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ABSTRACT
It remains unclear how galactic environment affects star formation and stellar cluster properties. This is difficult to address in
Milky Way-mass galaxy simulations because of limited resolution and less accurate feedback compared to cloud-scale models.
We carry out zoom-in simulations to re-simulate 100–300 pc regions of a Milky Way-like galaxy using smoothed particle
hydrodynamics, including finer resolution (0.4 M⊙ per particle), cluster-sink particles, ray-traced photoionization from O stars,
H2/CO chemistry, and ISM heating/cooling. We select ∼106 M⊙ cloud complexes from a galactic bar, inner spiral arm, outer
arm, and inter-arm region (in order of galactocentric radius), retaining the original galactic potentials. The surface densities of
star formation rate and neutral gas follow ΣSFR ∝ Σ1.3

gas , with the bar lying higher up the relation than the other regions. However,
the inter-arm region forms stars 2–3x less efficiently than the arm models at the same Σgas. The bar produces the most massive
cluster, the inner arm the second, and the inter-arm the third. Almost all clusters in the bar and inner arm are small (radii < 5 pc),
while 30-50 per cent of clusters in the outer arm and inter-arm have larger radii more like associations. Bar and inner arm clusters
rotate at least twice as fast, on average, than clusters in the outer arm and inter-arm regions. The degree of spatial clustering also
decreases from bar to inter-arm. Our results indicate that young massive clusters, potentially progenitors of globular clusters,
may preferentially form near the bar/inner arm compared to outer arm/inter-arm regions.
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1 INTRODUCTION

Star formation takes place in giant molecular clouds (GMCs) with
most stars forming in clusters or associations (Lada & Lada 2003).
How these clusters/associations form is still an open problem, as is
the cause of differences in their properties. Young massive clusters
(YMCs; masses >104 M⊙ , radii ∼1 pc) are of particular interest as
they may be the progenitors of globular clusters (Portegies Zwart et al.
2010; Longmore et al. 2014). In addition to the cluster properties,
the gas itself is influenced by the newly formed stars. Once massive
stars (>8 M⊙) form, they become a source of feedback by releasing
energy and momentum into the interstellar medium (ISM), changing
the gas dynamics while stars are still forming. This can affect star
formation rates by dispersing gas reservoirs (Walch et al. 2012) or
by compressing them to form new stars (Elmegreen & Lada 1977;
Whitworth et al. 1994).

Star formation, feedback, and cluster properties may depend on
their birth environment. The observed relation between gas surface
density and star formation rate (SFR) surface density depends on
galactocentric radius, with SFRs being higher at smaller radii (Bigiel
et al. 2008). Numerical simulations have extensively shown that feed-
back depends on initial cloud conditions such as mass (Dale et al.
2014; Howard et al. 2017; Ali & Harries 2019), surface density (Kim
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et al. 2018; Fukushima & Yajima 2022), metallicity (Fukushima et al.
2020; Ali 2021), structure (Walch et al. 2013; Zamora-Avilés et al.
2019), gravitational boundedness (Howard et al. 2016), and turbu-
lence (Geen et al. 2018; Guszejnov et al. 2022). The most important
feedback mechanism on cloud scales appears to be photoionization,
which heats gas from ∼102 K to 104 K, creating a pressure gradi-
ent between ionized gas and the neutral ISM. While there are still
many uncertainties, photoionization may dominate over other pre-
supernova (SN) mechanisms such as stellar winds (Geen et al. 2021;
Ali et al. 2022) and radiation pressure (Kim et al. 2018; Ali 2021).
These mechanisms set the structure into which SNe explode, poten-
tially creating low-density channels through which energy can escape
(Lucas et al. 2020; Bending et al. 2022).

Results from cloud-scale studies need to be placed in the larger
galactic context. GMC evolution is influenced by galaxy-scale po-
tentials, shear, and cloud-cloud tidal forces (Dobbs et al. 2013; Jef-
freson et al. 2020). Observations in NGC 300 show that feedback-
related pressure terms exhibit a slight dependence on galactocentric
radius, indicating that feedback becomes more powerful at larger
radii (McLeod et al. 2021). H ii regions at small galactic radii may
be confined by higher ambient pressures (Barnes et al. 2020; Della
Bruna et al. 2022), meaning H ii regions in the disc may be able to
expand to greater sizes compared to those nearer the centre.

However, it is less clear how specific galactic structures such as
bars and spiral arms affect the star formation and feedback processes.
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Individual clouds in the Central Molecular Zone of the Milky Way
(the innermost 500 pc) are observed to be significantly less star-
forming than expected given their high densities (Longmore et al.
2013; Kauffmann et al. 2017). This may be due to galaxy-scale
potentials causing strong shear (Kruĳssen et al. 2019). Yet galactic
centres do contain young massive clusters, including, in our own
Galaxy, the Arches and Quintuplet clusters (Longmore et al. 2014).
The Galactic bar and its intersections with spiral arms might also host
YMCs (Davies et al. 2012; Ramírez Alegría et al. 2014), including
W43 (Nguyễn Luong et al. 2011; Carlhoff et al. 2013). While disc
clouds may have lower masses or mean densities than clouds in the
centre, such regions still manage to form YMCs such as NGC 3603,
potentially through cloud-cloud collisions (Fukui et al. 2014; Liow
& Dobbs 2020).

Numerical simulations which explore these processes can broadly
be split into two types: galaxy-scale simulations which model the
evolution of a whole Milky Way-mass galaxy over 100’s of Myr and
follow the interaction between GMCs and large-scale structures such
as spiral arms (see the review by Naab & Ostriker 2017; also, Agertz
et al. 2013; Dobbs & Pringle 2013; Smith et al. 2020; Jeffreson
et al. 2020; Pettitt et al. 2020a; Keller et al. 2022). The second
type follows the cloud-scale evolution over 3–10 Myr and follows
star formation and feedback without external influences. In these
models, it is computationally feasible to include high-resolution pre-
SN feedback methods, but the initial conditions are idealised, usually
in the form of turbulent spherical clouds (see the review by Dale 2015;
also, Walch et al. 2013; Dale et al. 2014; Grudić et al. 2018; Kim
et al. 2018; Ali et al. 2018; Geen et al. 2018).

In this paper, and previous papers (including Bending et al. 2020;
Ali et al. 2022; Dobbs et al. 2022a; Herrington et al. 2023), we at-
tempt to bridge this gap by extracting GMC complexes from galaxy
simulations (thus starting with more realistic density and velocity
distributions; Rey-Raposo et al. 2017), and using feedback meth-
ods such as ray-tracing which are usually limited to smaller scales.
These zoom-in simulations retain the galactic potentials and include
multiple clouds, thus including tidal forces and shear which isolated
cloud models would neglect. By extracting GMC complexes (of mass
106 M⊙ and size 100–300 pc) from different parts of a galaxy, we
explore the impact of galactic environment on star/cluster forma-
tion and feedback. In section 2, we describe the zoom-in method
and the implementation of star formation and feedback. We present
our results in section 3, discussion in section 4, and conclusions in
section 5.

2 NUMERICAL METHODS

We use the smoothed particle hydrodynamics code sphNG, which
originated with Benz et al. (1990) and Benz (1990), with substantial
modifications by Bate et al. (1995) and Price & Monaghan (2007)
such as the inclusion of sink particles and magnetic fields (although
we do not include the latter here). Our models include self-gravity,
ISM heating/cooling, H2 and CO chemistry (Glover & Mac Low
2007; Dobbs et al. 2008), and the galactic potentials described in
section 2.1. We use the methods introduced by Bending et al. (2020)
for cluster-sink particles and photoionizing radiation via ray-tracing.
We also include supernovae as described by Bending et al. (2022). We
summarise the sink method in section 2.2 and the feedback processes
in section 2.3.

