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Featured Application: The application of this work is in radiomics for medical imaging analysis.
It addresses the question of how to establish if radiomic features are stable and reproducible.

Abstract: Radiomics involves the extraction of information from medical images that are not visible
to the human eye. There is evidence that these features can be used for treatment stratification and
outcome prediction. However, there is much discussion about the reproducibility of results between
different studies. This paper studies the reproducibility of CT texture features used in radiomics,
comparing two feature extraction implementations, namely the MATLAB toolkit and Pyradiomics,
when applied to independent datasets of CT scans of patients: (i) the open access RIDER dataset
containing a set of repeat CT scans taken 15 min apart for 31 patients (RIDER Scan 1 and Scan 2,
respectively) treated for lung cancer; and (ii) the open access HN1 dataset containing 137 patients
treated for head and neck cancer. Gross tumor volume (GTV), manually outlined by an experienced
observer available on both datasets, was used. The 43 common radiomics features available in
MATLAB and Pyradiomics were calculated using two intensity-level quantization methods with
and without an intensity threshold. Cases were ranked for each feature for all combinations of
quantization parameters, and the Spearman’s rank coefficient, rs, calculated. Reproducibility was
defined when a highly correlated feature in the RIDER dataset also correlated highly in the HN1
dataset, and vice versa. A total of 29 out of the 43 reported stable features were found to be highly
reproducible between MATLAB and Pyradiomics implementations, having a consistently high
correlation in rank ordering for RIDER Scan 1 and RIDER Scan 2 (rs > 0.8). 18/43 reported features
were common in the RIDER and HN1 datasets, suggesting they may be agnostic to disease site.
Useful radiomics features should be selected based on reproducibility. This study identified a set of
features that meet this requirement and validated the methodology for evaluating reproducibility
between datasets.

Keywords: radiomics; reproducibility; repeatability; validation; lung cancer; head and neck cancer;
CT imaging
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1. Introduction

There is growing evidence that standard-of-care medical images obtained from modal-
ities such as CT, MRI, and PET contain more information than is visible to the human
eye [1]. The high-throughput extraction and processing of the underlying information from
radiological images is known as “radiomics”. The quantitative data obtained (imaging
biomarkers) could potentially be used alongside the current gold standard of tumor evalu-
ation and staging tools, including TNM staging [2], to aid clinical decision making such as
personalized treatment planning.

The predictive power of radiomic features is dependent on having a large set of data.
However, due to the nature of medical images, the size of the studies is often relatively
small and based on a single dataset, restricting the impact of the results. To find candidates
for reproducible biomarkers from the hundreds of features available from first, second, and
higher-order statistical features of images, it is necessary for researchers to validate the
results published by other groups [3]. This should be carried out using a separate dataset
from the original study and considered a retrospective investigation. However, at least
50% of published studies have been described as poorly reported with incomplete method-
ologies and results for successful validation when an analysis of biomedical research was
performed by Chalmers and Glasziou [3]. The precise cause of this serious lack of repro-
ducibility in validation is unclear. The lack of standards for validating results, incomplete
reporting of methodologies and results, and unrecognized confounding variables in the
dataset used could all be to blame.

A recent systematic review of full-text articles in PubMed published in 2018 primarily
addressed non-small cell lung cancer (NSCLC) and oropharyngeal cancer [4] and found
only 7 out of 41 studies reported every methodology used in image acquisition, pre-
processing, and feature extraction in detail. Out of 21 studies on NSCLC, 4 studies using
CT images [5–8] and 1 study using PET (Positron Emission Tomography) images reported
every methodologic aspect. The results identified the sensitivity of radiomic features in
terms of repeatability and reproducibility to processing details such as the settings used
in image acquisition, the image reconstruction algorithm, image preprocessing, and the
software used to extract radiomic features. First-order features were reported to be more
reproducible than shape metrics and texture features.

