
A CATEGORICAL SETTING FOR

TRANSITION SYSTEMS

A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2023

Daniel T. Mroz

School of Engineering,

Department of Computer Science

Contents

Abstract 4

Declaration 5

Copyright 6

Acknowledgements 7

1 Introduction 9

2 Preliminaries 16

2.1 Category theory . 16

2.2 Algebra . 21

3 The simple category of transition systems 29

3.1 The category TS . 35

3.2 Cartesian closed structure . 39

3.3 Homotopic interpretation . 47

3.4 Simulations and the category TSS 52

3.5 Simulations via monads . 54

4 In search of generality 62

4.1 Thinking with coalgebras . 66

4.2 A lax setting . 71

4.3 Interaction via distributive laws 75

4.4 Lax distributive laws . 78

5 Lax distributive laws of type PP → PP 91

5.1 Extending functors to Rel . 93

2

5.2 Two lax distributive laws . 99

5.3 Relators and lax extensions to Rel 102

6 Generalised monoid actions 111

6.1 Classical monoid actions . 112

6.1.1 Semigroup actions . 116

6.2 Monadic actions . 117

6.2.1 Lax morphisms . 119

6.3 Lax and semilax actions . 120

6.4 Actions based over a category . 121

6.5 Higher categorical structure . 127

6.6 Monads on T -Act(−) . 141

7 Distributive laws for lattice monads 147

7.1 Lax laws PfPS → PSPf . 150

7.2 Cartesian closed structure . 155

7.3 Additional residuated structure 160

8 Conclusion 165

8.1 Future Work . 167

Word Count: 33174

3

Abstract

A categorical setting for
transition systems

Daniel T. Mroz
A thesis submitted to The University of Manchester

for the degree of Doctor of Philosophy, 2023

Transition systems of various “transition types” are used to model various
computational phenomena in many aspects of theoretical computer science. A
convenient categorical approach is to model transition systems as coalgebras
for a monad T . Possible transition types include non-determinism, probability,
divergence, or weights in a semiring. There are several interesting notions of
morphisms of transition systems—transition preserving functions, functional
bisimulations, and relation-based like simulations and bisimulations.

This thesis takes the analogy of “simulations as relational morphisms” seriously,
and expresses simulations as Kleisli morphisms for a powerset-like monad on the
category of non-deterministic transition systems (analogous to the relationship
between Rel and Set). This monad is shown to be an instance of a lax distributive
law PP → PP. In a more general setting, we seek to exhibit a correspondence
theorem between lax distributive laws ST → TS and monads on categories of
T -transition systems. The simple category of T -coalgebras turns out to be too
small, so we introduce a notion of T -actions, which simultaneously generalise
T -coalgebras and monoid actions. We frame many well known constructions of
transition systems (including the cartesian closed structure, and a notion of graph
homotopy) in terms of T -actions.

4

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

5

Copyright

i. The author of this thesis (including any appendices and/or schedules to

this thesis) owns certain copyright or related rights in it (the “Copyright”)

and s/he has given The University of Manchester certain rights to use such

Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard

or electronic copy, may be made only in accordance with the Copyright,

Designs and Patents Act 1988 (as amended) and regulations issued under it

or, where appropriate, in accordance with licensing agreements which the

University has from time to time. This page must form part of any such

copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the thesis, for example graphs and tables (“Reproduc-

tions”), which may be described in this thesis, may not be owned by the

author and may be owned by third parties. Such Intellectual Property and

Reproductions cannot and must not be made available for use without the

prior written permission of the owner(s) of the relevant Intellectual Property

and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and commercialisation of this thesis, the Copyright and any Intellectual

Property and/or Reproductions described in it may take place is available

in the University IP Policy (see http://documents.manchester.ac.uk/

DocuInfo.aspx?DocID=24420), in any relevant Thesis restriction declara-

tions deposited in the University Library, The University Library’s regula-

tions (see http://www.library.manchester.ac.uk/about/regulations/)

and in The University’s policy on presentation of Theses

6

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/

Acknowledgements

I would like to thank my supervisor Andrea Schalk for her unceasing support over

the past three years. Thank-you for always being there when I needed something,

and for having an answer to every question. I’m incredibly grateful for the detailed

feedback on my roughest drafts, and for all the good advice. I don’t think I can

imagine a better supervisor.

Thanks to all my other colleagues in the Formal Methods group and to my

co-supervisor Renate Schmidt. A special thank-you to Joe Razavi, Toby Osborne,

Francisco Lobo, and Bence Babrian, for the enlightening seminars, and for listening

to my own half-formed ideas and always having great feedback and suggestions.

Thank-you to all the colleagues I worked with, and my fellow teaching assistants,

and to all the students I enjoyed teaching.

I’m grateful to all the friends I made in Manchester. I would have gone crazy

without you. A fond thank-you to the Grove Bar gang, to all our merry nights,

and to watching the sun go up—Vicky, Maryam, Franz, Ani, Abdullah, Vlad,

David, Alessio, Jacob, and Joe. A particular thank-you to Kai Xu, for feeding

me when I was hungry, and for pouring me a drink when I was thirsty. For the

coffees in the morning, ales in the afternoon sun, and lavish roast dinners, and

always being up for a good time.

A massive thank-you to William Matthews. Nothing will beat the old Oxford

days, but we had some moments. This is to all the pints and curries and double

triples, the scoops and gimmicks, all the lanes we won and the games we lost, to

the memories that we forgot we had, and the best days that are yet to come.

A warm thank-you to the woman I admire most, Lisa Malki. I could not have

done this without you by my side, or without your constant kindness, and your

words of affirmation. Thank you for everything.

And finally, the biggest thank-you to my sister Sofia, and my parents Radoslav

and Ľubica. I would not have made it this far without you, and your support in

7

every way. For being there for me, and always believing in me, ďakujem.

AMDG

8

Chapter 1

Introduction

The goal of this thesis is to formulate a unified, categorical setting for diverse

types of transition systems. There are two over-arching themes of work. The first

is defining a notion of “homotopy” for edge-preserving functions on transition

systems. This generalises the existing theory of ×-homotopy for undirected graphs,

extending it to the case of labelled, directed systems, and then later to systems

valued over an appropriate semiring (for example, distance weighted graphs, or

generalised NFAs). The second theme is understanding simulations (an important

class of morphisms between transition systems) as being the Kleisli morphisms of

a certain monad of simulation Sim.

Context

Categories of transition systems

Transition systems and similar structures appear in many diverse areas of Computer

Science. Some variations include finite automata [49], labelled transition systems

[44, 9], probabilistic systems [34], weighted automata [10, 43], and even directed

and undirected graphs [17].

Category theory, a field of mathematics pioneered by Mac Lane and Eilenberg,

has been used by theoretical computer scientists to provide an abstract and generic

foundation for their objects of study. By recognising that a deterministic finite

automaton and a probabilistic model of a biological system are, in some sense

“the same sort of thing”, the results of one field of study can be translated to the

other, instead of having to be rediscovered all over again.

9

A particular benefit of category theory is that it studies not just objects

(transition systems, in our case), but morphisms as well—that is, ways of moving

from one transition system to another. There are many notions of a morphism of

transition systems. These include transition-preserving functions, but also things

like bounded morphisms [9], functional bisimulations [29], and even relational

notions like simulations and bisimulations [49].

Monads of “transition type”

The approach of this thesis is to model the “computational effects” of transition

systems as monads, following the approach of Moggi [41]. Intuitively, a monad

consists of a sort of computation effect, as well as a way of wrapping a value in

the effect, and a way of composing one effectful computation with another.

For example, the monad of non-deterministic choice is the powerset monad

P. The action of P on a set A is to return the set of all subsets of A, P(A) =
{X : X ⊆ A}. What this means in terms of transition systems, is that we can

model a non-deterministic transition system as a set of states A, and a transition

function α : A → PA. The transition function provides, for every state a ∈ A,
a set of successor states α(a) ⊆ A. It is also necessary to specify what P does

to functions. If f : A→ B is a function on a set of states, then we can lift it to

a function that acts on sets of succesors in the following way. The direct image

function Pf : PA→ PB is defined by Pf(U) = {f(u) : u ∈ U}.
The “wrapping” component of the powerset monad is denoted ηP : A→ PA. It

encodes the trivial transition system where every state can transition only to itself:

ηP(a) = {a}. Composing effects is modelled by a function µP : PPA → PA,
where µPF =

⋃
F . This lets us compute “multi-step transitions functions”.

Imagine that a is a state of A, then α(a) ∈ PA is the set of all succesors of a. In

order to find all the states that are 2 transitions away from a, we can find the

succesors of all the successors of a, that is, compute P(α)(α(a)) ∈ PPA to find

a set of subsets of A. The function µP lets us collect all of these successors of

successors into a single subset of A, µP(P(α)(α(a))).
Formally, the monad (P , ηP , µP) consists of an endofunctor P on Set, and

natural transformations ηP : Id→ P and µP : PP → P .
Some other monads that encode important types of transition effects that

we will be considering are the monad DD of probability distributions, and the

monads PS of semiring valued subsets. We take the coalgebraic approach of [45],

10

and model transition systems for a monad T as the combination of a set of states

A, and a transition function α : A → TA. The morphisms, however, cannot

be morphisms of T -coalgebras. This condition is too strict, and encodes the

functional bisimulations [29]. Rather we will take the lax cohomomorphisms [15]

(hence we work in a Pos-enriched setting).

Functions and simulations

The powerset monad has another role to play. Apart from modelling systems

with non-deterministic choice, it is also used to express simulations in terms of

edge-preserving functions. This is via the Kleisli construction. Functions of the

type f : A→ PB associate to every element a of A a set of elements f(a) of B.

If we are thinking of P as encoding non-determinism, then we can think of f as

being a non-deterministic function A→ B, that given an input in A may return

one of several possible outputs in B, or perhaps none at all.

That is, the function f : A→ PB encodes a relation R ⊆ A× B. Formally,

R is the relation {(a, b) : b ∈ f(a)}. And this construction can be reversed—

we may think of any relation R ⊆ A × B as inducing a function A → PB.
Moreover, composition of relations can be defined in terms of composing the

non-determinism of P. Essentially, we can construct the category of sets and

relations (with relational composition) using nothing more than composition of

functions and the tools provided by the P monad on Set.

Similarly, the simulations will be Kleisli morphisms of a monad on the category

of transition systems with edge-preserving functions as morphisms. This monad

will be induced by a lax distributive law of type PP → PP , representing the fact

that P is both the monad of transition, and the relational monad of simulations.

Distributive laws

In the most general case of a monad (T, ηT , µT) on a category C, and a mere

functor S : C → C, a (functorial) distributive law of type ST → TS consists of a

natural transformation λ : ST → TS that satisfies two conditions, one involving

ηT , and another involving µT . There is a correspondence (first stated by Beck [7])

between such functorial distributive laws λ, and functors S on the Kleisli category

CT that extend S.

This correspondence can be strengthened. When S is not just a functor but

11

a monad (S, ηS, µS), we may formulate two additional ηS and µS conditions for

distributive laws. This leads to a correspondence between monad distributive laws

λ, and monads (S, ηS, µS) on CT .
When we seek to generalise this correspondence to the lax setting, things

become more complicated. Additional coherence conditions (whiskering conditions)

are needed to guarantee a bijective correspondence. And the extended functor

S (even when S has the structure of a monad) will no longer be a monad on CT .
Instead, the ηS and µS conditions mean that ηS and µS are lax cohomomorphisms.

Contributions

The first set of contributions of this thesis are to do with generalising results from

the category of undirected graphs Gph to the directed, labelled setting of the

category of non-deterministic transition systems labelled in Σ, denoted TSΣ. In

particular, we show that there is a cartesian closed structure. While [39] identifies

a weak exponential object, we show that the true exponential A ⇒ B must contain

all the Set-functions A → B and not merely the morphisms. Transitions f
σ−→ g

in the exponential object have a homotopic interpretation that generalises the

×-homotopy theory of undirected graphs [17].

The next set of results investigates the nature of the category of transition

systems with simulations as morphisms (denoted TSSΣ). Our working motto is

that the relation between TSSΣ and TSΣ should be like that of Rel and Set.

And indeed, we present the result of [39] that the category TSSΣ is isomorphic to

the Kleisli category of the Sim monad on TSΣ, and generalise this result to novel

monads RevSim and DSim that encode reverse and double simulations.

The goal of the remainder of the thesis is to generalise these two sets of results

to transition systems of different types T : C → C. It turns out that the Sim

monad is constructed from a lax functorial extension of P to Rel. In particular,

the monad components do not arise as instances of a lax monad extension—they

remain the components of P in Set. We switch our focus to better understanding

lax extensions.

It is known that strict extensions of a monad S to a monad S on CT correspond

to strict monad distributive laws ST → TS. In the lax setting (where the Kleisli

category of T is equipped with a Pos-enrichment), we demonstrate, in detail,

correspondence between lax monad distributive laws and lax extensions of a monad

12

S to a lax functor S on CT . This generalises a result of Tholen [53], which was

limited to the case of T = PQ, for Q a quantale. Importantly, S does not become

a monad on the Kleisli category, nor do we expect it to.

The question now becomes: “on which category is S a monad?” The answer

must be something like “a category of T -coalgebras”, because that is what happens

with the Sim monad on TS. Unfortunately, the category of T -coalgebras is not

large enough. A monad on this category does not provide enough information to

recover a lax monad extension S on CT .
In order to end up with a robust correspondence theorem, between lax monads

extensions S on one hand, and monads on a “T -transition system category” on

the other, we need a horizontal categorification. Rather than mere T -coalgebras,

we show that the appropriate notion is that of a T -action, which is essentially

a (possibly lax) functor ∆ : D → CT , for some Pos-enriched category D. We

construct a “hom-like” functor T -Act(−) : PosCatop → Cat that generalises the

category of T -coalgebras.

We prove a Yoneda-style result. Natural transformations S : T -Act(−) →
T -Act(−) are in correspondence with lax functorial distributive laws ST → TS.

Furthermore, we show that lax monad distributive laws correspond to monads

on this functor (in a 2-categorical sense). The Sim monad is an instance of this

correspondence.

Finally, we turn our attention to another specific case: transition systems that

are valued in a semiring S (that is, for the monad T = PS), and in particular, the

case when S is not just a semiring but a distributive monoidal lattice. We present

pairs of lax laws PfPS → PSPf that generalise the laws PP → PP. Our final

line of investigation is into the categories PS-Actlax(D). We show that when the

lattice S admits all joins, the category of PS transition systems is cartesian closed,

and when S is residuated, the category PS-Actlax(D) is a residuated category.

Both of these constructions provide novel notions of S-valued homotopies for

S-valued transition systems.

Related work

The exponential object in TSΣ is essentially a generalisation of the exponential

object in Gph. The corresponding notion of homotopy has been identified by

Dochtermann [17] as ×-homotopy for undirected graphs . The results concerning

13

“spider moves” in Section 3.3 are a generalisation of results found in [13].

The important result that simulations are Kleisli morphisms of a monad on

TSΣ originates with Malacaria [39]. This seems to have gone mostly unnoticed in

further literature.

A very important strand of work is the theory of relators. First introduced by

Thijs in [52], relators (for a functor T on Set) provide a lifting of relations A↛ B

to relations TA ↛ TB. Many notions of simulation (including cosimulations

and reverse simulations) can be expressed via P-relators. Formally, T -relators

correspond to lax distributive laws TP → PT (although they are not usually

described this way). The approach described in this thesis (arriving at simulations

through Kleisli categories) uses the same machinery as relators, but in a very

different way.

The theory of lax distributive laws has been used to characterise lax extensions

of a monad T on Set to the category Q-Rel, for Q a quantale. Tholen presents

a satisfying correspondence theorem in [53]. One of the lax laws described

in Chapter 7 is identified in [33]. Lax distributive laws have seen significant

application in the field of monoidal topology. The connections between such work

and this thesis are still unclear.

Outline

This thesis begins by recollecting some important mathematical notions that

will be used in the later chapters. Chapter 3 contains a detailed accounting of

the “naive” category of transition systems TSΣ, with concrete descriptions of the

cartesian closed structure.

In Chapter 4 we detail the coalgebraic view of transition systems as coalgebras

α : A→ TA for a transition monad T , and explore some specific examples (the

monad P is the transition type for TS). We include the correspondence theorem

for distributive laws and extensions, and a generalisation to the lax case.

Chapter 5 examines in detail the specific case of lax laws PP → PP , including
the Sim construction. We show that there are two lax laws ℓ+, ℓ− : PP → PP,
both of which can be constructed from the unique lifting of P to Rel [23]. We

compare the Kleisli approach to simulations with the relators of Thijs [52].

In Chapter 6 we present a converse result. The full definition of the T -Act(−)
functor is built up in several steps. We show that monads on this functor

14

correspond to lax distributive laws ST → TS.

Finally, Chapter 7 contains some results for semiring valued transition systems.

We generalise the laws of Chapter 5 to obtain pairs of lax laws PfPS → PSPf ,

when S is a distributive monoidal lattice. Furthermore, we see that when S admits

all joins the category PS-Actlax(D) is cartesian closed. When S is a residuated

lattice, we can construct residuated PS-systems.

15

Chapter 2

Preliminaries

2.1 Category theory

We shall require some basic definitions of category theory. A good reference is

[38]. The reader shall need to be familiar with basic constructions like products,

coproducts, and exponentials, as well as notions like functors, natural transforma-

tions, and adjunctions. We will also dip into 2-category theory, and some notions

of enriched categories [30].

Definition 2.1. The category Set has as objects the collection of all sets, and

as morphisms f : A→ B, functions from A to B. The full subcategory FinSet

consists of just the finite sets.

The category Rel has the same objects as Set. A morphism R : A↛ B is a

relation from A to B, that is, a subset of the product R ⊆ A×B.

The category Pos has as objects all partially ordred sets (A,≤). A morphism

(A,≤)→ (B,≤) is an order-preserving function f : A→ B.

The category Cat has small categories as objects. The morphisms F : C → D
are functors.

We recall the definition of a monad. Let C be a category.

Definition 2.2 (Monad). A monad on C consists of an endofunctor T : C → C,
and natural transformations ηT : IdC → T and µT : T 2 → T such that diagrams

below (depicted concretely) commute for every object A of C.

This definition can be generalised to an arbitrary 2-category K. Accordingly,

let C be an object of K.

16

T 3A T 2A

T 2A TA

TµT
A

µT
TA µT

A

µT
A

(µT)

T 2A TA

TA
µT
A

TηTA

(ηT -right)

TA T 2A

TA

ηTTA

µT
A

(ηT -left)

Figure 2.1: The concrete monad laws

Definition 2.3. A monad on C consists of a 1-cell t : C → C and a pair of 2-cells,

ηt : idC → t and µt : t2 → t, such that the diagrams below commute.

t3 t2

t2 t

tµt

µtt µt

µt

(µt)

t2 t

t
µt

tηt

(ηt-right)

t t2

t

ηtt

µt

(ηt-left)

Figure 2.2: The monad laws in a 2-category

Accordingly, a monad in the sense of Definition 2.2 is a monad in the 2-category

Cat. Most of the monads we shall encounter in this thesis will be concrete monads

in Cat. However, Definition 2.3 is presented here because in Chapter 6 we define

monads of simulation in a 2-category of lax functors.

Example 2.4. The identity functor on any category is a monad (Id, 1, 1).

Example 2.5. The powerset monad on Set is denoted by (P , ηP , µP). The action

of P is to send a set A to the collection of all subsets of A. For a function

f : A→ B, we have

P(f)(U) = {f(u) : u ∈ U}.

The components of the monad are given by

ηP(a) = {a}

µP(F) =
⋃

F.

Example 2.6. The (Maybe, ηMaybe, µMaybe) monad is defined on Set in the fol-

lowing way. The functor Maybe sends a set A to the set A ∪ {⊥}, where ⊥ /∈ A

17

represents “undefined”. For a function f : A→ B, we define Maybe f by

Maybe f(a) = f(a) for a ∈ A

Maybe f(⊥) = ⊥.

The components are defined by the rules

ηMaybe(a) = a

µMaybe(a) = a

µMaybe(⊥) = ⊥.

Example 2.7. Let f : A→ S be a function. The support of f is the set

supp(f) = {a ∈ A : f(a) ̸= 0}.

The (finite) distribution monad on Set is denoted (D, ηD, µD). For any set A,

we take DA to be the set

DA =

{
U : A→ [0, 1] |

∑
a∈A

U(a) = 1 and supp(U) is finite.

}
.

The elements U are probability distributions on A. For any element a ∈ A, the
value U(a) ∈ [0, 1] indicates how likely it is to occur.

The action of D on a function f : A→ B is to map a distribution on A to a

distribution on B in the following way.

Df(U)(b) =
∑

a∈f−1(b)

U(a).

The components of the monad are given by

ηD(a)(a′) =

 1 a = a′

0 a ̸= a′

µD(F)(a) =
∑
U∈F

F (U) · U(a).

The notation U ∈ F in the sum defining µD is shorthand for U ∈ suppF . As

the support is finite, this sum is well-defined.

18

Definition 2.8. Let T be a monad on C. The Kleisli category CT has

• the same collection of objects as C

• for every morphism f : A → TB in C, there is a morphism f : A → B in

CT .

To avoid confusion, we will write type signatures in Kleisli categories with ↛,

so f : A↛ B indicates that f is a morphism A→ TB in C.
Composition of morphisms in CT is indicated with •, and defined in the

following way. If f : A↛ B and g : B ↛ C,

(g • f) = µT
C ◦ Tg ◦ f : A→ TC = A↛ C (2.1)

The identity morphism is given by ηTA : A↛ A. We will always denote the identity

in CT with ηT , never with idA, which will be reserved for the identity morphism

A→ A in C.

Associativity of composition and the unital property of the identity follow

directly from the monad laws. There is an important adjunction between C and

the Kleisli category CT .

Definition 2.9. There is a free functor F T : C → CT with

• F TA = A, and

• for f : A→ B, F Tf = ηTB ◦ f : A↛ B.

There is also a forgetful functor UT : CT → C with

• UTA = TA, and

• for f : A↛ B, UTf = µTB ◦ Tf : TA→ TB.

There is an adjunction F T ⊣ UT , with unit η : Id → UTF T and counit

ε : F TUT ↛ Id defined by

• ηA = ηTA : A→ TA, and

• εA = idTA : TA↛ A.

19

Note that Rel is isomorphic to the Kleisli category of the powerset monad P
on Set. Hence we will write type signatures of relations in the Kleisli style, as

A↛ B.

Sometimes (this is often the case for Rel, and also for categories of generalised

relations) we will prefer to write composition diagrammatically. This will usually

be denoted with #, hence

R # S = S •R.

The category Rel also has the structure of a dagger category (in the sense of

[1]). For every relation R : A ↛ B we have the corresponding opposite relation

R† : B ↛ A given by

(b, a) ∈ R† ⇐⇒ (a, b) ∈ R

Lemma 2.10. Let T be a monad on a category C. A morphism f : A ↛ B is

monic in the Kleisli category CT if and only if the morphism µT
B ◦ Tf : TA→ TB

is monic in C.

Proof. Note that for a morphism g : X → TA (which may be considered a Kleisli

morphism X ↛ A) the following equality holds:

f • g = µT
B ◦ Tf ◦ g

Therefore, if g and h are parallel morphisms X → TA, the equality

f • g = f • h,

can be rewritten as

µ ◦ Tf ◦ g = µ ◦ Tf ◦ h.

The result follows.

Corollary 2.11 (Folklore). The monics in Rel are precisely the relations R :

A↛ B with corresponding direct image map P(A)→ P(B) injective.

Definition 2.12. Let T be an endofunctor on C. A T -coalgebra consists of an

object A of C, and a morphism α : A→ TA.

20

Let α : A→ TA, β : B → TB be T -coalgebras. A morphism of T -coalgebras

α→ β consists of a morphism f : A→ B such that the diagram below commutes.

A B

TA TB

f

α β

Tf

The category of T -coalgebras is denoted Coalg(T).

2.2 Algebra

We shall recall some basic notions of algebra.

We will write Σ⋆ for the free monoid on a set Σ. When M is a monoid, we

will denote the associated contravariant category by M . This is the category with

a single object ⋆, and for every m ∈ M a morphism m : ⋆→ ⋆. Composition is

given by reversing multiplication in M

m ◦ n = nm.

The identity morphism is the one corresponding to the unit 1 of M .

Note that the covariant version (where m ◦ n = mn) is perhaps more common

in the literature. But for our purposes, contravarience will simplify the notation

of Chapter 6.

Definition 2.13. A semiring (S, 0, 1,+, ∗) consists of a set S, with two (distinct)

distinguished elements 0 and 1, and two binary operations + and ∗. These satisfy

the following axioms.

• (S, 0,+) is a commutative monoid.

• (S, 1, ∗) is a monoid.

• Multiplication distributes over addition:

a ∗ (b+ c) = a ∗ b+ a ∗ c

(a+ b) ∗ c = a ∗ c+ b ∗ c.

21

• Multiplication by zero is annihilating:

0 ∗ a = a ∗ 0 = 0.

A semiring is called commutative if the multiplication is commutative.

A semiring is idempotent if the addition is idempotent, that is, if we have

a+ a = a for all a.

A semiring is called complete if we can form infinite sums. That is, if for every

family {ai}I we can take the sum
∑

I ai such that

b ∗

(∑
I

ai

)
=
∑
I

(b ∗ ai)(∑
I

ai

)
∗ b =

∑
I

(ai ∗ b)

Example 2.14. Some examples of semirings are:

1. The boolean semiring (B, 0, 1,∨,∧). It is complete by taking
∑

= ∃.

2. Every ring is a semiring.

3. The natural numbers with addition and multiplication

(N, 0, 1,+, ∗).

4. The tropical min-plus semiring on the extended natural numbers, (N ∪
{∞},∞, 0,min,+) (with ∞ being absorbing with respect to addition and

multiplication) is a complete semiring (because every non empty set of

natural numbers has a least element). This is also denoted N .

5. The probabilistic semiring (R≥0 , 0, 1,+, ·).

6. The semiring of regular languages over an alphabet Σ (or equivalently, regular

expressions up to language equivalence), which is denoted (RegexΣ, ∅, ε,∪, ·).

7. For any set B, there is a semiring (P(B), ∅, B,∪,∩).

When (S, 0, 1,+, ∗) is a semiring, we may define a notion of an S-valued subset.

Let A be a set. Intuitively, an S-valued subset of A is something like a probability

22

distribution on A. When we have a “real” subset U ⊆ A, we can, for any element

a ∈ A, ask the question “is a an element of U?” and expect the answer to be

true or false. An S-valued subset on the other hand, answers the question “to

what extent is a and element of U?” with a value in S. Formally, we say that

an S-valued subset of A is simply a function U : A → S. The value U(a) ∈ S
expresses how strongly a is a member of U .

Note that when we take S = B to be the boolean semiring, a B-valued subset

is precisely a subset. As the notion of a semiring valued subset generalises that of

a subset, so too can we define a monad of S-valued subsets that will generalise the

powerset monad P . We will model such S-valued subsets of A as functions A→ S.

For our purposes, we will consider only those functions that take a non-zero value

on only finitely many elements of A.

Definition 2.15. Let (S, 0, 1,+, ∗) be a semiring.

The generalised S-valued powerset monad on Set is denoted (PS, η
S, µS). The

functor PS sends a set A to the set of all functions A → S with finite support.

For a function f : A→ B, the direct image is defined as

PS(f) : PS(A)→ PS(B)

PS(f)(U)(b) =
∑

a∈f−1(b)

U(a).

The monad components are given by:

ηA : A→ PSA

ηA(a)(a
′) = δa,a′

µA : PS(PSA)→ PSA

µA(F)(a) =
∑

U :A→S

F (U) · U(a).

Note that the sum in the definition of µ is well defined, as even though it ranges

over infinitely functions A→ S, it has only finitely many non-zero terms.

When S is a complete semiring, we may define the full generalised powerset

monad on Set. This sends a set A to the set of all functions A→ S. Completeness

is required, as the sums in the definition of the direct image and the µS may be

infinite when A is infinite.

Remark 2.16. Note that the distribution monad D of Example 2.7 is not the

23

semiring monad associated to the semiring (R≥0, 0, 1,+, ·). The elements of DA
are not merely the functions U : A→ [0, 1] with finite support—we require the

condition that
∑

a∈A U(a) = 1.

The Kleisli category of the generalised powerset monad is the category of

(finite) generalised relations, which is denoted FinRelS. This is due to the

isomorphism

Set(A, (B ⇒ S))Set(∼= A×B, S).

Hence a Kleisli morphism R : A ↛ PS(B) may be thought of as an S-valued

subset of A×B. The value R(a, b) ∈ S indicates how strongly the pair (a, b) is in

R, or, how strongly a is related to b. The Kleisli composition of two generalised

relations R : A↛ B and S : B ↛ C is given by the formula

S •R =
∑
b∈B

R(a, b) · S(b, c). (2.2)

Naturally, when S = B we see that the Kleisli morphisms A↛ B are precisely the

relations with finite image (that is, the relations R ⊆ A×B with {b : (a, b) ∈ R}
finite for any a ∈ A). The Kleisli composition above agrees with composition of

relations.

The structure of a semiring is all that is required to define the monads of

generalised subset. Nonetheless, many relevant examples have significantly more

structure. For example, that of an associated ordering, or additional operations.

A particularly interesting class of semirings are those that come from lattices.

Definition 2.17. A lattice comprises a partially ordered set (S,≤) where every

pair of elements x, y has both a unique greatest lower bound, denoted x∧ y, and a

unique least upper bound x ∨ y. These are also called the meet and the join of x

and y.

A lattice is called bounded if, furthermore, there are distinguished least and

greatest elements (respectively denoted ⊥ and ⊤).
A lattice is distributive if either of the following equations holds for all x, y, z:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

24

A lattice is complete if every subset X of S has a greatest lower bound, and a

least upper bound.

Example 2.18. The typical example of a lattice is a powerset lattice (P(B),⊆),
with join and meet given by ∪ and ∩. This lattice is bounded by ∅ and B, and
distributive, and complete.

Example 2.19. Every bounded, distributive lattice is a semiring (S,⊥,⊤,∨,∧).
The semiring B is simply the powerset lattice of the singleton set {⋆}.

Example 2.20. The semiring of regular languages forms a lattice. It is a sublattice

of (P(Σ⋆),⊆). The join is the union, which is the semiring addition. The meet is

intersection. Regular languages are closed under union and intersection [49].

Example 2.21. The min-plus semiring can be represented as a lattice. It is

isomorphic to a sublattice of (P(N),⊆). We describe the embedding of the

min-plus semiring into this lattice.

The natural number n is represented by the set {n, n+ 1, · · · }. The element

∞ is encoded by the empty set. Taking the minimum of two elements corresponds

to the union (with unit ∞ = ∅). The meet of the lattice corresponds to the

maximum operation. Addition comes from element-wise addition of subsets.

The cases of Examples 2.20 and 2.21 are interesting, as they show semirings

that are based on lattices, with the semiring addition being given by the lattice

join. However, the multiplication is not the meet of the lattice, but a different

operation. One axiomisation of this notion of a “lattice with a multiplication” is a

quantale. Quantales, and in particular, the monads of quantales (or equivalently,

quantale valued subsets and relations) have found significant use in the literature

to express varying “truth values” [53, 56].

Definition 2.22 ([53]). A quantale is a complete lattice Q with a multiplication

∗, and a distinguished element 1 ∈ Q. The multiplication must distribute over

the join:

x ∗
(∨

yi

)
=
∨

(x ∗ yi)(∨
yi

)
∗ x =

∨
(yi ∗ x)

The condition of completeness, however, is quite strong. The semiring of

regular languages is not a quantale, as it is not complete. If it were, then arbitrary

25

unions of regular languages would always be regular. But every language, including

the non-regular languages, can be expressed as the (potentially infinite) union

of singleton sets (which are all regular). A more appropriate notion is that of a

monoidal lattice, which does not require completeness.

Definition 2.23. A monoidal lattice is a lattice (S,≤) with a distinguished

element 1 and a binary operation ∗ such that

• (S, 1, ∗) is a monoid.

• Multiplication distributes over joins:

a ∗ (b ∨ c) = (a ∗ b) ∨ (a ∗ c)

(b ∨ c) ∗ a = (b ∗ a) ∨ (c ∗ a)

• Multiplication is order-preserving. If a ≤ b then

c ∗ a ≤ c ∗ b and

a ∗ c ≤ b ∗ c.

An additional property will allow us to partially undo the multiplication. A

residuated lattice is a monoidal lattice that further satisfies the conditions

below.

• For every c, a there is a greatest b with a ∗ b ≤ c. In this case we write

b = a⧹c. This is called the right residual of c by a.

• For every c, b there is a greatest a with a ∗ b ≤ c, denoted a = c⧸b. This is
the left residual of c by b.

