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Abstract

In electric vehicles, voltage and temperature sensors installed at the battery cell level or pack level are crucial for providing
ccurate information so the battery management system (BMS) can perform its functions properly. In this paper, a model-based
ensor fault estimation scheme using a sliding mode technique has been proposed. Voltage and temperature models have been
eveloped for a Lithium-ion battery cell. Then, a sliding mode observer has been proposed to estimate the systems’ states as
ell as sensors fault signals independently and simultaneously. Nissan Leaf Gen4 2018 Lithium-ion cells have been selected to

valuate the performance of the proposed estimation scheme. Simulation results under different test scenarios have confirmed
he feasibility and effectiveness of the developed method.
rown Copyright © 2023 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Lithium-ion (Li-ion) batteries being promising solutions for energy storage applications such as electric vehicles
EVs) due to their high energy and power density, and long service [1–3]. However, recently many accidents
ssociate with them raise a real concern about the safety and reliability [4,5]. A battery management system (BMS)
lays a vital role in EVs for real-time monitoring of battery states to maintain the safe and effective operation of
atteries. The key functions of the BMS are to periodically adjust the charge of individual cells to match the rest
f the pack, states estimations (such as state of charge (SOC), state of health (SOH)), fault diagnosis and other
dvanced control features [6]. The poor performance of BMS due to misinformation provided by faulty sensors
ight lead to over-discharging & overcharging and estimation errors. All can result in thermal runaway events

nd then possible catastrophic consequences [7,8]. To ensure that BMS works efficiently and to avoid any serious
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safety issues, fault diagnosis schemes are needed. Fault detection and isolation (FDI) could be one of techniques to
increase safety and reliability in Li-ion batteries applications. The purpose of FDI is to detect any fault once occurs
and determine the location of the fault. However, for a fault fault-tolerant control design, the information such as
a magnitude is very useful. Hence a fault reconstruction and estimation (FRE) scheme is required to stabilises the
closed-loop system and achieve the desired performance [9,10].

It is well known that sliding-mode control techniques exhibit high robustness and insensitivity to the so-called
atched uncertainty [11]. Sliding mode observers (SMOs) based approaches have been widely used to develop FDI,

articularly, FRE schemes [12,13]. Model-based fault diagnostic scheme that uses sliding mode observers designed
ased on the electrical and thermal dynamics of the battery is presented in [14] to develop sensors faults estimation
chemes. The equivalent output errors are extracted on the sliding manifolds, then, residual signals are generated
o detect, isolate, and estimate the sensor faults under the assumption that the faults and their time derivatives are
ounded and finite. Moreover, it is assumed that no multiple faults can occur at the same time. Model-based sensor
DI scheme using an adaptive extended Kalman method to estimate the battery output voltage for a series battery
ack is presented in [15]. The residual signals are generated by comparing between the estimated output voltage of
he model with actual measurement values of the battery cell. However, this FDI mechanism is proposed based on
he assumption that the most possibly being over-charged and over-discharged cells (two cells in a series battery
ack) are vulnerable to sensor faults, and the rest of the cells and their sensors are working normally. Model-based
ensor FDI scheme for a Li-ion cell is developed in [16] using a recursive least squares (RLS) method to estimate
he equivalent circuit model (ECM) parameters in real time. Then, by applying a weighted moving average filter
oupled with a cumulative sum control chart to detect any sensor faults. In [17], the SOC and capacity are estimated
y the unscented Kalman filter (UKF). The residuals are compared with the constant threshold to identify faults of
urrent or voltage sensors for the battery pack. The temperature sensor is assumed to be fault-free, which is used
o distinguish the fault of a current or voltage sensor from the fault of a battery cell.

The aforementioned sensor fault diagnosis schemes and others that proposed for battery applications have one or
ore of the following issues. First, they aim to detect one fault at one time. Second, they ignored the temperature

ensor fault. Third, only suitable for the battery pack. In this paper, a sensor fault scheme using a sliding mode
bserver is proposed for a battery system. The proposed technique is developed to estimate system states and
ensor faults simultaneously, and it is applicable to be implemented for battery voltage model and battery thermal
odel independently. In this way, the detection of voltage sensor and temperature sensor faults can be achieved

ndependently and simultaneously. The main contributions include:

• A generic estimation scheme directly applicable to estimate system states and sensor faults simultaneously.
• More than one fault can be estimated at one time.
• The proposed technique is applicable to be implemented for battery voltage model and battery thermal model

independently for one battery as well as battery pack.

The main idea of this paper as explained in Fig. 1 is to apply the developed observer for both voltage and
hermal models of the battery cell independently and simultaneously. The observer is developed to estimate thermal
ell model states (i.e surface temperature and core temperature) [18], and to estimate voltage cell model states as
xplained in [19]. In addition, to estimate a sensor fault signal for both a surface temperature sensor and a terminal
oltage sensor. The fault signal estimation is needed for designing a fault-tolerant control (FTC) which is out of
he scope of this paper and considered as a future work.

