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Abstract

Using a stylised financial system along with a systemic perspective thereof, the defi-

nition of an aggregated banking system that is default-free but vulnerable to liquidity

risks is enabled. Within this setup, a consistent mathematical modelling framework for

term interest rate systems is derived that enables the pricing and valuation of associated

linear derivative instruments. It is then demonstrated that term rates may not be syn-

thetically replicated, in general, which in turn enables the extraction and explanation

of the genesis of term risk. These findings provide: (i) a rigorous understanding of the

incomplete market paradigm that encapsulates inter-bank term rates and the risk man-

agement processes involved therein; and (ii) quantitative theoretical evidence against

global interest rate reform proposals advocating for the replacement of term Libor (Lon-

don inter-bank offered rate) reference rates with overnight rate-based alternatives.
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1 Introduction

A term rate is an interest rate that applies over a time period. In a fixed interest rate con-

tract, both, the interest rate and the length of the period are typically fixed in advance.

Attention to the usefulness of term interest rates has been rekindled by the transition from

the London inter-bank offered rate (Libor) to overnight interest rate benchmarks, like the

Sterling overnight index average (Sonia) or the Secured overnight financing rate (Sofr). With

the termination of Libor, a global term interest rate system will be dismantled. At the same

time, no suitable replacement is being pursued, since regulators believe that overnight rate

benchmarks, also called risk-free rates, will reduce risk in fixed-income markets while in-

creasing stability and transparency.

In this paper, as also in [1], [2] and [14], we investigate in detail term interest rate

systems with two main aims: (i) The development of a consistent mathematical modelling

framework for term interest rate systems that includes the pricing and valuation of asso-

ciated linear derivative instruments. (ii) The demonstration that term rates may not be

synthetically replicated, in general, thereby extracting and explaining the genesis of term

risk. The second contribution is central to the understanding of why overnight interest rate

benchmarks (and any instrument derived therefrom) do not offer a transfer mechanism for

term risk, and in fact expose a borrower to maximum term risk when rolling over loans. This

is the main reason for doubting that markets devoid of genuine term interest rate systems

will be more stable and transparent. We show that the lack of genuine term rate benchmarks,

prevents markets to transfer, value, and trade term risk. In the face of increased market in-

completeness, due to the lack of term rate benchmarks, financial houses are likely to create

over-the-counter products based on their in-house risk assessments and models. The con-

sequence is a less transparent fixed-income market, most likely and often at the expense of

funders and borrowers.

Term interest rates offer the certainty to a borrower that the interest rate on their loan

does not change over the borrowing period. This certainty comes at a cost reflected in the

spread between a term rate and a variable interest rate. The risk that commonly comes to

mind when considering a variable interest rate is the so-called floating interest rate risk.

This type of risk is due to the stochastic nature of interest rates. A term rate mitigates

this kind of risk over the contractually specified time period it applies. Another way of

insulating a loan against floating interest rate risk is to enter an interest rate swap contract.

For example, the floating risk of an overnight interest rate on a loan lasting six months could

be hedged by entering an overnight index swap (OIS). The swap applies over six months,
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where the overnight interest rate is exchanged for a fixed one, that is, the so-called OIS fair

rate. So, why would one care to have term interest rates when floating interest rate risk can

be mitigated by swap contracts?

The key to the answer is that a term rate benchmark offers a mechanism to transfer

refinancing risk to a lender. Refinancing risk—or roll-over risk, see, e.g., [1] and [2]—is

the risk that when the loan period elapses, and the loan needs to be rolled over to the next

period, the benchmark interest rate can no longer be accessed. In the example above, this is

the risk that the borrower can no longer access the overnight rate on any of the days during

the six-month loan period. In other words, the borrower is exposed daily to the risk that

funds can no longer be raised to roll over their loan at the overnight benchmark rate (or

the same spread to it) as the day before. Term rates, as for Libor, have been available for

fixed time periods ranging from one day, one week and one month to twelve months. A

six-month loan based on a six-month term rate is never rolled over within the six months

(as opposed to a loan based on an overnight rate rolled over roughly 180 times), and so

a borrower is not exposed to refinancing (roll-over) risk, regardless of the economic and

financial environment, during the loan period.

The analysis undertaken to achieve the aims and objectives discussed thus far, first re-

quires a careful description of the financial context and assumptions imposed thereon. This

is described next followed by specific results and outcomes that support our theoretical

findings, conjectures and conclusions.

The money market enables banks to source term funding from retail, corporate and

public sector entities in the form of deposits1. The inter-bank market plays a fundamental

role within the banking system, enabling local banks to source funding from one another in

order to facilitate financial intermediation and manage their own accounts2 that are held

with the respective local central or reserve bank. The settling of accounts may also be

achieved via participation in the central bank’s repurchase operations, which is a compo-

nent of normal open market operations, or its marginal lending facility, however the latter

is costly and saved for emergencies while the former requires possession of high quality col-

lateral securities. Furthermore, these central bank facilities have very short-term maturities

and are therefore generally inconsistent with longer-term financial intermediation require-

ments. Therefore, banks will generally access the money and inter-bank markets first and

use central bank facilities as a last resort.
1The canonical form of the deposit being a bearer financial instrument called a Negotiable Certificate of

Deposit (NCD).
2These may be general reserve and capital requirement related accounts, and even accounts that are related

to the local payment system.
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There are two major sub-markets that constitute the inter-bank market: (i) the inter-

bank cash market; and (ii) the inter-bank derivatives market. The inter-bank cash market

involves term funding, or inter-bank lending, activity amongst major local banks within a

given economy. In an emerging market, there are usually a small number of major banks

with similar market share and credit-ratings, while developed economies usually have a

large number of banking entities but major banks that constitute the inter-bank market are

determined by market share and credit quality. Term funding involves Bank A borrowing

local currency from Bank B over a specific term, or equivalently Bank B depositing local cur-

rency with Bank A over the same term3. Therefore, the primary market’s microstructure may

be fundamentally characterised by each participating bank offering deposit rates for various

terms-to-maturity. This microstructure is essentially replicated in the money market, but for

non-banking entities. For each bank, this term structure of offered deposit rates represents

their cost of inter-bank funding, and therefore defines their term funding curve. An individ-

ual bank’s term funding curve is not publicly observable, i.e., not accessible by the general

public, but will be observable (at least partially) by inter-bank market participants. How-

ever, inter-bank reference rates, which are either aggregated indicative offered or transacted

deposit rates, will provide the general public with a set of benchmark deposit rates for the

inter-bank market as a whole, albeit limited with regard to the range of terms-to-maturity.

Nonetheless, whether individual or aggregated, since each offered deposit rate applies to

a distinct and unique term-to-maturity and the determination of each will involve a corre-

spondingly unique set of non-fungible credit, funding and liquidity risk characteristics, the

resultant term funding curve will constitute a non-homogeneous set of term rates.

Assuming the existence of the money and inter-bank cash markets only, as may be the

case in an emerging market, this research paper considers the construction of the inter-bank

linear derivatives market from first principles, i.e., via replication using inter-bank cash mar-

ket instruments. The inter-bank cash market is therefore positioned as a primitive market,

which is natural considering the discussion thus far. The inter-bank linear derivatives mar-

ket may be fundamentally and completely characterised by forward rate agreements (FRAs)

and interest rate swaps (IRSs) that reference inter-bank reference rates. IRSs are essentially

portfolios of FRAs or equivalently, FRAs may be utilised to replicate IRSs completely. There-

fore, the modelling of FRAs are considered to be the primary objective. In order to achieve

this objective, the perspective of a linear derivatives market-maker is assumed, one who

belongs to a banking entity but is a market-taker in the inter-bank cash market. Further,

3The cash flow structure of the deposit considered here will always have a capital payment at initiation and
repayment at maturity, while interest rate cash flows may be structured in a bespoke manner.
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in order to simplify the exposition and enhance tractability, a systemic perspective is pos-

tulated and assumed which, most importantly, precludes the need to consider idiosyncratic

credit risks. The analysis within this systemic perspective yields a pricing kernel framework

for the pricing and valuation of FRAs that is based on replication, which in turn provides

the following results and outcomes:

(i) modelled fair FRA rates are systematically lower than corresponding market forward

rates implied from the systemic term funding curve, which may be attributed to po-

tential funding-related liquidity costs within the postulated systemic setting;

(ii) multiple inter-bank swap curves distinguished by the term of the underlying inter-

bank reference rates, i.e., the underlying FRA or IRS instruments associated with each

curve reference the same inter-bank reference rate;

(iii) a mechanism to exchange fixed inter-bank interest rate risk across the systemic term

funding and inter-bank swap curves; and

(iv) a framework for consistent pricing and valuation of inter-bank instruments across

curves, which also enables the fair early liquidation or settlement values.

For completeness, the systemic perspective is relaxed and idiosyncratic credit risk features

are incorporated, and it is shown that the same results hold except that the discrepancy

between fair FRA and forward rates may now also be attributed to potential default costs.

To be clear, each swap curve, mentioned in (ii), enables the exchange of floating interest

rate risk associated with a specific inter-bank reference rate for equivalent fixed interest rate

risk over various tenors. The mechanism from (iii) enables the exchange of fixed interest

risk encoded in each swap curve and the systemic term funding curve. Further, within

this emerging market context, the swap curve associated with the inter-bank reference rate

with the shortest term-to-maturity, usually the overnight rate4, emerges as the best proxy

for the nominal risk-free zero curve. However, this is shown to be problematic since each

risk-free term rate is only accessible synthetically via: (1) a floating deposit (loan) dealt at

the shortest term inter-bank reference rate that is continuously rolled over the term of the

targeted risk-free rate; in combination with (2) a series of short (long) FRAs that reference

the shortest term inter-bank reference rate and a combined tenor that matches the term of

the targeted risk-free rate. While transaction (2) may be easily accessed via the inter-bank

4Practically and in reality, the overnight inter-bank reference rate has the least amount of credit risk exposure.
However, one would still be exposed to funding-related liquidity costs. Therefore, this reference rate is not risk-
free but the best proxy for a risk-free rate.
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derivatives market, transaction (1) is subject to funding-related liquidity risks even if credit

risks are negligible.

2 Axiomatic structure of interest rate system

This section provides a description of the financial system under consideration, an axiomatic

construction of the interest rates therein and the modelling framework.

2.1 Stylised financial system

Figure 1 below provides a depiction of a stylised financial system within a generic economy,

along with interactions between the constituent entities.
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Figure 1: Stylised version of the financial system under consideration.

We draw attention to the treasury (TR) and sales and trading unit (ST) of each banking

entity, highlighted in Figure 1. The TR is solely responsible for the sourcing of funding

(or deposits) and lending, while the ST is responsible for engineering financial products.