Example 2.24. The boolean semiring is a residuated lattice. The multiplication

is the semiring multiplication (∧) and residuals are formed by material implication:

a⧹c = a⇒ c

c⧸b = b⇒ c

Example 2.25. The min-plus semiring is a residuated lattice. The multiplica-

tion is the semiring multiplication (+), and residuals are formed by truncated

26

subtraction:

a⧹c = c⧸a =

 c− a if a ≤ c

0 otherwise

Example 2.26. The semiring of regular languages is a residuated lattice. The

multiplication is the semiring multiplication (concatenation), and residuals are

formed in the following way:

C⧸A = {w : zw ∈ C for all z ∈ A}

B⧹C = {w : wz ∈ C for all z ∈ A}

Some justification for the regularity of these languages is required. We sketch a

technique for construction an appropriate automaton that recognises the residual

languages (see [49] for details). Let (D,R, s, F) be a DFA for the regular language

C. For a word w = w1w2 · · · 2n ∈ Σ⋆ we will let Rw(x) denote the unique state y

with

x
w1−→ x1

w2−→ x2 −→ · · ·
wn−→ y.

• The DFA for B⧹C is essentially that of C, but with a different set of

accepting states. The set of accepting states is given by

F ′ = {x ∈ D : for all w ∈ B, Rw(x) ∈ F}.

We see that a word u is accepted by (D,R, s, F ′) if it ends up in a state

where inputting any word w that is in B ends up being accepted by the

DFA for C.

• The case of C⧸A is a little more complicated. First we define the set of

states

S = {Rw(s) : w ∈ A}.

This is essentially the set of states that a word in A could end up in. Now we

construct a DFA that consists of |S| copies of the DFA for C (the product

construction [49]). The start state is defined by choosing a different state in

27

S for each copy. Running a word w in this product automata corresponds

to running w in the DFA for C several times, starting at each state in S,

and accepting only if w always ends up in an accepting state, no matter

which state in S we start from. This corresponds to uw being in C for any

word u ∈ A, which is exactly the property we need.

28

Chapter 3

The simple category of transition

systems

In this chapter, we shall define a convenient category of transition systems TSΣ.

The morphisms will be transition preserving functions. We will review the ele-

mentary properties of this category. In particular, we show that the it is cartesian

closed—for any two transition systems A,B, we can form the exponential system

A ⇒ B consisting of all functions A → B (not merely the morphisms).

This construction is known in the case of undirected graphs [24], but does

not appear to have been succesfully generalised to transition systems (labelled,

directed graphs) yet. Unfortunately, while an appropriately formulated category

of graphs is a topos [55], the category TSΣ is not, essentially because we do not

require reflexivity.

Following in this vein, we adapt some definitions of graph homotopy theory [40,

17, 27] to the case of transition systems. We also investigate the interesting subcat-

egories that consist of transition systems with reflexive, symmetric, or transitive

transition relations, and define dual pairs of reflexivisation and symmetrisation

functors that are adjoint to the free inclusion functors.

In the second half of this chapter we focus our attention on simulations of

transition systems, which are essentially “transition-preserving relations”, and

define a category TSSΣ of transition systems with simulations as morphisms. The

overarching theme is that the relationship between TSΣ and TSSΣ mirrors that of

Set and Rel. Indeed, we see that in TSSΣ the products and coproducts are given

by the disjoint union (as in Rel). The cartesian product remains a symmetric

monoidal product, but there is no monoidal closed structure.

29

The culmination of this line of investigation is the result of Malacaria [39] that

the category of simulations TSSΣ arises as the Kleisli category of a simulation

monad Sim on TSΣ, mirroring the fact that Rel is the Kleisli category of P on

Set. A novel contribution of this thesis is the identification of several variations

of the Sim monad that result in categories of transition systems with reverse

simulations, and other related notions.

We shall begin with the following primitive formulation of a transition system.

This is a relatively standard presentation, and can be found in, for example, [21].

Let Σ be a finite set of labels. A transition system (over Σ) comprises

• a set of states A, and

• a transition relation R ⊆ A× Σ× A.

When the transition relation R is clear from context, we may indicate that

(a, σ, a′) ∈ R by writing

a
σ−→ a′.

In writing, we can say that a transitions to a′ (by or along the letter σ).

When Σ is a singleton set we may write Σ = ∗, and we call such transition

systems unlabelled.

Let (A,R) and (B, S) be two transition systems. There are several interestion

ways in which a function of carrier sets may interact with the transition structure.

Definition 3.1. Let f : A→ B be a function of underlying sets.

1. We say that f is transition preserving if (a, σ, a′) ∈ R implies (f(a), σ, f(a′)) ∈
S.

2. We will say that f reflects transitions if the converse condition holds. That

is, if whenever (f(a), σ, f(a′)) ∈ S then we have (a, σ, a′) ∈ R.

3. If both conditions hold then we will call f strictly preserving.

These conditions are depicted in Fig. 3.1.

All of these conditions are found variously in the literature. It is common

to refer to a function that satisfies Condition 1 as simply a morphism ([39]) or

a homomorphism ([9]). A modal logician would call a function that satisfies

30

a f(a)

a′ f(a′)

σ σ

a f(a)

a′ f(a′)

σ σ

Figure 3.1: The transition preserving and reflecting conditions

a b

a1
b′a2

σ σ

a b

b′

σ

Figure 3.2: Bounded and strictly preserving functions

conditions 1 and 2 a strong homomorphism ([9]), or a functional bisimulation

([29]).

Being strictly preserving is a very strong condition. There is another way we

can strengthen the notion of a transition preserving function.

Definition 3.2. A function f : A→ B is a bounded morphism if it is transition

preserving and satisfies the condition below:

If (f(a), σ, b) ∈ S there exists an a′ with f(a′) = b and (a, σ, a′) ∈ R
(Bounded morphism)

The difference between a strictly preserving function and a bounded morphism

is subtle. A function is strictly preserving if every transition between images

can be pulled back to a transition between all preimages. On the other hand, a

function is bounded if every transition originating from an image can be pulled

back to a transition into a single preimage.

The following example will provide intuition. The diagram in Fig. 3.2 depicts

two functions of transition systems. Both are transition preserving. The function

on the left is bounded, because the transition b −→ b′ can be pulled back to a −→ a1.

It is not reflective, because this transition cannot be pulled back to a −→ a2.

The function on the right is strictly preserving (trivially, because b′ has no

preimages) but is not bounded. The eligible transition b −→ b′ cannot be pulled

back to any preimage of b′.

Apart from these diverse notions of “functions that interact with structure”,

31

there are several ways to generalise to relations that “interact with structure”.

The most essential is simulation.

Definition 3.3. Let Z be a relation A↛ B (so Z ⊆ A×B). We will say that Z

is a simulation from A to B if the following condition holds:

For any related pair (a, b) ∈ Z and any transition a
σ−→ a′ in A

we can find a state b′ ∈ B with b
σ−→ b′ and (a′, b′) ∈ Z (Simulation)

It can be insightful to present this graphically. The relation Z is a simulation

if we can take any partial square as in Fig. 3.3 and find a state b′ that “fills in”

the missing bottom right corner. The term “simulation” expresses the intended

intuition: a simulation from A to B means that B can “simulate” the behaviour

of A. If a and b are related, then any transition going from a can be “matched”

by a transition in b, that leads to a related state.

a b a b

⇒

a′ a′ ∃b′
σ

Z

σ

Z

σ

Z

Figure 3.3: The simulation condition

Just as with functions, the converse and bi-directional version of a simulation

are also worth considering. If we swap the role of A and B, we can express the fact

that A simulates B. And of course, it is possible for a relation to be a simulation

in both directions.

Definition 3.4. A relation Z : A↛ B is called a co-simulation if the converse of

the simulation condition holds (depicted in Fig. 3.4).

For any related pair (a, b) ∈ Z and any transition b
σ−→ b′ in B

we can find a state a′ ∈ A with a
σ−→ a′ and (a′, b′) ∈ Z (Co-simulation)

We will say that Z is a bisimulation if it is a simulation and a co-simulation.

Note that when f : A→ B is a function, the direct image relation f∗ : A↛ B

is a simulation if and only if f is transition-preserving. When f∗ is a bisimulation,

we will call f a functional bisimulation.

32

a b a b

⇒

b′ ∃a′ b′

Z

σ σ

Z

σ

Z

Figure 3.4: The co-simulation condition

There is an additional way to generalise simulations. All three notions we have

seen (simulations, co-simulations and bisimulations) are going forwards—they

demand the existence of certain transition successors. But we can flip this around,

and think about simulation-like conditions that go backwards, and enforce the

existence of transition predecessors. We shall call these things reverse simulations.

Definition 3.5. Let Z be a relation A↛ B.

1. We will call Z a reverse simulation if the following condition holds:

For any related pair (a′, b′) ∈ Z and any transition a
σ−→ a′ in A

we can find a state b ∈ B with b
σ−→ b′ and (a, b) ∈ Z (Reverse simulation)

2. If the condition below holds, then Z is a reverse co-simulation.

For any related pair (a′, b′) ∈ Z and any transition b
σ−→ b′ in B

we can find a state a ∈ A with a
σ−→ a and (a, b) ∈ Z

(Reverse co-simulation)

3. If both conditions hold then Z is a reverse bisimulation.

4. If Z is a simulation and a reverse simulation then it is called a double

simulation.

Note that each of these four simulation condition (forwards simulation and

cosimulation, and reverse simulation and cosimulation) can hold independently

for a given relation. Therefore there are 24 = 16 possible combinations. These

conditions are summarised in Fig. 3.5.

The following result shows that the standard notion of simulation (Defini-

tion 3.50) is sufficient to express all the variations.

33

a b

a′ ∃b′
σ

Z

σ

Z

Simulation

a b

∃a′ b′

σ

Z

σ

Z

Co-simulation

a ∃b

a′ b′

σ

Z

σ

Z

Reverse simulation

∃a b

a′ b′

σ

Z

σ

Z

Reverse co-simulation

Figure 3.5: All variants of the simulation condition

Lemma 3.6. Let (A,R) and (B, S) be transition systems, and Z : A ↛ B a

relation.

1. The relation Z is a co-simulation from (A,R) to (B, S) if and only if

Z† : B ↛ A is a simulation from (B, S) to (A,R).

2. The relation Z is a reverse simulation from (A,R) to (B, S) if and only it

is a simulation from (A,R†) to (B, S†).

Proof. It is straightforward to verify this.

There is another way to express the fact that a relation is a simulation. If

R is a transition relation on A, we will write Rσ to denote the relation {(a, a′) :
(a, σ, a′) ∈ R} on A.

Proposition 3.7. A relation Z : A↛ B is a simulation if for every letter σ the

following inclusion holds:

Z† #Rσ ⊆ Sσ # Z† (3.1)

Proof. Note that both sides are relations B ↛ A.

Suppose Z is a simulation. We wish to show that for every state b ∈ B and

a′ ∈ A, we have

(b, a′) ∈ Z† #Rσ =⇒ (b, a′) ∈ Sσ # Z†

34

If we have (a′, b) ∈ Z† #Rσ then there exists an intermediate state a with (b, a) ∈ Z†

and (a, a′) ∈ Rσ. That is, the hypothesis of the simulation condition is met. Since

Z is indeed a simulation, we deduce that there exists a b′ with (a′, b′) ∈ Z (and

therefore (b′, a′) ∈ Z†) and (b, b′) ∈ S−→σ. This b
′ hence witnesses (b, a′) ∈ Sσ # Z†.

A symmetric argument will show that if Eq. 3.1 holds then Z is indeed a

simulation.

3.1 The category TS

We proceed to define a family of categories of labelled transition systems. Let Σ

be a (usually finite) set of labels.

Definition 3.8 ([39]). There is a category of (non-deterministic) transition systems

over Σ, denoted TSΣ.

• The objects of TSΣ are pairs (A,R), where A is a set (the set of states, or

the carrier or underlying set), and R is a relation R ⊆ A × Σ × A called

the transition relation.

• A morphism f : (A,R) → (B, S) consists of a function of underlying sets

f : A→ B that is transition preserving.

Remark 3.9. Note that the objects of TSΣ are “sets with extra structure” (that of

a transition relation), and that morphisms are “structure preserving functions”. In

particular, the identity morphism is merely the identity function, and composition

of morphisms is performed by composition of functions in Set.

Moreover, there is a forgetful functor UΣ : TSΣ → Set that throws away

the transition relation component of a system. Explicitly, we have on objects

UΣ(A,R) = A and for f : (A,R) → (B, S) we have UΣf = f : A → B. This

functor is faithful. The category TSΣ is concrete over Set, in the sense of [3].

This property will save us some time when we are reasoning about equations

of morphisms in TSΣ. For example, to show that idA : (A,R)→ (A,R) genuinely

is the identity morphism in TSΣ, we would need to verify that f ◦ idA = f for

every morphism f : (A,R) → (B, S). But we know that this equation holds in

Set, for the underlying functions idA : A→ A and f : A→ B.

We will tend to denote transition systems (A,R), (B, S) with caligraphic letters

as A = (A,R), and so on. As a matter of convenience, when the transition systems

35

A = (A,R) and B = (B, S) are clear from context, we may write a morphism

f : A → B as simply

f : A→ B, or even

f : R→ S.

Note that we do not allow for multiple transitions (labelled by the same letter)

between states. When Σ is a singleton set we may omit it entirely, for transition

systems over a singleton set are essentially unlabelled systems. We can denote

this category as TS.

Remark 3.10. Note that in the unlabelled case we may think of a transition

relation R ⊆ A× {⋆} × A as a relation R : A↛ A.

Even in the case when Σ is not a singleton, we may think of R as a family

{Rσ} of relations on A indexed by Σ. This is due to the isomorphism:

P(A× Σ× A) ∼= Σ→ P(A× A).

Definition 3.11. Let (A,R) be a transition system over Σ.

1. If a is a state of A, and for all σ ∈ Σ we have a
σ−→ a, we call the state a

reflexive. If every state in A is reflexive then we say that the entire transition

system A is reflexive.

2. If the existence of a transition a
σ−→ a′ implies the opposite transition a′

σ−→ a′

then we call A symmetric.

3. If whenever we have a
σ−→ b and b

σ−→ c then also a
σ−→ c, then we say that A

is transitive.

Hence we may define the full subcategories of reflexive, symmetric, or transitive

systems, as well as any combinations of these properties.

The reflexive subcategory will be denoted by TS•
Σ, and the symmetric sub-

category by TS∼
Σ. Note that TS∼

∗ is isomorphic to the category of undirected

graphs Gph [13].

In particular, the symmetric subcategory of TS (that is, unlabeled symmetric

transition systems) is isomorphic to the category of undirected graphs and graph

homomorphisms that is considered in [19, 17].

36

Demanding that all systems are reflexive has the interesting effect of allowing

morphisms to “collapse” edges. The subcategory of reflexive and symmetric

(unlabeled) transition systems is isomorphic to the category of undirected simple

graphs of [4], with weak graph homomorphisms. A weak homomorphism of graphs

f : (V1, E1) → (V2, E2) is a function f : V1 → V2 of vertices such that for every

edge (u, v) ∈ E1, either (f(u), f(v)) is an edge of E2, or in fact f(u) = f(v).

An important notion is that of a subsystem.

Definition 3.12. Let A be a transition system in TSΣ. A subsystem of A is a

subobject, in the categorical sense. Concretely, this is a transition system B and

an injective morphism i : B → A.

Now we recall a few constructions on transition systems.

Definition 3.13. Let A = (A,R) and B = (B, S) be two transition systems.

• The disjoint union of A and B is the transition system A
⊔
B that has the

set of states A
⊔
B, and we have

A
⊔

B : u→ v

if both u and v are in A and A : u→ V , or likewise for B.

• The box product of A and B is the transition system A□B that has the set

of states A×B, and we have

A□B : (a, b)→ (a′, b′)

if either a′ = a and b→ b′, or if a→ a′, and b = b′.

• The tensor product of A and B is the transition system A× B that has the

set of states A×B, and we have

A× B : (a, b)→ (a′, b′)

if a→ a′ and b→ b′.

Proposition 3.14. These constructions have the following properties.

• The disjoint union
⊔

is the categorical coproduct.

37

• The tensor product × is the categorical product.

• The box product □ is symmetric monoidal.

The box product is not so important for our purposes, but it does generalise

the well known box product for graphs.

We shall list some important transition systems.

• Let ε be the empty transition system (∅, ∅), with no states and no transitions.

• Let 0 be the systen (0) with a single state 0, and no transitions.

• Let 1 be the system (

œ

0) with a single state 0 and a transition 0
σ−→ 0 for

all σ ∈ Σ.

• Let Iσ (for σ ∈ Σ) be the transition system (0
σ−→ 1), with two states 0 and 1,

and a single transition 0
σ−→ 1. In the unlabelled case we will simply write I.

These systems enjoy the following properties.

• ε is the initial object.

• 1 is the terminal object.

• Morphisms a : 0→ A pick out states a = a(0) of A.

• Morphisms e : Iσ → A pick out transitions e(0)
σ−→ e(1) in A.

• Global elements of A, that is, morphisms a : 1→ A are the reflexive states

of A.

Recall that a category is finitely complete if and only if it has a terminal object

and all binary products and equalisers. Dually, a category is finitely cocomplete if

it has an initial object, coproducts, and coequalisers. Hence, we can prove that

Proposition 3.15. The category TSΣ is finitely complete and finitely cocomplete.

Proof. The initial object is the transition system ε. Equalisers and coequalisers

are formed just as in Set. The verifications are routine.

We can also characterize the monic and epic morphisms in this category, as

follows.

38

0 1

Σ

Σ

Σ

Σ

Figure 3.6: The system C

Proposition 3.16. A morphism in TSΣ is monic if and only if it is an injective

function. A morphism is epic if and only if it surjective.

Proof. Let f : A → B. Suppose that f is monic, and suppose further for the sake

of contradiction that f is not injective, so we have f(a) = f(a′) for some a ̸= a′.

This means that f ◦ a = f ◦ a′, but a ̸= a′. A contradiction. So every monic arrow

is injective. The converse holds because TSΣ is a concrete category.

Suppose that f is epic and not surjective. So there is a b ∈ B that is not in

the image of f . Let C be the transition system in Fig. 3.6. We define morphisms

g, h : B → C by

g(x) = 0

h(x) =

 0 if x = b

1 otherwise

It is quite clear that g and h are indeed morphisms (that is, they preserve

transitions), and that g ◦ f = h ◦ f yet g ̸= h. So we see that every epimorphism

must be surjective. Again, the converse holds because we are in a concrete category.

3.2 Cartesian closed structure

In this section we will provide a definition of exponential objects in TSΣ. Hence

TSΣ is a cartesian closed category. Along the way, we will look at some examples

of failed constructions. The fundamental construction of exponential objects is

known in the case of undirected graphs. The extension to the directed and labelled

case is not too hard, though to the best of my knowledge, it does not appear

elsewhere in the literature. We shall examine the construction in quite a lot of

39

detail, and verify that all the properties hold. An exponential object A ⇒ B is

essentially an internal function space. It is characterised by the property that the

functor A ⇒ − is right adjoint to the categorical product functor −×A.
A more concrete formulation is this.

Definition 3.17. Let A,B be transition systems in TSΣ. An exponential object is

a transition system A ⇒ B with an evaluation morphism : ev : A× (A ⇒ B)→ B.
We require that for every morphism g : C × A → B there exists a unique

morphism λg : C → A ⇒ B that makes the diagram below commute.

A× (A ⇒ B) B

A× C

ev

g
idA×λg

Example 3.18. In the case of Set, the categorical product is the standard

cartesian product of sets. The exponential BA is simply the set of all functions

A→ B.

The evaluation map is given by ev(f, a) = f(a), and for a function g : C×A→
B, the curried function λg is defined by λg(c) = a 7→ g(a, c).

As TSΣ is concrete over Set, this seems like a good jumping off point. The

name of the game will be to find an appropriate transition system structure on the

set of morphisms A → B such that the Set-wise evaluation and currying maps

are indeed morphisms. In [39], Malacaria identifies a weak exponential.

Definition 3.19. Let A,B be two transition systems. The weak exponential BA

has

• set of states given by the set of all morphisms f : A → B.

• transition relation defined as follows. There is a transition f
σ−→ g if and

only if for all letters σ and states a we have a transition f(a)
σ−→ g(a) in B.

The problem with this transition structure is that the evaluation map is not a

morphism. We require that

(a, f)
σ−→ (a′, g) =⇒ f(a)

σ−→ g(a′)

for all pairs of morphisms f, g : A → B, and states a, a′ of A. Recall that by

the definition of the categorical product, we have a transition (a, f)
σ−→ (a′, g) if

40

and only if we have component-wise transitions f
σ−→ g and a

σ−→ a′. In general,

this is not enough to deduce a transition f(a)
σ−→ g(a′). Malacaria suggests the

requirement that B is transitive. Then we could combine f(a)
σ−→ g(a) (from the

fact that f
σ−→ g, instantiated at a) with the transition g(a)

σ−→ g(a′) (which we get

from the fact that g is transition preserving) to deduce the required f(a)
σ−→ g(a′).

Leaving aside that transitivity is a very strong (and unnaturally) property,

this still would not solve the problem. There is the issue of currying. We require

that for every morphism g : A× C → B,

1. the partially applied λg(c) is a morphism A → B (so that it is an element

of the exponential), and that

2. the mapping λg is transition-preserving in C.

Neither of these conditions hold for the weak exponential.

1. in order for λg(c) to be a morphism we need

a
σ−→ a′ =⇒ λg(c)(a)

σ−→ λg(c)(a′)

⇐⇒ g(a, c)
σ−→ g(a′, c).

We cannot deduce this from g being a morphism, as we do not have (a, c)
σ−→

(a′, c) in general, only when c
σ−→ c.

2. in order for λg to be a morphism, we need

c
σ−→ c′ =⇒ λg(c)

σ−→ λg(c′)

⇐⇒ for all a ∈ A g(a, c)
σ−→ g(a, c′).

We have the same problem as above.

The issue of the evaluation map can be solved by picking a different transition

structure on the set of morphisms. We will say that f
σ−→ g if we have

a
σ−→ a′ =⇒ f(a)

σ−→ g(a′).

From this we immediately see that

(a, f)
σ−→ (a′, g) =⇒ a

σ−→ a′ and f
σ−→ g

=⇒ f(a)
σ−→ g(a′),

41

so the evaluation map is indeed transition preserving. We also get Condition 2,

for if c
σ−→ c′ and a

σ−→ a′ then we have (a, c)
σ−→ (a′, c′). Because g is a morphism,

we can deduce g(a, c)
σ−→ g(a′, c′), which is what we need.

Unfortunately, it is still not possible to deduce Condition 1. In general, λg(c)

will be a morphism precisely when c is a reflexive state. One solution might be to

throw up our hands and simply require, by fiat, that all of our transition systems

are reflexive. This would indeed define a cartesian closed structure on the reflexive

subcategory.

An alternative solution is to expand the exponential object A ⇒ B to include

all functions A→ B, and not merely the morphisms. This technique is used to

construct the exponential graph, in the context of undirected graph theory [18,

24]. It is straightforward enough to adapt to the direct and labelled case.

Definition 3.20. Let A and B be two transition systems over Σ. The exponential

object A ⇒ B has

• set of states the collection of all functions A→ B, and

• a transition f
σ−→ g if, for all a

σ−→ a′ we have f(a)
σ−→ g(a′).

Evaluation and currying are defined as in Set.

Proposition 3.21. With × and ⇒, the category TSΣ is cartesian closed.

Proof. By the argument above, we can remain convinced that the evaluation map

is a morphism, and that Condition 2 holds. Condition 1 becomes vacuous, as

we do not need λg(c) to be a morphism, it is enough that it is a mere function

A→ B.

We may characterise the reflexive states of the function space in the following

way.

Proposition 3.22. Let f be a set-map A→ B. Then f is a fully reflexive state

of A ⇒ B (that is, f
σ−→ f for all σ) if and only if f is a morphism.

Proof. Observe that f
σ−→ f if and only if a

σ−→ b implies f(a)
σ−→ f(b) (for all

a, b).

In particular, this means that the global elements of A ⇒ B, which are the

morphisms 1→ A⇒ B, are precisely the morphisms A → B.
We will also look at the reflexive subcategory TS•

Σ. The following result is

not surprising.

42

Proposition 3.23. The tensor product, box product, and disjoint union of two

reflexive systems is itself reflexive.

The tensor product is the categorical product in TS•
Σ, the box product is

symmetric monoidal, and the disjoint union is the categorical coproduct.

However, the category TS•
Σ is not closed under exponentiation.

Example 3.24. Let A and B be the following (unlabelled) systems. Note that

they are both reflexive.

0 1

Figure 3.7: The system A

0 1

Figure 3.8: The system B

Consider the identity function A→ B. This is not a morphism, for it doesn’t

preserve the transition 0
1−→ of A. So A ⇒ B contains non-reflexive states.

We may define the following “reflexive” exponential.

Definition 3.25. Let A,B be (not necessarily reflexive) transition systems. The

reflexive exponential is the transition system A ⇒• B with

• set of states given by the collection of all morphisms A → B

• a transition f
σ−→ g if for all a

σ−→ a′,

a
σ−→ a′ =⇒ f(a)

σ−→ g(a′)

Equivalently, A ⇒• B is the subsystem of A ⇒ B comprising of all the reflexive

states.

At this point, we are left in a rather odd situation, with a cartesian closed

subcategory of a CCC that has a different structure.

One particular point of confusion might be as follows: Suppose A,B are

reflexive, and form the reflexive exponential A ⇒• B which satisfies certain

universal properties. But A,B exist in the super-category, so we may also form

the exponential A ⇒ B, which satisfies the same universal properties but is

decidedly not isomorphic to A ⇒• B.

43

The solution is this. The universal properties satisfied by A ⇒ B and A ⇒• B
are not the same, for they are quantified over different domains. If C is not

reflexive and we pick a g : C × A → B then we might end up with λg being a

mere set-map, so we need A ⇒ B to contain the set-maps. But, if C is reflexive

then no such g will ever induce a non-morphism.

Recall that in both TSΣ and TS•
Σ the terminal object is 1—the reflexive dot.

Therefore, global elements of a system are fully reflexive states. So, while A ⇒ B
may contain “unwelcome” non-morphisms, they are, in some sense, “not really

there”, because we can’t pick them out from inside the category.

It is worth examining the particular construction of A ⇒• B from A ⇒ B. We

arrive at the reflexive exponential by deleting all the non-reflexive states. We can

do this for any non-reflexive system, and obtain a reflexive sub-system comprising

of the reflexive states. On the other hand, we can also make a system reflexive

by adding reflexive transitions to all states. These two constructions are in fact

functorial.

Let I : TS•
Σ ↪→ TSΣ be the inclusion functor.

Definition 3.26. We will define two functors in the opposite direction.

• Let F : TSΣ → TS•
Σ be the functor that deletes non-reflexive states.

• Let G : TSΣ → TS•
Σ be the functor that adds all reflexive transitions.

We should examine what these functors do to morphisms. Let f : A → B.
Then, F sends f to its restriction on FA. This has the right type (that is, f sends

things in FA to FB), for if a is reflexive f(a) is also. The functor G doesn’t touch

f , and we only need to check that f preserves the new transitions in GA. But

these are all of the form a
σ−→ a, and we know that f(a)

σ−→ f(a) always, in GB.
We may think of FA as being the largest reflexive subsystem of A, and of GA

as the smallest reflexive supersystem (with the natural inclusions). This can be

formally expressed by the following proposition.

Proposition 3.27. Every reflexive subsystem f : C → A of A factors through the

inclusion FA ↪→ A.

Proof. Let f : C → A be monic, where C is reflexive. This means every state in C

must map to a reflexive state of A—that is, a state of FA. The result follows.

The following result shows that the constructions F and G are dual, in a sense.

44

Proposition 3.28. We have adjunctions

I ⊣ F and G ⊣ I

Proof. To show that F is right-adjoint to the inclusion we need to exhibit a

bijection

φA,B : TSΣ(IA,B) ∼= TS•
Σ(A,FB)

that is natural in A and B. We shall not write this out fully, it is a bit tedious. The

important fact is that every morphism IA → B is actually a morphism A → FB
too (and vice versa). So all φ is doing is relabelling the domain/codomain.

Naturality follows, because φ(f) does precisely the same thing as f (and equality

of morphisms in TSΣ is extensional), so we may pre- and post-compose willy nilly.

The bijection we want can be rewritten as TSΣ(A,B) ∼= TSΣ(A,FB) (for

TS•
Σ is full). Certainly every morphism from A → FB extends to a morphism to

B. And on the other hand, every morphism f : A → B is actually a morphism

A → FB, for it must send the states of the reflexive system A to states in FB.
Now we need to show that

TS•
Σ(GB,A) ∼= TSΣ(B, IA), or rather

TSΣ(GB,A) ∼= TSΣ(B,A)

where A is reflexive. Certainly every morphism f : GB → A is also a morphism

B → A. Conversely, if f : B → A then we may extend f to GB with no problems,

because the new transitions in GB are the reflexive b
σ−→ b, and we know for a fact

that f(b)
σ−→ f(b), for A is reflexive.

Now we will look at some properties of these functors.

Proposition 3.29. Both F and G preserve products.

Furthermore, F(A ⇒ B) = A ⇒• B.

So, if A,B are in TS•
Σ, we can form the exponential (in TS•

Σ) by embedding

them into TSΣ, forming A ⇒ B there, and going back to TS•
Σ through F. It is

unclear what sort of interpretation G(A ⇒ B) might have.

45

Note that both of these functors are retractions onto TS•
Σ, that is,

FI = GI = 1TS•
Σ
. (3.2)

Proposition 3.30. We have natural transformations

1 =⇒ IG and 1 =⇒ GI,

IF =⇒ 1 and FI =⇒ 1

Proof. The transformations in the right hand column are equalities, on account

of Eq. 3.2. The maps on the left are the canonical embeddings of A into GA, and
of FA into A.

A similar result holds for the symmetric subcategory TS∼
Σ.

Definition 3.31. We will say that a transition a
σ−→ b in a system A is opposed if

we also have b
σ−→ a (and unopposed otherwise).

Therefore a system A is symmetric if every transition is opposed.

Note that morphisms in TSΣ preserve opposed transitions. It is a fact that

the category of undirected graphs Gph is isomorphic to TS∼
Σ. Therefore, we

should be able to interpret everything in [13] as happening in TS∼
Σ ↪→ TSΣ.

Proposition 3.32. The category TS∼
Σ is closed under taking product and expo-

nentiation.

In fact, A ⇒ B is symmetric even when only A is.

Definition 3.33. We have two “symmetricisation” functors TSΣ → TS∼
Σ.

• Let U be the functor that deletes unopposed transitions.

• Let V be the functor that adds all missing opposing transitions.

Again, we may think of UA as being the largest symmetric subsystem of A,
and VA as the smallest symmetric supersystem.

Let J be the inclusion TS∼
Σ ↪→ TSΣ.

Note that U deletes transitions, whereas F deleted states.

Proposition 3.34. We have the same sort of adjunctions as in Proposition 3.28

J ⊣ U and V ⊣ J

46

Proof. The idea, as before, is to show that morphisms A → UB are the same as

morphisms A → B, where A is symmetric. But this is true, for if f : A → B and

a
σ−→ b in A (and this transition is opposed), we will have that f(a)

σ−→ f(b) is an

opposed transition in B, and hence it is in UB too. So f restricts to a morphism

f : A → UB. The other direction is trivial.

For the second adjunction, we want to show that morphisms GB → A are the

same as those B → A, where A is symmetric. Let f : B → A. If we have a
σ−→ b

in B then we know that f(a)
σ−→ f(b) in A, and this latter transition is opposed.

So adding the opposing b
σ−→ a in B doesn’t break anything. Again, the other

direction is simple—every morphism from GB restricts to one from B.

3.3 Homotopic interpretation

In this section, we will investigate the nature of paths in the exponential object.

We will extend some notions of ×-homotopy for undirected graphs [17, 18, 13] to

the directed, labeled case of TSΣ. At this point it is still unclear how much of

this work can be extended to the case of TSΣ. There is significant opportunity for

future work in this area. We culminate in the result (generalising [13]) that (under

appropriate conditions) every transition f
σ−→ g of morphisms in the exponential

object A ⇒ B can be decomposed into a sequence of “primitive” homotopies

known as spider moves.

We will begin with a brief introduction to the ×-homotopy theory of undirected

graphs, largely following the presentation of [13].

Definition 3.35. A path in an undirected graph G is a graph morphism γ : In → G,
for some n ∈ N. The notation In denotes the n-interval, the graph with n + 1

nodes {0, 1, 2, · · · , n}, and edges (i, i+ 1) for all i.

In = 0 1 · · · n

Similarly, we will let I•n denote the reflexive interval. A morphism from I•n is

called a reflexive path.

I•n = 0 1 · · · n

Concatenation of paths is defined in the natural way. If γ : In → G is a path

of length n, and δ : Im → G is a path of length m, and furthermore γ(n) = δ(0),

47

then the concatenation is denoted γ ∗ δ : In+m → G. Concatenation is associative,

and the unit is the empty path ε : I0 → G. We can concatenate reflexive paths in

exactly the same way.

When we move to the more general case of TSΣ, we do not have a single

interval of length n. Rather, for every word w ∈ Σ⋆, we have the interval over the

word w.

Definition 3.36. Let w = w1w2 · · ·wn ∈ Σ⋆. The interval over w is the system

with n + 1 nodes {0, 1, 2, · · · , n}, and transitions i
wi+1−−→ i + 1 for all i. A path

over (or along) w is a morphism γ : Iw → A.

