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Based on prior findings of content-specific beta synchronization in working
memory and decision making, we hypothesized that beta oscillations support
the (re-)activation of cortical representations by mediating neural ensemble
formation. We found that beta activity in monkey dorsolateral prefrontal
cortex (dIPFC) and pre-supplementary motor area (preSMA) reflects the con-
tent of a stimulus in relation to the task context, regardless of its objective
properties. In duration- and distance-categorization tasks, we changed the
boundary between categories from one block of trials to the next. We found
that two distinct beta-band frequencies were consistently associated with the
two relative categories, with activity in these bands predicting the animals’
responses. We characterized beta at these frequencies as transient bursts, and
showed that dIPFC and preSMA are connected via these distinct frequency
channels. These results support the role of beta in forming neural ensembles,

and further show that such ensembles synchronize at different beta

frequencies.

Categorization is the ability to group objects or events that share cer-
tain features. Depending on the context, the same feature could place
an object or event in different categories’. For example, in categorizing
“big” vs. “small”, a 10-kg cat is considered a big cat while a 10-kg ele-
phant is considered a small elephant. Further, category boundaries
tend to be flexible, and new arbitrary categories can be learned**. For
example, if one learns that 10 kg is, in fact, below average for a cat, one
could shift their category boundary and consider it small.

Neural oscillations, which are ubiquitous across species, are
widely believed to support brain function®”. Indeed, oscillations are
thought to play a key role in supporting categorization®'°, but little is
known about the oscillatory dynamics that allow the brain to achieve
such context-dependent and flexible categorization. Is context-
dependent “small” signaled in the same way, regardless of absolute
size? Once a new category boundary is learned, are the newly learned
categories signaled in the same way as the old ones? Here, we used a

context-dependent categorization task, where the boundary between
two categories varied on different blocks, meaning the same stimulus
could be classified as belonging to different categories depending on
the task context". In each block, Rhesus monkeys categorized eight
intervals (temporal task) or eight distances (spatial task) as short or
long according to a criterion defined at the start of the block.

Local field potentials (LFPs) and single-cell activity were simulta-
neously recorded in the dorsolateral prefrontal cortex (dIPFC) and pre-
supplementary motor area (preSMA). dIPFC is known to play a central
role in categorization'? and is part of the magnitude system for time,
space, and quantity". It is deeply connected with preSMA, which is
known to be a major node in the time processing network™, and
contains cells that have been shown to encode the boundary between
categories'’.

We focused on beta oscillations (-15-35Hz) and hypothesized
that beta activity supports the activation and reactivation of cortical
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representations by mediating neural ensemble formation within and
between brain regions®. Beta has been implicated in top-down pro-
cessing and preservation of the current brain state'. Beta synchroni-
zation can be content-specific during endogenous information
processing®”*®, typically characterized as short-lived and reflecting
flexible network dynamics?°. There is evidence that beta is highly
context-specific, flexibly carrying information relevant to the task at
hand”?. This makes beta-band synchrony a candidate mechanism
involved in context-dependent categorization. The separate repre-
sentation of different categories by different neural ensembles could
be mediated by beta synchrony at distinct frequencies or with varying
power. Indeed, we found that consistently and across all versions of
the task, two distinct beta-band frequencies reflected the two
contextually-defined categorical decisions.

Results

Two monkeys were trained on both temporal (interval) and spatial
(distance) categorization tasks, where they categorized the duration
of a time interval or the distance between two vertical bars as either
“short” or “long” (Fig. 1)". A trial started when the animal fixated
centrally and maintained a cursor in a central circle. After a 500-ms
pre-stimulus delay, two parallel bars were visually presented twice,
separated by a delay (Fig. 1a). In the temporal task, the delay varied,
and the distance between bars remained constant, while in the spatial
task, the distance between bars varied and the delay duration
remained constant (Fig. 1b). Although the distance between bars
varied between trials in the spatial task, it was the same within a trial
in both task versions. After the stimuli were presented, there was a
fixed decision delay of 500 ms (monkey 1) or 1000 ms (monkey 2), on
which we focused our analyses (Fig. 1a). Crucially, during the decision
delay, the monkey would not yet know the response mapping (i.e.,
which cursor movement corresponded to which category) as this
varied on each trial, thereby precluding motor-related preparatory
activity.
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Fig. 1| Trial design, stimuli, and recording sites. a After a pre-stimulus delay, two
visual stimuli were shown, separated by an interval. Shortly after the disappearance
of the second stimulus, the animal would indicate whether the duration of the
interval (temporal tasks) or the distance between the bars (spatial tasks) was “long”
or “short”. Note that during the decision delay, the monkey could not yet indicate
their decision and did not yet know which cursor movement corresponded to

In every recording session, monkeys categorized four to six dif-
ferent blocks of stimuli (three temporal: T1-T3; three spatial: S1-S3),
each containing eight different time intervals or distances (four short
and four long; Fig. 1b). Each block started with 24 training trials, in
which only the shortest and longest stimuli (relative to that particular
block) were presented in random order, such that the monkeys
learned an implicit value for the boundary between the two categories
for that block. After this training phase, all eight stimuli were presented
in random order across 96 testing trials, which we used for our ana-
lyses. Because of this design, every time a new block was tested, the
boundary was shifted, such that the same stimulus could be categor-
ized as long in one block but short in another (e.g., a 450-ms interval
would be long in T1 but short in T2; see overlaps in Fig. 1b). A complete
description can be found in the Methods section. On average, monkey
1 performed the tasks with 69% accuracy and Monkey 2 with 72%
accuracy.