Our previously published study [9] analyzed radiomic features extracted from the
CT component of PET/CT scans of patients with NSCLC, treated at the Royal Surrey
NHS Foundation Trust (RSFT). The radiomics features were calculated using the toolkit of
Vallières et al. [10], Which is available in the MATLAB package. This study found that a set
of radiomics features were stable to settings used in image acquisition and reconstruction
algorithms used in different scanner models. Features were also stable to variations in
tumor delineation. However, features were sensitive to intensity quantization parameters,
including (i) the number of intensity levels, (ii) the method of quantization to select the
intensity levels, and (iii) the use of an intensity threshold around the tumor or organ being
analyzed. These results show that different parameter choices in different datasets may
help explain the results in the mentioned review papers [4,5,11]. Therefore, a question is:
would these features be successfully reproduced and validated under different conditions,
such as with a different lung cancer dataset, a different disease site, or using a different
implementation of radiomics feature extraction?

2. Materials and Methods

The purpose of this paper is to investigate the generalizability of the findings from the
initial study [9] and if a common set of CT radiomics features is stable. This was achieved
first by evaluating which radiomics features are stable from the originally used 43 features
of the Vallières toolkit, for a publicly available lung cancer dataset: the Reference Image
Database to Evaluate Therapy Response (RIDER) [12]. As Pyradiomics [1] is one of the
most used radiomics toolkits and provides the 43 features of the Vallières [10] plus 59
other original features, the RIDER dataset was also evaluated using Pyradiomics [13], and
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the results of the two toolkits were compared to study generalizability across radiomics
implementations plus the extra features from Pyradiomics. As with the original study, this
was carried out using the full intensity range in the images and thresholding to analyze
the tumor intensity region only. To explore the applicability to other disease sites, a head
and neck dataset was analyzed using the MATLAB toolkit and Pyradiomics. The dataset
used was the HN1 dataset made publicly available in the Cancer Imaging Archive [1]. The
stable features of HN1 were compared with those of RIDER.

2.1. Imaging Datasets

Two publicly available datasets were used in this study.

2.1.1. RIDER Dataset

The RIDER dataset consists of non-contrast enhanced PET/CT images from pathologi-
cally confirmed NSCLC patients scanned at the Memorial Sloan-Kettering Cancer Center,
New York, United States [12]. There were 31 patients in total, and they received conven-
tional radiotherapy. Each patient had a repeat scan 15 min after the first scan, using the
same scanner and imaging protocol. These are referred to as RIDER Scan 1 and RIDER
Scan 2. The image datasets were acquired using two scanner types: GE LightSpeed RT16
and GE VCT. Each CT image size was 512 by 512 pixels, with pixel sizes ranging from
0.58 mm by 0.58 mm to 0.87 mm by 0.87 mm and a slice thickness of 1.25 mm.

2.1.2. HN1 dataset

The HN1 dataset contains PET/CT images of 137 head and neck patients with squa-
mous cell carcinoma. The patients were treated with definitive radiotherapy or concurrent
chemoradiation. All patients underwent a treatment planning free-breathing 18F FDG-
PET-CT scan (Biograph, SOMATOM Sensation-16 with an ECAT ACCEL PET scanner;
Siemens, Erlangen, Germany), 45 min after uptake. A spiral CT (3 mm slice thickness) was
performed, covering the complete thoracic region. Slice thickness: 1.5–3.0 mm; in-plane
resolution: 0.9 × 0.98 mm2 to 1.09 × 1.09 mm2. The data also includes gross tumor volume
(GTV) delineation by an experienced radiologist and a radiotherapy structure set. Further
details are given here [1].