2.1 Initial conditions

We set up our initial conditions by extracting a region from a galaxy
evolution model, enhancing the resolution, then re-running the region
with the higher accuracy methods for sinks and feedback (i.e. a
zoom-in simulation). The galaxy is based on the Milky Way and
includes analytic potentials for a bar and four spiral arms. We use a
modified version of the BrSp4 model from Pettitt et al. (2020a) taken
at 340 Myr post-initialisation. This simulation was carried out using
the SPH code gasoline2 (Wadsley et al. 2004, 2017). It included
stellar feedback in the form of winds from evolved low-mass stars
(<8 M⊙) and supernovae (type II and type Ia; Stinson et al. 2006;
Pettitt et al. 2017). Main sequence feedback from high-mass stars was
not included. We retain the bar and arm potentials in our zoom-in
simulations using sphNG. The bar (Wada & Koda 2001) has a scale
length of

√
2 kpc and a pattern speed of 60 km s−1 kpc−1. The spiral

arms (Cox & Gómez 2002) have a pitch angle of 15◦ and pattern
speed 20 km s−1 kpc−1. There is also an axisymmetric potential for
the combined disc + bulge + halo (Pettitt et al. 2014). This model
differs to that used in Pettitt et al. (2020a) in that it includes a greater
gas-mass resolution of 600 M⊙ per SPH particle and a gravitational
softening scale of 5 pc (compared to 1500 M⊙ and 50 pc presented
in the aforementioned paper). The global dynamics and structure
are essentially identical to that of the model studied in Pettitt et al.
(2020a) and are not discussed here.

We select gas particles in a region of the galaxy and increase
the resolution using the particle-splitting method of Bending et al.
(2020). In the following, we use sphNG and retain the original galac-
tic potentials, but we do not take any of the original star particles.
For each model, we do the resolution enhancement in two stages.
This reduces the effect of grid artefacts in the final particle setup.
The first enhancement takes the region (size of the order of ∼1 kpc)
and increases the resolution from the base resolution of the galaxy
simulation to ∼13 M⊙ per particle. The galactic position of each re-
gion at this stage of the process is shown in the left-most panel of
Fig. 1 overlaid on the original galaxy. We evolve this region (without
feedback) for approximately 0.5 Myr to allow the particles to set-
tle. Next, we select a sub-region (size 100–300 pc) and enhance to
∼0.43 M⊙ per particle. This is used as the initial condition to evolve
with cluster-sinks and stellar feedback.

The parameters of each initial condition are listed in Table 1, sorted
by galactocentric distance. One region explored is in the bar, two are
in spiral arms (one inner arm and one outer arm), and finally one is in
an inter-arm region. The initial mean density is largest for the bar and
decreases with galactocentric distance, with the bar being 10 times
denser than the outermost region (inter-arm model). The panels to
the right of the galaxy in Fig. 1 show the models 2–4 Myr after the
onset of ionization.

2.2 Cluster-sink particles

The zoom-in simulations form cluster-sink particles which represent
(sub-)clusters of stars. Sink formation is based on the criteria of
Bate et al. (1995). Gas particles above a density threshold of 1.2 ×
104 cm−3 are tested to see if the neighbourhood of ∼ 50 particles is
collapsing and converging. If so, the particle and its neighbours are
converted to a sink particle. Sink formation is forced for densities
above 1.2 × 106 cm−3. The sink accretion radius is 0.1 pc and the
sink merger radius is 0.03 pc.

The method for converting sink masses to a stellar population is
based on a method by Geen et al. (2018) and is described in Bending
et al. (2020) with revisions in Herrington et al. (2023). Before the
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Figure 1. Top-down view of original galaxy model by Pettitt et al. (2020a) (far left). Regions are taken from the bar, inner spiral arm, outer arm, and inter-arm
- these are the zoom-ins which are re-simulated with main sequence feedback in this paper. The galaxy shows the location of initial conditions (the first region
enhancement; see section 2.1). Figures show column density with sinks in white. Snapshots are shown at 2.0 Myr (bar), 4.1 Myr (inner arm), 3.5 Myr (outer
arm), and 4.0 Myr (inter-arm) after the onset of feedback and have been rotated for this figure.

Table 1. Initial conditions of zoom-in regions, including galactocentric distance 𝑅gal, total gas mass 𝑀, number of particles 𝑁part, mean mass per particle 𝑚part,
mean density ⟨𝜌⟩ in units of the hydrogen mass 𝑚H, and size along each axis.

region 𝑅gal (kpc) 𝑀 (106 M⊙) 𝑁part 𝑚part (M⊙) ⟨𝜌⟩/𝑚H (cm−3) 𝑋 × 𝑌 × 𝑍 (pc)
bar 0.76 1.8 4,134,592 0.44 476 122 × 117 × 149
inner arm 2.1 1.6 3,744,488 0.43 140 331 × 235 × 291
outer arm 8.4 1.6 3,923,532 0.41 96.8 248 × 271 × 327
inter-arm 9.2 2.1 4,861,061 0.43 47.6 468 × 310 × 348

simulation, we create a list of massive stars. This is done by sampling
from a Kroupa (2001) initial mass function (IMF) up to a total mass
of 3×106 M⊙ and grouping stars into mass bins, keeping a list of the
bin indices for masses above 18 M⊙ . The same list and ordering is
used for all models presented here, as well as in Bending et al. (2020)
and Ali et al. (2022). We keep track of the mass accreted by each
sink. When the total mass accreted over all sinks reaches 305 M⊙ , we
take the next massive star from the list and assign its properties (e.g.
ionizing flux) to a chosen sink – this is the sink with the most mass
not made up of massive stars. This is only done if the sink is massive
enough to accept the star; otherwise, we wait until the next time step.
The fraction of the sink mass that is available for star formation is 50
per cent – the rest is assumed to be a gas reservoir. Stars are in bins
according to spectral type with representative masses and ionizing
fluxes listed in table 2 of Bending et al. (2020).

2.3 Stellar feedback

We use a ray-tracing method for calculating photoionization equi-
librium along lines of sight (LOS) between gas particles and sinks.
This is a similar method to Dale et al. (2007). A full description
is available in Bending et al. (2020). For each gas particle, we cal-
culate the ionizing flux it receives from all ionizing sources, tak-
ing into account the reduction along the LOS. All particles with a
smoothing length which overlaps with the LOS are included, with
quantities interpolated at the position on the LOS (rather than the
particle position, as Dale et al. do). The photoionization rate is bal-
anced with the recombination rate at the gas particle density. We use
the on-the-spot approximation with case B recombination coefficient
𝛼B = 2.7 × 10−13 cm3 s−1 and ionization temperature of 104 K. If
a gas particle receives ionizing radiation from multiple sources, the
column density contributions from all lines of sight are divided by
the number of sources contributing the flux. This is described in
Herrington et al. (2023).

To reduce the computational time, we set the maximum LOS
distance to 100 pc – this is tested by Bending et al. (2020) in a 500 pc
region. In that case, the longer range ionization only had a small
effect on top of the limited LOS model, sweeping up shells near the
boundaries where massive stars did not form. Here we investigate
smaller regions (100-300 pc, closer to the LOS radius), and the sink
particles are more evenly spread out, meaning we do not expect this
limit to change our results significantly. We also group ionizing sinks
into nodes if they are close together, which reduces the number of
ionizing ‘sources’ that a gas particle needs to loop over. For the
most ionizing sink, we find the minimum radius at which the average
ionization fraction of enclosed gas drops below 90 per cent. Any
other sink that sits within half this radius is grouped with that sink.
We repeat with the next most ionizing sink that has not already been
grouped, until all sinks have been grouped or tested. The summed
flux of each sink group propagates from its centre of flux. We find
that this reduces the total number of ionizing sources in the latter
stages of our simulations by a factor of between 2 and 3. Testing with
and without this optimisation shows only a small effect on the total
amount of ionized gas (<1 per cent) and a negligible effect on H ii
region morphology.

