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Abstract
Most prior multimodal transport networks have been organ-
ized as relational databases with multilayer structures to sup-
port transport management and routing; however, database 
expandability and update efficiency in new networks and 
timetables are low due to the strict database schemas. This 
study aimed to develop multimodal transport networks using 
a graph database that can accommodate efficient updates 
and extensions, high relation-based query performance, and 
flexible integration in multimodal routing. As a case study, a 
database was constructed for London transport networks, 
and routing tests were performed under various conditions. 
The constructed multimodal graph database showed stable 
performance in processing iterative queries, and efficient 
multi-stop routing was particularly enhanced. By applying 
the proposed framework, databases for multimodal routing 
can be readily constructed for other regions, while enabling 
responses to diversified routings, such as personalized rout-
ing through integration with various unstructured informa-
tion, due to the flexible schema of the graph database.

1  | INTRODUC TION

As global transport infrastructure develops, people travel freely via various means, with the majority using public 
transport combined with walking, cycling, or other modes (Idri et al., 2017). Since the complexity of personal travel 
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is increasing, how to effectively represent the transport system is an emerging issue. In particular, the importance 
of support planning that utilizes various possible modes while reflecting personalized user needs is increasing 
(Hrncir & Jakob, 2013). Conventionally, multimodal transport systems have been represented as node–edge net-
work models with weights, where nodes represent intersections, and edges depict road segments between two 
adjacent intersections (Wang et al., 2019).

Storing network models using a database system remains a prerequisite for the utilization of various attributes 
required for efficient routing and data management. Specifically, as various database-based systems for transport 
routing have been developed (Miler et al., 2014), the demand for databases has increased. Accordingly, transport 
network data has been stored and utilized with a relational database (Miler et al., 2014). Unfortunately, most nav-
igation services do not disclose their database technology and data model; nonetheless, GIS data with attributes 
for applications provided by governments or commercial operations are generally managed through a relational 
database (Ali, 2020).

User habits, such as route selection style, and friendly environments are critical factors that can be used to re-
solve personalized multimodal problems (Faye et al., 2017). To this end, as interest in utilizing not only geographic 
information, but routing contexts (e.g., personalized preferences), place semantics, and time dependency emerges, 
thus increasing the demand for non-spatial and irregular data sources. For example, information on the temporary 
restriction of specific roads can be extracted from several documents (e.g., articles or posts), while semantic con-
texts of places or paths can be obtained from reviews. Moreover, transport networks used in multimodal routing 
must describe travel through various modes and rapidly reflect spatiotemporal changes; as, for example, public 
transport schedules may change at any time, and restrictions of roads or public transport can occur frequently 
occur due to construction or strikes. Also, traffic modes can be added according to infrastructural development or 
line expansions. Therefore, transport networks for routing require efficient update and expansion.

When using relational databases, however, complex data processing is required according to predefined 
schema to integrate differently structured data. Some critical information, such as travel motives and personal 
data, remain entirely unstructured (Zhuravleva & Poliak,  2020), thus creating difficulties with integration into 
existing relational database models, so as for the updating and expanding of the network and timetables. Also, a 
relational database is characterized by inefficient data management, such as adding new items, due to its strict 
schema (Batra & Tyagi, 2012; Medhi & Baruah, 2017).

In this context, previous networks with fixed schema are inefficient; with representative non-relational graph 
databases with flexible schema as potential alternatives. Graph databases employ graphs to model or generalize 
schema and instances (Angles & Gutierrez,  2008), and are optimized for storing, querying, and updating data 
with graph structure (Robinson et al., 2015). Such databases have been introduced to address limitations of rela-
tional databases (Jaiswal & Agrawal, 2013). Intuitive data models enable the effective storage of data describing 
complex real-world transportation systems; whereas the flexible data schema allows for the model to be readily 
extended to accommodate updates of transport networks and timetables. Moreover, graph databases can search 
and load only relevant data according to its built-in index structure (Liu et al., 2021); thus, the query performance 
is excellent for large datasets (De Virgilio et al., 2014). Furthermore, due to its strong scalability, graph traverse 
can be executed across all data sizes with consistent performance (Angles & Gutierrez, 2018). Accordingly, the 
high performance of graph databases can be expected in routing, a particularly spatial relation-based task, using 
large datasets.

Although the need for implementing graph databases in multimodal routing is increasing, the construction of 
such comprehensive databases remains rare. Diversified multimodal routing can be realized by integrating the se-
mantic context of travel environments with multimodal transport networks using appropriate database systems. 
However, constructing a graph database that well-describes multimodal systems should precede integration of 
route information with semantic contexts. Accordingly, to effectively utilize a graph database for multimodal 
routing, the appropriate data model must complement existing network designs, and describe various modes of 
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transport. Since integrating the road network with public transit networks is challenging (Berger et al., 2009), an 
optimal mode-coupling approach must be developed.

In previous multilayer networks for multimodal routing, layers were built by each mode independently, and 
interconnections between layers were created by designating identical stations (stops, places, etc.) as common 
nodes; however, the sole use of common nodes for interconnections cannot provide a complete transfer descrip-
tion between modes (Orozco et al.,  2021). Furthermore, connecting nodes are unnecessarily duplicated since 
they must persist across all layers. Therefore, it is essential that networks are efficiently configured while fully 
describing the multimodal transport system. Furthermore, the data model should be applied to construct data-
base for any regions in terms of expandability by providing a detailed structure as a standard; however, several 
database design issues must be addressed, including how to interconnect layers, label entities considering query 
performance, and define layer separation according to data update efficiency.

Consequently, it is necessary to design a comprehensive data model that considers these issues, and provides 
a framework for efficiently constructing a database based on the model. To this end, this study aimed to develop 
a framework for creating a multimodal transport model using a graph database to efficiently resolve multimodal 
problems. A conceptual data model design is proposed to be adapted for any area, and expanded to any other 
modes. Also, an approach for efficiently building the graph database from prebuilt spatial transport network data 
is proposed, and a graph database for London transport is built as a case study to verify the proposed methodol-
ogy. An evaluation framework for the utility of graph database on multimodal routing problems is defined, and two 
tests are performed: graph constructing/projecting, and multimodal routing with several conditions.