Beta activity increased in frequency from prestimulus to deci-
sion delay

We analyzed LFPs from 217 experimental blocks (1 electrode per block;
199 from monkey 1; 18 from monkey 2) in preSMA and 199 experi-
mental blocks (one electrode per block; all from monkey 1) in dIPFC
(Fig. 1c). In both preSMA and dIPFC, we observed oscillatory activity
predominantly in the beta frequency band during the prestimulus
delay (500 ms preceding onset of the first stimulus). During the deci-
sion delay, beta remained the dominant oscillation, but its power was
mostly suppressed in both sites compared to the prestimulus delay
(Fig. 2a-c; monkey 1 dIPFC: significant frequency range 15-27 Hz,
cluster-corrected p = 0.0013; monkey 1 preSMA: significant frequency
range 15-27.5 Hz, cluster-corrected p =1e—6; monkey 2 preSMA: sig-
nificant frequency range: 15-27, cluster-corrected p=0.0047). Addi-
tionally, for monkey 1, beta power was enhanced in the higher beta
frequencies in both sites during the decision delay compared to the
prestimulus delay (Fig. 2a, b; dIPFC: significant frequency range
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which decision. The movement-to-decision mapping was randomized in each trial.
b Stimuli (intervals and distances) were used across the six tasks. ¢ Locations of the
recording sites: dIPFC and preSMA. Reproduced with permission from Mendoza,
G., Méndez, J.C., Pérez, O. et al. Neural basis for categorical boundaries in the
primate pre-SMA during relative categorization of time intervals. Nat Commun 9,
1098 (2018). https://doi.org/10.1038/s41467-018-03482-8.
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Fig. 2 | Frequency shift and distinct burst profiles between prestimulus and
decision intervals. a Spectral power (line graphs) and burst frequency (density
plots in insets) during decision (green) and prestimulus delays (pink) in monkey 1
dIPFC, b monkey 1 preSMA, and ¢ monkey 2 preSMA. Shaded regions around the
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line graphs represent the standard error of the mean. d Density plots represent
burst frequency range, time range, power, and number in monkey 1 dIPFC,

e monkey 1 preSMA, and f monkey 2 preSMA. Source data are provided as Source
Data files.

28-35 Hz, cluster-corrected p = 0.0088; preSMA: significant frequency
range 28.5-35Hz, cluster-corrected p=0.0096). This simultaneous
power decrease in the lower beta band and increase in the higher beta
band was indicative of an upwards shift in beta peak frequency
between prestimulus and decision delays. For monkey 1, the peak
frequency shifted from 25 to 29Hz in dIPFC (Fig. 2a; Table SI1;
t(198) =23.3, p<le-12) and from 24 to 27 Hz in preSMA (Fig. 2b;
Table S2; ¢(198)=12.7, p<1e-12), for monkey 2 the peak frequency
shifted from 21 to 24 Hz in preSMA (Fig. 2c; Table S3; ¢(17) =6.8;
p=3e-6;).

Since beta oscillations have been characterized as transient bursts
of high-amplitude activity'>*°, we zoomed in on the beta band bursting
profile and found an analogous frequency shift: compared to the
prestimulus delay, the peak frequency of beta bursts significantly
increased during the decision delay for both monkeys and both
regions (Fig. 2a—c insets; see Tables S1-3 for statistics). In addition,
bursts had distinct temporal and spectral profiles during the two
periods (Fig. 2d-f; see Tables S1-3 for statistics). For monkey 1, bursts
were more prominent in both regions during the decision delay: they
were higher in number and had larger peak amplitudes, time ranges,
and frequency ranges (see Fig. 2d and Table S1 for dIPFC, and Fig. 2e
and Table S2 for preSMA). For monkey 2, bursts were higher in number
and had larger time and frequency ranges in the prestimulus delay but
higher peak power during the decision delay (Fig. 2f and Table S3).

