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ABSTRACT
Uncertainty quantification is a crucial step of cosmological mass-mapping that is often ignored. Suggested

methods are typically only approximate or make strong assumptions of Gaussianity of the shear field. Prob-
abilistic sampling methods, such as Markov chain Monte Carlo (MCMC), draw samples form a probability
distribution, allowing for full and flexible uncertainty quantification, however these methods are notoriously
slow and struggle in the high-dimensional parameter spaces of imaging problems. In this work we use, for the
first time, a trans-dimensional MCMC sampler for mass-mapping, promoting sparsity in a wavelet basis. This
sampler gradually grows the parameter space as required by the data, exploiting the extremely sparse nature of
mass maps in wavelet space. The wavelet coefficients are arranged in a tree-like structure, which adds finer
scale detail as the parameter space grows. We demonstrate the trans-dimensional sampler on galaxy cluster-
scale images where the planar modelling approximation is valid. In high-resolution experiments, this method
produces naturally parsimonious solutions, requiring less than 1% of the potential maximum number of wavelet
coefficients and still producing a good fit to the observed data. In the presence of noisy data, trans-dimensional
MCMC produces a better reconstruction of mass-maps than the standard smoothed Kaiser-Squires method,
with the addition that uncertainties are fully quantified. This opens up the possibility for new mass maps and
inferences about the nature of dark matter using the new high-resolution data from upcoming weak lensing
surveys such as Euclid.

1. INTRODUCTION

Gravitational lensing is the phenomenon where light from
distant objects is distorted by the density field between the ob-
ject and the observer, resulting in stunning images of warped,
sheared, magnified and multiplied galaxies. Lensing is due
to both light and dark forms of matter, making it a promising
probe of the nature of dark matter (Heavens 2009). Weak
lensing is the regime of small distortions, the effect of which
on distant galaxies can be described as a magnification due to
a convergence field 𝜅 and a perturbation of intrinsic ellipticity
due to a shear field 𝛾.

The convergence field 𝜅 is the integrated total mass den-
sity along the line of sight (Bartelmann & Schneider 2001;
Dodelson 2017), and hence is a measure of the matter over-
density field. The density field contains both Gaussian and
non-Gaussian structures. The Gaussian structures of the cos-
mological initial conditions evolve under the non-linear influ-
ence of gravity to produce non-Gaussian structures. As such,
it is essential that methods to build maps of the convergence
field (mass maps) contain Gaussian and non-Gaussian struc-
tures. With non-Gaussian structures, the higher-order statis-
tics such as Minkowski functions and bispectrum (Munshi &
Coles 2017) of the mass maps can be measured in addition to
the usual two-point correlation function (Peebles 1980). From
these statistics, one can compare with the predictions of the
statistical density distributions of ΛCDM or other cosmolo-
gies. Further, one can compare the total density distribution
† Correspondence address: augustin.marignier@anu.edu.uk

in colliding cluster systems with the observed distribution of
baryonic matter to infer the presence and collisional proper-
ties of dark matter (e.g. Clowe et al. 2006; Harvey et al. 2015).
These sorts of comparisons would be much better informed if
uncertainties were also quantified with the mass maps.

Unfortunately, 𝜅 cannot be directly observed, and must be
constrained by an ill-posed inverse problem of observed el-
lipticities modelling the shear field 𝛾. There have been many
methods proposed to solve this inverse problem. The standard
method is the Kaiser-Squires (KS, Kaiser & Squires 1993),
which is a simple Fourier space linear operator. However, it is
well known that this method is not robust to noise and missing
data, and is often smoothed to mitigate the effects of noise at
the expense of small-scale non-Gaussian structures. Despite
this the mass maps recovered with KS are generally reliable,
and the method has been extended to the sphere (Wallis et al.
2021) for use in wide-field surveys (Van Waerbeke et al. 2013;
Chang et al. 2018; Jeffrey et al. 2018, 2021; Price et al. 2020b).
Recently, there has been a push for methods with sparsity-
promoting regularisation to preserve non-Gaussianities and
deal with irregular data sampling (e.g. Lanusse et al. 2016;
Price et al. 2021; Starck et al. 2021), where sparsity is typ-
ically promoted in a wavelet basis. Sparsity is the property
where many of the coefficients representing a signal in a given
basis are (close to) zero — a property empirically observed in
many images (see e.g. Donoho 2006; Candès et al. 2011).

Despite all these methods, uncertainty quantification for
mass-mapping remains a difficult task. Common approaches
for uncertainty quantification involve computationally expen-
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sive posterior sampling by, for example, Markov chain Monte
Carlo (MCMC) methods. In the weak lensing context, how-
ever, only recently have these methods been used for mass-
mapping (e.g. Alsing et al. 2015; Price et al. 2020a; Porqueres
et al. 2021; Fiedorowicz et al. 2022; Remy et al. 2022). This
is explained by imaging inverse problems being very high-
dimensional, resulting in difficulties in converging to the pos-
terior. To make the sampling of the posterior computationally
tractable, the slope of the posterior is often exploited to identify
the high-density regions, for example in Hamiltonian Monte
Carlo (Neal 2012) or proximal MCMC (Pereyra 2016). Both
of these approaches have now been used for mass-mapping
(Price et al. 2020a; Fiedorowicz et al. 2022; Remy et al. 2022;
Marignier et al. 2023). Various priors have been used, includ-
ing Gaussian (Alsing et al. 2015), sparsity (Price et al. 2020a;
Marignier et al. 2023), physically informed power spectrum
(Porqueres et al. 2021), log-normal (Fiedorowicz et al. 2022)
and learnt (Remy et al. 2022) priors.

The purpose of this work is to introduce a new efficient
MCMC sampling method for mass-mapping. We use a trans-
dimensional MCMC sampler to gradually grow the parameter
space as required by the data. Trans-dimensional inversions,
where the number of model parameters it itself a parame-
ter to be determined (Geyer & Møller 1994; Green 1995),
are now extremely common in geophysical studies (e.g. Ma-
linverno 2002; Gallagher 2012; Bodin & Sambridge 2009;
Minsley 2011; Tkalčić et al. 2013; Piana Agostinetti et al.
2015; Hawkins & Sambridge 2015; Burdick et al. 2019), have
been used sporadically in astronomy (e.g Cornish & Littenberg
2007; Karnesis et al. 2014; Feder & Daylan 2018) and have yet
to be used for mass-mapping. The particular sampler we use
was proposed by Hawkins & Sambridge (2015) for geophysi-
cal imaging, and uses a wavelet tree parameterisation allowing
for multi-scale analysis and sparsity-promotion. The appeal
of this method is its ability to significantly reduce the effective
parameter space. For example, Hawkins & Sambridge (2015)
showed a 3D seismic tomography example with a parameter
space of at most 524,288 parameters, and their method pro-
duced a solution with around 500 parameters. This sort of
efficiency in sampling the parameter space will be essential
for high-resolution mass-maps as the sky-fraction covered by
upcoming surveys increases. Other methods for sampling such
high parameter spaces typically require gradient or proximal
mapping calculations (e.g Neal 2012; Pereyra 2017), which
are avoided with this trans-dimensional method.