We also include supernovae (SNe) using the method by Dobbs et al.
(2011), which was updated for cluster-sink particles by Bending et al.
(2022). When a star above 18 M⊙ becomes old enough to explode
as a SN, we insert energy around the host sink inside a radius which
encompasses its 80 nearest particles. This radius is used to calculate
the age, temperature, and velocity of a SN bubble in the snowplough
phase, assuming each SN contributes 1051 erg. This solution provides
the energy to be inserted inside the radius as a combination of thermal
and kinetic energy. We do not include SNe from less massive stars
as their life times are longer than the simulation run times.

We do not include stellar winds in this paper, as their impact on
the gas is negligible compared with photoionization (Ali et al. 2022).

MNRAS 000, 1–14 (2023)
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Their impact on cluster properties may be marginally more important
compared with gas properties, so this is planned for future models.

3 RESULTS

Fig. 2 shows, for each region, the time evolution of column density.
Four snapshots are presented between 0.5 Myr after the onset of feed-
back and the end of the simulation run time. The end time is typically
limited by the small time steps caused by sink dynamics (in particular
the bar model) or heating from SNe. The effect of rotation around the
galactic centre can be seen most clearly for the bar region, where the
gas structure starts almost vertical and rotates almost 90 degrees over
the next 3.2 Myr. The inner arm also shows some rotation, but this is
marginal compared to the bar. The outer arm and inter-arm regions
do not show rotation over the time scales modelled here. The bar has
a burst of star formation in the first Myr and is dominated by a large,
dense cluster which forms from the densest gas. Star formation in
the inner arm and outer arm models occurs along the length of the
central arm structure, with clusters forming in a chain-like pattern.
Star formation in the inter-arm region is more sparsely distributed –
this has three main sites of star formation, with two close together
on the left and one ∼ 100 pc away to the right. The inter-arm regions
bear the closest resemblance to isolated cloud models.

3.1 Star formation

Fig. 3 shows the time-evolution of star formation efficiency (SFE),
star formation rate surface density (ΣSFR), and the cumulative star
mass. The SFE is defined in terms of the total sink and gas mass,

SFE =
0.5𝑀sinks

𝑀sinks + 𝑀gas
, (1)

where the stellar mass is half the sink mass according to the cluster-
sink prescription described in section 2.2. ΣSFR is the star formation
rate divided by the rectangular area 𝑋𝑌 which contains 99 per cent of
the neutral gas mass, with the origin at the centre of mass, as viewed
in the 𝑥-𝑦 (top-down) plane, i.e.

ΣSFR =
0.5Δ𝑀sinks

𝑋𝑌Δ𝑡
. (2)

This is calculated over time intervals Δ𝑡 = 0.047 Myr and the dimen-
sions are also re-calculated at every SFR measurement time. Δ𝑀sinks
is the change in sink mass over the time interval Δ𝑡. Zero time in the
plot is defined to be when ionizing radiation is first emitted. The star
symbols show when supernovae explode, the first of which occurs
after 4.5 Myr.

The final SFE decreases with galactocentric distance, with the bar
model having the highest SFE of 25 per cent by the end of its runtime
of 3.2 Myr. For the models which undergo at least one supernova
event, the SFEs just before the first SN (in per cent) are 16 (inner
arm), 12 (outer arm), and 6 (inter-arm). This shows that inner regions
form proportionately more stars in the same amount of time. For most
of the evolution, ΣSFR is also ordered by galactocentric distance as
rates get lower with larger distance. However, this is slightly different
in the first Myr, where the two arm regions fluctuate over each other.
Similarly, from 4 Myr, the two outermost regions (the outer arm and
inter-arm) overlap before the latter overtakes the former. By 5 Myr,
there is not much variation between the three non-bar regions, with
the range in ΣSFR being within a factor of 2. The peak values of
ΣSFR are reached at 0.8 Myr (bar), 1.8 Myr (inner arm), 1.0 Myr
(outer arm), and 4.2 Myr (inter-arm); the latter model however shows

two peaks of star formation, with the first peak occurring around
1.5 Myr. The other three models experience a burst of star formation
early on, before declining – star formation is spread more evenly in
position across these regions, while the inter-arm has two distinct
sites of star formation separated by ∼ 100 pc. All four models reach
total stellar masses above 105 M⊙ , with the bar being the first model
to achieve this at 0.85 Myr and the inter-arm region being the last at
4.1 Myr.

The top panel of Fig. 4 shows the relation between ΣSFR and
Σgas, the gas mass surface density of neutral gas (equivalent to H i
+ H2). For each model, we plot a data point at every simulation
dump time, starting from 0.5 Myr after the first ionizing source starts
radiating; we exclude earlier points to avoid the initial large scatter
in SFR before this time due to the small number of sinks (c.f. the
middle panel of Fig. 3). The black dashed line shows the power-law
fit to the data, which is ΣSFR ∝ Σ1.3

gas . This is found by applying a
least-squares method to the data in log-space. The index agrees with
the standard Kennicutt-Schmidt index of 1.4 ± 0.15 (Kennicutt et al.
2007), especially at later times (lower Σgas) for the bar, inner arm
and outer arm models when the points evolve to follow the power law
line. The Ali et al. (2022) spiral arm zoom-in is also included here,
and is shown in green. However, the inter-arm model is shifted down
compared to the other arm regions modelled in this paper – at early
times, ΣSFR is lower by a factor of 2–3. This model shows a double
bump in SFR without tailing downward at later time (lower Σgas)
like the arm and bar models; this is shown more clearly in Fig. 3 as a
function of time. The bar region is located higher up the power-law
line than the arm regions, which generally all have lower densities
and lie at similar points in the figure.

For comparison, observed regions from Bigiel et al. (2008) are
shown as orange diamonds – these are from 7 nearby spiral galaxies
with 750 pc resolution. Observations by Pessa et al. (2021) from
18 galaxies at a resolution of 100 pc are also plotted (assuming
Σmol,gas ≈ Σneu,gas). The models lie above the observational data –
our star formation rate surface densities are a factor of ∼100 higher.
Lines of constant gas depletion time scale (∝ Σgas/ΣSFR) are plotted
as dotted lines. The models have gas depletion time scales between
10–30 Myr, while the Bigiel et al. (2008) and Pessa et al. (2021)
data show time scales of 1–10 Gyr, with some of the latter regions
approaching 100-300 Myr. Similarly, 1.5 kpc resolution observations
by Sun et al. (2023) have depletion time scales above 1 Gyr. Milky
Way regions with higher resolution from Heiderman et al. (2010) are
shown in magenta. Their values of ΣSFR are closer to the simulations
than the Bigiel et al. (2008) results, but have higher Σgas as they are
individual star-forming clouds (sizes smaller than Orion) rather than
cloud complexes. We test how the pixel size and sink parameters
affect the results in appendix A.