Two distinct beta-band frequencies reflected the two relative
categorical decisions across tasks and recording sites

Next, we focused on the decision delay, in which the monkeys would
form a decision and hold it in memory. We contrasted the LFP power
spectra for trials in which the monkeys correctly categorized stimuli as

“short” vs. “long”. When pooling across all versions of the task, we
found a consistent frequency shift of around 2 Hz in the beta range,
such that beta on “short” trials was 2 Hz faster than beta on “long”
trials. This was the case for both recording sites (Fig. 3a, b) and both
monkeys (Monkey 1 dIPFC: t(198)=11.0, p<1le-15, AUROC =0.751;
Monkey 1 preSMA: t(198) =8.5, p=5e-15, AUROC =0.724; Monkey 2
preSMA: t(17) = 3.5, p = 0.003, AUROC = 0.660; see Tables S4 and 5 for
statistics on individual task versions). This frequency separation
between “long” and “short” categories was also evident when looking
at the bursts’ peak frequencies. (Fig. 3a, b insets; Tables S6-8). Given
that we found this main result for both monkeys and that our next
planned analyses relied on sub-sampling experimental trials, we
pooled the data across both animals at this point to maintain statis-
tical power.

To assess the behavioral relevance of the aforementioned fre-
quency shift, we analyzed trials where the stimuli were incorrectly
categorized and found that the shift was reversed (Fig. 3¢, d), such that
the beta rhythm on incorrect “short” trials (i.e., trials in which the
correct category would be “long”) was faster than the beta rhythm on
incorrect “long” trials (Fig. 3¢, d; dIPFC: £(198) = 6.8, p = 1e-10; preSMA:
t(216) =5.7, p =4e-8). Similarly, the effect was reversed when looking
at burst frequency (Fig. 3c, d insets; dIPFC: ¢(198) =-6.6, p = 5e-10;
preSMA: t(216)=-5.5, p=2e-7). This shows that beta frequency
reflected the categorical decision that was held in memory, regardless
of whether it was correct or not.

We found the same frequency shift in both recording sites when
looking at each task individually as well, such that beta on “short” trials
was always faster than on “long” trials in all tasks (Tables S4 and S5),
regardless of the absolute magnitude of the stimuli in those tasks. As
an example to illustrate this point, beta during “very short” trials of T3
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Fig. 3 | Beta peak frequency reflected the categorical decision during the
decision delay. a-d Power spectra for “long” stimulus (blue) vs. “short” stimulus
trials (orange) during trials with correct (a, b) and incorrect (c, d) responses. Insets:
burst peak frequencies. e-h Instantaneous frequency time courses. Time zero
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represents the end of the decision delay. Shaded regions around all line graphs
represent the standard error of the mean. Source data are provided as Source
Data files.

was faster than beta during “very long” trials of T2 (unpaired t-tests;
dIPFC: ¢(77)=6.1, p=>5e-8; preSMA: t(86)=3.4, p=9e—4), despite
these intervals being exactly the same (see overlapping stimuli out-
lined in Fig. 1, and see Tables S9 and S10 for statistics on each over-
lapping stimulus). The same was true when comparing the identical
“very short” T2 trials with “very long” T1 trials (dIPFC: £(99)=2.4,
p=0.019; preSMA: t(99) =2.6, p=.010). Critically, beta during “very
short” trials was not faster nor slower than beta during the “less short”
trials (nor was beta during “very long” trials different from “less long”
trials), as these stimuli were within the same category (2-way ANOVA;
dIPFC: main effect “long vs. short” F=136, p <1e-15, no main effect
“very vs. less”, no interaction; preSMA: main effect “long vs. short”
F=80, p<1le-15, no main effect “very vs. less”, no interaction). In sum,
beta frequency reflected the categorical decision, which was relative to
each task, rather than the absolute magnitude of the stimulus.

To investigate the time course of these frequency shifts, we then
analyzed the instantaneous frequency* in the beta range. We again
found a clear separation between beta frequencies on “short” vs. “long”
trials throughout the decision window (Fig. 3e, f; dIPFC: cluster-
corrected p <le-12; preSMA: cluster-corrected p<le-12), with the
differences peaking at around 350 ms (dIPFC) and 360 ms (preSMA)
prior to the onset of the response screen (Fig. 3e, f). On incorrectly
categorized trials, the instantaneous frequency time-course was near-
identical to that of the correctly categorized trials, but the direction-
ality of the frequency difference was again reversed (Fig. 3g, h; dIPFC:
cluster-corrected p < 1e-12; preSMA: cluster-corrected p <1e-12). That
is, “long” trials incorrectly categorized as “short” showed a higher beta
frequency than “short” trials incorrectly categorized as “long”
throughout the decision window (Fig. 3g, h), again highlighting the
behavioral relevance of the frequency separation.

Furthermore, the two trial types had distinct burst profiles con-
sistent across the two recording sites (Tables S6 and S7). The peak
frequencies at which beta bursts occurred showed the expected pat-
tern of results; that is, bursts during “short” trials had a higher peak
frequency compared to “long” trials (Fig. 3a, b insets; dIPFC:
t(198) =10.8, p <1e-12; preSMA: £(216) =9.9, p <1e-12), and the effect
was again reversed on incorrect trials (Fig. 3c, d insets; dIPFC:
t(198) = 6.6, p=4.5e-10; preSMA: t(216) =5.4, p=1.6e-7). Moreover,

bursts during “short” trials were lower in number and had smaller
amplitudes and time and frequency spans compared to bursts on
“long” trials (see Tables S6 and S7 for statistics). Overall, multiple
analysis approaches confirmed that two distinct beta frequencies with
distinct spectro-temporal profiles reflected the two relative categorical
decisions, regardless of the objective stimulus properties or of whe-
ther the decisions were correct or not.

