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Abstract
Beneficial impacts on wellbeing levels of communities living near Protected Areas (PAs) is a key
factor for meeting biodiversity conservation targets. Recent studies suggest that the proximity of
communities to a PA influence to a significant extent their wellbeing levels. This paper explores
further this argument by analysing data from approximately 800 respondents living inside or near
four PAs of international importance in Greece. A Bayesian regression modelling approach testing
which factors influence subjective wellbeing was applied. While wellbeing is explained by a
combination of factors, the results of the study reveal that it is mainly PAs’ social impacts that have
an effect on subjective wellbeing levels followed by the geographical location. This finding suggests
that more effort needs to be invested in the equal distribution of PAs benefits in order to increase
wellbeing and public support for these areas.

1. Introduction

The key goals of Protected Areas’ (PAs) designation
have changed significantly in the past years in an
attempt to adopt a more holistic approach and re-
establish the relationship between people and nature
within their boundaries (Palomo et al 2014). Initially
PAswere designed based on an ‘island’ approach often
excluding or restricting people from the use of pro-
tected natural resources (Karanth and Nepal 2012).
However, PAs have now evolved taking into consid-
eration the complexities of the socio-ecological sys-
tem in which they are established (Palomo et al 2014,
Cumming and Allen 2017).

Under this new approach PAs are recognized as
the dominant policy in halting the loss of biodiversity
while providing significant benefits for communities
living near or within them. In this context the Mil-
lennium Ecosystem Assessment (2005) emphasized
the idea that PAs can provide significant ecosystem
services and that these services impact the level of
human wellbeing. 20 years later the IPBES also adop-
ted the term nature’s contributions to people (NCP)

referring to all the possible impacts from nature on
people’s quality of life (Pascual et al 2017, p. 9).

Social impacts of PAs may include a variety of
aspects (Jones et al 2017) such as the effect on well-
being (Naidoo et al 2019), poverty (Brockington and
Wilkie 2015), mental and physical health (Buckley
et al 2019), access to natural resources (Rees et al
2013) and cultural activities (Coad et al 2008). Social
impacts are important because they influence the
level of support for a PA (Bennett et al 2019, Jones
et al 2020). These high levels of support are key for
the effective management of a PA (Cudney-Bueno
and Basurto 2009, Swemmer et al 2017) and the
emergence of self-organisation initiatives by locals
(Mcginnis and Ostrom 2014).

A large number of studies have been published
recently capturing subjective social impacts of PAs
(Ban et al 2019, Jones et al 2018, Bennett et al 2019).
At the center point of this growing literature is the
link with wellbeing (Pullin et al 2013, Mckinnon
et al 2016). Recently Ban et al (2019) reviewed over
100 papers on marine PAs and found that half of
them have reported a positive influence on wellbeing
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Table 1. Description of the four PAs.

Name of PA Key designation Size (ha)
Timeline of
designations

Number of parti-
cipants/total estim-
ated population

Prespes National Park includ-
ing IUCN categories
Ia, Ib, V, and VI

32 700 1974: National Park
2009: establishment of
new restrictions zones

232/1275

Samaria National Park includ-
ing IUCN categories
Ib, IV, V, VI

4 850 1962: National Park
2020: establishment of
restriction zones is cur-
rently in process

140/1343

Messolonghi National Park includ-
ing IUCN categoties
Ia, Ib, and VI

33 471 2006: National Park 227/45 048

Tzoumerka National Park includ-
ing IUCN categories
Ib, II, IV, V, and VI

338 000 2009: National Park 177/10 491

levels. Taking a step further, Naidoo et al (2019)
proved that the proximity to a PA influences well-
being by analysing data in over 600 PAs of the Global
South.

In this paper we build on this recent literature
and explore which factors have an effect on well-
being levels of communities living near PAs.We focus
on subjective wellbeing which is a crucial dimension
(OECD 2013) that is rarely explored in the PA liter-
ature (Mckinnon et al 2016). Our key research ques-
tion is whether it is the proximity to the PA that influ-
ences wellbeing or a combination of factors, including
perceived socio-economic impacts of the PA, place
attachment and socio-economic attributes. Our ana-
lysis is based on data collected through face to face
interviews with 772 individuals living near or in close
proximity to 4 PAs of international importance in
Greece.