Interactions between TRs define the inter-bank cash market, which enables the transfer of

surplus funds among banks. Each ST will borrow (or deposit) funds required for (generated

through) creation of products, and for trading and hedging processes with their respective

TR. Interactions among STs define the inter-bank derivatives market, which enables hedging,

arbitrage and speculative strategies within the inter-bank system.
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Individuals, corporations, and government entities constitute external clients (ECs) of the

banking system. Functionally this group may be categorised further as depositors (EDs),

borrowers (EBs) and end-product users (EPUs). In this setup, EDs and EBs interact with TRs

while EPUs interact with STs. These categories are not mutually exclusive, in general. The

interactions between the EDs and the TRs define the money market, an important source of

term funding from outside the banking sector.

An important entity that is not explicitly shown in Figure 1 is the central bank (CB), which

is the regulator and central entity for all banking activities and agents. Banks may engage

in repurchase (repo) transactions with the CB to settle accounts that are in overdraft. The

CB is therefore also considered as the lender of last resort. This facility will be utilised later

on to argue against the possibility of a banking system default.

2.2 Interest rate system: an axiomatic construction

Let A(u, u + nδ) denote an arbitrary simple rate which applies over the term [u, u + nδ] ,

where δ > 0, n ∈ N and u ∈ R≥0 is a quote/mark-to-market/publishing time. In all that

follows, the shorthand notation An
u will be used for such rates, such that an investment of 1

unit of currency at this rate will yield
�

1+ nδAn
u

�

at maturity time u+ nδ.

Axiom 2.1 (Central bank repos). Central banks enable local banks to settle account deficits

via a short-term (one week or less) repo facility, offering government bonds as collateral. The

repo rate is set by the monetary policy committee (MPC) periodically in response to changes in

inflation and economic growth expectations. Assuming that δ is representative of the tenor of

these transactions, it is assumed that r1
u denotes the MPC’s repo rate and a pure risk-free rate.

This rate is only accessible by local banks.

Axiom 2.2 (Government bond repos). The secondary government bond market enables all

participants to engage in repo, or buy-sell back, transactions. These are short-term (one year or

less) collateralised loans, where the borrower offers government bonds as collateral. Suitably

aggregating many such transactions, the effective simple rate for an nδ-term transaction is

conjectured to be

Sn
u := xn

u + bn
u + cn

u , (2.1)

and is also referred to as a secured funding rate5, where

5The Secured Overnight Financing Rate (SOFR), the benchmark rate for USD-denominated derivatives and
loans is derived from the US Treasury repo market.
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• xn
u := 1

nδ

�

Eu

�∏n−1
i=0

�

1+δr1
u+iδ

��

− 1
�

is an nδ-term risk-free rate based on lenders’

expectations for the evolution of the MPC’s repo rate over this period given information

available at time u, expressed here via the operator Eu [·] ;

• bn
u is a funding spread, which is term-dependent and may be less than or equal to zero

when lenders have significant surplus funds available but is generally positive, and in-

creases with term, since funding is generally limited;

• cn
u is a spread for potential collateral-liability mismatch, which is non-negative and de-

pendent on term, the level of xn
u and bn

u , government bond price/yield volatility and the

initial loan-to-collateral value ratio.

Axiom 2.3 (Government bonds). The local currency government bond market provides a

benchmark for funded default-free term rates6. While cash flow structures and quoted yield

conventions may be non-homogeneous, a set of consistent effective simple term rates

Gn
u := xn

u + f n
u , (2.2)

may be recovered from traded government bonds. This effective rate is conjectured to constitute

a risk-free component, defined in Axiom 2.2, as well as a funding spread, f n
u , akin to bn

u from

Axiom 2.2 but applied to the availability/supply of funding for local government debt.

Axiom 2.4 (Term funding & inter-bank lending). The TR that forms part of the arbitrary

banking entity i will quote a funded, credit-risky simple term rate

Rn
u,i := Gn

u + dn
u,i , (2.3)

to internal (i.e, ST of bank i) and external clients (other TRs and EDs) for term deposits with

a tenor of nδ at time u , where dn
u,i is a term-dependent debt premium offered as compensation

for bearing the credit risk of bank i over the fixed term.

The pricing/quoting mechanism for inter-bank loans are also consistent with Axiom 2.4,

since such a loan may be considered as one bank’s TR (the borrower) quoting a deposit rate

to another bank’s TR (the lender), subject to the usual processes of negotiation involved in

the general market-making process.

Axiom 2.5 (Funding-related liquidity). External deposit (or money market) and inter-bank

lending liquidity is not guaranteed. Assuming that some level of liquidity prevails, the TR of

6Based on the assumption that a government will not default on debt issued in its local currency.
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bank i may not, in general, be willing (or even able) to take deposits (borrow) at their fair

rate, Rn
u,i . Ignoring profit margins, each bank will devise a demand schedule for deposits based

on their specific term-based cash liquidity requirements. This may be quantified by introducing

an additive, simple liquidity cost function `i(u, u + nδ, N) that is both term- and nominal-

dependent, with the latter denoted here by N. Entity i will then bid for deposits, with a nominal

value of N, according to the rate

Rn,N
u,i := Rn

u,i + `
n,N
u,i , (2.4)

where `n,N
u,i stand for `i(u, u+ nδ, N). If bank i has a high (low) demand for cash liquidity of

nominal value N for a term of nδ, then `n,N
u,i will be positive (negative).

With Axiom 2.5, it is now possible to define an individual bank’s term funding curve. This is a

term structure of non-homogeneous rates that is created, or market-made, by the respective

bank’s TR, as described and motivated in the introduction or Section 1.

Definition 2.1 (Idiosyncratic term funding curve). Consider an arbitrary time u, funding

term nδ, and banking entity i. Let {N n
u,i,1 , N n

u,i,2 , . . . , N n
u,i,a} and {wn

u,i,1 , wn
u,i,2 , . . . , wn

u,i,a},
where a ∈ N, denote a set of nominals and corresponding weights that reflect the respective

likelihoods of the TR, associated with bank i, securing funding at the respective nominal values

for the nδ-term at time u, with
∑a

j=1 wn
u,i, j = 1. Then a fair aggregated representation of the

TR’s nδ-term funding rate at time u is

R
n
u,i := Rn

u,i + `
n
u,i

= xn
u + f n

u + dn
u,i + `

n
u,i , (2.5)

where `
n
u,i :=

∑m
j=1 wn

u,i, j`i

�

u, u+nδ, N n
u,i, j

�

. Moreover, a fair aggregated representation of the

TR’s term funding curve at time u is then

�

R
n
u,i ; n ∈ {1, 2, . . . , m}

	

, (2.6)

with the mδ-term assumed to be the longest available funding tenor.

Thus far, the fair nδ-term rate, Rn
u,i , is assumed to be term-dependent only, with the liquidity

cost function capturing all of the nominal value dependency. However, one should also

consider f n
u and dn

u,i as fair weighted average representations, constructed in the same way

as `
n
u,i . Being a risk-free term rate, xn

u is not contingent on nominal value, by definition.

Nonetheless, for all that follows, term dependency will be the only feature that matters.
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Axiom 2.6 (Reference rates). Benchmark term rates Rn
u are constructed by specific aggregate

functions7, which are applied to collated indicative quote or retrospective traded bank deposit

or inter-bank lending data. Given the structure of such rates, as postulated in Axioms 2.4 and

2.5, the aggregated benchmark is conjectured to be

Rn
u := Gn

u + dn
u + `

n
u , (2.7)

where dn
u and `n

u are now an aggregated debt premium and liquidity cost, respectively. Accord-

ingly, Rn
u is also referred to as an inter-bank reference or market-based term rate.

2.3 Systemic perspective

Figure 1, Axiom 2.5 and Definition 2.1 demonstrates the idiosyncratic funding-related liq-

uidity and credit risks that each TR is directly exposed to via the market-making process for

term funding. Being an internal client to their respective TR, each ST is indirectly exposed to

the same risks. These idiosyncratic exposures are difficult to model in a concise and consis-

tent manner, so that one may make rigorous systemic inferences. Therefore, two simplifying

assumptions and adjustments are effected to the stylised financial system depicted in Figure

1. These are shown in Figure 2 below.
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Figure 2: Stylised systemic version of the financial system under consideration.

In this setting, the banking system has a systemic representation and consists of a systemic

7For example, a trimmed median or average, which is utilised for rates such as JIBAR and LIBOR, or a
volume-weighted average for reference rates such as the SAFEX overnight rate and SONIA (also trimmed).
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treasury (STR) along with a systemtic sales & trading unit (SST). The STR and SST are

collections of the respective individual entities, and by definition and construction subsume

the inter-bank cash and derivatives markets, respectively. This representation enables a

systematic analysis of the risks underlying the market-making processes undertaken by the

STR for term funding and the SST for general financial derivatives. Idiosyncratic credit risk

only remains in loans offered by the STR to EBs, which is not the focus here. Thus, Axioms

2.4 and 2.5 may be replaced by the following single axiom.

Axiom 2.7 (Systemic term funding & liquidity). The STR will quote to internal (SST) and

external clients a funded, credit-risky and liquidity-cost-adjusted simple rate

Rn,N
u = Gn

u + dn
u + `

n,N
u , (2.8)

for term deposits with a nominal value of N and a tenor nδ at time u. As before, dn
u is a systemic

term-dependent debt premium and `n,N
u := `(u, u+ nδ, N) is the STR’s liquidity cost function.

A quote (or liquidity) is not guaranteed for all nominal values and terms.

Remark 2.1 (Systemic debt premium and default paradox). Since the STR is an aggregation

of individual credit risky TRs, the systemic debt premium is also a suitable aggregation of each

TR’s idiosyncratic debt premiums, all of which are positive in general, indicating a chance for

systemic default. However, in theory and reality, the CB will preclude the possibility of a systemic

default, and hence the systemic banking entity (STR and SST) within this theoretical context.

Hence the paradox, which is a natural artefact of the assumed systemic perspective.

Axiom 2.6 still holds within this context, but now with the added feature that reference

term rates are now a fair aggregated representation of the STR’s term funding rates. This

is by assumption and construction since the STR subsumes the inter-bank cash market. In

addition, this enables a direct representation of the STR’s term funding curve, which is

provided in the next definition.

Definition 2.2 (Systemic term funding curve). Analogous to Definition 2.1 in form, the fair

aggregated representation of the STR’s nδ-term funding rate at time u is given by the nδ-term

reference rate, equation (2.7) from Axiom 2.6. The fair aggregated representation of the STR’s

term funding curve at time u is then

�

Rn
u ; n ∈ {1,2, . . . , m}

	

, (2.9)

with the mδ-term again assumed to be the longest available funding tenor.
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The systemic term funding curve is therefore a collection of non-homogenous reference

rates, which, in the absence of other interest rate financial markets and information, forms

the basis for fair valuation at the systemic level. The SST is assumed to be an internal client

of the STR, therefore both entities exhibit the same level of credit risk. As a result, for

the purpose of pricing in their market-making process, the SST need only consider: (i) the

arbitrage-free dynamics of the set of reference term rates or, equivalently, the systemic term

funding curve, along with (ii) the ad hoc cost of liquidity due to Axiom 2.7.