In this work we use the trans-dimensional tree MCMC
sampler of Hawkins & Sambridge (2015) for Bayesian mass-
mapping with full uncertainty quantification. We exploit the
multi-scale nature of the wavelet parameterisation to impose a
scale-dependent sparsity-promoting prior using a generalised
Gaussian distribution (GGD), as opposed to the more com-
mon Laplace distribution. The rationale for this is that to first
order larger scale structures in mass maps are more Gaussian
than the smaller scale details. A similar rationale was used
by Starck et al. (2021) for mass mapping, although our ap-
proach is more similar to that used by McEwen et al. (2017)
for the analysis of cosmic strings in the cosmic microwave
background. We demonstrate this method on the recovery of
cluster-scale convergence maps from N-body simulations.

This article is organised as follows. In Section 2 we outline
the theoretical background of weak lensing and Bayesian in-
version. In Section 3 we give details of the trans-dimensional
tree inversion. Section 4 outlines the specificities of the mass-
mapping inverse problem. Section 5 presents our results on

simulation data, which we discuss further in Section 6. We
conclude in Section 7.

2. BACKGROUND

2.1. Weak Lensing and Mass-Mapping
Gravitational lensing describes the deflection of photons

from distant sources as they pass by regions of local gravi-
tational potential variations caused by the local over or un-
der density of matter acting as a lens. The weak lensing
effect can be described in terms of a 3D lensing potential
𝜓(𝒓) = 𝜓(𝜃1, 𝜃2, 𝑟), which is the integral along the line of
sight of the Newtonian gravitational potential Φ(𝒓)

𝜓(𝒓) = 2
𝑐2

∫ 𝑟

0

𝑓𝐾 (𝑟 − 𝑟 ′)
𝑓𝐾 (𝑟) 𝑓𝐾 (𝑟 ′)

Φ(𝑟 ′𝜃1, 𝑟
′𝜃2, 𝑟)𝑑𝑟 ′. (1)

Here, 𝑟 is the comoving distance from the observer to the
source, (𝜃1, 𝜃2) are angular positions on the sky, 𝑐 is the speed
of light in a vacuum, and 𝑓𝐾 (𝑟) is the comoving angular
separation in a cosmology with curvature 𝐾 , which we take to
be 0 (i.e. a flat universe). The gravitational potential is related
to the fractional matter over-density field 𝛿(𝒓) by Poisson’s
equation

∇2Φ =
3Ω𝑚𝐻2

0
2𝑐2𝑎(𝑡)

𝛿(𝒓) (2)

where Ω𝑚 is the current matter density parameter, 𝐻0 is the
current Hubble constant, and 𝑎(𝑡) is the scale factor. The
aim of mass-mapping is to infer the convergence field 𝜅(𝜽)
from galaxy distortion measurements representing the com-
plex shear field 𝛾(𝜽) = 𝛾1 (𝜽) + 𝑖𝛾2 (𝜽). The convergence rep-
resents the total density perturbation along the line of sight.
The convergence and the shear are defined as gradients of the
lensing potential 𝜓(𝒓)

𝜅 ≡ 1
2

(
𝜕2𝜓

𝜕𝜃2
1
+ 𝜕

2𝜓

𝜕𝜃2
2

)
𝛾1 ≡

1
2

(
𝜕2𝜓

𝜕𝜃2
1
− 𝜕

2𝜓

𝜕𝜃2
2

)
𝛾2 ≡

1
2

(
𝜕2𝜓

𝜕𝜃1𝜃2

)
. (3)

Evaluating the derivative in Fourier space and rearranging
gives a linear relation between the shear and convergence

𝛾̃( 𝒍) =
𝑙21 − 𝑙

2
2 + 2𝑖𝑙1𝑙2
𝑙21 + 𝑙

2
2

𝜅( 𝒍), (4)

where 𝒍 = (𝑙1, 𝑙2) is the conjugate variable of 𝜽 = (𝜃1, 𝜃2).
This defines the Fourier space KS kernel (Kaiser & Squires
1993). Note that it is undefined at the origin 𝑙1 = 𝑙2 = 0,
which corresponds to the mass-sheet degeneracy. The mass-
sheet degeneracy implies that 𝜅 can only be determined up
to an additive constant. Physically, this is because a constant
surface mass density does not cause any shear (Bartelmann &
Schneider 2001).

2.2. Bayesian Mass-mapping
From Bayes’ Theorem, the posterior probability distribu-

tion describing the probability that the underlying convergence
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field producing observed complex shear measurements 𝛾 is
described by some discretised field 𝜅, is given by

𝑝(𝜅 |𝛾) ∝ 𝑝(𝛾 |𝜅)𝑝(𝜅) (5)
where 𝑝(𝛾 |𝜅) is the likelihood function describing data fidelity
between the observed 𝛾 and predictions generated from 𝜅,
and 𝑝(𝜅) is a distribution describing any prior belief about
the convergence field, e.g. that it is sparse in a wavelet basis
(see subsections 3.2 and 4.2). The pixels of the 𝜅 map, or
their representation in a particular basis, are parameters to be
inferred.

In standard MCMC, a sampler will start at some model of
convergence 𝜅𝑖 and propose some new model 𝜅′

𝑖
based on a

symmetric proposal distribution 𝑞(𝜅′
𝑖
|𝜅𝑖). This distribution is

symmetric in that 𝑞(𝜅′
𝑖
|𝜅𝑖) = 𝑞(𝜅𝑖 |𝜅′𝑖), i.e. the probability of

proposing 𝜅′
𝑖

when starting at 𝜅𝑖 is the same as the probability
of proposing 𝜅𝑖 when starting at 𝜅′

𝑖
. The proposed model is

either accepted (𝜅𝑖+1 = 𝜅′
𝑖
) or rejected (𝜅𝑖+1 = 𝜅𝑖) according

to an acceptance criterion. A common choice of acceptance
criterion is known as the Metropolis-Hastings (MH) criterion

𝛼(𝜅′, 𝜅) = min
{
1,
𝑝(𝜅′)𝑝(𝛾′ |𝜅′)𝑞(𝜅𝑖 |𝜅′𝑖)
𝑝(𝜅𝑖)𝑝(𝛾 |𝜅𝑖)𝑞(𝜅′𝑖 |𝜅𝑖)

}
(6)

Repeating this many thousands of times produces a chain of
samples which, thanks to the acceptance criterion, is guar-
anteed to converge to the posterior distribution, giving the
solution of the ill-posed inverse problem of inferring the con-
vergence from the shear. A summary convergence map (e.g.
the sample mean) can be calculated, as can any measure of un-
certainty. This is a great strength of sampling methods, such
as MCMC, although it comes at great computational cost. We
note here that while this method involves predominantly for-
ward modelling, our analysis is solving an inverse problem
and hence will be referred to throughout as an inversion.

2.3. Wavelet Transform
The wavelet transform is a popular tool in image processing,

having been popularised in the late 20th century (Mallat 1989;
Daubechies 1992). Since then, the theory of compressed sens-
ing (Donoho 2006; Candès et al. 2011) showed that sparse sig-
nals can be accurately recovered from incomplete data, leading
many studies in different fields using sparsity-promoting priors
or regularisation in a wavelet space, including weak lensing
studies (e.g. Lanusse et al. 2016; Price et al. 2021; Starck et al.
2021).