Iw = 0 1 · · · n
w1 w2 wn

Similarly, we will let I•w denote the reflexive interval over w. A morphism from

I•w is called a reflexive path (along w).

I•w = 0 1 · · · n
w1

Σ Σ

w2 wn

Σ

Similarly to the graph case, we may concatenate compatible paths. If γ : Iw →
A and δ : Iv → A (and the last state of γ matches the first state of δ), then the

concatenated path is defined over the word wv, and denoted γ ∗ δ : Iwv → A.
There have been several notions of “graph homotopy”, that extend the topo-

logical notion of homotopy equivalence of functions to the case of morphisms of

undirected graphs. Classically, a homotopy is defined the following way.

Definition 3.37. Let X, Y be topological spaces and f, g : X → Y two continuous

maps. A homotopy (between f and g) is a continuous map h : X× [0, 1]→ Y such

that h(−, 0) = f and h(−, 1) = g. When such a map h exists we write h : f ≃ g

or just f ≃ g, and say that f and g are homotopic.

This definition can generalised to the category of undirected graphs. Here, it

is the systems I•n that play the role of the interval.

Definition 3.38 ([13]). Let G,H be undirected graphs, and f, g : G → H graph

morphisms.

A homotopy between f and g is a graph morphism h : G × I•n → H for some

n, such that h(−, 0) = f and h(−, n) = g.

48

Because the category Gph is cartesian closed, we can interpret a morphism

G × I•n → H as a morphism I•n → G ⇒ H. That is, homotopies correspond to

reflexive paths in the exponential object. As in the topological case, the homotopy

relation ≃ is an equivalence relation on morphisms G → H.
Note that the reflexive interval is chosen over the irreflexive. This is so that

the the graph G × I•n consists of n copies of G. In the product G × I•n we have

(a, i) ∼ (a′, i) for all i whenever there is an edge a ∼ a′ in G (because i ∼ i).

In the directed, labelled world, things become slightly more complicated. We

may define a notion of homotopy using the intervals I•w.

Definition 3.39. LetA,B be two transition systems, and f, g : A → B morphisms.

A homotopy (over the word w = w1w2 · · ·wn) from f to g is a morphism h :

A× I•w → B with h(−, 0) = f and h(−, n) = g.

We say f ⪯w g if there exists a homotopy from f to g along w.

Now, homotopy is still reflexive (along the empty word), and transitive (homo-

topies may be concatenated). But it is no longer symmetric. The existence of a

homotopy f ⪯ g does not imply a homotopy g ⪯ f .

Example 3.40. Let A = (0 → 1) and B = (

œ

0 → œ

1). Let f, g : A → B
be the constant maps to 0 and 1 respectively. There is a homotopy f ⪯ g, for

f(0)→ g(1). However, we do not have g ⪯ f because g(0) ̸→ f(1).

Just like in Gph, when working in TSΣ we need to take homotopies over the

reflexive intervals. If w = w1w2 · · ·wn, then we can think of the product A× I•w

as being formed of n + 1 copies of A, layered over each other. The transitions

within each layer are exactly as in A. There are also “diagonal” transitions going

from every layer to the next. These are formed according to the following rule.

Whenever there is a transition a
wi−→ b in the ith layer, then there is a transition

(a, i)
wi−→ (b, i+ 1) going from layer i to i+ 1. This is depicted in Fig. 3.9.

The final result of this section will be following [13]. We will and define an

“elementary” class of homotopies, that in some sense “generate” A ⇒ B. In

general, f and g and so on will refer to set-maps, unless they are specified to be

morphisms.

Definition 3.41. Let f, g be set-maps A → B. We say that f spiders to g (along

σ) if they agree except for perhaps at one state x. In which case, if x
σ−→ x then

49

(a, 0) (b, 0) (c, 0) (d, 0)A× {0} σ τ

(a, 1) (b, 1)A× {1} (c, 1) (d, 1)
σ τ

(a, 2) (b, 2)A× {2} (c, 2) (d, 2)
σ τ

σ

τ

Figure 3.9: The product system A× Iστ

we will require that

f(x)
σ−→ g(x).

If f spiders to g along σ we will write f
σ
⇝ g.

What is the intuition behind this definition? It simply says that f and g

almost agree, and f homotopes to g. That is, assuming that f and g are functions

that agree except for at one state, then we have f
σ
⇝ g if and only if f

σ−→ g.

It is therefore clear that

Proposition 3.42. If f
σ
⇝ g then f

σ−→ g (in A ⇒ B).

We have a weak converse to this.

Proposition 3.43. Let A be finite, and f
σ−→ g in A ⇒ B. Then there exists a

sequence of set-maps f0, f1, · · · fn such that

f = f0
σ
⇝ f1

σ
⇝ · · · σ

⇝ fn−1
σ
⇝ fn = g

Proof. Enumerate the states of A as x0, · · · , xn. Take fi to be the set-map that

acts as g on x0, · · · xi−1 and f on xi, · · ·xn.
We need to check that fi

σ
⇝ fi+1. These maps disagree precisely at xi, so if

xi does not transition to itself we are done. If we do have xi
σ−→ xi, then we need

fi(xi)
σ−→ fi+1(xi). But on the left we have f(xi) and on the right g(xi), and we

know that f(xi)
σ−→ g(xi), for we have f

σ−→ g.

So the result holds.

50

The following stronger result for Gph is due to Chih et al [13].

Proposition 3.44. Let A be finite and symmetric, and f, g morphisms A → B
with f

σ−→ g. Then there is a sequence of morphisms

f = f0
σ
⇝ f1

σ
⇝ · · · σ

⇝ fn−1
σ
⇝ fn = g

Proof. The proof is the same as that of Proposition 3.43. We just need to check

that each fi is a morphism.

So, pick an fi and let xj
σ−→ xk. We want fi(xj)

σ−→ fi(xk). There are several

cases of i, j, k.

• j, k are on the same side of i. So fi acts as either f or g on both xj and xk.

So the required transition exists.

• k < i ≤ j. Then we need f(xj)
σ−→ g(xk), but this happens because f

σ−→ g.

• j < i ≤ k. Here we need g(xj)
σ−→ f(xk). This is not a problem, because A

is symmetric, so A ⇒ B is too, and hence g
σ−→ f .

If we have morphisms f, g : A → B where A is not symmetric, the fi defined

in the proof of Proposition 3.43 need not be morphisms, because we require

symmetry in the third case above. However, the fi are defined with reference

to a specific enumeration of the states of A. It is possbile there might be a

non-symmetric system A, whereby one ordering of the states induces a sequence

of non-morphisms, but a cleverly chosen ordering does give you a sequence of

morphisms. This remains to be examined in the future.

We give a sufficient condition for when Proposition 3.44 holds in the general,

non-symmetric case of TSΣ

Definition 3.45. Let (N,≥) be the transition system with states in N, and a

transition n
σ−→ m (for all σ) if and only if n ≥ m.

Let (N,≥) be the full subsystem of (N,≥) on the states 0, 1, . . . N .

Proposition 3.46. Suppose A is finite and there is an embedding (i.e. a mono-

morphism) h : A → (N,≥). Then any transition f
σ−→ g between parallel morphisms

f, g : A → B factors into a spider sequence of morphisms.

51

Proof. Label the vertices of A according to their image under h. This gives a

total order on A that respects transitions. That is, if x
σ−→ y then h(x) ≥ h(y).

So we may take fi to act as g on those x with h(x) < i, and as f on the x with

h(x) ≥ i. Each fi will be a morphism, for, following the proof of Proposition 3.44,

if x
σ−→ y then we never fall into the problematic h(x) < i ≤ h(y) case.

3.4 Simulations and the category TSS

In this section, we will introduce the “simulation category” TSSΣ, and investigate

some elementary properties. In particular, we will be thinking of this category as

a relational verson of TSΣ, playing a role analogous to Rel and Set.

Definition 3.47. The category TSSΣ has the same objects as TSΣ: transition

systems over the alphabet Σ.

The morphisms R : A → B are the simulations.

The first line of agreement with Rel is the following result.

Proposition 3.48. The product and coproduct are both given by the disjoint

union.

Proof. Let A,B be transition systems. We are familiar with A ⊔ B. We have the

obvious injections iA : A → A⊔ B and projections πA : A ⊔ B → A (and likewise

for B). It is not hard to verify that these are indeed simulations.

Suppose we have maps A R←− C S−→ B. The pairing ⟨R, S⟩ : C → A ⊔ B is given

by

c⟨R, S⟩a ⇐⇒ cRa for a ∈ A

c⟨R, S⟩b ⇐⇒ cSb for b ∈ B

This is a simulation, because if c⟨R, S⟩x and c
σ−→ c′ then we may assume

without loss of generality that x = a ∈ A, and hence cRa. Because R is a

simulation, we can recreate the transition c
σ−→ c′ in A. That is, there exists an a′

with a
σ−→ a′ and c′Ra′. But then c′⟨R, S⟩a′. So we see that ⟨R, S⟩ is a simulation.

We also have that ⟨R, S⟩πA = R. To see this, note that c⟨R, S⟩πAa if and only

if there exists an x ∈ A ⊔B with c⟨R, S⟩x and xπAa. The second condition holds

52

if and only if x = a, so we deduce that

c⟨R, S⟩πAa ⇐⇒ c⟨R, S⟩a

⇐⇒ cRa

It is not hard to see that ⟨R, S⟩ is the unique morphism that makes the product

diagram commute. So the product of A,B is the disjoint union. We now look at

the coproduct.

If we have maps A R−→ C S←− B then we define the copairing [R, S] : A ⊔ B → C
by

a[R, S]c ⇐⇒ aRc

b[R, S]c ⇐⇒ bSc

To check that this is a simulation, suppose that a[R, S]c (that is, aRc) and

a
σ−→ a′. Because R is a simulation, we have a c′ with c

σ−→ c′ and a′Rc′—but this

implies that a′[R, S]c′.

The argument that that [R, S] is the unique morphism to make the coproduct

diagram commute is very similar to the product case.

Of course, we can still form the the tensor product of transition systems A×B.

Proposition 3.49. The tensor product is symmetric monoidal.

Proof. Consider the map ⊗ : TSSΣ×TSSΣ → TSSΣ that sends a pair of systems

A,B to their tensor product A⊗ B (this is the same as in TSΣ, but we will use

⊗ to avoid confusion with the categorical product, i.e. the disjoint union). We

will first show that this extends to a functor. The proof is routine.

Let R : A → X and S : B → Y be simulations. The product relation is given

by

(a, b)(R⊗ S)(x, y) if and only if aRx and bSy.

So suppose that (a, b)
σ−→ (a′, b′) (that is, we have transitions on both components),

and (a, b)(R⊗S)(x, y). Since R and S are simulations we can find simulate a
σ−→ a′

and b
σ−→ b′ at x and y respectively, with x′ and y′. Then of course, (x, y)

σ−→ (x′, y′)

and (a′, b′)(R⊗ S)(x′y′).
The unit of the product is the reflexive dot.

53

The associator, swap, and unitors are precisely the same as in Rel. We simply

need to verify that they are actually simulations. The required diagrams and

naturalities will come for free.

Consider S : A ⊗ B → B ⊗ A defined by (a, b)S(b, a) for all a, b. If we have

(a, b)
[−→ σ](a′, b′) and (a, b)S(x, y) then it is clear that (x, y) = (b, a), and we can

complete the square with (b′, a′). We should also verify that the inverse (in Rel)

is a simulation. But the inverse to S is simply the reverse of S. This tells us that

S is actually a bisimulation. It is similarly easy to check that the other relations

are also simulations.

We know that Rel is actually symmetric monoidal closed under ⊗: the

internal hom is also ⊗. This does not hold in TSSΣ. Consider the following

counterexample.

Let A = 0→ 1, and B = C = 0 1 (all states are irreflexive). The products

A⊗B and B ⊗ C have no transitions. We see that the homset A → B ⊗ C has

exactly five members: the empty simulation, and for each of the four states x of

B ⊗ C we have the simulation that matches 1 to x. On the other hand there are

28 simulations A⊗B → C: the source has no transitions, so every relation on the

underlying sets is a simulation.

So the homsets TSSΣ(A⊗ B, C) and TSSΣ(A,B ⊗ C) are not isomorphic.

A further point of disagreement is the fact that Rel is self-dual, whereas the

opposite of a simulation will not in general be a simulation. In fact, Rop is a

simulation precisely if R is a bisimulation. This suggests that the subcategory of

transition systems and bisimulations might be a better analog for Rel.

3.5 Simulations via monads

In the previous section we defined the simulation category TSSΣ from first

principles. We shall now see how to construct it starting from the more primitive

category TSΣ. The idea is this: we know that the objects of TSΣ are sets with

extra structure (a transition relation), and morphisms are functions that preserve

that structure. Similarly, the objects of TSSΣ are sets with structure and the

morphisms are relations that preserve structure.

Thus the category TSΣ is analogous to Set, while TSSΣ is like Rel. One

delightful connection between Set and Rel is that Rel is the Kleisli category of

the (covariant) powerset monad P on Set. The goal of this section is to construct

54

a monad Sim on TSΣ that will play the role of P—the Kleisli category of Sim

will be TSSΣ.

In fact, the monad Sim will have to be very similar to P . If a Kleisli morphism

(A,R)→ Sim(B, S) is to be equivalent to a simulation (A,R) ↛ (B, S) we can

deduce (by passing through the forgetful functors) that the underlying set of

Sim(B, S) must be P(B), and therefore the action of Sim on morphisms must

also be that of P .
But there is one piece of the puzzle remaining. A functor must have an action

on objects, and an action on morphisms. In this case, the objects are sets with

structure. Therefore the functor Sim shall have to transport this structure also.

Structure on A Structure on P(A)

In other words, the functor Sim is built by combining the powerset functor P with

a “magic ingredient”: a suitably well behaved mapping of transition relations on

A to transition relations on P(A).

Sim = P + “magic ingredient”

sets and functions structure

We examine the details and general theory of these sorts of structural mappings

in Chapter 5 For now, we will concentrate on the concrete example of Sim. In this

case, the type of mapping we are looking for is a function (that we will call
−→
P)

from transition relations on A to transition relations on P(A). By “well behaved”,

we mean two things.

1. The Sim construction must not interfere with morphisms. That is, if f :

(A,R)→ (B, S) is a transition preserving function, then Pf : (PA,
−→
P (R))→

(PB,
−→
P (S)) must also preserve the transitions of SimA = (PA,

−→
P (R)).

2. The Kleisli morphisms must be simulations. A transition preserving function

A→ SimB must encode a simulation A↛ B, and vice versa.

To avoid notational confusion, we shall try to use Sim to refer only to the

entire functor on TSΣ. The component actions on sets of states, morphisms, or

transition relations will be denoted by P , P , and
−→
P respectively. Hence we shall

55

have

Sim = P +
−→
P .

Definition 3.50 (Sim). Let (A,R) be a transition system. The associated

simulation space is a transition system where

• the set of states is P(A), and

• the transition transition relation
−→
P (R) : P(A) ↛ P(A) is defined labelwise

by U
σ−→ V if and only if the following condition holds:

for all u ∈ U there exists a v ∈ V such that u
σ−→ v. (Sim rule)

We can extend this construction to act on morphisms also. Let f : A→ B be a

morphism. We will take Sim f : Sim(A,R)→ Sim(B, S) to be the direct image

P(f) : P(A)→ P(B). Therefore we have defined a functor Sim on TSΣ.

It is of course necessary to verify that P(f) is indeed a morphism (it preserves

transitions). To that end, let f : (A,R) → (B, S) be a morphism of transition

systems. Suppose we have U
σ−→ V . We need to show that Pf(U) σ−→ Pf(V). Let

x = f(u) ∈ Pf(U). By assumption, there is a v ∈ V with u
σ−→ v. Therefore

f(u)
σ−→ f(v) (because f is a morphism), and certainly f(v) is in Pf(V).

Note that this is all we need to show to deduce that Sim is a functor. The

other functor laws—Sim(id) = id and Sim(g ◦ f) = Sim(g) ◦ Sim(f)—follow for

free, by Remark 3.9. The action of Sim on the underlying sets and functions is

precisely that of P on Set (in other words, the diagram in Fig. 3.10 commutes),

which we know is a functor.

TSΣ Set

TSΣ Set

UΣ

Sim P

UΣ

Figure 3.10

The intuitive interpretation of the lifted transition relation Sim(R) : PA↛ PA
is that a subset U can transition to a subset V if V is “reachable” from U—no

56

U

u1

u2

u3

V

v1

v2

v3

Figure 3.11: An instance of U −→ V

matter which point in U you start at, you are able to make a transition that leads

you to somewhere in V . This is depicted in Fig. 3.11.

Observing that the functorial properties of P can be lifted to Sim “for free”,

one might wonder whether we can do the same for any other properties of P . In
particular, we would like to give Sim the structure of a monad. There is really

only one good choice.

Proposition 3.51. The triple (Sim, ηP , µP) is a monad on TSΣ.

Proof. We will first show that ηP and µP are morphisms of transition systems.

Let (A,R) be a transition system.

• (ηP). Suppose that a
σ−→ a′ in A. By definition, this implies that {a} σ−→ {a′}

in Sim(A). Therefore ηP preserves transitions.

• (µP). Suppose that F
σ−→ G in Sim(SimA). We wish to show that µPF

σ−→
µPG in SimA. So, let a ∈ µPF , which means a ∈ U ∈ F . By F σ−→ G, we

can find a V ∈ G with U
σ−→ V . And, since a ∈ U , we can find an a′ ∈ V

with a
σ−→ a′. Now, because a′ ∈ V ∈ G, we may deduce that a′ ∈ µPG, and

hence µP also is a transition preserving function.

Note that the monad laws and the naturality of ηP and µP come for free, by

Remark 3.9.

57

The following result is a variation of a proposition found in [39]. Malacaria

uses a slightly different definition of a simulation, which requires that every state

in the source system be related to at least one state in the target system. Hence

his version of the Sim monad is built on the non-empty powerset functor P≥. The

proof below provides some additional detail that is not found in [39], and a more

abstract setting that will be generalised in Chapter 5.

Theorem 3.52. The Kleisli category of Sim is equivalent to TSSΣ.

Proof. Note that the categories TSΣ and TSSΣ have exactly the same objects: it

is the morphisms that differ. We will show that for transition systems A and B,

the morphisms A→ SimB are in bijection with the simulations A→ B. This is

all that will be necessary—we do not need to concern ourselves with showing that

the Kleisli composition of morphisms is the same as composition in TSSΣ, or that

the unit of the Sim monad is the identity—this all follows from the facts that:

1. TSΣ is concrete over Set,

2. TSSΣ is concrete over Rel, and

3. Rel is the Kleisli category of P on Set

And in fact, Item 3 tells us that the functions of underlying sets A→ P(B)
are in bijection with the relations A ↛ B. So all we need to verify is that this

bijection restricts to edge-preserving functions and simulations.

The construction is as follows. For a function of carrier sets f : A → P(B),
the corresponding relation φ(f) : A↛ B is given by φ(f) = f∗, with

(a, b) ∈ φ(f) iff b ∈ f(a),

and for a relation Z : A↛ B, there is a function ψ(Z) : A→ P(B) defined as

ψ(Z)(a) = {b ∈ B : (a, b) ∈ Z}.

Let f : A→ B be a morphism of transition systems. We require that φ(f) is

a simulation. So, let a
σ−→ a′ and (a, b) ∈ φ(f). This means that b ∈ f(a). Since f

preserves transitions, we can deduce that f(a)
σ−→ f(a′) in SimA, so every element

of f(a)—and in particular, b—can transition to an element of f(a′). Hence there

exists a b′ with b
σ−→ b′ and (a′, b′) ∈ φ(f). Thus φ(f) is a simulation.

58

On the other hand, let Z be a simulation A ↛ B. We will show that ψ(Z)

preserves transitions. Suppose that a
σ−→ a′, and let b ∈ ψ(Z)(a), so (a, b) ∈ Z. By

assumption we can find a b′ with b
σ−→ b′ in B, and (a′, b′) ∈ Z. Since we can find

such a b′ for any b, we can deduce ψ(Z)(a)
σ−→ ψ(Z)(z′), as desired

We have seen that we can combine the powerset functor with an appropriate

choice of “magic ingredient” (an action
−→
P on transition relations) to produce a

functor Sim on TSΣ. The mapping
−→
P is sufficiently “nice” that not only do we

get a functorial structure “for free”, but we get a monad structure (using just

the same monad components of P) for free also. The Kleisli morphisms of Sim

are relations (because the “base monad” is P) that preserve structure, due to the

behaviour of
−→
P .

As we have seen, there are two different ways to “flip” the notion of a simulation.

We can flip horizontally, and end up with cosimulations, or vertically and end up

with reverse simulations.

We might now ask: Can we use the same recipe with a different “magic

ingredient” to produce monads that encode some of these other types

of simulations?

And indeed, we can. The strategy is as follows:

1. Since a reverse simulation is just a simulation “in the opposite direction”,

we will define
←−
P to be the opposite of

−→
P .

2. A double simulation is a simulation and a reverse simulation, we will combine
←−
P and

−→
P to produce DSim.

Just like before, we will see that the functoriality and the monad laws for RevSim

and DSim come “for free”. All we will need to verify is that the components are

actually morphisms in TSΣ.

Definition 3.53 (RevSim,DSim). Let R be a transition relation on a set A. We

define the transition relation
←−
PR labelwise on P(A) by saying U

σ−→ V if and only

if:

for all v ∈ V there exists a u ∈ U such that u
σ−→ v (CoSim rule)

Therefore there is a functor RevSim : TSΣ → TSΣ that sends

• transition systems (A,R) to (PA,
←−
PR), and

59

• morphisms f : A→ B to Pf .

There is also a functor DSim on TSΣ that sends

• transition systems (A,R) to (PA,
−→
PR ∩

←−
PR), and

• morphisms f to Pf .

As in the case of Sim, we need to verify that these functors preserve morphisms.

So let f : (A,R)→ (B, S) be a morphism in TSΣ. We will show that the direct

image function Pf is a morphism RevSimA → RevSimB and also DSimA →
DSimB.

The following result will be useful. It encodes the fact that a double simulation

is merely a relation that is a simulation and a reverse simulation.

Lemma 3.54. Suppose A and B are transition functions, and g is a function of

underlying sets A→ P(B). If g is a morphism A→ SimB and A→ RevSimB

then it is also a morphism A→ DSimB.

• (RevSim). Let U
σ−→ V in RevSimA. Do we have Pf(U) σ−→ Pf(V)? Well,

let y ∈ Pf(V). Therefore we can write y = f(v) for some v ∈ V , and by

assumption there is a u ∈ U with u
σ−→ v. Since f preserves transitions, we

can take x = f(u) ∈ Pf(U) and deduce that f(u)
σ−→ f(v), which is what

we needed.

• (DSim). This follows from Lemma 3.54.

We can lift the monad structure of P to RevSim and DSim, just as we did for

the functor Sim.

Proposition 3.55. The triple (RevSim, ηP , µP) is a monad on TSΣ, as is

(DSim, ηP , µP).

Proof. As in Proposition 3.51, we will show that ηP and µP are transition pre-

serving for RevSim. The case of DSim will follow by Lemma 3.54.

Let (A,R) be a transition system.

• (ηP). Suppose a
σ−→ a′. We need to show that ηP(a)

σ−→ ηP(a′) in RevSimA.

This is certainly true, as ηP(a′) = {a′} is a singleton, and a ∈ {a} = ηP(a)

witnesses ηP(a)
σ−→ ηP(a′).

60

• (µP). Suppose F
σ−→ G. Ge want µPF

σ−→ µPG. So let y ∈ µPG, which

means y ∈ V for some v ∈ G. By F
σ−→ G we find a U ∈ F with U

σ−→ V

(in RevSimA), which further implies that there is an x ∈ U with x
σ−→ y.

Therefore x ∈ µPF , as desired.

The final step is to verify that Kleisli morphisms into RevSim really are reverse

simulations. The proof will be symmetric to the Sim case.

Theorem 3.56. The Kleisli categories of the TSΣ-monads Sim, RevSim, and

DSim are:

Sim TSSΣ

RevSim Transition systems with reverse simulations
DSim Transition systems with double simulations

Proof. We shall prove that a Kleisli morphism for the RevSim monad is equivalent

to a reverse simulation. The corresponding result for bisimulations will follow.

Let f : A → RevSimB be a morphism of transition systems. We want

to show that φ(f) is a reverse simulation. Therefore let a
σ−→ a′ in A, and

(a′, b′) ∈ φ(f). This means that b′ ∈ f(a′). Since f is transition preserving we

deduce f(a)
σ−→ f(a′), and by the transition condition in RevSimB, we can find

an appropriate b ∈ f(a) with b σ−→ b′. This completes the square.

On the other hand, let Z : A↛ B be a reverse simulation. We show that ψ(Z)

is transition preserving A→ RevSimB. Let a
σ−→ a′. We need ψ(Z)(a)

σ−→ ψ(Z)(a′)

in RevSimB. So let b′ ∈ ψ(Z)(a′). This means that (a′, b′) ∈ Z. As Z is a reverse

simulation, we can find an b with b ∈ ψ(Z)(a) and b σ−→ b′. This completes the

proof.

61

Chapter 4

In search of generality

In the preceding chapter we saw a detailed and comprehensive account of several

related categories of “näıve” transition systems. We defined the category TSΣ, and

performed some elementary constructions. In particular we exhibited a Cartesian

closed structure, and an interpretation of “transitions between morphisms (or

functions” as (discrete, directed) homotopies.

In the latter half of the chapter we switched focus to various categories of

simulations (and reverse simulations and double simulations), and exhibited that

the category of transitions systems with simulations TSSΣ can be expressed as

a Kleisli category of the Sim monad on TSΣ. The subsequent chapters of this

thesis generalise this construction to different sorts of transition systems. There

are, ultimately, two parts to this task.

1. Defining a more general sort of “category of transition systems”(with

transition-preserving functions as morphisms) that subsumes the category

TSΣ.

2. Constructing Sim-like monads on this category.

Firstly, we shall need to define the categories of transition systems we are

interested in. Here we shall follow the “coalgebraic perspective” [2, 50, 37, 45].

A review of this material can be found in Section 4.1. In essence, an unlabelled

non-deterministic transition system on a set of states A can be considered as a

P-coalgebra, α : A→ PA. By replacing the monad P with an arbitrary monad

T , we can view T -coalgebras as transition systems of transition type T .

There is a natural notion of a morphism of coalgebras, and hence for every

functor T there is a canonical category of T -coalgebras, Coalg(T). This turns

62

out to be too strict for our purposes. In the case of T = P, the P-coalgebra
morphisms are in fact functional bisimulations of transition systems, not merely

transition-preserving functions [29].

For this reason, we will need to consider instead the category of T -coalgebras

with what are essentially the lax cohomomorphisms of Corradini et al. [15].

Although the presentation of [15] is in terms of “order-enriched” functors T ,

we shall instead consider the case of a monad T with a Pos-enriched Kleisli

category CT . In Section 4.2 we define and elaborate upon some essential notions

of Pos-enrichment (fundamentally according to Kelly [30]).

At this point, we are be able to define, for any suitable monad of transition

T , a category of T -transition systems—the objects are T -coalgebras, and the

morphisms are lax cohomomorphisms. In particular, we recover the category TS

by taking T = P .
The second task is understanding the construction of the Sim monad in terms

of a category of P-coalgebras.
The monad Sim can be decomposed in the following way.

1. on the set of states A it acts like P

2. on the morphisms, f : A→ B, it acts like P

3. on the transition relation α : A↛ A, it lifts α to a transition relation P+(α)

on PA

Components 1 and 2 are simply the components of the standard covariant

powerset functor on objects (sets) and morphisms (functions). It is component 3

that is interesting, because by keeping components 1 and 2 constant and swapping

out component 3 for a different action Rel(A,A)→ Rel(PA,PA), we arrive at

the related monads RevSim and DSim.

The three monads Sim,RevSim and DSim are built on the same basic monad

of simulation, which in this case is also P. The final “magic ingredient” is

a sufficiently well-behaved mapping of transition relations on A to transition

relations on P(A). The construction of these monads is “modular”, because a

different choice of magic ingredient will lead to a different type of simulation

63

monad.

Component Type Action of Sim

set of states Set→ Set A 7→ P(A)
morphisms Set(A,B)→ Set(PA→ PB) f 7→ P(f)

transition relations
Rel(A,A)→ Rel(PA,PA)

α 7→ P+(α)
Set(A,PA)→ Set(PA,PPA)

In a more general setting, we might try something like this. Let (T, ηT , µT)

be a monad of transition on a base category C. If the Kleisli category CT is

Pos-enriched, we have a decent notion of a category of T -transition systems with

transition preserving morphisms. Let (S, ηS, µS) be another monad on C. A

“magic ingredient” in this context would be a mapping S that turns a system

α : A→ TA into a system Sα : SA→ TSA.

When S can be endowed with the structure of a monad S, ηS, µS) on the Kleisli

category CT it is known as an extension of the monad (S, ηS, µS) to CT . These are
known to be in correspondence with monad distributive laws of S over T , which

are natural transformations λ : ST → TS that satisfy four conditions: the ηT and

µT laws, and the ηS and µS laws. It is the former pair of T -laws that make the

extension S a functor. The latter S-laws correspond to the naturality conditions

for (S, ηS, µS). This idea is essentially due to Beck [7], but a good presentation of

this correspondence can be found in [25].

Various weakenings of these conditions exist in the literature. Garner and

Goy [25, 23] have studied weak distributive laws, which ignore the ηS condition.

The consequence is that the extension S does not have a natural transformation

ηS. Garner gives a correspondence theorem between weak extensions and weak

distributive laws in [23].

A further weakening is that of a functorial extension (the terminology of a

“functorial extension” is novel to this thesis, but such examples have been studied

before, by [11] e.g.). A functorial extension of S to CT is simply a functor S on

CT that satisfies the requirement that S(ηT ◦ f) = ηT ◦ Sf for any C-morphism f .

These are in correspondence with a suitably weakened version of distributive laws

(ignoring the ηS and µS laws).

However, the mapping P+ is emphatically not an extension of the powerset

monad to Rel, nor is it even a functorial extension of P. The proper notion, it

64

turns out, is that of a lax extension, which consists of a lax functor S on CT , and on

the other hand, lax distributive laws. Lax distributive laws of the form SQ→ QS,

where Q is the monad of a quantale, have been studied by Tholen and others in

the context of monoidal topology. Tholen provides a lax correspondence theorem

in [53]. In Section 4.4 a generalisation of this result is given (Theorem 4.28),

providing a correspondencence theorem for the case where T is merely a monad

with a Pos-enriched Kleisli category.

At this point, we have a slight mismatch. The construction of Sim comes

from a lax extension of P to Rel. The extension P+ is not a monad on Rel,

because the components ηP ◦ ηP and ηP ◦µP are not natural transformations. But

(Sim, ηP , µP) is a monad on TSΣ. There is something else going on here.

In the general case of a monad (T, ηT , µT) and a lax extension S of a monad

(S, ηS, µS), we will construct a monad S on the lax category of T -coalgebras (these

are T -transition systems). The action of S on a coalgebra α : A→ TA will be

Sα : SA→ TSA,

whereas for lax cohomomorphisms f : α→ β, S will act as S:

S(f) = Sf : SA→ SB.

Mirroring the definition of Sim, the components of the monad S will simply

be the components of S: (S, ηS, µS). In order for this to actually be a monad,

we require that ηS and µS are natural transformations, and that the monad laws

hold. But as the lax T -coalgebra category is concrete—that is, morphisms of

T -coalgebras are merely morphisms in the underlying category that satisfy an

extra condition—we can deduce these for free.

The only thing we have to worry about is whether the components of (S, ηS, µS)

are actually lax cohomomorphisms. Strikingly, this happens precisely when a

laxened version of the ηS and µS axioms for distributive laws holds.

One might conjecture a correspondence theorem between lax monad dis-

tributive laws and monads on the lax category of coalgebras. Unfortunately we

cannot deduce the ⇐ direction. The category of coalgebras is not large enough.

A monad (S, ηS, µS) on this category will only give us the values of S on the

endomorphisms of CT , because these are the transition morphism components

of T -coalgebras. In order to recover the full data of the lax functor S on CT

65

from a transition system monad (S, ηS, µS) we need to consider a horizontal

categorification of the the category of coalgebras.

The categorical formulation borrows from the realisation ([21]) that determin-

istic and partial transition systems with labels in Σ may be considered as actions

of the word monoid Σ⋆. In particular, the natural notion of a morphism of monoid

actions corresponds exactly to a transition preserving function. We take the

liberty of generalising the notion of a monoid action—a monoid morphism into

the endomorphism monoid Set(A,A)— as monoid morphisms into the Kleisli

endomorphism monoid CT (A,A). Importantly, a morphism of T -actions remains

in the base category, and not in the Kleisli category.

From here a horizontal categorification into the category of lax functors into

CT is the next step. As this construction is arbitrary in the source category,

we actually have a (contravariant) functor T -Act(−) from the category of Pos-

enriched categories into Cat. We are then able to state and prove a correspondence

theorem identifying monads S on this functor with lax monad distributive laws

ST → TS.