2.4 Mathematical framework for interest rate markets

The financial system depicted in Figure 2 forms the backdrop for the modelling framework,

with the addition of the following assumptions:

(i) The money and inter-bank cash markets are the primitive financial markets, with the

only market-maker being the STR.

(ii) The inter-bank derivatives market is the considered derivative financial market, with

the SST and its constituents being market-makers.

(iii) There are no transaction costs, profit margins or taxes.

It is assumed that this market system is incomplete, arbitrage-free and supported by a filtered

probability space
�

Ω,F , (Fu)u≥0 ,P
�

satisfying the usual conditions, where P denotes the

real-world probability measure, and where

Fu := Gu ∨L u, (2.10)

for u ≥ 0. The filtration (Gu)u≥0 models information about all tradable variables,
�

L u

�

u≥0

models information about all liquidity variables associated with the money and inter-bank

markets (i.e., items (i) and (ii)). The filtration (Lu)u≥0, where Lu ⊂ L u, models informa-

tion about liquidity variables associated with the money and inter-bank cash markets only

(i.e., item (i) only). Therefore, (Fu)u≥0 models information about all tradable variables and

their liquidity characteristics.

It is assumed that the SST’s starting point for modelling the systemic term funding curve

or, equivalently, its set of non-homogeneous constituent rates is the specification of a corre-

sponding set of statistically estimated stochastic discount factors (SDFs). The next definition

describes one such SDF for an arbitrary nδ-term along with the calculation of estimated nδ-

term rates, where n ∈ {1,2, . . . , m}.
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Definition 2.3 (Estimated nδ-Term SDF and Rates). The estimated nδ-term SDF,
�

bDn
u

�

u≥0 , is

assumed to be a {(Gu),P}-continuous semimartingale. At any time u, it is possible to calculate

an estimate for the nδ-term zero coupon bond (ZCB) price as follows

bPn
u,u+nδ :=

1
bDn

u

EP
�

bDn
u+nδ

�

�Gu

�

, (2.11)

making use of the estimated nδ-term SDF, and

bRn
u :=

1
nδ

 

1
bPn

u,u+nδ

− 1

!

, (2.12)

is then the estimated nδ-term rate at time u, using the definition of a simple rate.

If the current time is t, then it is assumed that the parameters associated with the SDF are

optimally estimated, with respect to P, using the historical time series data for the nδ-term

reference rate:
�

Rn
u ; u ∈ {t0, t1, . . . , tk}

	

⊂ Gt , where {t0, t1, . . . , tk} denote the set of trading

days that lie within the interval [0, t].

Having this setup, the objective now is to model the aforementioned interest rate markets

in a systematic manner. The following scenarios are analysed for the money and inter-bank

cash markets: (i) a single term rate with perfect liquidity; (ii) multiple term rates with

perfect liquidity; and (iii) multiple term rates with illiquidity. Each of these market setups

are considered in the three sections that follow, respectively.

3 Single term rate with perfect liquidity

The first system we consider is constituted by a money and inter-bank cash market with

only a single reference term rate. This rate is assumed to be tradable, i.e., any of the enti-

ties within the systemic structure may deposit or borrow at this rate. Perfect liquidity also

prevails, i.e., unlimited funding is available for all tenors via the use of this single rate.

Without any loss of generality, the δ-term rate is chosen as this rate and is formally defined

next.

Definition 3.1 (Perfectly liquid δ-term rate). The δ-term rate is defined by Axiom 2.6 when

n = 1 , with the STR being the market-maker. Being tradable, R1
u is assumed to be Gu-

measurable, and it has the form

R1
u = x1

u + d1
u , (3.1)

since perfect liquidity implies that f 1
u = `

1
u = 0 .

13



Now, we assume that the SST’s objective is to market-make interest rate derivatives based

on the δ-term rate. With an estimated δ-term SDF, from Definition 2.3, the SST may now

estimate a set of zero coupon bond (ZCB) prices, for various tenors but using the δ-term rate

only. This procedure is described in the next definition.

Definition 3.2 (Estimated δ-term ZCB prices). Assuming that the current time is t, then for

i, j ∈ N0 with i ≤ j , the expression

bP1
t+iδ,t+ jδ :=

1
bD1

t+iδ

EP
�

bD1
t+ jδ

�

�Gt+iδ

�

, (3.2)

is the estimated price at time t+ iδ for a δ-term ZCB, with unit nominal, that matures at time

t+ jδ , i.e., a ZCB with ( j− i)δ-tenor that accrues interest via compounding ( j− i) fixed δ-term

rates that are implied by the estimated δ-term SDF and information available at time t + iδ.

Shorthand notation: bP1
t,i, j := bP1

t+iδ,t+ jδ for all i, j ∈ N0 , with i ≤ j and t ∈ R≥0 .

The SST’s estimated δ-term ZCB term structure at time t is then given by
¦

bP1
t,0, j ; j ∈ N0

©

.

These ZCB prices are completely model-dependent and are therefore not tradable, in gen-

eral. Rather they may be utilised by the SST in the market-making process for such prod-

ucts. These ZCBs are equivalent to synthetic term rates with jδ-tenors, which accrue a

compounded interest at a δ-term frequency. Later it will be shown how such ZCBs may be

structured with forward rate agreements (FRA) or, equivalently, interest rate swaps (IRS).

There is however one ZCB that is linked to the δ-term rate, and therefore tradable. This

ZCB is introduced next.

Definition 3.3 (Tradable δ-term ZCB). Assuming that the current time is t then, from Defi-

nition 3.1, the tradable δ-term rate is R1
t . The price at time t of a tradable δ-term ZCB, with

unit nominal and δ-tenor, is given by

P1
t,t+δ :=

1

1+δR1
t

. (3.3)

Shorthand notation: P1
t,i,1 := P1

t+iδ,t+δ for each i ∈ {0,1} and t ∈ R≥0 .

The SST’s estimated price bP1
t,0,1 for this ZCB will not be equal to P1

t,0,1 , in general. This

discrepancy would expose the SST to potential arbitrage if their estimated model were used

for pricing and valuation. Therefore, their estimated model must be adjusted to recover the

price of the tradable ZCB. In the following lemma, we introduce the δ-term systemic pricing

14



measure8, denoted here by P1, the calibrated δ-term stochastic discount factor (SDF), and

the pricing kernel (PK).

Lemma 3.1 (Calibrated δ-term SDF and PK). At time t+δ, theGt -measurable SDF associated

with the δ-term systemic pricing measure P1 is given by

D1
t+δ :=

1

Λ1
t
bD1

t

EP
�

Λ1
t+δ

bD1
t+δ

�

�

�

�

Gt

�

=
1
bD1

t

EP1
�

bD1
t+δ

�

�Gt

�

. (3.4)

The {(Gu)t≤u≤t+δ,P}-density martingale (Λ1
u)t≤u≤t+δ, with Λ1

t = 1, induces a measure change

P → P1 via the Radon-Nikodym derivative Λ1
u = (dP1/dP)|Gu

. Moreover, D1
t+δ = P1

t,0,1 . For

j ∈ {0,1}, the Gt+ jδ-measurable δ-term PK is thus given by

π1
t+ jδ := Λ1

t+ jδD1
t+ jδ , (3.5)

where D1
t = 1, and where the PK is calibrated to the tradable δ-term ZCB.

Proof. The estimated δ-term SDF
¦

bD1
t+ jδ ; j ∈ {0,1}

©

is considered as an initial candidate

for the calibrated δ-term SDF, which must be defined in discrete-time on the set {t, t + δ}.
Since bD1

t
bP1

t,0,1 = E
P
�

bD1
t+δ

�

�Gt

�

and bP1
t,0,1 6= P1

t,0,1 in general, the estimated δ-term SDF

and P are not viable candidates for the calibrated SDF and pricing measure, respectively.

Constructing and calibrating the change-of-measure {(Gu),P}-martingale
�

Λ1
t+vδ

�

0≤v≤1 such

that equation (3.4) holds, with D1
t+δ = P1

t,0,1 , yields the correct calibrated SDF specification.

The correct and calibrated SDF model is obtained by introducing the {(Gu,P)}-measure-

change martingale (Λ1
u)t≤u≤t+δ, with D1

t+δ = P1
t,0,1 , which leads to Eq. (3.4).

The δ-term PK specification, equation (3.5), follows trivially, from where it may be ver-

ified that
1

π1
t+iδ

EP
�

π1
t+δ

�

�Gt+iδ

�

=
1

D1
t+iδ

EP1
�

D1
t+δ

�

�Gt+iδ

�

= P1
t,i,1 ,

for i ∈ {0, 1}, which concludes the proof.

Remark 3.1 (Single-period arbitrage-free model). The availability of only one tradable term

rate, and its associated ZCB, enables the SST to construct a single-period arbitrage-free model

only, over [t, t +δ] , with volatility estimated statistically since no derivative market exists.

Remark 3.2 (Market price of systemic risk). Under the real-world measure P and with re-

spect to the traded information filtration (Gu)u≥t , the martingale
¦

Λ1
t+ jδ ; j ∈ {0,1}

©

adjusts

8If the δ-term rate is a perfectly liquid overnight reference rate, then d1
u is approximately zero, R1

u is risk-free
for all practical purposes, and P1 is an approximation of the classical risk-neutral measure.
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the real-world estimated δ-term ZCB price to the arbitrage-free tradable price, and therefore

encodes the market price of δ-term interest rate systemic risk over [t, t +δ] .

4 Multiple term rates with perfect liquidity

In this section, a second perfectly liquid reference term rate„ the 2δ-term rate R2
u, is intro-

duced. Its definition is analogous to that of the δ-term counterpart. As indicated later in

Remark 4.2, the extension to a nδ-term rate system is produced by postulating Rn
u term rates

as we do next for the 2δ-term rate R2
u. Using the estimated 2δ-term SDF, (bD2

u )u≥0 , the SST

may estimate the 2δ-term ZCB-system {bP2
t+2iδ,t+2 jδ ; i, j ∈ N0 , i ≤ j} at the current time t

by directly replicating all of the results from the previous section. In what follows, we adopt

the shorthand notation bP2
t,2i,2 j := bP2

t+2iδ,t+2 jδ for all i, j ∈ N0 , where i ≤ j and t ∈ R≥0 .

From Lemma 3.1 we obtain the Gt+2 jδ-measurable 2δ-term pricing kernel

π2
t+2 jδ := Λ2

t+2 jδD2
t+2 jδ , (4.1)

where j ∈ {0,1} . The {(Gu),P}-martingale
�

Λ2
t+2vδ

�

0≤v≤1 , with Λ2
t := 1 , enables the

change-of-measure from P to P2 , the 2δ-term systemic pricing measure on Gt+2δ . This

PK is calibrated to

P2
t,t+2δ :=

1

1+ 2δR2
t
=

1

π2
t
EP
�

π2
t+2δ

�

�Gt

�

, (4.2)

which is the price of the tradable 2δ-term ZCB at the current time t. We bear in mind the

notation P2
t,2i,2 := P2

t+2iδ,t+2δ for each i ∈ {0,1} and t ∈ R≥0 .