. System description and preliminaries

Consider a system described as follows

ẋ = Āx + B̄u (1)

y = C̄x + D̄ fs(t) (2)

here x ∈ Rn, u ∈ Rm and y ∈ R p with m ≤ p ≤ n are the state variables, inputs and outputs of the
system, respectively. The matrix triples ( Ā, B̄, C̄) are constant with appropriate dimensions, and C̄ is of full rank.
D̄ ∈ R p×q (q ≤ p) is a known sensor fault distribution matrix which has full column rank, and fs(t) is a sensor

ault.
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Fig. 1. System states estimation and fault diagnosis scheme.

For the simplicity, we assume that the matrix D̄ has the following structure

D̄ =

[
0
D2

]
(3)

here D2 ∈ Rq×q . Moreover, since the matrix C̄ is of full rank, there exists a non-singular matrix Tc such that

A =

[
A1 A2

A3 A4

]
: = Tc ĀT −1

c (4)

B =

[
B1

B2

]
: = Tc B̄, and C =

[
0 Ip

]
: = C̄T −1

c (5)

here A1 ∈ R(n−p)×(n−p), B1 ∈ R(n−p)×mand B2 ∈ R p×m . Thus in the new coordinates (x1x2)T
= Tcx , the system

an be written as

ẋ1 = A1x1 + A2x2 + B1u (6)

ẋ2 = A3x1 + A4x2 + B2u (7)

y = x2 + D2 fs(t) (8)

ssumption 1. It is assumed that fs and ḟs are both bounded, namely ∥ fs∥ ≤ β1 and
 ḟs

 ≤ β2 where β1 and β2
re known positive constants.

ssumption 2. The matrix pair (A, C) in (4)–(5) is observable.

From Assumption 2, there exist matrix L such that A − LC is Hurwitz stable. This implies that, for any
ositive-definite matrix Q ≻ 0, the Lyapunov equation

(A − LC)T P + P(A − LC) = −Q (9)

as unique positive-definite solution P ≻ 0.
For further analysis, introduce partitions of P and Q which are conformable with the decomposition in (6)–(8)

s follows

P =

[
P1 P2

P3 P4

]
, Q =

[
Q1 Q2

Q3 Q4

]
(10)

here P1 ∈ R(n−p)×(n−p) and Q1 ∈ R(n−p)×(n−p). The following result is required for further analysis.

emma 1. The matrix A1 + L A3 is Hurwitz stable, where L = P−1
1 P2 and L ∈ R(n−p)×p, and P1 & P2 are defined

n (10) and A1 & A2 are defined in (4), if the Lyapunov equation in (9) is satisfied.
roof. See Lemma 2.1 in [20].
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3. Sliding mode observer design

In this section, a SMO is proposed to estimate system states and fault signals. Consider the system in (6)–(8)
ith no sensor fault. Introduce a linear coordinate transformation

z =

[
In−p L

0 Ip

]
  

T

x (11)

here L is defined in Lemma 1. In the new coordinate system z

ż1 = (A1 + L A3)z1 + (A2 − A1L) + L(A4 − A3L)z2 + (B1 + L B2)u (12)

ż2 = A3z1 + (A4 − A3L)z2 + B2u (13)

y = z2 (14)

For system (12)–(14), consider a dynamical system

˙̂z1 = (A1 + L A3)ẑ1 + (A2 − A1L) + L(A4 − A3L)y + (B1 + L B2)u + H (y − ŷ) + K1v (15)

˙̂z2 = A3 ẑ1 + (A4 − A3L)y + B2u + K2(y − ŷ) + K3v (16)

ŷ = ẑ2 (17)

here K1, K2 and K3 will be defined later over the paper, and

v = sgn(y − ŷ) (18)

If the state estimation errors are defined as e1 = z1 − ẑ1, and e2 = z2 − ẑ2. Then from (12)–(14) and (15)–(17),
he error dynamics can be described by

ė1 = (A1 + L A3)e1 + He2 − K1v (19)

ė2 = A3e1 − K2e2 − K3v (20)

For convenience Ã1 = (A1 + L A3).

