

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Multiple Cell Lines

Generation of TWO G51D SNCA missense mutation iPSC lines (CRICKi011-A, CRICKi012-A) from two individuals at risk of Parkinson's disease

Liani G. Devito^{a,*}, Zeinab Shadman Zanjani^{b,c}, James R. Evans^{b,c}, Annarita Scardamaglia^d, Henry Houlden^d, Sonia Gandhi^{b,c}, Lyn Healy^{a,*}

^a Human Embryo and Stem Cell Unit, The Francis Crick Institute, London, UK

^b Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK

^c The Francis Crick Institute, 1 Midland Road, London, UK

^d Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK

ABSTRACT

Mutations or multiplications of the SNCA (Synuclein Alpha) gene cause rare autosomal dominant Parkinson's disease (PD). The SNCA G51D missense mutation is associated with a synucleinopathy that shares PD and multiple system atrophy (MSA) characteristics. We generated induced pluripotent stem cell (iPSC) lines from two individuals with SNCA G51D missense mutations at risk of PD. Dermal fibroblasts were reprogrammed to pluripotency using a non-integrating mRNA-based protocol. The resulting human iPSCs displayed normal morphology, expressed markers associated with pluripotency, and differentiated into the three germ layers. The iPSC lines could facilitate disease-modelling and therapy development studies for synucleinopathies.

(continued)

1. Resource Table:

		Ethical approval	This study was approved and reviewed by the National	
Unique stem cell line	CRICKi011-A,		Health Services (NHS) Health Research Authority	
identifier	CRICKi012-A		Research Ethics Committee reference no.19/LO/1796.	
Alternative name(s) of stem cell line	iFCI016, iFCI017			
Institution	THE FRANCIS CRICK INSTITUTE			
Contact information of distributor	lyn.healy@crick.ac.uk liani.devito@crick.ac.uk	2. Resource utility		
Type of cell line	iPSC			
Origin	Human	We report two patient-derived iPSC lines for use as a disease-spe	tiont derived iDSC lines for use as a disease specific	
Additional origin info	CRICKi011-A (iFCI016)		1	
	Age at sampling: 53. Sex: Male CRICKi012-A (iFCI017)		ther understand how SNCA G51D missense muta- hology. The iPSC lines could facilitate disease-	
	Age at sampling: 57. Sex: Female	modelling and thera	py development studies for synucleinopathies (see	
Cell Source	Dermal Fibroblast	Table 1).		
Clonality	Clonal	Table 1).		
Method of	mRNA	3. Resource details	_	
reprogramming		3. Resource details	S	
Genetic Modification	NO			
Associated disease	Parkinson's disease (at risk)	Multiple missense mutations of the SNCA gene, which encodes the		
Gene/locus	c.G152A mutation in Exon 3 of SNCA	protein alpha-synucl	ein, have been identified in patients with autosomal	
Date archived/stock date	OCTOBER 2022		Parkinson's disease (PD). The SNCA missense mu-	
Cell line repository/bank	https://hpscreg.eu/cell-line/CRICKi011-A			
	https://hpscreg.eu/cell-line/CRICKi012-A	•	as a synucleinopathy which incorporates a mixture	
	(continued on next column)	of PD and MSA path	ological hallmarks, with both neuronal and oligo-	

* Corresponding authors. *E-mail addresses:* liani.devito@crick.ac.uk (L.G. Devito), lyn.healy@crick.ac.uk (L. Healy).

https://doi.org/10.1016/j.scr.2023.103134

Received 6 April 2023; Received in revised form 15 May 2023; Accepted 2 June 2023 Available online 6 June 2023

1873-5061/Crown Copyright © 2023 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

dendroglial alpha-synuclein positive inclusions (Kiely et al., 2013,

Table 1

Characterization and validation.