A crucial intermediate step is a restricted correspondence theorem, which

is a sort of Yoneda result. There is a correspondence between mere natural

transformations on the T -action functor and functorial lax distributive laws

ST → TS.

4.1 Thinking with coalgebras

Up till now, we have been working with non-deterministic transition systems with

labels in a set Σ. We have been presenting such transition systems as comprising

• a base set A, and

• a transition relation R ⊆ A× Σ× A

An example of a non-deterministic system over the alphabet Σ = {a, b, c}
is found in Fig. 4.2a (with set of states A = {x, y, z}). The first problem we

encounter is that the explicit notion of simulation (and morphism) is, in many

contexts, too strict.

Example 4.1. This example is adapted from [34]. Consider the two probablistic

transition systems depicted in Fig. 4.1. The edges are labelled by elements of the

66

p1 p2

x

y
z

r

s

1
3

1
3

1
3

2
3

1
3

Figure 4.1: A simulation of probablistic systems?

interval [0, 1], such that the sum of the outgoing edges is equal to 1 (by convention,

the lack of any outgoing edges at x indicates that x
1−→ x, and likewise for the

other leaf states).

The dashed lines depict a probabilistic bisimulation—a notion introduced

in [34]. The essence is that the x and y are both related to r, and hence the

cumulative probability of starting at p1 and ending up at either x or y must be

equal to the probability of transitioning from p2 to r:

1

3
+

1

3
=

2

3
.

But, if we were to envision these systems in the simple framework described

above, as transition systems with labels in the set Σ = [0, 1], the relation depicted

is certainly not a bisimulation—it is not even a simulation!

To see this, we may form the corner

p1 p2

x

1
3

Now, if we wish to complete the square, we will need to find a state q with x 99K q

and p2
1
3−→ q. But no such state exists: the only state that is related to x is r, and

we do not have a transition p2
1
3−→ r, rather we have p2

2
3−→ r.

The point of this example is that the presented notion of simulation is too

strict—it does not allow us to express all of the types of simulations that exist and

have found use “in the wild”. We can see that probabilistic transition systems (and

probabilistic bisimulations) are not merely non-deterministic systems with labels

67

in Σ = [0, 1]. The desired behaviour of probablistic systems and bisimulations—

encoding notions of cumulative probability—cannot be expressed in the näıve

framework. In order to have a good categorical understanding of these sorts of

systems, we need a different formulation.

One approach is to view a transition system as a coalgebra for a functor of

transition T . Traditionally, T is a functor on Set, but there is, in principle, nothing

wrong with considering functors on a different base category C (for example, a

category of domains [46, 16], or Stone spaces [22, 8]).

Some functors that appear in the literature are listed below.

Example 4.2. The trivial functor T = Id, which is the type of deterministic

transition systems

Example 4.3 ([16, 6]). When T = D, we get probablistic transition systems.

Example 4.4 ([29, 2]). We can take T = P , as well as variations like Pf , or P≥.

These functors encode non-deterministic branching. They can also be combined

with other functors, as in Examples 4.5 and 4.6.

Example 4.5 ([37]). The functor T = PMaybe is the type of transition systems

with divergence.

Example 4.6 ([25, 29]). The functor TP(Σ × −) is the type of labelled non-

deterministic systems.

Example 4.7 ([12, 10, 43]). If T = PS, then T -coalgebras are weighted automata

with weights in a semiring S.

When T is a transition functor on Set, a T -coalgebra consists of a set of

states A, and a transition function α : A→ TA. For every state a ∈ A, the value

α(a) ∈ TA is called the successor of a.

• When T = Id, the successor of a is a unique state α(a) ∈ A.

• When T = D, the successor of a is a distribution on A

• When T = P , the successor of a is in fact a set of successors, α(a) ⊆ A.

• When T = PS, the successor of a is an S-valued subset of A.

68

x

y z

a a, b

c
c

a

(a) Non-deterministic

x

y z

0.3 0.5

1
1

0.2

(b) Probablistic

x

y z

1 5

3
2

1

(c) Weighted (in N, perhaps)

x

y z

ε a⋆

a|ab
ac|c⋆

ε|c

(d) Generalised NFA

Figure 4.2: Some diverse transition systems

69

The category of coalgebras provides a natural notion of a morphism of transition

systems. Recall Definition 2.12. If α : A→ TA and β : B → TB are T -coalgebras,

then a coalgebra morphism f : α→ β consists of a function f : A→ B such that

the diagram below commutes.

A B

TA TB

f

α β

Tf

This has an intuitive interpretation in terms of transition systems. The diagram

depicts two functions A→ TB, i.e. from states of A to successors in B. In order

for it to commute, they must have equal values for all states a. The first is Tf ◦α,
which is essentially “f applied to all the successors of a”. The other is β ◦f , which
we can think of as “the successor of f(a)”.

• When T = Id, f is a coalhebra morphism precisely when f(α(a)) = β(f(a)).

That is, when the unique successor of f(a) is equal to the image under f of

the successor of a.

• When T = D, the condition for f becomes Df(α(a)) = β(f(a)). The

successors are distributions over states of B. In order for this equality to

hold, we require that for every state b,∑
a′∈f−1(b)

α(a, a′) = β(f(a), b).

This is a very strict condition. It says that the probability of transitioning

from f(a) to b is equal to the combined probability of transitioning from a

to a preimage of b. A more natural condition would be∑
a′∈f−1(b)

α(a, a′) ≤ β(f(a), b),

which is equivalent to

α(a, a′) ≤ β(f(a), f(a′)) (4.1)

for all a, a′. This expresses the requirement that the image of every transition

f(a) −→ f(a′) must be at least as likely as the original transition a −→ a′ in

A.

70

• When T = P , the coalgebra morphisms are in fact the functional bisimula-

tions. That is, they are the functions that preserve and reflect transitions.

Remark 4.8. A standard approach to handling labelled transition systems (with

labels in a set Σ), is to treat them as coalgebras for the functor P(− × Σ).

According to this understanding, a transition system comprises a set A and a

transition function α : A → P(A × Σ). For every state a, the successor value

α(a) ⊆ A× Σ consists of pairs (a′, σ), indicating transitions a
σ−→ a′.

However, we find the alternate type signature of Σ→ (A→ PA) more useful.

This perspective essentially abstracts away the labelling, recognising a labelled

system as a family of P-systems. In fact, this family of transition relations

(indexed by the elements of Σ) induces a monoid homomorphism Σ⋆ → Rel(A,A).

We will expand on this perspective in Chapter 6.

4.2 A lax setting

The discussion above shows that the equality of morphisms that is expressed

by the coalgebra morphism condition is too strict. Rather than expressing

“edge preserving functions”, we end up with functions that preserve and reflect

transitions. In order to be able to express just one of these conditions, we require

the structure of a category where the morphisms are “comparable”, that is, instead

of a mere hom-“set” of morphisms A→ B, we have a hom-“poset”. The setting

of enriched category theory [30] will be suitable.

Let C be a category. We briefly recall the cateogorical product in Pos. If

(A,≤) and (B,≤) are two posets, the product A ∧ B is given by the following

ordering on A×B:

(a, b) ≤ (a′, b′) ⇐⇒ a ≤ a′ and

b ≤ b′

Definition 4.9. A Pos-category (C,≤) consists of a category C and and a partial

order ≤ on every every hom-set of C. We also require that composition is a

morphism (i.e. monotone function) C(B,C) ∧ C(A,B)→ C(A,C) in Pos.

If (C,≤) is a Pos-category, we can say that ≤ is a Pos-enrichment, or an

enrichment in the category Pos of C. When the enrichment component ≤ is clear

71

from context, we may refer to the Pos-category (C,≤) as merely C. This is a mild

abuse of notation.

Explicitly, the requirement that composition is monotone means that if we

have two pairs of parallel morphisms f, f ′ : A→ B and g, g′ : B → C with f ≤ f ′

and g ≤ g′ we may deduce that

g ◦ f ≤ g′ ◦ f ′. (4.2)

Remark 4.10. If we have two parallel morphisms f, f ′ : A→ B in a Pos-enriched

category C with f ≤ f ′, we can say that f is included in f ′, or that there is an

inclusion f ≤ f ′, or that f is extended by f ′.

We may also draw diagrams. For example, the diagram below on the left

indicates that there is an inclusion of g ◦ p into q ◦ f .

A B B E

C D D F

f

p q

s

q r

g t

One consequence of working in a Pos-enriched category is that we are able to

combine such diagrams by pasting. If we have additionally the diagram above on

the right, witnessing the inclusion t ◦ q ≤ r ◦ s, we can paste the two side-by-side

to form the composite diagram

A B E A E

=

C D F C F

f

p q

s

r p

s◦f

r

g t t◦g

The correctness of this diagram (i.e. the existence of the inclusion t ◦ g ◦ p ≤
r ◦ s ◦ f follows from the component diagrams and Eq. 4.2.

t ◦ (g ◦ p) ≤ t ◦ (q ◦ f)

= (t ◦ q) ◦ f

≤ (r ◦ s) ◦ f

Naturally, we may also paste inclusion diagrams vertically.

72

Let (C,≤C) and (D,≤D) be two Pos-categories. We will consider the structure

of functors between these categories. There are several interesting variations

of what a “functor between Pos-categories” could be. In every case, a functor

F : (C,≤C) and (D,≤D) will consist of the same data as a functor on the underlying

categories F : C → D, that is:

• for every object A of C, an object FA of D,

• for every morphism f : A→ B of C, a morphism Ff : FA→ FB in D,

Now, there are three conditions that may or may not be satisfied.

1. The lax F -id condition says that for every object A, there is an inclusion

idFA ≤D F (idA). If in fact there is an equality idFA = F (idA) we say that

F -id. holds strictly.

2. The lax F -comp condition says that for every composable pair of morphisms

f : A→ B and g : B → C, we have F (g) ◦ F (f) ≤D F (g ◦ f). Again, if the
inclusion is an equality, then we say that this condition holds strictly.

3. The F -mono condition says that if we have f ≤ f ′ : A → B then Ff ≤
Ff ′ : FA→ FB.

Definition 4.11. Let F be a mapping of objects and morphisms C → D that

satisfies F -mono.

1. If F also satisfies (F -id) and (F -comp.) laxly then we will call F a lax

Pos-functor. This is the most relaxed sort of functor we will consider.

2. If F satisfies (F -id) laxly and (F -comp.) strictly, then we will say that F is

a semilax Pos-functor.

3. If F satisfies both (F -id) and (F -comp.) strictly, then F is a strict Pos-

functor.

Note that it is possible for a lax functor to satisfy (F -id) strictly and (F -comp.)

only laxly. But this is not of particular interest to us, so we will not give this case

a special name.

These naming conventions are summarised in Table 4.1.

73

F -id F -comp Type of Pos-functor

lax lax lax
lax strict semilax
strict strict strict

Table 4.1: A taxonomy of Pos functors

Example 4.12. Let C be any category. Then we can endow C with the trivial, or

discrete Pos-enrichment, =. The only inclusions of f into g are when f and g are

identical.

The collection of small Pos-categories forms a category itself. In the most

general setting the morphisms will be lax Pos-functors, but we can pick out the

wide subcategories of semilax and strict Pos-functors.

Definition 4.13. There is a category PosCatlax whose

• objects are categories enriched in Pos, and

• morphisms are lax Pos-functors.

There are two interesting wide subcategories:

1. The category PosCatsemi has the same objects as PosCatlax, and the morph-

isms are the semilax Pos-functors.

2. The category PosCat has as morphisms the strict Pos-functors.

We can endow PosCatlax with higher categorical structure ([36]), but for our

purposes, the 1-categorical structure will be sufficient.

The particular case that will be considered in this thesis is that of a monad

(T, ηT , µT) with a Pos-enriched Kleisli category.

Example 4.14. The following monads admit enriched Kleisli categories.

The Id monad on C admits the trivial Pos-enrichment.

The enrichment for the powerset monad P is essentially given pointwise by ⊆.
For parallel morphisms f, g : A→ P(B), we say f ≤ g if, for all a ∈ A we have

f(a) ⊆ g(a) ⊆ B.

74

There is a Pos-enrichment for the Maybe monad. When f, g : A→ MaybeB, we

have f ≤ g if for all a ∈ A, either f(a) and g(a) are both defined and equal, or

f(a) = ⊥.

When S is a semiring ordered by ≤, this extends pointwise to a Pos-enrichment

on FinRelS.

4.3 Interaction via distributive laws

The simulation monads on TSΣ consist of the powerset functor P applied to

states and morphisms, and a “magic ingredient” that transforms relations on A to

relations on P(A). We shall see that this ingredient is actually a lax distributive

law of type PP → PP . We begin by recollecting the theory of strict distributive

laws.

Definition 4.15. Let T and S be monads on C. A distributive law of S over T

consists a natural transformation λ : ST → TS such that the equations below

hold. These are also depicted graphically in Fig. 4.3.

ηTSA = λA ◦ SηTA (ηT)

ηSTA = λA ◦ TηSA (ηS)

µT
SA ◦ TλA ◦ λTA = λA ◦ SµT

A (µT)

TµS
A ◦ λSA ◦ SλA = λA ◦ µS

TA (µS)

The naturality condition for λ further requires that for every f : A→ B in C we

have

TSf ◦ λA = λB ◦ STf (nat λ)

Definition 4.16. Let (S, ηS, µS) be a monad on C. Recall that a (strict) monad

extension of S over T is a strict monad (S, ηS, µS) on the Kleisli category CT such

that the extension condition holds:

F TS = SF T (ext.)

More concretely, this means that S and S must agree on objects: for all A in

75

STA STB

TSA TSB

λA

STf

λB

TSf

strict (nat λ)

S ST

TS

SηT

ηTS
λ

strict (ηT) law

T ST

TS

TηS

ηST
λ

strict (ηS) law

STT ST

TST

TTS TS

SµT

λT

λ

Tλ

µTS

strict (µT) law

SST ST

STS

TSS TS

µST

Sλ

λ

λS

TµS

strict (µS) law

Figure 4.3: A strict distributive law

C we have

SA = SA,

and that for morphisms f : A→ B we have:

ηTSB ◦ Sf = S(ηTB ◦ f)

Diagrammatically, we require that the diagram below commutes

C CT

C CT

FT

S S

FT

And as a further condition, we require that the unit and multiplication of S

are extensions of the unit and multiplication of S:

ηS = ηT ◦ ηS

µS = ηT ◦ µS

The following is a useful lemma relating mixed compositions in a Kleisli

76

category and in the base category.

Lemma 4.17. Let T be a monad on C. Let f : X → A and h : B → Y be

morphisms in C, and g : A ↛ B be a morphism in CT . Then the following

equations hold:

g • F Tf = g ◦ f : X → TB (4.3)

F Th • g = Th ◦ g : A→ TY (4.4)

Proof. These simply follow from the monad laws.

g • F Tf = µT
B ◦ Tg ◦ ηTA ◦ f

= µT
B ◦ ηTTB ◦ g ◦ f

= g ◦ f

F Th • g = µT
Y ◦ TηTY ◦ Th ◦ g

= Th ◦ g

The following result is well known [23, 25]. We will not give the details of the

proof yet, but we will sketch the constructions. Later on we shall examine precisely

how the various conditions on distributive laws and extensions correspond to each

other in the lax setting.

Lemma 4.18. There is a correspondence between distributive laws λ of S over T

and extensions S of S over T .

Sketch of proof. Let λ be a distributive law ST → TS. We define a functor S on

CT in the following way:

• on objects A, we have SA = SA, and

• on morphisms f : A↛ B we have Sf = λ ◦ Sf : SA↛ SB.

The monad components must be

• ηS = ηT ◦ ηS, and

• µS = ηT ◦ µS.

77

It is necessary to show that S is indeed a functor, that it is an extension of S,

and that the transformations ηS and µS are natural and satisfy the monad laws.

All this does follow from the requirement that λ is a distributive law, but we will

examine how these properties interact in a more granular way in Chapter 5, when

we look at the lax setting.

On the other hand, if S is an extension of S, then we define a distributive law

λ by λA = S(εA) : STA ↛ SA. Again, the required equations can be deduced

from the extension laws, but we will omit this verification for now.

We will, however, verify that these two constructions (from distributive laws

to extensions, and the other way around) are actually inverse to each other. That

is, we will show that

λA ◦ S(εA) = λA (4.5)

S(εB) ◦ Sf = Sf. (4.6)

The first equation follows from the fact that εA = idA : A→ A (in C), and S
is a functor (and hence S(idA) = idSA). We can deduce the second equation from

Lemma 4.17 and the fact that S is an extension of S.

Sf = S(εB ◦ f)

= S(εB • F Tf) (Lemma 4.17)

= S(εB) • S(F Tf) (S is a strict functor)

= S(εB) • F T (Sf) (S extends S)

= S(εB) ◦ Sf (Lemma 4.17)

Remark 4.19. There is a third side to this correspondence: liftings of T to the

Eilenberg-Moore category of S. This is further discussed in [25], but it is not

relevant to the work of this thesis.

4.4 Lax distributive laws

The conditions of a distributive law (and of a monad extension) are quite strong.

Recent work [54, 57] has exhibited “no-go theorems” that prove that there can be

no strict distributive laws of type PP → PP, nor DP → PD, or several other

78

types. Nonetheless, there are several opportunities for weakening the conditions

of distributive laws.

The approach to lax extensions that we shall take differs slightly from what

is found in the literature. The first divergence is that we shall not be interested

in making sure that S is a monad on CT , so we will be ignoring the ηS and µS

laws entirely (these correspond to the monad properties of S). We will also be

interested in the case where S is not a monad at all, but a mere functor on C.
This will be useful when we define certain functors on categories of transition

systems in Chapter 6.

An alternative approach is to allow some of the laws to hold only laxly. Starting

with such a laxened distributive law λ : ST → TS, we could follow the procedure

described in Lemma 4.18 and end up with a mapping S on CT . This mapping

might have various properties:

1. it could be a strict, semilax, or lax functor CT

2. one or both of ηS and µS could be natural transformations

3. one or more of the monad laws for (S, ηS, µS) could be satisfied

There are also various possibilities for how S interacts with S. The extension

condition can be satisfied strictly, or only laxly. This means that instead of

requiring that for every morphism f we have F TSf exactly equal to the image

SF Tf , we have only a lax inclusion. This by itself is quite a weak condition, and

we shall call a functor S with this property a lax pseudo-extension, to emphasize

that this is insufficient for good behaviour. We will introduce two new conditions

that express some further interaction between S and S.

Definition 4.20. Let S be a functor on C, and S a lax functor on CT .

1. We say that S satisfies the lax pseudo-extension condition (with respect to

S) if for every morphism f : A→ B in C

F TSf ≤ SF Tf (lax ext)

This amounts to the lax inclusion in the diagram below.

C CT

C CT

FT

S S

FT

79

2. We will say that S satisfies the lax left whiskering condition if we have, for

every Kleisli morphism p : A↛ B and C-morphism f : B → Y we have

F TSf • Sp ≤ S(F Tf • p) (lax left whisk.)

3. The lax right whiskering condition requires that for p : A↛ B and g : X →
A we have

Sp • F TSg ≤ S(p • F Tg) (lax right whisk.)

These conditions may also hold strictly, if the inclusion is actually an equality.

Note that by Lemma 4.17 the left and right whiskering conditions can be

written as:

TSf ◦ Sp ≤ S(Tf ◦ p) (left)

Sp ◦ Sg ≤ S(p ◦ g) (right)

Proposition 4.21. If S is a strict extension of S then S strictly preserves

identities.

If S strictly preserves identities and satisfies one of the whiskering conditions

strictly, then S is a strict extension.

Proof. Suppose S is a strict extension. Take f = idA to see that

F T (SidA) = S(F T idA)

ηTSA = S(ηTA)

Now suppose that it is the strict right whiskering condition that holds. Let

f : A→ B be a morphism. We see that

SF Tf = SF Tf • η
T
SA

= SF Tf • S(η
T
A) (strict id.)

= S(F Tf • η
T
A) (strict right whisk.)

= S(F Tf)

If instead we have the left whiskering condition, the proof proceeds symmetrically,

80

introducing ηTSA on the left hand side of SF Tf .

The following result is a variation of [53, Proposition 6.3]. It rather simplifies

the situation. In the presence of the lax identity and composition conditions, it

turns out that left-whiskering, right-whiskering, and being a lax pseudo-extension

are all equivalent.

Proposition 4.22. Let S be a lax functor on CT and S a functor on C. The

following are equivalent.

1. S is a lax pseudo-extension

2. S is lax left whiskering

3. S is lax right whiskering

Suppose furthermore that S satisfies one of the whiskering conditions strictly.

Then S is a strict extension of S if and only if S strictly preserves identities.

Proof. • (1 =⇒ 2, 3) Suppose that S is a lax pseudo-extension. Let p be a

Kleisli morphism, and f and g pre- and post-composable C-morphisms. We

then calculate

SF Tf • Sp ≤ S(F Tf) • Sp (pseudo-ext)

≤ S(F Tf • p) (lax comp.)

Sp • SF Tf ≤ Sp • S(F Tf) (pseudo-ext)

≤ S(p • F Tf), (lax comp.)

so the left and right whiskering conditions hold laxly.

• (2 =⇒ 1) Suppose that lax left whiskering holds. By taking p = ηT we

deduce

SF Tf = SF Tf • η
T

≤ SF Tf • Sη
T (lax id.)

≤ S(F Tf • η
T) (lax left whisk.)

= SF Tf,

which shows that S is a pseudo-extension.

81

• (3 =⇒ 1) This case proceeds as above.

If the lax left whiskering condition holds, then we have for any f : B → Y and

p : A↛ B that

F TSf • Sp ≤ S(F Tf • p)

By taking p = ηTB and using the fact that S laxly preserves identities we deduce

F TSf = F TSf • η
T
SB (def •)

≤ F TSf • Sη
T
B (lax id.)

≤ S(F Tf • η
T
B) (lax left whisk)

= S(F Tf) (def •)

The case of the lax right whiskering condition proceeds symmetrically.

For the second claim, suppose without loss of generality that it is the left

whiskering condition that holds strictly. One direction is easy—if S is a strict

extension then by Proposition 4.21 it preserves identities strictly.

On the other hand, suppose that S strictly preserves identities:

ηTSA = S(ηTA).

We use the strict left whiskering condition. Let f : A→ B be a morphism. Then

we have that

F T (Sf) = F T (Sf) • η
T
SA

= F T (Sf) • Sη
T
A (strict id.)

= S(F Tf • η
T
A) (strict left whisk.)

= S(F Tf),

which is the strict extension condition.

There are two other conditions that may be of interest. These may be

formulated when S is not just a functor, but is endowed with the structure

of a monad (S, ηS, µS). These final two conditions will express some interaction

between a lax functor S and the monad components of S.

82

Definition 4.23. Let (S, ηS, µS) be a monad on C, and S a lax functor on CT .

1. The lax ηS condition is satisfied if for every p : A↛ B we have

F Tη
S • p ≤ Sp • F Tη

S (lax ηS)

2. The lax µS condition says that for every p : A↛ B we have

F Tµ
S • SSp ≤ Sp • F Tµ

S (lax µS)

Definition 4.24. Let (T, ηT , µT) be a monad on C, ≤ a Pos-enrichment of CT ,
and S a functor on C. Let S be a lax Pos-functor on CT such that the right

whiskering condition holds strictly We will call S a lax extension of the functor S,

or say that S laxly extends to the lax Pos-functor S.

Furthermore, if S is given the structure of a monad (S, ηS, µS), we will call S

a lax monad extension, or a lax extension of the monad (S, ηS, µS) if additionaly

the lax ηS and lax µS conditions hold.

Remark 4.25. Demanding the right whiskering condition holds strictly seems

ungainly. But this will be necessary to guarantee a good correspondence theorem.

Strict right whiskering means that S is fully determined by the corresponding

distributive law λ: that we have

Sp = λ ◦ Sp

The left whiskering condition—which we get for free by Proposition 4.22, in

the presence of strict right whiskering—will correspond to naturality of λ. When

λ is strictly natural, we shall in fact have strict left whiskering.

Note that by Proposition 4.22 a lax extension always satisfies the pseudo-

extension property.

Definition 4.26. Let (T, ηT , µT) be a monad on C, ≤ a Pos-enrichment of CT ,
and S a functor on C. Let λ be a family of morphisms λA : STA→ TSA.

If λ is a lax natural transformation, and the lax ηT and lax µT laws hold, then

we will call λ a lax functorial distributive law

If (S, ηS, µS) is a monad and the lax ηS and µS laws hold, then we call λ a lax

monadic distributive law.

83

Of course, a lax distributive law may satisfy some of these laws strictly. There

are two additional conditions that are worth considering also.

Definition 4.27. Let λ be a lax distributive law ST → TS.

1. The oplax composition condition requires that for every Kleisli morphism

p : A↛ B there is an inclusion:

µT
SB ◦ TλB ◦ λTB ◦ STg ≤ µT

SB ◦ T λB ◦ TSg ◦ λA

2. We say that λ is monotone if whenever p, q : A→ TB are Kleisli morphisms

with p ≤ q (in CT) we have

λB ◦ Sp ≤ λB ◦ Sq

The oplax composition condition is rather peculiar. It is used to guarantee that

the resulting functor S will have strict composition. Strict composition will always

require the strict µT law, and in addition strict naturality of λ would be sufficient

to give strict composition of S. But there are examples of lax distributive laws λ

that induce strictly composing functors and yet do not satisfy strict naturality.

This the weakest condition on λ that, in the presence of the strict µT law, will

induce strict composition.

The following result and proof is a generalisation of a result that is very lucidly

presented by Tholen in [53, Proposition 6.4].

The result given by Tholen accounts only for case when T = PQ is the

monad of a quantale, and the proof uses the dagger structure of the correspond

Kleisli category. Happily, it can be modified to work in the general case quite

straightforwardly.

Theorem 4.28. Let S be a functor on C. There is a bijective correspondence

between lax monotone distributive laws λ : ST → TS and lax extensions S of the

functor S.

Furthermore, additional properties of λ and S correspond in the following way.

strict nat. λ strict left whiskering

strict ηT strict id. ⇐⇒ strict extension

strict µT and oplax comp. strict comp.

84

STA STA

TSA TSA

λA

STf

λB

TSf

lax (nat. λ)

S ST

TS

SηT

ηTS
λ

lax (ηT) law

T ST

TS

TηS

ηST
λ

lax (ηS) law

STT ST

TST

TTS TS

SµT

λT

λ

Tλ

µTS

lax (µT) law

SST ST

STS

TSS TS

µST

Sλ

λ

λS

TµS

lax (µS) law

Figure 4.4: The lax conditions

If (S, ηS, µS) is a monad then this extends to a correspondence between lax monadic

distributive laws and lax monadic extensions in the following way.

lax/strict ηS law lax/strict ηS condition

lax/strict µS law lax/strict µS condition

Proof. The construction is as detailed in Lemma 4.18.

Note that this correspondence remains bijective even though the proof in

Lemma 4.18 uses the fact that S has strict composition and strictly extends S

to show that Sf = S(εB) ◦ Sf . In fact, these two steps can be combined into

one. It is the right whiskering condition that allows us to go from S(εB • F Tf) to

S(εB) • F T (Sf).

We begin with a lax distributive law λ, and construct S by defining, for

f : A↛ B

Sf = λB ◦ Sf

We will show that S satisfies the strict right whiskering condition, the lax left

whiskering condition, the lax identity, and the lax composition conditions, and is

monotone. This will make S a lax functor that is a lax extension of S.

85

• (strict right whisk.) We get this for free, by definition of S in terms of λ.

For any p and g we have

S(p ◦ g) = λ ◦ S(p ◦ g)

= (λ ◦ Sp) ◦ Sg

= Sp ◦ Sg

• (left whisk.) Note that the lax left whiskering condition corresponds to lax

naturality of λ. Let f : A→ B and p : X ↛ A.

TSf ◦ Sp = TSf ◦ λ ◦ Sp

≤ λ ◦ STf ◦ Sp (lax nat)

= S(Tf ◦ p)

If we have strict naturality of λ, then we may replace the inclusion above

with an equality, and hence deduce strict left whiskering.

• (lax id.) This directly corresponds to the lax ηT law. If the ηT law holds

strictly then S strictly preserves identities. And, by Proposition 4.22, it is a

strict extension of S.

• (lax comp.) Let p : A↛ B and q : B ↛ C.

Sq • Sp = µT ◦ TSq ◦ Sp

= µT ◦ Tλ ◦ TSp ◦ Sq

≤ µT ◦ Tλ ◦ S(Tp ◦ q) (lax left whisk.)

= µT ◦ Tλ ◦ λ ◦ S(Tp ◦ q)

≤ λ ◦ SµT ◦ STp ◦ Sq (lax µT)

= S(µT ◦ Tp ◦ q)

= S(p • q)

• (strict comp.) Again, let p : A ↛ B and q : B ↛ C. Suppose we have

the strict µT law, and the oplax comp condition. As we already have lax

composition of S, it is sufficient to show that S(q •p) ≤ Sq •Sp. This follows

86

from the oplax comp. condition, by taking g = q

S(q • p) = S(µT ◦ Tq ◦ p)

= (λ ◦ SµT) ◦ STq ◦ Sp

= (µT ◦ Tλ ◦ λ ◦ STq) ◦ Sp (strict µT)

≤ µT ◦ (Tλ ◦ TSq) ◦ (λ ◦ Sp) (oplax comp.)

= µT ◦ TSq ◦ Sp

= Sq • Sp

• (ηS) Suppose now that (S, ηS, µS) is a monad, and that the lax ηS and

µS laws hold. We will show first that the ηS condition holds for S. Let

p : A↛ B be a Kleisli morphism in CT . We require the inclusion

F Tη
S • p ≤ Sp • F Tη

S or equivalently,

TηS ◦ p ≤ Sp ◦ ηS

This follows from the lax ηS law,

TηS ≤ λ ◦ ηST

in the following way:

TηS ◦ p = TηS • F Tp

≤ (λ ◦ ηS) • F Tp (lax ηS law)

= λ ◦ (ηS ◦ p)

= λ ◦ Sp ◦ ηS (ηS nat.)

= Sp ◦ ηS

Note that if the ηS law holds strictly for λ, we get the corresponding strict

ηS condition on S.

• (µS). The case of µS proceeds similarly. Suppose the lax µS law holds:

TµS ◦ λ ◦ Sλ ≤ λ ◦ µS

87

Let p : A↛ B. We need to show that

TµS ◦ SSp ≤ Sp ◦ µS.

The proof of this inclusion is below.

TµS ◦ SSp = TµS ◦ λ ◦ S(λ ◦ Sp)

= TµS ◦ λ ◦ Sλ • F TSSp

≤ (λ ◦ µS) • F TSSp (lax µS law)

= λ ◦ (µS ◦ SSp)

= λ ◦ Sp ◦ µS (µS nat.)

= Sp ◦ µS

And again, we can see that the strict µS law induces the strict µS condition

on S.

• (monotone) Let p, q : A↛ B be Kleisli morphisms with p ≤ q. Monotonicity

of λ means that λ ◦ Sp ≤ λ ◦ Sq. But this is exactly

Sp ≤ Sq,

which is what we need for S to be monotone.

On the other hand, let S be a lax extension of S. Define λA = S(εA). We will

show that λ is lax natural, and satisfies the lax ηT and µT conditions.

• (lax nat.) Let f : A→ B. This follows from lax left whiskering, with p = εA.

TSf ◦ λA = TSf ◦ S(εA)

≤ S(Tf ◦ εA) (lax left whisk.)

= S(εB ◦ Tf)

= S(εB) ◦ STf (strict right whisk.)

= λB ◦ STf

If we have strict left whiskering, then we get strict naturality of λ.

• (lax ηT) This is clear, by above.

88

• (lax µT) Lax composition gives us S(εA) • S(εA) ≤ S(εA • εA). Hence:

µT ◦ TλA ◦ λTA = λA • λ

= S(ε) • S(ε)

≤ S(ε • εA) (lax comp.)

= S(µT)

= λ ◦ SµT

Certainly, strict composition of S will lead to the strict µT law.

• (ηS) Suppose now that (S, ηS, µS) is a monad, and S is a monadic extension—

it satisfies the ηS and µS conditions at least laxly. This means that for any

morphism p : A↛ B we have the inclusion

TηS ◦ p ≤ Sp ◦ ηS.

By taking p = εA : TA↛ A we deduce that

TηS ◦ εA ≤ Sp ◦ ηS

TηS ≤ λA ◦ ηS

Of course, if the ηS condition holds strictly, then so does the corresponding

ηS law for λ.

• (µS) The case of µS is similar. We apply the µS condition taking p = εA.

Hence

TµS ◦ (λ ◦ Sλ) = TµS ◦ Sλ (def. λ)

= TµS ◦ SSεA (def. λ)

≤ SεA ◦ µS (lax µS cond.)

= λ ◦ µS. (def. λ)

If the µS condition holds strictly, then this inclusion is an equality.

• By the discussion above, if S is monotone then λ will be monotone also.