2.2. Texture Features Analyzed

To mimic the methodology of our previous study, the MATLAB texture analysis toolkit
of Vallières et al. [13] was used to extract 43 standard features from the CT-defined GTV
for the RIDER dataset. Three were first-order features, and 9 were from the gray level co-
occurrence matrix (GLCM), the 13 gray level run length matrix (GLRLM), the 13 gray level
size zone matrix (GLSZM) and the 5 neighboring gray tone difference matrixes (NGTDM).
A full list of the features and equations defining them used for the 43 radiomics features can
be found in the literature [10]. Using Pyradiomics a total of 103 features were extracted from
the segmented GTV. These included: 17 first-order, 13 shape, 14 gray-level dependence
matrix (GLDM), 22 GLCM, 16 GLRLM, 16 gray- GLSZM, and 5 NGTDM features.

2.3. Experimental Set-up and Statistical Analysis

The 43 features from the MATLAB toolkit were generated for both RIDER Scan 1 and
Scan 2. Secondly, the results were also compared with and without an intensity threshold
applied to the CT scan. The threshold used was −200 to 300 HU, as in our previous
study [9]. Thirdly, stability was measured by comparing the global uniform quantizer
(GUQ—with the same quantizer applied to each scan) and the individual uniform quantizer
(IUQ—with the quantizer optimized for each scan). All these were uniform quantizers that
quantized the intensity range of each GTV into equal width bins.

The same features were generated for the two RIDER scans using Pyradiomics with
the same thresholding, and Fixed Bin Width (equivalent to Global Uniform quantizer) and
Fixed Bin Count (equivalent to Individual Uniform Quantizer).
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Results were compared between the MATLAB and Pyradiomics implementations
and between the two RIDER scans, with and without intensity thresholds. No outcome
information was available; hence, validation of the features was based on assessing the
reproducibility of the rank ordering using each feature with changes to the quantization
parameters for all datasets. Changes in the rank ordering indicate low reproducibility,
leading to unreproducible predictions of biomarkers. In addition, the stability of the other
59 features available in Pyradiomics was also studied. Although these cannot be used to
comment on the consistency of the MATLAB toolkit, it is instructive to determine if they
are candidate stable features.

A feature was considered reproducible if it produced the same rank ordering for the
cohort regardless of the quantization parameters. Spearman’s rank correlation, rs, was
used to measure the rank ordering quantized using IUQ against GUQ at 128 intensity
levels used as a reference with and without intensity thresholding, for all datasets. The
rank ordering quantized with GUQ at 128 intensity levels as a reference was used as the
standard comparator as it was found to be the most stable quantization combination [9].
Validation was considered successful if a feature that expressed high or low correlation in
the MATLAB toolkit also expressed high or low correlation in Pyradiomics.

In the comparison of stable features between arms of the study in the results, e.g.,
between radiomics toolkits and disease sites, Venn diagrams are used to illustrate which
features show promise as stable features in multiple arms.

3. Results

Table 1 lists all features that were reproducible, with high correlation, for RIDER Scans
1 and 2 based on the Spearman’s correlation coefficient with threshold (blue) and without
threshold (red) using the two quantizers GUQ and IUQ. Features with rs ≥ 0.75 were
classified as highly correlated. This was a subjective decision as no published guidance was
available. A total of 34 features were found to be reproducible: 29 and 21 with and without
intensity threshold applied, respectively, and features were found to be reproducible for
all data. This suggests that including intensity threshold around the region of interest as a
pre-processing step tends to increase the stability of some radiomics features.

Figure 1 shows a Venn diagram plotting the overlap in highly correlated features quan-
tized with GUQ versus IUQ for 43 features that are commonly available in the MATLAB
toolkit and Pyradiomics. Panels A and B plot the correlation of rank ordering quantized
between GUQ and IUQ without and with the use of an intensity threshold. The correlation
value for most shape, first order, GLCM, GLRLM, GLZSM, and NGTDM texture features
were high (>0.8) for the RIDER Scan 1, with 9 and 14 features with rs > 0.9 without and
with intensity threshold. The number of features that overlapped between the MATLAB
toolkit and Pyradiomics was higher when the intensity threshold was applied. A similar
trend was seen for RIDER scan 2 data.