ė1 = Ã1e1 + He2 − K1v (21)

ė2 = A3e1 − K2e2 − K3v (22)

Now consider the case after the occurrence of any sensor fault. From Eq. (8), and therefore ey = e2 + D2 fs . It
ollows that

ė1 = Ã1e1 + Hey − H D2 fs − K1v (23)

ėy = A3e1 − K2ey + K2 D2 fs − K3v + D2 ḟs (24)

Then, introduce a new coordinate transformation col(e1ey) → (esey) with es = e1+Γey , where Γ will be defined
ater. The error systems in (23)–(24) become

ės = ( Ã1 + Γ A3)es + [H − Γ K2 − ( Ã1 + Γ A3)Γ ]ey − (K1 + Γ K3)v − (H − Γ K2)D2 fs + Γ D2 ḟs (25)

˙
ėy = A3es − (K2 − A3Γ )ey − K3v + K2 D2 fs + D2 fs (26)
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For the system (25), and as a direct result of Lemma 1 under Assumption 2, there exists a matrix Γ such that
Ã1 + Γ A3) with Ã1 = (A1 + L A3) is the Hurwitz matrix, where L is defined in Lemma 1. Thus, for any Q̃ ≻ 0
he Lyapunov equation

( Ã1 + Γ A3)T P̃1 + P̃1( Ã1 + Γ A3) = −Q̃1 (27)

as an unique solution P̃ ≻ 0.
With the selection of H = [Γ K2 + ( Ã1 − Γ A3)Γ ] and K1 = −Γ K3, the system (25) becomes

ės = ( Ã1 − Γ A3)es − (H − Γ K2)D2 fs + Γ D2 ḟs (28)

Considering the Lyapunov candidate function V = eT
s P̃1es , and from (27)

V̇ = −eT
s Q̃1es − 2P̃1eT

s [(H + Γ K2)D2 fs − Γ D2 ḟs] (29)

From Assumption 1

V̇ ≤ − λ
min

(Q̃1) ∥es∥
2
− 2

P̃1

 ∥es∥ ∥[(H + Γ K2)D2β1 − Γ D2β2]∥

≤ −(
1
2

λ
min

(W T
+ W ) ∥X∥ + γ ) ∥X∥

(30)

here W = Q̃1, X = es and γ = 2
P̃1

 ∥[(H + Γ K2)D2β1 − Γ D2β2]∥. From the definition of Lyapunov function
n (27), it is straightforward to see that

λ
min

(P̃1) ∥X∥
2

≤ V ≤ λ
max

(P̃1) ∥X∥
2 (31)

Therefore, system (25) is globally uniformly ultimately bounded. Hence the result follows.

emark 1. From the above result, it follows that es is bounded and thus there exist constant α ≻ 0 such that

∥es∥ ≤ α (32)

here α can be estimated using the approach given in [20].
For the system (25)–(26), consider the sliding surface

S = {col(es, e2)|e2 = 0} (33)

Then the following conclusion is ready to be presented.

heorem 1. Under Assumptions 1–2, system (25)–(26) is driven to the sliding surface (33) in finite time and remains
n it if

K3 ≥ ∥A3∥ α + ∥K2 D2∥ β1 + ∥D2∥ β2 + η (34)

roof. From (26) with selection of K2 = A3Γ , and from Assumption 1, it follows that

eT
y ėy = eT

y [A3es − K3v + K2 D2 fs + D2 ḟs]

≤ eT
y [A3es + K2 D2β1 + D2β2 − K3v]

(35)

From Remark 1, and from the inequality ∥X∥ ≤ X T sgn(X )

eT
y ėy ≤ [∥A3∥ α

ey
 + ∥K2 D2∥ β1

ey
 + ∥D2∥ β2

ey
 − ∥K3∥

ey
]

≤ [∥A3∥ α + ∥K2 D2∥ β1 + ∥D2∥ β2 − ∥K3∥]
ey

 (36)

Applying (34) into (36)

eT
y ėy ≤ −η

ey
 (37)

This shows that the reachability condition is satisfied. Hence the conclusion follows.
After sliding motion occurs e2 = ė2 = 0 ⇒ es = e1. Thus

lim es = 0, lim e1 = 0 (38)

t→∞ t→∞

318



M. Mohamed, I. Pierce and T.Q. Dinh Energy Reports 9 (2023) 314–323

w
d

Thus, From (38), and for slowly varying faults if the dynamics of the sliding motion are sufficiently fast

0 = A3es − K3v + K2 D2 fs + D2 ḟs

veq → K −1
3 ∥K2 D2∥ fs(t) (39)

In order to reconstruct/estimate the fault signal fs(t), it is necessary to recover the equivalent output error injection
signal veq . Here the approach given in [21] and later in [22] will be employed to produce the veq . From (18), the
equivalent output error injection signal veq can be approximated by

veq ≃
eyey
 + σ

(40)

here σ is a small positive scalar. It can be shown that the equivalent output injection can be approximated to any
egree of accuracy by (40) for a small enough choice of σ . Since rank D2, it follows from (39) that

fs(t) ≃ (K −1
3 ∥K2 D2∥)−1 eyey

 + σ
(41)

Remark 2. In the following simulation studies q = 1(D2 = 1) (one output voltage sensor for voltage model, and
one output temperature sensor for thermal model). From (41), it is clear that the estimation of fault signal is only
dependent on y and ŷ which can be obtained online. Therefore, the fault estimation scheme is convenient for real
implementation.

