that the balance of pulling to restoring forces con-
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Figure 5.3. Comparison of PDE and ODE solutions for equivalent parameters. PDE and ODE solutions 
for equivalent parameters are presented, with non-equivalent solutions separated by a dotted line. A and C) 
represent solutions of the PDEs. B) D) and E) represent solutions of the ODEs. First column: spindle pole 
position ̄𝑧. Second column: the centre of the bound probability density function as a function of pole position ̄𝑦±

c ( ̄𝑧). Third column: the amplitude of the bound probability density function as a function of the location of 
its centre ( ̄𝑃 ±

b ( ̄𝑦c) for PDE solutions A,C); 𝐵± = 𝐵̂±/√2𝜋𝛼 for ODE solutions B, D, E). PDE solutions 
were obtained using parameters 𝛼 = 8 × 10−3, 𝛽 = 4 × 10−3, ̄𝜉 = 6.25 × 10−1, 𝜔̄0 = 1 × 10−3, 𝜔̄on = 3 × 10−3, 𝛾 = 2, 𝜈 = 1 × 103 A) 𝐾 = 5 × 10−2 and 𝑁 = 45 and C) 𝐾 = 5 × 10−4 and 𝑁 = 15. 
ODE solutions obtained using B) equivalent parameters to A); D) equivalent parameters to C); and E) 
Equivalent parameters to A) with 𝑁 = 1000. Line colours correspond to solutions in each cortex (blue = 
upper, orange = lower).
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Figure 5.4. Decreased binding rates increase the non-linearity of the oscillations in ODE solutions. The 
centre of the bound probability density function ̄𝑦c as a function of the normliased pole position ̄𝑧/ ̄𝑧max for A) 𝜔̄on = 0.003, B) 𝜔̄on = 0.006, using all other parameters equivalent to Figure 5.3E.

trols the structure of the oscillation of the spindle pole. Interestingly, the shape of the oscil-
lations in the lower 𝐾̂ and high 𝑁 relaxation oscillation are slightly different. For low 𝐾̂, 
the peak of the bound probability density function hits its maximum at the same time the 
spindle pole experiences its maximum velocity (when ̄𝑦±

c is at its minimum value, Figure 
5.3C,D). Alternatively, when 𝑁 is increased, the maximum of the peak of the bound prob-
ability density function lags behind the spindle pole velocity (Figure 5.3E). This lag is in-
teresting as it represents a delay between the binding of the force generators and the move-
ments of the spindle pole, likely due to there being a greater number of force generators in 
the system to bind onto the microtubules before they are saturated. This delay is removed 
by increasing the binding rate 𝜔̄on (Figure 5.4Aii, Bii), thus we attribute this lag to the rate 
of binding between the force generators and the microtubules. A higher affinity for binding 
also promotes more sinusoidal oscillations (Figure 5.4Ai, Bi).

5.4.3 Reduction in the limit of small 𝐾̂
Since numerically reducing 𝐾̂ leads to relaxation oscillations with fast and slow phases in 
both 𝐵̂+ and 𝐵̂−, we now explore whether a further simplification to the model can be im-
plemented by exploiting 𝐾̂ as a small parameter. The approximately linear sections of ̃𝑧
scale like 𝐾̂−1 in both time and amplitude, and correspond in time with slow phases. By 
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Figure 5.5. Overlaid phase portraits for the scaled solutions obtained by solving the ODE system (blue) and 
PDE system (magenta) for equivalent parameters where A) 𝐾̂ = 0.01, B) 𝐾̂ = 0.007. The inverted function 𝐺 (black) given in (5.74) represents the expected limit cycle as 𝐾̂ → 0. PDE parameters: 𝐾 = 5 × 10−4, 𝛼 = 8 × 10−3, 𝛽 = 4 × 10−3, ̄𝜉 = 6.25 × 10−1, 𝜔̄0 = 1 × 10−3, 𝜔̄on = 3 × 10−3, 𝛾 = 2, 𝜈 = 1 × 103 A) 𝑁 = 15, B) 𝑁 = 25. ODE parameters are equivalent.

re-scaling ̃𝑡 = ̂𝑡/𝐾̂ and ̃𝑧 = ̄̄𝑧/𝐾̂ such that ̃𝑧 ̃𝑡 = ̄̄𝑧 ̂𝑡, the ODE equations (5.48-5.49) become (1 + 𝜌𝑒𝛾(1∓ ̄̄𝑧 ̂𝑡)) 𝐵̂± + 2𝐾̂𝐵̂±̂𝑡 = 1 (5.70)

and ( ̂𝜉 + 𝐵̂+ + 𝐵̂−) ̄̄𝑧 ̂𝑡 + ̄̄𝑧 = 𝐵̂+ − 𝐵̂−. (5.71)

By posing expansions 𝐵̂± = 𝐵̂±0 + 𝐾̂𝐵̂±1 + ... and ̄̄𝑧 = ̄̄𝑧0 + 𝐾̂ ̄̄𝑧1 + ..., then to leading order 
(5.70) and (5.71) become (1 + 𝜌𝑒𝛾(1∓ ̄̄𝑧0, ̂𝑡)) 𝐵̂±0 = 1 (5.72)

and ( ̂𝜉 + 𝐵̂+0 + 𝐵̂−0 ) ̄̄𝑧0, ̂𝑡 + ̄̄𝑧0 = 𝐵̂+0 − 𝐵̂−0 . (5.73)

We may rewrite (5.73) as ̄̄𝑧0 = 𝐵̂+0 − 𝐵̂−0 − ( ̂𝜉 + 𝐵̂+0 + 𝐵̂−0 ) ̄̄𝑧0, ̂𝑡 = 𝐺 ( ̄̄𝑧0, ̂𝑡) , (5.74)

with 𝐵̂±0 defined by (5.72).

Equation (5.74) approximates the slow phases of the limit cycle in ( ̄̄𝑧0, ̄̄𝑧0, ̂𝑡) as 𝐾̂ → 0 (Fig-
ure 5.5). Recalling that ̄𝑦±

c = 1 ∓ ̄𝑧t (Section 4.3), then following a parameter rescaling, 
(5.74) can also be used to describe the limit cycle in ( ̄𝑧0, ̄𝑦±

c ). The limit cycles obtained by 
solving the ODE and PDE systems with equivalent parameters are shown to closely match 
with this expected limit cycle (Figure 5.5A). As expected, this matching is improved as the 
value of 𝐾̂ decreases (Figure 5.5A compared with Figure 5.5B). These cycles show the fast 
phases of the relaxation oscillation as the spindle pole changes its direction of motion (the 
approximately vertical sections at the maximum and minimum values of ̄̄𝑧). Then the max-
imum amplitude of oscillation can be estimated by the roots of 𝐺, which can be determined 
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Figure 5.6. Estimation of oscillation amplitude using 𝐺. A) ODE solutions and B) PDE solutions of pole 
position, with the amplitude predicted by ±𝐺max/𝐾̂ (5.76) indicated by the red dashed lines. The parameters 
used are as in Ai) Figure 5.3B. Aii) Figure 5.3D. Bi) Figure 5.3A. Bii) Figure 5.3C.

by solving 
d𝐺

d ̄̄𝑧0, ̂𝑡 = 0. (5.75)

for roots 𝐺max and 𝐺min. Then the amplitude of oscillation during relaxation oscillations 
can be estimated by ̃𝑧 = 𝐺max/𝐾̂ + 𝜖 (5.76)

for 𝜖 a small correction parameter. Thus the amplitude of oscillation can be estimated from 
the ratio of pulling to pushing (𝐾̂), the effective drag ̂𝜉, the ratio of the unbinding to bind-
ing rates (𝜌) and the tension sensitivity of unbinding (𝛾). Surprisingly, the amplitude of 
oscillation in solutions of the ODE model are approximated well by (5.76), with little im-
provement as 𝐾̂ is reduced (Figure 5.6A). However, the PDE solutions show a marked im-
provement in the matching of the estimation by (5.76) and the resulting amplitude as 𝐾̂ is 
reduced (Figure 5.6B).