In general, the estimated δ- and 2δ-term SDFs are not equal, almost surely. Even if they

are specified as the same model, their statistical estimation relies upon the historical time

series of two non-homogeneous reference term rates. Each of these SDFs encodes different

sources of floating interest rate risk. Accordingly, the estimated prices of δ- and 2δ-term

ZCBs with tenor equal to 2δ will also not be equal in general, i.e.,

bP2
t,0,2 =

1
bD2

t

EP
�

bD2
t+2δ

�

�Ft

�

6=
1
bD1

t

EP
�

bD1
t+2δ

�

�Ft

�

= bP1
t,0,2 . (4.3)

However, there are two relations between the tradable δ- and 2δ-term ZCBs that must

hold to preclude arbitrage from the perspective of the SST. These relations, described in the

lemmas below, allow the definition of the δ-term PK to be extended from t +δ to t + 2δ.

Lemma 4.1 (Early liquidation enforced by replacement). At time t +δ, the fair early liqui-
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dation value of the tradable 2δ-term ZCB, issued at time t, is equal to

P1
t,1,2 :=

1

1+δR1
t+δ

=
1

π1
t+δ

EP
�

π1
t+2δ

�

�Gt+δ
�

=
1

D1
t+δ

EP1
�

D1
t+2δ

�

�Gt+δ
�

, (4.4)

which is the initial value of the tradable δ-term ZCB. Moreover, the calibrated δ-term SDF,

defined in Lemma 3.1, may be specified at time t + 2δ as

D1
t+2δ := EP

�

Λ1
t+2δ

Λ1
t+δ

bD1
t+2δ

�

�

�

�

Gt+δ

�

= EP1
�

bD1
t+2δ

�

�Gt+δ
�

, (4.5)

with the definition of the {(Gu),P}-martingale
�

Λ1
t+vδ

�

0≤v≤2 extended to time t + 2δ with

time-inhomogeneous parameters, such that
Λ1

t+2δ

Λ1
t+δ
= dP1

dP

�

�

Gt+2δ
and D1

t+2δ = D1
t+δP1

t,1,2 .

Proof. See Appendix A.1 for the proof.

The previous lemma enabled the specification and calibration of the δ-term PK up to time

t + 2δ, from the vantage point of time t + δ. The next result will provide information that

will enable calibration up to the same time, but using information at the current time t.

Lemma 4.2 (Synthetic δ-term ZCB with 2δ-tenor). At the current time t, the tradable δ-

and 2δ-term ZCBs allow the SST to create a fair FRA, i.e., at zero cost, with payoff

Vt+2δ = αN

�

�

1+δR1
t+δ

�

−
P1

t,0,1

P2
t,0,2

�

, (4.6)

at time t+2δ, where α is equal to 1 (-1) for a long (short) position and N denotes the nominal

amount. This in turn enables the creation of P1
t,t+2δ , a tradable synthetic δ-term ZCB at time

t with maturity time equal to t + 2δ, with P1
t,t+2δ = P2

t,0,2 .

Shorthand Notation: P1
t,i,2 := P1

t+iδ,t+2δ for each i ∈ {0,1, 2} and t ∈ R≥0 .

Proof. See Appendix A.2 for the proof.

With the result of Lemma 4.2 at hand, it is now possible to consider the calibration of the

δ-term PK up to time t + 2δ, using market information that is available at time t.

Theorem 4.1 (Initial calibration of the δ-term PK to t + 2δ). At the current time t, the

tradable synthetic δ-term ZCB with 2δ-tenor may be modelled as

P1
t,0,2 := EP

�

Λ1
t+2δ

Λ1
t

bD1
t+2δ

�

�

�

�

Gt

�

= EP1
�

bD1
t+2δ

�

�Gt

�

, (4.7)
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where the time-inhomogeneous {(Gu),P}-martingale
�

Λ1
t+vδ

�

0≤v≤2 enables the change-of-measure
Λ1

t+2δ

Λ1
t
= dP1

dP

�

�

Gt+2δ
, and the free time-dependent parameter associated with

�

Λ1
t+vδ

�

1<v≤2 is cal-

ibrated such that EP1
�

bD1
t+2δ

�

�Gt

�

= P2
t,0,2 = P1

t,0,2 .

Proof. The definitions of the calibrated δ-term SDF and PK are specified for maturity time

t + 2δ with information at time t + δ in Lemma 4.1, viz., π1
t+2δ := Λ1

t+2δD1
t+2δ . That

structure is maintained here along with the observation that the no-arbitrage initial value

of the tradable synthetic δ-term ZCB with tenor equal to 2δ must be

P1
t,0,2 :=

1

π1
t
EP
�

π1
t+2δ

�

�Gt

�

=
1

D1
t
EP1

�

D1
t+2δ

�

�Gt

�

,

where D1
t := 1 and Λ1

t := 1 ⇒ π1
t = 1. Substituting expression (4.5) into the right hand

side of the above equation yields

EP1
�

D1
t+2δ

�

�Gt

�

= EP1

�

EP1
�

bD1
t+2δ

�

�Gt+δ
�

�

�

�

�

Gt

�

= EP1
�

bD1
t+2δ

�

�Gt

�

= EP
�

Λ1
t+2δ

Λ1
t

bD1
t+2δ

�

�

�

�

Gt

�

,

where the second line follows by the tower property of conditional expectations and the

last line by definition. Lemma 4.2 advocates that P1
t,0,2 must equal P2

t,0,2. Since the time-

dependent parameter associated with
�

Λ1
t+vδ

�

1<v≤2 is free to specify at time t, it is possible

to calibrate this quantity such that EP1
�

D1
t+2δ

�

�Gt

�

= P2
t,0,2 , which concludes the proof.

Remark 4.1 (Term-dependent market price of systemic risk). Since the estimated δ-term

SDF is used to model the tradable 2δ-term ZCB, it is conjectured that a time-inhomogeneous

market price of risk structure is necessary. There are two notions of time in this framework:

(i) universal calendar time defined by the variable u and a current time denoted by t; and

(ii) term and tenor times determined by natural number multiples of δ. Therefore, the process
¦

Λ1
t+ jδ ; j ∈ {0, 1,2}

©

being time-inhomogeneous actually resolves to the framework advocating

for term-dependent parameters, or a term-dependent market price of systemic risk construct.

Remark 4.2 (Multiple term rates). Theorem 4.1 may be iteratively repeated out to t+ jδ, for

j ∈ {3,4, 5, . . . , m} if the corresponding reference term rates R j
t exist, and are perfectly liquid. If

one or a subset of these reference rates are not quoted, the result of the theorem still applies but

there will now be a range of viable values for the missing rates for arbitrage-free calibration.
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Remark 4.3 (Term-specific SDFs but a unique term structure). Each term has a distinct

estimated SDF, which encodes floating interest rate risk, along with a unique single-period PK.

The ability to replicate all tradable ZCBs via a system of FRAs leads to a single-curve interest

rate term structure, and enables multi-period calibration for all PKs. Since the δ-term bears

the least credit risk, its pricing measure is the closest to the classical risk-neutral measure.

Theorem 4.1 relied on the SST’s ability to create a FRA. The resultant δ-term PK therefore

encodes the arbitrage-free mechanics to price and value such a product. Pricing this FRA,

which is formalised in the next corollary, will reveal the fair FRA rate to be the simple

forward rate that is constructed from the δ- and 2δ-term rates, which is defined next.

Definition 4.1 (δ× 2δ Forward ate). At u ∈ R≥0 , the δ× 2δ forward rate is a simple rate,

denoted by F(u; u + δ, u + 2δ) , at which one may deposit (borrow) money over the future

δ-term [u+δ, u+ 2δ]. The net capital plus interest yield (cost) at time u+ 2δ is

1+δF(u; u+δ, u+ 2δ) :=
�

1+ 2δR2
u

� � �

1+δR1
u

�

, (4.8)

with F(u; u+δ, u+ 2δ) being Gu-measurable. See Appendix A.3 for a construction strategy.

Shorthand Notation: In general the jδ× ( j + 1)δ forward rate will be denoted as:

F1
u,i, j := F (u+ iδ; u+ jδ, u+ ( j + 1)δ) , (4.9)

for all i, j ∈ N0 , with i ≤ j and u ∈ R≥0 .

Corollary 4.1 (δ×2δ FRA pricing). The fair strike rate process for the general version of the

δ× 2δ FRA defined in Lemma 4.2 is given by the Gt+iδ-measurable process

F1
t,i,1 =

1
δ

�

P1
t,i,1

P1
t,i,2

− 1

�

=
1
δ

�

EP1
�

bD1
t+δ

�

�Gt

�

EP1
�

bD1
t+2δ

�

�Gt+iδ

� − 1

�

, (4.10)

for i ∈ {0,1} , with F1
t,1,1 = R1

t+δ , the δ-term rate at time t +δ.

Proof. See Appendix A.4 for the proof.

Remark 4.4 (Multi-period arbitrage-free models). The availability of multiple tradable term

rates, and their associated ZCBs, enables the SST to construct a multi-period arbitrage-free

model, over [t, t +mδ] for m ≥ 2 . Equation (4.10) emphasises the fact that volatility is still

statistically estimated, even with the existence of FRAs. Within this context, the SST may use

the multi-period δ-term PK for general pricing and valuation, however to use the PK to risk

manage derivatives written on rates other than the δ-term rate would be inconsistent.
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5 Multiple term rates with illiquidity

The multiple term rate system of the previous section is again considered here, except that

the assumption of perfect liquidity is revoked. The definition of the respective term rates

revert back to the general form in Axiom 2.6. From the perspective of the SST, the added

illiquidity features proposed by Axiom 2.7 has to be modelled into the framework.

In Appendix B, one such model for a general nδ-term quote rate is provided, in Defini-

tion B.1, that incorporates term, nominal size, asymmetric liquidity spreads (due to loans

and deposits), as well as specific SST and systemic illiquidity. Through fair valuation at the

systemic level and suitable aggregation, Proposition B.1 and Corollary B.1 provide the nec-

essary justification for a simpler symmetric model specification based on a systemic liquidity

indicator. This construction is formalised in the next definition, followed by the definition of

a potentially illiquid nδ-term rate, from the perspective of the SST. A more general 3-state

costly systemic liquidity indicator is also presented in Appendix B, in Definition B.2, along

with comparable results, in Lemma B.1 that are derived later in this section. In order to ease

the exposition, the simpler 2-state specification is considered here. All of the results derived

here still hold within the more general setting, modulo minor adjustments and assumptions.