2. Methods

2.1. Research areas
Greece is one of the most important countries in
Europe in terms of biodiversity including one of the
highest numbers of endemic vascular plants in the
region (Dimopoulos et al 2016). According to the
latest NATURA 2000 Barometer (2020) 27.3% of ter-
restrial area and approximately 20% of the national
marine area is protected under the Natura 2000 net-
work. There is very limited evidence regarding the
effectiveness of Greek PAs and their ecological and
socio-economic outcomes. Themost recent valuation
of the effectiveness of Greek PAs was conducted in
2011 (Vokou et al 2014). The study showed that there
is no effectivemanagement in several of the PAs.Mar-
agou and Christopoulou (2012) have also suggested
that NGOs have played a significant role in managing
Greek PAs covering existing gaps in the legislative and
monitoring framework. It should be noted that the
Greek government has recently passed a legislation
allowing multiple uses in certain categories of PAs

such as the Habitat/Species Management Areas (Law
4685/2020, FEK 92/A/7-5-2020).

Our study explores for the first time how PAs in
Greece have influenced wellbeing levels of people liv-
ing inside or near PAs. In particular, we researched
subjective wellbeing levels of local communities liv-
ing inside or near four Greek PAs covering in total
409 021 hectares (table 1 and figure S1 supplement-
ary material available online at https://stacks.iop.
org/ERL/15/114030/mmedia): Prespes National Park
(NP), Messolonghi NP, Samaria NP, Tzoumerka NP.
These four areas were selected based on the follow-
ing criteria: a) they are all designated as National
Parks thus having a similar designation status; b) all
research areas have communities which live inside or
near their borders directly impacted by the PA desig-
nation and c) human activities within the four parks
are similar allowing comparisons between the PAs
(these activities are defined in the designation legis-
lation for each area, see also section 2.2). Having sim-
ilar human activities allowed the research team to use
the exact same questionnaire in all areas, especially
regarding perceptions of social impacts of the PAs.

2.2. Survey and sampling
A questionnaire was developed and distributed in
communities living inside the four PAs and the sur-
rounding areas (maximum 20 km distance from
the PA). Participants were selected randomly based
on their location. Initially the total population liv-
ing inside or near the PA was defined (within the
20 km distance) by identifying all villages in the area.
The desired sample size from each village was sub-
sequently determined in order the sample to be geo-
graphically representative of the actual population.
Researchers visited each village and randomly selec-
ted participants to fill in the questionnaire until the
defined sample quota was achieved (table 1). Demo-
graphics of the sample were checked throughout the
selection process in order to ensure that the char-
acteristics of the sample are similar to the ones of
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the sampling frame. The questionnaire was distrib-
uted during summers 2016 (Prespes, Samaria), 2017
(Tzoumerka,) and 2018 (Messolonghi) after it was
tested in a small sample of respondents. A total of 818
questionnaires were completed through face to face
interviews. Due tomissing values in certain indicators
the final sample retained for the statistical modeling
was 772.

2.3. Questionnaire description
The questionnaire aimed to assess subjective well-
being along with a number of indicators that may
explain wellbeing levels according to existing literat-
ure (Pretty 2003, Ostrom2009, Rollero andDe Piccoli
2010, Hommerich and Tiefenbach 2018, Jones et al
2018, Bennett et al 2019) (table 2). The main categor-
ies of indicators are explained below.

a) Subjective wellbeing was measured by ask-
ing respondents how satisfied they are with
their personal quality of life in a 10-point
Likert scale in accordance to the Organisation
for Economic Co-operation and Development
(OECD) guidelines (OECD 2013) and other
large-scale surveys (ESS, 2018, Eurostat 2019)
(indicator 1, table 2)

b) Explanatory parameters included:

• Social impacts: In this paper we adopt the
definition of social impacts used by Jones
et al (2020) as the intended and unintended
social consequences, both positive and negat-
ive, which occur because of the designation of a
PA and any social change processes invoked by
a PA. This definition focuses on the subject-
ive assessment of social impacts and allows
each impact to be potentially interpreted
both as a cost and benefit depending on
the perception of each individual. Three cat-
egories of social impacts were assessed in
the study each one measured through three
questions (indicators 2–4, table 2): impact
on social aspects (recreation, social network-
ing, cultural activities), impact on economic
aspects (trading, employment and construc-
tion industry) and impact on activities dir-
ectly linked with the use of natural resources
(livestock, agriculture/farming and fishing).
The final three indicators used in the ana-
lysis were calculated via a Principal Com-
ponent Analysis (PCA) (using SPSS 26.0, see
Table S1) reducing the initial nine questions
to three factors. This was in order to facilitate
the modelling process.

• Frequency of doing specific activities in the
national park (e.g. recreation, hunting, fish-
ing, indicator 5, table 2).

• Social networks (frequency of meeting other
people, indicator 6)

• Perceptions regarding the environmental
quality in the area (indicator 7)

• Socio-economic attributes (gender, age, years
of residence in the area, occupation and edu-
cational level, indicators 8–11 - information
on income was also collected but 50% of
respondents refused to provide their details)

• Social trust referring to the level of trust to
other people (indicator 12)

• Place attachment referring to how important
is the area for the respondents (indicator 13)

• Information regarding the location of the
respondents recorded through geograph-
ical coordinates of the village of residence
(indicator 14)

2.4. Data analysis
We run Bayesian regression models using the Win-
BUGS software (Lunn et al 2000) to identify the
parameters determining subjective wellbeing. All 13
explanatory parameters (indicators 2–14, table 2)
were introduced in the models. Markov chain Monte
Carlo (McMC) techniques were used for the Bayesian
inference and parameter estimation. In order to
explore whether the location of respondents also has
an impact on wellbeing, a spatial component was
introduced to the regression models. Suitable kernel
functions (Duncan et al 2017) were used approxim-
ating the distance of the respondent’s village from the
centroid of each PA.

We adopted a g-prior type of approach for the
specification of prior densities in the parameters of
the covariates of interest. This was in order to avoid
the assumption that fixed-effects covariates are inde-
pendent. This allowed us to account for potential
correlations among the covariates of the regression
model when selecting statistically significant covari-
ates. The Zellner’s informative g-prior (Zellner 1986)
was utilized, being appropriately adjusted for the gen-
eralized linearmodels (i.e. Poisson and negative bino-
mial) (Bové and Held 2011).

A total of nine models were fitted to the
data. These models compared three specifications
under three variations. Specifications included
the Gaussian distribution (suitable for continuous
response variables), the Poisson distribution and the
negative binomial (NB) distribution (the latter two
being more suitable for Likert type data) (Lindén
and Mäntyniemi 2011, Cameron and Trivedi 2013,
Malesios et al 2018). The three variations included a
model ignoring the spatial information (non-spatial),
except for the categorical variable of the PA, a model
with spatial component specification via an inverse
distance power function (spatial 1) and a model
with a spatial component specification via a neg-
ative exponential decay function (spatial 2). Since
the inverse distance power function has a fatter tail
when compared to the negative exponential func-
tion, these two alternative specifications allowed us
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Table 2. Questions and descriptive statistics.

Indicator and scale Question(s) and statistics

1. Subjective wellbeing
(10-point Likert Scale (LS), 1: lowest wellbeing,
10: highest wellbeing)

How satisfied are you with your quality of life at the
moment? (Mean: 5.71)

2. Impacts on social aspects
(10-point LS, 1: Most negative impact, 10: Most
positive impact)

How do you consider the PA has impacted you on the
following: Recreational activities (Mean: 6.76), Social
networking (Mean: 5.89), Cultural activities (Mean:
5.97)

3. Impacts on economic aspects
(10-point LS, 1: Most negative impact, 10: Most posit-
ive impact)

How do you consider the PA has impacted you on the
following: Trading (Mean: 5.52), Employment (Mean:
5.69), Construction industry (Mean: 4.61)

4. Impacts on activities directly linked
with the use of natural resources
(10-point LS, 1: Most negative impact, 10: Most posit-
ive impact)

How do you consider the PA has impacted you on the
following: Agriculture (Mean: 4.84), Livestock (Mean:
4.78), Fishing (Mean: 5.13)

5. Frequency of specific activities in the PA
(for example for recreation, fishing)

How often do you use the PA?