Wavelets are rapidly-decaying, wave-like functions that ex-
ist for a finite amount of time or space and form a basis in
which typical signals tend to be sparse. There are many dif-
ferent families of wavelets, the details of which are beyond the
scope of this work. The discrete wavelet transform can be seen
as high and low-pass convolutions using scaled and translated
versions of the “mother” wavelet, resulting in a separation
of localised information at different length scales. Typically
these high and low pass filters extract the high and low half,
respectively, of the frequencies in the image. The outputs of
the high-pass filters are the detailed wavelet coefficients, and
the low-pass filters give the approximation coefficients. Re-
peating the process on the approximation coefficients returns
detailed wavelet coefficients at a slightly larger scale than the
previous pass. After each pass the wavelet coefficients are
downsampled by a factor of two, as only half the frequency
content from the previous scale remains. The final set of ap-
proximation coefficients are known as the coefficients of the

scaling function. The scaling function is distinct from the
wavelets as it accounts for the lowest frequency content, in
particular at 0 frequency.

The remainder of this section gives a more mathematical
description of the 2D discrete wavelet transform, largely sum-
marising the seminal work of Mallat (1989) in which further
details can be found by the interested reader.

Beginning in one dimension, consider a function 𝑓 (𝑥) ∈
𝐿2 (R). Consider also a continuously differentiable and ex-
ponentially decreasing scaling function 𝜙(𝑥), whose Fourier
transform has the shape of a low-pass filter. The projection of
𝑓 onto the set of dilations and translations of 𝜙 by a dyadic
scale 2 𝑗 for 𝑗 ∈ Z gives the approximation of 𝑓 at scale 2 𝑗

𝐴2 𝑗 𝑓 = (⟨ 𝑓 ,
√

2 𝑗𝜙(2 𝑗𝑥 − 𝑛)⟩)𝑛∈Z

=

(∫ ∞

−∞
𝑓 (𝑥)
√

2 𝑗𝜙(2 𝑗𝑥 − 𝑛)𝑑𝑥
)
𝑛∈Z

, (7)

where the angled brackets denote the inner product on R.
This can be seen as the convolution of 𝑓 with 𝜙 evaluated at
a spacing of 2− 𝑗 . The detail signal of 𝑓 at scale 2 𝑗 is the
difference between approximations at scale 2 𝑗 and the smaller
scale 2 𝑗+1. It can be shown (Mallat 1989) that the detail can
again be found as the convolution of 𝑓 with some scaled and
translated basis functions at a spacing of 2− 𝑗 . For the detail,
the basis is a wavelet function 𝜉 (𝑥), whose Fourier transform
is a bandpass filter.

𝐷2 𝑗 𝑓 = (⟨ 𝑓 ,
√

2 𝑗𝜉 (2 𝑗𝑥 − 𝑛)⟩)𝑛∈Z

=

(∫ ∞

−∞
𝑓 (𝑥)
√

2 𝑗𝜉 (2 𝑗𝑥 − 𝑛)𝑑𝑥
)
𝑛∈Z

. (8)

The set of coefficients {𝐴1 𝑓 , 𝐷2 𝑗 𝑓 for 0 < 𝑗 ≤ 𝐽} is the
representation of 𝑓 in the orthogonal wavelet basis. In the
discrete case, 𝐽 = log2 (𝑁), where 𝑁 is the length of 𝑓 .

In two dimensions, we consider scaling and wavelet func-
tions that are separable in 𝑥 and 𝑦. The 2D scaling function
is given by 𝜙(𝑥, 𝑦) = 𝜙(𝑥)𝜙(𝑦), allowing for the extraction
of both horizontal and vertical approximations. This gives
three wavelet functions for the horizontal, vertical and corner
details

𝜉1 (𝑥, 𝑦) = 𝜙(𝑥)𝜉 (𝑦),
𝜉2 (𝑥, 𝑦) = 𝜙(𝑦)𝜉 (𝑥),
𝜉3 (𝑥, 𝑦) = 𝜉 (𝑥)𝜉 (𝑦). (9)

The approximation and details of 𝑓 (𝑥, 𝑦) are again obtained
by projecting onto the sets of dilated and translated scaling and
wavelet functions, giving the representation of 𝑓 in the 2D or-
thonormal wavelet basis as {𝐴1 𝑓 , 𝐷

1
2 𝑗 𝑓 , 𝐷

2
2 𝑗 𝑓 , 𝐷

3
2 𝑗 𝑓 for 0 <

𝑗 ≤ 𝐽}.
We omit here the details on the construction of specific

scaling and wavelet functions and computing the transform
in practice, as they are unnecessary to understand the mass-
mapping method introduced in this work, and form an exten-
sive literature in their own right. We refer the interested reader
to texts such as Mallat (1989) and Daubechies (1992) for these
details.

3. TRANS-DIMENSIONAL TREE INVERSION

In trans-dimensional MCMC, the parameterisation and the
dimensionality of 𝜅 is allowed to change (Green 1995). For
example, the number of wavelet coefficients describing 𝜅 is
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variable. This allows the available data to determine the com-
plexity of the solution, rather than having this set a priori.
Instinctively, it might seem that such a trans-dimensional in-
version will naturally tend to more complex models, as one can
obtain arbitrarily better fits to data by adding more and more
model parameters. It has been shown however that results
are generally parsimonious. To generalise the MH acceptance
criterion, the determinant of a Jacobian matrix describing the
transformation from one parameter space to another is in-
cluded, i.e

𝛼(𝜅′, 𝜅) = min
{
1,
𝑝(𝜅′

𝑖
)𝑝(𝛾′ |𝜅′

𝑖
)𝑞(𝜅𝑖 |𝜅′𝑖)

𝑝(𝜅𝑖)𝑝(𝛾 |𝜅𝑖)𝑞(𝜅′𝑖 |𝜅𝑖)
|J |

}
. (10)

Significantly though, as we outline in the following section,
with simple choices about the parameterisation and proposal
distribution the determinant of the Jacobian is 1, effectively
keeping the original acceptance criterion.

The trans-dimensional sampler we use here is also known as
a birth/death sampler, where model parameters are gradually
added or removed, as well have their values perturbed as in
standard MCMC (Green 1995). In this work, we use a param-
eterisation first proposed by Hawkins & Sambridge (2015) for
geophysical inversions. Described as a tree structure, nodes
can be added and removed from the tree via the birth and death
proposals, respectively. The nodes are arranged such that birth
proposals add more detail to the model. We give some details
of the structure and the prior and proposal distributions here,
although for brevity we only describe the choices made for
our mass-mapping application. For more details, we refer the
reader to Hawkins & Sambridge (2015). The aim of using this
tree structure in the mass-mapping context is to gradually add
more and more small-scale detail without having to sample an
exceedingly large parameter space.

3.1. The wavelet tree model
We parameterise our convergence maps using a set of 𝑘

wavelet coefficients 𝜘 in a tree structure, denoted by T𝑘 . The
root of the tree is the scaling function coefficient, a single-
pixel representation of the image. The tree then branches
down to smaller scale structure. This is shown schematically
in Figure 1. The 𝑘 coefficients of the current tree are indicated
by black dots and their connection in the tree is indicated by
the red arrows. The maximum depth of the tree is the 𝐽 th

wavelet scale, chosen based on the desired output resolution.
Our model space vector 𝜅 is then given by

𝜅 = ⟨T𝑘 , {𝜘𝑖 : 𝑖 ∈ 1, . . . , 𝑘}⟩, (11)

where ⟨·, . . . , ·⟩ denotes a vector and 𝑖 is a unique index for all
the coefficients in the tree.