Figure 2 presents the results for features that were uniquely available in Pyradiomics.
Figure 2A shows the correlation of rank order between features extracted with and without
an intensity threshold with the use of GUQ and IUQ quantization. Similarly, Figure 2B
shows the correlation of ranks quantized between GUQ and IUQ with and without intensity
threshold being applied. Shape features were found to be invariant to intensity thresholds
or quantization techniques. For all other classes, the features showed more variance based
on the application of an intensity threshold and less so on the quantization used. A
few features showed negative correlation with the choice of quantization used, namely
GLCM Inverse Variance, GLDM Large Dependence Low Gray Level Variance, GLRLM Run
Entropy, and GLZSM Size Zone Nonuniformity Normalized. This negative correlation was
seen only in the GLCM Maximum Probability when an intensity threshold was applied.
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Table 1. List of radiomics features with reproducibility with threshold and without threshold shown
in blue and black for RIDER Scans 1 and 2, respectively, in columns 2, 3, 4 and 5 for MATLAB,
columns 6, 7, 8, and 9 for Pyradiomics. Spearman correlation coefficient values ≤0.75 is shown in red.
Columns 10 and 11 represent the reproducible features across both scans and implementations; with
threshold, are shown in orange tick and without threshold in purple tick, respectively; across all data
is shown by a green tick in column 12. Colours are explained in the text.

Radiomics
Feature

Matlab Pyradiomics

Across Scans 1 & 2
and Feature
Extraction

Implementations

All Data

Scan 1 Scan 2 Scan 1 Scan 2 Scan 1 Scan 2 Scan 1 Scan 2 Threshold W/o
Threshold

Threshold W/o Threshold Threshold W/o Threshold

Variance 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 3 3 3
Skewness 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 3 3 3
Kurtosis 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 3 3 3

GLCM Energy 0.95 0.96 0.73 0.83 0.16 0.00 0.71 0.00
GLCM Contrast 1.00 1.00 0.80 0.81 0.85 0.95 0.91 0.95 3 3 3
GLCM Entropy 0.98 0.97 0.79 0.84 −0.03 −0.10 0.50 −0.10

GLCM
Homogeneity 0.96 0.98 0.69 0.75 0.93 0.97 0.94 0.97 3

GLCM
Correlation 1.00 1.00 1.00 0.98 0.92 0.98 1.00 0.98 3 3 3

GLCM Sum
Average 1.00 1.00 0.18 0.27 0.95 0.90 0.08 0.90 3

GLCM Variance 1.00 1.00 0.80 0.81 0.87 0.98 0.92 0.98 3 3 3
GLCM

Autocorrelation 1.00 1.00 0.15 0.23 0.94 0.88 0.06 0.88 3

GLCM
Dissimilarity 1.00 1.00 0.80 0.82 0.89 0.97 0.94 0.97 3 3 3

GLSZM SZE 0.80 0.77 0.83 0.84 −0.42 −0.17 −0.54 −0.17
GLSZM LZE 0.94 0.90 0.75 0.82 0.76 0.74 0.88 0.74 3
GLSZM GLN 0.98 0.98 0.88 0.86 0.98 0.99 0.97 0.99 3 3 3
GLSZM ZSN 0.81 0.77 0.83 0.84 0.99 0.98 0.96 0.98 3 3 3
GLSZM ZP 0.87 0.88 0.78 0.86 0.79 0.79 0.79 0.79 3 3 3

GLSZM LGZE 0.99 0.99 0.84 0.81 0.39 0.23 0.79 0.23
GLSZM HGZE 0.97 0.98 0.17 0.21 0.22 0.34 −0.07 0.34
GLSZM SZLGE 0.99 0.99 0.87 0.81 −0.06 0.14 0.78 0.14
GLSZM SZHGE 0.74 0.79 0.06 0.05 0.24 0.35 −0.21 0.35
GLSZM LZLGE 0.99 1.00 0.55 0.43 −0.72 −0.70 0.34 −0.70
GLSZM LZHGE 0.92 0.91 0.93 0.84 0.49 0.57 0.87 0.57