89

Example 4.29. Recall the Sim monad of Section 3.5. The action of Sim on

transition relations is given by the construction P+, which (in the unlabelled case)

lifts a transition relation α : A↛ A to a transition relation P+(α) : PA↛ PA.
Transition relations must be homogenous (i.e. endomorphisms), but the

construction of P+ can be generalised non-homogenous relations R : A↛ B by

the rule

(U, V) ∈ P+(R) ⇐⇒ ∀u ∈ U ∃v ∈ V (u, v) ∈ R. (4.7)

We may verify that P+() is a lax extension of P to Rel with the following

properties:

• lax left whiskering

• lax identity/extension

• strict composition

• lax ηP condition

• strict µP condition

The corresponding lax distributive law PP → PP is denoted ℓ+, and given

by the equation

ℓ+(F) = {X : ∀U ∈ F. U ∩X ̸= ∅} .

The distributive law ℓ+ of Example 4.29, as well as some other laws of type

PP → PP will be examined in further detail in Chapter 5.

90

Chapter 5

Lax distributive laws of type

PP → PP

In this chapter we shall examine the particular case of lax distributive laws

PP → PP—which we know are in bijective correspondence to lax functorial

extensions of P to Rel—and the two different ways they can be used to define

simulations of transition systems. We will show that there are three essential

examples of such extensions: P+,P−, and the conjunction P+ ∩ P−.

In the first section, we provide some insight to the construction of P+ ∩ P−

as the unique strict extension of P to Rel. Then we verify that P+ and P− are

indeed lax extensions.

The last part of this chapter is a comparison of previous work on extending P
(and other functors) to Rel with the techniques of this thesis. Lax extensions of

P have been studied before by Thijs [52] and others, under the name of P-relators.
Relators provide a way of constructing simulations of transition systems that is

rather different to the Kleisli approach, using the monad of simulations that we saw

in Chapter 3. Relators and the Kleisli approach both use the same “ingredient”:

lax distributive laws of type PP → PP , but in very different ways.

The case of PP → PP is particularly interesting, because the monad P wears

two very distinct hats here. We saw earlier that the powerset monad P is the

monad of transition for (unlabelled) non-deterministic transition systems. By

this, we mean that a non-deterministic transition system (a P-system) is simply

a P-coalgebra, a function of type α : A → PA. But the powerset monad has

another role to play, for it is also the monad of simulation. This latter statement

can be interpreted in two different ways.

91

• The first interpretation, which is the primary focus of this thesis, is what

we shall call the Kleisli approach. According to the Kleisli approach, a

simulation of P-systems is expressed as a Kleisli morphism for a suitable

monad Sim on TS. The essential data of Sim is given by a relation lifting,

that transforms transition relations α on A to relations P+(α) on PA. In
other words, a (lax) extension of P to Rel, the Kleisli category of the

monad of transition, P. Hence a simulation from (A,α) to (B, β) consists

of a morphism R : (A,α) → (PB,P+(β)), which is simply a function

R : A→ PB that satisfies the morphism condition Item 1.

• A second way to capture simulations is to consider relations as the primitive

morphisms between transition systems. The simulation condition is again

expressed in terms of a well-behaved relation lifting, which is called a relator.

But rather than lifting the transition relation, it is the simulation relation

that is lifted.

These two ways of arriving at simulations are shown in the diagram below.

The diagram on the left depicts the morphism condition for R : α→ P+(β). Note

that the relation lifting P+ appears vertically, acting on the transition relation.

Whereas on the right the action of P+ is horizontal, acting on the relation of the

simulation R.

A PB

PA PPB

R

α P+(β)

PR

⇐⇒

A PB

PA PPB

R

α Pβ

P+(R)

It is a marvelous coincidence that these two notions are the same—for when

we seek to generalise from the specific case of forwards simulations of P-systems,

we see a divergence.

More specifically, these two perspectives above can be compared across two

orthogonal axes of generalisation. On one hand, we wish to vary the monad of

transition T , and have a robust theory of simulations for T -transition systems.

• On the relator side, this generalisation is well understood. There is a general

notion of a T -relator, that corresponds essentially to lax extensions of T to

Rel, and provides a way of horizontally lifting relations A↛ B to relations

on transition sets TA↛ TB.

92

• In the Kleisli world, generalising to a monad of transition T means that

instead of a relation lifting, we need a lax extension of P to the Kleisli

category of T . This will let us turn T -transition systems on a set of states

A into systems of type PA→ TPA.

The other sort of generalisation we are interested in is varying the notion of sim-

ulation. We would like to additionally express related concepts like cosimulations,

reverse simulations, and bisimulations.

1. Different relators directly provide different “simulation types”. Thijs [52]

demonstrates that “P−-simulations” are co-simulations, and that simulations

with respect to P+ ∩ P− are in fact bisimulations.

2. When it comes to the Kleisli perspective, it takes a bit more work, and we

sometimes have to fiddle with the underlying category. Simply replacing

P+ with P− gives us the monad of reverse simulations, not co-simulations.

To encode co-simulations we need to consider the simulation monad of P+

on the category of transition systems where the morphism condition is

reversed. Or equivalently, we can take the dual of the Kleisli category of

P+ on TS—this is because a relation R is a co-simulation precisely if the

converse relation R† is a simulation.

In both cases of generalisation the theory of relators is relatively well-understood.

In this chapter we provide a brief overview of the literature, essentially following

the thesis of Thijs [52]. Expanding on the Kleisli perspective is a novel contribution

of this thesis. Only the specific case of P+ providing simulations can be found in

the literature [39].

5.1 Extending functors to Rel

The category Rel is very special, and relations R : A ↛ B can be regarded in

several different ways. The first, and perhaps most “concrete” way is to consider

R as a set of ordered pairs R ⊆ A×B. In this accounting, the identity relation on

A is given by the set {(a, a) : a ∈ A}, and the composite R #S (where S : B ↛ C)

is defined as

{(a, c) : ∃b ∈ B. (a, b) ∈ R and (b, c) ∈ S} .

93

A slightly more abstract perspective is to consider the set of ordered pairs R

(also known as the graph of R) as a span from A to B, with components given by

the projections onto the domain (d), and the codomain (c).

R

A B

d c

In this way, we can think of any span as encoding a relation. Let (C, f : C →
A, g : C → B) be a span A→ B.

C

A B

f g

The corresponding relation R is given by the rule

(a, b) ∈ R ⇐⇒ ∃c ∈ C. f(c) = a and

g(c) = b.

Intuitively, the set C is an abstract set of “arrows”, and the morphisms f and

g assign a “source” and a “target” to each arrow. The same relation can be

represented by more than one span. We call such a representation a tabulation of

the relation R. Note that the identity relation may be tabulated by the trivial

span below.

A

A A

An alternative perspective on relations is the Kleisli construction. We know

that Rel is the Kleisli category of the powerset functor P on Set. Hence a relation

R is identified with a Kleisli morphism r : A→ P(B), with

(a, b) ∈ R ⇐⇒ b ∈ r(a).

We will tend to elide this distinction, writing both (a, b) ∈ R and b ∈ R(a),

depending on which form is more convenient.

One benefit of viewing relations as spans is that the symmetry becomes rapidly

apparent. There is no direction inherent in a span, any relation R : A↛ B has a

converse relation R† : B ↛ A.

94

C

A B

f g

C

B A

g f

Figure 5.1: The same relation?

Thus Rel has the structure of a dagger category. It is admittedly difficult to

arrive at this conclusion from the Kleisli construction.

Recall that the free functor FP : Set→ Rel sends a function f : A→ B to

the relation FPf = ηPB ◦ f : A↛ B. Note that this relation can be tabulated as

the following semi-trivial span:

A

A B

f

We will introduce f∗ as an alternate notation for FPf , which is defined by the

rule

(a, b) ∈ f∗ ⇐⇒ b = f(a).

There is another way to embed f into Rel, that is dual to the free functor. We

will write f ∗ for the converse relation B ↛ A given by

(b, a) ∈ f ∗ ⇐⇒ b = f(a).

This corresponds to the opposite tabulation.

A

B A

f

These two embeddings of a Set-morphism f are related in the following

important way, that makes use of the Pos-enriched structure of Rel.

Proposition 5.1 ([32, 47, Def. 4.2.1]). Let f : A→ B be a function. There is an

adjunction f∗ ⊣ f ∗. Concretely, this means that

ηPA ⊆ f ∗ • f∗ and (5.1)

f∗ • f
∗ ⊆ ηPB . (5.2)

95

Moreover, these are the only adjunctions in Rel. If a relation R : A ↛ B is a

left adjoint (with R ⊣ S) then it must be of the form R = f∗ for some function

f : A→ B, and furthermore S = f ∗.

We will also note that the relation corresponding to a span (C, f, g) can be

expressed via the composition

g∗ • f
∗.

The fact that morphisms of Rel can be tabulated in this way provides a

significant restriction to the structure of extensions of a functor S : Set→ Set to

Rel. The following construction is due to Barr ([5]), but the result is most lucidly

stated (without proof) by Garner in [23].

Lemma 5.2. Let S be a functor on Set. There is at most one strict extension

of S to a strict functor Ŝ on Rel, which exists precisely when S preserves weak

pullbacks.

A partial proof—that Ŝ preserving composition corresponds to S preserving

weak pullbacks—can be found in [32]. We will not spend too much time on this

part. However we will elaborate on the uniqueness of Ŝ. Garner hints that the key

is the adjunction between f∗ and f ∗. We will examine this in some more detail.

Proof. The extension Ŝ is defined in the following way. Let R : A ↛ B be a

relation, tabulated as the span below.

R

A B

d c

The relation Ŝ(R) is constructed by applying S to the tabulation of R. This will

encode a relation SA↛ SB.

SR

SA SB

Sd Sc

Explicitly, we can express Ŝ(R) as the composition

Ŝ(R) = (Sc)∗ • (Sd)
∗.

96

Thus we can compute

(X, Y) ∈ Ŝ(R) ⇐⇒ ∃Z ∈ SR.

 Sd(Z) = X

Sc(Z) = Y.
(5.3)

Now, we have claimed that Ŝ is a monotone strict functor on Rel that strictly

extends S. Barr shows in [5] that for any functor S the resulting Ŝ is monotone,

preservies identities strictly, and composition op-laxly. That is, for composable

relations Q,R we have

Ŝ(Q •R) ⊆ ŜQ • ŜR.

Barr also shows that if S preserves weak pullbacks then Ŝ does indeed satisfy lax

composition. The converse of this result is proven in more detail in [32].

It is straightforward to verify that Ŝ is indeed a strict extension of S. The

strict extension condition corresponds to the equality

Ŝ(f∗) = (Sf)∗,

which clearly holds by construction.

We now turn our attention to the uniqueness of Ŝ. We will first show that

Ŝ(f∗) = (Sf)∗ is left adjoint to Ŝ(f ∗). This will mean that Ŝ(f ∗) must be equal

to (Sf)∗, by Proposition 5.1. We derive the required inclusions in the following

way.

ηPSA = Ŝ(ηPA) (strict id. Ŝ)

⊆ Ŝ(f ∗ • f∗) (f∗ ⊣ f ∗, Ŝ mono.)

= Ŝ(f ∗) • Ŝ(f∗) (strict comp. Ŝ)

Ŝ(f∗) • Ŝ(f
∗) = Ŝ(f∗ • f

∗) (strict comp. Ŝ)

⊆ Ŝ(ηPB) (f∗ ⊣ f ∗, Ŝ mono.)

= ηPSB (strict id. Ŝ)

So, suppose that S is a strict functor on Rel that also strictly extends S.

This means that Ŝ and S agree on left adjoints: they map f∗ to (Sf)∗. The

argument above shows that Ŝ and S must also agree on right adjoints—we have

Ŝ(f ∗) = S(f ∗) = (Sf)∗.

97

Since every relation R can be expressed as the composition of a right and left

adjoint, this is enough to guarantee that S and Ŝ have the same action on all

relations. Let R be tabulated as R = c∗ • d
∗. Then we have

S(R) = S(c∗) • S(d
∗) (strict comp. S)

= Ŝ(c∗) • Ŝ(d
∗)

= Ŝ(R). (strict comp. Ŝ)

So Ŝ is in fact the unique, strict monotone extension of S.

Example 5.3. When S = P , we calculate (by Eq. 5.3) that

(U, V) ∈ P̂(R) ⇐⇒ ∃C ⊆ R.

 P(d)(C) = U

P(c)(C) = V
(5.4)

An intuitive interpretation is this. Think of R ⊆ A×B as a set of arrows, each

with a source in A and a target in B (provided by the maps d : R → A and

c : R→ B). The relation P̂(R) is formed by taking all possible subsets of arrows

C ⊆ R. Every such subset witnesses a relation between the corresponding set of

sources and the set of targets.

Note that condition 5.4 can also be expressed as

(U, V) ∈ P̂(R) ⇐⇒

{
∀u ∈ U. ∃v ∈ V. (u, v) ∈ R (5.7)

∀v ∈ V. ∃u ∈ U. (u, v) ∈ R, (5.8)

or equivalently, considering R as a function A→ PB,

(U, V) ∈ P̂(R) ⇐⇒

{
∀u ∈ U. R(u) ∩ V ̸= ∅ (5.11)

V ⊆
⋃
P(R)(U). (5.12)

In particular, the unique extension of P provides the action of the double

simulation monad on transition relations. We have

DSim(A,Rσ) = (PA, P̂(Rσ)).

98

5.2 Two lax distributive laws

There is a connection between distributive laws of type PP → PP and the monads

of simulation that we saw in Chapter 4. Recall that such a monad consists of

an action on states A, on morphisms (certain functions of sets A→ B), and on

transition relations A↛ A.

The novel contribution is to realise that λ can be expressed as the conjunction

of two lax distributive laws:

λ = ℓ+ ∩ ℓ−

The extension corresponding to the ℓ+ law is the monad of simulations Sim, while

ℓ− encodes the reverse simulation monad.

The construction of P̂ in Example 5.3 induces a corresponding law λ : PP →
PP given by λA = P̂(εA). As P̂ is a strict functor on Rel that strictly extends P ,
by Theorem 4.28, the law λ is what we would call a strict functorial distributive

law. Furthermore, it can be shown that λ satisfies the µP condition strictly, and

the ηP condition laxly. This means that it is not a strict monad distributive law.

It is however, what Garner and Goy call a (monotone) “weak” distributive law

[23, 25]

The following expression for λ can be found in [25].

λA(F) =
{
X : ∀U ∈ F. U ∩X ̸= ∅ and X ⊆

⋃
F
}

The conjunction is very suggestive. One might wonder what would happen if

we were to split this law into two components, ℓ+ and ℓ−.

ℓ+A(F) = {X : ∀U ∈ F. ∃x ∈ X. x ∈ U} (ℓ+ law)

= {X : ∀U ∈ F. X ∩ U ̸= ∅}

ℓ−A(F) = {X : ∀x ∈ X. ∃U ∈ F. x ∈ U} (ℓ− law)

=
{
X : X ⊆

⋃
F
}

These each have the right type of a distributive law PP → PP, and hence

the corresponding extensions are defined in the following way. Let R : A↛ B be

99

a relation. Then we set

P+(R) = ℓ+B ◦ P(R)

P−(R) = ℓ−B ◦ P(R).

We can compute this lifted relation explicitly. For U ⊆ A and V ⊆ B we have

(U, V) ∈ P+(R) ⇐⇒ ∀u ∈ U. ∃v ∈ V. (u, v) ∈ R

(U, V) ∈ P−(R) ⇐⇒ ∀v ∈ V. ∃u ∈ U. (u, v) ∈ R.

Equivalently, we can consider P+(R) and P−(R) as Kleisli morphisms PA →
PPB, defined by

P+(R)(U) = {V : ∀u ∈ U. ∃v ∈ V. (u, v) ∈ R}

= {V : ∀u ∈ U. R(u) ∩ V ̸= ∅}

P−(R)(U) = {V : ∀v ∈ V. ∃u ∈ U. v ∈ R(u)}

=
{
V : V ⊆

⋃
P(R)(U)

}
We will show that P+ and P− are indeed lax extensions of P to Rel. Hence

ℓ+ and ℓ− will be lax distributive laws by Theorem 4.28.

Proposition 5.4. The mappings P+ and P− are lax extensions of P to Rel.

Proof. We need to show that both P+ and P− are monotone, laxly preserve

identities and composition (in fact, they both preserve composition strictly), and

are lax left whiskering.

1. (mono.) Suppose that R ⊆ S : A ↛ B. We need to show that if (U, V) ∈
P+(R) then (U, V) ∈ P+(S) also (and likewise for P−.) So suppose that

(U, V) ∈ P+(R). This means that for all u ∈ U we can find a v in V

with (u, v) ∈ R. Since R ⊆ S, we also have (u, v) ∈ S. This means that

(U, V) ∈ P+(S), as desired. The case of P− is symmetric.

2. (lax id.) We need to show that ηPPA ⊆ P+(ηPA), and likewise for P−. We will

evaluate P+(ηPA) and P−(ηPA).

Let U, V ⊆ A. When is (U, V) ∈ P+(ηPA)? Precisely when for all u ∈ U we

100

can find a v ∈ V with

(u, v) ∈ ηPA .

As ηPA is the identity relation on A, this happens only when v = u. So we

see that (U, V) ∈ P+(ηPA) when every u ∈ U is also contained in V . In other

words,

P+(ηPA)(U) = {V : U ⊆ V }.

The case of P− is symmetric. We require that every v ∈ V is contained in u

in order to have (U, V) ∈ P−(ηPA). Hence we can deduce that

P−(ηPA)(U) = {V : U ⊇ V }.

Naturally we have ηPPA(U) = {U}, which is a subset of both P+(ηPA)(U) and

P−(ηPA)(U). So it follows that the lax identity law holds for P+ and P−.

3. (strict comp.) Let R : A↛ B and S : B ↛ C be composable relations. We

will first show that lax composition holds for both P+ and P−. This means

that

P+(R) # P+(S) ⊆ P+(R # S) and

P−(R) # P−(S) ⊆ P−(R # S)

So suppose that (U, V) ∈ P+(R) # P+(S). By definition of relational com-

position there must be an intermediate set W ⊆ B with (U,W) ∈ P+(R)

and (W,V) ∈ P+(S). We will use the elements of W to construct witnesses

of (U, V) ∈ P+(R # S).

We need to show that for every u ∈ U there is a v ∈ V with (u, v) ∈ R # S.
Since we have (U,W) ∈ P+(R) we can find a w with (u,w) ∈ R. Then, we
can start at w ∈ W and use the fact that (W,V) ∈ P+(S) to find a v with

(w, v) ∈ S. Putting this together we get (u, v) ∈ R # S, as desired. The case

of P− is symmetric.

Now, we will show that the opposite inclusion also exists. So suppose that

(U, V) ∈ P+(R # S). We need to find an intermediate set W to witness

(U, V) ∈ P+(R) # P+(S).

101

We will construct W in the following way. For every u ∈ U , we know that

there is at least one v with (u, v) ∈ R # S. This means there must be a

mediating w ∈ B with (u,w) ∈ R and (w, v) ∈ S. We will take W to be the

set of all such w. By construction, we will have (U,W) ∈ P+(R), because

every u corresponds to a mediating w. We also have (W,V) ∈ P+(S),

because a mediating w is, by definition, related to something in V . Again,

the case of P− is symmetric, and not substantially different.

4. (lax left whisk.) Let R : A ↛ B be a relation, and g : B → Y a function.

We need to show that

P(Pg) ◦ P+(R) ⊆ P+(Pg ◦R) and

P(Pg) ◦ P−(R) ⊆ P−(Pg ◦R).

Let U be a subset of A, and suppose that W ⊆ Y is in P(Pg)(P+(R)(U)).

This means that W = Pg(V) for some V ∈ P+(R)(U). We need to show

that W ∈ P+(Pg ◦R)(U) also.

Since V ∈ P+(R)(U) we deduce that for all u ∈ U there is a v ∈ V with

v ∈ R(u). By taking w = g(v) ∈ W , we can find, for every u ∈ U , an

element w ∈ W with w ∈ Pg(R(u)). This proves that W ∈ P+(Pg ◦R)(U),
as desired.

The case of P− is similar. It is sufficient to show that for any V ∈ P−(R)(U),

we have Pg(V) ∈ P−(Pg ◦R)(U). Let g(v) ∈ Pg(V), so that v ∈ V . Hence

we can find a u ∈ U with v ∈ R(u). But this implies that g(v) ∈ Pg(R(u)),
so it follows that Pg(V) ∈ P−(Pg ◦R)(U), as desired.

Note that by Proposition 4.22, the fact that both P+ and P− satisfy the

identity condition only laxly implies that they cannot be strict extensions.

5.3 Relators and lax extensions to Rel

An alternative approach to lax extension of functors to Rel is that of relation

liftings, or “relators”. In particular, relators can be used to provide a method for

expressing different notions of simulation of diverse transition systems of general

type T .

102

A pivotal text is the thesis of Thijs [52]. Relators have also been studied

significantly by Levy et al [37], and are well-treated in the survey [32]. In

this section we shall provide a brief overview of relators and how they encode

simulations, and a comparison to our lax extensions of Chapter 4.

The idea goes like this. Suppose α : A → PA and β : B → PB are two

non-deterministic transition systems. A simulation from α to β consists of a

relation of states, R : A→ B, that satisfies a certain condition.

But what about the general case, where rather than P we take T : Set→ Set

to be any (mere) functor of transitions, for example, T = D, or any of the

other possibilities described in Section 4.1? Transition systems of type T can be

modelled as T -coalgebras, α : A→ TA. A T -relator is essentially a well-behaved

(we shall explain precisely what this means shortly) way of turning a relation

R : A→ B of base sets, to a relation TR : TA→ TB. Given a T -relator T , we

are able to form the diagram below.

A B

TA TB

R

α∗ β∗

TR

Note that this diagram lives in Rel—the arrows designate relations, and the

composition is relational composition. The relation R is considered a simulation—

with respect to the relator T—if there is an op-lax inclusion of

β∗ •R ⊆ T̂R • α∗, (5.13)

although this is usually formulated in a slightly different way. This is represented

in Fig. 5.2.

A B

TA TB

R

α∗ β∗

TR

Figure 5.2: A T -simulation

Hence any choice of relator T induces a notion of T -simulation of T -transition

systems. When we take T = P, it turns out that P+,P−, and the conjunction

P+ ∩ P− = P̂ are all P-relators. In particular, P+ encodes the standard notion

103

of simulations. Whereas P−-simulations correspond to co-simulations, and P̂-
simulations are bisimulations.

A significant list is presented in [37], including

Definition 5.5. Let R : A ↛ B be a relation, and f : Z → A and g : W → B

functions. The inverse image is a relation Z ↛ W , denoted as (f, g)−1R and

defined by the rule

(z, w) ∈ (f, g)−1R ⇐⇒ (f(z), g(w)) ∈ R (5.14)

We can also form the direct image of a relation. Let f and g be as above, and

Q a relation Z ↛ W . Then (f × g)[Q] is a relation A↛ B defined by

(f × g)[Q] = {(f(z), g(w)) : (z, w) ∈ Q} (5.15)

We could also write (f × g)[Q] as P(f × g)(Q), since Q is a subset of Z ×W .

But the former notation is in line with [52].

Remark 5.6. We may rewrite the expressions above, in line with the notation of

the previous sections. Let f, g, R,Q be as in Eq. 5.14. Then we have that

(f, g)−1R = g∗ •R • f∗

(f × g)[Q] = g∗ •Q • f
∗

The following definition is slightly adapted from Thijs in [52].

Definition 5.7 ([52]). Let T be a functor on Set. An T -relator is a mapping T

of relations A↛ B to relations TA↛ TB such that

1. If Q ⊆ R : A↛ B then T (Q) ⊆ T (R)

2. For every set A we have ηPTA ⊆ T (ηPA)

3. For every Q : A↛ B and R : B ↛ C we have TR • TQ ⊆ T (R •Q)

4. For every relation Q : Z ↛ W and functions f : Z → A and g : W → B we

have

(Tf × Tg)[TQ] ⊆ T (f × g)[Q] (5.16)

104

Note that Thijs uses “monotone relators” to refer to relators that satisfy the

conditions above, and in addition preserve composition strictly. We shall instead

consider the more general case.

The fourth condition is a sort of “coherence condition” that expresses some

interaction between the relator T and the original functor T . Sometimes it is

helpful to express this coherence condition in terms of the inverse image. This

fact is stated in [32]. For convenience, we provide some more detail.

Proposition 5.8. Let T be a functor on Set, and T a lax functor on Rel. Let

f : Z → A and g : W → B be functions. Then the following are equivalent:

1. For every relation Q : Z ↛ W we have

(Tf × Tg)[TQ] ⊆ T ((f × g)[Q])

2. For every relation R : A↛ B we have

T ((f, g)−1R) ⊆ (Tf, Tg)−1T (R)

Proof. We will find the alternate expression of Remark 5.6 more useful. The

conditions above become

(Tf)∗ • TQ • (Tg)
∗ ⊆ T (f∗ •Q • g

∗) (5.17)

T (f ∗ •R • g∗) ⊆ (Tf)∗ • TR • (Tg)∗ (5.18)

We will first show 1 =⇒ 2. Let R : A↛ B be a relation. Take Q = f ∗ •R • g∗.

Then we see that

TQ ⊆ (Tf)∗ • (Tf)∗ • TQ • (Tg)
∗ • (Tg)∗ (Eq. 5.1)

⊆ (Tf)∗ • T (f∗ •Q • g
∗) • (Tg)∗ (Eq. 5.17)

= (Tf)∗ • T (f∗ • f
∗ •R • g∗ • g

∗) • (Tg)∗

⊆ (Tf)∗ • TR • (Tg)∗ (Eq. 5.2 and T mono.)

which is the desired inclusion. The case of 2 =⇒ 1 is symmetric.

The second form of the “coherence condition” is used in [37]. .

Now, from the expressions of Eqs. 5.17 and 5.18 we can deduce that every

T -relator corresponds to a lax extension of T .

105

Proposition 5.9. Let T be a functor on Set, and T an T -relator. Then T is

also a lax extension of T .

Proof. The first three conditions of Definition 5.7 tell us that T is indeed a lax

functor on Rel—it laxly preserves identities and composition, and is monotone.

Now, from Eq. 5.17 we may deduce (by taking g = id) that

(Tf)∗ • TQ ⊆ T (f∗ •Q),

which is the lax left whiskering condition. By Proposition 4.22 this implies the

lax right whiskering condition also, as we are in the presence of lax identity and

lax composition rules.

Similarly, Eq. 5.18 with f = id gives us

T (R • g∗) ⊆ TR • (Tg)∗,

the op-lax right whiskering condition. As we also have lax right whiskering, we

may deduce that right whiskering holds strictly, and so T is indeed a lax extension

of T .

Note that if Eq. 5.17 held strictly then we could deduce the strict left whiskering

condition.

Levy defines relators ([37]) as satisfying Eq. 5.18 strictly. This does not imply

the strict version of Eq. 5.17.

There is a partial converse to Proposition 5.9.

Proposition 5.10. If T is a lax extension of T that also satisfies

(Tg)∗ ⊆ T (g∗)

then T is a relator.

Proof. It is necessary to show that the inclusion of Eq. 5.17 holds. Hence we see

that

(Tf)∗ • TQ • (Tg)
∗ ⊆ T (f∗) • TQ • T (g

∗) (assumption and lax ext. T)

⊆ T (f∗ •Q • g
∗) (lax comp. T)

which is the desired result.

106

An important result of Thijs is a structure/correspondence theorem for relators.

We give a brief overview. First, it is demonstrated that if T is a functor that

preserves weak pullbacks, then the constructed T̂ of Lemma 5.2 is a relator. Thijs

calls this the minimal T -relator, because every T -relator T must contain the

minimal relator as a subset:

T̂ (R) ⊆ T (R) for every relation R : A↛ B.

Further, Thijs shows that every T -relator factors through the minimal relator

in the following way:

T (R) = T (ηPB) • T̂ (R) • T (η
P
A) for every relation R : A↛ B. (5.19)

Moreover, the relation T (ηPB) : TB ↛ TB is always a pre-order on TB, and every

family of pre-orders defines a relator. Whereas we have shown that there is a

correspondence between extensions T and the distributive laws given by T (ε).

Example 5.11. When T = P , we see that T -coalgebras are essentially (unlabelled)

non-deterministic transition systems. The minimal relator is P̂, as detailed in

Example 5.3.

Note that P+ and P− are lax extensions that further satisfy the inclusions

(Pg)∗ ⊆ P+(()g∗) and

(Pg)∗ ⊆ P−(()g∗).

Hence by Proposition 5.10 they must also be P-relators. Thijs demonstrates

in [52] that the corresponding preorders on PA are ⊆ and ⊇.
That means we have

P+(R) =⊆ •P̂(R)• ⊆ (5.20)

P−(R) =⊇ •P̂(R)• ⊇ (5.21)

The following definition is essentially due to Thijs.

Definition 5.12. Let T be a functor on Set, and let α : A→ TA and β : B → TB

be T -coalgebras. Let T be an T -relator.

107

A relation R : A↛ B is called an T -simulation if the following inclusion holds:

(α× β)[R] ⊆ TR, or equivalently, (5.22)

R ⊆ (α, β)−1(TR) (5.23)

Now, recalling that, by Lemma 4.17, we can rewrite the inclusion of Eq. 5.13

as

TR ◦ f ⊆ Pβ ◦R. (5.24)

Thus we get the diagram of Fig. 5.3 below, which consists of functions and

composition in the category Set.

A PB

TA PTB

R

α Pβ

TR

Figure 5.3: A T -simulation, expressed in Set

Example 5.13. Let us examine the particular case of standard simulations of

P-systems. Let α : A → PA and β : B → PB be P-coalgebras. In [52] it is

shown that a relation R : A ↛ B is a simulation (in the sense of Chapter 3) if

and only if it is a P+-simulation (in the sense of Definition 5.12).

Furthermore, the P−-simulations are precisely the co-simulations, and the

simulations with respect to the minimal relator P̂ are bisimulations

On the other hand, we also know that simulations are Kleisli morphisms of

the simulation monad P+ on TS. The action of P+ is to send a transition system

β : B → PB on B to the system on PB with the “lifted” transition relation:

P+(β) : PB → PPB.

Recall that R (considered as a function A→ PB) is a morphism precisely if

it preserves transitions. This can be expressed as the lax inclusion of

PR • α ⊆ P+(β) •R,

108

or represented diagramatically as below. The diagram of Fig. 5.4 depicts these

two equivalent characterisations of simulations.

A PB

PA PPB

R

α P+(β)

PR

⇐⇒

A PB

PA PPB

R

α Pβ

P+(R)

Figure 5.4: Two equivalent ways of expressing the fact that R is a simulation

A B

PA PB

f

α β

Pf

A PB

PA PPB

R

α P+(β)

PR

Figure 5.5: A simulation α→ β is simply a morphism α→ P+(β)

When it comes to other sorts of simulations the situation diverges. On the

relator side, cosimulations and bisimulations simply correspond to simulations with

respect to different relators. It is the dual relator P− that expresses cosimulations.

A relation R : A↛ B is a cosimulation precisely if the inclusion of Eq. 5.13 holds

for P−. This corresponds to the diagram on the right in Fig. 5.6

On the Kleisli side, the situation is more complicated. On one hand, we may

simply replace the monad of simulations with the reverse simulation monad, the

action of which is to map a system β : B → PB to the system P−(β) : PB →
PPB. As we saw in Section 3.5, the Kleisli morphisms of this monad are the

relations R : A↛ B such that the inclusion in the diagram below holds.

A PB

PA PPB

R

α P−(β)

PR

But these are not cosimulations, they are reverse simulations! The problem

is that the relation lifting is being used in two very different ways in these two

approaches. The relator approach is to apply the lifting horizontaly, turning a

relation of states A↛ B into a lifted relation of successor sets PA↛ PB. On the

other hand, the Kleisli approach is to apply the lifting vertically to lift the transition

relation of the target system, turning a relation B ↛ B into a relation PB ↛ PB.

109

In the case of simulations, it is really a remarkable coincidence that these two

notions coincide. But when we move to cosimulations, the correspondence breaks

down.

Intuitively, a cosimulation is a simulation that has been dualised “horizontally”.

Rather than beginning with a transition in A and finding a transition in B, we

do the opposite, assume a transition in B and find a matching transition in A.

The dagger structure of Rel gives an alternative characterisation. The relation

R : A↛ B is a cosimulation precisely when the converse relation R† : B ↛ A is

a simulation. This gives us a correspondence between the relators P+ and P−.

For a relation R : A↛ B we have

P−R = (P+(R†))† : PA↛ PB. (5.25)

On the Kleisli side, if we replace P+ with P− we get the reverse simulation

monad RevSim. This is because a reverse simulation is the vertical dual of a

simulation. In Fig. 5.6 we see two equivalent formulations of the fact that R

is a co-simulation—as an oplax Kleisli morphism for Sim on the left, and as a

P−-relator on the right. To encode bisimulations, we need the strict morphisms

R : A↛ SimB (that is, the functional bisimulations). This is depicted in Fig. 5.7

A PB

PA PPB

R

α P+(β)

PR

⇐⇒

A PB

PA PPB

R

α Pβ

P−(R)

Figure 5.6: Two equivalent ways of expressing the fact that R is a cosimulation

A PB

PA PPB

R

α P+(β)

PR

⇐⇒

A PB

PA PPB

R

α Pβ

P̂(R)

Figure 5.7: Two equivalent ways of expressing the fact that R is a bisimulation

110

Chapter 6

Generalised monoid actions

In the previous chapter we saw that different types of transition systems can

be represented as coalgebras for diverse transition monads. We also saw that

the there is a correspondence between lax distributive laws ST → TS, and lax

extensions S of S to CT . We would like to replicate the results in Chapter 3—which

was specific to non-deterministic systems (the P monad)—in the case of other

transition monads. That is, we would like to

• define an appropriate category of T -transition systems, with “edge preserving

functions” as morphisms

• define a monad S on this category, so that the Kleisli morphisms correspond

to simulations of T -transition systems.