Definition 5.1 (Systemic liquidity indicators). At time u ∈ R≥0 , the binary random variable

Ln
u assumes a value of 1 if perfect systemic liquidity exists for the nδ-term rate, or 0 otherwise.

If the current time is t, then the natural filtration associated with liquidity is

Lt := σ
��

{L1
u, L2

u, . . . , Lm
u } ; u ∈ {t0, t1, . . . , tk}

	�

, (5.1)

where {t0, t1, . . . , tk} denotes the set of trading days that lie within the interval [0, t]. The sys-

temic liquidity indicators are assumed to exhibit both serial and cross-sectional independence,

or more formally:

EP
�

Ln
u

�

�Lt ∩σ
�

{Ln
u /∈ {0, 1}}

��

= EP
�

Ln
u

�

= P
�

Ln
u = 1

�

:= qn
u , (5.2)

for all t ≤ u, with qn
u := q(u, u+nδ) being a deterministic function for the probability of perfect

systemic nδ-term liquidity at time u.

Definition 5.2 (Potentially illiquid nδ-term rate). At some arbitrary time u< t, the nδ-term

rate
eRn

t := Rn
t Ln

t , (5.3)
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is potentially illiquid from the vantage point of u if Ln
t = 0, i.e., it will not be possible for the

SST to borrow from (or deposit with) the STR, at time t, for a tenor equal to nδ.

These liquidity indicators enable the definition of various liquidity regimes, which in turn

enables the definition of a set of term- and liquidity-dependent pricing kernels (LDPKs), all

from the perspective of the SST. First, the various regimes of liquidity are defined.

Definition 5.3 (Liquidity regimes). Let i, j ∈ N0 , with i < j, and define the counting sets

Ni, j := {i, i + 1, . . . , j − 1, j} and

Nn
i, j := {i, i + n, . . . , i + (k− 1)n, i + kn} ,

where k := b( j − i)/nc − 1 , Ni,i := ; and Nn
i,i := ;. At time u, the following liquidity regimes

are possible over the interval [u, u+mδ]:

(i) NPFL - No present nor future liquidity exists on the set

L NPFL
u,u+mδ := σ

�¦

Ln
u+iδ = 0 ; n ∈ N1,m , i ∈ Nn

0,m

©�

. (5.4)

(ii) NPL - No present liquidity only exists on the set

L NPL
u,u+mδ := σ

��

Ln
u = 0 ; n ∈ N1,m

	�

. (5.5)

(iii) PPL - Only partial present liquidity exists on the set

L PPL
u,u+mδ := σ

��

Ln
u = 1 ; n ⊂ N1,m

	�

. (5.6)

(iv) CPL - Complete present liquidity only exists on the set

L CPL
u,u+mδ := σ

��

Ln
u = 1 ; n ∈ N1,m

	�

. (5.7)

(v) CPFL: Complete present and future liquidity exists on the set

L CPFL
u,u+mδ :=L 1

u,u+mδ ∨L
2
u,u+mδ ∨ . . .∨L m

u,u+mδ

=L CPL
u,u+mδ ∨L

1
u+δ,u+mδ ∨L

2
u+2δ,u+mδ ∨ . . .∨L m

u+mδ,u+mδ , (5.8)

where L n
u+iδ,u+mδ := σ

��

Ln
u+ jδ = 1 ; j ∈ Nn

i,m

	�

models liquidity in the nδ-term rate

over [u+ iδ, u+mδ] if (m− i)mod n= 0 , or [u+ iδ, u+mδ) otherwise, for i ∈ N0,m .
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Regimes (i) and (ii) are complements of (iv) and (v), respectively. Regimes (ii), (iii) and (iv)

pose uncertain future liquidity, with (iii) also posing uncertain present liquidity for some terms.

Shorthand Notation: L X
u,i, j :=L X

u+iδ,u+ jδ for all i, j ∈ N0 , with i ≤ j and u ∈ R≥0 .

Remark 5.1 (Implications of the CPFL regime). Under the CPFL regime all of the results from

Sections 3 and 4 may be recovered, i.e., multi-period arbitrage-free term-dependent pricing

kernels with associated term-dependent systemic pricing measures.

In Appendix C, the definitions of an nδ-term LDPK is provided over a single period [t, t+nδ],

and then over multiple periods [t, t + iδ] , for i ∈ Nn
0,m+n . Both Definitions C.1 and C.2

clearly reveal that the regime of liquidity has a significant impact on the form of the pric-

ing kernel associated with each tradable term. The impact of present liquidity or illiquidity

is fundamental, with the latter requiring the subjective process of market-making. Mod-

elling the term rate market-making process of the STR is not an objective of this research,

therefore the prevalence of the CPL regime will be a minimal assumption in all that fol-

lows. Then, from a practical perspective, in order to deal with potential future illiquidity,

presently available liquidity must be fully exploited. This is achieved through the definition

of the following hybrid-term LDPK.

Definition 5.4 (Hybrid-term LDPK). At the current time t, the PK defined by

eπt+iδ =



























π1
t+iδ , conditional onL CPL

t,0,i ∨L
1
t,1,i , for i ∈ N1

1,m+1 ,

π2
t+iδ , conditional onL CPL

t,0,i ∨L
2
t,2,i , for i ∈ N2

2,m+2 ,
... ,

...
... ,

... ,

πm
t+iδ , conditional onL CPL

t,0,i ∨L
m
t,m,i , for i ∈ Nm

m,2m ,

(5.9)

with eπt := 1 , is called the hybrid-term liquidity-dependent pricing kernel.

The hybrid-term LDPK is only well-defined at time t, and may be used to present value fu-

ture cash flows due at time t + iδ back to time t only, for i ∈ N1,m . For the intertemporal

valuation of the same cash flows back to a future time t + hδ, for h ∈ N1,i−1 , but from the

vantage point of time t, one would require the prevalence of the CPFL regime at time t in

order to have a well-defined PK over [t + hδ, t + iδ] . However, invoking the CPFL regime

would recover the setup of the previous section, the PK would coincide with one of the term-

dependent PKs defined in that section, and there’d be no need for the hybrid-term LDPK.

With the hybrid-term LDPK it is now possible to consider again the pricing (or market-

making) of a δ×2δ FRA, from the perspective of the SST, under potential future illiquidity.
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Assuming that the CPL regime prevails at the time of pricing, the SST will have to subjec-

tively specify the probability of future liquidity, articulated here via the liquidity indicators.

Lemma 5.1 (δ×2δ FRA pricing under potential future illiquidity). The fair strike rate process

for the general version of the δ× 2δ FRA defined in Lemma 4.2 is

F(t + iδ; t +δ, t + 2δ) =







q1
t+δF1

t,0,1 , i = 0 and conditional on L CPL
t,0,2 ,

F1
t,1,1 , i = 1 and conditional on L CPL

t,1,2 ,
(5.10)

which is also Gt+iδ-measurable.

Shorthand Notation: In general the jδ× ( j + 1)δ FRA rate will be denoted by:

F
1
u,i, j := F (u+ iδ; u+ jδ, u+ ( j + 1)δ) , (5.11)

for all i, j ∈ N0 , with i ≤ j and u ∈ R≥0 .

Proof. Assuming that Lt =Lt− ∨L CPL
t,0,2 , the standard FRA replication strategy yields

eVt+2δ = αN
�

�

1+δeR1
t+δ

�

−
�

1+δF1
t,0,1

��

= Vt+2δ −αNδ
�

1− L1
t+δ

�

R1
t+δ ,

where F1
t,0,1 is defined in Corollary 4.1 and Vt+2δ is the payoff of a fair δ × 2δ FRA that is

not exposed to liquidity risk. Let Mt := Gt ∨Lt , then using the hybrid-term LDPK from

Definition 5.4, the current value of the above payoff is

eπt eVt = EP
�

eπt+2δeVt+2δ

�

�Mt

�

= EP
�

EP
�

eπt+2δeVt+2δ

�

�Mt , L1
t+δ

� �

�Mt

�

= EP
�

EP
�

eπt+2δeVt+2δ

�

�Mt , L1
t+δ = 1

�

P
�

L1
t+δ = 1

� �

�Mt

�

+EP
�

EP
�

eπt+2δeVt+2δ

�

�Mt , L1
t+δ = 0

�

P
�

L1
t+δ = 0

� �

�Mt

�

which follows by the tower property of conditional expectations. Since eπt := 1 and observ-

ing that L 1
t,0,2 = σ

�

{L1
t+δ = 1}

�

and L 2
t,0,2 = ;, it follows that

eVt = EP
�

π1
t+2δVt+2δ

�

�Mt

�

q1
t+δ −E

P
�

π2
t+2δαNδF1

t,0,1

�

�Mt

�

�

1− q1
t+δ

�

= q1
t+δVt −αN

�

1− q1
t+δ

�

δF1
t,0,1P2

t,0,2 ,

using the definition of the hybrid-term LDPK. Vt is the fair value of the FRA under perfect
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liquidity, and therefore equal to 0. Trading this FRA with the strike rate equal to the fair

FRA rate defined in the perfect liquidity setting therefore leads to an initial loss (gain) if

the market-maker is long (short). The assumption here is that Vt+2δ will still be the FRA

payoff even when L1
t+δ = 0 and the strong case of no systemic liquidity is in effect. In reality,

there will still be a reference δ-term rate that is contractually specified for such a case by

the relevant FRA ISDA documentation.

Setting the FRA strike rate to an arbitrary value, F
1
t,0,1, and pricing via the same process

gives
eVt = αq1

t+δN
�

P1
t,0,1 −

�

1+δF
1
t,0,1

�

P1
t,0,2

�

−αN
�

1− q1
t+δ

�

δF
1
t,0,1P2

t,0,2 ,

while setting eVt = 0 , recalling that P2
t,0,2 = P1

t,0,2 , and solving for the fair FRA strike rate

yields F
1
t,0,1 = q1

t+δF1
t,0,1 , as required. Repeating this pricing process at time t + δ , for

exactly the same contract and assuming that the CPL liquidity regime, L CPL
t,1,2 , prevails at

this time, it is trivial to show that F
1
t,1,1 = F1

t,1,1 , which completes the proof.

Contingent on present liquidity, the pricing of a FRA still requires a subjective view on future

liquidity. Therefore, the SST must be afforded some level of risk appetite in order to market-

make such derivatives. This is in stark contrast with the perfect liquidity setting where the

SST could replicate FRAs perfectly, and thereby required (nor deserved) any risk appetite.

In general then, the SST will have the capacity for exposure to residual risk. This, combined

with the zero net supply9 and unfunded10 nature of linear derivatives, such as FRAs, allows

the SST substantial flexibility in their market-making process.

Remark 5.2 (FRA liquidity is not completely contingent on the CPL regime). Even if the

NPL regime were to prevail, the SST’s capacity to carry residual risk and potentially hedge

in the future, through offsetting positions, will still enable the pricing of FRAs. Practically,

this decouples the theoretical contingency of the SST on the STR, or equivalently, interest rate

derivatives on the set of primitive term rates. However, Lemma 5.1 reveals that there is structure

to said decoupling with forward rates required to dominate corresponding FRA rates.