GLSZM GLV 0.98 0.99 0.65 0.71 0.01 −0.12 −0.22 −0.12
GLSZM ZSV 0.98 0.93 0.81 0.74 0.73 0.73 0.87 0.73
GLRLM SRE 0.97 0.97 0.75 0.80 0.76 0.95 0.94 0.95 3 3
GLRLM LRE 0.97 0.99 0.75 0.79 0.97 0.96 0.90 0.96 3 3
GLRLM GLN 0.93 0.96 0.82 0.90 0.99 0.99 0.99 0.99 3 3 3
GLRLM RLN 0.97 0.97 0.75 0.80 0.99 0.99 0.99 0.99 3 3
GLRLM RP 0.97 0.98 0.75 0.80 0.98 0.97 0.92 0.97 3 3

GLRLM LGRE 1.00 1.00 0.87 0.86 0.86 0.88 0.88 0.88 3 3 3
GLRLM HGRE 1.00 1.00 0.13 0.19 0.96 0.83 0.01 0.83 3
GLRLM SRLGE 1.00 1.00 0.88 0.87 0.93 0.95 0.86 0.95 3 3 3
GLRLM SRHGE 0.99 1.00 0.15 0.18 0.83 0.69 −0.03 0.69 3
GLRLM LRLGE 1.00 1.00 0.88 0.85 −0.41 −0.36 0.45 −0.36
GLRLM LRHGE 0.99 0.99 0.21 0.39 0.18 0.30 0.33 0.30

GLRLM GLV 1.00 0.99 0.63 0.76 0.76 0.87 0.85 0.87 3
GLRLM RLV 0.94 0.95 0.82 0.73 0.96 0.95 0.91 0.95 3

NGTDM
Coarseness 0.99 0.99 1.00 0.96 1.00 1.00 1.00 1.00 3 3 3

NGTDM
Contrast 1.00 1.00 0.96 0.96 0.97 0.97 0.98 0.97 3 3 3

NGTDM
Busyness 0.99 0.99 0.94 0.93 1.00 0.99 0.97 0.99 3 3 3

NGTDM
Complexity 1.00 1.00 −0.30 −0.20 0.71 0.73 −0.10 0.73

NGTDM
Strength 1.00 1.00 0.93 0.92 1.00 1.00 0.96 1.00 3 3 3
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Figure 1. Venn diagrams with a visual representation of features that are reproducible between
MATLAB and Pyradiomics feature extraction toolkits for GUQ versus IUQ with 128 quantizer levels
(Fixed Bin Width in Pyradiomics). (A) without threshold; (B) with threshold applied. Reproducibility
is measured by an rs value greater than or equal to 0.8. Features highlighted in bold had rs value
greater than 0.9.
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Figure 3 plots a Venn diagram with the overlap in the highly correlated features
quantized between GUQ and IUQ and with an intensity threshold applied for datasets
RIDER Lung 1 and Head and Neck HN1.The features were extracted using Pyradiomics;
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18/43 features were agnostic of the disease site and 4/5 from HN1 and 8/11 from RIDER
lung had rank correlations above 0.9, respectively.
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RIDER Lung 1 and the Head and Neck (HN1) dataset and with an intensity threshold applied.
Reproducibility is measured by an rs value greater than or equal to 0.8. Features highlighted in bold
had an rs value greater than 0.9.

4. Discussion

The purpose of this study was to verify the robustness of the methods reported earlier
for improving the stability of radiomic features. The study used two different datasets with
different pixel sizes acquired in a different center using different scanners and protocols,
one for lung cancer and the other for head and neck cancer, both available publicly, while
additionally testing for reproducibility and stability in the implementation of radiomic
features. High levels of correlation were achieved for more than half of the features for
both MATLAB and Pyradiomics implementations for the RIDER lung data, and more than
one-third of the features were stable for lung and head and neck datasets, suggesting that
some features are agnostic to the disease site and generally robust.