Given that we are encoding transition systems as coalgebras, and there is

an existing notion of a “morphism of coalgebras” (and hence a category of T -

coalgebras Coalg(T)), we might consider taking this to be the canonical category

of T -transition systems.

There are two problems with this approach. The first, discussed in the previous

chapter, is that coalgebra morphisms are too strict, and that a more relaxed notion

is required: a lax cohomomorphism [15]. To proceed in this way, we will need to

have some additional structure, that of a Pos-enrichment on the Kleisli category

CT , as described in Chapter 4. If we take the natural Pos-enrichment on SetP

(pointwise subset inclusion), we will see that the resulting category of P-coalgebras
with lax cohomomorphisms is indeed equivalent to the category of (unlabelled)

non-deterministic transition systems.

111

The second issue is to do with the construction of monads on this category.

The category of coalgebras is too small. We cannot hope to start with a monad S
on the category of T -coalgebras and construct a lax monad extension S on CT .
This is because S will only contain the action of S on endomorphisms A↛ A. In

order to prove a correspondence theorem, we need the monad S to be on a larger

category that includes all the morphisms of CT as objects.

6.1 Classical monoid actions

First, a word about contravariance and opposite monoids, and a clarification of

notation. The driving example is the case of a non-deterministic finite automaton

over an alphabet Σ. That is, a set A and a family of relations indexed by Σ,

Rσ : A↛ A. We can formally extend this to a family of relations over all of Σ⋆,

by defining

Rσ1σ2···σn = Rσ1 #Rσ2 # · · ·Rσn ,

and this composite has the effect of performing a transition along σ1, then along

σ2, and so on.

So this encodes a monoid morphism from Σ⋆ to the monoid of relations on

A (with multiplication given by #), which is in fact the endomorphism monoid

Rel(A,A). We know that a relation on A may equivalently be viewd as a function

A → P(A), and so we can form the endomorphism monoid SetP(A,A). But

multiplication here is given by Kleisli composition of relations, which is opposite

to the relational composition #.

R # S = S •R

= µ ◦ P(S) ◦R

The point, therefore, is that the structure we are considering here is that of a

contravariant monoid morphism from the monoid Σ⋆, to a Kleisli endomorphism

monoid. The mismatch is because strings are consumed from the left-most end,

while compositions of morphisms are consumed (applied) from the right-most end.

Now, let us recall the definition of a (right) monoid action (presented in [31],

for example). If M is a monoid then an action of M consists of a base set A and

a function • : A×M → A such that

112

1. a • 1 = a

2. (a • σ) • τ = a • (στ).

A morphism of actions is a function f : A→ B that interacts nicely with the

two actions: for every a ∈ A and σ ∈M we have

f(a • σ) = f(a) • σ.

The collection of actions of M and morphisms forms a category, which is

usually denoted Act(M). In order to generalise this construction, we will curry

the type signature of the monad action. So let δ : M → (A → A) = End(A),

where δ is defined by δ(σ)(a) = a • σ We can rewrite the two conditions above in

terms of δ.

1. δ(1) = idA

2. δ(στ) = δ(τ) ◦ δ(σ)

If we reverse the order of composition, writing δ(σ) # δ(τ) = δ(τ) ◦ δ(σ),
we see that a (right) monoid action is equivalent to a (contravariant) monoid

homomorphism into an endomorphism monoid. Left actions are equivalent to

covariant homomorphisms.

A more categorical way of thinking about this situation is to remember that

a monoid M is equivalently a category M with a single object. It is due to the

contravariance exhibited above that we find it easier to consider the contravariant

category M . We will show that the category of right actions of M is in fact

isomorphic to the category of functors from M into Set (a similar result will hold

for left actions). Recall that a functor ∆ :M → Set is specified by

• a mapping of objects, that is, a set A = ∆⋆, and

• a mapping of morphisms, that is, for every element σ of M , a function

∆σ : A→ A.

The two properties of a functor are that it preserves identies and composition.

That is,

1. ∆(1) = idA, and

113

2. ∆(στ) = ∆(σ) # ∆(τ)

Let ∆,Γ : Mop → Set be two functors. A natural transformation f : ∆→ Γ is

given by a function f⋆ : ∆(⋆)→ Γ(⋆) such that for every element σ in M we have

∆(⋆) Γ(⋆)

∆(⋆) Γ(⋆)

f⋆

∆(σ) Γ(σ)

f⋆

This means that for every σ in M and every a ∈ ∆(⋆) we have

f⋆(∆(σ)(a)) = Γ(σ)(f⋆(a)),

which will hold if and only if f⋆ is a right M -action morphism.

Monoid action Monoid morphism Functor

∗ : A×M → A δ :M → (A→ A) ∆ : BMop → Set
a = a ∗ 1 idA = δ(1) id∆(⋆) = ∆(1)
a ∗ σ ∗ τ = a ∗ στ δ(σ) # δ(τ) = δ(στ) ∆(σ) # ∆(τ) = ∆(στ)
f : A→ B f : A→ B f⋆ : ∆(⋆)→ Γ(⋆)
f(a ∗A σ) = f(a) ∗B σ f(δA(σ)(a)) = δB(σ)(f(a)) f⋆(∆(σ)(a)) = Γ(σ)(f⋆(a))

Table 6.1: Three characterisations of monoid actions

So, we have seen three equivalent ways of presenting the same data: a carrier

set A, and a structured mapping from monoid elements to transformations of

A, and a coherent notion of morphisms. See Table 6.1 for a summary of this

information. We are therefore justified in treating the categories Act(M) and

[Mop,Set] as equivalent. The first connection to automata is as follows.

Proposition 6.1. For an alphabet Σ, the category Act(Σ⋆) is equivalent to DTSΣ,

the category of deterministic transition systems over Σ, with edge preserving

functions as morphisms.

Proof. The monoid Σ⋆ is freely generated by Σ, so any monoid morphism from Σ⋆

is uniquely determined by its action on the generators, i.e. by a family indexed

by Σ. So it is clear that the objects of the two categories are in bijection.

In both categories, morphisms consist of a function of carrier sets. It is the

“preservation condition” that is worded slightly differently.

114

• In Act(Σ⋆), we require that for every word w ∈ Σ⋆, that f(δ(w)(a)) =

δ(w)(f(a)).

• In DTSΣ, we need f(δ(σ)(a)) = δ(σ)(f(a)) for every letter σ ∈ Σ.

Obviously, the first condition implies the second. The converse holds also, because

if we assume that f preserves σ and τ transitions, we can form the two commutative

diagrams below:

A B A B

A B A B.

f

δ(σ) δ(σ)

f

δ(τ) δ(τ)

f f

Because the squares commute, we can paste them together vertically, and use

the composition rule to combine the transition morphisms running vertically.

A B A B

A B =⇒

A B A B

f

δ(σ) δ(σ)

f

δ(στ) δ(στ)
f

δ(τ) δ(τ)

f f

So in fact, we only need to verify that a given function f : A→ B preserves the

letters (the generators of Σ⋆). If it does, it will preserve the other words in Σ⋆ for

free. This concludes the proof.

But deterministic automata are a very special case. We would like to generalise

this to non-deterministic automata, and other transition types. We will also need

to keep in mind that we have seen characterisations of unlabelled automata with

transition type T as T -coalgebras.

Our first guess might be that we should replace Set with a different category,

and consider the category of (contravariant) functors M → C. Non-deterministic

transition functions are relations (i.e. morphisms in Rel), so we might wager that

the category TSΣ is equivalent to the category of functors Σ⋆ → Rel.

This doesn’t quite work. Let ∆,Γ be contravariant functors into Rel, with

carrier sets A,B. A morphism f : ∆→ Γ is a natural transformation. It consists

of a morphism in Rel—a relation f : A → B. But the morphisms in TSΣ are

functions from A to B.

115

They are not Kleisli morphisms in Rel ∼= SetP , rather they live in the base

category Set.

The point is that a successful generalisation cannot be so crude as simply

“functors into a different category” (the Kleisli category of the transition monad).

We will need knowledge of the base category as well.

6.1.1 Semigroup actions

Before we carry on with that train of thought, we will take a small diversion and

look at an interesting generalisation of a monoid action. Recall that a semigroup

is a monoid without identity—simply a set S with an associative multiplication.

Therefore we can say that a semigroup action should be a monoid action

without condition 1 (the identity rule).

Definition 6.2. Let S be a semigroup. The category SemiAct(S) has as objects

(right) semigroup actions of S. A semigroup action [21] consists of a set A and

a contravariant semigroup morphism δ : S → End(A) such that the following

condition holds:

δ(σ) # δ(τ) = δ(στ) (6.1)

A morphism of semigroup actions f : (A, δ)→ (B, γ) is a function f : A→ B

such that the diagram below commutes for every element σ in S.

A B

A B

f

δ(σ) γ(σ)

f

If M is a monoid we can view it as a semigroup by simply “forgetting” the

identity element. Therefore a semigroup action of M is a map from M into an

endomorphism monoid End(A) that preserves multiplication. It need not send

1 ∈M to the identity on A. But we are able to say something about the image of

1.

Remark 6.3. Let δ be a semigroup action of M on a set A. Note that δ(1) may

116

not be the unit of End(A), but by condition 6.1 we have that for every σ ∈M

δ(σ) # δ(1) = δ(σ · 1)

= δ(σ)

= δ(1) # δ(σ)

This means that the image δ(M) ⊆ End(A) is always a monoid, with unit δ(1).

But it is not necessarily a submonoid of End(A).

In terms of transition systems, a semigroup action δ : Σ⋆ → Rel(A,A)

corresponds to a transition system where δ(ε) is not necessarily the identity. That

is, it is a transition system with non-trivial ε transitions [49].

6.2 Monadic actions

We said earlier in Section 6.1 that it is inappropriate to think of transition systems

as “actions into Rel”. Even though the transition functions are relations, the

morphisms are not: they live in Set. In order to succesfully generalise this idea

to different transition types, we need to realise that there is a connection between

Set and Rel: the category Rel is the Kleisli category of P on Set.

A deterministic transition system over Σ is an action of Σ⋆ on a set A. For

every element w ∈ Σ⋆ we have an honest endomorphism (in Set) of A, a transition

function ∆(w) : A→ A.

In the non-deterministic case, the transition functions are “effectful”, they

are relations ∆(w) : A ↛ A. This is the same as a function A → P(A) in Set.

To generalise, we will consider a monad T on a category C. We will define a

category of monoid actions that are in some sense “twisted through”, or “have

effects in” the monad T . This means they send monoid elements σ to Kleisli

endomorphisms A→ TA. Composition happens in the Kleisli category CT . And
yet, the morphisms of T -actions will remain morphisms in the base category, that

interact well with these “effectful” action.

Definition 6.4. Let M be a monoid, and T a monad on C. A (right) action of

M through T (we may also call this a T -action of M) consists of an object A of C
and a contravariant monoid morphism ∆ :M → CT (A,A).

A morphism of T -actions (A,∆)→ (B,Γ) consists of a C-morphism f : A→ B

of carriers such that for every element σ ∈M the following square commutes.

117

A B

TA TB

f

∆(σ) Γ(σ)

Tf

The collection of T -actions of M and morphisms forms a category, which we

will call T -Act(M). The following result relates the notion of T -actions to some

familiar categories.

Proposition 6.5. We have the following isomorphisms of categories.

1. For any monoid M , the category Id-Act(M) is isomorphic to Act(M).

2. For any monad T , the category T -Act(N) is isomorphic to Coalg T .

Proof. The first result clearly follows from the definition.

To see the second isomorphism, note that a T -action on N (i.e. a contravariant

monoid morphism ∆ : N → EndCT
(A)) is fully determined by the image of 1—

the Kleisli morphism ∆(1) : A ↛ A = A → TA. This is the same data as a

T -coalgebra.

We simply need to verify that T -action morphisms (A,∆)→ (B,Γ) correspond

to coalgebra morphisms ∆(1)→ Γ(1). The data is the same: morphisms f : A→
B in C. However the conditions are expressed differently. The morphism f is

a morphism of coalgebras ∆(1) → Γ(1) if the single diagram below on the left

commutes. On the other hand, f is a morphism of T -actions if the diagram below

on the right commutes for every natural number n.

A B

TA TB

f

∆(1) Γ(1)

Tf

Coalgebra morphism

A B

TA TB

f

∆(n) Γ(n)

Tf

T -action morphism commutes for every n

It is clear that a T -action morphism is a coalgebra morphism. And in fact the

converse holds also—a coalgebra morphism extends to a morphism of T -actions

on N by pasting (as in the proof of Proposition 6.1).

We are getting closer to our goal of expressing the category of transition

systems. But unfortunately, we are not quite there yet. Simply taking T = P,

118

the category P-Act(Σ⋆) is not equivalent to TSΣ. The objects are correct, and

the morphisms have the appropriate type (being functions of carrier sets). But

as we saw earlier, the preservation condition is too strict. Rather than transition

preserving functions, they encode the functional bisimulations.

So if we want to capture the entire category TSΣ in the language of P-actions,
we will need the morphisms to be functions f : A→ B such that the inclusion in

the diagram below exists.

A B

P(A) P(B)

f

∆(σ) Γ(σ)

P(f)

⊆

6.2.1 Lax morphisms

Let T be a monad on the category C, and let ≤ be a Pos-enrichment of the Kleisli

category CT . We will define a category of T -actions with lax morphisms (the

laxness is controlled by the enrichment of CT).

Definition 6.6. Let M be a monoid. There is a category T -Actlax(M), whose

objects are T -actions of M .

A morphism f : (A,∆) → (B,Γ) is a C-morphism f : A → B such that the

lax inclusion in the diagram below exists for every element σ in M .

A A

TA TA

∆(σ)

f

Γ(σ)

Tf

We will call this the category of T -actions over M with lax morphisms, or

simply the lax category of T -actions (over M).

Proposition 6.7. The category P-Actlax(Σ
⋆) is isomorphic to TSΣ.

Proof. The objects of P-Actlax(Σ
⋆) are strict P-actions of Σ⋆. These consist of a

base set A and a monoid morphism ∆ : Σ⋆ → Rel(A,A). As Σ⋆ is a free monoid,

the morphism ∆ is completely determined by the relations ∆(σ) : A ↛ A for

all σ ∈ Σ. So ∆ carries precisely the same information as a classical transition

relation R ⊆ A× Σ× A.
The condition for morphisms is straightforward to verify.

119

This notion of a lax category of T -actions subsumes the strict category we

defined previously. The category T -Act(M) of Definition 6.4 is a wide subcategory

of T -Actlax(M).

We have at this point reached a significant milestone: a satisfactory and general

definition of a category of transition systems.

The next step will be to redefine the monad of simulations Sim for the categories

P-Act(Σ⋆), and then to generalise this construction to “simulation-like” monads

for different transition types. There are two further generalisations of the T -action

notion that will be helpful.

The first is to investigate semigroup T -actions. These, it turns out, will be too

poorly-behaved for our liking. What is more useful is a relaxed form of T -action

over a monoid, where the identity condition is not completely removed, but holds

laxly instead of strictly. We will also consider T -actions where both the identity

and composition conditions hold laxly.

The second generalisation will be a type of “horizontal categorification”. Rather

than thinking of T -actions as contravariant monoid morphisms from Σ⋆ into the

Kleisli endomorphism monoid CT (A,A), we will view them as functors (Σ⋆)→ CT .
And of course, we can think about functors from an arbitrary category D into

CT . This is rather more general than we actually need, but the fuller categorical

setting will be useful when it comes time to define the simulation monads. Rather

than a mere family of categories T -Act(D), we will have a Cat-valued functor

T -Act(−). The Sim monad will be a natural transformation on this functor.

6.3 Lax and semilax actions

We saw in Section 6.1.1 that a semigroup action over a monoid M is simply a

map δ from M to an endomorphism monoid End(A). The map δ must preserve

composition, but we drop the identity condition entirely. We could replicate this

notion in the setting of T -actions, but a slightly stronger type of action will be

more useful.

Definition 6.8. Let M be a monoid. A lax T -action over M consists of a map

δ :M → CT (A,A) such that

1. ηTA ≤ δ(1), and

2. δ(σ) # δ(τ) ≤ δ(στ)

120

It is also worth considering T -actions where the identity rule holds laxly, but

the composition is strict. Such actions will be called semilax.

1. ηTA ≤ δ(1), and

2. δ(σ) # δ(τ) = δ(στ)

The collections of lax and semilax T -actions with strict morphisms form cat-

egories, which we will denote T -Actlax(M) and T -Actsemi(M). There are also the

corresponding categories with lax morphisms—T -Actlaxlax(M) and T -Actsemi
lax (M).

6.4 Actions based over a category

Up till now we have been considering various types of T -actions (strict, semilax,

and lax), and various notions of morphisms (strict and lax). We saw earlier

that we can think of monoid actions equivalently as maps M × A → A, or

M → End(A), or as functors (M)op → Set. We will now switch over to this

third, functorial perspective, and reframe the various categories of T -actions as

categories of functors from (M)op. Then we will generalise, and consider T -actions

as categories of functors over arbitrary categories.

Let δ be a strict T -action of M on A. There is a corresponding functor

∆ :Mop → CT defined by

∆(•) = A

∆(σ) = δ(σ)

The strict identity and composition laws for δ mean that ∆ is a strict functor.

On the other hand, a strict Pos-functor of the type (M)op → CT induces a

strict T -action of M , and this correspondence is bijective. Moreover, this holds

when we generalise to semilax T -actions (which correspond precisely to semilax

Pos-functors), and generalise again to lax T -actions and lax Pos-functors.

T -actions on M Pos-functors (M)op → CT

strict action strict functor

semilax action semilax functor

lax action lax functor

121

At this point, one might hypothesize that there is an isomorphism of categories.

On one hand, the category of (strict) T -actions on M , and on the other hand, the

category of strict Pos-functors from M into CT .

T -Act(M) ∼= PosCat((M), CT) (Incorrect)

This is incorrect, because the morphisms do not match up. Morphisms of

T -actions have components in the base category C, whereas Pos-natural trans-
formations have components in the source category, which is CT . So we shall have

to invent a new type of morphism between functors that mirrors the morphisms

of T -actions. At the same time, we will generalise from simply considering ac-

tions over M (functors from the category (M)op) to actions over an arbitrary

Pos-category D (these will be Pos-functors D → CT).
Suppose that D is a Pos-enriched category. We will simultaneously define six

different categories of strict, semilax, and lax T -actions over D, with strict or lax

morphisms.

Definition 6.9. We begin with the most general case. There is a category

T -Actlaxlax(D), whose objects are lax Pos-enriched functors D → CT . If ∆ and Γ

are two lax Pos-functors D → CT , then a (lax) morphism f : ∆→ Γ consists of a

family of C-morphisms indexed by the objects of D.
For every D in D there is a morphism fD : ∆(D)→ Γ(D) in C. Note carefully

that the components of f are in C, and not in the Kleisli category CT .
In addition, the family f of C-morphisms must satisfy the following lax morph-

ism condition. For every morphism σ : D → E in D, the lax square below must

exist:

∆(D) Γ(D)

T∆(E) TΓ(E)

∆(σ)

fD

Γ(σ)

TfE

If f : ∆→ Γ is a morphism, and for every σ the lax inclusion above is actually an

equality, we will say that f is strict.

Furthermore:

• There is a wide subcategory of lax T -actions with strict morphisms, which

we will denote T -Actlax(D).

122

• There is a full subcategory consisting of the semilax T -actions, denoted

T -Actsemi
lax (D).

• There is a full subcategory consisting of the strict T -actions, denoted

T -Actlax(D)

• There are corresponding subcategories of semilax and strict actions with

strict morphisms, T -Actsemi(D) and T -Act(D).

These six categories and the corresponding inclusions are depicted in the

diagram below.

T -Act(D) T -Actlax(D)

T -Actsemi(D) T -Actsemi
lax (D)

T -Actlax(D) T -Actlaxlax(D)

full

wide

full

full

wide

full

wide

All of these collections are indeed categories—we will provide some brief

verification. The identity morphism id∆ : ∆→ ∆ has components id∆,D = id∆(D) :

∆(D)→ ∆(D). The lax inclusion specified by the diagram exists, because both

compositions are equal to ∆(σ)—so the identity is actually a strict morphism

∆→ ∆.

The composition of two lax morphisms f : ∆→ Γ and g : Γ→ Θ is computed

pointwise: (g ◦ f)D = gD ◦ fD. This will be a valid morphism, because we can

horizontally paste the characteristic diagrams of f and g to form a lax inclusion

for the composite (by Remark 4.10).

∆(D) Γ(D) Θ(D) ∆(D) Θ(D)

=⇒

T∆(E) TΓ(E) TΘ(E) T∆(E) TΘ(E)

∆(σ)

fD

Γ(σ)

gD

Θ(σ) ∆(σ)

(g◦f)D

Θ(σ)

TfE TgE T (g◦f)E

The composition of strict morphisms will also be strict, because the pasting above

will be a pasting of commutative diagrams.

The construction of T -Act(D) (and the other categories) is “universal”, it

doesn’t really depend on the details of D. We have a map (rather, several maps)

PosCat→ Cat—to every Pos-enriched category D we assign the category

123

T -Act(D). At this point, we might ask: “Can this map of objects be extended to

a functor T -Act(−)?”
And indeed it can be. We shall sketch the intuition behind this construction.

Let D, E be Pos-categories, and F : D → E a Pos-functor. How can we turn F

into a functor between T -Act(D) and T -Act(E)? The objects of one category

are Pos-functors D → CT , and the objects of the other are Pos-functors E → CT .
The solution is to start with a functor E → CT , and precompose F to end up with

a functor from D. Hence we end up with a contravariant functor. In order to

really complete the definition however, we shall need to say what happens to the

morphisms of the category T -Act(E). We will also need to consider the various

cases of strict, semilax, and lax T -actions, and the categories PosCat,PosCatsemi,

and PosCatlax.

Definition 6.10. There is a contravariant functor T -Actlaxlax(−) : (PosCatlax)op →
Cat, defined in the following way.

• the action on objects is to map a Pos-category D to the strict category

T -Act(D),

• the action on morphisms in PosCatlax (lax Pos-functors F : D → E) will
be the strict functor T -Act(F), a morphism in Cat.

The strict functor T -Act(F) has type T -Act(E)→ T -Act(D). The action of

T -Act(F) on T -Act(E) is:

• to send an object ∆, which is a lax Pos-functor E → CT , to the composite

lax Pos-functor ∆ ◦ F : D → CT ,

• to send a morphism f : ∆ → Γ, which has components (morphisms in

C) fE : ∆(E) → Γ(E) indexed by the objects E of E , to a morphism

T -Act(F)(f), which is a morphism T -Act(F)(∆) → T -Act(F)(Γ), or

equivalently, ∆ ◦ F → Γ ◦ F . The components T -Act(F)(f)D are given by

fFD : ∆(FD)→ Γ(FD). We can write fF for T -Act(F)(f).

Note that T -Act(F) is indeed a functor. It is clear that the composition and

identity rules hold. We just need to verify that it sends morphisms to morphisms.

If f : ∆→ Γ is a morphism of T -actions over E , this means that the lax inclusion

below holds for every morphism σ : E → E ′ in E .

124

∆E ΓE

T∆E ′ TΓE ′

∆(σ)

fE

Γ(σ)

fE′

In order to show that fF is a morphism, let τ be a morphism D → D′ in D. We

form the required square below

∆FD ΓFD

T∆FD′ TΓFD′

∆(σ)

fFD

Γ(σ)

fFD′

By taking E = FD and E ′ = FD′, we see that the lax inclusion exists.

Therefore T -Act(F) is indeed a functor.

There are corresponding functors for all the other categories we have defined.

Definition 6.11. We have the family of functors, defined in accordance with

Definition 6.10:

• T -Actsemi
lax (−) : (PosCatsemi)op → Cat

• T -Actlax(−) : PosCatop → Cat

There are also the three functors that give the categories with strict morphisms.

By the argument above, T -Act(F) (and the semilax and lax variations) preserves

strict morphisms.

• T -Actlax(−) : (PosCatlax)op → Cat

• T -Actsemi(−) : (PosCatsemi)op → Cat

• T -Act(−) : PosCatop → Cat

We saw earlier that P-Actlax(Σ
⋆) is isomorphic to the category TSΣ.

Proposition 6.12. Let (T, ηT , µT) be a monad on C such that CT is Pos-enriched.

Let 1 denote the trivial monoid. The following categories are isomorphic:

1. T -Act(1)

2. T -Actlax(1)

3. C

125

Proof. Note that the objects of both T -Act(1) and T -Actlax(1) are strict Pos-

functors ∆ : 1→ CT . Such a functor consists of two pieces of data:

1. an object ∆(∗) of CT , and

2. for every morphism in 1, a morphism in CT .

Since there is only one morphism in 1, the identity id : ∗ → ∗, this second

component is uniquely determined by the object ∆(∗). It is forced to be the

identity morphism in CT , which is the unit of the monad T :

∆(id) = ηT∆(∗) : ∆(∗)→ T∆(∗)

On the other hand, every object A induces the functor A : 1→ CT , with

A(∗) = A

A(id) = ηTA : A→ TA

Hence there is a bijective correspondence between strict Pos-functors 1→ CT and

objects of CT (which are the same as objects of C). Every T -action over 1 is of

the form A for some object A of C.
We will verify that this correspondence extends to morphisms also. A strict

morphism of T -actions f : A→ B consists simply of a C-morphism f∗ : A→ B

such that the diagram below commutes.

A B

TA TB

f∗

ηTA ηTB

Tf∗

But this is the naturality square of ηT ! So in fact, every morphism in C will be a

strict morphism of T -actions over 1. From this we deduce that T -Act(1) ∼= C. For
a given morphism f : A→ B in C, we write f for the corresponding morphism of

T -actions A→ B.

The case of T -Actlax(1) holds also because there are no properly lax morphisms

of T -actions. The diagram above can never be a proper lax inclusion, since ηT

is a natural transformation it will always be a strict equality. Hence we have

T -Actlax(1) ∼= T -Act(1).

126

6.5 Higher categorical structure

Now that we are dealing not with just a single category of transition systems

TSΣ, nor a mere family of categories indexed by Σ in Set, but rather a functorial

assignment of Pos-categories D to categories T -Act(D) of transition systems

over D.
We can realise the simple category of transition systems TSΣ as P-Actlax(Σ

⋆).

But how can we define the monad Sim in terms of these functors from PosCat?

Note that the construction of Sim : TSΣ → TSΣ makes no reference to the actual

label set Σ—it is generic and universal. This suggests that rather than thinking

of Sim as a family of monads on the categories TSΣ, we could have something

stronger: a monad on the functor P-Actlax(−).
What exactly is a monad on a functor to be? If a monad on a category C

consists of

1. a functor (a 1-morphism in Cat) T : C → C and

2. natural transformations (2-morphisms in Cat) η and µ that satisfy the

monad laws,

then a monad on the functor P-Actlax(−) could consist of

1. a natural transformation S : P-Actlax(−)→ P-Actlax(−), and

2. higher morphisms η, µ that satisfy the monad laws.

In the simple case, we defined a monad Sim on an object TSΣ that lived in

the 2-category Cat. To generalise, we will need to come up with an appropriate

2-category for the functor P-Actlax(−) to live in. Then we shall examine what

the 1 and 2-morphisms look like, and determine what it means for Sim to be a

monad on P-Actlax(−).
The 2-category in question will be the functor 2-category [PosCatop,Cat]

(as defined in [36]). We will examine the case of the strict functor T -Act(−)
first—the following remarks will hold for all the lax and semilax variations. Much

of this material can be found in [36], but it is worth examining the specific details.

First, we recall that the category [PosCatop,Cat] is defined as follows

• the objects are strict functors P : PosCatop → Cat,

• the morphisms (1-cells) S : P→ Q are strict natural transformations, and

127

• the 2-cells α : S→ R are strict modifications

Explicitly, the components of natural transformation S : P→ Q are morphisms

in Cat (strict functors), indexed by the objects D of PosCat (Pos-categories),

SD : PD → QD. The naturality condition requires that for every morphism

(Pos-functor) F : D → E of PosCat, the square below (which lives in Cat)

commutes.

PE PD

QE QD

P(F)

SE SD
Q(F)

Figure 6.2: Naturality condition

Furthermore, if S,R are parallel natural transformations P → Q, then a 2-

morphism (a strict modification) α : S→ R also has components indexed by the

objects of PosCat. For every poset-enriched category D, we have a strict natural

transformation αD between the strict functors SD and RD.

The coherence condition (found in [36]) is that for every F : D → E the

diagram below commutes.

Q(F) ◦ SE Q(F) ◦ RE

SD ◦ P(F) RD ◦ P(F)

1∗αD

SF RF

αE∗1

Note that this diagram is in Cat(PE ,QD), the objects are functors PE → QD,
and the arrows are natural transformations. The operator ∗ refers to the horizontal

composition of natural transformations. Finally, the vertical arrows SF and RF

refer to the 2-cell components of Fig. 6.2. But since these are strict equalities, the

coherence condition boils down to the following equality of natural transformations

QF ◦ SE RD ◦ PF.

1∗αD

αE∗1

128

Let us pick this equality apart further. Equality of natural transformations is

componentwise, so in order to have 1 ∗ αD = αE ∗ 1 : PE → QD, we require that

for every object Y of PE , we have the equality of morphisms in QD

(1 ∗ αD)Y = (αE ∗ 1)Y : SD → RD.

In order to express the components of the natural transformations 1 ∗ αD and

αE ∗ 1, it is helpful to construct the diagrams below.

PE PD QD.PF

SD

RD

αD

(a) 1 ∗ αD

PE QE QD.

SE

RE

PFαE

(b) αE ∗ 1

Figure 6.3: The two natural transformations

By the definition of horizontal composition, the components are given by

(1 ∗ αD)Y = αD,PF (Y) : SD(PF (Y))→ RD(PF (Y))

(αE ∗ 1)Y = QF (αE,Y) : QF (SE(Y))→ QF (RE(Y))

Naturality of S and R tells us that the two type signatures are actually equal,

they are both QF (SE(Y))→ RD(PF (Y)), which is the correct type.

This is summarised by the following result.

Proposition 6.13. Let P,Q be parallel functors PosCatop → Cat, and S,R
be natural transformations P → Q. Let α be a family of morphisms indexed by

Pos-categories D and objects Y of PD,

αD,Y : SDY → RDY in the category QD.

The family α is a (strict) modification if and only if the following conditions hold.

1. For all morphisms f : X → Y in PD the diagram below commutes,

SDX SDY

RDX RDY

SDf

αD,X αD,Y

RDf

129

2. For every Pos-functor F : D → E we have the equality,

αD,PF (Y) = QF (αE,Y)

Proof. The first condition encodes naturality of every αD : SD → RD. The second

is the modification condition.

The final contribution of this section is a Yoneda-style result for the T -action

functors. We will show that the structure of natural transformations on a T -

action functor is very limited: they are all correspond to post-composition by a

Pos-functor CT → CT .
The (contravariant) Yoneda lemma is reproduced below, as well as a brief

proof.

Lemma 6.14 (Yoneda). Let C be a category, and G : Cop → Set a contravariant

functor. Let A be an object of C.
There is a bijective correspondence between natural transformations from the

contravariant hom-functor Hom(−, A) to G and elements of G(A).

Nat(Hom(−, A), G) ∼= G(A)

Proof. The correspondence looks like this. Given a natural transformation S :

Hom(−, A)→ G we construct an element of GA by applying SA : Hom(A,A)→
GA to the only element of Hom(A,A) that we can take for granted: the identity

idA.

S 7→ SA(idA) ∈ GA

On the other hand, if x ∈ GA we construct a natural transformation S in the

following way. For an object B of C and a morphism f : B → A we define

SB : Hom(B,A)→ GB by

SB(f) = Gf(x) ∈ GB

There are two final things we need to confirm. First, that this correspondence

is bijective. This is a routine verification. On one hand, let S be a natural

130

transformation. Let x = SA(idA) ∈ GA and let R : Hom(−, A)→ G be given by

RB(f) = Gf(x).

We wish to show that R is actually the same as S. So let f : B → A be a morphism

in Hom(B,A). We have:

RB(f) = Gf(x)

= Gf(SA(idA))

= SB(f ◦ idA)) (by nat. S)

= SB(f)

The penultimate equation follows from chasing f around the naturality diagram.

Hom(B,A) Hom(A,A)

GB GA

Hom(f,A)

SB SA
Gf

On the other hand, if x ∈ GA, we can form the natural transformation S as above,

and consider the element SA(idA) ∈ GA. By definition, we have

SA(idA) = GidAx

= x

because G is a functor.