Never (26.8%)
Less than once a month (30.2%)
Once a month (8.1%)
Several times a month (12.6%)
Once a week (2.7%)
Several times a week (5.7%)
Everyday (13.3%)
How often do you meet friends and relatives
Never (0.5%)
Less than once a month (5.6%)
Once a month (7.2%)
Several times a month (16.5%)
Once a week (8.9%)
Several times a week (24.9%)

6. Social networks (Frequency of meeting)

Everyday (36.2%)
7. Perceived environmental quality
(10-point LS, 1: Totally dissatisfied, 10: Totally satis-
fied)

How satisfied are you with the environmental quality in
the area (Mean: 6.66)

8. Age (year of birth) Year of birth (Average age: 50)
Men (53.7%)

9. Gender
Women (46.3%)
Up top 6 years (27.4%)
Up to 9 years (14.2%)
Up to 12 years (29%)
Up to 14 years (12%)
Up to 16 years (13.8%)

10. Educational level

16+ (3.7%)
Farmer/Fisher (15.9%)
Private sector (39.9%)
Civil sector (11.4%)
Unemployed (4.6%)
Homemaker (11.3%)
Retired (14.1%)

11. Occupation

Student (18+) (2.6%)
12. Social trust
(10-point LS, 1: You cannot be too careful, 10:
Most people can be trusted)

Would you say that most people can be trusted or you
cannot be too careful? (Mean: 4.32)

13. Place attachment
(10-point LS, 1: Totally disagree, 10: Totally
agree)

How much do you agree or disagree with the following
statements: ‘The area I live in means a lot to me’ (Mean:
7.67)

14. Location Geographical coordinates of the participant’s village

to test longer vs. shorter distance effects on well-
being, depending on which of the two candidate
functions had better fit to the data. Model selection
was carried through the use of the deviance and the

deviance information criterion (DIC) (Spiegelhal-
ter et al 2002). A detailed description of the mod-
eling approach is included in the supplementary
materials.
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Table 3. Goodness-of-fit statistics for alternative models
(dependent variable: subjective wellbeing).

Model Mean deviance (D̄) DIC

Gaussian (non-spatial) 3156.24 3218.13
Gaussian (spatial 1) 3155.23 3147.49
Gaussian (spatial 2) 3157.54 3219.34
Poisson (non-spatial) 3384.98 3426.85
Poisson (spatial 1) 3384.58 3391.15
Poisson (spatial 2) 3384.55 3425.03
NB (non-spatial) 3407.65 3448.32
NB (spatial 1) 3405.56 3437.08
NB (spatial 2) 3385.94 3426.41

Finally, for the visual representation of potential
spatial patterns in subjective wellbeing, an inverse dis-
tance weighting (IDW) methodology was used (i.e. a
deterministic interpolation method that derives the
value of a variable at a new location using values
obtained from known locations) with the QGIS soft-
ware (QGIS, 2015).

3. Results

3.1. Factors influencing subjective wellbeing
The best model was the one which assumed a nor-
mal distribution for subjective wellbeing (Gaussian)
including a spatial component that accounted
for longer distance effects (inverse distance decay
function—spatial 1 model) (table 3). The evidence
from applying the model comparison methodology
in this paper suggests that a modeling strategy based
on the use of the Gaussian distribution works well
and provides robust results, when compared to the
Poisson and NB specifications. This outcome comes
in contrast with the widely accepted argument that
the Poisson or NB models would probably work bet-
ter for this type of data (Greene 2008). A possible
explanation for this outcome is the presence and/or
magnitude of skewness of the dependent variable
(Malesios et al 2018).