Inter-areal connectivity and spike-field coherence at the same
distinct frequencies also reflected the relative categories

As our theoretical framework postulated that inter-areal beta con-
nectivity contributes to the activation of local ensembles®, we then
analyzed the connectivity between our two recording sites (preSMA
and dIPFC). Note that these simultaneous recordings were only avail-
able in one animal, so the following results should be treated with
caution. We found a frequency shift analogous to that reported above:
coherence between the two regions during the decision delay of
“short” trials peaked at a higher frequency compared to “long” trials
(Fig. 4a; t(198) =5.4, p=1e-7). On incorrectly categorized trials, the
frequency shift was reversed, such that coherence on “long” trials
incorrectly categorized as “short” peaked at a higher frequency than
“short” trials incorrectly categorized as “long” (Fig. S4a; t(163) =-3.0,

p=0.003). We then investigated the directionality of this connectivity

effect with nonparametric Granger causality. We again found the same
beta frequency shift, but this effect depended on the directionality of
Granger causality (Fig. 4c, d; 2-way ANOVA; main effect “direction” F(1,
792)=8, p=0.005; main effect “short vs. long” F(1,792)=4.6,

p=0.033, interaction F(1,792)=9.3, p=0.002), with the beta fre-

quency shift occurring in the direction from dIPFC to preSMA
(¢(198) =3.7, p=2.6e—4), but not in the direction from preSMA to
dIPFC (£(198) = 0.54, p = 0.59, ns; difference in peak shifts between the
two directions [dIPFC > preSMA vs. preSMA - dIPFC]: #(183)=2.9,

p=0.004). On incorrectly categorized trials, the frequency shift was

reversed, such that dIPFC to preSMA Granger causality on “long” trials
incorrectly categorized as “short” peaked at a higher frequency than
“short” trials incorrectly categorized as “long” (Fig. S4b; t(169) = -3.8,

p=2e—-4). In the direction of preSMA to dIPFC, there were no dif-

ferences in Granger causality peak frequencies between the two trial
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Fig. 4 | Peak frequencies of between-region connectivity and spike-field
coherence in dIPFC reflected the categorical decision during the decision
delay. a Coherence between preSMA and dIPFC. The peak frequency of coherence
reflected the categorical decision. b Spike-field coherence in dIPFC between short-
selective neurons and the LFP during short-categorized trials and between long-
selective neurons and the LFP during long-categorized trials: the peak frequency
reflected the categorical decision. ¢, d Granger causality between preSMA and
dIPFC. The peak frequency of dIPFC to preSMA Granger causality, but not preSMA
to dIPFC Granger causality, reflected the categorical decision. Shaded regions
around the line graphs represent the standard error of the mean. Source data are
provided as Source Data files.

types on incorrectly categorized trials (Fig. S4c; t(169)=-0.7,
p=0.50, ns). In sum, a beta frequency drive from dIPFC to preSMA
was separated into two distinct beta frequency channels, which
reflected the categorical decisions, not the stimuli.

Finally, we analyzed the spike-field coherence in both regions
using pairwise phase consistency, a measure of how consistently
neuronal spikes occurred at a particular phase and frequency. After
sorting neurons based on whether they responded to “short” or “long”
categories (see Methods section for details), we calculated spike-field
coherence separately for short-selective neurons (preSMA n=478,
dIPFC n =445) with “short” trials, and long-selective neurons (preSMA
n=391, dIPFC n=329) with “long” trials. Note that there were no sig-
nificant differences in the firing rates of these “short” vs. “long” cells
(both £ <1, both p > 0.3). Again, here we found a beta frequency shift in
dIPFC (Fig. 4b; t(441) = 2.3, p = 0.023), but not in preSMA (£(192) =-0.6,
p=0.56, ns). This meant that the two groups of neurons in dIPFC
spiked in synchrony with the two beta frequency bands. In other
words, short-selective neurons cohered with the beta at the frequency
reflecting a “short” decision, and long-selective neurons cohered with
the beta at the frequency reflecting a “long” decision. We found that
this in dIPFC is in line with the dIPFC to preSMA direction of

connectivity we reported above. Overall, the frequency shift reported
throughout this study is visible in both preSMA and dIPFC, but it seems
to be driven by dIPFC and visible in dIPFC spike-field interactions.
However, we cannot draw strong conclusions from the above results
relating to connectivity and spike-field coherence, as these results rely
on data from one animal.