The tension-sensitivity of the cortical force generators, modulated by 𝛾, is key for oscilla-
tions. Setting 𝛾 = 0 in (5.72) uncouples the values of 𝐵̂±0 from the spindle pole dynamics, 
thus 𝐵̂+0 = 𝐵̂−0 and (5.73) becomes ̄̄𝑧0 = − ( ̂𝜉 + 2 (1 + 𝜌)−1) ̄̄𝑧0, ̂𝑡. (5.77)

This linear relationship between ̄̄𝑧0 and ̄̄𝑧0, ̂𝑡 suggests that no oscillations occur in this case. 
The coupling of the populations of bound force generators through the tension-sensitive un-

153



binding rate is required for oscillations, as was shown by stability analysis of the ODE sys-
tem (5.69).

5.5 Chapter Summary

In this chapter we have systematically reduced the Fokker-Planck PDEs introduced in Sec-
tion 4.3 into a smaller system of ODEs using systematic asymptotic analysis. By assuming 
that diffusive terms 𝛼, 𝛽 and the rates of binding and unbinding (𝜔̄on and 𝜔̄0 respectively) 
are small, we create a system of ODEs which are easily explored using linear stability anal-
ysis. We summarise the findings of this chapter with respect to the findings of Chapter 4, 
while its implications and comparison to the biological results we presented in Chapter 3 
are postponed until Chapter 6.

This ODE system appropriately describes the push/pull model when non-dimensionalised 
binding and unbinding rates 𝜔̄on and 𝜔̄0, and diffusion terms 𝛼1/2 and 𝛽1/2 are small. The 
non-dimensionalisation method normalised binding, unbinding and diffusion to timescales 
set by the velocity of the force generators, thus they must be small relative to the unloaded 
motor protein velocity. In doing so, we assume further that relaxation of the unbound force 
generators relative to the unloaded motor protein velocity, Γ, is rapid.

The stability threshold identified by this analysis allowed us to determine the main factors 
which promote oscillations of the spindle pole. A wedge-shaped region in (𝑁, 𝜔̄on) space 
supports oscillations (Figure 5.1A), bounded by an upper and lower threshold on the value 
of 𝜔̄on and a lower threshold on the value of 𝑁. The stability boundary with this shape was 
also described by Grill et al. in their ODE reduction, though the factors which affect its po-
sition were not explicitly explored [80]. The upper threshold 𝜔̄†

on is solely dependent upon 
the unbinding parameters 𝜔̄0 and 𝛾, and is independent of 𝐾, thus increased unbinding and 
increased tension-sensitivity to unbinding both promote oscillations across a wider region 
of binding affinities 𝜔̄on. This highlights the importance of unbinding of the force genera-
tors for the emergence of oscillations. We have identified that tension-sensitivity of unbind-
ing is crucial for spindle pole oscillations to occur, with 𝛾 > 1 being necessary for any re-
gion of parameter space to host oscillations. Shee et al. (2021) describe a similar system of 
force generator loading/unloading upon a microtubule, where the microtubule is attached 
to a harmonic trap at one end and acted upon by the force generators at the other [152]. 
Their analysis uses mean field theory to describe the dynamics of the single population of 
force generators as a system of three ODEs in the position of the microtubule position, the 
number of bound force generators, and the extension of the bound force generators. They 
then connect this mean field model to a Fokker-Planck description similar to that presented 
here and in [80]. Interestingly, their analysis also highlights the requirement of a tension-
sensitivity parameter in the unbinding rate of the force generators [152]. This result is inter-
esting as the harmonic trap acts as a restoring force which is sufficient to create oscillatory 
dynamics of the microtubule by interaction with one population of force generators [152]. 
We therefore wonder whether the two opposing populations of force generators are required 
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for oscillations, or whether the presence of the microtubule restoring force combined with 
one-sided pulling of the spindle pole would be sufficient to create oscillations of the pole, 
though no longer centred around ̄𝑧 = 0, and we suggest this as a future direction for further 
analysis of the model.

Reducing the relative restoring force also resulted in an increase in the area of oscillatory 
space in (𝑁, 𝜔̄on) (Figure 5.1A) This result matches what was suggested by the re-emergence 
of oscillations when 𝐾 was reduced in the PDE simulations (Figure 4.13C). The period of 
oscillation also increases as the restoring force decreases (Figure 5.2B), thus the magnitude 
of the restoring force is important for promoting oscillations. Interestingly, in the limit of 
small 𝐾̂ the ODEs may reduced to a single equation (5.74) capable of estimating the limit 
cycle of the relaxation oscillations (Figure 5.5) as well as the amplitude of oscillation (5.74) 
(Figure 5.6).

The ODE system has also revealed promoters of non-linearity in the resulting oscillations. 
The reduction of the restoring force relative to the pulling forces by either decreasing 𝐾 or 
increasing 𝑁 results in the emergence of relaxation oscillations (Figure 5.3D, E). Alterna-
tively, increasing the binding rate 𝜔̄on makes the oscillations more sinusoidal. Thus the bal-
ances of pulling and pushing forces, as well as the affinity for force generator-microtubule 
binding, can affect the shape of the oscillations.

The simplicity of the ODE system is key for expansion of this model into 2D. The complex-
ity of the higher order models and their associated cost of computation restricts their usage 
to 1D. Further, reducing the higher order models has allowed us to identify the key param-
eters for promoting dynamic movements of the spindle pole. Thus the relative importance 
of the parameters for producing dynamic movements in 2D will be more easily determined. 
Unfortunately, due to time-constraints, results for the 2D model were not obtained in time 
to present here. However, an initial expansion to 2D is presented in Appendix A. In the next 
section we will discuss more directly the biological relevance of the mathematical models 
explored and how they can shed light on the modes of spindle movement we identified in 
Chapter 3. 
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Chapter 6

Conclusions and future directions: 
integrating experimental observations 
and mathematical modelling

Cell division is a crucial process to get right for a developing organism, driving tissue growth 
and determining the fate of the resulting daughter cells [31]. Cell divisions within tissues 
both affect, and are affected by, the tissue environment [219]–[221], thus reading and re-
sponding to the external environment via regulation of cell division is an important process 
for maintaining tissue homeostasis [8]–[11].