Lemma 4.2, presented under the assumption of perfect liquidity, enforced the early liquida-

tion value of a 2δ-term rate (or ZCB) by replacement. This result was used in conjunction

with the replication of a δ × 2δ FRA to create a synthetic δ-term ZCB with 2δ-tenor. An

analogous result is possible here, however it is contingent on δ × 2δ FRA and δ-term rate

liquidity. Therefore, based on the discussion leading up to and including Remark 5.2, it

9A derivative transaction only exists once there is a willing buyer and seller - the market-maker may be either.
10In general, linear financial derivatives are exchange-traded and margined or over-the-counter and collater-

alised, subject to a zero-threshold credit support annex, and require no initial capital outlay.
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is now assumed that a FRA market has been established within the inter-bank derivatives

market. While the individual STs that constitute the SST would be responsible for the es-

tablishment of the FRA market through active market-making via model creation; here the

SST is considered to be a separate entity that is observing this market at a systemic level and

considering the problem of passive market-making via model calibration. Only the stylised

problem from Lemma 4.2 and Theorem 4.1 is considered again here - the general version

of this problem is considered in the next section.

Assumption 5.1 (δ×2δ FRA market-making). The individual STs have sufficient risk appetite

to market-make and enable liquidity of the δ× 2δ FRA at time t. At this time, the fair or mid

market FRA rate, denoted here by bF1
t,0,1 , is used by the SST together with the result from Lemma

5.1 for the purpose of calibration.

In particular, setting F
1
t,0,1 = bF

1
t,0,1 and assuming that Lt =Lt− ∨L CPL

t,0,2 enables the SST to

compute

q1
t+δ =

F
1
t,0,1

F1
t,0,1

, (5.12)

using equation (5.10), which is now the market-implied probability of perfect δ-term liq-

uidity at time t +δ using information available at the current time t.

Definition 5.5 (Systemic δ×2δ FRA liquidity indicator). At time t + iδ, for each i ∈ {0, 1},
the binary random variable L

1
t,i,1 assumes a value of 1 if perfect systemic liquidity exists for the

δ×2δ FRA, or 0 otherwise. When i = 0, perfect systemic liquidity means that Assumption 5.1

holds, and it is assumed that

σ
�¦

L
1
t,0,1 = 1

©�

⊃L CPL
t,0,2 . (5.13)

When i = 1, perfect systemic liquidity is equivalent to L1
t+δ = 1, or

σ
�¦

L
1
t,1,1 = 1

©�

=L 1
t,1,2 . (5.14)

If the current time is t, then the natural filtration associated with liquidity is now

L t :=Lt ∨σ
�¦

L
1
u,0,1 ; u ∈ {t0, t1, . . . , tk}

©�

, (5.15)

where {t0, t1, . . . , tk} denotes the set of trading days that lie within the interval [0, t] and Lt

is defined in Definition 5.1, equation (5.1). Since the systemic FRA liquidity indicators will

only be used to indicate regimes of liquidity and will not be used for pricing, the probabilistic

structure of these are left unspecified.

25



Using the δ×2δ FRA along with the δ-term rate, it is now possible to formulate the analog

to Lemma 4.2 within this setting of potential illiquidity. The synthetic δ-term ZCB that is

constructed here is referred to as a liquidity-contingent zero coupon bond (LCZCB), since

its definition relies on the availability of liquidity in the aforementioned instruments.

Lemma 5.2 (Synthetic δ-term LCZCB with 2δ-tenor). Assuming that L
1
t,0,1 = 1, and setting

F
1
t,0,1 = bF

1
t,0,1 , it is possible to replicate the following ZCB:

P
1
t,i,2 :=















D1
t+δ

�

�

1+δF
1
t,0,1

�

, i = 0 ,

P1
t,1,2 , i = 1 ,

1 , i = 2 ,

(5.16)

provided that L1
t = L1

t+δ = 1 , or equivalently that L 1
t,0,2 holds.

Proof. Assuming that L1
t = L1

t+δ = 1, it is possible to borrow (deposit) M units of currency

at the δ-term rate at time t and refinance (re-deposit) the total cost (proceeds) thereof at

time t +δ, such that the cumulative cost (yield) is M
�

D1
t+2δ at time t +2δ. Combining this

loan (deposit) with a long (short) position in a fair δ×2δ market FRA with strike rate F t,0,1

and N = M
�

D1
t+δ will enable the conversion of the floating cost (yield) to a fixed cost (yield)

equal to M
�

1+δF
1
t,0,1

�

�

D1
t+δ at time t +2δ. Setting M = D1

t+δ

�

�

1+δF
1
t,0,1

�

, enables the

creation of the synthetic δ-term LCZCB, with 2δ-tenor, given by equation (5.16). Since it is

assumed that L1
t+δ = 1, it is clear that P

1
t,1,2 = P1

t,1,2 , which completes the proof.

Lemma 5.1 and 5.2 provides the basis for the construction of a δ-term LCZCB system, one

that is created by exchanging δ-term floating-for-fixed interest rate risk. It is possible to

model this system via the definition of a liquidity-contingent pricing kernel (LCPK). The

δ-term LCPK is defined over the interval [t, t + 2δ] in the next theorem.

Theorem 5.1 (δ-Term LCPK). Contingent on L
1
t,0,1 = L1

t = L1
t+δ = 1, or equivalently

L t :=Lt− ∨σ
�¦

L
1
t,0,1 = 1

©�

∨L 1
t,0,2 , (5.17)

using the result from Lemma 5.2 and recalling that Ft := Gt ∨L t , the δ-term LCPK may be

defined as

π1
t+ jδ := π1

t+ jδΘ
1
t+ jδ , (5.18)

for j ∈ {0,1, 2} , where the time-inhomogeneous {(Gu),P1}-martingale
�

Θ1
t+vδ

�

0≤v≤2 , with

Θ1
t := 1 , enables the change-of-measure from P1 to Q1 on Gt+ jδ , i.e.,

Θ1
t+ jδ

Θ1
t
= dQ1

dP1

�

�

Gt+ jδ
, such
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that the EP
�

π1
t+δ

�

�Ft

�

= P1
t,0,1 and the EP

�

π1
t+2δ

�

�Ft

�

= P
1
t,0,2 .

Proof. Since L CPL
t,0,2 ⊂ σ

�¦

L
1
t,0,1 = 1

©�

, by Definition 5.5, it follows that L CPFL
t,0,2 ⊂ L t and

that the δ-term PK is well defined over [t, t+2δ]. Therefore,
¦

π1
t+ jδ , j ∈ {0,1, 2}

©

is a good

initial candidate for the LCPK, however it does not recover the initial price of the synthetic

δ-term LCZCB with 2δ-tenor. The definition of the {(Gu),P1}-martingale
�

Θ1
t+vδ

�

0≤v≤2 en-

ables a change-of-measure such that

EP
�

Λ1
t+2δΘ

1
t+2δD1

t+2δ

�

�Ft

�

= EP1
�

Θ1
t+2δD1

t+2δ

�

�Ft

�

= EQ1
�

D1
t+2δ

�

�Ft

�

:= P
1
t,0,2 ,

as required, recalling that Λ1
t = Θ

1
t = 1, i.e., the free time-dependent parameters associated

with
�

Θ1
t+vδ

�

1<v≤2 is free to specify at time t such that the expectation equals P
1
t,0,2 . Also,

at the future time t + δ, since L t+δ ⊃ L t ⊃ L 1
t,0,2 it follows that L1

t+δ = 1 and recalling

that D1
t+2δ is Gt+δ-measurable, then

1

π1
t+δ

EP
�

Λ1
t+2δΘ

1
t+2δD1

t+2δ

�

�Ft+δ
�

=
D1

t+2δ

D1
t+δΘ

1
t+δ

EP1
�

Θ1
t+2δ

�

�Ft+δ
�

=
D1

t+2δ

D1
t+δ

= P1
t,1,2 ,

which shows that the value of the synthetic δ-term LCZCB, given by equation (5.16), is

recovered by the δ-term LCPK. Since D1
t+δ = P1

t,0,1 is Gt -measurable, it follows straightfor-

wardly that

EP
�

Λ1
t+δΘ

1
t+δD1

t+δ

�

�Ft

�

= P1
t,0,1E

P1
�

Θ1
t+δ

�

�Ft

�

= P1
t,0,1 ,

which completes the proof, showing that: (i) the free time-dependent parameters associated

with
�

Θ1
t+vδ

�

0<v≤1 may be specified freely at time t; and (ii) the δ-term LCPK is calibrated

to the δ-term rate and the synthetic δ-term LCZCB with 2δ-tenor.

It may not be apparent but the definitions of the synthetic δ-term LCZCB and its associated

LCPK, from Lemma 5.2 and Theorem 5.1, had two steps and associated contingencies:

(i) the interval [t, t + 2δ], or more specifically the set {t, t + δ, t + 2δ}, requires that

L 1
t,0,2 holds, or equivalently that L1

t = L1
t+δ = 1, and that L

1
t,0,1 = 1; and

(ii) the future interval [t +δ, t +2δ], or more specifically the set {t +δ, t +2δ}, requires

that L 1
t,1,2 holds, or equivalently that L1

t+δ = 1.

In general, to extend these definitions over the interval [t, t +mδ], would require m steps:

• at the current time t and over the set {t, t + δ, . . . , t +mδ}, one would require that

L 1
t,0,m holds and that L

1
t,0, j = 1 for j ∈ N1,m−1;

27



• at each future time t + iδ and over the set {t + iδ, t + (i + 1)δ, . . . , t + mδ}, for

i ∈ N1,m−2 , one would require L 1
t,i,m and that L

1
t,i, j = 1 for j ∈ Ni+1,m−1; and

• at the future time t + (m− 1)δ and over the set {t + (m− 1)δ, t +mδ}, one would

require that L 1
t,m−1,m holds.

This will form the basis for the reduced-form modelling approach that is developed in the

next section. This section is concluded with a few remarks that aim to assist the reader to

build intuition in relation to all of the theory that has been presented thus far.

Remark 5.3 (LCZCBs are not tradable). The δ-term ZCB-system that was introduced in Sec-

tion 4, assuming perfect liquidity, viz.,

¦

P1
t,i, j ; i ∈ N0, j , j ∈ N0,m

©

, (5.19)

denotes a set of tradable ZCBs whose tenors span the interval [t, t+mδ]. Moreover, recall that

under perfect liquidity all term ZCBs are replicated via the δ-term system, i.e., P1
t,i, j = P j−i

t,i, j .