2  | LITER ATURE RE VIE W

Previous multimodal transport networks have been modeled with weighted nodes and edges in a multilayer 
structure. For example, Ma and Lebacque  (2013) provided a multimodal transport network with a multilayer 
structure comprised of a combination of unimodal subnetworks of bus and metro. However, it was tested with a 
simple network unable to fully reflect the complexity of true transport structures. Talasila et al. (2018) presented 
a three-layer network with train stations, stops, and changes based on timetable information and configured 
with weights. The model represented physical links between adjacent stations, links between consecutive train 
stops, and train availability. Although they combined temporal availability based on timetable with the spatial 
relationships of train stations, their model was unimodal. Previously, Jamal et al.  (2017) modeled a multilayer 
temporal network of public transport and carpooling services, and timetable information was used to represent 
the temporal network; however, a prohibitively large graph with duplicated nodes was created using the time-
expanded model, and the entire graph must be modified for schedule changes in this approach.

Relational databases have been employed for the continuous utilization and management of transport network 
data. For example, Chondrogiannis et al. (2016) presented a road and bus network designed with a timetable-based 
time-dependent model. Furthermore, they built a transport database using a spatial-relational database, PostGIS; 
however, it is necessary to expand the database to include multimodal systems. Similarly, Hrncir and Jakob (2013) 
used PostGIS to store network data composed of a time-dependent graph for public transit, and a network graph 
for individual transport. Although their model could integrate both public and private modes, the transfer route 
among modes within each graph should be described in detail. Notably, both Chondrogiannis et al.  (2016) and 
Hrncir and Jakob  (2013) considered the temporal context of public transit; however, such contexts within the 
transport system are highly volatile. Therefore, a new approach is required for immediate response to schedule 
changes, and efficient database updating. Both Gil's (2014) and Smarzaro et al.'s (2021) networks were managed 
using a relational database with strict schema. Especially, Smarzaro et al.'s (2021) framework included a complex 
schema matching process for integrating independently built datasets. A schema-less database that is advanta-
geous for data integration can be adopted for building a rich database by combining independently constructed 
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source data or different data types. Additionally, Ibrahim et al.  (2021) and Ibrahim et al.  (2022) have employed 
CSV and JSON network data, which can be managed using both relational and non-relational databases. Although 
their data had fewer schema restrictions than other networks with relational databases since they were stored in 
a document-based format, it remains difficult to modify the data model for a large dataset, similar to the relational 
database.

With respect to model configuration, previous multimodal transport network data models adopted a multi-
layer structure. Generally, multilayered transport networks are constructed by combining individual layers for 
each transport mode (Ibrahim et al., 2021; Idri et al., 2017; Natera et al., 2020; Tischner, 2018), with each sub-layer 
connected spatially using common stops in other networks (Huang et al., 2018). Idri et al. (2017) introduced the 
concept of transfer nodes for interconnecting different transport modes according to two temporal factor-based 
approaches: a time-dependent model with changeable cost function, and a time-expanded model with duplicated 
nodes for every time interval. Transfer actions were reflected with time costs in their model; however, they did 
not provide a detailed description of transfer routes. Bellocchi et al.  (2021) reflected the temporal effects of 
configured transport networks by setting variable weights with time. In their approach, a transportation system 
was represented with a multilayered network including car, walking, bus, and metro modes. Although multiple 
transport modes were incorporated, their model was configured under the assumption of fixed topology and same 
node interconnections.

In the existing approach where independently constructed layers for each mode are mutually combined using 
common nodes, unnecessary nodes are created by the duplication of counterpart nodes in each layer. Further, 
transfer between layers through common nodes has less flexibility in describing various transfer actions. In sum-
mary, a database with good scalability that enables efficient data updates should be adopted for managing large 
datasets expressing complex and realistic networks spanning various modes. Furthermore, the multimodal trans-
port database should be designed in detail to be adopted for any region, considering data redundancy, expand-
ability, and efficient query performance.

To improve transport networks using non-relational databases, there have been attempts to utilize the graph 
database to represent transportation systems. The graph database has steadily attracted attention, and developed 
rapidly over the past decade (Wang et al., 2019). Fortin et al. (2016) analyzed transportation systems using graph 
databases by applying network metrics, but only covered the bus system. Maduako et al. (2018) proposed a time-
varying graph to model the dynamic relationship between a transit network's topological structure, and the mobility 
patterns of vehicles. They implemented their model in the Neo4j (https://neo4j.com/) graph database using transit 
feeds, but only considered public bus transit. Elsewhere, Shibanova et al. (2021) proposed an approach for modeling 
road traffic flow using a graph database to describe movement patterns; however, their model focused on vehicle 
movement rather than dealing with transport system structure, reducing its suitability for deriving travel routes.

Maduako et al.  (2019) summarized the advantages of graph databases via GIS applications, such as path-
finding. Based on the benefits of the graph database, the authors developed a new graph data model accounting 
for the mobility and geographical contexts of transit networks comprised of two subgraphs: sequence of places, 
and sequence of moves and halts. Although temporal factors were considered as well, only bus routes were cov-
ered. Wirawan et al. (2019) also developed a graph database schema for multimodal transportation, where nodes 
of place, shelters, and Angkot stopper were included in their model. However, their data model described a single 
mode, and its simplistic design cannot readily be applied to true multimodal networks. Czerepicki  (2016) con-
structed a graph database for the public transport system based on timetable information; however, the private 
transport mode data should be added to this database for use in multimodal routing, while transfer graphs must 
be designed in greater detail. Huang et al. (2018) proposed merged networks of public transport and carpooling 
for multimodal route planning via a time-expanded model implemented with the Neo4j graph database. The data-
base design can be improved to enable graph filtering for memory-efficient routing that more precisely specifies 
relationship types. Also, it remains necessary to design a graph model for reflecting the temporal factor, while 
effectively reducing graph volume.
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    |  7PARK and CHENG

Graph databases can be an optimal alternative for organizing transport data due to fewer constraints on 
stored information, higher efficiency of data management, and improved performance; however, existing graph 
database models should be expanded to multimodal, as their current target modes are limited. When increasing 
modes, interconnection issues on how to minimize duplicates should be addressed. Moreover, detailed data 
model descriptions, such as label and property specifications, are required to adapt databases for other areas. 
Expressly, optimal layer configurations should be provided for easier updates and responses to changes in the 
transportation system, such as the timetable of public transport. In addition, it is essential to provide an ap-
proach for efficiently building a database using existing transport data, so that a multimodal transport graph da-
tabase can be easily constructed for any region. A summary of transport networks explored in previous studies 
can be found in Table 1.