There are several characteristics of imaging systems that are relevant to their use in
healthcare. These include pixel size and spatial resolution, acquisition parameters (such
as kVp in x-rays and imaging sequence in MRI), tomographic reconstruction parameters,
patient positioning, and when the image is taken on the patient pathway. These are all
important parameters at the start of the process and are determined before radiomics
analysis is performed. One of the biggest challenges in radiomics is the low reproducibil-
ity of the results from various studies [4,11]. Some of the possible causes for the low
reproducibility include pre-existing differences in the dataset used, for example, different
acquisition parameters [14,15], reconstruction methods [16,17], pixel sizes [18] and slice
thickness; low reproducibility of features due to variations in quantization parameters; and
low repeatability of the features [14]. Other considerations include the preprocessing of the
imaging data [19]. For instance, Mottola et al. studied the effects of image resampling and
showed that different resampling approaches produced very different error metrics, with
Lanczos interpolation performing substantially better than simple linear interpolation [20].
Cui and Yin have detailed the impact that image quality has on radiomic applications and
summarized the minimum image quality requirements and recommendations for reducing
the impact of image quality on the reproducibility of radiomic studies [11]. Broadly, for
radiomics studies, it is important that all parameter choices are documented and reported,
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and more specifically, it is good practice that imaging parameters are kept as consistent as
possible. Binsheng Zhao suggests quantitative methods/metrics to help determine image
quality and/or similarity to recognize comparable images that can be used interchangeably
or to decide whether an image’s quality is adequate for computing radiomics features [21].
Often, radiomic features identified as predictive are based on small datasets, may be biased
toward the specific dataset, and have limited predictive power on another dataset. For
other sources of variability affecting radiomics models, readers are directed to some of
these studies [19,21,22].

The aim of many radiomics studies, including those by our group, is to predict an out-
come such as response to treatment or disease-free survival using one or multiple features
referred to as biomarkers. Predictions are often performed using statistical approaches,
including Kaplan-Meier analysis based on a single feature of the data at a time [23] and
machine learning approaches with multiple features from a large set of features up to
hundreds [1,24]. Outcome prediction accuracy is heavily reliant on having highly repro-
ducible features. For instance, the widely used Kaplan-Meier analysis method involves
ordering the dataset based on a feature and dichotomizing it into two sets for prediction. It
is vital for the rank ordering to be consistent, as changes in the rank order may change the
dichotomization and hence results in Kaplan-Meier studies, leading to low reproducibility
and low predictive power. In our previous work [9], we reported a methodology to evaluate
the rank order of the features and have shown that some radiomics features are repro-
ducible across different scanner models, acquisition parameters, reconstruction methods,
and modest variations in slice thickness, provided pixel sizes are resampled to a fixed
standard. It was identified that feature reproducibility was highly sensitive to the choice
of quantization parameters. This study has successfully validated our previous results [9]
and reproduced the changes in radiomics features using different quantization parameters,
suggesting the methodology used for the study is robust, even when using a different
radiomics feature extraction implementation [3]. These results highlight the importance of
reporting the detailed methodology used. Based on studies in the literature [11,14,25] and
our own results, we recommend excluding unreproducible features from analysis to reduce
dimensionality and computational burden. To improve further studies have suggested
that deep learning could be considered to improve the image quality of the CT images [26],
which may lead to reproducible radiomics features [27]. This will need to be explored
further in future studies. In this era of deep learning, Chung et al. have raised a question
for further thought for the radiology and quantitative imaging communities: have we
already lost a lot of information available when we choose to reconstruct images for visual
interpretation? [28].