Cells in stretched epithelial tissue have been shown to increase their division rate and also 
reorient their divisions along the axis of stretch [15], though whether this division orienta-
tion response to stretch occurs due to cell shape-based mechanisms or direct force sensing 
is unclear as cell shape and force are highly coupled [15], [21], [40], [222]. The positioning 
of the mitotic spindle to determine division orientation has been attributed to interactions 
of the astral microtubules with the cell cortex, either by pushing or by pulling from corti-
cal proteins [22], [23]. A key protein involved in spindle positioning is NuMA, a cortical 
protein which anchors dynein-dynactin to impart pulling forces on the spindle through the 
astral microtubules [64]. NuMA has also been implicated in stretch-induced spindle align-
ment [27], [103]. Specifically, the Woolner lab has recently shown that NuMA is required 
for tension-sensitive orientation of the spindle along the cell long axis, as defined by the lo-
cations of the TCVs, when cells experience an anisotropic stretch [27]. However the mech-
anisms by which the spindle is positioned differently in response to response to stretch re-
main unclear. Unpublished work from the Woolner lab suggests that NuMA directly senses 
force rather than cell shape [27], but how does the applied force affect NuMA to create a 
spindle response?

Our aim here was to shed light on the spindle pole positioning factors which may be af-
fected by the application of an external stretch, by analysing the translational and rotational 
dynamics of the spindle pole at a high temporal resolution in stretched and unstretched tis-
sues. We then analysed spindle dynamics in stretched tissues subject to a partial knock-
down of NuMA, to assess how the spindle positioning mechanisms were perturbed. By 
using mathematical modelling to determine the factors which affect spindle dynamics, we 
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aimed to advance our understanding of how tension may affect NuMA-mediated spindle 
positioning.

Mathematically, we have built a direct link between stochastic simulations, a Fokker-Planck 
model, a system of nonlinear ODEs and an algebraic model of relaxation oscillations. The 
stochastic simulations qualitatively mimic the noisy time series data of spindle oscillations 
(Figure 4.5 compared with Figures 3.9 and 3.7). The amplitude and period of the stochastic 
simulation oscillations are well matched with measurements of spindle pole displacements 
and periods of the posterior pole of the C. elegans first division. As parameters pertinent to 
the Xenopus laevis system were difficult to find, we deferred to the parameters specific to 
C. elegans with the hope of exploring the parameter space to determine where may be more 
appropriate for Xenopus laevis. The simpler models reveal important relationships between 
parameters that are very hard to extract from simulations due to their complex formulation 
and also their computational cost, and we believe these relationships between parameters 
are important for spindle dynamics. Interestingly, the lower-order models presented can 
be used to estimate the upper stability boundary of 𝜔̄on which is a function only of the un-
binding rate and tension-sensitivity, and the value of 𝜔̄†

on was well conserved through the 
Fokker-Planck equations (Figure 4.12 and 𝜔̄†

on = 0.0074, using (5.69)). When restoring 
forces are reduced, the algebraic equation (5.74) can be used to describe the slow phases 
of the limit cycle of the oscillations, as well as the amplitude of oscillation. For small 𝐾̂, 
the amplitude of oscillation determined by (5.76) is well matched with the amplitude of os-
cillations produced by the Fokker-Planck equations (Figure 5.6Bii) but is less appropriate 
when 𝐾̂ is larger, as is indicated by the poorer matching between the amplitude estimated 
by (5.76) and the oscillatory amplitude for 𝐾̂ = 0.4 (Figure 5.6Bi). Across the stochas-
tic simulations, Fokker-Planck equations and the ODE system, we saw a reduction in os-
cillatory dynamics for increasing restoring forces and decreasing numbers of force gen-
erators, highlighting the importance of the balance of pulling and pushing on the spindle 
pole to create a dynamic response. How this would translate to a 2D model is an interesting 
thought, as oscillations in the spindle mitotic angle would require both spindle poles to os-
cillate in anti-phase to one another. We hope that the 2D model in development (Appendix 
A) will provide further insight into the dynamic spindle system.

Mathematical analysis has revealed that a spindle pole being acted upon by pulling forces 
from opposing populations of force generators and a restoring force from microtubules can 
oscillate when perturbed from a stable centre position [80]. Mitotic spindles are not formed 
precisely at the geometric centre of the cell and undergo net centring over the course of 
metaphase (Figure 3.2C). Thus the origin of this perturbation from the centre is biologi-
cally relevant, motivating the use of a theoretical model to explain their origin. Oscillations 
are predicted to occur in the spindle pole position in a specific region of parameter space, 
where the position of the stability boundary depends upon the factors which modulate the 
sizes of the restoring forces and the pulling forces (Figure 5.1). It is a requirement for os-
cillations that the unbinding rate of cortical force generators is sufficiently tension sensi-
tive, i.e. 𝛾 > 1 (by (5.69)). This requirement may be met biologically given that dynein 
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forms a slip bond with microtubules [61], however the directional slip bond behaviour has 
been omitted from this model and may provide more interesting dynamics [62]. This di-
rectional slip bond behaviour could be incorporated into the stochastic descriptions of the 
model very simply, by imposing conditions on unbinding, such that if the force acting on 
dynein is greatest toward the spindle pole (for example, if the spindle pole is moving toward 
dynein faster than dynein’s walking velocity), then 𝜔̄0 would be a smaller value. However, 
more work would need to be done to determine how this would carry through to the ODE 
description of the model.

The region of (𝑁, 𝜔̄on) parameter space which gives rise to oscillations is also expanded 
when restoring forces are reduced relative to pulling forces (Figure 5.1A). Restoring forces 
may be altered by differences in microtubule stiffness parameter 𝑘MT which defines the rela-
tive stiffness of the microtubule due to bending effects [135], [137] and also due to the pro-
cess of dynamic instability, where highly dynamic microtubules contact and push against 
the cell cortex as they grow and shrink [137]. The most interesting augmentation of 𝑘MT is 
its reduction when microtubules are assumed to hinge at their nucleation point rather than 
being held clamped at its end [135], [137]. Crucially, NuMA’s role as a structural protein, 
focussing microtubules at the spindle poles [24], is suggested to act as a clamp for micro-
tubules, preventing them from hinging and therefore increasing their flexural rigidity and 
subsequently their stiffness [135]. We suggest that a partial knockdown of NuMA may af-
fect this clamping mechanism and lead to a reduced relative microtubule stiffness due to 
potential hinging of the microtubules at the spindle poles. When Tarannum (2022) sub-
jected Xenopus laevis cells to a more complete morpholino-targetted knockdown of NuMA, 
the integrity of the mitotic spindle was perturbed and multipolar spindles formed, which 
supports this suggestion [27], along with similar defects in spindle pole structure upon over-
expression of LGN which prevents NuMA from functioning at the spindle pole [113]. Re-
duction of restoring parameters 𝐾 in the ODE model by two orders of magnitude resulted 
in oscillations with periods spanning approximately 120-300 s (using 5.60)), which is simi-
lar to the period of oscillation seen in NuMA KD tissues (Figure 3.10B), while for larger 𝐾
the ODE model predicts a range of periods spanning 2-90 s, which is closer in magnitude 
to those measured in stretched and unstretched tissues (Figure 3.10B). Interestingly, reduc-
tion of restoring forces relative to pulling forces was shown to result in the emergence of 
relaxation oscillations (Figures 4.11 and 5.3C, D), though increasing binding was shown to 
return the oscillations to a more sinusoidal nature (Figure 5.4). Thus, relaxation oscillations 
may be an indicator of large pulling forces relative to restoring forces, though the degree of 
non-linearity of the oscillation may be less extreme if the binding rates of dynein are high.