3  | MULTIMODAL TR ANSPORT GR APH DATABA SE

3.1 | Conceptual model for multimodal transport in graphs

Interconnected metropolitan transport systems include private travel (e.g., cars, bikes and walking), along with 
public transit modes, such as subways and buses (Bellocchi et al., 2021). The most basic mode of travel is by foot, 
which can cover short trips (Orozco et al., 2021). Bicycles or buses can cover medium-distance travel; whereas 
long-distance travel is most reasonably accomplished via rail systems or cars (Varga et al., 2016). Accordingly, cit-
ies above a certain size require a balanced mix of different modes to reflect an even distribution of travel distances 
(Orozco et al., 2021). Walking, driving, and cycling are typical private transit modes whereas buses, metros, tubes, 
and trains are regular public transit modes, with a combination representing people's inner-city travel. In this 
context, the proposed conceptual model of multimodal transport here included the following modes, considering 
both private and public transit of people: Walking, driving, cycling, bus, and rail (under- and overground).

Public transit modes largely operate over established routes and directions, moving between specific stops 
and stations in a predetermined order. Accordingly, graphs for public transit modes can be represented as a se-
quence of bus and rail stops and stations that are represented as nodes (Figure 1, orange and yellow nodes), with 
the connections between nodes expressed as relationships according to their predetermined sequence for each 
route/line. Rails operate through independent facilities separate from the road, allowing movement between sta-
tions at relatively fixed time intervals. Alternatively, buses move along roads, and the corresponding travel time 
between stops varies with traffic conditions. Therefore, a rail graph designates travel time between stations as a 
relationship property; whereas the bus graph stores the network distance between stops as a fundamental prop-
erty to be used as costs when routing.

Conversely, private transit modes do not move according to a fixed node order. When modeling roads as 
graphs, an intersection can be represented as a vertex, and a segment between two adjacent intersections as an 
edge (Wang et al., 2019). Referring to this general structure, intersections were created as nodes, and road/path 
segments connecting associated intersections for movement were built as relationships in the present model. 
Relationships can be used to identify lowest cost routes; thus, travel costs, such as distance and travel time, are 
set as relationship properties.

Each mode's layers can be identified through labels, and via multi-labelling, it is possible to distinguish 
modes, routes, and lines for public transit. A label can also identify the type of transport for private transit 
modes, such as driving, walking, and cycling. Although it is possible to distinguish modes through labels, each 
layer is not independently constructed. Unlike previous multilayer networks, the present model is horizontally 
expanded, and does not include duplicate nodes (i.e., ‘common nodes’ or ‘transfer nodes’) between modes. 
Instead, modes are connected via graphs for walking. Notably, almost all transfers between different trans-
port modes include minimal walking. For example, people have to walk to enter a subway station to transfer 
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8  |    PARK and CHENG

after getting off a bus, or people must exit public transport and walk to their destination as last mile travel. 
In this context, the proposed model included a basic walkway layer for interconnecting different transport 
modes.

Although most nodes in roads for cars, walkways for pedestrians, and cycleways are duplicated, each layer 
can be configured without creating additional unnecessary nodes by incorporating multiple labels, such as 
n:Road:Walk:Cycle (Figure 1, blue nodes). Walkways are defined as bidirectional relationships, as they are used to 
travel in either direction, regardless of road orientation. Further, bus stops and rail stations are connected to the 
start nodes of the nearest walkway link with specified relationships, where the transfer cost can be stored as a 
property in those relationships connecting graphs of public transit to walkways.

In the present model, an independent time layer was configured so that timetable information could be re-
flected by linking entities of public transit modes to time. Previously, transit graphs were created according to 
operating time, or available time information was set as individual entity attributes. However, the time-dependent 
model of buses, tubes, and trains is integrated with the time-independent model of walking, driving, and cycling in 
the present conceptual design. Therefore, connections are created only for modes that require temporal contexts 
by configuring the time layer independently. Accordingly, the present model can improve query efficiency by 
forming a light subgraph through graph projection, further allowing for flexible configuration by modifying only 
relevant relationships when timetables are changed.

Here, the time layer is modeled by referring to the time-tree concept of Maduako et al. (2018), consisting of 
a hierarchical temporal index structure supporting time indexing, from years to milliseconds. By adopting a time-
tree from hours to minutes, 24-h-labeled nodes and 60 min-labeled nodes were created and connected with public 
transit modes (Figure 1, gray nodes). Concurrently, differences in operating times according to the day of the week 
were considered through changeable relationships (Figure 1, DAY_RUN relationship).

Depending on the transport system of each country, zone division may be used to apply different fares for 
public transport. Therefore, a zone layer was also defined to be connected with public transit modes, and store 
flexible fare information as a relationship property (Figure 1, green nodes), allowing also for multiple relationships 
to be created if there are predefined fare types by time (e.g., peak fare/off-peak fare).

F I G U R E  1 Conceptual model of multimodal transport graph database.
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    |  9PARK and CHENG

3.2 | Structure of multimodal graphs

The conceptual graph model of multimodal transport can be configured by a graph structure denoted by 
Gmultimodal =

(
E,R, ft ,PE,PR

)
, where E is the set of entities with specific labels; R is the set of multi-typed relationships; 

the function ft represents the topological connection between entities; and PE and PR denote properties of entities 
and relationships, respectively. When considering routing, entities and relationships are defined while preserving 
network-based topological relationships for each mode.

3.2.1 | Entity

Seven labeled entities were defined in the graph models here: Road (ER), Walk (EW), Cycle (EC), Stations (ES), Bus (EB ), 
Time (ET), and Zone (EZ), where transit by railways (e.g., tube and train) can be represented by Stations (ES), and Time 
(ET) configures the independent time layer regardless of transit. Each entity configures a subgraph for transit by 
each mode, where a time-dependent subgraph can be filtered through the connection between public transit 
nodes to Time entity nodes. A detailed description of the graph configuration is as follows:

Road (ER) represents junctions and end points of road networks. Multiple labels are set to this entity when Road 
nodes are included in Walkways and Cycleways.

Walk (EW) represents junctions and end points of pedestrian networks. Most Road nodes can also be labeled 
as Walk nodes.

Cycle (EC) represents junctions and end points of cycle ways.
Station (ES) represents each tube and train station. All nodes of this entity share a common Station label, and are 

distinguished with a Line label. For stations where ≥2 lines pass through, nodes are duplicated by each line, and have 
the line name as a label (e.g. (n1:Station:Northern {name: ‘Warren Street’}), (n2:Station:Victoria {name: ‘Warren Street’})).