There are some limitations to this study. Pyradiomics does not comply completely with
all the recommendations of the Imaging Biomarker Standardization Initiative (IBSI) [27],
for example, the quantization parameters. Although care was taken to keep the suggested
stability parameters as close as possible, their implementation would have affected the
present study. Hence, IBSI compliance is strongly recommended to allow better repro-
duction and validation of the treatment results externally [29]. The goal of all radiomics
studies is to predict clinically relevant properties and/or disease outcomes, such as disease
recurrence or survival. The study has only focused on the reproducibility of the features;
however, the reproducibility of a feature does not automatically imply that it is clinically
informative. The next stage in evaluating this methodology will be to apply it to the
modeling of outcomes.

5. Conclusions

Radiomics features reported as stable were analyzed for reproducibility using the
RIDER lung dataset, with 29 of 43 features found to be reproducible to changes in the
feature extraction toolkits when intensity threshold was applied, maintaining stable rank
ordering (rs > 0.8), and are recommended for use for biomarker analysis. We found that
18/43 reported features were common in the RIDER and HN1 datasets, suggesting they
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may be agnostic to disease site. Useful radiomics features should be selected based on
reproducibility. This study identified a set of features that meet this requirement and
validated the methodology for evaluating reproducibility between datasets.
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Abbreviations

GLCM Gray-Level Co-Occurrence Matrix
GLDM Gray-Level Dependence Matrix
GLRLM Gray Level Run Length Matrix
GLSZM Grey Level Size Zone Matrix
GTV Gross Tumor Volume
GUQ Global Uniform Quantizer
ICC Interclass Correlation
IUQ Individual Uniform Quantizer
NGTDM Neighboring Gray Tone Difference Matrix

RIDER
Reference Image Database to Evaluate Therapy
Response

rs Spearman’s rank correlation

Appendix A. MATLAB User File

foldername = ‘folder with GTVseg’;
cd ‘to your working directory’;
for ns = 1:length(s)
filename = [‘GTVsegmentation_pt’ num2str(s(ns)) ‘.mat’];
files = load(fullfile(foldername,filename));
names=fieldnames(files);
for int= 1:size(names,1)
volume = files.(names{int,1});

https://wiki.cancerimagingarchive.net/display/Public/RIDER+Lung+CT
https://wiki.cancerimagingarchive.net/display/Public/RIDER+Lung+CT
https://github.com/mvallieres/radiomics/tree/master/TextureToolbox
https://github.com/mvallieres/radiomics/tree/master/TextureToolbox
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end
mask=volume;
mask(mask>0)=1;

% thresholding
volume_low = 800 <= volume;
volume_high = volume <= 1300;
volume = volume.*volume_low;
volume = volume.*volume_high;
texture = zeros(1,43);

% Specify the Quantization level
for Qsize = 128
% choose quantiser
% https://github.com/mvallieres/radiomics/blob/master/TextureToolbox/Pre-processing
/prepareVolume.m
GUQ
[ROIonly,levels] = prepareVolume(volume,mask,’Other’,’pixelW’,’sliceS’,1,’pixelW’,
’Matrix’,’UniformRange’,Qsize);
% IUQ
[ROIonly,levels] = prepareVolume(volume,mask,’Other’,’pixelW’,’sliceS’,1,’pixelW’,
’Matrix’,’Uniform’,Qsize);

ROIOnly = ROIonly;

% generate texture features using toolbox
% https://github.com/mvallieres/radiomics/tree/master/TextureToolbox/GLCM/getGLCM.m
% implements quanitiser from toolbox
% https://github.com/mvallieres/radiomics/blob/master/TextureToolbox
/Pre-processing/Quantization/equalQuantization.m
[GLCM] = getGLCM(ROIonly,levels);
[textures] = getGLCMtextures(GLCM);
texture(Qsize,1:9) = [textures.Energy textures.Contrast textures.Entropy textures.
Homogeneity textures.Correlation textures.SumAverage textures.Variance textures.
Dissimilarity textures.AutoCorrelation];