The bottom panel of Fig. 4 shows the star formation relation in
terms of volume density (dividing by 𝑋𝑌𝑍) instead of surface den-
sity – this now includes the height of the region in the 𝑧-dimension
as well (above/below the galactic plane). This is 𝜌SFR against 𝜌gas.
In observations, the main difference between the volume density law
and the surface density law is that the latter is well known to have
a break at low Σgas, while the volumetric law shows indications
of being the same for all 𝜌gas (for the same method). The simula-
tions lie along the dashed line which shows the power law fit to the
models, 𝜌SFR ∝ 𝜌1.3

gas . The index of 1.3 agrees with one of the values
calculated by Bacchini et al. (2019a,b), who use surface density mea-
surements in 12 nearby galaxies and turn this to a volumetric quantity
by calculating the radius-dependent scale height of a disc in vertical
hydrostatic equilibrium. They measure two power law indices, 1.3
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Figure 2. Top-down view of zoom-ins from the bar, inner spiral arm, outer arm, and inter-arm (left to right). Figures show column density with sinks in white.
Time evolution is top to bottom – zero time is the onset of feedback.

(when using a constant SFR scale height of 100 pc) and 1.9 (when
using a radially varying SFR scale height).

3.2 Cluster identification

We study the properties of the clusters formed in our simulations
using two different methods, INDICATE (Buckner et al. 2019) and
HDBSCAN (Campello et al. 2013). Both methods suggest the same
trends in the properties of clusters with galactic region, namely that
smaller denser clusters occur preferentially in the inner arm and
bar regions, and larger clusters or associations in the outer arm and
inter-arm regions. For this section, we analyse the clusters in each
simulation at the time when the first supernova occurs (4.5 Myr after
the onset of feedback), except for the bar region which is analysed at
3 Myr.

3.2.1 INDICATE

INDICATE (INdex to Define Inherent Clustering And TEndencies;
Buckner et al. 2019) is a local indicator of spatial association. This
means that rather than finding discrete clusters like (H)DBSCAN
(see section 3.2.2), it assigns an index to each point in a dataset
that describes the spatial distribution in its local neighbourhood. The
index has a range of 0 ⩽ 𝐼5 ⩽ 𝑁tot−1

5 , where 𝑁tot is the total number
of points in the dataset and higher values represent greater degrees of
association. INDICATE calibrates 𝐼5 against random distributions to
identify the minimum value, 𝐼sig, which denotes a point is spatially
clustered (rather than randomly distributed). This value is defined as
three standard deviations greater than 𝐼random

5 i.e. 𝐼sig = 𝐼random
5 +

3𝜎. Statistical testing by the authors has shown INDICATE to be
independent of dataset size, shape, and density; robust against edge
effects and outliers; and valid for sample sizes ⩾ 50 that are up to
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Figure 3. Time-evolution of the star formation efficiency (top), surface density
of star formation rate (middle), and total mass in stars (bottom). Star symbols
denote supernova events.

83.3 per cent incomplete (Buckner et al. 2022b). INDICATE has been
applied to observations of Carina (Buckner et al. 2019), although
care must be taken when comparing 2D projections with 3D data
as the quantitative results may differ, while qualitative results are
still consistent (Buckner et al. 2022a). Here, we use INDICATE to
compare our four models with each other and provide a basis for
identifying cluster members with HDBSCAN (section 3.2.2). These
results may be useful for comparisons with future studies which use
3D Gaia data.

We show the results of applying INDICATE to the different re-

100 101 102

gas, neu (M pc 2)

10 4

10 3

10 2

10 1

100

101

SF
R

(M
yr

1
kp

c
2 )

10 Myr

100 Myr

1 Gyr

10 Gyr

bar
inner arm
outer arm
inter-arm

A2022
n=1.3
B2008
H2010

10 2 10 1

gas, neu (M pc 3)

10 1

100

101

102

SF
R

(M
yr

1
kp

c
3 )

bar
inner arm
outer arm
inter-arm
A2022
n=1.3

100

101

102

P2
02

1 
co

un
t

Figure 4. Top - Kennicutt-Schmidt relation between surface densities of the
star formation rate vs. neutral gas mass (i.e. H i + H2). Bottom - the same
but volume density instead of surface density. The green circles show results
from Ali et al. (2022, A2022). The dashed line shows the power law fit with
the index 𝑛 given in the legend. Dotted lines show gas depletion time scales
between 10 Myr and 10 Gyr. Observations from Pessa et al. (2021, P2021)
are shown as a 2D histogram in colour scale. Data points from Bigiel et al.
(2008, B2008) are shown as orange diamonds and from Heiderman et al.
(2010, H2010) as magenta stars.

gions in Fig. 5. The algorithm is applied to the 3D sink positions,
with the figure showing the results projected onto the 𝑥-𝑦 plane. The
value of 𝐼5 (colour scale) denotes the degree of association for sink
particles that have been identified as spatially clustered, while ran-
domly distributed sinks are plotted in grey. Sinks with higher values
of 𝐼5 are more clustered. Fig. 5 shows that the highest values occur
in the bar, followed by the inner arm, the outer arm and inter-arm.
For sinks identified as being clustered, the median value of 𝐼5 in each
model is 87 (bar), 92 (inner arm), 59 (outer arm), and 60 (inter-arm).
Thus we see that denser, tighter clusters, are found in the bar and
inner arm compared to the inter-arm and outer arm.

3.2.2 (H)DBSCAN

DBSCAN (Ester et al. 1996) is an algorithm commonly adopted ob-
servationally to identify clusters (Castro-Ginard et al. 2019, Castro-
Ginard et al. 2020, Cantat-Gaudin 2022, Prisinzano et al. 2022, He
et al. 2022, Castro-Ginard et al. 2022, He et al. 2023). It requires two
input parameters, 𝜖 and MinPts and categorises stars as either the
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Figure 5. Results from INDICATE for each model (top-down projection). The colour bar denotes the index value, 𝐼5, of sinks found to be spatially clustered.
Sinks with higher 𝐼5 are more clustered. Points in grey denote sinks found to have a random distribution. Sinks in the bar region are the most clustered, followed
by the inner arm, outer arm, and inter-arm regions.

Figure 6. Clusters of sink particles identified for each model using HDBSCAN (top-down projection). The different colours denote discrete clusters found, with
members of the same cluster sharing colours. Particles which are not associated with any cluster are plotted in black. The clusters tend to be more spatially
extended in the outer arm and inter-arm models, compared to the bar and inner arm models.
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core/border members of a cluster, or noise. 𝜖 is the radius around each
star 𝑗 that is searched for neighbouring stars, and MinPts-1 is the
minimum number of neighbours needed for 𝑗 to be a core member of
a cluster. If 𝑗 has less than this minimum number of neighbours but
is within the search radius of a core star it is considered a border star,
else noise. We chose MinPts=30 simply as measure of the size of a
cluster which is well resolved in the simulation. We originally tried
using DBSCAN to identify clusters, ideally keeping MinPts and 𝜖 the
same so that clusters could be compared consistently across different
models, but we could not find uniform values of the 𝜖 parameter
across all models. Using the method proposed by Ester et al. (1996)
to determine 𝜖 , with MinPts=30, gave values of 0.39, 0.55, 0.67 and
0.88 pc for the bar, inner arm, inter-arm region and outer arm respec-
tively, indicating that the bar and inner arm contain smaller clusters
compared to the other regions. With these values of 𝜖 , the bar and
inner arm preferentially produce smaller, denser clusters whereas
the outer arm and inter-arm regions produce spatially larger, lower
density clusters.