BusStop (EB) represents each bus stop along the road with a common BusStop label. Even for the same bus stop, 
nodes are duplicated by each bus route, and a separate label is assigned using the combination of ‘route number’, 
while the identical bus stop has the same code property (e.g. (n:BusStop:R18 {code: ‘36542’})).

Time (ET) is composed of Hour and Minute entities, with corresponding labels. All such nodes have the Time 
label in common, while 24 nodes were created for the hour entity (0–23) and 60 nodes were created for the min-
ute entity (0–59).

Zone (EZ) is an optional entity composed of six nodes with Zone labels (1–6).

3.2.2 | Relationship

Gmultimodal is divided into bi- and unidirectional components, including a total of ten typed relationships (five each). 
Buses travel in a predefined direction by routes, and vehicle travel in a regulated direction for each road segment, 
while cycles run in the same direction as other vehicles. Therefore, routes for these three modes are expressed 
through unidirectional relationships; whereas the remaining modes maintain bidirectional relationships. Additional 
information related to transport systems, such as timetable and zone (fare) connections, are non-directional 
components, and are thus modeled with bidirectional relationships.

(1)E = < ER ∪ EW ∪ EC ∪ ES ∪ EB ∪ ET ∪ EZ >

(2)R = < RB ∪ RU >

(3)RB = Ei ↔ Ej , where Ei , Ej ∈ E
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10  |    PARK and CHENG

According to the following rules, appropriate relationships for each type can be created.
Rule 1. The topological relationship of ft is classified into four cases: ft =

{
fa
t
, fs
t
, fc
t
, fm
t

}
, where fa

t
 assigns the 

associated entity to each entity, fs
t
 assigns an entity to another with the shortest distance, fc

t
 assigns a consecutive 

entity to each entity, and fm
t

 assigns a matched entity under specific property conditions.
Rule 2. Road, Walk, Cycle entities are connected to associated Road, Walk, Cycle entities along the road and path 

(with walkway and cycleway) networks based on the topological connections of network nodes.
Rule 3. DRIVE_WAY-CYCLE_WAY-relationships are created unidirectionally according to the direction of 

travel; however, roads represented by single lines for travel in both directions, are modeled in bidirectional 
relationships.

Rule 4. Unidirectional relationships are created for bus routes, where the type of relationship between consec-
utive BusStops is defined by the route number (e.g.(n1:BusStop)-[:BUS30]->(n2:BusStop)).

Rule 5. Type of relationship between consecutive Stations is defined by the line name (e.g. (n1:Northern {name: 
‘Warren Street’})-[:Northern]->(n2:Northern {name: ‘Euston’})).

Rule 6. Each BusStop and Station are connected to a Walk entity within the shortest distance via a 
CONNECTS-relationship.

Rule 7. Identical Stations with different Line-labels are connected with TRANSFER type relationships.
Rule 8. Each BusStop and Station are connected to a Time entity based on a timetable of operating buses and 

tube/trains by day using DAY_RUN type relationships.
Rule 9. Different fares based on connections between zones are stored as a property of FARE-

type relationships. If fares are diversified by timeframe, multiple relationships can be created (e.g., 
PEAKFARE-/OFFPEAKFARE- relationships).

3.3 | Implementation

Multimodal transport networks were constructed using a Neo4j graph database, currently the most popular 
native graph database available (Liu et al., 2021; Maduako et al., 2018). The location and properties of nodes 
and relationships representing node-to-node connections were derived from the prebuilt dataset for transport, 
such as road networks. Multi- or single-labels were assigned to each node, and relationships were built with a 

RU = Ei → Ej , where Ei , Ej ∈ E

(4)f
�
RB

�
=

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

WALK_WAY if Ei ∈EW ∧Ej ∈ fa
t

�
EW

�

LINE if Ei ∈ES ∧Ej ∈ fc
t

�
ES

�

CONNECTS if Ei ∈
�
EB∪ES

�
∧Ej ∈ fs

t

�
EW

�

TRANSFER if Ei ∈ES ∧Ej ∈ fm
t

�
ES

�

FARE if Ei ∈EZ ∧Ej ∈EZ

(5)f
�
RU

�
=

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

DRIVE_WAY if Ei ∈ER∧Ej ∈ fa
t

�
ER

�

CYCLE_WAY if Ei ∈EC ∧Ej ∈ fa
t

�
EC

�

BUSN if Ei ∈EB∧Ej ∈ fc
t

�
EB

�

DAY_RUN if Ei ∈
�
EB∪ES

�
∧Ej ∈ fm

t

�
ET

�

ZONE if Ei ∈ES ∧Ej ∈ fm
t

�
EZ

�
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    |  11PARK and CHENG

specified single type. Layers were identified with node labels and relationship types, while light subgraphs could 
be configured through filtering by label and type before querying optimal routes. Both nodes and relationships 
can have properties in the Neo4j graph database, so detailed properties (e.g., road name, stop/station name, and 
routing costs) are stored as corresponding properties.

Bus and rail graphs where nodes and relationships should be created for each route or line were built through 
iterative execution of Cipher commands for relationship creation; whereas roads and paths have a large number of 
nodes and links, as well as single labels and types for driving, walking, and cycling. Accordingly, bulk processing is 
required to create graphs for private transit modes. To efficiently create vast nodes and relationships, commands 
are required to be sent in bulk by a single transaction. Here, the Neo4j CSV importer was used for bulk creation 
of private transit graphs. A map for each relationship containing both end nodes and values of properties was pre-
pared in CSV documents from prebuilt road and path networks. Subsequently, private transit graphs were created 
from the CSV files based on the proposed model.

Figure 2 emphasizes how to construct driveway, walkway, and cycleway relationships from a prebuilt transport 
dataset, such as road networks. In the prebuilt transport network, the road is modeled in two ways: dual lines 
and single lines. Since dual-line roads specify the direction of vehicle travel, the direction of DRIVE_WAY- and 
CYCLE_WAY- relationships are also defined according to this direction. Alternatively, bidirectional relationships are 
created because single-line roads include cases where two-way travel is available.

3.4 | Evaluation criteria

While traditional relational databases have a standard benchmark for evaluating performance, no such 
equivalent exists for graph databases (Chu et al., 2020). Chen et al. (2020) presented a benchmark to measure 
the performance of graph databases compared with the relational databases, measuring the time for loading a 
graph and executing shortest path algorithms, such as K-shortest path and A*; however, this benchmark cannot 
be directly used to evaluate the database in the present study for several reasons: the created graphs are 
structurally different from those used here, and the present multimodal path-finding results are substantially 
more complex.