% https://github.com/mvallieres/radiomics/tree/master/TextureToolbox/GLSZM/
getGLSZM.m
[GLSZM] = getGLSZM(ROIOnly,levels);
[textures] = getGLSZMtextures(GLSZM);
texture(Qsize,10:22) = [textures.SZE textures.LZE textures.GLN textures.ZSN textures.ZP
textures.LGZE textures.HGZE textures.SZLGE textures.SZHGE textures.LZLGE
textures.LZHGE textures.GLV textures.ZSV];

% https://github.com/mvallieres/radiomics/tree/master/TextureToolbox/GLRLM/
getGLRLM.m
[GLRLM] = getGLRLM(ROIonly,levels);
[textures] = getGLRLMtextures(GLRLM);
texture(Qsize,23:35) = [textures.SRE textures.LRE textures.GLN textures.RLN textures.RP
textures.LGRE textures.HGRE textures.SRLGE textures.SRHGE textures.LRLGE
textures.LRHGE textures.GLV textures.RLV];

% https://github.com/mvallieres/radiomics/tree/master/TextureToolbox/NGTDM/
getNGTDM.m
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[NGTDM,countValid] = getNGTDM(ROIOnly,levels);
[textures] = getNGTDMtextures(NGTDM,countValid);
texture(Qsize,36:40) = [textures.Coarseness textures.Contrast textures.Busyness textures.
Complexity textures.Strength];

% https://github.com/mvallieres/radiomics/tree/master/TextureToolbox/Global/
getGlobalTextures.m
[textures] = getGlobalTextures(ROIonly,Qsize);
texture(Qsize,41:43) = [textures.Variance textures.Skewness textures.Kurtosis];

% save after each quantisation level
save(([‘texture_pt’ num2str(s(ns)) ‘.mat’]),’-v7.3’,’texture’);
disp([‘pt’ num2str(s(ns)) ‘ n’ num2str(Qsize)])

end

Appendix B. Pyradiomics Parameter File

Extracted using PyRadiomics version: 2.1.0
imageType:
Original:
binCount: 128
featureClass:
glcm:
- ‘JointEnergy’
- ‘Contrast’
- ‘JointEntropy’
- ‘Id’
- ‘Correlation’
- ‘SumAverage’
- ‘SumSquares’
- ‘DifferenceAverage’
- ‘Autocorrelation’
glszm:
- ‘SmallAreaEmphasis’
- ‘LargeAreaEmphasis’
- ‘GrayLevelNonUniformity’
- ‘SizeZoneNonUniformity’
- ‘ZonePercentage’
- ‘LowGrayLevelZoneEmphasis’
- ‘HighGrayLevelZoneEmphasis’
- ‘SmallAreaLowGrayLevelEmphasis’
- ‘SmallAreaHighGrayLevelEmphasis’
- ‘LargeAreaLowGrayLevelEmphasis’
- ‘LargeAreaHighGrayLevelEmphasis’
- ‘GrayLevelVariance’
- ‘ZoneVariance’
glrlm:
- ‘ShortRunEmphasis’
- ‘LongRunEmphasis’
- ‘GrayLevelNonUniformity’
- ‘RunLengthNonUniformity’
- ‘RunPercentage’
- ‘LowGrayLevelRunEmphasis’
- ‘HighGrayLevelRunEmphasis’
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- ‘ShortRunLowGrayLevelEmphasis’
- ‘ShortRunHighGrayLevelEmphasis’
- ‘LongRunLowGrayLevelEmphasis’
- ‘LongRunHighGrayLevelEmphasis’
- ‘GrayLevelVariance’
- ‘RunVariance’

ngtdm:
- ‘Coarseness’
- ‘Contrast’
- ‘Busyness’
- ‘Complexity’
- ‘Strength’

firstorder: # Remove Total Energy, correlated to Energy (due to resampling enabled)
- ‘Variance’
- ‘Skewness’
- ‘Kurtosis’

setting:
# Resampling:
interpolator: ‘sitkLinear’
resampledPixelSpacing: [0.98, 0.98, 0]
resegmentRange: [−200, 300]
resegmentMode: absolute
# Misc:
label: 1
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