Although DBSCAN is commonly used in the observational liter-
ature, a disadvantage is that it is designed to find clusters of similar
densities. This is especially true for datasets such as ours, in which
clusters of different densities exist side-by-side in the same region,
and different regions have different densities as well. HDBSCAN
(Campello et al. 2013) is a successor to DBSCAN which utilises a
hierarchical clustering approach to find clusters in different density
regions. This increased sensitivity makes HDBSCAN a more effec-
tive algorithm for recovering clusters in observational datasets (Hunt
& Reffert 2021). HDBSCAN does not require the 𝜖 parameter to
be user-defined as it is essentially an implementation of DBSCAN
which varies this value. Instead the main input to HDBSCAN is
min_cluster_size, indicative of the minimum number of points
in a cluster. A second input is min_samples, which is a measure of
how strict the cluster assignment is. We found HDBSCAN produced
satisfactory clusters without the need to alter the 𝜖 parameter, and
unlike DBSCAN, we use the same parameters for HDBSCAN to find
clusters across all the models.

To identify the best choice of input parameters for HDBSCAN,
we determined the median INDICATE values of the clusters iden-
tified across the different models, giving us a range of values for
min_cluster_size and min_samples which produced similar 𝐼5
values (note that there is some degeneracy between the two values,
so for example increasing min_cluster_size and min_samples

both tend to produce larger clusters). We also checked the clusters
identified with the different parameters by eye, and compared the
peaks identified with INDICATE (see Fig. 5) with the resultant clus-
ters. We found that the inner arm, inter-arm, and outer arm favoured
smaller values of min_cluster_size and min_samples, whilst
the bar favours larger values. This again indicates that the bar model
produces denser clusters with more particles (similar to the INDI-
CATE results). We selected the largest values of min_cluster_size
and min_samples within our optimal range which did not spuri-
ously group particles together which were not clusters by eye in the
inter-arm, inner arm and outer arm models. These values then over-
lapped with the lower range of optimal values for the bar model.
Overall this approach gave values of min_cluster_size= 55 and
min_samples= 40.

We show the clusters picked out with the HDBSCAN algorithm
using these parameters for the different models in Fig. 6. As with
INDICATE, HDBSCAN uses the 3D sink positions, with the figure
showing a 2D projection. Although the scales vary slightly between
the different panels, the figure indicates that more spatially extended
clusters are found in the inter-arm model, and to some extent the
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Figure 7. Top - cluster radius vs. mass for the different models, plotted over
observational data from Brown & Gnedin (2021) as a 2D histogram. The solid
line shows the fit to the observations. Bottom - fraction of clusters in different
radius bins. Clusters with radii > 5 pc are predominantly found in the outer
arm and inter-arm regions, whilst no spatially larger clusters are found in the
inner arm region.

outer arm model, whereas more compact clusters are found in the
inner arm and bar models.

3.3 Cluster masses and radii

Having identified the clusters, we show their effective radii and
masses in the upper panel of Fig. 7, where the data from our models
is plotted over observational data from Brown & Gnedin (2021). The
effective radius we use is the half-mass radius, which is comparable
to the observed radius. Similarly to Dobbs et al. (2022b), the points
collectively indicate very similar trends to the observed data, and a
similar increase in radius with mass. As also found in Dobbs et al.
(2022b) the points have a slightly larger spread compared to the ob-
servational data. As mentioned in section 3.1, the star formation rates
are higher than would be expected, so the clusters tend to be at the
high mass end of the observational data. We find that the clusters with
the largest radii form in the inter-arm and outer arm models – this is
also indicated by eye in Fig. 6. With radii of around 10 pc, these ob-
jects are more comparable to local observed associations (Portegies
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Zwart et al. 2010) than clusters (note that smaller associations may
be part of much larger∼100 pc regions or associations (Wright 2020)
but here we compare with the ∼ 5 pc size associations discussed in
Portegies Zwart et al. (2010)). The clusters in the bar and inner arm
models appear to follow fairly well the observed distribution. The
clusters in the outer arm however exhibit relatively large radii, and
taken in isolation would exhibit a much steeper radius mass relation
compared to the observational dataset.

In the lower panel of Fig. 7, we plot the frequency of clusters
with different radii for the different models. Again the bar and inner
arm models contain spatially smaller clusters compared to the outer
arm and inter-arm regions. The inner arm in particular contains no
clusters of radii > 5 pc, whereas nearly half the clusters in the outer
arm, and over a third in the inter-arm region, have radii > 5 pc.

We note that the tendency of the spatially largest clusters, for a
given mass, to occur in the outer arm and inter-arm models is in-
dependent of our choice of algorithm or input parameters for HDB-
SCAN. Using DBSCAN with the above 𝜖 values (see section 3.2.2),
or choosing lower values for min_cluster_size and min_samples
with HDBSCAN, tends to break up the clusters more, and the points
are shifted to lower masses; in which case the larger clusters for the
outer arm and inter-arm models are shifted to the top left area of
Fig. 7 (upper panel).

We also see from Fig. 7 (upper panel) that the most massive cluster
is formed in the bar, then the second most massive in the inner arm,
followed by the inter-arm region, then the outer arm. Again this
trend is fairly robust to the choice of algorithm and input parameters.
We can compare the cluster masses and radii with clusters in the
Milky Way. Although there is not a complete map of clusters in
our Galaxy, Portegies Zwart et al. (2010) list the main clusters (or
YMCs) and associations in our quadrant. At the end of the bar lies
RSGC02 which is the most massive cluster (using 𝑀phot from table
2 of Portegies Zwart et al. (2010)), at 4× 104 M⊙ (and RSGC01 and
RSGC03 are close by with similar masses). The next most massive
is Westerlund 1, in an inner spiral arm. Between arms, on a minor
spiral arm, lies Orion which according to the table has a combined
mass of 2 × 104 M⊙ , whilst NGC 3603 just outside the solar circle
has a mass of 1.2× 104 M⊙ . Therefore the trend in cluster mass with
region seen in the simulations is the same as seen in our Galaxy.

3.4 Cluster rotation and expansion

We measure the bulk rotation of the clusters identified in section 3.2.
We use a similar method to Ballone et al. (2020) and Verliat et al.
(2022). For each cluster, we identify the centre of (sink) mass and
calculate the angular momentum of each sink L = 𝑚r × v, where r
and v are its position and velocity, respectively, relative to the centre
of mass. We then calculate the mean angular momentum ⟨L⟩ and
rotate the reference frame so that the new 𝑧′ axis is parallel to ⟨L⟩,
meaning this is defined to be the rotation axis of the cluster. For each
sink, we calculate the azimuthal velocity component 𝑣𝜙 = v′ · 𝜙′,
where 𝜙′ is the azimuthal unit vector around the 𝑧′ axis. The angular
velocity is then 𝜔 = 𝑣𝜙/𝜚, where 𝜚 is the distance from the 𝑧′-axis.
The radial velocity component is 𝑣𝑟 = v′ · r̂′.

In Fig. 8, we plot the median values of 𝜔 (top panel), 𝑣𝜙 (middle
panel), and 𝑣𝑟 (bottom panel). All the clusters rotate with a non-
zero median velocity. The bar and inner arm clusters generally have
higher angular velocities than the outer arm and inter-arm regions.
The clusters in the outer arm and inter-arm models with median 𝜔 >

0.75 Myr−1 appear to be outliers compared to the rest of the clusters
in those regions, whereas the bar and inner arm have several clusters
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Figure 8. Median values of the angular velocity 𝜔 (top), azimuthal veloc-
ity 𝑣𝜙 (middle), and radial velocity 𝑣𝑟 (bottom) for each cluster identified
in Fig. 6. Positive/negative 𝑣𝑟 indicates radial expansion/contraction respec-
tively.