Elsewhere, the performance of multimodal routing has been confirmed by measuring the runtimes of various 
graph queries using the self-constructed database (Debrouvier et al., 2021; Giannakopoulou et al., 2019; Hrncir & 
Jakob, 2013; Idri et al., 2017; Potthoff & Sauer, 2022; Tischner, 2018). For example, Giannakopoulou et al. (2019) 
estimated graph querying and preprocessing times; whereas Tischner (2018), Idri et al.  (2017), and Debrouvier 
et al. (2021) measured the change in query time according to shifts in graph size, number of nodes, and the number 
of OD pairs.

Referring to previous research, the runtimes for three processes were checked here to see if the graph 
database performed well for multimodal routing problems: graph creation, graph loading, and graph querying. 
Two tests were then performed: First, the graph creation time was measured while building a graph database ac-
cording to the proposed model structure. Further, graph projection time was measured while projecting graphs 
for each mode. Second, the routing query time was measured to check the performance of the proposed data-
base in multimodal routing. Additionally, routing was performed under multiple condition combinations, and the 

F I G U R E  2 Different modeling in dual-line and single-line roads.
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12  |    PARK and CHENG

results were discussed qualitatively. Execution times can be affected by the graph size, i.e., the counts of nodes, 
relationships, and properties in a graph. The numbers of nodes and relationships for each transport mode were 
examined to find the influence of the graph size while measuring graph creation and projection times. Since the 
number of properties is not significantly different (most relationships of the proposed model have two common 
properties, distance and travel time), we focused on the time difference according to the number of nodes and 
relationships. Additionally, the numbers of nodes and relationships for the projected graphs used in multimodal 
routing were also discussed. A more detailed description of each measure is given below:

3.4.1 | Graph creation time

After inputting the prebuilt spatial network, labeled nodes and typed relationships were automatically created 
in the Neo4j graph database based on a previously defined conceptual model through the proposed framework. 
During this process, the time for creating the whole graph was checked.

3.4.2 | Graph projection time

Fast query is possible by filtering only necessary subgraphs that meet the routing conditions, and then projecting 
them for graph querying. After configuring a subgraph for each mode, the time for completing projections can be 
measured.

3.4.3 | Graph querying time

After setting the origin and destination in the projected graph, the time to explore optimal routes by applying 
the Dijkstra algorithm was checked. OD pairs were randomly selected in this process, and the time index was 
measured while adjusting two parameters. First, the number of nodes was varied (or the number of OD pairs in the 
case of graph querying time) to verify whether they were suitable for large amounts of iterative query processing. 
Second, the number of stops were adjusted to assess the proposed graph database's flexibility to respond to 
multi-stop routing.

4  | C A SE STUDY

4.1 | Data and test area

Given its comprehensive and developed multimodal transport system, London was selected as the case study 
area. As explained in Section 3.1, both private and public modes of walking, cycling, driving, bus, and rail were 
considered here. London's rail system involves an underground tube and overground train; thus, both tube and 
train were included in the database. Referring the relevant public transit information, 796 bus routes, and 28 tube 
and train lines were included in the database.

A test block in London was set for the routing test to verify the efficiency of the proposed database in a mul-
timodal routing problem (Figure 3). The area is suitable for multimodal routing experiments, as it encompasses 
various rail lines, including Circle, District, Hammersmith & City, Northern, Bakerloo, Central, and Victoria, as well 
as the 36 bus routes that pass through this area. The test block also includes Regents Park, which has paths for 
pedestrians only.
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    |  13PARK and CHENG

Prebuilt transport data (e.g., road networks) were used to construct the graph-based multimode database, 
consisting of data presented in Table 2, which included information from Transport for London (TfL) and Ordnance 
survey (OS). Those independently constructed networks were integrated into a single graph database based on 
the aforementioned approach.

4.2 | Graph database construction using prebuilt dataset

The multimodal transport graph database was constructed using the Neo4j (v.4.2.3) graph database. The graph 
creating, projecting, and querying were conducted on an Intel Core i7-1165G7 processor with 16 GB of RAM.

F I G U R E  3 Test block for multimodal routing analysis.

TA B L E  2 Description of data sources.

Mode Description of source data

Rail (tube/train) •	 Individual station data (including longitude, latitude)
•	 Sequence of stations by each line

Bus •	 Individual bus stop data (including longitude, latitude)
•	 Sequence of bus stops by routes provided from National Public Transport Access 

Nodes (NaPTAN) database
•	 Bus route network to extract network distance between consecutive stops as 

‘distance’ property of relationships

Road •	 OS highway road/path network
•	 OS highway dedication data for classification of modes (driving, walking, cycling)Walkway

Cycleway
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14  |    PARK and CHENG

Bus and rail layers were commonly built using the sequence of stations and stops. First, nodes of Station and 
BusStop were created from station/stop point data. Specifically, nodes through which different lines and routes 
pass were duplicated with different labels; for example, there are two nodes for Warren Street station: (n1:North-
ern {name: ‘Warren Street’}), (n2: Victoria {name: ‘Warren Street’}). According to the sequence, relationships were 
only created after searching two nodes of consecutive stations/stops. For the rail, a LINE-typed bidirectional re-
lationship was created, where same station nodes with different line labels (e.g., ‘Warren Street’) were connected 
with TRANSFER-type relationships, taking transfer time cost as a property. Six Zone nodes (1–6) were created and 
connected to Station nodes belonging to each zone. In London, there are two types of fares according to the time 
of day: peak and off-peak; therefore, Zone nodes were connected to each other with PEAKFARE/OFFPEAKFARE 
relationships (e.g. (n:Zone {zone:1})-[:PEAKFARE {fare: 3.2}]-(m:Zone {zone:2})). For the bus, a more complex proce-
dure was required to calculate the property of network distance between each connected stop pair, as shown in 
Table 3.

Road and path networks were composed of node and link layers, where links can be mapped with both start 
and end nodes. Multiple node labels and relationship types were specified according to the availability by modes, 
as stored in OS highway dedication data. OS highway road networks do not have directional information; thus, 
bidirectional DRIVE_WAY-relationships were created in the case study here. The closest nodes among two end 
nodes of the nearest link for each station and stop nodes were selected to form the CONNECTS-relationships to 
be used for identifying routes with mode transfers.