The second consideration is that the transformation induced by an element x

must actually be natural. To see that it is, take a morphism g : B → C in C and

form the naturality square below.

Hom(C,A) Hom(B,A)

GC GB

Hom(g,A)

SC SB
Gg

We need to show that

Gg ◦ SB = SC ◦ Hom(g, A) : Hom(C,A)→ GB.

131

So let f : C → A and consider both sides:

Gg(SB(f) = Gg(Gf(x))

= G(f ◦ g)(x)

SC(Hom(g, A)(f)) = SC(f ◦ g)

= G(f ◦ g)(x)

and hence we see that S is indeed natural.

A particularly useful corollary is when we take the functor G to also be a

hom-functor.

Corollary 6.15. For every object A,B of C, there is a bijection of sets

Nat(Hom(−, A),Hom(−, B)) ∼= Hom(A,B). (6.2)

The details of the construction are as follows. A natural transformation

S : Hom(−, A)→ Hom(−, B) is assigned to the morphism SA(idA) : A→ B. And

on the other hand, a morphism f : A→ B induces the natural transformation S
where

SC(g) = f ◦ g.

The fact that this correspondence is bijective means that the behaviour of any

natural transformation S is totally determined by the value SA(idA). For any

other object C and any morphism g : C → A we have (by the above equation)

SC(g) = SA(idA) ◦ g

Now, since the functor T -Act(−) : PosCatop → Cat is “almost” a hom-

functor—the objects of T -Act(D) are Pos-functors D → CT—it seems reasonable

to suggest that a similar result will hold for natural transformations S on T -Act(−).
We will attempt to generalise the constructions of Corollary 6.15 first.

So, let S be a natural transformation T -Act(−)→ T -Act(−). We will define

S to be SCT
(IdCT

), which is a strict Pos-functor CT → CT .
On the other hand, a mere Pos-functor S : CT → CT is insufficient informa-

tion to define a natural transformation S. A component SD must be a functor

132

T -Act(D)→ T -Act(D). We can define the action on objects by the rule

SD(∆) = S ◦∆,

but we also need an action on morphisms. That is, for a morphism f : ∆→ Γ,

which has components fD : ∆D → ΓD in the base category C, we need to give

components S∆D → SΓD. So we need both a functor S on CT , and a functor S

on C. This leads us to the following result.

Lemma 6.16. Let F be one of the six T -action functors defined in Definition 6.11.

There is a bijective correspondence between natural transformations S on F , and

lax extension pairs of S and S . The properties of F (strict/semilax/lax objects,

and strict/lax morphisms) correspond to properties of the extension of S over S

in the following way.

T -Actlaxlax(−) lax S, lax ext.

T -Actsemi
lax (−) semilax S, lax ext.

T -Actlax(−) strict S, lax ext. (⇐⇒ strict ext.)

T -Actlax(−) lax S, lax ext. + strict left whisk.

T -Actsemi(−) semilax S, lax ext. + strict left whisk.

T -Act(−) strict S, lax ext. (⇐⇒ strict ext.) + strict left whisk.

Proof. We begin by giving the details of the construction. In the most general

case we will take F = T -Actlaxlax(−). Let S be a natural transformation F → F .

The extending functor will be S = SCT
(IdCT

), a lax Pos-functor on CT . The base

functor S will be the restriction of S1, a functor on T -Actlaxlax(1), to the subcategory

T -Act(1) ∼= C. More explicitly, for an object A in C we take

SA = SA

and for a morphism f : A→ B, we take

Sf = S1(f)∗

where f : A → B is the morphism f considered as a T -action morphism in

T -Act(1).

133

On the other hand, given a base functor S on C and a lax extension S to CT ,
we define S componentwise by

SD(∆) = S ◦∆

(SDf)D = S(fD).

The first step of the proof is to show that these two constructions define a

bijection.

Let us begin with a lax extension of the functor S to the lax Pos-functor S.

We will define S as above. We expect, that when constructing the corresponding

extension from S, to arrive back at S and S. And indeed, we do, for

SCT
(IdCT

) = S ◦ IdCT

= S

and for S1 we have

(S1f)∗ = S(f ∗)

= Sf

On the other hand, suppose we start with a natural transformation S. In

order for the construction to be bijective we need for every object ∆ and every

morphism f : ∆→ Γ in T -Act(D):

SD(∆) = SCT
(IdCT

) ◦∆

(SDf)D = S1(fD)∗

The first equality follows as in the standard Yoneda proof, by considering ∆ as a

morphism in PosCatlax and following IdCT
around.

To derive the second we need to fix an objectD ofD. LetD be the characteristic

strict Pos-functor 1→ D that picks out D. Hence we form the naturality square

T -Actlaxlax(D) T -Actlaxlax(1)

T -Actlaxlax(D) T -Actlaxlax(1)

T -Actlaxlax(D)

SD S1

T -Actlaxlax(D)

The effect of T -Actlaxlax(D) is to pick out the component at D. For a lax

134

Pos-functor ∆ : D → CT we have

T -Actlaxlax(D)(∆)(∗) = ∆D

and for a morphism f : ∆→ Γ, we have

T -Actlaxlax(D)(f)∗ = fD : ∆D → ΓD or equivalently,

T -Actlaxlax(D)(f) = fD

Hence, following a given morphism f through the naturality square, we deduce

the equality of morphisms S(∆)D → S(Γ)D in T -Actlaxlax(1)

T -Actlaxlax(D)(SDf) = S1(T -Actlaxlax(D)f)

which corresponds to the equality of morphisms in C

T -Actlaxlax(D)(SDf)∗ = S1(T -Actlaxlax(D)f)∗

Unpicking the definitions of both sides, we discover that

T -Actlaxlax(D)(SDf)∗ = (SDf)D(∗)

= (SDf)D

S1(T -Actlaxlax(D)f)∗ = S1(fD)∗

which is the desired equality.

We can now proceed to the second part of the proof. Let S be a natural

transformation, and construct S and S. We shall need to show that S and S

satisfy the strict left whiskering and lax right whiskering conditions. The technique

here is to encode the whiskering conditions as a morphism of T -actions that is

preserved by a suitable component of S (being a functor).

We will introduce some helpful notation. Let 2 denote the category with two

objects 0 and 1, and a single non-identity morphism e : 0→ 1. We will consider

2 as a Pos-category with the discrete Pos-enrichment. A strict T -action on 2

is simply a morphism in CT . A lax morphism from (p : A ↛ B) to (q : C ↛ D)

takes the form of a pair of C morphisms (f, g) : (A,B) → (C,D) such that the

inclusion in the diagram below exists.

135

A C

TB TD

p

f

q

Tg

1. (lax left whisk.) We need to show that TSf ◦Sp ≤ S(f ◦p) for all morphisms

p : A↛ B and f : B → C.

We form a pair T -actions over 2 corresponding to the morphisms p : A↛ B

and TF ◦ p : A↛ C. There is a (strict) morphism (idA, T f) : p→ TF ◦ p,
corresponding to the trivial equality

Tf ◦ p = (Tf ◦ p) ◦ idA.

Applying S2 induces a morphism (SidA, STf) : Sp → S(Tf ◦ p), which
witnesses

TSf ◦ Sp ≤ S(Tf ◦ p) ◦ S(idA) = S(Tf ◦ p), (6.3)

the lax left whiskering condition. This is all expressed in the diagram below.

A A SA SA

=⇒

TB TC TSB TSC

p Tf◦p Sp S(Tf◦p)

Tf TSf

Note that despite the source morphism (idA, T f) being strict, we do not

claim that the image (SidA, STf) is a strict morphism Sp→ S(Tf ◦ p) (if it
was, it would witness the strict left whiskering condition). This is because

S2 is a functor T -Actlaxlax(2)→ T -Actlaxlax(2), and all we can guarantee is that

it transforms a lax morphism into a lax morphism—we cannot guarantee

that when we give it a strict morphism it will preserve the strictness.

If S did have this property—that every component SD restricts to a functor

on the strict morphism subcategory T -Actlax(D)—then we could derive the

strict left whiskering condition.

2. (strict right whisk.) We need to show that Sp ◦ Sg = S(p ◦ g) for all

morphisms g : A→ B and p : B ↛ C.

We use a similar trick as in the lax left whiskering case to derive the oplax

right whiskering condition.

136

A B SA SB

=⇒

TC TC TSC TSC

g

p◦g p

Sg

S(p◦g) Sp

Equationally, this corresponds to the inclusion

T idSC ◦ S(p ◦ g) ≤ Sp ◦ Sg

S(p ◦ g) ≤ Sp ◦ Sg

To finish the job, we will need Proposition 4.22. Because S satisfies the lax

left whiskering condition, it also satisfies the lax pseudo-extension condition.

By construction, it is a lax functor and hence laxly preserves composition.

So we may deduce

Sp • F TSg ≤ Sp • SF Tg (lax pseudo-ext.)

≤ S(p • F Tg) (lax comp.)

which is the lax right whiskering condition. In conjunction with the oplax

inequality, we get the strict condition.

And thirdly, we will verify that if we start with a lax extension S of a functor

S, the constructed S is actually a natural transformation. This means that:

1. for every D, the map SD is a functor T -Actlaxlax(D) → T -Actlaxlax(D) (it

preserves morphisms)

2. S is natural in D.

3. when S is semilax that SD restricts to a functor on T -Actsemi
lax (D)

4. when S is strict, SD restricts to a functor on T -Actlax(D)

We will show that each of these statements holds.

1. (SD functorial). The action of SD on T -Actlaxlax(D) on objects ∆ : D → CT
is post-composition by S. On morphisms f : ∆ → Γ, it is to apply S

componentwise. Since S is a functor on C, we get the composition and

137

identity rules for SD for free. All we have to check is that it preserves the

morphism property.

It will be sufficient to show that for every possible “morphism square”, the

image under SD is valid.

A C SA SC

=⇒

TB TD TSB TSD

f

p q

Sf

Sp Sq

Tg TSg

Equationally, this means we have an implication of inequalities:

Tg ◦ p ≤ q ◦ f =⇒ TSg ◦ Sp ≤ Sq ◦ Sf

So suppose that Tg ◦ p ≤ q ◦ f . We then have that

TSg ◦ Sp ≤ S(Tg ◦ p) (lax left whisk.)

≤ S(q ◦ f) (S monotone)

= Sq ◦ Sf (strict right whisk.)

which is the desired result.

If we want SD to preserve strict morphisms we require that S satisfies the

strict left whiskering condition. In that case, a strict morphism square is

simply a commuting square.

A C SA SC

=⇒

TB TD TSB TSD

f

p q

Sf

Sp Sq

Tg TSg

From the equality Tg ◦ p = q ◦ f we deduce

TSg ◦ Sp = S(Tg ◦ p) (strict left whisk.)

= S(q ◦ f)

= Sq ◦ Sf (strict right whisk.)

This means that every component SD restricts to a functor on T -Actlax(D) ↪→
T -Actlaxlax(D)

138

2. (S natural) Let G : D → E be a lax Pos-functor. In order for S to be natural

we require that the following diagram commutes.

T -Actlaxlax(E) T -Actlaxlax(D)

T -Actlaxlax(E) T -Actlaxlax(D)

SE

T -Actlaxlax(G)

SD

T -Actlaxlax(G)

The action of the two functors

SD ◦ T -Actlaxlax(G) and

T -Actlaxlax(G) ◦ SE

on objects ∆ : E → CT is identical, as in the standard Yoneda proof. This

follows from associativity of composition in PosCatlax.

(SD ◦ T -Actlaxlax(G))(∆) = SD(∆ ◦G)

= S ◦ (∆ ◦G)

(T -Actlaxlax(G) ◦ SE)(∆) = T -Actlaxlax(G)(S ◦∆)

= (S ◦∆) ◦G

We also need to verify that these functors have the same action on morphisms.

So let f : Γ→ ∆ be a lax morphism of lax T -actions over E . This means

that f has components indexed by objects E of E . We will end up with

a morphism indexed by the objects of D. Since equality of morphisms is

determined componentwise, let D be an object in D. We wish to show that

(SD ◦ T -Actlaxlax(G))(f)D = (T -Actlaxlax(G) ◦ SE)(f)D.

On the left hand side we have

(SD ◦ T -Actlaxlax(G))(f)D = S(T -Actlaxlax(G)(f)D)

= S(fGD),

139

and on the right side we see that

(T -Actlaxlax(G) ◦ SE)(f)D = SE(f)GD

= S(fGD),

so the two compositions are equal on morphisms also. Hence we see that S
is natural.

3. (semilax and strict restrictions). In the case where S is not just a lax Pos-

functor but in fact has strict composition (semilax), or strict composition and

strict identity (fully strict), we can restrict SD : T -Actlaxlax(D)→ T -Actlaxlax(D)
to the subcategory of semilax (resp. strict) T -actions.

This holds simply because when S is semilax, and ∆ is a semilax T -action (a

semilax functor D → CT), the composition S ◦∆ : D → CT is semilax—an

object of T -Actsemi
lax (D). The strict case works similarly.

Note that the more general case of Lemma 6.14, which concerns only natural

transformations out of a hom-functor and into any arbitrary functor G, does not

hold in this more general setting. It is worth examining what goes wrong.

Let G be a contravariant functor PosCatlaxop → Cat. We would like to

associate natural transformations S : T -Actlaxlax(−)→ G to objects of the category

GCT . Following the proof of Lemma 6.14, one direction is straight forward. For

every natural transformation S, we can construct the object SCT
(IdCT

) of GCT .
On the other hand, suppose that X is an object of GCT . In order to define S,

we shall need to say what the component functors SD : T -Actlaxlax(D)→ GD are.

We can start by setting

SD(∆) = G∆(x).

The trick here is to view an object ∆ of T -Actlaxlax(D) as a morphism D → CT in

PosCatlax. However, this is as far as we can go. We need to also give an action

of SD on morphisms. A lax morphism of T -actions f : ∆→ Γ would need to be

mapped to a morphism G∆x→ GΓx in GCT , and we have no way to construct

one. So the proof fails at this point. It is currently unclear whether any more

general result than Lemma 6.16 holds.

140

6.6 Monads on T -Act(−)

Now that we have looked at the structure of modifications in
[
PosCatlaxop,Cat

]
,

we shall examine what a monad on the object T -Actlaxlax(−) looks like. Such a

monad will consist of three components:

1. a natural transformation S : T -Actlaxlax(−)→ T -Actlaxlax(−), or equivalently, a
functor S on C and a lax extension to a lax functor S on CT , as well as

2. a modification ηS : 1 → S, and

3. a modification µS : S2 → S.

The natural transformation S has components indexed by PosCatop. For every

Pos-category D, we have a functor SD : T -Actlaxlax(D)→ T -Actlaxlax(D). The action

of SD on objects is post-composition by S, and on morphisms it is pointwise applic-

ation of S. Note that 1 and S2 denote the natural transformations T -Actlaxlax(−)→
T -Actlaxlax(−) with components (functors T -Actlaxlax(D)→ T -Actlaxlax(D)) given by

1D = IdT -Actlaxlax(D)

(S2)D = SD ◦ SD.

Hence the modification ηS will have components ηSD that are strict natural

transformations IdT -Actlaxlax(D) → SD, which themselves will have components

ηSD,∆ : ∆→ SD∆

which are morphisms in T -Actlaxlax(D), for every Pos-category D and every T -action

∆ over D. We can in fact expand this definition further, since a morphism of

T -actions has components over the objects of D.
We see therefore that ηS is defined by the following data. For every Pos-

category D, and every T -action ∆, and every object D of D, there is a C-morphism

ηSD,∆,D : ∆D → SD∆D = S∆D.

All this is summarised in Table 6.2.

141

Component Indexed by Type

ηS — modification 1 → S
ηSD Pos-categories D natural transformation Id→ SD

ηSD,∆ T -actions ∆ T -action morphism ∆→ S ◦∆
ηSD,∆,D objects D of D C-morphism ∆D → S∆D

µS — modification S2 → S
µS
D Pos-categories D natural transformation S2

D → SD

µS
D,∆ T -actions ∆ T -action morphism S2 ◦∆→ S ◦∆
µS
D,∆,D objects D of D C-morphism SS∆D → S∆D

Table 6.2: The components of ηS and µS

Theorem 6.17. Let C be a category, and (T, ηT , µT) a monad on C such that CT
is Pos-enriched.

There is a bijective correspondence between monads on

T -Actlaxlax(−) and lax extensions of monads on C.

Proof. Let (S, ηS, µS) be a monad on C, and let S be a lax extension of the functor

S. We construct the natural transformation S according to Lemma 6.16, and

define the modifications ηS and µS pointwise by

ηSD,∆,D = ηS∆D : ∆D → SD∆D

µS
D,∆,D = µS

∆D : SDSD∆D → SD∆D

We shall need to verify that ηS and µS are actually modifications. This means that

the components ∆ → S∆ must be morphisms, the components T -Actlaxlax(−) →
T -Actlaxlax(−) must be natural transformations, and the modification condition of

Proposition 6.13) needs to hold. We also need to show that the corresponding

monad laws for modifications hold. Only the first of these (the morphism condition)

is significant—the rest are rather tedious exercises in component-wise rewriting.

1. (ηSD,∆ morphism) We need to show that ηSD,∆ is indeed a lax morphism

∆ → S ◦ ∆ for every lax T -action ∆. This will be the case if, for every

142

Kleisli morphism p : A↛ B in CT we have the lax inclusion in the diagram

on the left below.

A SA

TB TSB

ηSA

p Sp

TηSB

Equationally, this is the inclusion

TηSB ◦ p ≤ Sp ◦ ηSA.

But this is precisely the ηS condition on the monadic extension S! We

know this holds at least laxly. If it holds strictly then ηSD,∆ is not just a lax

morphism ∆→ S ◦∆, but a strict morphism that lives in the subcategory

T -Actlax(D).

2. (µS
D,∆ morphism) The situation for µS

D,∆ is similar. It will be a morphism

precisely when the inclusion depicted in the square below exists for all Kleisli

morphisms p : A↛ B.

SSA SA

TSSB TSB

µS
A

SSp Sp

TµS
B

This corresponds exactly to the lax µS condition on S. If S satisfies both

the µS and ηS conditions strictly, then the components ηS and µS restrict

to the strict functor T -Actlax(−), and (S, ηS, µS will restrict to a monad on

this functor.

3. (ηSD and µS
D nat.) We will begin with the case of ηSD, which is to be a

natural transformation Id→ SD. By Proposition 6.13 we need the naturality

square below on the left to commute for any lax morphism f : ∆ → Γ in

T -Actlaxlax(D).

∆ Γ

SD∆ SDΓ

f

ηSD,∆ ηSD,Γ

SDf

143

As this is an equality of lax T -action morphisms, it must hold componentwise.

Hence we form the corresponding diagram in C, for any object D of D.

∆D ΓD ∆D ΓD

=

SD∆D SDΓD S∆D SΓD

fD

ηSD,∆,D ηSD,Γ,D

fD

ηS∆D ηSΓD

(SDf)D S(fD)

This is the naturality square for ηS, so it must commute. Hence we see that

naturality of ηSD corresponds to component-wise naturality of ηS. The case

of µS
D is similar.

4. (ηS and µS mod.) The modification condition for ηS : 1 → S is that for all

categories lax Pos-functors F : D → E and objects ∆ in T -Actlaxlax(E), we
have an equality of morphisms T -Actlaxlax(F)(SE(∆))→ SD(T -Actlaxlax(F)(∆))

ηSD,T -Actlaxlax(F)∆
= T -Actlaxlax(F)(η

S
E,∆)

Note that this is a lax morphism of T -actions that lives in the category

T -Actlaxlax(D), so this boils down to a component-wise equality over objects

D of D:

ηSD,T -Actlaxlax(F)∆,D
= T -Actlaxlax(F)(η

S
E,∆)D.

On the left side we see that

ηSD,T -Actlaxlax(F)∆,D
= ηS

T -Actlaxlax(F)∆D

= ηS∆FD,

whereas on the right hand side we have

T -Actlaxlax(F)(η
S
E,∆)D = (ηSE,∆)FD

= ηS∆FD,

the desired equality. The case for µS proceeds similarly.

5. (Monad laws) The left ηS law is the equality of modifications on S:

µS ◦ ηSS = IdS (6.4)

144

By unravelling this into something more concrete, we end up with the

equality (quantified over all Pos-categories D, T -actions ∆, and objects D

of D) of C-morphisms:

µS
∆D ◦ ηS∆D = id∆D,

which is merely the left ηS law for the monad (S, ηS, µS) evaluated at ∆D. In

fact, the same thing happens with the other monad laws for (S, ηS, µS)—they

correspond exactly to the monad laws for (S, ηS, µS).

On the other hand, suppose we start with a monad (S, ηS, µS) on T -Actlaxlax(−).
We construct a monad on C in two steps. First, by Lemma 6.16, we let S

denote the functor on C corresponding to the natural transformation S, and S the

corresponding lax functorial extension. Then, we set

ηSA = ηS1,A,∗ : A→ SA

µS
A = µS

1,A,∗ : SSA→ SA.

Recall that A is the characteristic T -action over 1 corresponding to the object A

in C.
We first need to check that ηS and µS are natural and that they satisfy the

monad laws. This will mean that (S, ηS, µS) is indeed a monad on C. Then, since
we know that S is a lax functorial extension, we will just need to verify that the

lax ηS and µS conditions hold.

1. (nat. ηS, µS) Let f : A → B be a morphism in C. Let f : A → B be the

corresponding morphism in T -Act(1), which is a subcategory of T -Actlaxlax(1).

Naturality of the component ηS1 tells us that the square below commutes.

A B

ηS1A ηS1B

f

ηS1,A ηS1,B

ηS1f

This is a diagram of morphisms in T -Act(1), and by considering the sole

component (at ∗) we derive the naturality square of ηS in C. The case of µS

is similar.

145

2. (Monad laws) We use a similar trick to prove the monad laws for (S, ηS, µS).

Let A be an object of C. Each of the monad laws for (S, ηS, µS), applied at

(1, A, ∗) results in the corresponding equation in C.

3. (ηS cond.) As we saw earlier, the ηS condition on the monadic extension S

is used to show that every ηSD,∆ is indeed a lax morphism ∆→ S ◦∆. The

converse holds also.

Suppose that (S, ηS, µS) is a monad. This means that every component ηSD,∆

is a lax morphism, for every category D and every lax T -action ∆.

Now, let p : A ↛ B be a Kleisli morphism. We wish to show that the

inclusion below exists (the lax (ηS) condition for S):

TηS ◦ p ≤ Sp ◦ ηS

We will consider p as a T -action over 2. By assumption, the component ηS2,p

is a lax morphism p→ S ◦ p. Applying the lax morphism condition at the

single base morphism e in 2, we get the lax inclusion below

A SA

TB TSB

ηSA

p Sp

TηSB

And this is precisely the lax ηS condition on S. If (S, ηS, µS) can be restricted

to a monad on the subfunctor of strict T -action morphisms T -Actlax(−),
then this inclusion holds strictly and we have the strict ηS condition.

4. (µS cond.) The case of µS is similar.

146

Chapter 7

Distributive laws for lattice

monads

In this chapter we will be investigating the case of T -actions when T = PS, for a

semiring S. In order to have a suitable category of PS-actions, we need a Pos-

enrichment of the Kleisli category. This corresponds to the imposition of order

axioms on the semiring S. Since P is a semiring monad (over the boolean semiring

B), we might try to generalise the lax laws PP → PP to laws PSPS → PSPS.

Unfortunately, the structure of a semiring with order is not enough.

We will see that it is the structure of a bounded distributive monoidal lattice

(S,≤,⊥,⊤,∧,∨, 1, ∗) that allows us to define lax distributive laws ℓ+, ℓ−, ℓ+ ∧ ℓ− :

PSPS → PSPS.

Furthermore, we will see that meet and join of S induce the categorical product

and coproduct in the categories PS-Actlax(D), and the multiplication induces a

monoidal structure. Furthermore, when S is residuated, the left and right residuals

induce left and right residual PS-actions, giving PS-Actlax(D) the structure of a

residuated category [51]. When S is in fact complete (a quantale), then we may

form an exponential object which makes PS-Actlax(D) cartesian closed.

When we take S = B, the residuated and cartesian structure are the same.

In more interesting cases, these residual spaces provide a notion of a “valued

homotopy” between morphisms of S-valued transition systems, that extends the

ideas of Section 3.3.

Definition 7.1. An ordered semiring consists of a semiring (S, 0, 1,+, ∗) with a

partial order ≤ that satisfies the following axioms:

147

• If a ≤ b then a+ c ≤ b+ c

• If a ≤ b then c ∗ a ≤ c ∗ b and a ∗ c ≤ b ∗ c

Example 7.2. The following semirings are ordered.

• (B, 0, 1,∨,∧), with the standard order of 0 ≤ 1.

• (P(B), ∅, B,∪,∩), with the subset ordering.

• The min-plus semiring (N ∪ {∞},∞, 0,min,+) with the ordering ≥. When

we think of this semiring as being embedded in P(N,+), the order ≥ is the

subset ordering. This is because {n, n + 1, · · · } ⊆ {m,m + 1, · · · } if and
only if n ≥ m. The extra point ∞ is maximal with respect to this order.

• The semiring of regular languages is ordered with language containment.

However R is not. The second condition only holds for c ≥ 0, while we require

it for all c.

Recall that the Kleisli morphisms R : A↛ B of this category are essentially

functions R : A×B → S such that for every a ∈ A there exist only finitely many

b ∈ B with R(a, b) non-zero.

The enrichment on homsets is hence pointwise. For R, S : A ↛ B we say

R ≤ S if for all a ∈ A and b ∈ B we have the inequality in S

R(a, b) ≤ S(a, b) (7.1)

This leads us to the following proposition.

Proposition 7.3. Let (S, 0, 1,+, ∗,≤) be an ordered semiring. There is a canon-

ical Pos-enrichment on the Kleisli category of PS.

Proof. We require that composition is monotone. Let R ≤ R′ : A ↛ B and

S ≤ S ′ : B ↛ C. We may calculate

(R # S)(a, c) =
∑
b∈B

R(a, b) ∗ S(b, c)

≤
∑
b∈B

R′(a, b) ∗ S ′(b, c)

= (r′ # S ′)(a, c).

148

Note that when S = B this agrees with the standard Pos-enrichment of Rel

(set containment of relations). For the remainder of this chapter, we shall only

be considering the case where (S,≤,⊥,⊤,∨,∧, 1, ∗) is a bounded, distributive,

monoidal lattice. We will let PS denote the semiring monad of (S,⊥, 1,∨, ∗). The
Pos-enrichment for the Kleisli category of PS is given pointwise by ≤.

Another interesting example that we will be paying particular attention to is

the min-plus semiring N . We will begin by elaborating on a representation result.

Recall that the min-plus semiring has elements N ∪ {∞}. The semiring addition

is min, and the multiplication is +. The unit of min is ∞ (for min(n,∞) = n for

all n, as n ≤ ∞), while the unit of + is 0.

Remark 7.4. The min-plus semiring can be embedded into the powerset lattice

P(N) in the following way. We define a mapping J−K : N → P(N) by

JnK = {n, n+ 1, · · · }

J∞K = ∅.

Note that we may define an addition on subsets of natural numbers elementwise:

U + V = {u+ v : u ∈ U, v ∈ V }.

Hence we see that

JnK + JmK = Jn+mK

JnK ∪ JmK = Jmin(n,m)K

JnK ∩ JmK = Jmax(n,m)K

JnK ⊆ JmK ⇐⇒ n ≥ m.

This suggests that the min-plus semiring is an instance of a bounded, dis-

tributive lattice, ordered by ≥, and with meet and join given by max and min

respectively. Addition is monoidal with respect to this structure.

An intuitive interpretation of this lattice is that it models cost minimisation. A

transition system for this lattice is one where every transition has a cost that must

be paid. A cost of ∞ is one that can never be paid—it represents impossibility.

The join and meet of the lattice model alternation, or simultaneous choice. When

presented with an choice of transitions, each with cost xi, the join
∨
xi = min{xi}

149

represents the best choice, it is the minimal cost that must be paid. On the other

hand, the meet
∧
xi = max{xi} is the worst case scenario. Addition models

sequencing. If you have to pay a cost of x, and then a cost of y, then the total

cost is x+ y. The interpretation of x ≥ y is that y is at least as possible as x—if

you can pay the cost of x, then one can certainly pay the cost of y.

7.1 Lax laws PfPS → PSPf

The strategy here is to generalise the lax distributive laws of the powerset functor.

We recall that there are two dual laws ℓ+ and ℓ− defined by the following rules.

ℓ+A(F) = {X : ∀U ∈ F. ∃x ∈ X. x ∈ U}

ℓ−A(F) = {X : ∀x ∈ X. ∃U ∈ F. x ∈ U}

In the case of B, we can think of the universal quantification ∀ as being a

“generalised conjunction”, and the existential ∃ as implementing a “generalised

disjunction”. This suggests the following definition.

Definition 7.5. The lax laws ℓ+, ℓ− : PfPS → PSPf are defined as follows.

ℓ+A(F)(V) =
∧
U∈F

∨
x∈V

U(x) (7.2)

ℓ−A(F)(V) =
∧
x∈V

∨
U∈F

U(x). (7.3)

We shall elaborate on the meaning of Eq. 7.2. First of all, we can see that the

type of F is PPS(A), so F is a finite set of S-valued subsets of A. The notation∧
U∈F is well-defined, as there are only finitely many S-valued sets U contained in

F . On the other hand, V is a finite subset of A.

We can alternatively express these as lax extensions of PfS to FinRelS.

Proposition 7.6. There are two lax extensions of Pf to FinRelS, denoted PS+

150

and PS−. They are defined on S-valued relations R : A↛ B in the following way:

PS+(R)(U, V) =
∧
a∈U

∨
b∈V

R(a, b) (7.4)

PS−(R)(U, V) =
∧
b∈V

∨
a∈U

R(a, b) (7.5)

Proof. Note that by definition of the meet and join, for any S-relation R : A↛ B,

the lifted relation PS+(R) is monotone in the second argument and anti-monotone

in the first. The case of PS−(R) is dual. That is, for U ⊆ U ′ ⊆ A and V ⊆ V ′ ⊆ B

we have

PS+(R)(U, V) ≤ PS+(R)(U, V ′)

PS+(R)(U, V) ≥ PS+(R)(U ′, V)

PS−(R)(U, V) ≥ PS−(R)(U, V ′)

PS−(R)(U, V) ≤ PS−(R)(U ′, V).

We will verify that PS+ and PS− satisfy the conditions of a lax extension.

1. (mono.) Suppose that R ≤ Q : A↛ B. This is pointwise, so for all a ∈ A
and b ∈ B we have R(a, b) ≤ Q(a, b). As meet and join in a lattice are

monotone, we may deduce that∧
a∈U

∨
b∈V

R(a, b) ≤
∧
a∈U

∨
b∈V

Q(a, b).

Hence PS+(R)(U, V) ≤ PS+(Q)(U, V) for all U ⊆ A and V ⊆ B. The case

of PS− is similar.

2. (lax id.) Note that

ηSPSA
(U, V) =

 1 U = V

⊥ U ̸= V
.

We know that PS+(ηSA)(U, V) =
∧

a∈U
∨

b∈V η
S
A(a, b). Observe that

∨
b∈V

ηSA(a, b) =

 1 a ∈ V

⊥ a /∈ V
.

151

Therefore we deduce that

PS+(ηSA)(U, V) =

 1 U ⊆ V

⊥ otherwise
.

From this it follows that ηSPSA
≤ PS+(ηSA). A similar argument shows that

PS−(ηSA)(U, V) =

 1 U ⊇ V

⊥ otherwise
,

and hence PS− also fulfils the lax identity law.

3. (lax comp.) Let R : A↛ B.Q : B ↛ C, and U ⊆ A, V ⊆ C. We recall that

(R #Q)(a, c) =
∨
b∈B

R(a, b) ∗Q(b, c)

PS+(R #Q)(U, V) =
∧
a∈U

∨
c∈V,b∈B

R(a, b) ∗Q(b, c)

PS+(R) # PS+(Q)(U, V) =
∨

W⊆B

(∧
a∈U

∨
b∈W

R(a, b) ∗
∧
b∈W

∨
c∈V

Q(b, c)

)

We will show that

PS+(R) # PS+(Q)(U, V) ≤ PS+(R #Q)(U, V).

We approach this inequality step by step. As the left hand side is a join, it

is enough to show that every term is bounded above by the right hand side

(as the join is the least upper bound): for all W ⊆ B we require(∧
a∈U

∨
b∈W

R(a, b) ∗
∧
b∈W

∨
c∈V

Q(b, c)

)
≤
∧
a∈U

∨
c∈V,b∈B

R(a, b) ∗Q(b, c).

Now the right hand side is a meet, so we will show that the left hand side is

a lower bound for every term. That is, for all W and for all a ∈ U ,(∧
a′∈U

∨
b∈W

R(a′, b) ∗
∧
b∈W

∨
c∈V

Q(b, c)

)
≤

∨
c∈V,b∈B

R(a, b) ∗Q(b, c). (7.6)

152

Note that the right hand side is equal to∨
b∈B

R(a, b) ∗
∨

b∈B,c∈V

Q(b, c).