above this value, even extending beyond 2 Myr−1. The median of
medians for the angular velocities 𝜔 in Myr−1 are 0.57 (bar), 0.54
(inner arm), 0.18 (outer arm), and 0.22 (inter-arm) excluding the
largest outlier. Similarly, the median of medians of 𝑣𝜙 in km s−1

are 1.8 (bar), 1.3 (inner arm), 0.72 (outer arm), 1.5 (inter-arm).
Note that while clusters in the inter-arm may have higher 𝑣𝜙 on
average compared to the inner arm, they are also larger in size (see
Fig. 7), hence the division by 𝜚 results in a smaller 𝜔. The median
radial velocities show that the majority of clusters in each region
are expanding, except in the inner arm where most (56 per cent)
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are contracting. Radial velocities rarely exceed ±2 km s−1, which is
consistent with the observed clusters listed in table 2 of Kuhn et al.
(2019). The only cluster with statistically significant rotation in the
Kuhn et al. (2019) dataset is Tr 15 in the Carina Nebula, which
lies in a spiral arm about 2.4 kpc from the Sun (Shull et al. 2021).
It has a median 𝑣𝜙 = (1.7 ± 0.5) km s−1, which is consistent with
the velocities we find in our models, but less so with the outer arm
region where most of the clusters rotate more slowly than this. R136
in the Large Magellanic Cloud has a mean 𝑣𝜙 = (3 ± 1) km s−1 and
𝜔 = (0.75 ± 0.22) Myr−1 (Hénault-Brunet et al. 2012), which fits
with the bar/inner arm values, but is on the extreme end of the outer
arm/inter-arm results.

3.5 Mass flows

We investigate the dispersal or replenishment of gas under the in-
fluence of feedback by measuring the radial mass flux near clusters.
First, we identify the cluster with the highest total ionizing flux, and
then the sink in that cluster with the highest ionizing flux – we do
this at the same snapshots as in section 3.2, just before the first su-
pernova for the inner arm, outer arm, and inter-arm models (4.5 Myr
after feedback starts), and at 3 Myr for the bar region. We define the
position of this sink as the origin of a sphere of radius 𝑅 and locate
particles at the surface, for which we calculate the instantaneous mass
flux through the surface (radially outward and radially inward). To
calculate this numerically, we discretize the surface using HEALPix
(Górski et al. 2005), creating equal-area cells (Δ𝑆) at a defined radius.
We locate particles between 𝑅 and (𝑅 − 1 pc), and sort them accord-
ing to HEALPix cell. In each cell, we calculate the mean value of
the mass flux per unit area 𝜌𝑣𝑟 , where 𝜌 is mass volume density and
𝑣𝑟 = v · r̂, i.e. the velocity (relative to the origin sink) in the direction
pointing radially away from the origin sink. We then integrate this
value over cells to calculate the mass flux in units of M⊙ yr−1,

¤𝑀 =
∑︁

cells 𝑖

⟨𝜌𝑣𝑟 ⟩𝑖Δ𝑆𝑖 , (3)

separating out the positive (outward) components and the negative
(inward) components. We do this for two radii, 𝑅 = 10 pc and 30 pc
representing small and large scales respectively. For reference, if gas
moves radially outward from the origin at the ionized sound speed
(∼ 10 km s−1), it will take 1 Myr to reach 10 pc and 3 Myr to reach
30 pc. We track the origin sink backwards through time and repeat
the procedure every 0.047 Myr.

In Fig. 9, we plot the total mass inside the sphere as a function of
time. We also plot the mass flux flowing radially outward through
the surface, ¤𝑀+, and inward, ¤𝑀− . For context, Fig. 10 shows column
densities at the time highlighted by the blue dashed line of Fig. 9
– this shows the differences in gas morphology across the region at
1.5 Myr, enough time for radiation to propagate and ionize gas, and
for gas to reach a surface.

While feedback is occurring, the inner arm and outer arm models
shows the most significant change in total mass inside 10 pc (top
row, leftmost panel). In the inner arm, the mass increases by more
than a factor of 2, from 0.5 to 1.2 × 105 M⊙ at 2.3 Myr. The streams
of dense gas are more collimated compared with the other regions
where dense gas is spread out more evenly over the surfaces. After
the peak mass is reached, the total mass then declines slowly for
more than 3 Myr as gas is gradually dispersed from the system by
ionization (while most of the sinks actually fall into the 10 pc sphere
over this time).

On the other hand, the outer arm shows a decline in mass over the
whole runtime, decreasing by a factor of 2 within the first 2 Myr of

feedback. This is partly due to the gas dynamics set by the original
galaxy simulation, which shows up as outflow when clouds move
across the region, separate to the effect of stellar feedback. As the
sinks form and feedback progresses (from this origin sink as well as
nearby sinks), the decrease is due to the sinks dispersing in addition
to the gas itself. This model is already the lowest density of the four
sub-regions (Fig. 10), meaning feedback does not have to be strong
to disperse it. The outer arm has low inward fluxes over the whole
runtime, but does exhibit large spikes as clumps of material pass
through the surface; however, these stop after about 1.3 Myr as much
of the material has left by this point – the outward mass flux declines
from 10−2 M⊙ yr−1 around 1 Myr to 10−4 M⊙ yr−1 by 2 Myr.

The inter-arm follows a similar pattern as the inner arm despite the
different morphology, albeit over a shorter timespan. It increases its
mass by a factor of 2 by the time the feedback starts, at which point
this plateaus and the total mass slowly declines (c.f. the inner arm
where this takes 2 Myr). This region has high outward mass fluxes
(top row, middle panel), with values often exceeding 10−1 M⊙ yr−1

and becomes the model with the second-highest flux (behind the
bar). The inward mass flux (right panel) drops by almost two or-
ders of magnitude around 1.5 Myr, meaning this region disperses
material effectively while not maintaining any infall – the infall here
then matches the outer arm, reaching the smallest values of a few
10−4 M⊙ yr−1.

The bar shows the smallest change to the total mass inside 10 pc,
simply increasing its mass slowly over the course of the simulation.
The material in this model rotates around, causing mass to enter the
surface and a comparable amount of mass to leave it, with high mass
fluxes of 1–10 M⊙ yr−1 being reached in this model. Indeed, in the
first 1.5 Myr at 10 pc, the bar has the highest inward mass fluxes,
followed by the inner arm, inter-arm, then outer arm.

At 30 pc (bottom row), the inward fluxes are generally similar for all
models except the bar, which is 1–2 orders of magnitude higher than
the other models, especially in the first 1.5 Myr. The other models
are all similar to each other, with any morphological differences
averaging out over this larger radius. On the other hand, the outward
mass fluxes differ more strongly between the models, with the outer
arm being an order of magnitude greater than the inner arm and inter-
arm in the first Myr. The fluxes for the latter two slowly increase to
match the outer arm by 2–2.5 Myr, as the dispersive effect of feedback
increases in these regions (which are initially denser than the outer
arm). Overall, the models differ from each other more noticeably
when considering the local gas flows (10 pc), with less difference
between regions at larger distances (30 pc); the exception is the bar,
which has higher fluxes than the other regions even at the larger
radius.

4 DISCUSSION

There have now been multiple studies showing the variation of giant
molecular cloud (GMC) properties with environment, initially with
individual galaxies (Colombo et al. 2014; Pan & Kuno 2017), but
now across larger samples with the PHANGS survey (Sun et al.
2018). The variation of cluster properties is less established, but
there is some observational evidence of variation with environment.
Messa et al. (2018) find that the cluster mass function is steeper in the
interarm region of M51, whilst higher mass clusters are present in
the inner parts of M83 (Adamo et al. 2015; Della Bruna et al. 2022).
In our models, we also find that the more massive clusters form in
the inner regions compared to outer regions, and also in spiral arms
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Figure 9. Total mass inside, and mass flux through, a spherical surface at two radii: 10 pc (top row) and 30 pc (bottom row). The left column shows the total
mass in the sphere. The mass flux is separated into the radially outward direction ( ¤𝑀+, middle column) and the radially inward direction ( ¤𝑀− , right column).
Zero on the time axis is when the origin sink starts emitting ionizing radiation. The lines start when the sink is first formed. See Fig. 10 for column density
snapshots at the time highlighted by the blue dashed line. Star symbols denote supernova events.
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Figure 10. Column density snapshots (𝑥-𝑦 plane) in the sub-region investigated in Fig. 9 at the time highlighted with a blue dashed line. Mass fluxes are
calculated at 10 pc (inner circle) and 30 pc (outer circle) from the origin sink.

compared to inter-arm regions. Our cluster masses also vary with
environment similarly to the Milky Way.