3.2. The prior
The prior 𝑝(𝜅) consists of three parts: (1) the probability

of the number of coefficients, 𝑝(𝑘); (2) the probability that 𝑘
coefficients are arranged in the tree T𝑘 , 𝑝(T𝑘 |𝑘); and (3) the
prior on the wavelet coefficient values 𝑝(𝜘𝑖 |T𝑘 , 𝑘).

For the probability of 𝑘 we choose a simple uniform prior

𝑝(𝑘) = 1
𝑘max

(12)

where we take 𝑘max = 2𝐽 , i.e. the theoretical number of wavelet
coefficients with 𝐽 wavelet scales. This prior is effectively
uninformative, as we have no initial prior belief as to how

𝑗 = 0

𝑗 = 1

𝑗 = 2

𝑗 = 3

Fig. 1.— The 2D wavelet tree parameterisation for a tree of maximum
depth 3. Each coloured square corresponds to a wavelet coefficient, although
only those with black dots form part of the current tree (red arrows). This
current tree has 𝑘 = 11 coefficients. The coefficients of each wavelet scale
( 𝑗 = {0, 1, 2, 3}) are separated by solid black lines and grouped by colour
(blues, oranges, greens, yellows). The blue coefficient at the root of the tree
is the scaling coefficient. Beneath this we have 3 wavelet coefficients at scale
𝑗 = 1. Beneath each of these three coefficients we have 4 coefficients at scale
𝑗 = 2, where the relation is represented by the colour shade e.g. the 4 dark
green coefficients in 𝑗 = 2 are beneath the dark orange coefficient in 𝑗 = 1.
From each of the 𝑗 = 2 coefficients we then get another 4 coefficients at scale
𝑗 = 3, where the relation is now represented by dashed black lines e.g. the
bottom-right set of 4 dark yellow 𝑗 = 3 coefficients are directly below the
bottom-right dark green 𝑗 = 2 coefficient. Notice how the tree (red arrows)
need not extend all the way down to the maximum depth.

many wavelet coefficients should be in the tree. This choice
also simplifies the calculation of the proposal probabilities,
which we describe in detail in subsection 3.3.

Similarly, we use a uniform prior for the arrangement of T𝑘 .
Our tree is restricted and heterogeneous. Restricted trees have
a maximum depth, in our case the number of wavelet scales 𝐽.
Heterogeneous trees vary the number of child coefficients that
each parent coefficient has. For the 2D wavelet tree (Figure 1),
the scaling coefficient ( 𝑗 = 0) has 3 children (1 each for the
horizontal, vertical and diagonal detail at the next scale), and
then each coefficient from 𝑗 = 1 onwards has 4 children, as
the wavelet transform downsamples by a factor of 2 in both the
vertical and horizontal directions (subsection 2.3). Our prior
is then

𝑝(T𝑘 |𝑘) =
1
N𝑘,𝐽

, (13)

whereN𝑘,𝐽 is the number of valid heterogenous tree configu-
rations of 𝑘 coefficients restricted to depth 𝐽. This is calculated
via a recurrence relation, the details of which we omit here in
the interest of space. We refer the interested reader to Hawkins
& Sambridge (2015) for details, including a fast algorithm for
computing prior ratios of tree structures.

We leave discussion of our value prior 𝑝(𝜘𝑖 |T𝑘 , 𝑘) to sub-
section 4.2, as this is more physically motivated rather than
imposed by our parameterisation. Suffice to say here that
we use a generalised Gaussian prior on our wavelet coeffi-
cient values, with larger wavelets scales (low 𝑗) having a more
Gaussian prior than smaller scales (high 𝑗).

These three priors are independent, so our overall prior 𝑝(𝜅)
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Value Set Death Set Birth Set

𝑗 = 0

𝑗 = 1

𝑗 = 2

𝑗 = 3

Fig. 2.— Proposal sets for the 2D wavelet tree parameterisation. The wavelet
coefficients are arranged as in Figure 1, although here they are coloured by
the proposal that may be performed at that coefficient. Value, death and birth
proposals can be made at the blue, orange and green coefficients, respectively.
Note that the death set is a subset of the value set, and the birth set is disjoint
from the other two sets.

is given by the simple product

𝑝(𝜅) = 𝑝(T𝑘 |𝑘)𝑝(𝑘)
𝑘∏
𝑖=1

𝑝(𝜘𝑖 |T𝑘 , 𝑘). (14)

3.3. Proposals
In this birth-death sampler we have three classes of pro-

posals: (1) value proposals, where the value of a wavelet
coefficient is modified; (2) birth proposals, where a new coef-
ficient is added to the tree; and (3) death proposals, where a
coefficient is removed from the tree. We divide up our wavelet
coefficient space into three sets, S𝑣 ,S𝑏,S𝑑 , which contain the
coefficients at which a value, birth or death proposal, respec-
tively, can be performed. An example is shown in Figure 2.
The value set S𝑣 corresponds to the current tree, and will
always include at least the root of the tree, hence |S𝑣 | ≥ 1.
The death set S𝑑 is the “low-hanging fruit” of the tree, i.e.
coefficients without any active child coefficients. The birth set
S𝑏 is all the currently inactive child coefficients of the current
tree. Notice that the death set is a proper subset of the value
set, S𝑑 ⊂ S𝑣 , and the birth set is disjoint from the other two
sets, S𝑏 ∩ S𝑣 = S𝑏 ∩ S𝑑 = ∅.

The value proposal distribution is given by

𝑞𝑣 (𝜅′ |𝜅) =
𝑞(Δ𝜘𝑖 |𝑖)
|S𝑣 |

, (15)

where the numerator is the distribution from which a perturba-
tion to wavelet coefficient 𝜘𝑖 is drawn. We choose this to be a
zero-mean Normal distribution with variance tuned to achieve
an acceptance rate of roughly 20–40%. The denominator cov-
ers the probability of choosing to perturb the 𝑖th coefficient.

Birth proposals are performed by selecting a coefficient 𝑖
from the birth setS𝑏 and initialising it with a value drawn from
the value prior. In the case where the birth set is empty, i.e.

the current tree spans all coefficients, the proposal probability
is zero. Hence, we have

𝑞𝑏 (𝜅′ |𝜅) =
𝑝(𝜘𝑖 |T𝑘 , 𝑘)
|S𝑏 |

. (16)

Death proposals simply involve choosing a coefficient 𝑖 to
remove from the death set S𝑑 , so

𝑞𝑑 (𝜅′ |𝜅) =
1
|S𝑑 |

. (17)

The acceptance criterion (Equation 10) requires the reverse
proposal distributions for each of these proposals 𝑞(𝜅 |𝜅′). The
value proposal distribution is symmetric, so the reverse value
proposal is equal to the forward proposal. As for the birth and
death proposals, these are the reverse proposals of each other,
i.e. the reverse of proposing the birth of coefficient 𝑖 from S𝑏
is proposing its death from S′

𝑑
, where the prime here denotes

the set after the proposal. So the reverse proposals are

𝑞𝑣 (𝜅 |𝜅′) = 𝑞𝑣 (𝜅′ |𝜅), (18)
𝑞𝑏 (𝜅 |𝜅′) = 𝑞𝑑 (𝜅′ |𝜅), (19)
𝑞𝑑 (𝜅 |𝜅′) = 𝑞𝑏 (𝜅′ |𝜅). (20)

3.4. Acceptance criteria
Recall the acceptance criterion (Equation 10) depends on

the prior, likelihood and proposal ratios, and a Jacobian. The
likelihood ratio remains the same regardless of the proposal,
and we denote this asL(𝜅′, 𝜅) = 𝑝(𝛾′ |𝜅′) / 𝑝(𝛾 |𝜅). The prior
and proposal ratios depend on the type of proposal performed.