For multimodal routing, a virtual bus timetable was designated, and BusStop nodes were connected to Hour-
Minute nodes with DAY_RUN-type relationships based on the operating schedule. Through this connection, the 
timetable of public transit modes included in the optimal route can be provided, or efficient routing can be per-
formed by forming a filtered graph fit for specified departure and arrival times.

For the bus, driveway, walkway, and cycleway, after calculating the network distance between nodes using 
the spatial network, these distances were stored as a ‘distance’ property of relationships. Travel time can thus 
be estimated by applying speed to the network distance for each mode, and these properties of ‘distance’ and 
‘travel time’ can be used as routing costs. Notably, it is possible to extract the network distance rather than the 
Euclidean distance between the connected nodes using the spatial network so that precise pathfinding based on 
actual travel routes are obtained.

4.3 | Results

4.3.1 | Multimodal graph database for London

Across all transport nodes in London, 1,079,962 nodes were generated, including: 981 Station; 57,413 BusStop; 
215,941 Road; 590,915 Walk, and 215,693 Cycle (214,899 were created with the: Road:Walk:Cycle; 794 with: 

TA B L E  3 Process of constructing bus graphs.

**All sub-procedures should be conducted by each route separately**
1.	Snap bus stop points to bus route network, then split bus network as the segment with snapped bus stop points
2.	Find two intersecting stops for each segment through spatial join
3.	Calculate segment length as a distance attribute

**Performed using a single process, and iterate until all segments are processed**
1.	Create nodes of BusStop entity with location information
2.	Put Route label (e.g., R30)
3.	For each segment, find matched stops and connect each other with unidirectional relationships; relationship 

types can be assigned with Route information (e.g., BUS30)
4.	Set distance and travel time property using distance attribute of segments
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    |  15PARK and CHENG

Walk:Cycle; 375,222 with only: Walk-; and 1042 with only: Road-labels). The graph database included 6208 LINE-; 
113,258 BUSN-; 867,702 DRIVE_WAY-; 2,279,126 WALK_WAY-; and 864,990 CYCLE_WAY-relationships. 6 Zone 
nodes were created, and 1085 PEAK-/OFFPEAK-/ZONE-relationships were connected.

Figure 4a is the result of measuring the graph creation time for each mode. The whole multimodal graph da-
tabase for the test block was built within 21 min (1242 s), with the majority of this time (19 min) spent on creating 
bus nodes and relationships. Since bus nodes have the most diverse types of route number labels, creation time 
is relatively long compared to other modes. Similarly, creating the 796 types of relationships with route numbers 
for buses was found to be the most various types. Road, Walk, and Cycle nodes were created simultaneously over 
5.43 s, and the time divided by the ratio of the number of nodes is plotted in Figure 4a. Notably, these three pri-
vate modes were created in bulk due to a single node label and relationship type. In contrast, public modes were 
created iteratively by line/route due to differentiated labels and types for each line/route. Therefore, although 
the absolute number of nodes and relationships was highest for the private transit modes of driving, walking, and 

F I G U R E  4 Execution times for: (a) graph creation; and (b) graph projection with log scale.

(a)

(b)

 14679671, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tgis.13071 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [26/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



16  |    PARK and CHENG

cycling graphs, the graph creation time for these private modes was shorter than that for the public transit modes 
of rails and buses.

Subgraphs only with analytically relevant topological and property information can be configured via graph 
projection (Neo4j Graph Data Science Library Manual v.1.8 (https://neo4j.com/docs/graph​-datas​cienc​e/curre​nt/).  
Further, this subgraph with compressed data structures can be entirely stored in-memory. Filtered graphs can 
be projected by specifying relevant nodes and relationships in a fine-grained manner; whereas graphs config-
ured with only necessary parts can be projected to be efficiently queried while routing. For example, suppose 
a user prefers to select only driving routes without transferring to public transit. In such a case, it is possible to 
reduce the number of nodes touched when executing routing queries by creating subgraphs consisting of only 
road nodes and DRIVE_WAY relationships. Also, in the case of routing under specific time conditions, queries can 
be performed after filtering for public transit connected to time nodes that satisfy a given condition. Figure 4b 
presents the results of measuring the projection time by each mode, where times were measured as the average 
execution time of three consecutive projections after restarting the database. Here, projections were performed 
very quickly, with each mode except for buses completed within 1 s.

As the number of generated nodes and relationships increased, the time required for both creation and pro-
jection also increased. In particular, the driving graph and cycling graph, which had similar numbers of nodes and 
relationships, exhibited comparable creation and projection times. However, buses were projected with various 
typed relationships for each route number, while private modes were connected through single typed relation-
ships. Therefore, the projection time for the bus is relatively longer than those of private modes, although the 
graph size of the bus is smaller than modes of driving, walking, and cycling.

4.3.2 | Multimodal routing results

To verify the utility of the proposed model, multimodal routing was performed using the constructed graph data-
base. The graph size of the test block is: the number of nodes and relationships are 8808 and 52,203, respectively. 
Here, two types of routing were conducted: multimodal routing with three different combinations of [Start, End, 
Mode, Preference], and multi-stop routing with multimode. For multimodal routing, the fastest route with all 
modes was derived first after setting two random points, A and B, as an OD pair. Secondly, routing by limiting 
to two transport modes (walk and bus) were performed for the same OD pair. Lastly, the routing with all modes, 
but under minimum-transfer between the same OD pair, was constructed. For the multi-stop routing, after five 
random stops and the order of visits were established, the fastest route through three intermediate stops was 
derived for all modes.

Neo4j Graph Data Science (v.1.8.2) was used to execute routing queries based on scenarios after selecting 
a random OD pair. Since the speed varies by transport mode, the average speed for each mode was applied 
to calculate the travel time costs. The test's purpose was not to extract accurate routes or verify the routing 
algorithm, but rather to check the applicability of the constructed graph database based on the proposed 
model in the multimodal problem. Accordingly, routing was performed by simplifying route costs, and ap-
plying the Dijkstra algorithm under the following time assumptions: the average adult walking speed was 
1.3 m s−1 (Mohamed & Appling, 2020; Waters et al., 1988), the average driving speed was 9.5 mph (https://
www.london.gov.uk/who-are-we/what-londo​n-assem​bly-does/quest​ions-mayor/​find-an-answe​r/avera​ge-
traff​ic-speed​-londo​n-0), bus speed was 9.3 mph (https://www.london.gov.uk/quest​ions/2020/1423), and 
travel time between two stations was 2 min. Transfer costs between different rail lines was set as 3 min, and 
the time cost of the CONNECTS-relationships connecting BusStop and Station nodes with the nearest walkway 
was set to 1 min.