4. Simulation studies

The observer developed in this paper is applied to validated voltage model that represents a real cell of a Nissan
Leaf Gen4 Li-ion battery, and it is used alongside with a thermal battery cell model. Both models are developed at
The University of Warwick-WMG.

4.1. Simulation using voltage model

The matrices (A, B, C) in (4)–(5) of voltage model that described in [19] are used in this paper to implement
the observer in (15)–(17) for voltage cell.

All parameters and states definitions are explained in [19]. Different well known drive cycle profiles; New
European Driving Cycle (NEDC), and more recently the Worldwide Harmonised Light Vehicle Test Procedure
(WLTP) are used in the simulation. Nissan Leaf Gen4 2018 Lithium-ion cell model has been characterised in the
lab, and the data obtained is used to develop Lithium-ion cell model. The observer developed in this paper is used
to estimate the unmeasurable states of the voltage model (OCV, Vpe, Vpc) (see Fig. 2) and the fault signal.

Fig. 2. A second-order equivalent circuit model for battery cell represents the system states.

Figs. 3-a and 4-a show the simulation results of the full system states (Vt , OCV, Vpe, Vpc) (see Fig. 2) under
NEDC and WLTP current profiles respectively. It can be seen that although the high frequency of the current profiles,
the estimation signals still follow the systems states in good manner.

Figs. 3-b and 4-b show fault signals estimation at different formats; First, when the simulated fault signal is
dropped suddenly to −1 (e.g., sensor broken); Second, when the simulated fault signal is considered as a pulse
signal with −1 amplitude (e.g., sensor with bad contact).
319
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Fig. 3. (a) System states estimation-NEDC; (b) Different formats of fault signals: Top; fault signal simulation drops to −1. Bottom; Pulse
with −1 amplitude fault signal.

Fig. 4. (a) System states estimation-WLTP; (b) Different formats of fault signals: Top; fault signal simulation drops to −1. Bottom; Pulse
with −1 amplitude fault signal.
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4.2. Simulation using thermal model

The matrices (A, B, C) in (4)–(5) of thermal model that described in [18] is used in this paper to implement the
bserver in (15)–(17) for battery cell thermal model. The matrices (A, B, C) of the thermal model are in the form:

A =

⎡⎢⎢⎣
−1

RcCc

1
RcCc

1
RcCs

−1
Cs

(
1
Rc

+
1
Ru

)

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
Re Rc

Cc
0

0
1

RuCs

⎤⎥⎥⎦ , C = [0 1] (42)

where x = [TcTs]T and u = [I 2T f ], Tc is a core temperature, Ts is a surface temperature, I is a current, and T f is
an ambient temperature. The parameters of the thermal model can be found in [18]. The same procedures done for
voltage model that mentioned above, they were done for the thermal model in terms of different drive cycles and
different fault formats.

Figs. 5-a and 6-a show the simulation results of the full system states x = [Tc Ts]T under NEDC and WLTP
current profiles respectively. Figs. 5-b and 6-b show fault signals estimation at different formats; First, when the
simulated fault signal is dropped suddenly to −1 (e.g., sensor broken); Second, when the simulated fault signal is
considered as a pulse signal with −1 amplitude (e.g., sensor with bad contact).

Fig. 5. (a) System states estimation-NEDC. (b) Different forms of fault signals; Top: fault signal simulation drops to −1. Bottom: pulse
ignal with −1 amplitude.

emark 3. It can be seen that in all the scenarios mentioned above for both models (voltage and thermal models
f the battery cell), the system states and fault signals have been effectively estimated. In addition, the well-known
ssue which is the internal short circuit that might causes very serious problems can be indicated by the estimation
f the core temperature, as it is very difficult to be measured, and the terminal voltage drop at the same time.

. Conclusion

In this paper, a sliding mode observer has been considered to estimate the Li-Ion battery voltage and thermal
ell system states as well as sensor fault estimation. The developed virtual voltage model that represents Nissan
eaf Gen4 Li-ion battery cell and virtual thermal model are used as applications to perform the estimation process.
ifferent current profiles and different fault signals format are used to show the reliability of the proposed technique.
he internal short circuit could be indicated if the monitoring shows a terminal voltage drop and a rapid increase

f the core temperature estimation simultaneously.
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Fig. 6. (a) System states estimation-WLTP. (b) Different forms of fault signals; Top: fault signal simulation drops to −1. Bottom: pulse
signal with −1 amplitude.
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