Under potential illiquidity, the definition and tradability of the above set of ZCBs requiresL CPFL
t,0,m

to hold. When L CPL
t,0,m holds, this set reduces to

¦

Pn
t,0,n ; n ∈ N0,m

©

, (5.20)

i.e., the set of ZCBs derived from the systemic term funding curve, defined in Definition 2.2.

Then, the δ-term LCZCB-system, that was introduced in this section, is

¦

P
1
t,i, j ; i ∈ N0, j , j ∈ N0,m

©

, (5.21)

and is contingent upon L
1
t,i, j = 1 for all j ∈ Ni+1,m−1 and L 1

t,i,m holding for each i ∈ N0,m .

Apart from P
1
t,i,i+1 = P1

t,i,i+1 which only requires present liquidity at t+ iδ, i.e., L1
t+iδ = 1 , for

each i ∈ N0,m−1 , the remainder of the set of LCZCBs are contingent on the availability of future

liquidity and are therefore not tradable, in general11.

Remark 5.4 (Interpretation of the δ-term LCPK). Following the definition of a potentially

illiquid nδ-term rate, in Definition 5.2, an intuitive approach might have been to:

11From the perspective of an EC, long positions in LCZCBs may be enabled by the SST offering FRA liquidity
and the STR issuing floating rate notes (FRNs) that reference the δ-term rate. Short positions in LCZCBs would
require the EC to secure bespoke variable rate loan agreements from the STR that reference the δ-term rate
with zero additional spread for credit risk. This would not be possible however, unless the credit risk of the EC
was comparable to that of constituent banking entities.
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(i) specify a δ-term liquidity-cognisant SDF under P1 and over [t, t + jδ] as

eD1
t+ jδ :=

j−1
∏

i=0

1

1+δeR1
t+iδ

=
j−1
∏

i=0

1

1+δL1
t+iδR1

t+iδ

, (5.22)

for j ∈ N1,m , with eD1
t := 1; and

(ii) proceed to directly calculate ZCB prices using the δ-term liquidity cognisant SDF.

The SDF, from (i), and its associated bank account, eB1
t+ jδ := 1/eD1

t+ jδ , are relevant from a

practical perspective. The latter directly models the total proceeds (costs) of a deposit (loan)

strategy that rolls over at the δ-term frequency. The unavailability of liquidity at any roll-over

time will translate into an interest rate loss (gain) for the deposit (loan) strategy12. It is also as-

sumed that the depositor (borrower) will attempt again to re-invest (refinance) the total value

of their investment (liability) at the next roll-over time.

While the ZCB prices, from (ii), may be calculated theoretically (with plausible and tractable

model specifications), such ZCBs do not exist in reality. If these ZCBs existed, they would ensure

multi-period δ-term funding at fixed rates while also ensuring early liquidation at the δ-term

frequency, by definition. In other words, such ZCBs would immunise long (depositors) and short

(borrowers) holders from all liquidity risks. In practice, there are no financial instruments that

offer protection against liquidity risks, hence the approach that has been taken in this section

which has culminated in the definition of LCZCBs and LCPKs.

The δ-term LCPK has the following form:

π1
t+ jδ =















Λ1
t+ jδD1

t+ jδΘ
1
t+ jδ , under P ,

D1
t+ jδΘ

1
t+ jδ , under P1 ,

D1
t+ jδ , underQ1 ,

is Ft+ jδ-measurable, for j ∈ N0,m , and is calibrated at the current time t such that it re-

covers the fair iδ × (i + 1)δ FRA rates, for i ∈ N1,m−1 . In other words, unlike the intuitive

liquidity-cognisant δ-term SDF presented above, the δ-term LCPK is designed for the purpose

of FRA pricing and valuation. The calibration process is enabled by the definition of the set of

LCZCBs
�

P
1
t,0, j ; j ∈ N0,m

	

, and the {(Gu),P1}-martingale
�

Θ1
t+vδ

�

0≤v≤m which, via the fair

12The gain for the loan strategy comes at the cost of the borrower having to settle their total liability at the
roll-over time, as opposed to deferring payment by refinancing at the δ-term rate at this time.
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FRA rates, encodes the likelihood of δ-term liquidity ex-ante. In particular, this martingale

process inflates (deflates) the δ-term SDF (bank account) based on the lack of liquidity. Hence

D1
t+ jδΘ

1
t+ jδ , which is the δ-term LCPK under P1 , is an abstract representation of the δ-term

liquidity cognisant SDF, equation (5.22), both ex-ante and ex-post.

Remark 5.5 (Liquidity-Contingent Term-Dependent Market Price of Systemic Risk). Under

potential illiquidity, the δ-term market price of systemic risk modelled by
¦

Λ1
t+ jδ ; j ∈ N0,m

©

is effectively adjusted for the potential cost of illiquidity incurred when market-making FRAs

through the process
¦

Θ1
t+ jδ ; j ∈ N0,m

©

. However, this is all strictly contingent on the avail-

ability of δ-term and FRA liquidity, as described above. Therefore, the product of the afore-

mentioned processes
¦

Λ1
t+ jδΘ

1
t+ jδ ; j ∈ N0,m

©

models the liquidity-contingent term-dependent

market price of systemic risk associated with the δ-term LCPK.

Remark 5.6 (Multiple LCPKs and liquidity-contingent term structures). Each term, nδ, will

have a distinct LCPK,
¦

πn
t+ jδ ; j ∈ Nn

0,m

©

, with an associated liquidity-contingent systemic pric-

ing measure, Qn , modelled upon its perfect liquidity counterparts,
¦

πn
t+ jδ ; j ∈ Nn

0,m

©

and Pn .

This will be further illustrated in the next section. The inability to replicate all tradable ZCBs via

the system of FRAs, along with the contingency on future term rate liquidity, leads to liquidity-

contingent multi-period calibration for each tradable term. This in turn leads to multiple

liquidity-contingent term structures.

Remark 5.7 (Classical risk-neutral measure). Within this context, Q1 is the best proxy for the

classical risk-neutral measure, however it is not clear that this measure produces consistent and

coherent expectations of risk-free term rates considering the idiosyncratic and subjective market-

making processes of the STR and the constituents of the SST, and the interactions thereof.

6 Reduced-form model development

In order to formalise the construction of an arbitrary nδ-term LCZCB-system and LCPK over

an arbitrary horizon [t, t + pnδ], for p ∈ N, it is useful to provide a definition for FRA

liquidity regimes akin to the term loan and deposit regimes from Definition 5.3.

Definition 6.1 (FRA liquidity regimes). At an arbitrary time u+ iδ, complete nδ-term FRA

liquidity over the interval [u+ iδ, u+mδ] exists on the set

L n
u+iδ,u+mδ := σ

��

L
n
u,i,i+ j = 1 ; j ∈ Nn

n,m−i

	�

, (6.1)
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where i, m ∈ N0 with i ≤ m and, as in Definition 5.5, the binary random variable L
n
u,i,i+ j is

equal to 1 if perfect systemic liquidity exists for the jδ×( j+n)δ FRA, or is equal to 0 otherwise.

Also, it is assumed that

σ
�¦

L
n
u,i,i+ j = 1

©�

⊃ σ
�¦

L j
u+iδ = 1, L j+n

u+iδ = 1
©�

, (6.2)

which is the analogous assumption to equation (??) from Definition 5.5.

Shorthand Notation: L n
u,i, j :=L n

u+iδ,u+ jδ for all i, j ∈ N0 , with i ≤ j and u ∈ R≥0 .

Analogous to the construction of the δ-term LCZCB-system and its associated LCPK that was

described in the previous section, the construction of the comparable nδ-term quantities,

viz.,
�

P
n
t,in, jn ; i, j ∈ N0,p , i ≤ j

	

and
�

πn
t+ jnδ ; j ∈ N0,p

	

, over the interval [t, t+ pnδ], would

require p steps:

• at the current time t and over the set {t, t + nδ, t + 2nδ, . . . , t + pnδ}, one would

require that L n
t,0,pn and L n

t,0,pn holds;

• at each future time t + inδ and over the set {t + inδ, t + (i + 1)nδ, . . . , t + pnδ}, for

i ∈ N1,p−2 , one would require that L n
t,in,pn and L n

t,in,pn holds; and

• at the future time t + (p− 1)nδ and over the set {t + (p− 1)nδ, t + pnδ}, one would

require that L n
t,(p−1)n,pn holds.

While the construction of such term-dependent and -consistent quantities is theoretically

appealing, it is far too rigid for real-world pricing, valuation and risk management. This is

practically demonstrated by the inability of the nδ-term LCPK to model the natural tenor

transformation associated with fixed maturity financial instruments through the passage of

time, as well as the asynchronicity between calendar (t), term (nδ) and tenor (pnδ) time.

The objective of this section is to adapt the framework to cater for the aforementioned prac-

tical considerations - this is achieved through a reduced-form modelling approach.

To construct a reduced-form nδ-term LCZCB-system and LCPK over an arbitrary time in-

terval [t + iδ, t +mδ] , where n≤ m and i ∈ N0,m , the following assumptions are required.

Assumption 6.1 (CPL). At time t + iδ, the STR enables the CPL regime L CPL
t,i,m .

Assumption 6.2 (FRA market-making). At time t+ iδ, the individual STs have sufficient risk

appetite to market-make and enable the liquidity of each kδ× (k + n)δ FRA with fair or mid
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market FRA rate bF n
t,i,i+k , for k ∈ N1,m−n−i . This FRA liquidity regime exists on the set

L (n)u+iδ,u+mδ := σ
��

L
n
u,i,i+k = 1 ; , k ∈ N1,m−n−i

	�

⊃L n
u+iδ,u+mδ , (6.3)

and is therefore a richer set than that defined in Definition 6.1. Using Lemma 5.1 within this

context, the model fair kδ× (k+ n)δ FRA rate is

F
n
t,i,i+k := qn

t+(i+k)δF n
t,i,i+k ,

which the SST may set equal to bF n
t,i,i+k in order to calibrate qn

t+(i+k)δ , the probability of nδ-term

liquidity at time t + (i + k)δ. Assumption 6.1 enables the computation of F n
t,i,i+k .

Assumption 6.3 (Future nδ-term liquidity). At time t+iδ, future nδ-term liquidity according

to the set

L (n)t,i,m := σ
�¦

Ln
t+(i+k)δ = 1 ; k ∈ N1,m−n−i

©�

⊃L n
t,i,m ,

is assumed to exist, with the definitions of the reduced-form nδ LCZCB-system and LCPK being

contingent upon thus assumption.