We see that the bar region produces the most massive and dense
clusters, and the star formation rate is highest here. Observationally,
there are often particularly massive clusters at the ends of bars.
For example in the Milky Way, the possible super-star cluster W43
appears to be forming at the end of the bar (Nguyễn Luong et al. 2011;
Carlhoff et al. 2013). High density gas can be collected together at the
bar ends (as seen in the galaxy NGC 3627; Beuther et al. 2017), and
strong tidal fields and turbulence can create higher density clouds in
the Galactic Centre generally compared to the disc (Oka et al. 2001;
Henshaw et al. 2016; Kruĳssen et al. 2019) – these extreme initial
conditions could produce high mass clusters. Massive clusters are
observed along the dust lanes of the disc-shaped region surrounding

the bar in NGC 1365 (Elmegreen et al. 2009; Schinnerer et al. 2023).
This is similar in morphology (although larger) to the ring structure
produced by the bar in our galaxy simulation. This seems to contrast
with some surveys (e.g. Sheth et al. 2000; Momose et al. 2010), which
find that there is a lower star formation rate in the bar. However, if
we consider the wider bar region of the original galaxy simulation
(Fig. 1, first panel), we see that there are also large areas with very
little gas. So the wider bar region contains both low density areas and
very dense ring or disc-like structures (see also Renaud et al. 2015;
Shimizu et al. 2019; Querejeta et al. 2021; Iles et al. 2022; Maeda
et al. 2023).

Generally, the trends we see with environment are equivalently
trends with initial density, but it is not necessarily possible to readily
distinguish between the two. For example, as we suggest above,
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the particular dynamics of the bar lead to very high densities, and
similarly the spiral arms are regions of more strongly convergent
flows. We do see some indication of a difference in star formation
rate surface density between the arm and inter-arm region for a given
gas surface density. The spiral arms may gather gas together, forming
large complexes with increased star formation rates compared to other
clouds (Dobbs et al. 2017), though it is not clear whether the arms
make a large difference to the galactic star formation rate (Dobbs
et al. 2011; Eden et al. 2013, 2015; Pettitt et al. 2020b; Urquhart
et al. 2021).

We find that our star formation rates are high compared with
observed extragalactic regions (Fig. 4). One explanation for the dis-
crepancy between our results and the Bigiel et al. (2008) observations
is the latter have coarser spatial resolution – see also appendix A and
the discussion in Heiderman et al. (2010), comparing the extragalac-
tic results to Milky Way regions and discussing the effect of pixel
size. This means regions where little or no star formation is taking
place is also included in the observed SFR measure, driving down
the spatially averaged ΣSFR. The simulated boxes, meanwhile, en-
compass the star forming regions without including too much of the
non-star forming material – and indeed, there is a selection bias to the
measurements as the initial conditions were chosen in part for their
potential to form stars. This does not totally explain the discrepancy,
however, as our star formation rates/efficiencies are still higher than
most of the 100 pc resolution data from e.g. Chevance et al. (2020),
Pessa et al. (2021), and Kim et al. (2022). Given the computational
difficulty of resolving star formation self-consistently on these scales,
it is necessary to use a sub-grid model instead. Together, our tests
in appendix A imply the input parameter for the star formation effi-
ciency per cluster-sink is too high (currently 50 per cent) and that the
sink accretion radii may need reducing to avoid too much material
being accreted. It is also possible that our star formation method is
triggered at lower densities than they should be, as our simulation
results are slightly shifted to the left (lower gas density) compared
to resolved Milky Way clouds. Our clouds can still be compared
reliably to each other as they have the same simulation parameters,
and in terms of observations, represent clouds with active, high star
formation.

Measurements of the rotation of young clusters are rare (Kuhn
et al. 2019), but our results predict that rotation is highest in the bar
and inner arm, which could simply reflect the higher angular velocity
of the galaxy at smaller radii. Finally, our simulations also suggest
that differences in the gas flux from the wider environment (>30
pc) are minor – however, there are larger differences between gas
inflows/outflows to/from clusters on 10 pc scales. The exception is
the bar area, with gas inflow over larger scales in this region, again
likely because of the high rotation of the bar compared to the arms.
The inflow rates for the bar region are comparable to the values
observed flowing along the dust lanes towards the Central Molecular
Zone of the Milky Way (Sormani & Barnes 2019) and the nuclear
ring of NGC 1097 (Sormani et al. 2023).

5 SUMMARY AND CONCLUSIONS

We present zoom-in simulations of cloud complexes extracted from
a galaxy evolution model similar to the Milky Way, which contains
a bar and four spiral arms (Pettitt et al. 2020a). Clouds have been
taken from the bar, inner and outer spiral arms, and an inter-arm
region, with masses 2×106 M⊙ and sizes 100–300 pc. The zoom-ins
include ray-traced photoionization from cluster-sink particles (Bend-
ing et al. 2020). The new resolution is 0.4 M⊙ per particle, compared

to 600 M⊙ per particle in the original galaxy run. We have calcu-
lated star formation measures and cluster properties as a function of
galactic environment. Clusters have been identified with HDBSCAN
(Campello et al. 2013) and the degree of clustering measured with
INDICATE (Buckner et al. 2019). Our key results are:

(i) Denser regions form stars at a higher rate, following the relation
ΣSFR ∝ Σ1.3

gas , which is consistent with the Kennicutt-Schmidt index
(Kennicutt et al. 2007). However, the inter-arm model forms stars less
efficiently than the spiral arm regions for the same Σgas, as ΣSFR is a
factor of 2–3 below the arms. The bar is always the most star-forming
model.

(ii) Almost all the clusters in the bar and inner arm are smaller
than 5 pc. Half the clusters in the outer arm and a third in the inter-arm
are larger than 5 pc, with radii more similar to associations.

(iii) Similarly, applying INDICATE shows that the degree of clus-
tering is highest in the bar and decreases sequentially down to the
inter-arm.

(iv) The bar and inner arm regions are able to form faster ro-
tating clusters, while the outer arm and inter-arm regions tend to
produce slower rotators on average. The representative angular ve-
locities 𝜔/Myr−1 = 0.57 (bar), 0.54 (inner arm), 0.18 (outer arm),
and 0.22 (inter-arm).

(v) The dispersive effect of feedback is shown through radially
outward mass fluxes measured at spherical surfaces around the most
ionizing cluster. Gas streams away from massive stars, and dense
clumps show up as bursts of high fluxes. Radially inward fluxes can
still be maintained for the bar and inner arm. Regions differ from
each other the most at the smaller scale (10 pc), whereas they are
more similar at the larger scale (30 pc).

