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Abstract

Proteins provide the basis for cellular function. Having multiple
versions of the same protein within a single organism provides
a way of regulating its activity or developing novel functions.
Post-translational modifications of proteins, by means of
adding/removing chemical groups to amino acids, allow for a
well-regulated and controlled way of generating functionally
distinct protein species. Alternative splicing is another method
with which organisms possibly generate new isoforms. Addi-
tionally, gene duplication events throughout evolution generate
multiple paralogs of the same genes, resulting in multiple
versions of the same protein within an organism. In this review,
we discuss recent advancements in the study of these three
methods of protein diversification and provide illustrative ex-
amples of how they affect protein structure and function.
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Introduction
Traditionally, we think of protein variation in terms of
genetic variation within a population, or between spe-
cies. A protein appears in two different individuals or
two different species, but with small changes to its
www.sciencedirect.com
sequence, due to mutation. In contrast, there are many

examples of how multiple versions, or protein species, of
the same protein come about within an individual [1].
Three sources of such protein species are post-
translational modifications (PTM), alternative splicing
(AS), and gene duplication (GD) that result in gene
paralogs (Figure 1).

PTMs refer to the post-translational chemical modifica-
tion of protein residues by the covalent addition of
chemical groups such as acetyl, glucosyl, methyl, phos-
phoryl, or ubiquitin. These modifications expand the

repertoire of the standard 20 amino amino acids and lead
to various effects on protein interactions, lifespan, folding,
solubility, and localization.Hence, PTMs are important in
various biological processes such as signal transduction,
gene expression regulation, cell cycle, and DNA repair.

AS is the rearrangement and assembly of distinct exons
(protein-coding sequences) from a single gene, resulting
in multiple protein species called isoforms [2]. Multi-
cellular creatures including humans, animals, and plants
have been found to exhibit AS [3]. AS is a useful way of

possibly increasing protein diversity and introducing
additional levels of regulation, as different protein
isoforms can be differentially expressed in various tis-
sues and different developmental stages.

Finally, another evolutionary path for the formation of
multiple protein species of the same protein within a
species is GD [4]. The scale of GD events throughout
evolution can range from duplication of single genes to
the duplication of whole genomes. The resulting dupli-
cates, called paralogs, accumulate mutations over time,

resulting in evolutionary divergence in both sequence
and function [5]. In order to study the structural di-
versity between paralogs within different CATH fam-
ilies, we compared the good quality protein domains
containing high pLDDT, low unordered regions, higher
secondary structures, high globularity, and packing den-
sity (for details about the structures being considered,
please refer to Bordin et al. for the comparison) [6]. We
were interested in looking at how much the structures
Current Opinion in Structural Biology 2023, 81:102640
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Figure 1
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Different sources of protein species. a) Post-translational modifications (PTMs) are chemical groups that modify the protein by covalently binding to one or
more of its amino acid residues. b) Alternative splicing (AS) is the formation of different protein isoforms from the same gene by alternative combinations
of its exons during the splicing process. c) Gene duplication events result in multiple copies of a single gene, called paralogs. The different paralogs
accumulate mutations over time, resulting in different versions of the same gene.
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diverged and hence only considered the most diverse
protein domain alignment in our study. We found that in
some families paralogs had similar structures, while in
others the structures diverged significantly (Figure 2)
[6e8]. These findings further highlight how GD con-
tributes to structural and functional diversity. GD is a
useful evolutionary tool, as it increases the tolerance for
the accumulation of deleterious mutations, as well as
Current Opinion in Structural Biology 2023, 81:102640
potentially beneficial mutations, thus introducing op-
portunities to develop new functions.

In this review, we examine how these three forms of
protein species contribute to protein functional diversity
and evolutionary fitness of an organism. We also highlight
how advances in protein structure determination and
analysis, both experimental and computational, can
www.sciencedirect.com
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Figure 2

Current Opinion in Structural Biology

Structural diversity within paralogs - All against all superimposition of paralogs of protein domains (within a superfamily and species) were created for
good quality AlphaFold domains [6,9]using FoldSeek [10]. The RMSD scores for the aligned residues for the 30 superfamilies with minimum TM-scores
(calculated using FoldSeek) were calculated using the structure superimposition tool SSAP [11]. These maximal RMSD scores were plotted against the
respective superfamily. Representative examples of protein domains belonging to diverse superfamilies (highlighted in red) have been shown in ribbon
diagram. For the superfamilies 3.40.1110.10, 2.60.40.1180, and 2.30.29.30 representative domains in the figure belong to UniProt IDs G5EEK8 (residue
nos 361–603) and A0A7I9BBC6 (residue no. 168–345), Q9UL18 (residue no. 34–164) and Q9BQ17 (residue no 508–632), and Q2QXF6 (residue no.
78–192) and Q2RAZ2 (residue no. 530–647), respectively.
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contribute to our understanding of the functional di-
versity of protein species.