Discussion

In a temporal and spatial categorization task, we changed the cate-
gorical boundary within sessions such that a stimulus that belonged to
one of two categories during one block of trials could belong to the
other category during the next block. Two monkeys implicitly learned
the categorical boundary at the start of each session and, depending
on the task categorized either a time interval or the distance between
two bars as being either short or long. Across all the different versions
of the task, we found that two distinct beta-band frequencies were
consistently associated with the same two relative categories during a
decision delay in both preSMA and dIPFC. The two frequency channels
had distinct spectral, temporal, connectivity, and spike-field coher-
ence profiles. The frequencies were specifically associated with the
decisions to categorize “short” vs. “long” relative to each block. This
frequency specificity was evident despite the change in the type of
stimuli (time intervals or distances) and despite stimuli with identical
magnitudes falling into different categories depending on the context-
defined boundary.

While beta oscillations are traditionally associated with sensor-
imotor functions®, the current experiment was carefully designed to
preclude any sensorimotor effects: the monkeys did not yet know
which movement to make to indicate their decision during the delay
that we analyzed here. Only after the decision delay was that infor-
mation revealed, and it was random on each trial. Therefore, the
observed beta dynamics reflected the categorical decision held in
mind during the delay and not preparatory motor activity.

The beta frequencies were associated with the contextually-
defined categorical decisions but not with the absolute magnitudes of
the stimuli. In the cases where the same stimulus would fall into one
category in one block and into the other category in a subsequent
block, the beta signal still provided a read-out of the category relative
to the block. In other words, a beta frequency reflected a relative and
abstract concept of “short” or “long”*. This was also true at a higher
level of abstraction, as “short” and “long” could refer to the duration of
atime interval or to the distance between two visual stimuli. Even when
the monkeys made errors, the beta signal still provided a read-out of
the monkey’s incorrect decision rather than the actual category of the
stimulus. In other words, the monkey’s behavioral response could be
predicted from the beta signal.

The frequency separation was evident in multiple aspects of the
data. We characterized beta activity as transient burst events and
found that the bursts corresponding to the two relative categories
differed in frequency. While this was the most salient feature, the
number, power, timing, and time and frequency spans of the bursts
were also linked with the categorical decisions. The frequency
separation started at the beginning of the decision delay and peaked
toward the middle before disappearing at the end of the delay, which is
when the monkeys were allowed to indicate their decision.

In line with the proposed role of the prefrontal cortex in abstract
categorization and higher-order cognitive functions**'°, we found a
prominent beta frequency shift in dIPFC. Spike-field coherence ana-
lyses revealed that the relevant neurons synchronized with the rele-
vant oscillatory frequencies in dIPFC. Using a neural category-
boundary signal, single cells in preSMA and dIPFC encode the cate-
gorical decision, with different sets of neurons activating for short and
long decisions during the delay". Here we found that each of these sets
of dIPFC category-selective neurons synchronized with the beta
rhythm at the respective category-selective beta frequency: the set of
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Fig. 5 | Schematic of neural ensembles selectively signaling categorical deci-
sions via distinct beta frequency channels. Left: Two overlapping neural
ensembles are selective for two different categories. Triangle icons represent
neurons. Middle: Spiking activity of the two neural ensembles is coherent with two
different beta frequencies; category information is transmitted downstream via
these distinct beta frequency channels. Vertical lines represent spike trains. Waves
represent beta rhythms. Right: The two beta rhythms at distinct frequencies pro-
vide a read-out of the monkey’s categorical decision. Clouds represent categorical
decisions. The monkey cartoon at the far right is reproduced with permission from
Mendoza, G., Méndez, ).C., Pérez, O. et al. Neural basis for categorical boundaries in
the primate pre-SMA during relative categorization of time intervals. Nat Commun
9, 1098 (2018). https://doi.org/10.1038/s41467-018-03482-8.

short-selective neurons synchronized with the frequency reflecting a
short category, and the set of long-selective neurons synchronized
with the frequency reflecting a long category. Further, Granger caus-
ality analysis revealed a beta frequency shift in the direction of dIPFC to
preSMA, but not in the opposite direction. Top-down prefrontal sig-
nals have also previously been reported in the parieto-prefrontal cir-
cuit during spatial categorization in the monkey”*. However the
current results are based on one animal.

Biophysically, a plausible account of how beta could emerge at
different frequencies is provided by Sherman and colleagues®, who
found that beta events emerge in the cortex from the integration of
synchronous bursts of subthreshold excitatory synaptic input simul-
taneously driving proximal and distal dendrites of pyramidal neurons.
If the distal input is sufficiently strong and lasts about a beta period, a
beta burst can be generated. The duration of this distal drive was
shown to be linearly correlated with the period of the beta burst, i.e.,
inversely related to its frequency. The source of the distal drive is
possibly the ventromedial thalamus, known to project to supra-
granular layers in the prefrontal cortex®’. This pathway has been shown
to modulate the overall activity of the recipient area without eliciting
spikes™.