The relevance of the emergence of relaxation oscillations is unclear. Relaxation oscillations 
have been shown to arise from interactions between coupled oscillators. It has been shown 
elsewhere that oscillations in the activation of cell cycle protein Cdk1 by early embryonic 
calcium waves have a relaxation structure due to the positive and negative feedback loops 
existing within the activation circuit [223]. Relaxation oscillations have also been used to 
describe the activation of the heartbeat [224]. Indeed, relaxation oscillations in biology 
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occur naturally under coupling of oscillators. Notably, relaxation oscillators have ampli-
tudes which are independent of start conditions, and are characterised by segments of slow 
change interrupted by segments of fast change [225]. We have shown that the fast and slow 
phases encountered in the 1D model are due to the rapid unbinding rate 𝜔̄0𝑒𝛾 ̄𝑦 when bound 
force generators are extended significantly. That is, in each population we have two coupled 
oscillators: the number of bound force generators (represented by the probability density 
function of the bound force generators ̄𝑃 ±

b ) oscillates in anti-phase with the average exten-
sion of the bound force generators ̄𝑦±

c due to the extension-sensitive off rate (𝛾 > 1) and the 
constant binding rate 𝜔̄on which allows the numbers of bound force generators to recover. 
These oscillating populations in each cortex are then coupled to one another through their 
connection to the spindle pole. The detailed response of the spindle pole (little response for 
high restoring forces, large responses for low restoring forces) limits the coupling between 
these populations. Thus highly coupled oscillating populations, in the form of a highly re-
sponsive spindle pole position, leads to the emergence of relaxation oscillations. While our 
experimental analysis did not reveal obvious relaxation oscillations by visual analysis of the 
oscillatory tracks (e.g. Figures 3.7, 3.9 and 3.11), Larson and Bement (2017) identified that 
spindles in the epithelium of the Xenopus laevis embryo move away from the cell cortex 
quicker than they approach [77]. This non-linearity in the velocity of the spindle suggests 
that non-sinusoidal oscillations of the spindle may be revealed upon further probing of our 
collected data.

Unfortunately, 1D models of spindle orientation can only recapitulate the dynamics we see 
experimentally to a certain degree. We plan to develop the 2D framework we have estab-
lished in Appendix A and observe how the 1D behaviour might translate in two dimensions. 
Experimentally, oscillations in the spindle angle require spindle poles to oscillate in anti-
phase to one another to create measurable changes in the angle, and the additional complex-
ity of torque on the spindle array is likely to affect force transfer through the structure and 
subsequent spindle positioning. Our estimation of the amplitude of the oscillations of the 
spindle pole (5.76) may be used to determine the relative order of magnitude of the parame-
ters in the cells of the Xenopus laevis, by matching with cell length scales and/or analysis of 
the movements of individual poles. As this work was concerned with whole-spindle move-
ments, analysis of the individual spindle poles was not undertaken.

The 1D model shows that factors which result in an increase in oscillation period also show 
an increase in oscillation amplitude, though within cells the amplitude will be limited by 
the size of the cell. This limit is not accounted for in the 1D model. How geometric con-
straints may influence the spindle behaviour will be paramount to determining which as-
pects of spindle movement are a result of cell shape alone and which are influenced by the 
application of an external force. Thus the data we collected on the translational movements 
of the spindle pole are open to interpretation. In particular, our analysis of the directions 
of major and minor orientations of the track traced by the centre of mitotic spindle yielded 
surprising results which we could not explain by analysis of the data alone (Figure 3.6). In 
particular, the tracks followed by the mitotic spindle were highly elongated relative to the 
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cell shapes (Figure 3.5) and showed a bias which was comparable to the division orien-
tation but not cell shape in unstretched and stretched tissues (Figures 3.4E, G and Figures 
3.6A, B).

Interestingly, the track orientations showed no significant bias toward or away from the cell 
shape orientation in either elongated or circular cells (Figure 3.4E, G), thus a force-sensing 
mechanism which is variable along the cell shape may contribute, though we have no clear 
proposals given the current data for what this may be. Due to the complex relationship be-
tween pulling and pushing forces, we propose that the changing spindle angle creates com-
plicated dynamic translational movements, and we believe that a 2D model will contribute 
to our understanding. We believe that analysis of the spindle movements with respect to the 
spindle orientation through metaphase, such as the pole-pole kymographs employed in [18], 
will also help to shed light on this mechanism, particularly if we analyse the movements 
both along and perpendicular to the pole-pole axis.