For value proposals the tree structure does not change, so the
prior ratio is simply whether or not the proposed coefficient
value is more likely than the current value

𝑝(𝜅′)
𝑝(𝜅) =

𝑝(𝜘′
𝑖
|T𝑘 , 𝑘)

𝑝(𝜘𝑖 |T𝑘 , 𝑘)
. (21)

As for the proposal ratio, the reverse distribution is equal to
the forward distribution so the ratio is 1. Since there is no
change in dimension of the tree, the Jacobian will always be
the identity, with determinant equal to 1. Hence the acceptance
criterion for value proposals is

𝛼𝑣 (𝜅′, 𝜅) = min
{
1,
𝑝(𝜘′

𝑖
|T𝑘 , 𝑘)

𝑝(𝜘𝑖 |T𝑘 , 𝑘)
L(𝜅′, 𝜅)

}
. (22)

For birth proposals, the tree structure changes. Using our
uniform prior for the number of coefficients in the tree, this
part of the prior ratio is unity, 𝑝(𝑘 + 1) / 𝑝(𝑘) = 1. The
prior values also all cancel out except at the proposed new
coefficient 𝑖. So the overall birth prior ratio is, dropping the
conditional dependencies for clarity

𝑝(𝜅′)
𝑝(𝜅) =

𝑝(T𝑘+1)𝑝(𝜘𝑖)
𝑝(T𝑘)

. (23)

Using reverse distributions above, the proposal ratio is

𝑞(𝜅 |𝜅′)
𝑞(𝜅′ |𝜅) =

|S𝑏 |
|S′
𝑑
|𝑝(𝜘𝑖)

. (24)

For the Jacobian, it is a simple case of Green (1995)’s dimen-
sion matching without any transformation of random variables.
We can denote our parameter space 𝜃 as a set of 𝑘 tuples each
containing a unique index 𝑡𝑖 denoting a position in the tree and
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the value of the wavelet coefficient at that position 𝜘𝑖 . Dimen-
sion matching then requires us to sample random variables 𝑢
and 𝑤 for the position and value of the new coefficient, respec-
tively, and then setting the proposal 𝜃′ to be some function of
𝑢 and 𝑤. Using the proposals defined previously, that func-
tion is simply the identity. For all the pre-existing parameter
(𝑖 = 1 . . . 𝑘) there is no change, and for the new coefficient we
set (𝑡𝑘+1, 𝜘𝑘+1) = (𝑢, 𝑣), hence there is no transformation of
the random variable and the Jacobian is the identity matrix.
So the birth proposal acceptance criterion is

𝛼𝑏 (𝜅′, 𝜅) = min
{
1,
𝑝(T𝑘+1)
𝑝(T𝑘)

|S𝑏 |
|S′
𝑑
| L(𝜅

′, 𝜅)
}
. (25)

Similar reasoning and considering that the Jacobian of the
death proposal is the inverse of the birth proposal Jacobian
leads to the death proposal acceptance criterion,

𝛼𝑑 (𝜅′, 𝜅) = min
{
1,
𝑝(T𝑘−1)
𝑝(T𝑘)

|S𝑑 |
|S′
𝑏
| L(𝜅

′, 𝜅)
}
. (26)

3.5. The full trans-dimensional MCMC algorithm
Starting from a randomly initialised convergence model 𝜅0

with 𝑘 = 1, trans-dimensional MCMC iterates for N itera-
tions, for sufficiently large N. At each iteration 𝑡, the type
of proposal is chosen with probability 𝑝(birth), 𝑝(death)
and 𝑝(value). These probabilities can be set arbitrarily,
subject to the constraints that 𝑝(birth) = 𝑝(death) and
𝑝(birth) + 𝑝(death) + 𝑝(value) = 1 (Hawkins & Sambridge
2015). Having selected the proposal type, a new model 𝜅′
is proposed according to corresponding proposal distribution
𝑞(𝜅′ |𝜅𝑡 ) (Equations 15, 16 and 17). The proposal is then ac-
cepted with probability 𝛼(𝜅′, 𝜅𝑡 ) according to the correspond-
ing acceptance criterion (Equations 22, 25 and 26) by setting
the next sample in the chain 𝜅𝑡+1 = 𝜅′. Note that at each iter-
ation, only a single model parameter (wavelet coefficient 𝜘𝑖)
is affected. In practice, the first 𝑁burn iterations are discarded
and only every 𝑁thin

th sample thereafter is kept. This avoids
saving too many initial samples that are far from the posterior
peak and reducing the correlation between samples, while still
allowing for adequate sampling of the posterior. Algorithm 1
summarises the trans-dimensional MCMC algorithm.

4. MASS-MAPPING WITH TRANS-DIMENSIONAL TREES

In this section we give details of how we use the trans-
dimensional tree structure described previously for mass-
mapping. In particular we describe the forward operator and
choice of prior used for the following sections.

4.1. Forward Operator
Our trans-dimensional MCMC samples the wavelet coeffi-

cients 𝜘 of a convergence map 𝜅. The convergence map is then
𝜅 = 𝑊−1𝜘, where𝑊−1 is the inverse wavelet transform. To use
the KS kernel in Equation 4, denoted by 𝐷 we need forward
and inverse fast Fourier transforms, 𝐹, 𝐹−1, respectively. As
such, obtaining the shear from sampled convergence wavelet
coefficients is given by

𝛾 = 𝐹−1𝐷𝐹𝑊−1𝜘. (27)

The input data for our inversions are gridded galaxy shear
measurements. Gridding is necessary to allow the galaxy el-
lipticity due to shear to emerge out of the shape noise due to
intrinsic ellipticity. We make the common assumption that the

Algorithm 1: Trans-dimensional (Birth/Death) MCMC
algorithm

Input: Number of iterations 𝑁
Data: Data vector 𝛾 ∈ C𝑀
Result: Chain of length 𝑁 of model parameter vectors 𝜅 ∈ R𝑀
begin

𝑡 ← 0
Randomly choose initial sample 𝜅0
while 𝑡 < 𝑁 do

Draw random number 𝑢 ∼𝑈 (0, 1)
if 𝑢 < 𝑝 (birth) then

Proposal type is birth
else if 𝑢 < 2𝑝 (birth) then

Proposal type is death
else

Proposal type is value
Propose new sample 𝜅 ′ from corresponding 𝑞 (𝜅 ′ |𝜅𝑡 )
Calculate acceptance probability corresponding 𝛼(𝜅 ′ , 𝜅𝑡 )
Draw random number 𝑢 ∼𝑈 (0, 1)
if 𝑢 > 𝛼 then

Reject proposal 𝜅 ′

else
Accept proposal 𝜅 ′
𝜅𝑡+1 ← 𝜅 ′

𝑡 ← 𝑡 + 1

intrinsic ellipticities of galaxies are Gaussian randomly ori-
ented with zero mean, and thus we take the observed shear in
a small region of sky (pixel) to be the mean of the ellipticities
of the galaxies in that region. However, as a result of the grid-
ding we are left with fewer data points, and likely insufficient
data to produce a high-resolution convergence map. Further,
depending on the coarseness of the gridding it is possible that
some pixels contain no galaxy measurements, as is common
in weak lensing surveys, which may lead to signal leakage
between Fourier modes.