Prominent theoretical accounts of the function of neural oscilla-
tions propose that oscillations control the flow of signals between
anatomically connected regions®. At the algorithmic level, beta oscil-
lations at different frequencies could act as separate channels to
selectively transmit decision information downstream, referred to in a
model by Akam and Kullman as frequency-division multiplexing®>*.
Once a neural population code encodes a decision, an oscillation at a
particular frequency can serve as a channel to selectively transmit the
code downstream, where a network with the appropriate filter settings
can selectively read out the code®. Transient oscillatory bursts at
distinct frequencies, as observed in our data, are particularly well-
suited for this mechanism®. In this view, the neural population code
represents the value of the signal, while the oscillatory modulation
represents the metadata required to distinguish the signal from others.

Previous accounts had proposed a role for beta in maintaining
mental content”. Recently, we proposed that beyond maintenance,
beta plays a role in reactivating latent contents”. Here, we provide
support for this account. In this experiment, the relative categories
were defined at the start of each session, and this content was then
reactivated during each trial's decision delay in order to correctly
perform the task. With the contents likely coded at the level of
neurons'**, we propose that beta oscillations play a role in selectively

(re-)activating the relevant neural ensembles at the right moments and
selectively relaying their signals downstream (Fig. 5). Our observation
that the frequency shift is consistent between the distance and dura-
tion tasks supports this view: because the downstream consequences
of the decision signals are the same in both temporal and spatial ver-
sions of our task (i.e., producing behavior corresponding to “long” or
“short”), the decision signals are transmitted within the same fre-
quency channels in both task versions.

While a few empirical studies have shown frequency modulations
according to task contexts in both macaques® and humans®?’, we
here provide the first evidence that distinct oscillatory frequencies
support routing information related to distinct mental contents, i.e.,
categorical decisions. Our results may lead to insights into pathologies
marked by a decreased capacity to categorize, such as autism®®, and
highlight the importance of accounting for frequency changes in
clinical treatments that rely on rhythmic stimulation®*“°, Finally, our
results imply that neurorehabilitation strategies such as BMIs con-
trolled by beta bursts* could make use of distinct frequencies within
the beta band.

Methods

Animals

Two male Rhesus monkeys (Macaca mulatta): monkey 1 (5.5 kg BW)
and monkey 2 (7.2 kg BW), were tested. All experimental procedures
were approved by the National University of Mexico Institutional
Animal Care and Use Committee and conformed to the principles
outlined in the Guide for Care and Use of Laboratory Animals (NIH,
publication number 85-23, revised 1985).

Materials

During the task performance, the monkeys were seated in a primate
chair with their head and left arm restrained. The gaze position was
measured with an infrared tracking system (ISCAN, Inc., Woburn, MA,
USA). Visual stimuli were presented on a computer monitor (HP7540,
160 Hz refresh rate) 56 cm away from the monkey’s eyes, using Visual
Basic (Microsoft Visual Basic 6.0, 1998). The task required that mon-
keys manipulate a joystick (HOOOE-NO-C, CTI electronics, Stratford,
CT, USA) to control the position of the cursor on the screen.

Task

The details of the task have been reported previously*". Briefly,
monkeys were trained to categorize the interval or distance between
two visual stimuli as either “short” or “long,” according to previously
learned prototypes. The temporal sequence of a trial (Fig. 1a) was as
follows: A circle containing a fixation point was shown in the center of
the screen. The animal started the trial by staring and keeping his gaze
within a circular window with a diameter of 4° of visual angle, which
was centered at the fixation point, and by placing and maintaining the
cursor inside the central circle. A trial started after a variable waiting
period (500 + A 1000 ms).

In the interval categorization tasks (T1-T3), two parallel bars
(8° x 0.7° of visual angle) separated by constant distance (6° of visual
angle) appeared briefly (50 ms), disappeared for a particular test
interval, and reappeared in the same position. The first and second
stimulus presentations indicated, respectively, the beginning and the
end of the test interval. While the duration of the test interval varied
from trial to trial, the position of the bars was always the same. In the
distance categorization tasks (S2, S2, S3), the distance between the two
parallel bars varied, while the interval between the two presentations
was always the same (670 ms).

After a fixed delay (500 ms for monkey 1 and 1000 ms for monkey
2—monkey 1 had lower performance levels with a delay of 1000 ms.
Hence, we set the delay at 500 ms for this animal), two response tar-
gets (orange and blue circles), were presented (Fig. 1a, right). Across
trials, both response targets could occupy one of eight possible
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locations on the periphery of the screen, which precluded the con-
tamination of the categorization process by preparation to move to a
particular place in space. The monkeys were trained to move the
cursor from the central circle to the orange target if the test interval
was short or to the blue target if it was long. The monkey received a
juice reward immediately after each correct response. The inter-trial
interval (ITI) was 1500 ms. Eye fixation was enforced from the begin-
ning of the trial until target presentation when monkeys were allowed
to break fixation.