What factors could lead to the difference in numbers of oscillating spindles? According 
to the 1D model, oscillations of the 1D spindle pole are promoted by decreasing restor-
ing forces, increasing tension sensitivity of unbinding, increasing the base unbinding rate, 
increasing the number of force generators, and changing the binding affinity within two 
thresholds. As we saw no difference in the period of oscillation between stretched and un-
stretched cells, we assume that stretching a tissue does not affect the spindle restoring force, 
as changes in this have been shown to alter the period of oscillation (in (5.60)). We also 
note that the number of oscillating spindles increased between the first and second half of 
metaphase (Figure 3.13A), thus a change within the cell environment also promotes oscil-
lations (Figure 3.13B,C). Unpublished work in the Woolner lab has shown that NuMA lo-
calises to the cell cortex along the pole-pole axis, and this localisation increases as metaphase 
proceeds [27]. This could result in more oscillations as metaphase proceeds because the 
number of force generators 𝑁 is increased above the stability threshold (Figure 5.1A). If 
the number of force generators is limited within the cell and remains close to the stabil-
ity threshold we would expect that, if there are sufficient force generators within the cell 
to create an oscillatory response, then the resulting period is unlikely to change once re-
cruitment to the cell cortex is complete. If a cell has a large number of force generators, we 
would expect to see the onset of oscillations earlier in metaphase, and the period of oscilla-
tion may increase as metaphase proceeds (Figures 4.10 and 5.2A). A trend of an increased 
period in the second half of metaphase was observed in the unstretched tissues, though the 
increase was not statistically significant (Figure 3.13B). We suggest that this may be too 
subtle a difference to be significant without a larger dataset. Interestingly, in other work 
in the Woolner lab we have seen that the dynamic localisation of NuMA to the cortex was 
slightly more rapid in stretched cells, with recruitment to the polar cortex happening earlier 
in metaphase than in unstretched tissues [27]. This is interesting for two reasons. The first 
is that we would therefore expect a smaller difference between the periods of oscillation be-
tween the first and second half of metaphase as 𝑁 saturates earlier in mitosis in stretched 
cells. We observed this as the trend of the increased period was eradicated in stretched tis-
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sues (Figures 3.13C). The second is that we would therefore expect more oscillatory spin-
dles in the stretched tissue vs the unstretched tissue, and for the number of oscillating spin-
dles between the two halves of metaphase to remain relatively unchanged. Interestingly, 
we saw a reduction in the number of oscillating spindles in the stretched tissue when com-
pared with the unstretched tissue. Further, the number of oscillating spindles in the second 
half of metaphase was elevated, though not significantly. We therefore suggest that an addi-
tional mechanism may exist which can push the system into an oscillatory region of param-
eter space, and that this mechanism is tension-sensitive, such that increased cell tension re-
duces the size of the oscillatory region and makes it more difficult to access. Pecreaux et al.
(2006) propose that during the oscillation of the posterior pole during the asymmetric di-
vision of the single cell C. elegans embryo, the processivity of dynein increases [78]. That 
is, the binding rate of dynein to impart a pulling force increases as metaphase proceeds, an 
effect they believe to be mediated through LIN-5 [78] which has been speculated as being 
a homolog to NuMA due to its large coiled-coil and binding to GPR-1,2 (LGN) [67], [81]. 
While we have considered the number of binding force generators to change as NuMA lo-
calises differentially to the cortex in stretch conditions, we have not considered that the 
stretch itself may be altering the ability of dynein to bind to NuMA. Thus the binding rate 
parameter 𝜔̄on could be used to describe dynein’s binding to NuMA as well as the binding 
rate to microtubules, and stretch could then have an impact on the binding rate 𝜔̄on.

NuMA’s dynein binding domain overlaps with the coiled-coil region [65]. It has been shown 
mathematically that it is possible for binding to cause amplified changes in the structure of 
coiled-coils [122], indeed, the binding of ATP to dynein produces sliding of the helices in 
one of dynein’s coiled-coils which facilitates its walking motion [226], [227] and changes 
its affinity for microtubule binding [228]. In a similar mechanism, we suggest that an ex-
ternally applied tension could be translated to NuMA via the 4.1 binding domain [103] to 
cause a conformational change in the structure of NuMA’s coiled-coil, which would affect 
the binding affinity to dynein. Deletion of the 4.1 binding domain of NuMA has shown to 
result in spindle positioning defects [103] which suppoorts this suggestion. Interestingly, a 
recent study into spindle rotation in response to tension showed that while the spindle re-
oriented with respect to tension, the localisation of NuMA did not reorient [83]. Tension 
at the cortex was optogenetically enhanced by localised increase in RhoA activity leading 
to myosin contractility. Spindles rotated away from sites of contractility, though NuMA’s 
localisation was unchanged following the activation of RhoA [83]. This supports our sug-
gestion that tension increases NuMA’s ability to bind with dynein. Increased sites of corti-
cal contractility will result in tension away from the contraction, therefore NuMA which is 
localised further away from the site of contraction will be able to bind with dynein and cre-
ate a net pulling force on the mitotic spindle to rotate it away from the contraction site. If 
NuMA’s ability to bind with dynein is tension-dependent in this way, then NuMA does not 
need to relocalise in order to create this directed pulling response, as NuMA at the site of 
contraction will be less likely to bind with dynein to create a spindle-movement response.

This work has identified a number of interesting avenues to further explore. The results 
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of the mathematical model have highlighted a potential second mechanism for NuMA in 
spindle positioning which is less well defined, where its localisation at the spindle poles 
may not only be important for maintaining spindle structure, as has been previously shown, 
but also for correct spindle positioning by providing a scaffold for efficient transfer of mi-
crotubule pushing forces. We suggest that taking an alternative route of NuMA depletion 
through the application of chemical inhibitor MLN8237 would allow us to further explore 
this effect (as in [83]). Application of MLN8237 acts to inhibit Aurora-A-mediated phos-
phorylation of NuMA at the spindle poles, meaning that NuMA would not be sequestered 
from the spindle poles to the cell cortex [118]. Then we could assess the spindle dynamics 
due to a loss of cortical NuMA without depleting NuMA at the spindle pole. Alternatively, 
expressing a form of NuMA lacking its LGN binding domain has also been shown to lose 
its cortical localisation and remain at the spindle poles [103]. We would expect in either of 
these cases to see a cessation of spindle pole oscillations and movements as the number of 
cortical force generators should remain below the threshold required to induce oscillations, 
as the threshold will not be perturbed by a reduction of restoring forces.

Another avenue to explore would be the difference in the number of oscillators in stretched 
and unstretched cells. We have suggested the potential for tension-mediated conformational 
changes to NuMA’s coiled-coil region resulting in a perturbation of its binding affinity with 
dynein/dynactin, though whether or not this change can result in the increase of the num-
ber of oscillators we see as metaphase proceeds is to be determined. We propose that trun-
cations to NuMA’s coiled-coil domain may be used to determine whether the coiled-coil 
region is important for tension-sensitive spindle positioning. We also propose that the de-
velopment of the 2D model will help us to determine to what extent the movements of the 
mitotic spindle can be explained by cell shape alone and thus point to dynamics which may 
be a result of tension-sensitive effects.

Overall this study has revealed potential mechanisms for spindle positioning with respect to 
cell shape and cell tension. We propose that NuMA’s role in spindle positioning is not re-
stricted to its cortical localisation to pull on the spindle, but also affects the restoring forces 
provided by microtubules to centre the spindle within the cell due to its localisation at the 
spindle poles. We have demonstrated that oscillations of the mitotic spindle occur in both 
stretched and unstretched tissues with a similar period, though the threshold to enter an os-
cillatory regime is less easily crossed for stretched tissues, suggesting a tension-sensitive 
mechanism may be responsible. We propose that NuMA’s large coiled-coil domain may un-
dergo structural changes under tension which facilitate the binding of dynein and pushes 
tissues under tension closer to the upper threshold between stable and oscillatory solutions, 
reducing their chances of oscillating.
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Appendix A

Expansion to two dimensions

We present our expansion of the model described in Chapters 4 and 5 into 2D by defining 
the 2D mitotic spindle and deriving equations of motion for the spindle array due to forces 
acting on the spindle poles.