Upon selection of the best fitted model, to test
the quality of its fit we look at the normal probabil-
ity plot (QQ-plot) of the residuals (see figure S2 in
the supplement). Inspection of Figure S2 indicates
that there are only fewmoderate deviations from nor-
mality. We also checked for autocorrelation through
visual inspection of autocorrelation plots and found
acceptable autocorrelation levels for all parameters.

The parameters estimates of the best selected
model (Gaussian spatial 1), after the implementa-
tion of the g-prior selection process, are described
in table 4 (including also the corresponding 95%
credible intervals, see also figure 1). Similar results
in terms of covariate selection have been observed
in all remaining fitted candidate models. The most
important indicators determining wellbeing are per-
ceived impacts on social aspects (indicator 2) and
perceived impacts on activities directly linked with

the use of natural resources (indicator 4) (table 4).
Other indicators that explain wellbeing, but to a lower
extent, are the impact on economic aspects (indicator
3), place attachment (indicator 13) and social trust
(indicator 12).

Regarding the role of the geographical location on
wellbeing levels (indicator 14), the statistical signific-
ance of the Spatial 1 variation in all three specifica-
tions is an indication of positive effect on wellbeing
levels of those residing closer to the center of the PA
than for those further apart. The comparative bet-
ter fit of the spatial component models including the
inverse distance specification, in comparison to the
alternative inverse exponential component, suggests
that the spatial distance effect is stronger in long dis-
tances, in comparison to shorter distances.

3.2. Wellbeing and geographical location
According to the IDW methodology spatial depend-
ence exists between subjective wellbeing and the loc-
ation of the respondent in relation to the PA. The
obtained estimates are visualized via heatmaps for
each PA in figure 2. They include the locations of the
villages of respondents along with the exact location
of the PAs’ centroid. Darker colour in the maps rep-
resent higher wellbeing levels. The results reveal that
in all research areas the location of the individual in
relation to the PA plays a significant role in subject-
ive wellbeing. This connection is particularly evident
in Prespes and Tzoumerka where wellbeing levels are
reduced as participants live further out of the center
of the PA.

3.3. Perceived socio-economic impacts of the PA
Perceived impacts are the most significant predictor
for subjective wellbeing (table 4). People who con-
sider that they have benefited more from the PA (per-
ceived positive impacts) also feel that they have a
better quality of life compared to those who regard
that the PA has impacted them in a negative way.
The strongest connection is noted with the impact on
social aspects, such as cultural and recreational activ-
ities, and the impact on activities directly linked with
the use of natural resources. When exploring differ-
ences between the research areas these impacts differ
significantly (supplementary material tables S2–S3).
In Messolonghi people perceive impacts in a more
positive way compared to other PAs. Highest scores
are observed for the impact on recreational activit-
ies in Tzoumerka and Samaria revealing that the PA
has been successful in protecting local cultures. The
impact on activities directly linked with the use of
natural resources is the one that has the lowest scores
with two of the PAs (Tzoumerka and Prespes) being
particularly negatively affected.

3.4. Socio-economic attributes
Regarding factors which are not directly connected
with the PA social trust is positively associated with
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Table 4. Parameter estimates for the best selected model [Gaussian, Spatial Model 1] (5% level of significance) and 95% credible
intervals.

Covariate Estimate 95% credible intervals

Intercept 2.84 (2.17, 3.45)
Region (Ref. category: PRESPES)
Samaria 1.30 (0.52, 2.08)
Tzoumerka −1.67 (−2.19,− 1.18)
Messolonghi n.s. –
Social trust 0.24 (0.18, 0.31)
Place attachment 0.22 (0.15, 0.29)
Impact on social aspects 0.56 (0.40, 0.73)
Impact on economic aspects 0.25 (0.10, 0.41)
Impact on activities directly linked with the use of natural
resources

0.53 (0.35, 0.71)

Random effect (village of respondent) 0.50 (0.18, 1.03)
Lambda 6.35 (0.22, 22.16)

n.s.: non-significant

Figure 1. Effect size along with 95% credible intervals for the estimated parameters of explanatory variables in the Bayesian
regression model.

wellbeing levels (beta= 0.24, p-value < 0.05, table 4).
People who tend to trust others have higher levels
of wellbeing. Place attachment has also a positive
effect (beta = 0.22, p < 0.05) meaning that those
who are more ‘attached’ to the area they have higher
levels of wellbeing. The socio-economic profile of the
respondent does not play a significant role in explain-
ing variations in wellbeing levels.