Stimuli and task procedures

Six blocks of stimuli (T1-T3, S1-S3), each containing eight different
intervals or distances and different between-category boundaries,
were employed. In the following, we describe the procedure for the
interval task; the distance task followed the same logic. The first four
intervals of every block were considered “short” (Fig. 1b), and the
remaining “long”. Furthermore, some durations were present in two
blocks but belonged to a different category in each case, emphasizing
the context-dependent nature of categorization. Consequently, within
recording sessions, the monkeys had to flexibly change their sub-
jective limit between categories to successfully categorize the intervals
within different blocks. All intervals of each block were presented
randomly (monkey 2) or pseudo-randomly (monkey 1). For every block
of stimuli, the monkey had training and a testing phase. The first 24
trials of a block of trials constituted the training phase in which only
the shortest and the longest interval of each block were presented in
random order (12 repetitions per interval). In this phase, the color of
the stimulus bars was orange when the short interval was presented
and blue for the long interval, matching the color of the correct
response target and thereby defining the short and long prototypes to
be memorized for this block. The following 96 trials constituted the
test phase, in which every one of the eight stimuli of the current block
was presented 12 times. The color of the stimulus bars during this
phase was green regardless of the stimulus category, requiring the
animals to remember the prototypes and/or an implicit limit or
boundary interval to solve the task. In every recording session, monkey
1 performed four test blocks (T1-T3 and S2), and monkey 2 performed
six test blocks (T1-T3, S1-S3) in a randomized order.

Surgery

Recording chambers (8-mm inner diameter) were implanted over
the left pre-SMA and dIPFC during aseptic surgery under Sevoflurane
(1-2%) gas anesthesia. Chamber positions were determined on the
basis of structural MRI (Fig. 1c). Titanium posts for head restraining
were also implanted. Broad spectrum antibiotics (Enrofloxacin,
5mg/kg/day, i.m.) and analgesics (Ketorolac 0.75 mg/kg/6 h or Trama-
dol 50-100 mg/4-6 h, i.m.) were administered for 3 days after surgery.

Neuronal recordings and spike sorting

The extracellular activity of neurons in preSMA was recorded with
quartz-insulated tungsten microelectrodes (1-3MQ) mounted in
multielectrode manipulators (Eckhorn System, Thomas Recording,
GMbH, Giessen, Germany). All neurons were recorded regardless of
their activity during the task, and the recording site changed from
session to session. Spike waveform data were sorted offline (Plexon
Offline Sorter, v3.0. Plexon Inc. Dallas, TX, USA; monkey 2) or online
employing window discriminators (Blackrock Microsystems LLC, Salt
Lake City, UT, USA; monkey 1). LFP data were simultaneously recorded
from both preSMA and dIPFC in monkey 1 and from preSMA in monkey
2, using a 250-Hz low-pass filter and stored at 1000 Hz for offline
analysis.

The current dataset includes a reanalysis of the data reported by
Mendoza and colleagues™. The dataset reported in our current study
additionally includes the spatial (distance categorization) version of
the task and recordings from dIPFC.

LFP preprocessing

All LFP preprocessing and data analyses were done in Fieldtrip** (v.
20230118) and with custom** Matlab 2019b code (v. 9.7, The Math-
works Inc., Natick, Massachusetts, USA). Due to the acute nature of our
recordings, where each day the electrodes needed to go through the
dura, the signal-to-noise ratio in monkey 2 LFP recordings deteriorated
after three recording sessions, leaving us with 18 blocks of clean pre-
SMA data. For monkey 1, there were 199 blocks of dIPFC and preSMA
data. We re-referenced the data from channels within each cortical site
(dIPFC and preSMA) to the average within that site. We then visually
inspected epochs starting 500 ms before the presentation of the first
stimulus until reward delivery and rejected excessively noisy channels
and trials. We rejected one block of dIPFC data as the entire block was
noisy. From the remaining data, we rejected around 10% of noisy trials
and channels.

Spectral analysis

We computed the power spectra (2-36 Hz) for all channels during the
500-ms prestimulus interval with a fast Fourier approach and a Han-
ning taper, padded to 1-s length for a frequency resolution of 1Hz. As
we wanted to specifically target beta oscillations, we then selected the
channel within each block and region that had the highest power in the
beta frequency range (5-35Hz) for further analysis. We analyzed the
500 ms decision interval (for monkey 2, we selected the last 500 ms of
the 1000-ms delay) for those selected channels with the same
approach. Finally, we averaged the single-trial power estimates within
each block and cortical site, or per trial type within each block and
cortical site, depending on the analysis.