Classification	Test	Result	Data
Morphology	Microscopic	Normal morphology	Fig. 1 panel
	photography	at passage 7	Α
Phenotype	Quantitative	Staining of	Fig. 1 panel
	analysis	pluripotency markers:	D
	Flow Cytometry	OCT4+, SSEA4+ and	
	5 5	SSEA1 – at passage 9	
		(CRICKi011-A) and 10	
		(CRICKi012-A)	
Genotype	CNV analysis:	CRICKi011-A Male	Fig. 1 panel
denotype	Karyostat assay	individual CRICKi012-	C C
	(Thermo Scientific)	A Female individual	C
	with resolution >2	both have no	
	Mb for chromosomal	chromosome	
	gains and >1 Mb for	aberrations compared	
	chromosomal losses	to the reference	
		dataset	
	STR analysis	All 16 sites sites	submitted in
		matched	archive with
			journal
Mutation	Sanger Sequencing	Heterozygous type of	Fig. 1 panel
analysis		mutation	В
Microbiology	Mycoplasma	Mycoplasma testing	not shown
and virology		by RT-PCR Negative	but
			available
			with author
Differentiation	In vitro	Direct differentiation	Fig. 1 panel
potential	differentiation	to three germ layers	F
1		confirmed by	
		immunostaining at	
		passage 11	
		(CRICKi011-A) and 12	
		(CRICKi012-A)	
List of	Spontaneous In vitro	Expression of markers	Fig. 1 Panel
recommended	differentiation:	(qPCR) of Endoderm,	E Fig. 1 Faller
	EB formation	Mesoderm and	ь
germ layer markers	followed by	Ectoderm germ layer	
markers			
	TaqMan™ hPSC	confirmed by	
	Scorecard [™] Panel,	Scorecard at passage	
	Fast 96-well	11 (CRICKi011-A) and	
	(Cat. N. A15876)	12 (CRICKi012-A)	

2015). Here, we report the generation and characterisation of two iPSC lines derived from two individuals from the same family with G51D *SNCA* mutation.

Patient dermal fibroblasts were obtained from the individuals at UCL Queen Square Institute of Neurology and reprogrammed using the nonintegrating mRNA-based protocol (StemRNA[™] 3rd Gen Reprogramming Kit, REPROCELL) that combines non-modified RNA (NM-RNA) and microRNA technology. It contains six reprogramming factors, Oct4, Sox2, Klf4, cMyc, Nanog, and Lin 28, together with three immune evasion factors E3, K3 and B18. Cells were reprogrammed in a feederfree system according to the manufacturer's instructions. Colonies with a typical pluripotent stem cell morphology were individually and manually selected to establish clonal feeder-free iPSC lines.

Cells showed typical iPSC morphology after a few passages (Fig. 1A). Dideoxynucleotide sequencing (Sanger Sequencing) confirmed the presence of the pathogenic *c.G152A in Exon 3 of the SNCA gene* (Fig. 1B). Copy number variation analysis by chromosomal microarray confirmed the sex of the individuals (Fig. 1C). Stem cell identity of the *CRICKi011-A* and *CRICKi012-A* was confirmed by the expression of pluripotency markers OCT4 and SSEA4 on Flow Cytometry analyses (Fig. 1D).

In vitro differentiation (direct and spontaneous) confirmed the cell line's ability to differentiate into all three germ layers (Fig. 1E and F). The identical genetic identity of the donor of each iPSC was confirmed by short tandem repeat (STR) profiling. These results prove we have successfully produced iPSC lines from two patients with *G51D SNCA* mutation.

4. Materials and methods

4.1. iPSC cell generation and expansion

We thawed the dermal fibroblasts at passage 4 for *CRICKi011-A* and passage 5 for *CRICKi012-A* and seeded at a density of 5×10^4 /well in 2 wells/ each of a 6-well plate coated with iMatrix (Stemgent). They were plated in Fibroblast Expansion Medium (DMEM(Gibco)/ Glutamax (Gibco)/10% Hyclone FBS (Thermo Scientific)) and cultured for 24 h in 37 °C, 5% CO₂ and 21% O₂. Then, on the first day of reprogramming, Day 0, the medium was switched to NutriStem medium (Stemgent), and cells were transferred to a hypoxic incubator at 37 °C, 5% CO₂ and 5% O₂.

Cells were reprogrammed 1-day post-seeding using the StemRNATM 3rd Gen Reprogramming Kit (Stemgent) according to the manufacturer's instructions. Briefly, the NM-RNA cocktail was added to RNAi-MAX transfection reagent (Gibco) and transfected into the cells for four consecutive days with medium change 6 h post-transfection.

iPSC-like colonies started to show 9 to 12 days post the first day of transfections. We manually picked those with iPSC-like morphology and transferred them to Matrigel-coated 6-well plates with mTeSR1 medium (StemCell Technologies) containing 10 μ M Y-27362. The medium was changed after 24 h. Colonies were expanded by splitting at a 1:3 to 1:6 ratio every 4–6 days and maintained in a hypoxic incubator at 37 °C, 5% CO2 and 5% O2.