The mitotic spindle in the cell is comprised of two spindle poles, connected by interac-
tions between interpolar microtubules and also by the kinetochore microtubules attach-
ments to the chromosomes which form the metaphase plate (Figure 1.3). Here we expand 
the 1D model of an individual spindle pole described and explored in Chapters 4 and 5 to 
2D. First, the individual spindle poles will be considered in 2D. We expand the two isolated 
populations of force generators above and below the pole into one distributed population 
of force generators which occupies the entire perimeter of the cell. Microtubules extend-
ing fan-like from the spindle pole with an angular width of Θ (Figure A.1A) will interact 
with cortical force generators at the cell perimeter, as well as provide a restoring force. This 
set-up will apply to both spindle poles which will result in a net force on the central spindle 
array, whose centre Rs ( ̄𝑡) is positioned half way between the positions of the two spindle 
poles, Rp1 ( ̄𝑡) and Rp2 ( ̄𝑡) (Figure A.1A). We henceforth refer to this pole-pole array as “the 
spindle”, whose orientation is defined by 

n = [cos 𝜙
sin 𝜙] , (A.1)

which lies parallel to the spindle at an angle 𝜙 ( ̄𝑡) to the horizontal (Figure A.1A). Any po-
sition along the spindle is thus given for fixed 𝑥 as 

x ( ̄𝑡) = Rs ( ̄𝑡) + 𝑥n ( ̄𝑡) , (A.2)

where 𝑥 ∈ [−𝑙/2, 𝑙/2] for a spindle of length 𝑙.
By the chain rule, dn (𝜙 ( ̄𝑡)) /d ̄𝑡 = dn

d𝜙 d𝜙
d ̄𝑡 = Z × n𝜙 ̄𝑡, then any point on the spindle moves 

with velocity 
x ̄̄𝑡 = Rs, ̄̄𝑡 + 𝑥𝜙 ̄̄𝑡 (Z × n) , (A.3)

where Z = [0 0 1] is the vector pointing out of the 2D plane. It is noted here that vector 
Z is the only vector with a component out of the 2D plane and is therefore the only vector 
which is written with 𝑥, 𝑦, 𝑧 components in this work. By considering the tensor product 
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Figure A.1. 2D spindle schematic. A) The spindle array, showing the microtubule angular width Θ, the 
spindle orientation vector n (𝜙), the spindle centre Rs and the spindle length 𝑙. B) The geometry of 
microtubule-cortex interactions from spindle pole p2. The cell edge is parametrised by arclength 𝑠 and 
described by function 𝑟 (𝑠). The microtubule at an angle 𝜃 from the horizontal has length 𝜆p2 and orientation 
vector m. The angular width of the microtubule fan contacts the cell periphery at 𝑠p2,− < 𝑠 < 𝑠p2,+, defining 
the interaction zone.

nn ≡ n ⊗ n, we may write the drag on the spindle in terms of the tensor 

D = 𝑏∥nn + 𝑏⟂ (I − nn) , (A.4)

the summation of drag parallel (𝑏∥nn) and perpendicular (𝑏⟂ (I − nn)) to the spindle, where 
I is the identity matrix. This can be used to determine the force balance on the spindle, ℱ = ∫𝑙/2

−𝑙/2 Fd𝑥 = ∫𝑙/2
−𝑙/2 D ⋅ x ̄𝑡 d𝑥, (A.5)

where F is the net force per unit length exerted by microtubules and ℱ is the total force. 
The torque then follows as 

𝜏 = Z ⋅ (∫𝑙/2
−𝑙/2 𝑥nd𝑥 × F) = Z ⋅ (∫𝑙/2

−𝑙/2 𝑥nd𝑥 × (D ⋅ x ̄𝑡)) (A.6)

The force (A.5) can be rewritten as ℱ = ∫𝑙/2
−𝑙/2 D ⋅ x ̄𝑡d𝑥 = ∫𝑙/2

−𝑙/2 D ⋅ (Rs, ̄𝑡 + 𝑥𝜙 ̄𝑡 (Z × n)) d𝑥, (A.7)
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and thus ℱ = ∫𝑙/2
−𝑙/2 D ⋅ Rs, ̄𝑡d𝑥. (A.8)

Then it follows by integration that the equation of motion of the spindle pole is given ℱ = 𝑙D ⋅ Rs, ̄𝑡. (A.9)

If we consider torque in a similar way, 

𝜏 = Z ⋅ ∫ 𝑙2− 𝑙2 𝑥n × D ⋅ x ̄𝑡d𝑥 = Z ⋅ ∫ 𝑙2− 𝑙2 𝑥n × D ⋅ (Rs,𝑡 + 𝑥𝜙 ̄𝑡 (Z × n)) d𝑥, (A.10)

then 𝜏 = Z ⋅ ∫𝑙/2
−𝑙/2 𝑥n × (D ⋅ Rs, ̄𝑡) d𝑥 + Z ⋅ ∫𝑙/2

−𝑙/2 𝑥2𝜙 ̄𝑡n × (D ⋅ (Z × n)) d𝑥. (A.11)

The first integral here vanishes, while the Z × n term in the second integral pulls out the 
perpendicular component of the total drag. Then, 𝜏 = Z ⋅ ∫𝑙/2

−𝑙/2 𝑏⟂𝑥2𝜙 ̄𝑡n × (Z × n) d𝑥, (A.12)

and n × (Z × n) = Z which results in 

𝜏 = ∫𝑙/2
−𝑙/2 𝑏⟂𝑥2𝜙 ̄𝑡d𝑥. (A.13)

By integration this becomes 𝜏 = 𝜇D𝜙 ̄𝑡 (A.14)

with 𝜇D = 𝑙312𝑏⟂ the rotational drag. (Here, 𝜇D is separate from the 𝜇 defined in the 1D 
model as a relaxation rate.)

We will now define the forces which generate motion in (A.5) and (A.6).

A.1 Calculating the forcing terms in 2D

The forcing terms F in (A.5) arise from force generators at the cortex pulling on micro-
tubules, as well as restoring forces provided by the microtubules themselves. These forces 
affect the spindle positioning through their connection to the two spindle poles which lie at 
positions Rp1 ( ̄𝑡) = Rs − 12 𝑙n and Rp2 ( ̄𝑡) = Rs + 12 𝑙n respectively. We consider the force as 
being produced from the combination of pulling and pushing on each spindle pole individu-
ally (Fp1 and Fp2). Then we may write 

F = Fp1𝛿 (𝑥 + 𝑙2) + Fp2𝛿 (𝑥 − 𝑙2) (A.15)
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so ℱ = Fp1 + Fp2, (A.16)

and 𝜏 = 𝜏p1 + 𝜏p2 = 𝑙2Z. (n × Fp2 − n × Fp1) . (A.17)

If we parameterise the cell perimeter by arclength 𝑠 such that the perimeter is described by 
r(𝑠) (Figure A.1B), then we may discretise the perimeter into segments of fixed arclength 
and only include segments 𝑠p𝑖,− < 𝑠 < 𝑠p𝑖,+ for 𝑖 = 1, 2, which lie within the angular width Θ of the microtubule fan. Then a microtubule of length 𝜆p2 extending from pole Rp2 will 
contact the perimeter at point r (𝑠) for 𝜆p2m = r (𝑠) − Rp2, (A.18)

where m = m (𝑡; 𝜃) is a unit vector along the microtubule (Figure A.1B. The spindle pole 
velocity, is related to the changing microtubule length and orientation via 