We assume that the shear measurements in each pixel follow
a Gaussian distribution of known variance 𝜎2

𝑖
. As such we set

the likelihood of observing shear measurements 𝛾 for a given
convergence map wavelet coefficients 𝜘 to be

𝑝(𝛾 |𝜘) = 1√︁
(2𝜋)𝑁 |𝐶𝑑 |

exp

{
(Φ𝜘 − 𝛾)𝑇𝐶−1

𝑑
(Φ𝜘 − 𝛾)

2

}
,

(28)
where Φ is the operator defined in Equation 27 and 𝐶𝑑 is the
data covariance matrix. We typically assume no correlation
between neighbouring pixels, and as such 𝐶𝑑 is a diagonal
matrix with all the 𝜎2

𝑖
along the diagonal. We also assume

that the real and imaginary parts of the 𝜎2
𝑖

are equal. We
note that these assumptions can break down in the presence of
systematics such as intrinsic alignment.

4.2. Generalised Gaussian Prior on Wavelet Coefficients
Strictly, sparsity is measured by the ℓ0-norm, which counts

the non-zero elements in a vector. However, this norm is
non-convex, and it has been shown that the convex ℓ1-norm,
or equivalently, the Laplace distribution, produces compara-
ble results, and so is now widely used for sparsity promotion
(Donoho 2006; Candès et al. 2011). However, thanks to the
multiresolution nature of the wavelets we can impose differ-
ent priors for different length scales. In particular, we expect
the wavelet coefficients of larger scale structure to be more
Gaussian than at smaller scales. Starck et al. (2021) had a
similar idea and solved for sparsity-based component to cap-
ture non-Gaussian structure and a separate Gaussian random
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Fig. 3.— Fitted generalised Gaussian distributions of wavelet coefficients
for the Bolshoi 7 & 8 N-body galaxy cluster simulations, normalised to have
unit height. The scaling function coefficients and the largest wavelet scale
coefficients 𝑗 = 1 have been omitted, as there are not enough coefficients for
a fit to be truly meaningful. The fitted scale, 𝜎, and shape, 𝛽 parameters are
indicated.

field. Alternatively, McEwen et al. (2017) suggested fitting
a generalised-Gaussian distribution (GGD) to each wavelet
scale. The probability density function of a GGD is given by

𝑝(𝑥 |𝜇, 𝜎, 𝛽) = 𝛽

2𝜎Γ(𝛽−1)
exp

{
−

���𝑥 − 𝜇
𝜎

��� 𝛽} , (29)

where Γ(·) is the gamma function, 𝜇 is the mean, 𝜎 is the
scale parameter (c.f. standard deviation) and 𝛽 is the shape pa-
rameter. For 𝛽 = 2 this gives the Gaussian distribution, 𝛽 = 1
gives the Laplacian, and as 𝛽 → ∞ this tends to a uniform
distribution in the range [𝜇−𝜎, 𝜇+𝜎]. McEwen et al. (2017)
suggested learning the scale and shape parameters for each
wavelet scale based on simulation images. Figure 3 shows
the fitted GGDs of wavelet coefficients at each scale for the
Bolshoi 7 & 8 galaxy cluster simulation convergence images
(Klypin et al. 2011). The fitted scale and shape parameters are
also shown, and clearly the larger scale wavelet coefficients
are more Gaussian than the smaller scale coefficients. We
use the distributions in Figure 3 as loose guide for tuning the
shape and scale parameters for each wavelet scale for the ap-
plication to simulation data in the following section. It would
be unreasonable to use the exact distributions as they would
not be known in the real data case. We note that this prior
implies that the individual wavelet coefficients are considered
independent.

In the wavelet tree parameterisation, the root of the tree
is a single pixel approximation of the 𝜅 map, i.e. the image
mean. However, the mass-sheet degeneracy means 𝜅 can only
be determined up to an unknown constant 𝜆, 𝜅𝜆 = 𝜆𝜅+ (1−𝜆).
We can then set the prior of the tree root to be extremely tight
around 0, as it cannot be determined from the data.

5. APPLICATION TO SIMULATIONS

In this section we present the results of tests of our trans-
dimensional tree method on datasets generated from simulated
cluster-scale convergence maps.

5.1. Data
We begin with a ground truth convergence map 𝜅, extracted

from the Bolshoi N-body simulation (Klypin et al. 2011). We
use the same simulation catalogues as Lanusse et al. (2016) and
Price et al. (2021), extracted using the CosmoSim1 website.
This assumed a redshift of 𝑧 = 0.3, a 10 × 10 arcmin2 field of
view, and the convergence maps have been normalised with

1 http://www.cosmosim.org

respect to lensing sources at infinity. The ground truth image
is shown in Figure 4, sampled on a 256 × 256 pixel grid.

From the ground truth convergence maps we generate noisy
synthetic shear data 𝛾 from

𝛾 = 𝐹−1𝐷𝐹𝜅 + 𝑛, (30)
where 𝑛 is drawn from a zero-mean Gaussian distribution
N(0, 𝜎2), 𝜎2 is the data covariance determined by the number
of observed galaxies in a pixel and an assumed intrinsic galaxy
ellipticity dispersion of 0.37 (Price et al. 2021),

𝜎2 =
0.372
√

2𝑁
(31)

where 𝑁 is the expected number of galaxies in a pixel for
a given number density of galaxies per arcmin2, 𝑛gal. For
example, Euclid is expected to be able to see about 𝑛gal ∼ 30
galaxies per arcmin2 (e.g Laureijs et al. 2011). To make the
data somewhat more realistic, we apply a random mask to the
noisy shear data whereby we mask out 1% of pixels to simulate
regions with no galaxy observations.

5.2. Method
We invert the synthetic shear data for a convergence map

using the trans-dimensional tree method detailed in Section 3.
The wavelets we use are the Cohen-Debauchies-Feauveau 9/7
wavelet family (Cohen et al. 1992), as these produced the
best results for Hawkins & Sambridge (2015). We run a
single Markov chain for at least 106 steps and check that the
likelihood and number of model parameters 𝑘 has converged.
If needed we restart the chain from where it ended and extend
the chain for as long as necessary. The generalised Gaussian
prior parameters (shape and scale) are tuned for each wavelet
scale, except the lowest scale which represents the mass-sheet
degeneracy, so as to achieve an appropriate acceptance rate,
typically around 20–50%. Thus these are not free parameters
during inference. Again, the values obtained by fitting a GGD
to the ground truth Bolshoi simulations (Figure 3) are used as a
loose guide, and we ensure that our priors are wider than these
fitted distributions. It is conceivable that these parameters be
determined in a hierarchical manner (e.g. Bodin et al. 2012;
Alsing et al. 2015), however we leave this for future work. As
in Price et al. (2021) we evaluate the similarity between our
convergence solutions (mean or best-fitting) and the ground
truth using two quantities: the signal-to-noise ratio (SNR) in
dB to assess the overall difference

SNR(𝜅∗) = 10 × log10

(
∥𝜅∥22
∥𝜅 − 𝜅∗∥22

)
(32)

and the Pearson correlation coefficient (𝑟) to assess the struc-
tural similarities.