These models do not include stellar winds. In previous zoom-in
models of a different galaxy, we have shown this can affect the sink
and cluster properties, typically producing smaller clusters (Ali et al.
2022). However, winds only have a minor effect on the gas dynamics
and morphology compared to photoionization (see also Gatto et al.
2017; Rathjen et al. 2021). Finally, we do not discuss the role of
supernovae as the bar region has not yet evolved to the point of
the first supernova, making a comparison between regions difficult.
We expect to investigate the role of supernovae in different galactic
environments in a future paper.
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APPENDIX A: EFFECT OF PIXEL SIZE, ACCRETION
RADIUS, AND SFE ON THE KENNICUTT-SCHMIDT
RELATION

We recalculate ΣSFR and Σgas in a fixed area with dimensions 𝑋 =

𝑌 = 100 pc, instead of recalculating the actual area each time as we
did for Fig. 4. We repeat this for 300 pc. We calculate the mass of sinks
and neutral gas in this area around the centre of mass, and repeat the
procedure in section 3.1 (with the exception that here we average the
SFR over a longer Δ𝑡 ≈ 0.094 Myr, to reduce the number of points
in the plot for clarity). The results are shown in Fig. A1 with open
circles for the smaller area and filled circles for the larger area. Points
for the smaller area are shifted towards the top right compared to the
larger area, and are close to the Milky Way results of Heiderman et al.
(2010). There is also more scatter, as sinks move in and out of the
area between time steps, and this changes Δ𝑀sinks in equation (2).
For the 300 pc area, the bar results now have systematically higher
ΣSFR for the same Σgas than the other regions (whereas for the 100 pc
area, and in Fig. 4, they have higher Σgas too) – i.e. the bar points are
vertically higher than the arms and inter-arm, not horizontally. This
is because the bar is smaller than 300 pc and hence is not resolved
with this pixel size, whereas it is resolved with the 100 pc pixel.

We also test the effect of sink accretion radius, 𝑟acc, in different
runs of the spiral arm region from Bending et al. (2020). One run
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Figure A1. Same as the top panel of Fig. 4, but now quantities are calculated
inside squares of fixed size.
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Figure A2. Same as Fig. A1 and the top panel of Fig. 4, but now the models
show the spiral arm region from Bending et al. (2020, B2020) with different
sink accretion radii (𝑟acc) and different efficiencies for converting sinks to
stars (SFE).

has 𝑟acc = 0.78 pc and one has 𝑟acc = 0.1 pc. The results are shown in
Fig. A2 with green circles showing the larger 𝑟acc and purple circles
the smaller 𝑟acc. Smaller 𝑟acc results in lower SFR and brings the
depletion time scales into agreement with the Milky Way regions.
As before, the pixel size determines the diagonal position.

Lastly, we test the star formation efficiency (SFE) imposed on sink
particles, i.e. the proportion of each cluster-sink which is available
for conversion to stars as described in section 2.2. The black circles
in Fig. A2 have SFE=1 and can be compared with the green points
where SFE=0.5. The latter points again have lower SFR.

Combined, these tests show that the K-S relation is sensitive to
pixel size (diagonal position), SFE per sink (lower SFE gives lower
ΣSFR), and sink accretion radius (lower 𝑟acc gives lower ΣSFR).

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 000, 1–14 (2023)

http://dx.doi.org/10.1093/mnras/stx73610.48550/arXiv.1704.04127
https://ui.adsabs.harvard.edu/abs/2017MNRAS.468.4189P
http://dx.doi.org/10.1093/mnras/stz3155
https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.2162P
http://dx.doi.org/10.1093/mnras/staa2242
https://ui.adsabs.harvard.edu/abs/2020MNRAS.498.1159P
http://dx.doi.org/10.1146/annurev-astro-081309-130834
http://adsabs.harvard.edu/abs/2010ARA%26A..48..431P
http://dx.doi.org/10.1071/AS07022
https://ui.adsabs.harvard.edu/abs/2007PASA...24..159P
http://dx.doi.org/10.1111/j.1365-2966.2006.11241.x
http://adsabs.harvard.edu/abs/2007MNRAS.374.1347P
http://dx.doi.org/10.1051/0004-6361/20224358010.48550/arXiv.2206.00249
https://ui.adsabs.harvard.edu/abs/2022A&A...664A.175P
http://dx.doi.org/10.1051/0004-6361/202140695
https://ui.adsabs.harvard.edu/abs/2021A&A...656A.133Q
http://dx.doi.org/10.1051/0004-6361/201322619
https://ui.adsabs.harvard.edu/abs/2014A&A...564L...9R
http://dx.doi.org/10.1093/mnras/stab900
https://ui.adsabs.harvard.edu/abs/2021MNRAS.504.1039R
http://dx.doi.org/10.1093/mnras/stv2223
https://ui.adsabs.harvard.edu/abs/2015MNRAS.454.3299R
http://dx.doi.org/10.1093/mnras/stw2607
http://adsabs.harvard.edu/abs/2017MNRAS.464.3536R
http://dx.doi.org/10.3847/2041-8213/acac9e
https://ui.adsabs.harvard.edu/abs/2023ApJ...944L..15S
http://dx.doi.org/10.1086/308530
https://ui.adsabs.harvard.edu/abs/2000ApJ...532..221S
http://dx.doi.org/10.1093/mnras/stz2802
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.5860S
http://dx.doi.org/10.3847/1538-4357/abf4d8
https://ui.adsabs.harvard.edu/abs/2021ApJ...914...18S
http://dx.doi.org/10.1093/mnras/stz3328
https://ui.adsabs.harvard.edu/abs/2020MNRAS.492.1594S
http://dx.doi.org/10.1093/mnras/stz046
https://ui.adsabs.harvard.edu/abs/2019MNRAS.484.1213S
http://dx.doi.org/10.1093/mnras/stad1554
https://ui.adsabs.harvard.edu/abs/2023MNRAS.523.2918S
http://dx.doi.org/10.1111/j.1365-2966.2006.11097.x10.48550/arXiv.astro-ph/0602350
https://ui.adsabs.harvard.edu/abs/2006MNRAS.373.1074S
http://dx.doi.org/10.3847/1538-4357/aac326
https://ui.adsabs.harvard.edu/abs/2018ApJ...860..172S
https://ui.adsabs.harvard.edu/abs/2023arXiv230212267S
http://dx.doi.org/10.1093/mnras/staa2512
https://ui.adsabs.harvard.edu/abs/2021MNRAS.500.3050U
http://dx.doi.org/10.1051/0004-6361/202141765
https://ui.adsabs.harvard.edu/abs/2022A&A...663A...6V
https://ui.adsabs.harvard.edu/abs/2022A&A...663A...6V
http://dx.doi.org/10.1093/pasj/53.6.1163
https://ui.adsabs.harvard.edu/abs/2001PASJ...53.1163W
http://dx.doi.org/10.1016/j.newast.2003.08.004
https://ui.adsabs.harvard.edu/abs/2004NewA....9..137W
http://dx.doi.org/10.1093/mnras/stx1643
https://ui.adsabs.harvard.edu/abs/2017MNRAS.471.2357W
http://dx.doi.org/10.1111/j.1365-2966.2012.21767.x
http://adsabs.harvard.edu/abs/2012MNRAS.427..625W
http://dx.doi.org/10.1093/mnras/stt1115
http://adsabs.harvard.edu/abs/2013MNRAS.435..917W
http://adsabs.harvard.edu/abs/1994A%26A...290..421W
http://dx.doi.org/10.1016/j.newar.2020.101549
https://ui.adsabs.harvard.edu/abs/2020NewAR..9001549W
http://dx.doi.org/10.1093/mnras/stz1235
https://ui.adsabs.harvard.edu/abs/2019MNRAS.487.2200Z

	Introduction
	Numerical methods
	Initial conditions
	Cluster-sink particles
	Stellar feedback

	Results
	Star formation
	Cluster identification
	Cluster masses and radii
	Cluster rotation and expansion
	Mass flows

	Discussion
	Summary and conclusions
	Effect of pixel size, accretion radius, and SFE on the Kennicutt-Schmidt relation