Post-translational modifications
PTMs contribute to protein species diversification
dramatically as they provide a plethora of ways of
modifying a protein. Large-scale, mass spectrometry-
www.sciencedirect.com
based proteomics studies have identified tens of thou-
sands of PTMs, a large majority of which have not been
associated with functional relevance [12]. Their effect
on the biophysical and, by extension, biological proper-
ties of proteins is complex. Analysis of X-ray structures
in the PDB has shown that only 7% of glycosylated and
13% of phosphorylated proteins undergo changes >2 Å
Current Opinion in Structural Biology 2023, 81:102640
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[13]. The effects of PTMs on backbone conformation
could be either stabilizing or destabilizing, depending
on the type of PTM [14]. Recent studies involving
molecular dynamics (MD) simulations have explored
the effects of PTMs on proteineprotein interactions
[15]. In general, acetylation has been shown to have a
stabilizing effect on such interactions, while phosphor-
ylation tends to have a destabilizing effect, however,

these effects are not additive. Furthermore, these PTMs
affect the dynamics and allosteric interactions of pro-
teins. Computational studies show that phosphorylation
sites tend to be predominantly on solvent-exposed res-
idues, or buried residues that are flexible enough to be
exposed after modification [16e18]. Genomic analysis
of these PTM sites in humans have shown them to be
negatively selected based on percentage of rare sub-
stitutions and ratio of non-synonymous to synonymous
mutations. In addition, these sites have a higher number
of disease-associated mutations compared to other res-

idues [19]. Conservation of PTMs across the tree of life
has shown that the PTM sites have only weak evolu-
tionary constraints [20]. However, clade specific studies
on human PTMs in which they were compared to other
ordered and disordered regions of the eukaryotes have
shown strong conservation signals based on the PTM
type and whether a PTM is in a structured or disordered
region [21]. Indeed, PTMs are found in many intrinsi-
cally disordered proteins (IDPs)/intrinsically disordered
regions (IDRs) which are also involved in various cellular
regulation pathways. Additions/removals of the PTMs in

these IDPs can lead to various structural changes and
transitions between ordered and disordered states [22].
PTMs in IDPs can also lead to phase separation of these
proteins leading to phase-separated droplets and
Table 1

Bioinformatics resources providing information on post-translation
structures.

Resource Type

Privateer PTM Conformational validation
StructureMap PTM Python package for integ

PTM data.
ActiveDriverDB PTM Using PTM sites to interp
PTMD PTM A database of human dis
Scop3P PTM A resource of human pho

structural context
APPRIS AS Protein isoform annotatio
OncoSplicing AS Database for clinically rel
LncAS2Cancer AS A comprehensive databa

RNAs across human ca
DIGGER AS Database of functional ro
ThorAxe AS Assessment of AS evolut
MeDAS AS A Metazoan developmen
PISE AS An AS database for seve
CATH Structure Classification of protein d
SCOPe Structure Classification of protein d
ECOD Structure Evolutionary classification

Current Opinion in Structural Biology 2023, 81:102640
membrane-less compartments in the cell [23]. The
protein huntingtin, involved in the Huntington disease,
has an N-terminus that is intrinsically disordered and
has PTM sites. MD studies of huntingtin have shown
that phosphorylation leads to helix stabilization and
charge neutralization by N-terminus acetylation [24].
Similarly, tau protein is also an IDP and has multiple
PTM sites. Tau PTMs cause various structural changes

leading to phase separation, aggregation, microtubule
assembly, and degradation [25].

With the boom in the number of near-accurate compu-
tational predictions of protein structures, tools such as
Privateer [26,28] have been developed to model the
PTMs on the residues that undergo these modifications.
Other tools such as StructureMap have been developed
to map PTMs from proteomics studies onto these
computational models [12]. Additionally, there are
several databases with information on PTM sites, their

function, mutations, and 3D structural context [27]. A
summary of these can be found in Table 1.

Alternative splicing
AS and the resulting isoforms provide a useful mecha-
nism for protein diversification and protein species
generation within an individual. A fundamental question
is the prevalence of isoforms that originate from AS in
nature. The evidence from transcriptomics experiments

does indicate that AS generates many transcripts. In
contrast, proteomic studies have only been able to
confirm the presence of a small number of isoforms that
are generated by such transcripts. Transcripts may not
be translated into proteins, may generate only small
amounts of protein, or could be only expressed in
al modifications (PTMs), alternative splicing (AS), and paralog

Description Reference

of carbohydrate structures [28]
ration of AlphaFold data and proteomics and [12]

ret genetic variation in humans [29]
ease-associated PTMs [30]
sphosites within their full context, including [31]

ns for a range of species [32]
evant alternative splicing in 33 human cancers [33]
se for alternative splicing of long non-coding
ncers

[34]

les of alternative splicing in protein interactions [35]
ionary conservation [36]
tal AS database [37]
ral plant species [38]
omains by structure [8]
omains by structure [39]
of protein domains [40]
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Protein Diversification Goldtzvik et al. 5
limited tissues and conditions [41]. This disparity re-
sults in an ongoing debate regarding the extent to which
AS results in different protein isoforms [42e44].