𝑟 (𝜅∗) =
∑𝑀
𝑖=1 (𝜅𝑖 − ⟨𝜅⟩)(𝜅∗𝑖 − ⟨𝜅∗⟩)√︃∑𝑀

𝑖=1 (𝜅𝑖 − ⟨𝜅⟩)2
√︃∑𝑀

𝑖=1 (𝜅∗𝑖 − ⟨𝜅∗⟩)2
(33)

Here 𝜅∗ denotes our solution convergence map and ⟨·⟩ denotes
an average over the 𝑀 pixels.

5.3. Results
5.3.1. Recovery of a clean high-resolution mass-map

Figure 4 shows the ground truth map, the mean and high-
est posterior (MAP estimate) trans-dimensional MCMC point

http://www.cosmosim.org
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Fig. 4.— (top left) Ground truth convergence field from which synthetic
shear measurements were obtained. (top right) Mean solution from trans-
dimensional MCMC. (bottom right) Highest posterior sample (estimate of
the MAP solution) from trans-dimensional MCMC. (bottom left) Size of the
highest posterior density region as a measure of uncertainty. All images show
a 10 × 10 arcmin2 field of view.

solutions and the range of the highest posterior density region
at the 99% credible interval level. This is a very clean data
example. Both the mean and highest posterior point estimates
recover the three main high convergence regions well, although
some of the fainter sources are missing, possibly lost in the
noise or smoothed out when averaging over many samples in
the case of the mean solution. The highest posterior point
estimate recovers nicely the peak at the core of the lowermost
cluster, which seems to have been lost in the mean solution. In
terms of the overall SNR and correlation, however, the mean
solution is better than the MAP.

At a given pixel, the quantified uncertainty is represented by
the two-tailed 99% credible interval range, symmetric about
the peak of the histogram of values that the pixel takes in
our MCMC chain. Assuming a unimodal histogram, this is
the highest posterior density region (HPDRange in Figure 4).
The Bayesian credible interval is an interval in which the
pixel value falls with probability 99%. The credible interval
range is thus calculated as the range between the 0.5th and
99.5th percentiles of individual pixel values of the convergence
map. Credible intervals are widely used Bayesian measures
of uncertainty (e.g. Gelman et al. 2013; Pereyra 2017; Price
et al. 2020a; Marignier et al. 2023). The lateral extent of the
three main clusters in the uncertainty map are slightly larger
than those in the point solutions. As well as highlighting
the three main peaks, where the detailed structures are not
quite resolved, the uncertainty map picks out some of the
smaller, fainter structures that have been missed in the point
solutions. For example, a faint source in the top left quadrant
is identified, as are faint structures in the vicinity of topmost
and lowermost main peaks. We emphasise here that while
we have chosen to show a credible interval as our measure
of uncertainty for its Bayesian interpretation, with adequate
sampling of the posterior any measure of uncertainty can be
obtained.

Figure 5 shows a histogram of the number of active tree

nodes (non-zero wavelet coefficients, 𝑘) for all the samples in
the trans-dimensional MCMC chain, as well as the evolution
of the likelihood 𝑝(𝛾 |𝜅) and the number of wavelet coeffi-
cients 𝑘 as the chain progresses. The number of coefficients
generally increases, as designed by the parameterisation. As
the number of coefficients increases, the likelihood expectedly
improves. However, the number of parameters does not in-
crease indefinitely and converges at around 250 coefficients.
In this case, the ground truth is sampled on a 256 × 256 pixel
grid, meaning the maximum potential size of the parameter
space is 𝑘max = 65 536. This is a massive reduction of the
parameter space.

5.3.2. Low-resolution and high-noise inversions

In the example shown previously, the noise level was kept
relatively low, using 𝑛𝑔𝑎𝑙 = 5000 galaxies per arcmin2 which
corresponds to just under 8 galaxies per pixel. The Euclid tele-
scope is expecting to observe around 30 galaxies per arcmin2

of sky (Laureijs et al. 2011). For this 10 × 10 arcmin patch
of sky, that would correspond to on average less than 0.05
galaxies per pixel. During our initial experiments, we found
this noise level to be too high for our method to work. Adding
or removing parameters would cause so little a difference to
the likelihood (data fit) that almost any proposal would be ac-
cepted, and since births and deaths are proposed in the same
proportions, the tree would never grow.

The solution that we found to beat down the noise is to de-
crease the resolution. At 32 × 32 pixels, a Euclid-like noise
level would correspond to about 3 galaxies per pixel for this
patch of sky. Figure 6 shows the results (mean and uncertainty)
of our trans-dimensional inversions at this lower resolution for
varying noise levels. Also shown are the KS solution and the
KS solution with optimum smoothing. The smoothing uses a
simple 2D Gaussian kernel, the optimum size of which was
determined by a simple linear search of the kernel size 𝜎 and
identifying which kernel produced the best SNR. This would
obviously not be possible in practice with real data, as it re-
quires knowledge of the true convergence field. As such, this
optimum solution represents the top-end of what could be pos-
sible with KS. At all noise levels, trans-dimensional MCMC
performs better than the optimally smoothed KS solution in
terms of SNR and correlation with the ground truth. Visually,
even at the highest noise levels, the lowermost peak is more
tightly constrained by MCMC. The additional uncertainty in-
formation obtained from MCMC provides further constraints
on the locations of peaks, although, somewhat surprisingly,
the uncertainty is more laterally spread in the low noise cases
than in the high noise cases. The size of the uncertainty does
decrease as the noise as noise decreases, as expected.

Figure 7 shows the results for the highest noise level
(𝑛gal = 30), zooming in on the two main clusters. We have
taken a 8 × 8 pixel box around the high mass cluster at the
bottom of the image (red box and middle row in Figure 7), and
a 12 × 12 pixel box around the low mass clusters towards to
the top (green box and bottom row in Figure 7). The signal-
to-noise ratio and correlation coefficients presented have been
recalculated within the spatial extent of the respective clusters,
and the optimum smoothing for each cluster was also found as
described previously for each cluster. For the cluster with peak
convergence, trans-dimensional MCMC again outperforms the
optimally smoothed KS method in terms of both overall differ-
ence and structural similarities with the ground truth. For the
low mass cluster, the recovery is slightly worse than the opti-
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Fig. 5.— History of the MCMC chain that produces the results in Figure 4. (top) Histogram of number of wavelet coefficients. (bottom) Evolution over the
Markov chain of the likelihood (blue) and number of wavelet coefficients (orange). Note that the samples in the bottom plot have been thinned, i.e. only every
100th sample is shown, but have not been thinned in the top plot, i.e. every sample is shown. This explains why the top plot contains more samples (area under
the histogram) than the bottom plot (length of 𝑥 axis).

mally smoothed KS in terms of the magnitude of convergence,
resulting in a slightly lower SNR, although the correlation re-
mains higher. This shows that our trans-dimensional MCMC
is competitive, if not better, than KS with ad-hoc smoothing
for a range of cluster masses.