The routing results for four different combinations of [Start, End, Mode, Preference] are shown in Figure 5: [A, B, 
all, fastest], [A, B, walk-bus, fastest], [A, B, drive only, fastest], and [A, B, all, minimum-transfer]. The left sides of the 
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    |  17PARK and CHENG

F I G U R E  5 Routing results: (a) fastest routes using all modes from A to B; (b) fastest routes using bus and 
walking from A to B; (c) fastest routes by driving from A to B; (d) routes with minimum-transfer using all modes 
from A to B; and (e) routes from A to B in Google Maps.

(a)

(b)

(c)

(d)

(e)
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18  |    PARK and CHENG

figure show the graph results in Neo4j, and the right sides display the results visualized with the spatial transport 
networks. The result of the fastest path finding considering all modes from A to B is shown in Figure 5a, with the 
recommended route to walk from the departure point to the nearest bus stop, board bus 214 for one stop, walk 
from the bus stop to Mornington Crescent Station to transfer to the Northern line tube, travel to the Tottenham 
court road station via the Northern Line, and reach the destination on foot. It was confirmed that the route returned 
from the constructed graph database was included in the optimal route list from Origin A to destination B in Google 
Maps, a representative online navigation service (marked with A in Figure 5e). However, despite being included in 
the optimal route list, this route was not the fastest in the list from Google Maps; because the travel time cost of the 
returned route differed between our framework and Google Maps, being 22 and 28 min, respectively. This discrep-
ancy was caused due to experimental assumptions, such as transfer time between different transport modes and 
average walking or bus speed.

For the same OD pair, the routing results with only walk and bus modes are shown in Figure 5b. A filtered 
graph with nodes and relationships relevant to buses and walkways was projected before routing to query the 
graph for specified modes. If traveling via bus alone, the N5 bus was identified as the fastest route, different from 
the result in Figure 5a. Since no specific time conditions were specified, the night bus was chosen, with the re-
maining optimal route comprised of boarding the N5 at the nearest stop from the departure point, traveling eight 
stops, getting off the bus, and walking to the destination. As a result of routing for the identical OD after setting 
the departure time to late at night, it was found that travel through the N5 bus, which was derived in this study, 
was one of the optimal routes in Google Maps (marked with B in Figure 5e).

Meanwhile, the driving routes from origin A to destination B are illustrated in Figure 5c. By visualizing the re-
turned route graph onto the transport network, it was confirmed that the resulting graph appropriately followed 
the driveways. However, as previously mentioned, the returned graphs may have some discrepancies with the 
actual road conditions due to the assumption of bidirectional traffic on the driveway.

For three scenarios of exploring the fastest routes using different modes (i.e., all modes, walk-bus, driving), the 
querying times were examined in terms of the projected graph's size. The size of the projected graphs decreased 
in the following order: all modes, walking and bus, and driving. The routing query for each scenario was executed 
after restarting the database and projecting the graph for specific modes. Queries were consecutively performed 
three times; then, the average execution time was calculated. The execution time for the routing query from origin 
A to destination B using projected graphs for all modes, walk-bus, and driving modes were 261, 224, and 146 ms, 
respectively. That is, it was found that the execution time of the routing query was affected as the projected graphs' 
size increased.

Routing was performed using the same OD pair under the minimum-transfer condition, with the results 
shown in Figure 5d. A route that moves through only the tube without any transfer was queried, while minimiz-
ing the number of transfers by increasing the transfer cost. Here the optimal route was identified as walking 
to Mornington Crescent Station on the Northern Line closest to the starting point, traveling to 4 stations, 
and reaching the destination on foot. This route from Mornington Crescent Station to Tottenham Court Road 
Station by Northern Line was also derived in Google Maps as one of the optimal routes (marked with C in 
Figure 5e).

Accordingly, different paths were appropriately derived according to input conditions in the multimodal rout-
ing test. Moreover, it was possible to explore routes that freely reflected transfers between different modes. 
The routing results from Google Maps did not precisely match our findings; nonetheless, derived routes from the 
graph database are also compatible with those from Google Maps. Although the applicability of the constructed 
graph database in multimodal problems could be confirmed through the test, it remains necessary to set elaborate 
cost values. Since the identified route in the first scenario was a result of considering the predefined travel time 
according to the assumptions made, the optimal route may change depending on how additional time costs, such 
as the time to get on and off the bus, were reflected. Also, fixed transfer times between different rail lines were 
used in this test; however, the actual times required for each transfer case varies. Accordingly, the route that 
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    |  19PARK and CHENG

minimizes total travel time may vary depending on transfer time settings and calculations; thus, more accurate 
routing can be attained by considering actual travel times between stations and transfer costs between different 
lines.

Figure 6 displays the result of the multi-stop routing test using the constructed graph database. Here, travel 
from the starting point to Stop 1 was achieved through a Circle Line of the tube (Figure 6a, Section A). After walk-
ing to the nearest station, mixed travel using the tube and walking was identified. Next, travel between Stop 1 
and Stop 2 included tube travel using the Victoria Line from Warren Street to Euston. Similarly, the journey from 
Stop 2 to Stop3 also included tube transit, and a route back to Euston Station on foot (Figure 6a, Section B, where 
this sub-route is further visualized using a transport network in the lower right corner of Figure 6b). Specifically, 
routes moving from Euston via Victoria Line, and transferring to Central Line at Oxford Circus to Marble arch were 
queried, and Stop 3 can be reached on foot after getting off at Marble arch station (Figure 6b, lower left). Again, 
walking to the adjacent bus stop is required to get to the bus from Stop 3 to the final destination. The final route 
requires taking bus 98 to the vicinity of the destination, then walking the remainder of the distance. In summary, 
multimodal routes, including various cases, such as travel through tubes and buses, transferring between different 
tube lines, and walking to stations and stops, were effectively extracted using the built-in graph database.