One of the factors on left is a join over all the a′ ∈ A, so this is a lower

bound for the a term. ∧
a′∈U

∨
b∈W

R(a′, b) ≤
∨
b∈B

R(a, b)

Similarly, we have that∧
b∈W

∨
c∈V

Q(b, c) ≤
∨

c∈V,b∈B

Q(b, c).

We can put these last two inequalities together to get the desired inequality

of Eq. 7.6. The proof for PS− is symmetric.

4. (lax left whisk.) In this setting, the lax left whiskering condition amounts to

the requirement that, for any R : A↛ B and g : B → C we have

PS+(R) # (Pg)∗ ≤ PS+(R # g∗),

where g∗ : B ↛ C is the S-valued relation given by

g∗(b, c) =

 1 c = g(b)

⊥ otherwise
.

153

So we can compute

(
PS+(R) # (Pg)∗

)
(U, V) =

∨
W⊆B

PS+(R)(U,W) ∗ Pg∗(W,V)

=
∨

W∈(Pg)−1(V)

PS+(R)(U,W)

PS+(R # g∗)(U, V) =
∧
a∈U

∨
c∈V,b∈g−1(c)

R(a, b)

=
∧
a∈U

∨
b∈B

R(a, b)

= PS+(R)(U,B)

The result follows from monotonicity of PS+(R). The case of PS− is similar.

We shall examine what happens in the min-plus case. Let R : A ↛ B be a

N -valued relation, and U ⊆ A, V ⊆ B. For every a ∈ A and b ∈ B the value

R(a, b) ∈ N represents the cost of going from a to b. The expression of Eq. 7.4

amounts to

PN+(R)(U, V) = max
a∈U

min
b∈V

R(a, b).

This indicates that the cost of going from a subset U to a subset V is calculated

in two steps. First, for every possible starting point a ∈ U , the minimal cost of

landing anywhere in V is calculated. This is minb∈V R(a, b). The second step is

to find the maximal such value.

This can be interpreted as an adversarial game. Your opponent makes the

first move, choosing a state a ∈ U . But the second move is yours, and you may

choose the “cheapest” b ∈ V to move to.

An example is depicted in Fig. 7.1. The solid lines depict the cheapest transition

from a given point in U to any point in V . The ultimate value of PN+(R)(U, V)

would be 4, as this is the smallest value that will be able to pay for a transition

to V , no matter where in U we start at.

It is worth mentioning that in this case the extension PN+ is properly lax

with respect to composition. Let R : A ↛ B and S : B ↛ C be as depicted in

154

U

u1

u2

u3

V

v1

v2

v3

v′2

v′3

3

4

2

5

4

Figure 7.1: In this case, PN+(R)(U, V) = 4.

Fig. 7.2. Clearly, we have that

PN+(()R # S)(A,C) = 3.

However, we may calculate that

(PN+(R) # PN+(S))(A,C) = 4.

The interpretation is that having to play two rounds of the game gives your

opponent an advantage. On the first round, she forces you to the top row, making

you pick the most expensive transition A → B, for a cost of 2. In the second

round, she moves you to the bottom row, and again you have to take the transition

with a cost of 2.

Calculating the composite R #S first gives you an advantage, as your opponent

is not able to interfere in the middle of your move from A to C.

7.2 Cartesian closed structure

We shall see how to define the product and coproduct in every category

PS-Actlax(D). To begin with, we take D to be an arbitrary Pos-enriched category.

155

A B C A C

1

2

2

1

3

3

Figure 7.2: Two N -relations, R : A↛ B and S : B ↛ C, and their composite.

Let ∆,Γ : D → FinRelS be two PS-actions on D. This means that for every

object D of D we have sets ∆D,ΓD. And, for every morphism σ : D → E in D,
there are functions ∆σ : ∆D → PS(∆E),Γσ : ΓD → PS(ΓD). Note that we move

the σ to subscript for readability.

We will, however, find the type signatures below more convenient.

∆σ : ∆D ×∆E → S

Γσ : ΓD × ΓE → S.

This means that we can think of a PS action ∆ as providing, for every morphism

σ : D → E and every pair of elements d ∈ ∆D and e ∈ ∆E, a value ∆σ(d, e) in S.

The following result will help us reason about morphisms in this category.

Proposition 7.7. Let {fD : ∆D → ΓD}D be a family of functions, indexed by

the objects of D. The family f is a lax morphism Γ→ ∆ if and only if, for every

σ : D → E and every pair of elements d ∈ ∆D, e ∈ ∆E the inequality below holds

∆σ(d, d
′) ≤ Γσ(f(d), f(d

′)). (7.7)

Proof. Recall that f is a lax morphism if for everyσ : D → E, the inclusion in the

diagram below exists.

∆D, ΓD

PS(∆E) PS(ΓE)

fD

∆σ Γσ

PSfE

156

Concretely, this means that for all d ∈ ∆D and e′ ∈ ΓE we have

PSfE(∆σ(d))(e
′) ≤ Γσ(fD(d), e

′).

Rewriting the left hand side we end up with∨
e∈f−1

E (e′)

∆σ(d, d
′) ≤ Γσ(f)D(d), e′), (7.8)

quantified over all d, e′.

Suppose we have Eq. 7.7. Pick a d and e′. Then every term ∆σ(d, d
′) in the

join on the left hand side of Eq. 7.8 is bounded above by the value Γσ(fD(d), e
′)

(by Eq. 7.7, since for each d′ we have fE(d
′) = e′).

On the other hand, suppose we have Eq. 7.8. Pick d, d′, and let e′ = fE(d
′).

We have ∆σ(d, d
′) ≤ PSfE(∆σ(d))(e

′), so by Eq. 7.8 we deduce ∆σ(d, d
′) ≤

Γσ(fD(d), e
′), as desired.

When S = B, this is telling us that a morphism of transition systems is

a function that preserves σ-transitions for all σ. In the S-valued case, this

corresponds to preserving order.

Definition 7.8. The categorical product of ∆ and Γ is denoted ∆ ∧ Γ. The

action of ∆ ∧ Γ on objects D is the product of sets, ∆D × ΓD. For morphisms

σ : D → E we define

(∆ ∧ Γ)σ : (∆D × ΓD)× (∆E × ΓE)→ S

(∆ ∧ Γ)σ(d, d
′, e, e′) = ∆σ(d, e) ∧ Γσ(d

′, e′)

Explicitly, the definition above is saying that the product of two transition

systems α : A→ PA and β : B → PB is the transition system on the set A×B,

with transitions given by the rule

(a, b) −→ (a′, b′) if and only if a −→ a′ and b −→ b′,

which is the familiar definition of the product in TS.

Definition 7.9. The categorical coproduct is denoted ∆ ∨ Γ. On objects this is

157

also the product of sets. For a morphism σ : D → E we have

(∆ ∨ Γ)σ : (∆D × ΓD)× (∆E × ΓE)→ S

(∆ ∨ Γ)σ(d, d
′, e, e′) = ∆σ(d, e) ∨ Γσ(d

′, e′)

The pairing and copairing morphisms are constructed (pointwise) in the same

way as in Set. We omit the proof that they are lax morphisms, as it is tedious

and does not reveal anything interesting.

The next step is to construct an exponential object. Again, we will take the

underlying set of ∆⇒ Γ to be (pointwise) the set of all functions, not merely the

morphisms.

Definition 7.10. The PS-action ∆ ⇒ Γ is defined in the following way. For

objects D we have

∆⇒ Γ(D) = {f : ∆D → ΓD},

which is the exponential ∆D ⇒ ΓD in Set.

Let σ : D → E be a morphism in D. Then we will define

∆⇒ Γσ(f, g) = n,

where n ∈ S is the greatest element with

n ∧∆σ(d, d
′) ≤ Γσ(f(d), g(d

′)), (7.9)

for all d, d′ ∈ ∆D.

An alternative expression for the value of Eq. 7.9 is

(∆⇒ Γ)σ(f, g) =
∨
{n ∈ S | n ∧∆σ(d, d

′) ≤ Γσ(f(d), g(d
′)) for all d, d′ ∈ ∆D}.

(7.10)

When S has all joins (i.e. when the semiring (S,⊥, 1,∨, ∗) is complete in the sense

of Definition 2.13), the join of Eq. 7.10 is guaranteed to exist. It is at this point

unclear if the condition of Eq. 7.9 is well-defined even in the case of a semiring

that is not complete.

Proposition 7.11. The category PS-Actlax(D) is cartesian closed.

158

Proof. Let ∆,Γ : D → FinRelS be PS-actions. We saw in Definition 7.8 that

the product is given by ∨, and we described the construction of ∆ ⇒ Γ in

Definition 7.10.

We will now describe the evaluation and currying maps, and prove that they

are morphisms. The type of ev will be ∆ ∧ (∆⇒ Γ)→ Γ. The components of ev

are

evD : ∆D × (∆D ⇒ ΓD)→ ΓD

evD(d, f) = f(d)

We need to verify that this is a morphism. We will check that it “preserves

transitions” in the way of Proposition 7.7. This means that the inequality below

must hold

∆σ(d, e)(∆⇒ Γ)σ(f, g) ≤ Γσ(f(d), g(e)).

But this holds precisely by Eq. 7.9!

Now, let g : Θ ∧ ∆ → Γ be a morphism. We define λg : Θ → ∆ ⇒ Γ by

currying componentwise,

(λg)D : ΘD → ∆D ⇒ ΓD

(λg)D = λ(gD).

This certainly has the right type. All we need to worry about is whether the

curried λg is indeed a morphism. We will check that it preserves transitions. We

require that for every σ : D → E and every d ∈ ΘD and e ∈ ΘE that

Θσ(d, e) ≤ (∆⇒ Γ)σ(λgd, λge).

Note that for any d′ ∈ ∆D, e′ ∈ ∆E we have

∆σ(d
′, e′) ∧Θσ(d, e) ≤ Γσ(g(d, d

′), g(e, e′)),

because g is a lax morphism. The right hand side of this inequality is

Γσ(λgd(d
′), λge(e′)).

159

So by taking n = Θσ(d, e) we see that

n ∧∆(d′, e′) ≤ Γσ(λgd(d
′), λge(e′))

for all d′, e′. Thus the value of (∆⇒ Γ)σ(λgd, λge) must be greater than or equal

to n, which gives the desired inequality

Θσ(d, e) ≤ (∆⇒ Γ)σ(λgd, λge).

Example 7.12. Consider the following example in the min-plus semiring. Let f

be the function A→ B depicted in Fig. 7.3

a bA

c dB

3

5

f

Figure 7.3: The function f : A→ B.

The function f is not a morphism. It is not transition preserving, as 3 ̸≥ 5. The
“resource” intuition is helpful here. In A, we can make the transition a→ b for a
cost of 3. The corresponding transition c→ d in B meanwhile, requires a cost of
5 to be paid. So being able to make a→ b does not guarantee that we can also
make c→ d.
By applying the formula of Eq. 7.9 we can deduce that the value of A⇒ B(f, f)
is 5, as we have

max(5, 3) ≥ 5

and 5 is minimal (that is, greatest with respect to ≥) with this property.

7.3 Additional residuated structure

Following the previous section, we may also lift the multiplicative structure of S

to the level of PS-actions.

160

Definition 7.13. Let ∆,Γ be PS-actions on D. The action ∆ ∗ Γ is defined by

(∆ ∗ Γ)D = ∆D × ΓD

(∆ ∗ Γ)σ(d, d′, e, e′) = ∆σ(d, e) ∗ Γσ(d
′, e′).

Proposition 7.14. The construct ∆∗Γ can be extended (pointwise) to a monoidal

functor on PS-Actlax(D). The unit is given by 1, where

1 : D → FinRelS

1D = {⋆}

1(σ : D → E) = ηS(1),

where 1 is the monoidal unit of S.

When ∗ is commutative on S, this functor is symmetric monoidal.

Furthermore, suppose that the lattice S is actually residuated, with left and

right residuals given by c⧸a and b⧹c. We are able to define the residuals of

PS-actions. These will satisfy the isomorphisms of homsets

Hom(∆ ∗ Γ,Θ) ∼= Hom(Γ,∆⧹Θ) ∼= Hom(∆,Θ⧸Γ).

Definition 7.15. Let ∆,Γ be PS actions on D. On objects D, the left and right

residuals are equal. They are (pointwise) the set of all functions ∆D → ΓD.

(Γ⧸∆)D = ∆D ⇒ ΓD

(∆⧹Γ)D = ∆D ⇒ ΓD

Let σ : D → E be a morphism. Let f : ∆D → ΓD and g : ∆E → ΓE. We define

the residuals componentwise by

(Γ⧸∆)σ(f, g) =
∧
d,e

(Γσ(f(d), g(e))⧸∆σ(d, e))

(∆⧹Γ)σ(f, g) =
∧
d,e

(∆σ(d, e)⧹Γσ(f(d), g(e))) ,

where d ranges over ∆D and e over ∆E.

161

Note that, by the definition of residuation in S, the residual spaces have the

property that for every σ : D → E, d ∈ ∆D, e ∈ ∆E, f : ∆D → ΓD, and

g : ∆E → ΓE, we have

(Γ⧸∆)σ(f, g) ∗∆σ(d, e) ≤ Γσ(f(d), g(e)) (7.11)

∆σ(d, e) ∗ (∆⧹Γ)σ(f, g) ≤ Γσ(f(d), g(e)), (7.12)

and (Γ⧸∆)σ(f, g) and (∆⧹Γ)σ(f, g) are maximal in S with regard to this property.

Proposition 7.16. The multiplication − ∗ − and residuals −⧸− and −⧹− give

PS-Actlax(D) the structure of a residuated category.

Proof. We construct left and right evaluation morphisms lev : (Γ⧸∆) ∗∆ → Γ

and rev : ∆ ∗ (∆⧹Γ)→ Γ by

levD(f, d) = f(d)

revD(d, f) = f(d).

Similarly, we define left and right currying. Let g : Θ ∗∆→ Γ and h : ∆ ∗Θ→ Γ.

Then we define the morphisms λg : Θ→ Γ⧸∆ and ρh : Θ→ ∆⧹Γ pointwise by

(λg)D(c) = d 7→ g(c, d)

(ρh)D(c) = d 7→ h(d, c).

We need to verify that ev, lev and λg, ρh are lax morphisms. Let σ : D → E,

d ∈ ∆D, e ∈ ∆E, f : ∆D → ΓD, g : ∆E → ΓE. Then we calculate

((Γ⧸∆) ∗∆)σ(f, d, g, e) = (Γ⧸∆)σ(f, g) ∗∆σ(d, e)

≤ Γσ(f(d), g(e)) (by Eq. 7.11)

The case of rev proceeds symmetrically.

Now we need to show that for c ∈ ΘD and c′ ∈ ΘE we have

Θσ(c, c
′) ≤ (Γ⧸∆)σ(λgc, λgc

′).

162

This will hold if we have

Θσ(c, c
′) ∗∆σ(d, e) ≤ Γσ(λgc(d), λgc

′(e))

= Γσ(g(c, d), g(c
′, e)),

because (Γ⧸∆)σ(λgc, λgc
′) must be minimal with respect to this property. But

this inequality holds because g is a morphism! The case of ρh is similar.

The following result is a generalisation of Proposition 3.22.

Proposition 7.17. Let {fD : ∆D → ΓD}D be a family of functions. The following

are equivalent.

1. f is a lax morphism ∆→ Γ

2. 1 ≤ (Γ⧸∆)σ(f, f) for all σ : D → E in D

3. 1 ≤ (∆⧹Γ)σ(f, f) for all σ : D → E in D

Proof. • (1 =⇒ 2). Suppose that f is a lax morphism. This means that

∆σ(d, e) ≤ Γσ(fD(d), fE(e)) for all σ, d, e. As 1 is the unit of ∗, we deduce

1 ∗∆σ(d, e) ≤ Γσ(fD(d), fE(e)).

This immediately implies 1 ≤ (Γ⧸∆)σ(f, f), as that is the maximal x with

x ∗∆σ(d, e) ≤ Γσ(fD(d), fE(e)).

• (2 =⇒ 1). Suppose that 1 ≤ (Γ⧸∆)σ(f, f) for all σ. By multiplying on

the right with ∆σ(d, e) (for arbitrary d, e, we deduce

∆σ(d, e) ≤ (Γ⧸∆)σ(f, f) ∗∆σ(d, e).

Now, the right hand side is bounded above by Γσ(fD(d), fE(e)), by Eq. 7.11.

So it follows that f is a morphism.

• The case of 1 ⇐⇒ 3 is symmetric.

Example 7.18. Let us consider the case of Fig. 7.3 again. Recall that in the min-

plus semiring, the left and right residuals are both given by truncated subtraction.

163

Hence we may compute that the value of A⧸B(f, f) = B⧹A(f, f) is 2, as we
have

2 + 3 ≥ 5,

and 2 is minimal (maximal with respect to ≥) with this property.

164

Chapter 8

Conclusion

In this thesis we have seen a construction of T -actions that unifies many existing

notions of “categories of transition systems”. The categories that we are able to

express include

• the category of labeled transition systems with edge-preserving functions,

TSΣ

• as a special case, the categories of directed and undirected graphs

• via a monad on TSΣ, categories of transition systems with simulations and

other relational morphisms

• categories of T -coalgebras, with both coalgebra morphisms and lax cohomo-

morphisms. These can be thought of as transition systems for the transition

type T , with transition preserving functions as morphisms.

• in particular categories of S-valued transition systems (as coalgebras for the

PS monad)

• categories of monoid actions Act(M) with morphisms of actions.

We have examined the particular structure of TSΣ in some detail. In particular,

we have generalised the cartesian closed structure of Gph to the directed and

labelled case. Following in this vein, we have taken the “homotopic view” of

transitions f
σ−→ g in the exponential object A ⇒ B, and extended results of

×-homotopy theory for undirected graphs to TSΣ, in particular the “spider moves”

decomposition of [13].

165

We presented a generalisation of the result of [39], that simulations of transition

systems are in fact Kleisli morphisms of the Sim monad on TSΣ. We showed that

this monad is formed from a lax extension of P to Rel, and that there is a dual

extension which induces the monad of reverse simulations, RevSim.

We formulated a notion of lax distributive laws in a Pos-enriched setting,

and present a well-behaved correspondence theorem (Theorem 4.28) between lax

extensions S of S to CT and lax distributive laws λ : ST → TS. We take the

approach of [53]— which presents a similar result for the case of T = PQ the

monad of a quantale—of examining precisely which axioms of distributive laws

correspond to which properties of a lax extension. In particular, we show that the

T -relators of Thijs [52] can be understood as lax extensions of T to Rel. The lax

extension P+ of P induces both the P relator of simulations, and the monad Sim

of simulations.

The latter half of the thesis is concerned with generalising the construction of

Sim to construct monads on categories of transition systems for other transition

types T . We take a higher categorical approach, defining a notion of a (lax)

T -action on a Pos-category D. These are essentially lax functors D → CT . We

showed that the appropriate notion of morphism generalises lax cohomomorphisms

of T -coalgebras and morphisms of monoid actions. The collection of all such

T -actions forms a category T -Act(D). We showed further that this construction

is functorial in D, and hence formulate a contravariant functor T -Act(−) :

PosCatop → Cat.

We presented a Yoneda-style result in Lemma 6.16, showing that natural

transformations S : T -Act(−) → T -Act(−) are in correspondence with lax

functorial extensions S of S to CT . This holds because T -Act(−) is almost a

hom-functor. When S is a monad, we proved (Theorem 6.17) that there is a

correspondence between lax monad extensions and lax monad distributive laws.

We exhibited Sim as an instance of this construction on P-Actlax(−), induced by

the extension P+.

Finally, we took a closer look at the case of PS-valued transition systems,

where S is a distributive monoidal lattice. The case of PQ for Q a quantale is

relatively well-explored, but many good results can be recovered in this weaker

setting. We present a pair of lax distributive law ℓ+, ℓ− : PfPS → PSPf that

generalise the laws ℓ+, ℓ− : PP → PP . The ℓ− law is a finitary version of a well

known lax distributive law PPQ → PQP [33].

166

We demonstrated that when S has all joins, there is a cartesian closed structure

on the category of PS-transition systems. Furthermore, when S is a residuated

lattice, the residuated structure lifts to the category of transition systems also.

Both of these constructions agree with the cartesian closed structure of TSΣ for

S = B, and provide novel notions of homotopy for functions of S-valued transition

systems.

8.1 Future Work

There are several opportunities for future work.

• There is much more work to be done in extending results of ×-homotopy

for undirected graphs to the directed, labelled case of TSΣ. Desirable

results could include finding a good notion of homotopy equivalence of

systems, defining higher path categories, and understanding what properties

of transition systems are preserved by homotopy. It would be good to see

whether the “spider moves” results of Section 3.3 could be generalised to

the particular case of homotopies for PS-systems, introduced in Chapter 7.

• The categorical structure of TSSΣ is not fully understood. It is not a perfect

analog to Rel as it does not have a dagger structure (the converse of a

simulation is not, in general a simulation). Furthermore, the tensor product

is not symmetric monoidal closed. It might also be worth investigating the

subcategories of TSSΣ comprising of the reflexive or symmetric systems,

and seeing if there are any adjunctions like those of Propositions 3.28

and 3.34. One could also try to develop a homotopy theory for simulations

and relational morphisms.

• We have explicitly considered only a small number of lax distributive laws.

There are several more lax laws known in the literature. An area of future

work would be to apply the techniques of this thesis and see what sort

of monads of transition systems they correspond to. Recent work [20]

suggests a notion of S-valued bisimulations for S-valued systems—this could

correspond to a lax law PSPS → PSPS.

• In particular, it would be interesting to explore the connections between the

work of this thesis and the field of monoidal topology [42, 48, 53, 33], which

provides another use-case for lax distributive laws.

167

• It may be possible to generalise the setting of lax distributive laws even

further. The work of this thesis is framed in terms of Pos-enrichment, but it

may be possible to enrich in preordered sets (like the order-endowed functors

of [15]), or even work in an arbitrary 2-category. It is at this stage unclear

what conditions on a 2-category are required to formulate the correspondence

of lax distributive laws and lax extensions.

168

Bibliography

[1] Samson Abramsky and Bob Coecke. “A Categorical Semantics of Quantum

Protocols”. In: (5th Mar. 2007). arXiv: quant-ph/0402130.

[2] Peter Aczel and Nax Mendler. “A Final Coalgebra Theorem”. In: Category

Theory and Computer Science. Lecture Notes in Computer Science. 1989,

pp. 357–365.

[3] Jǐŕı Adámek, Horst Herrlich and George E. Strecker. Abstract and Concrete

Categories. Reprints in Theory and Applications of Categories 17. 1990.

[4] E. Babson et al. “A Homotopy Theory for Graphs”. In: arXiv:math/0403146

(Mar. 2004). eprint: math/0403146.

[5] Michael Barr. “Relational Algebras”. In: Reports of the Midwest Category

Seminar. 1969.

[6] Falk Bartels, Ana Sokolova and Erik Vink. “A Hierarchy of Probabilistic

System Types”. In: Electronic Notes in Theoretical Computer Science 327

(Oct. 2004), pp. 57–75.

[7] Jon Beck. “Distributive Laws”. In: Seminar on Triples and Categorical

Homology Theory. Lecture Notes in Mathematics. 1969, pp. 119–140.

[8] N. Bezhanishvili, G. Fontaine and Y. Venema. “Vietoris Bisimulations”. In:

Journal of Logic and Computation 20.5 (2010), pp. 1017–1040.

[9] Patrick Blackburn, Maarten de Rijke and Yde Venema. Modal Logic. Cam-

bridge Tracts in Theoretical Computer Science 53. 2001.

[10] Filippo Bonchi et al. “A Coalgebraic Perspective on Linear Weighted

Automata”. In: Information and Computation 211 (2012), pp. 77–105.

169

https://arxiv.org/abs/quant-ph/0402130
math/0403146

[11] Marcello M. Bonsangue et al. “Presenting Distributive Laws”. In: Logical

Methods in Computer Science Volume 11, Issue 3 (7th Aug. 2015), p. 1578.

issn: 1860-5974. arXiv: 1503.02447 [cs]. url: http://arxiv.org/abs/

1503.02447.

[12] Peter Buchholz. “Bisimulation Relations for Weighted Automata”. In:

Theoretical Computer Science 393.1 (2008), pp. 109–123.

[13] Tien Chih and Laura Scull. “A Homotopy Category for Graphs”. In: (May

2020). arXiv: 1901.01619 [math].

[14] Corina Cirstea. Linear Time Logics – A Coalgebraic Perspective. Sept. 2021.

arXiv: 1612.07844 [cs].

[15] Andrea Corradini, Martin Große-Rhode and Reiko Heckel. “A Coalgebraic

Presentation of Structured Transition Systems”. In: Theoretical Computer

Science 260.1-2 (June 2001), pp. 27–55.

[16] E. P. de Vink and J. J. M. M. Rutten. “Bisimulation for Probabilistic

Transition Systems: A Coalgebraic Approach”. In: Theoretical Computer

Science 221.1 (1999), pp. 271–293.

[17] Anton Dochtermann. “Hom Complexes and Homotopy Theory in the

Category of Graphs”. In: arXiv:math/0605275 (July 2008). eprint: math/

0605275.

[18] Anton Dochtermann. Homotopy Groups of Hom Complexes of Graphs. July

2008. arXiv: arXiv:0705.2620.

[19] Jean-Marie Droz. “Quillen Model Structures on the Category of Graphs”.

In: arXiv:1209.2699 [math] (Sept. 2012). arXiv: 1209.2699.

[20] Yibin Du and Ping Zhu. “Fuzzy Approximations of Fuzzy Relational

Structures”. In: International Journal of Approximate Reasoning 98 (July

2018), pp. 1–10.

[21] Samuel Eilenberg. Automata, Languages, and Machines. Pure and Applied

Mathematics. Academic Press, 1974.

[22] Sebastian Enqvist and Sumit Sourabh. “Bisimulations for coalgebras on

Stone spaces”. In: Journal of Logic and Computation 28.6 (2018), pp. 991–

1010.

170

https://arxiv.org/abs/1503.02447
http://arxiv.org/abs/1503.02447
http://arxiv.org/abs/1503.02447
https://arxiv.org/abs/1901.01619
https://arxiv.org/abs/1612.07844
math/0605275
math/0605275
https://arxiv.org/abs/arXiv:0705.2620
https://arxiv.org/abs/1209.2699

[23] Richard Garner. “The Vietoris Monad and Weak Distributive Laws”. In:

Applied Categorical Structures 28.2 (Apr. 2020), pp. 339–354. arXiv: 1811.

00214 [math].

[24] Chris Godsil and Gordon Royle. Algebraic Graph Theory. Vol. 207. Graduate

Texts in Mathematics. 2001.

[25] Alexandre Goy. “On the Compositionality of Monads via Weak Distributive

Laws.” PhD thesis. Université Paris-Saclay, 2021.

[26] Marco Grandis. Higher Dimensional Categories: From Double to Multiple

Categories. World Scientific, Sept. 2019.

[27] Rachel Hardeman. “The Lifting Properties of A-Homotopy Theory”. In:

arXiv:1904.12065 [math] (Oct. 2019). arXiv: 1904.12065 [math].

[28] P. Johnstone, J. Power and T. Tsujishita. “An Axiomatics for Categories

of Transition Systems as Coalgebras”. In: Proceedings. Thirteenth Annual

IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

1998, pp. 207–213.

[29] Peter Johnstone et al. “On the Structure of Categories of Coalgebras”. In:

Theoretical Computer Science 260.1-2 (June 2001), pp. 87–117.

[30] G M Kelly. “Basic Concepts of Enriched Category Theory”. In: Reprints in

Theory and Applications of Categories 10 (2005).

[31] M. Kil’p, U. Knauer and A. V. Mikhalev. Monoids, Acts, and Categories:

With Applications to Wreath Products and Graphs: A Handbook for Students

and Researchers. De Gruyter Expositions in Mathematics 29. 2000.

[32] Alexander Kurz and Jǐŕı Velebil. “Relation Lifting, a Survey”. In: Journal

of Logical and Algebraic Methods in Programming 85.4 (June 2016), pp. 475–

499.

[33] Hongliang Lai and Walter Tholen. Quantale-Valued Approach Spaces via

Closure and Convergence. 2016. eprint: arXiv:1604.08813.

[34] Kim G. Larsen and Arne Skou. “Bisimulation through Probabilistic Testing”.

In: Information and Computation 94.1 (Sept. 1991), pp. 1–28.

[35] F. William Lawvere. “Metric Spaces, Generalized Logic, and Closed Cat-

egories”. In: Rendiconti del Seminario Matematico e Fisico di Milano 43.1

(Dec. 1973), pp. 135–166.

171

https://arxiv.org/abs/1811.00214
https://arxiv.org/abs/1811.00214
https://arxiv.org/abs/1904.12065
arXiv:1604.08813

[36] Tom Leinster. Basic Bicategories. Oct. 1998. arXiv: math/9810017.

[37] Paul Blain Levy. “Similarity Quotients as Final Coalgebras”. In: Foundations

of Software Science and Computational Structures. Vol. 6604. 2011, pp. 27–

41.

[38] Saunders Mac Lane. Categories for the Working Mathematician. 2nd ed.

Graduate Texts in Mathematics 5. 1998.

[39] Pasquale Malacaria. “Equivalences of Transition Systems in an Algeb-

raic Framework”. In: Algebraic Methodology and Software Technology

(AMAST’93). 1994, pp. 263–270.

[40] Takahiro Matsushita. “Box Complexes and Homotopy Theory of Graphs”.

In: arXiv:1605.06222 [math] (July 2017).

[41] Eugenio Moggi. “Notions of Computation and Monads”. In: Information

and Computation 93.1 (1991), pp. 55–92.

[42] “Monoidal Topology: A Categorical Approach to Order, Metric, and Topo-

logy”. In: July 2014.

[43] José N. Oliveira. “Weighted Automata as Coalgebras in Categories of

Matrices”. In: International Journal of Foundations of Computer Science

24.06 (Sept. 2013), pp. 709–728.

[44] Gordon D Plotkin. “A Structural Approach to Operational Semantics”. In:

The Journal of Logic and Algebraic Programming 60–61 (2004), pp. 17–139.

[45] J.J.M.M. Rutten. “Universal Coalgebra: A Theory of Systems”. In: Theor-

etical Computer Science 249.1 (Oct. 2000), pp. 3–80.

[46] Jan J. M. M. Rutten and Daniele Turi. “On the Foundations of Final

Semantics: Non-standard Sets, Metric Spaces, Partial Orders”. In: Semantics:

Foundations and Applications. Vol. 666. 1993, pp. 477–530.

[47] Gunther Schmidt and Thomas Ströhlein. “Relations and Graphs”. In:

EATCS Monographs on Theoretical Computer Science. 1993.

[48] C. Schubert. “Lax Algebras: A Scenic Approach”. PhD thesis. Universität

Bremen, 2006.

[49] Michael Sipser. Introduction to the Theory of Computation. Cengage

Learning, 2013.

172

https://arxiv.org/abs/math/9810017

[50] Sam Staton. Relating Coalgebraic Notions of Bisimulation. arXiv: 1101.

4223v1.

[51] M. E. Szabo. Algebra of Proofs. Studies in Logic and the Foundations of

Mathematics v. 88. 1978.

[52] Albert Marchienus Thijs. “Simulation and Fixpoint Semantics”. PhD thesis.

University of Groningen, 1996.

[53] Walter Tholen. Lax Distributive Laws for Topology, I. Aug. 2016. arXiv:

1603.06251 [math].

[54] Daniele Varacca. “Probability, Nondeterminism and Concurrency: Two

Denotational Models for Probabilistic Computation”. PhD thesis. Université

Paris Diderot, Apr. 2004.

[55] Sebastiano Vigna. “A Guided Tour in the Topos of Graphs”. In: (June

2003). arXiv: math/0306394.

[56] Kim Ritter Wagner. “Liminf Convergence in Ω-categories”. In: Theoretical

Computer Science 184.1-2 (1997), pp. 61–104.

[57] Maaike Zwart and Dan Marsden. “No-Go Theorems for Distributive Laws”.

In: Logical Methods in Computer Science Volume 18, Issue 1 (Jan. 2022).

173

https://arxiv.org/abs/1101.4223v1
https://arxiv.org/abs/1101.4223v1
https://arxiv.org/abs/1603.06251
https://arxiv.org/abs/math/0306394

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Preliminaries
	Category theory
	Algebra

	The simple category of transition systems
	The category TS
	Cartesian closed structure
	Homotopic interpretation
	Simulations and the category TSS
	Simulations via monads

	In search of generality
	Thinking with coalgebras
	A lax setting
	Interaction via distributive laws
	Lax distributive laws

	Lax distributive laws of type PPPP
	Extending functors to def:relRel
	Two lax distributive laws
	Relators and lax extensions to def:relRel

	Generalised monoid actions
	Classical monoid actions
	Semigroup actions

	Monadic actions
	Lax morphisms

	Lax and semilax actions
	Actions based over a category
	Higher categorical structure
	Monads on T - def:tactfun Act (-)

	Distributive laws for lattice monads
	Lax laws PfPS PS Pf
	Cartesian closed structure
	Additional residuated structure

	Conclusion
	Future Work