In Figure 8 we show the power spectra for the solutions
shown in Figure 6 compared to the ground truth. At all noise
levels, and particularly at the highest Euclid-like noise level,
the spectrum of the mean trans-dimensional MCMC solution
is closer to that of the ground truth than the KS solutions. Im-
portantly, this is also the case at smaller length scales, where
KS is significantly affected by noise and smoothing has the
undesirable effect of removing small scale information. The
ground truth spectrum is also shown to be within the uncer-
tainties obtained by MCMC, whereas the KS solutions are
inconsistent with the MCMC solution at small length scales.
Uncertainties are seen to be larger at large scales than at small
scales. This is likely a result of the mass-sheet degeneracy,
despite there being a tight prior around 0 for the scaling co-
efficient to alleviate this issue. These higher uncertainties are
thus probably due to the larger scale wavelets which still con-
tribute to the background mean and for which we have wider
prior distributions (see Figure 3).

6. DISCUSSION

The trans-dimensional MCMC algorithm is able to signif-
icantly decrease the size of the parameter space, searching
only a few hundred parameters rather than tens of thousands
in the high resolution case (Figure 4). The uncertainties also
provide further constraints on the lateral extent of the peaks of
the convergence field. All our results also compare favourably
to the standard KS method, in terms of the overall fidelity of
the reconstruction and in its ability to fully quantify uncertain-
ties (Figure 6), the recovery of low mass structures (Figure 7)
and at small length scales (Figure 8). Importantly, our results
compare favourably to the optimally smoothed KS solution,

which is unobtainable in practice. Furthermore, this sampling
problem is far from computationally expensive, thanks to the
reduction in parameter space. All the inversions performed
were conducted on a 2020 MacBook Pro with an Apple M1
processor, with the high resolution example taking only 5
hours.

With a new method that more accurately recovers mass maps
from noisy shear data and also quantifies full uncertainty, this
opens up an exciting prospect of new results relating to dark
matter distributions in galaxy clusters. This method could be
applied to high-resolution shear catalogues from the Hubble
Frontier Fields (Koekemoer et al. 2014) or new data from Eu-
clid (Laureijs et al. 2011) for new mass-maps and comparisons
with, for example, data from the Chandra X-ray Observatory
(Weisskopf et al. 2000) to investigate the collisional nature of
dark matter, as in Harvey et al. (2015). Harvey et al. (2015)
used a parametric model to reconstruct the density distribution
of their colliding galaxy systems (Navarro et al. 1997; Jullo
et al. 2007). Our non-parametric method will thus relax some
of the physical assumptions made in their density reconstruc-
tions, providing additional constraints and validation of their
findings.

The main limitations of this trans-dimensional sampler are
two-fold. Firstly, convergence to the peak of the posterior is
difficult to determine. In some cases, the sampler may seem to
have converged, then a new tree node is introduced that causes
a large jump in posterior probability, bringing the sampler
into a new region of parameter space to be explored. This is a
general problem with MCMC methods. While there is some
theoretical understanding about the convergence properties of
various probabilistic methods (e.g. Roberts & Smith 1994;
Mengersen & Tweedie 1996; Pereyra 2016; Durmus et al.
2017), how this translates into number of iterations is not
straightforward, and so in practice it is often the case of simply
continuing for as long as possible. A common choice is also to
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smoothing kernel is so small that the spectrum for the smoothed KS solution
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run multiple chains in parallel, starting each chain in a different
region of parameter space and converging to the peak of the
posterior. In a standard trans-dimensional MCMC this could
be desirable, as one could start with very different models
each with a different number of parameters. For this wavelet
tree parameterisation on the other hand, the initial parameter
space only has one dimension, by design. Thus the multiple
chains would be starting in very similar points of parameter
space, negating the benefit of having parallel chains. This
could be alleviated with some Parallel Tempering techniques
(Swendsen & Wang 1986; Falcioni & Deem 1999; Brooks
et al. 2011; Sambridge 2013), whereby each chain samples a
slightly modified posterior and there is information exchanged
between chains. For example, each chain will sample the
distribution

𝜋(𝜅 |𝑇) = 𝑝(𝜅 |𝛾)1/𝑇 , (34)

for a given temperature 𝑇 > 0. For 𝑇 = 1 this is equal to
the desired posterior, and for 𝑇 > 1 this is a slightly smoother
version of the posterior. With information being exchanged
between chains, there should, in principle, be better mixing of
the MCMC samples (Sambridge 2013).

The second main limitation is the handling of very noisy
data. As previously mentioned, when the noise level gets
too high the addition or removal of parameters makes little
difference to the posterior probability. Thus any proposal is
generally accepted and the tree struggles to grow. We found
this to also be an issue with the smallest wavelet scales, where
the addition of a very small wavelet would barely affect the
likelihood. This resulted in anomalously high birth and death
acceptance rates among the smallest wavelet scales. However,
there is no tuning parameter (scale and shape of the prior
distributions) that has an affect on the acceptance criteria of
birth and death proposals (see Equations 25 and 26). This is
due to the choice of drawing the value of new coefficients from

the prior. While other choices are of course possible, none are
physically well-motivated. As a result it is quite difficult to
resolve the smallest and faintest structures, particularly as they
get hidden by noisy data. Nevertheless, we have shown that
trans-dimensional MCMC still recovers these smallest scale
and lower mass structures better than KS even in high noise
settings.

The wavelet tree parameterisation used here is not the only
parameterisation that can be used for a trans-dimensional
MCMC. Indeed, a popular choice in many geophysical ap-
plications is to use Voronoi cells (Voronoı̈ 1908; Bodin et al.
2012; Young et al. 2013; Dettmer et al. 2014; Zhang et al.
2018), where the image space is divided into 𝑘 cells defined
by a node location such that all the points in a given cell are
closer to their cell node than any other cell node. The value
of the field for which one is inverting is generally taken to be
constant in each cell. The nodal density of the cells tends to
increase near regions that have the most influence on the pos-
terior, e.g. where there is more data or strongly heterogenous
regions. This could conceivably be an excellent option for the
mass-mapping problem where the data coverage is dictated by
the positions of galaxies on the sky, and gridding may cause
holes in the observed shear field. However, the Voronoi cells
may not necessarily form a sparse basis, which may make it
difficult to preserve non-Gaussian structures in the resultant
convergence map.

7. CONCLUSIONS

In this work we have used, for the first time, a trans-
dimensional MCMC sampler to build cosmological mass-
maps in a probabilistic manner, with a sparsity-promoting
wavelet prior. The wavelet tree parameterisation is designed
so that the large scale information is resolved first, with smaller
scale detail gradually added as required by the data. Instead
of using the standard Laplacian distribution as the sparsity-
promoting prior, we exploit the multi-resolution nature of the
wavelets and the generalised Gaussian distribution to create
a scale-dependent prior that is more sparse for the smaller
wavelets. This approach successfully recovers mass maps
from simulated data better than the standard KS method at
high noise levels, including levels expected for upcoming sur-
veys, opening up the possibility for new high-resolution mass
maps and inferences about the nature of dark matter.
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