4.3.3 | Graph querying time in multimodal routing

The graph querying times in multimodal routing were measured in two ways: times dependent upon increasing the 
number of OD pairs, and those dependent upon increasing the number of intermediate stops. N OD pairs were 
selected randomly, and the fastest paths were identified by applying the Dijkstra algorithm. Route queries were 
continuously executed by increasing the OD pairs from 10 to 2000, and each query time was measured (Figure 7a). 
As a result, it was confirmed that the query time increased linearly to the number of OD pairs. That is, stable query 
performance was guaranteed regardless, of the total number of iterative computations. Furthermore, the findings 
of the multi-stop routing test with increasing intermediate stops showed that the increasing rate of query time 
was lower than that for the increasing rate of the number of visits (Figure 7b). Consequently, the efficiency of 
using a graph database in multi-stop routing was confirmed. In the proposed framework, multi-stop routes can be 
derived without limiting the number of stops entered using the graph database, while existing navigation services 
tend to limit the number of stops for multi-stop routing (e.g., a maximum of 10 stops can be set in Google Maps).

Furthermore, tests were performed in two environments: cold and hot, where the cold run is the query exe-
cution performed immediately after rebooting the database or flushing caches; whereas the hot run is the query 
execution conducted without flushing any cache after the cold run (Rishe et al., 2000). Not only was the graph 
database's performance checked, but the more rapid hot effect was also confirmed.

4.3.4 | Integrated timetable and fare information

Here, the graph database effectively integrated different types of information due to its flexible schema. 
Considering this advantage, additional information, such as timetable and fares, were modeled as separate layers, 
along mode-based routes in this study. First, DAY_RUN-relationships were added by setting virtual timetable 
information for some bus routes. Figure 8a shows the results of querying travel from the ‘Old Marylebone Town 
Hall’ bus stop, to the ‘Euston Square Station’ bus stop, with all available bus routes searched. As a result of querying 
travel after assuming departure before 12:30 pm on Monday, only bus 30 was identified for the same OD pair 
(Figure 8b), where boarding is available at 12:25. In contrast, only bus 18 was identified when assuming departure 
after 12:30 on Monday (Figure 8c), with a 12:36 departure. Thus, for public transit with a designated timetable 
of operations, the temporal factors can be easily combined with the travel route through the proposed model.
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20  |    PARK and CHENG

F I G U R E  6 Results of multi-stop routing: (a) visualized using graph database; and (b) visualized using transport 
networks.

(a)

(b)
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    |  21PARK and CHENG

Furthermore, as an example of additional information integration, fare information was integrated into pro-
posed multimodal graphs to present fares for the returned route. This example pertains to data integration for 
retrieving additional information on the returned graphs. Fare information for travel via rail can be provided 
along with the route through the PEAKFARE- and OFFPEAKFARE-relationships between Station and Zone nodes 
(Figure 9). Figures 9a,b show peak and off-peak fares for travel via tube from “Finchley Central” station in zone 4, 
to “Marble arch” in zone 1, respectively.

Based on this data integration, more complex routing (e.g., retrieving the least expensive route) can be achieved 
through multi-criteria decision-making: users can determine the optimal route by combining the time cost for each 
transport mode and retrieved fare for queried route; also, time-dependent routing can be efficiently performed 
by projecting only subgraphs that satisfy temporal conditions, such as indicated departure/arrival times using a 
combined time layer. Consequently, by utilizing a graph database, information on contextual information related to 
travel, as well as optimal routes can be easily combined, and they can be efficiently updated by adding, changing, 
and removing only those relevant relationships.

F I G U R E  7 Graph query times according to: (a) the number of OD pairs (R2 of the linear trendline for cold and 
hot are 0.9964 and 0.9923, respectively); and (b) the number of stops.

(a)

(b)
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22  |    PARK and CHENG

F I G U R E  8 Query results considering bus timetable: (a) all available bus routes; (b) for the departure before 
12:30 pm on Monday; and (c) for the departure after 12:30 pm on Monday.

(a)

(b)

(c)
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    |  23PARK and CHENG

F I G U R E  9 Query results with fare information in (a) PEAKFARE- and (b) OFFPEAKFARE- relationships.

(a)

(b)
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24  |    PARK and CHENG

5  | CONCLUSIONS AND FUTURE WORK

This study proposed a framework for a multimodal graph database considering public and private transit, 
including driving, walking, cycling, bus, and rail. Based on the proposed conceptual model, the graph data-
base can be efficiently constructed using prebuilt transport data. To illustrate the efficiency and usefulness 
of the proposed model, a case study in London was conducted to test performance of the multimodal rout-
ing under various conditions. The results showed the optimal routes with mixed modes were appropriately 
identified with stable performance for iterative query processing. Its efficient use in multi-stop routing was 
confirmed as well. Compared to previous transport networks with a traditional relational database for multi-
modal routing applications, a graph database is suitable for managing multimodal networks more effectively 
regarding data integration, expansion, and updates, based on a flexible schema. To evolve existing routing 
services to personalized and context-aware routing, it is necessary to establish a database combining dif-
ferent typed contextual data with spatial data. In response to this demand, the proposed framework can be 
applied to construct fundamental multimodal networks suitable for integrating and expanding data using a 
graph database.

Regarding the future research directions, three aspects were considered in response to high-level routing 
queries, such as personalized routing.

5.1 | Integration with semantic information from other data sources

Here, a multimodal graph database was proposed focusing on transport routes by multiple modes, including some 
additional information, such as timetables and fare information. Based on the multilayered structure, and the 
advantages of the graph database, it is expected that the proposed model enables routing that reflects preferences 
by integrating various unstructured information into an additional layer. For example, information on temporarily 
blocked roads or non-operational bus and rail routes can be extracted from text data, such as SNS or articles, and 
subsequently added to the database. Also, different traffic flows by transport links can be added as a property of 
the relationship, which can be used as weights for routing.

5.2 | Setting of precise values as cost properties

Several assumptions were made in the case study with regards to costs, and the results of routing queries can 
be improved by setting precise cost values. Each road has a different speed limit, and the average moving speed 
varies with traffic. A more accurate travel time can thus be calculated by applying this speed variation. In addition, 
if different line transfer times in each tube station were input, more practical multimodal routes could be derived.

5.3 | Extension of various routing

The proposed multimodal graph database can achieve various routing applications such as seamless routing from 
outdoor to indoor, time-dependent routing, and personalized routing with semantic contexts. A seamless database 
connecting indoors to outdoors could be constructed by linking the proposed multimodal graph database to 
indoor graphs with several relationships between anchor nodes. Also, this multimodal graph database can be 
combined with layers with semantic contexts of travel environments to build a spatial-semantic integrated graph 
database in routing problems that enables high-level routing queries.
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