Rp2, ̄𝑡 = (r (𝑠) − 𝜆p2m) ̄𝑡 = − (𝜆p2m) ̄𝑡 . (A.19)

Vector m may be written 

m = [cos 𝜃
sin 𝜃] , (A.20)

therefore 
m ̄𝑡 = Z × m𝜃 ̄𝑡, (A.21)

and thus m.m ̄𝑡 = 0. Then expanding (A.19) to 

Rp2, ̄𝑡 = −𝜆p2m ̄𝑡 − 𝜆p2, ̄𝑡m, (A.22)

it follows that 
Rp2, ̄𝑡.m = 𝜆p2, ̄𝑡 (A.23)

is the pole velocity in the direction m. Thus the velocity of the bound force generators along 
the microtubule may be written as in (4.28) like ̄𝑣p2,b = − (1 − ̄𝑦 + 𝜆p2, ̄𝑡) . (A.24)

This velocity term may be used in the evolution equation for the bound probability density 
function, which we take to be of the same form as in Section 4.3, but now as a function of 𝑠 rather cortex position (upper or lower). That is, for ̄𝑃p𝑖,u and ̄𝑃p𝑖,b for 𝑖 = 1, 2 in (4.25b) 
and (4.25a) become ̄𝑃p𝑖,u, ̄𝑡 = −𝜔̄on

̄𝑃p𝑖,u + 𝜔̄0𝑒𝛾 ̄𝑦 ̄𝑃p𝑖,b − Γ (− ̄𝑦 ̄𝑃p𝑖,u − 𝛽 ̄𝑃p𝑖,u, ̄𝑦) ̄𝑦 (A.25a)̄𝑃p𝑖,b, ̄𝑡 = 𝜔̄on
̄𝑃p𝑖,u − 𝜔̄0𝑒𝛾 ̄𝑦 ̄𝑃p𝑖,b − ( ̄𝑣p𝑖,b ̄𝑃p𝑖,b − 𝛼 ̄𝑃p𝑖,b, ̄𝑦) ̄𝑦 (A.25b)
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for ̄𝑃p𝑖,b(u) ( ̄𝑡, ̄𝑦; 𝑠) at fixed 𝑠 Then the net pulling force on pole p2 may be calculated by 

FPull
p2 = 𝑁𝜌 ∫𝑠p2,+𝑠p2,− d𝑠 ∫ ̄𝑦max0 d ̄𝑦 ̄𝑃p2,b ̄𝑦m, (A.26)

where 𝑁𝜌 is the density of available cortical force generators distributed across the cell 
perimeter. The form of the force in (A.26) mirrors the force in the 1D PDE model (4.31), 
altered to describe the 2D force acting on the spindle pole from the array of microtubules 
spanning an angular width Θ.

The restoring force provided by the microtubules is described as 

FR
p2 = 𝐾 ∫𝑠p2,+𝑠p2,− d𝑠 (𝜆p2 − 𝐿) m, (A.27)

provided 𝜆p2(𝜃) < 𝐿. Then the total force on pole p2 is given 

Fp2 = FPull
p2 + F𝑅

p2. (A.28)

We note that similarly 
Fp1 = FPull

p1 + F𝑅
p1, (A.29)

with FPull
p1 and F𝑅

p1 are as in (A.26) and (A.27) except with 𝜆p1 measured relative to the pole 
p1. That is, 

FPull
p1 = 𝑁𝜌∫𝑠p1,+𝑠p1,−d𝑠 ∫ ̄𝑦max0 d ̄𝑦 ̄𝑃p1,b ̄𝑦m, (A.30)

where the integral limits have changed in order to integrate over the microtubule fan ema-
nating from pole p1. Similarly, 

FR
p1 = 𝐾 ∫𝑠p1,+𝑠p1,− d𝜃 (𝜆p1 − 𝐿) m. (A.31)

Thus, we have that 

𝑙D ⋅ Rs, ̄𝑡 = 𝐾 (∫𝑠p1,+𝑠p1,− d𝑠 (𝜆p1 − 𝐿) m + ∫𝑠p2,+𝑠p2,− d𝑠 (𝜆p2 − 𝐿) m)
+ 𝑁𝜌 (∫𝑠p1,+𝑠p1,−d𝑠 ∫ ̄𝑦max0 d ̄𝑦 ̄𝑃p1,b ̄𝑦m + ∫𝑠p1,+𝑠p2,− d𝑠 ∫ ̄𝑦max0 d ̄𝑦 ̄𝑃p2,b ̄𝑦m) . (A.32)

By (A.14) and (A.17), the angular equation of motion is given 

𝜇D𝜙 ̄𝑡 = 𝑙Z⋅ (−𝐾 (∫𝑠p1,+𝑠p1,− d𝑠 (𝜆p1 − 𝐿) n × m − ∫𝑠p2,+𝑠p2,− d𝑠 (𝜆p2 − 𝐿) n × m)
−𝑁𝜌 (∫𝑠p1,+𝑠p1,−d𝑠 ∫ ̄𝑦max0 d ̄𝑦 ̄𝑃p1,b ̄𝑦n × m − ∫𝑠p2,+𝑠p2,− d𝑠 ∫ ̄𝑦max0 d ̄𝑦 ̄𝑃p2,b ̄𝑦n × m) .)

(A.33)
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Now that we have extended our 1D model to 2D, we apply the reduction to ODEs used in 
Chapter 5 to produce an easily solvable system of equations from (A.25), (A.32) and (A.33).

A.2 Reduction of the 2D model to ordinary differential equations

Following the methods used in Chapter 5 we re-scale by writing ̄𝑡 = ̃𝑡/𝜔̄on and Rs =
R̃s/𝜔̄on, 𝜙 = ̃𝜙/𝜔̄on. All re-scaled parameters will now be denoted with tildes. Then we 
rewrite (A.25) as

𝜔̄on
̄𝑃p𝑖,u, ̃𝑡 = −𝜔̄on

̄𝑃p𝑖,u + 𝜔̄0𝑒𝛾 ̄𝑦 ̄𝑃p𝑖,b − Γ (− ̄𝑦 ̄𝑃p𝑖,u − 𝛽 ̄𝑃p𝑖,u, ̄𝑦) ̄𝑦 (A.34a)𝜔̄on
̄𝑃p𝑖,b, ̄𝑡 = 𝜔̄on

̄𝑃p𝑖,u − 𝜔̄0𝑒𝛾 ̄𝑦 ̄𝑃p𝑖,b − ( ̄𝑣p𝑖,b ̄𝑃p𝑖,b − 𝛼 ̄𝑃p𝑖,b, ̄𝑦) ̄𝑦 (A.34b)

at fixed arclength 𝑠. Additionally, the equations of motion (A.32) and (A.33) are rescaled 
as 𝑙D ⋅ R̃s, ̃𝑡 = 𝐾̄𝜔on