While the extent of the contribution of AS to protein
polymorphism in general is still being established, there
is emerging evidence for AS playing a functional role in
biology. Perhaps the most indicative evidence of AS

functionalization is the tissue specificity of expression of
different transcripts. A recent study showed that more
than a third of splice events for which both proteomics
and RNAseq evidence can be found are tissue-specific
[41]. Furthermore, from an evolutionary perspective,
the vast majority of such tissue-specific splice events are
ancient, conserved over more than 400 million years.
This indicates a correlation between functionalization
and evolutionary conservation of AS. A recent study used
evolutionary splicing graphs to investigate a set of 50
genes, and the findings suggest that AS may be

conserved between amphibians and primates, providing
additional evidence for its potential functional signifi-
cance [36]. A wide range of studies resulted in AS data,
Figure 3

Examples of MXE events altering protein functional sites. a) MXE varying res
merization interface region. b) Key catalytic residue switches between CG422
physicochemical changes. c) Two threonine residues that serve as phosphory
shift in downstream signaling.

www.sciencedirect.com
which can be found in a selection of curated databases.
For a summary of several such resources, see Table 1.

An important question is how AS contributes to func-
tional diversity of a protein at the structural level. There
are many different types of AS, but one type, mutually
exclusive exons (MXE), is a good example (Figure 3).
The AS of proteins whose isoforms are confirmed by

proteomics experiments tend to be enriched in MXE,
which are less likely to disrupt the protein structural
core [43,45,46]. Interestingly, structural analysis studies
reveal that AS involving MXEs tend to affect surface-
exposed residues at functional sites and lead to radical
amino acid substitutions [47]. In the case of tandem
duplicated exons, residue substitutions also tend to be
at the protein surface, however, the nature of these
substitutions is more conservative in terms of amino acid
identities and may serve as a means of fine-tuning pro-
tein function [48]. Proteineprotein networks may un-

dergo tissue-specific rewiring as a result of AS [49,50]. It
is important to note that MXEs represent only a small
part of all AS.
idues were discovered at PKM1/PKM2 isoforms’ allosteric site and tetra-
49 isoforms; Enzymes with different activities may be produced by such
lation sites were replaced in one integrin-B1 isoform, potentially causing a

Current Opinion in Structural Biology 2023, 81:102640
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Spliceosomes, which are RNA-protein complexes
responsible for catalyzing the splicing process, and
splicing factors, which interact with the spliceosome to
regulate its activity and guide the selection of splice
sites, have been found to undergo evolutionary changes
that impact the diversity of splicing isoforms [51,52].
Splicing in prokaryotes occurs independently of a spli-
ceosome, as this complex is exclusively present in

eukaryotic cells. To trace the evolutionary origins of the
spliceosome in the last eukaryotic common ancestor
(LECA), Vosseberg et al. conducted homology searches
using human spliceosomal proteins and identified 145
spliceosomal orthogroups [52]. Their analysis revealed
that the prokaryote-derived core of the spliceosome was
supplemented with an excess of proteins associated
with ribosome-related processes, which underwent
extensive duplications, leading to increased complexity
in the evolving spliceosome.

A discussion of AS and its effect on biological function
would be incomplete without concrete examples.
There are several cases of proteins with key biological
roles that undergo AS that impact their function. One
such example is that of the histone core component
H2A and its two isoforms: macroH2A1.1 and macro-
H2A1.2 [53]. The isoform macroH2A1.1 contains fea-
tures that allow it to accommodate ADP-ribose within
the binding pocket, while macroH2A1.2 lacks these
features. Therefore, whichever isoform is expressed
may affect ADP-ribose signaling and

NADþ metabolism. The AS of H2A appears to be a
recent addition in the evolution of histones and is only
observed in jawed vertebrates [54].

Another important example is that of G Protein-
Coupled Receptors (GPCR). A recent study demon-
strated the functional divergence of different isoforms
of a single GPCR gene, with varied signaling capabilities
[55]. The study highlights how the expression of
different unique isoform combinations in different tis-
sues activates distinct signaling mechanisms. Some
isoforms may alter cellular responses to drugs and pro-

vide novel targets for treatments with greater
tissue selectivity.