4. Discussion and policy
recommendations

This study contributes in current debates regard-
ing the impact of PAs on human wellbeing (Naidoo
et al 2019, Bennett et al 2019). It goes beyond the
state-of-the-art testing whether it is the proximity

to the PA that influences wellbeing (Naidoo et al
2019) or a combination of factors, including
location, socio-economic impacts from the PA and
a person’s demographic profile. The results also
emphasize the importance of subjective measure-
ments both with regards to wellbeing levels (OECD
2013) and perceived impacts (Jones et al 2018,
Allendorf et al 2019).

Our data analysis reveals that people who live near
a PA report higher subjective wellbeing levels con-
firming the findings of Naidoo et al (2019). How-
ever, the impact that the PA has on certain socio-
economic aspects is an evermore important indicator
in explaining wellbeing. A number of other factors
not connected with the PA also influence wellbeing
including place attachment and social trust. This
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Figure 2. Spatial mapping of magnitude of responses on wellbeing for the 4 PAs.

result raises the issue of variations in terms of PAs’
socio-economic impacts at individual level. People
who consider that they have received higher positive
impacts (benefits) report a higher quality of life. This
finding highlights the unequal distribution of social
impacts of a PA across individuals and social groups
(Ward et al 2018).

The paper also emphasizes the importance of sub-
jective assessments in relation to the link between
PAs and wellbeing. Although the argument for the
importance of capturing perceptions of local com-
munities has been recently reiterated (Jones et al 2018,
Allendorf et al 2019, Bennett et al 2020) existing large-
scale studies are mainly focused on objective indicat-
ors of wellbeing (Naidoo et al 2019) and secondary
data (Bonet-García et al 2015). Thus, there is signific-
ant lack of evidence regarding the impact of PAs on
subjective wellbeing and how this relation may influ-
ence the level of support for PAs.

For practitioners, our findings lead us in twomain
propositions. First, perceived impacts can be used
to understand wellbeing levels across communities
living near PAs. Although it is costly to undertake

subjective assessments through surveys and face to
face interviews this study shows that they are key in
order to understand how a PA impacts local com-
munities and design future policies. Second, of equal
importance is the distribution of impacts (Ward et al
2018). Several tools exist that aim to capture aspects
of social impacts and wellbeing such as SAPA (Franks
et al 2018). However, capturing the distribution of
impacts is not currently themain focus of thesemeth-
odologies. Developing new tools exploring issues of
social equity (Zafra-Calvo et al 2019, Bennett et al
2020) should be a key aim for practitioners in the
future. Capturing the distribution of impacts can
facilitate the process of identifying parts of the society
who are receptors of higher negative impacts allowing
practitioners to put in place mitigation measures and
achieve a balance in wellbeing levels across different
social groups.

5. Conclusions

High levels of wellbeing across communities liv-
ing near PAs is a key issue in order to meet
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biodiversity conservation targets while protecting
people’s livelihood. This paper proves that wellbeing
of people near PAs can be explained by a combination
of socio-economic parameters. However, the location
in relation to the PA and perceived impacts from the
establishment of the PA on socio-economic aspects
are the most important predictors for subjective well-
being. This result reveals that exploring the distribu-
tion of PAs social impacts should be a priority for
practitioners as it has an effect on wellbeing levels
which in turn play a significant role for public sup-
port. The paper makes the suggestion that large scale
studies should be focused also on subjective measure-
ments assisting in the co-production of knowledge for
optimum ways of co-managing PAs across the world.
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