(∫𝑠p1,+𝑠p1,− d𝑠 (𝜆̃p1 − 𝐿̃) m + ∫𝑠p2,+𝑠p2,− d𝑠 (𝜆̃p2 − 𝐿̃) m)
+ 𝑁𝜌𝜔̄on

(∫𝑠p1,+𝑠p1,−d𝑠 ∫ ̄𝑦max0 d ̄𝑦 ̄𝑃p1,b ̄𝑦m + ∫𝑠p2,+𝑠p2,− d𝑠 ∫ ̄𝑦max0 d ̄𝑦 ̄𝑃p2,b ̄𝑦m)
(A.35)

and 𝜇D
̃𝜙 ̃𝑡 = ̃𝑙̄𝜔on

Z⋅ (− 𝐾̄𝜔on
(∫𝑠p1,+𝑠p1,− d𝑠 (𝜆̃p1 − 𝐿̃) n × m − ∫𝑠p2,+𝑠p2,− d𝑠 (𝜆̃p2 − 𝐿̃) n × m)

− 𝑁𝜌𝜔̄on
(∫𝑠p1,+𝑠p1,− d𝑠 ∫ ̄𝑦max0 d ̄𝑦 ̄𝑃p1,b ̄𝑦n × m − ∫𝑠p2,+𝑠p2,− d𝑠 ∫ ̄𝑦max0 d ̄𝑦 ̄𝑃p2,b ̄𝑦n × m)) .

(A.36)

We again assume that 𝛼1/2, 𝛽1/2 are small parameters such that ̄𝑃p𝑖,b and ̄𝑃p𝑖,u are strongly 
peaked about ̄𝑦c = 1+𝜆̃ ̃𝑡 and ̄𝑦c = 0 respectively within regions I and III in ̄𝑦 space (Figure 
4.8H)

For 𝜔̄on ∼ 𝜔̄0 ≪ 1, we assume that the expressions for ̄𝑃 ±
b(u) determined in Chapter 5 hold 

similarly for ̄𝑃p𝑖,b(u). That is, we may write ̄𝑃p𝑖,b = ̄𝑃p𝑖,b0 + 𝜔̄on
̄𝑃p𝑖,b1 + ..., with ̄𝑃p𝑖,b0 = 𝐵p𝑖 ( ̃𝑡, 𝑠) 𝑒(− 12𝛼 ( ̄𝑦− ̄𝑦c+𝜔̄on𝜆̃p𝑖, ̃𝑡 ̃𝑡)2) (A.37)

for 𝐵p𝑖 the amplitude of the peak of the bound probability density function at arclength 𝑠
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(subject to small corrections). Similarly, ̄𝑃p𝑖,u = ̄𝑃p𝑖,u0 + 𝜔̄on
̄𝑃p𝑖,u1 + ..., with ̄𝑃p𝑖,u0 = 𝐴p𝑖 ( ̃𝑡, 𝑠) 𝑒− 12𝛽 ̄𝑦2 (A.38)

for 𝐴p𝑖 the amplitude of the peak of the unbound probability density function at arclength 𝑠
(subject to small corrections). It follows by the methodology in Chapter 5 that (1 + 𝜌𝑒𝛾(1+𝜆̃p𝑖, ̃𝑡)) 𝐵̂p𝑖 + 2𝐵̂p𝑖, ̃𝑡 = 1 (A.39)

at fixed arclength 𝑠 for 𝐵̂p𝑖 = √2𝜋𝛼𝐵p𝑖.
Inserting ̄𝑃p𝑖,b = ̄𝑃p𝑖,b0 + 𝜔̄on

̄𝑃p𝑖,b1 + ... into (A.35) requires the evaluation of 

∫ ̄𝑦max0 d ̄𝑦 ̄𝑃p𝑖,b0 ̄𝑦 ≈ ∫∞
0 d ̄𝑦𝐵p𝑖𝑒(− 12𝛼 ( ̄𝑦− ̄𝑦c)2) ̄𝑦 (A.40)

where we assume that ̄𝑦max is sufficiently large that it exceeds the bounds of region III, where ̄𝑃p𝑖,b0 is of significant value, and can thus be taken as ̄𝑦max → ∞. Setting ̄𝑦 = ̄𝑦c + 𝛼1/2 ̂𝑌, 
then ∫∞

0 d ̄𝑦𝐵p𝑖𝑒(− 12𝛼 ( ̄𝑦− ̄𝑦c)2) ̄𝑦 ≈ ∫∞
−∞ d ̂𝑌 𝐵p𝑖𝑒(− 12 ̂𝑌 2)𝛼1/2 ( ̄𝑦c + 𝛼1/2 ̂𝑌 ) , (A.41)

which to leading order becomes ∫∞
−∞ d ̂𝑌 𝐵p𝑖𝑒(− 12 ̂𝑌 2)𝛼1/2 ( ̄𝑦c + 𝛼1/2 ̂𝑌 ) ≈ 𝛼1/2 ̄𝑦c𝐵p𝑖 ∫∞

−∞ d ̂𝑌 𝑒(− 12 ̂𝑌 2) = ̄𝑦c𝐵p𝑖√2𝜋𝛼
(A.42)

with ̄𝑦c = 1 + 𝜆̃p1(p2), ̃𝑡. Then recalling 𝐵̂p𝑖 = √2𝜋𝛼𝐵p𝑖, ̄𝑦c𝐵p𝑖√2𝜋𝛼 = (1 + 𝜆̃p1(p2), ̃𝑡) 𝐵̂p𝑖 (A.43)

and (A.35) becomes 

𝑙D ⋅ ̃Rs, ̃𝑡 = 𝐾̄𝜔on
(∫𝑠p1,+𝑠p1,− d𝑠 (𝜆̃p1 − 𝐿̃) m + ∫𝑠_p2,+

𝑠p2,− d𝑠 (𝜆̃p2 − 𝐿̃) m)
+ 𝑁𝜌𝜔̄on

(∫𝑠p1,+𝑠p1,− d𝑠 (1 + 𝜆̃p1, ̃𝑡) 𝐵̂p1m + ∫𝑠_p2,+
𝑠p2,− d𝑠 (1 + 𝜆̃p2, ̃𝑡) 𝐵̂p2m)

(A.44)

and similarly (A.36) becomes 

𝜇D
̃𝜙 ̃𝑡 = ̃𝑙̄𝜔on

Z⋅ (− 𝐾̄𝜔on
(∫𝑠p1,+𝑠p1,− d𝑠 (𝜆̃p1 − 𝐿̃) n × m − ∫𝑠_p2,+

𝑠p2,− d𝑠 (𝜆̃p2 − 𝐿̃) n × m)
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− 𝑁𝜌𝜔̄on
(∫𝑠p1,+𝑠p1,− d𝑠 (1 + 𝜆̃p1, ̃𝑡) 𝐵̂p1n × m − ∫𝑠_p2,+

𝑠p2,− d𝑠 (1 + 𝜆̃p2, ̃𝑡) 𝐵̂p2n × m)) .
(A.45)

Therefore, solving equations (A.39), (A.44) and (A.45) along with initial conditions ̃𝜙0, ̃Rs0

and 𝐵p1(p2)0 (𝑠) should result in 2D dynamics of the mitotic spindle.
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