To compare power differences between the prestimulus and
decision delays, we used a cluster-based permutation approach*,
clustering in the spectral dimension (15-35 Hz). To compare beta peak
frequencies throughout the analyses, we detected the spectral peak
with the highest power in the averaged power spectra and compared
conditions with paired t-tests. In addition, for this effect of peak fre-
quency on decisions, we quantified effect size with Area Under the
Receiver Operating Characteristics (AUROC). We fit a logistic regres-
sion with the averaged spectra as predictors and the decisions as
response variables before computing the area under the ROC curve,
using the probability estimates from the logistic regression model as
scores. In cases where the compared conditions did not match (e.g.,
when comparing “very long” T1 vs. “very short” T2 peak frequencies),
we used unpaired t-tests. When comparing “very long/short” with “less
long/short” peak frequencies, we used a 2-way ANOVA with factors
long/short and very/less.

Burst analysis

To characterize the bursting nature of beta oscillations, we computed
time-frequency representations (15-35 Hz in steps of 1 Hz) of the entire
epoch length using a sliding time window of 250 ms in steps of 20 ms,
multiplied with a Hanning taper. We then computed the mean and
standard deviation of power within a block for each frequency and
marked the time-frequency points that exceeded two standard devia-
tions above the mean and lasted at least the duration of one cycle
(defined as 1/frequency). We zoomed in on the prestimulus and deci-
sion intervals, and based on temporal and spectral adjacency, we clus-
tered the marked time-frequency points into burst events. Finally, we
extracted our parameters of interest from these burst events. For each
trial, we counted the number of burst events and then focused on the
event that contained the time-frequency point with the highest power.
For each of these events, we extracted the time span, frequency span,
timing relative to the interval, and peak frequency, and we computed its
volume with a double integral. Finally, we averaged the trial estimates of
these parameters within each block and cortical site or per trial type
within each block and cortical site, depending on the analysis. We used
paired t-tests to test for differences between conditions.
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Instantaneous frequency analysis

To investigate the time course of the peak beta frequency, we analyzed
instantaneous frequency as detailed by Cohen (2014). Briefly, we band-
passed the raw data within a range of 10 Hz around the peak beta
frequency (25-35 Hz for monkey 1 decision delay), applied the Hilbert
transform, extracted the phase angle time series, took its temporal
derivative, applied 10 median filters, and took the median instanta-
neous frequency estimate across those 10 filters. We then averaged the
resulting instantaneous frequency time series per trial type within each
block and cortical site. We used a cluster-based permutation approach
to test for differences between trial types, clustering over the 500-ms
time range of the decision delay.

Connectivity analysis

We used the Fourier coefficients obtained while computing the power
spectra (described above) to estimate coherence between preSMA and
dIPFC* and bivariate, nonparametric Granger causality*® during the
decision delay. Granger causality gave us separate estimates of the
connection strengths from preSMA to dIPFC and vice versa. We com-
puted these estimates separately for the two trial types within each
block. We used peak detection and paired ¢-tests (as described in the
spectral analysis section) to test for differences in peak frequencies for
the coherence measure. For the Granger causality measure, we
detected peaks in the same way, then used a two-way ANOVA with
factors short/long and directionality.

Cell-type identification and spike-field coherence analysis

To estimate spike-field coherence, we first obtained the spiking activity
data of cells that were previously found to be category-selective.
Briefly, to identify these cells, we performed a multiple linear regres-
sion with the discharge rate of a cell (in a sliding window of 250 ms in
steps of 25 ms) as the dependent variable and the categorical choice of
monkeys, the duration or distance of the test stimulus, and the trial
outcome (correct/incorrect) as factors. We calculated two additional
measures that determined the association between the neural activity
and the monkeys’ choices for the same sliding windows: the choice-
probability index**®, which indicates the proportion of behavioral
responses that can be predicted from the neuron’s activity; and a
contingency table between the decoded and the observed monkey’s
choices across all trials, and then performed a x*-test on this table. A
cell was considered category-selective when: (1) the categorical choice
factor was significant in the permutation test (p < 0.05) of the multiple
linear regression model for at least two consecutive sliding windows
during the decision delay period; (2) the choice probability index was
above 0.6; and (3) the y*-test was significant (p < 0.05).

After obtaining the relevant cells, we computed spike-triggered
averages around their spikes and interpolated 4 ms of data around
each spike (+2 ms) during the decision delay. We then computed spike-
triggered spectra (2-36 Hz) for 500 ms around each spike (+250 ms)
with a fast Fourier approach and a Hanning taper and used these
Fourier coefficients to compute the pairwise phase consistency (PPC)
as implemented in Fieldtrip*®. The PPC is an unbiased and consistent
estimate of how well two signals generated by two sources show a
consistent phase relationship in a particular frequency band. To test
for differences in peak PPC frequencies, we used peak detection as
described above and unpaired ¢t-tests.

Inclusion and ethics statement

Our lab is committed to pursuing science in a collaborative way and
contributing to a more diverse and inclusive academia. More infor-
mation here: www.haegenslab.com.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data generated in this study have been deposited in the OSF
database under the accession code* https://osf.io/pza56/. The data are
publicly available. Source data are provided in this paper.

Code availability
The code used to analyze the data supporting the claims of this study is
publicly available here** https://osf.io/pza56/.
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