Gene duplication
While GD provides a way for proteins to acquire new
functions without sacrificing their original role in the
organism, the constraints affecting the evolutionary
pathways of paralogs are all but simple. This is partic-

ularly the case when paralogs share interactions with
other proteins, resulting in trigenic interactions. In such
cases, the sequence and structural divergence of one
paralog can affect its counterpart via evolutionary
changes in their shared partner [56]. Indeed, the more
entangled the two paralogs are in their interactions, the
more they tend to retain functional redundancy [57]. A
Current Opinion in Structural Biology 2023, 81:102640
particularly interesting example of how protein in-
teractions can influence the evolution of paralogs is the
case of homo-oligomeric proteins. When genes of pro-
teins that form homo-oligomeric assemblies undergo
duplication and divergence, two possible assembly out-
comes emerge. The first outcome is the formation of
two different sets of homo-oligomers, each correspond-
ing to a different paralog, where the paralogs do not mix.

In the second outcome the two paralogs form hetero-
oligomers [58]. In eukaryotes, hetero-oligomeric com-
plexes appear to be more common [59e61]. Neverthe-
less, paralogs can evolve to avoid heteromeric assembly
in certain cases [62].

While a full survey of the functions of paralogs is beyond
the scope of this work, we present several illustrative
examples of biological interest. Proteins with regulatory
functions provide a good starting point, and in particular,
there are examples of transcription factors with paralogs

of varying degrees of functional redundancy, as well as
tissue-specificity in their expression [63e67]. Tran-
scription factors are a good example of how paralogs
evolve new functions. Because paralogs of the same
transcription factor compete for the same DNA binding
sites with different affinities, their divergence is a
means of tweaking gene networks [68]. Interestingly, it
has been shown in yeast that the way in which the
paralog DNA binding affinities are modified is not
through changes in the DNA binding domains, but
rather changes to parts of the protein sequence that

affect interactions with secondary factors, which in turn
affect the affinity [69].

We find interesting examples of paralogs of proteins
involved in fundamental cellular processes. Several pro-
teins involved in DNA repair have associated paralogs. In
humans, topoisomerase II has two paralogs, TOP2A and
TOP2B, whose sequences are similar (70e80%
sequence homology) but they differ in function [70].
Another example is that of RAD51, a protein involved in
DNA repair and homologous recombination. The RAD51
paralogs have been shown to be involved in the formation

of different protein complexes with different roles
[71e75]. There are also paralogs found in the tran-
scription machinery. Examples of such genes with
paralogs are GPN, a crucial biogenesis factor of RNA
polymerase II, and the paralogs POLR3G and POLR3L,
which are subunits of RNA polymerase III [76,77].

Interestingly, genes coding for the components of the
fundamental molecular complexes charged with protein
production and degradation, the ribosome and protea-
some, have paralogs as well. An emerging field of

research that is attracting much attention and debate is
that of ribosome heterogeneity [78e80]. The paralogs
of the ribosomal protein genes bL31 and bL36 in bac-
teria, and RPL8 in yeast, have been shown to be
www.sciencedirect.com
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involved in response to changes in the environment of
the organism [81e83]. In mammals, ribosomal protein
paralogs such as RPL10L, RPL39L, and RPL22L have
been shown to be important in fertility, cell prolifera-
tion, and development, and some of them are involved
in certain types of cancer [84e88].

Finally, in addition to the standard proteasome, there are

three more versions of the proteasome with high tissue
expression and functional specificity: immunoprotea-
some, thymoproteasome, and spermatoproteasome
[89,90]. These are defined by specific paralogs that are
incorporated into the subunits of the proteasome and
expressed in the respective tissues. An example is
PSMA8, a paralog of PSMA7, that codes for the a4s
subunit, a component of the spermatoproteasome
[91,92]. Additionally, PA28 is a proteasome activator for
which there are 3 paralogs in jawed vertebrates: PA28a,
PA28ẞ, and PA28g. These paralogs assemble into either

a hetero-heptameric ring (PA28aẞ) or a homo-
heptameric ring (PA28g) [93e95].
Conclusions
It is clear, given these different forms of protein species

(PTM, AS, GD), that protein diversity within an indi-
vidual is prevalent and that protein species play an
important functional role in biology. Furthermore, while
substantial progress has been made in mapping different
protein species and analyzing their function, it is also
likely that there may be many more protein species that
contribute to biological functions that have not been
properly assessed yet.

The explosion in the number of solved protein struc-
tures in recent years, partially due to advances in cryo-
EM techniques, together with the remarkable compu-

tational progress in structure determination and pre-
diction, primarily due to AlphaFold2, presents a fantastic
opportunity in this context [96]. The vast amounts of
structural data can be invaluable in analyzing protein
species and provide a lens with which we can determine
the effects of sequence variation among protein species
on their function.
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