4.2. Pluripotency markers

We evaluated the pluripotency status of *CRICKi011-A* and *CRICKi012-A* line at passages 9 and 10, respectively, by Flow Cytometry using the BD StemflowTM Human and Mouse Pluripotent Stem Cell Analysis Kit (BD) as per the manufacturer's instruction. Briefly, we detached the cells using Accutase (Sigma-Aldrich) and passed through a 70 μ M cell strainer to eliminate cell clumps. The cells were then washed with DPBS (without Ca² Mg²) (Thermo Fisher Scientific) and resuspended at 1 \times 10⁶ cells/ml before adding the Live/ Dead staining (Thermo Fisher) for 30 min at room temperature. After another cell wash step with DPBS, cells were fixed in 4% paraformaldehyde (BD Stemflow Analyses kit component) for 20 min. For the permeabilization step, we used the 1X Perm/ Wash buffer (BD Stemflow Analyses kit component) for 10 min, followed by a wash in the same buffer. We incubated the cells with the antibodies (Table 2) for 30 min. We used DIVA software to analyse the cells and FlowJo to analyse the data.

4.3. Spontaneous differentiation into three germ layers

We tested the differentiation capacity of the *CRICKi011-A* and *CRICKi012-A* lines at passages 11 and 12, respectively, by spontaneous differentiation and embryoid body (EB) formation. Using the Aggre-WellTM 800 Microwell Plates, we seeded 5×10^6 /well in APEL 2 medium (STEMCELL Technologies) and cultured the EBs for 14 days in a hypoxic incubator at 37 °C, 5% CO2 and 5% O2.

The expression of the lineage-specific markers was assessed by TaqMan hPSC Scorecard Assay (Thermo Scientific). Briefly, we isolated RNA using the QIAgen RNeasy mini kit and measured concentration with a Nanodrop. We used the High-Capacity cDNA Reverse Transcription Kit with RNase Inhibitor (Thermo Fisher) for cDNA preparation. We analysed the data using the hPSC ScorecardTM – Analysis group (Thermo Fisher).

4.4. Direct differentiation into three germ layers

For direct differentiation, we used the STEMdiffTM Trilineage Differentiation Kit (STEMCELL Technologies) as per the manufacturer's instructions. We evaluated the differentiation potential of *CRICKi011-A and CRICKi012-A* lines at passages 11 and 12, respectively, by

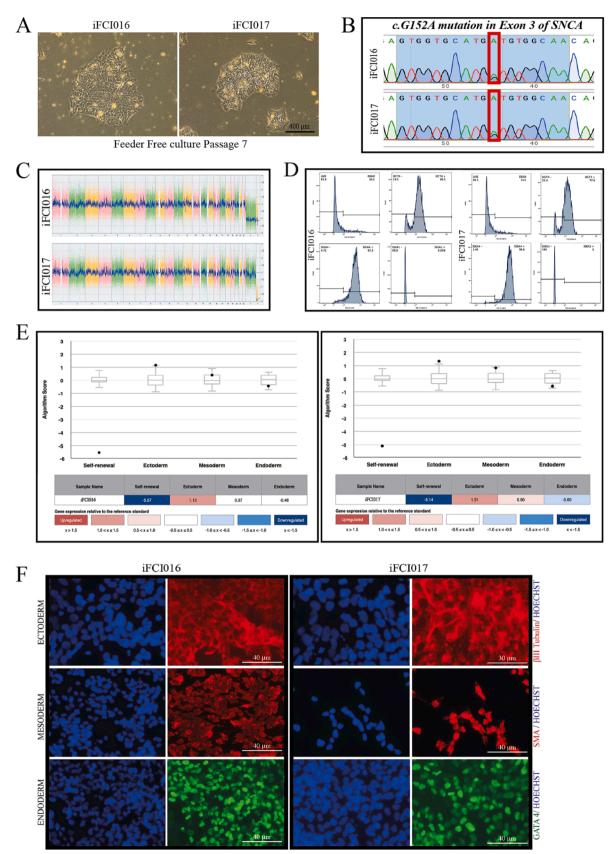


Fig. 1.

Table 2

Reagents details.

Antibodies used for immunocytochemistry/flow-cytometry				
	Antibody	Dilution/Amount of staining	Company Cat #	RRID
Pluripotency Markers	BD PharmingenTM Alexa Fluor® 647 Mouse anti-SSEA-4	20 µL per sample $(5 \times 10^5 \text{ to } 1 \times 0^6 \text{ cells})$	BD #560477	AB_2869350
	BD PharmingenTM PE Mouse anti-SSEA-1	20 μ L per sample (5 × 10 ⁵ to 1 × 0 ⁶ cells)	BD #560477	AB_2869350
	BD PharmingenTM PerCP-CyTM5.5 Mouse anti-Oct3/4	20 μ L per sample (5 × 10 ⁵ to 1 × 0 ⁶ cells)	BD #560477	AB_2869350
Differentiation Markers	Goat anti-GATA-4 IgG	1:100	R&D System #AF2606	AB_2232177
	Mouse anti-βIII-tubulin IgG	1:100	Sigma #T5076	AB_532291
	Mouse anti-smooth muscle actin SMA IgG	1:100	Sigma #A5228	AB_262054
Secondary antibodies	Donkey anti-mouse Rhodamine IgG	1:100	Jackson Immunoresearch #715-295-150	AB_2340831
	Donkey anti-goat FITC IgG	1:100	Jackson Immunoresearch #705-095-147	AB_2340401
Primers	Target	Forward/Reverse primer (5'-3')		Size of Band
Targeted mutation analysis	SNCA SNCA	GTGGTGGTTACTGGAGTTCC ACTGGGCCACACTAATCACT		292

immunostaining for lineage-specific markers on Day 5 (Mesoderm and Endoderm) and Day 7 (Ectoderm) as described (Devito et al., 2021). Differentiated cells were washed twice in DPBS ($Ca^2 Mg^2$) (Thermo Fisher Scientific) before fixation with 3.7% paraformaldehyde (Sigma-Aldrich) for 20 min at room temperature. Cells were permeabilized with 0.5% Triton X-100 (Sigma-Aldrich) for 5 min at room temperature, then incubated with primary antibodies (Table 2) overnight at 4 °C. The following day, cells were washed twice with DPBS and incubated with secondary antibodies (Table 2) for 30 min at room temperature.

4.5. Dideoxynucleotide sequencing

We performed PCR amplification (primers listed in Table 2) using the Q5 High-Fidelity 2X Master-Mix (BioLabs) on both cell lines at passage 7. The genomic DNA was extracted using the QIAamp DNA micro Kit (Qiagen). Then we purified the PCR product using the Monarch PCR and DNA cleanup Kit (BioLabs). Finally, we sent the samples for Sanger sequencing to Source Biosciences (UK) and analysed the data using SnapGene software.

4.6. Chromosomal microarray

Using the genomic DNA of each iPSC line, Thermo Scientific (USA) performed the KaryoStat assay (Thermo Scientific, USA), an array comparative genomic hybridization (CGH).

4.7. Short tandem repeat (STR) profiling

The Cell Services, a Science Technology Platform (STP) within the Francis Crick Institute, performed the STR profiling on DNAs from the parental sample and iPSC line using the Powerplex 16 HS System (Promega). Since reprogramming started, all lines were sent regularly for STR profiling (every 3 passages).

4.8. Mycoplasma detection test

The Cell Services (STP) confirmed the absence of mycoplasma

contamination using PCR amplification using the Universal Mycoplasma Detection Kit (ATCC 30–1012 K) for PCR amplification. Cells were regularly sent for Mycoplasma testing (every 3 passages) since reprogramming started.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank the Francis Crick Institute Genomics Equipment Park, Cell Services STPs. This work was supported by: The Francis Crick Institute, which receives its funding from Cancer Research UK (CC0199), the UK Medical Research Council (CC0199) and the Wellcome Trust (CC0199). S.G. is an MRC Senior Clinical Fellow [MR/T008199/1]. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.

References

Devito, L.G., Healy, L., Mohammed, S., Guillemot, F., Dias, C., 2021. Generation of an iPSC line (CRICKi001-A) from an individual with a germline SMARCA4 missense mutation and autism spectrum disorder. Stem Cell Res. 53, 102304.

- Kiely, A.P., Asi, Y.T., Kara, E., Limousin, P., Ling, H., Lewis, P., Proukakis, C., Quinn, N., Lees, A.J., Hardy, J., Revesz, T., Houlden, H., Holton, J.L., 2013. α-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson's disease and multiple system atrophy? Acta Neuropathol. 125 (5), 753–769.
- Kiely, A.P., Ling, H., Asi, Y.T., Kara, E., Proukakis, C., Schapira, A.H., Morris, H.R., Roberts, H.C., Lubbe, S., Limousin, P., Lewis, P.A., Lees, A.J., Quinn, N., Hardy, J., Love, S., Revesz, T., Houlden, H., Holton, J.L., 2015. Distinct clinical and neuropathological features of G51D SNCA mutation cases compared with SNCA duplication and H50Q mutation. Mol. Neurodegener. 10, 41.