Assumption 6.4 (Reduced-form nδ-term PK). Using the estimated nδ-term SDF from Defi-

nition 2.3 and contingent on the CPFL regime, the calibrated reduced-form nδ-term SDF is

D(n)t+ jδ := EP





Λ
(n)
t+ jδ

Λ
(n)
t+( j−1)δ

bDn
t+ jδ

�

�

�

�

Gt+( j−1)δ



 ,

where the time-inhomogeneous process
�

Λ
(n)
t+vδ

�

0≤v≤m is a {(Gu),P}-martingale, withΛ(n)t := 1,

that enables a change-of-measure from P to P(n) , the reduced-form nδ-term systemic pricing

measure. Then, commensurate with the δ-term, the calibrated reduced-form nδ-term PK is

defined by π(n)t+ jδ := Λ(n)t+ jδD(n)t+ jδ , with the time-inhomogeneous parameters associated with

Λ
(n)
t+ jδ chosen such that

P(n)t,i, j :=
1

π
(n)
t+iδ

EP
�

π
(n)
t+ jδ

�

� Gt+iδ

�

=
1

D(n)t+iδ

EP(n)
�

D(n)t+ jδ

�

� Gt+iδ

�

= P j−i
t,i, j ,

which defines the reduced-form nδ-term ZCB-system, for i, j ∈ N0,m with i ≤ j. Finally, the
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reduced-form nδ-term rate is defined by

R(n)t+iδ :=
1

nδ

 

1

P(n)t,i, j

− 1

!

,

when ( j − i) = n . For n= 1, the reduced-form δ-term PK is identical to its counterpart.

It is now possible to define the reduced-form synthetic nδ-term LCZCB-system, the intertem-

poral values of which will be used in the definition of the reduced-form nδ-term LCPK.

Lemma 6.1 (Reduced-form synthetic nδ-term LCZCB-system). Given assumptions 6.1, 6.2,

6.3 and 6.4, the reduced-form synthetic nδ-term LCZCB system is defined by

P
(n)
t,i, j :=







































































D1
t+(i+1)δ

D1
t+iδ

( j−i−n−1)/n
∏

k=0

�

1+ nδF
n
t,i,i+nk+1

�−1
, mod( j − i, n) = 1 ,

D2
t+(i+2)δ

D2
t+iδ

( j−i−n−2)/n
∏

k=0

�

1+ nδF
n
t,i,i+nk+2

�−1
, mod( j − i, n) = 2 ,

... ,
... ,

Dn−1
t+(i+n−1)δ

Dn−1
t+iδ

( j−i−2n+1)/n
∏

k=0

�

1+ nδF
n
t,i,i+nk+n−1

�−1
, mod( j − i, n) = n− 1 ,

Dn
t+(i+n)δ

Dn
t+iδ

( j−i−2n)/n
∏

k=0

�

1+ nδF
n
t,i,i+n(k+1)

�−1
, mod( j − i, n) = 0 ,

(6.4)

for n< ( j − i)≤ m, while for 0≤ ( j − i)≤ n the definition resolves to

P
(n)
t,i, j :=







































Pn
t, j−n, j , i = j − n ,

Pn−1
t, j−n+1, j , i = j − (n− 1) ,
... ,

... ,

P1
t, j−1, j , i = j − 1 ,

1 , i = j ,

(6.5)

with i, j ∈ N0,m and i ≤ j .

Proof. See Appendix D.1 for the proof.

Theorem 6.1 (Reduced-form nδ-term LCPK). Maintaining the setup of Lemma 6.1, as well
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as the result thereof, a reduced-form nδ-term LCPK may be defined as

π
(n)
t+ jδ := π(n)t+ jδΘ

(n)
t+ jδ , (6.6)

for j ∈ N0,m , where Θ(n)t := 1 and

Θ
(n)
t+ jδ

Θ
(n)
t+iδ

=











1 , 0≤ j − i ≤ n ,
X n

t+ jδ

X n
t+iδ

, n< j − i ≤ m .

The process
�

X n
t+vδ

�

0≤v≤m is chosen to be a time-inhomogeneous {(Gu),P(n)}-martingale, with

X n
t := 1, that enables a change-of-measure from P(n) to Q(n) on Gt+ jδ , i.e.

X n
t+ jδ

X n
t
=

dQ(n)
dP(n)

�

�

Gt+ jδ
,

such that

π
(n)
t+iδP(n)t,i, j = E

P
�

π
(n)
t+ jδ

�

�Gt+iδ

�

,

for all i, j ∈ N0,m with i ≤ j.

Proof. By Assumption 6.4 and construction, the reduced-form nδ-term PK recovers the

reduced-form synthetic nδ-term LCZCB value for 0 ≤ ( j − i) ≤ n, i.e., P
(n)
t,i, j = P j−i

t,i, j = P(n)t,i, j .

Therefore, the reduced-form nδ-term PK {π(n)t+ jδ ; j ∈ N0,m} is a good initial candidate for the

reduced-form nδ-term LCPK. However, when n< ( j− i)≤ m then P(n)t,i, j = P j−i
t,i, j 6= P

n
t,i, j . The

definition of the {(Gu),P(n)}-martingale
�

X n
t+vδ

�

0≤v≤m enables a change-of-measure such

that

EP





Λ
(n)
t+ jδ

Λ
(n)
t+iδ

Θn
t+ jδ

Θn
t+iδ

D(n)t+ jδ

D(n)t+iδ

�

�

�

�

Gt+iδ



= EP(n)





X n
t+ jδ

X n
t+iδ

D(n)t+ jδ

D(n)t+iδ

�

�

�

�

Gt+iδ



= EQ(n)





D(n)t+ jδ

D(n)t+iδ

�

�

�

�

Gt+iδ



 ,

may be set to the value of P
n
t,i, j by calibrating the free time-dependent parameters associated

with X n
t+ jδ . Finally, observe that

1

π
(n)
t+iδ

EP
�

π
(n)
t+ jδ

�

�Gt+iδ

�

=























1 , j − i = 0 ,

P j−i
t,i, j , j − i ≤ n ,
1

D(n)t+iδ

EQ(n)
�

D(n)t+ jδ

�

�Gt+iδ

�

, j − i > n ,

for all i, j ∈ N0,m with i ≤ j, which is the required dynamics and completes the proof.

34



Acknowledgments. We are grateful to A. Backwell, E. Schlögl, and D. Skovmand for dis-

cussions on term structures of interest rates. We also thank seminar and conference par-

ticipants at the SFRA Colloquium and Workshop, ICMS, Edinburgh, U.K. (February 2019),

the Research in Options 2019 Conference, IMPA, Rio de Janeiro, Brazil (December 2019),

at the Union Bank of Switzerland (UBS), London, U.K. (February 2020), and the Interest

Rate Reform Conference, World Business Strategies (WBS), London, U.K. (March 2020) for

comments and suggestions.

A Multiple term rates with perfect liquidity

A.1 Proof for Lemma 4.1

Proof. While the 2δ-term rate and its associated ZCB is a fixed-term product, the prevailing

assumptions along with perfect liquidity enables early liquidation via replacement. The

SST, as a market-taker, could easily terminate (redeem) the loan (deposit) at time t +δ, by

taking an opposite position using the tradable δ-term rate. Therefore, to preclude arbitrage,

equation (4.4) must be the fair liquidation value of the tradable 2δ-term ZCB at time t +δ.

At time t + 2δ, the calibrated δ-term SDF must have the representation

D1
t+2δ :=

1
�

1+δR1
t

�

1
�

1+δR1
t+δ

� ,

to preclude arbitrage. Since R1
u is Gu-measurable respectively, it should be clear that D1

t+2δ is

Gt+δ-measurable. From equation (4.4), it then follows that D1
t+2δ = D1

t P1
t,1,2. Finally, equa-

tion (4.5) follows in a similar manner to Lemma 3.1 with the free time-dependent parameter

associated with
�

Λ1
t+vδ

�

1<v≤2 enabling the calibration, which concludes the proof.

A.2 Proof for Lemma 4.2

Proof. The long (short) FRA payoff, equation (4.6), may be replicated, at zero cost (i.e. Vt =

0), by borrowing (depositing) N P1
t,0,1 at the 2δ-term rate and simultaneously depositing

(borrowing) N P1
t,0,1 at the δ-term rate at time t, and depositing (borrowing) the proceeds

thereof, which is the nominal amount N , again at the δ-term rate at time t + δ.13 Using

13Depositing (borrowing) at one of the term rates is equivalent to buying (selling) the associated ZCB.
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Lemma 4.1, it is straightforward to show that the fair value of the FRA at time t +δ is

Vt+δ = αN

�

1−
P1

t,0,1

P2
t,0,2

P1
t,1,2

�

. (A.1)

Borrowing (Depositing) P2
t,0,2 units of currency at the δ-term rate at time t and refinancing

(redepositing) the total cost (proceeds) thereof at time t+δ would cumulatively cost (yield)

P2
t,0,2

�

D1
t+2δ at time t + 2δ. Combining this position with a long (short) FRA, with N =

P2
t,0,2

�

D1
t+δ = P2

t,0,2

�

P1
t,0,1, would result in a net cost (yield) of 1 unit of currency at time

t + 2δ, and a net cost (yield) of P1
t,1,2 at time t + δ, using equation (A.1). The combined

strategy therefore has a value of P2
t,0,2 at time t and replicates the value of the 2δ-term ZCB

at times t + δ and t + 2δ. Having the δ-term SDF as the key building block, this strategy

creates a synthetic δ-term ZCB,
¦

P1
t,i,2 ; i ∈ {0,1, 2}

©

, at time t with maturity time t + 2δ,

such that P1
t,0,2 = P2

t,0,2, P1
t,2,2 = P2

t,2,2 = 1 and P1
t,1,2 is the interim fair value at time t + δ,

which concludes the proof.

A.3 Forward Rate Construction for Definition 4.1

Depositing (borrowing) one unit of currency at F1
u,01 is achieved by:

(i) borrowing (depositing) P1
u,0,1 units of currency at the δ-term rate at time u;

(ii) simultaneously depositing (borrowing) the same amount at the 2δ-term rate; and

(iii) depositing (borrowing) one unit of currency to settle transaction (i) at time u+δ.

A.4 Proof for Corollary 4.1

Proof. The general version of the δ× 2δ FRA has the following terminal payoff

Vt+2δ = αN
��

1+δR1
t+δ

�

− (1+δK)
�

= αN

�

1

P1
t,1,2

− (1+δK)

�

,
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where K is an arbitrary fixed rate specified at initiation of the contract, at time t. Using the

calibrated δ-term PK from Theorem 4.1, the initial arbitrage-free value of the FRA is

Vt =
1

π1
t
EP
�

π1
t+2δVt+2δ

�

�Gt

�

=
1

D1
t
EP1

�

D1
t+2δVt+2δ

�

�Gt

�

= αEP1
�

D1
t+δ

�

�Gt

�

−α (1+δK)EP1
�

D1
t+2δ

�

�Gt

�

= αP1
t,0,1 −α (1+δK) P1

t,0,2 ,

where the third line follows from Lemma 4.1, viz. D1
t+2δ = D1

t+δP1
t,1,2 , and the last line

by definition of the δ-term PK. Setting Vt = 0 and solving for the fair strike rate yields

K =
�

P1
t,0,1

�

P1
t,0,2 − 1

�

�

δ. Repeating this process at time t + δ, for exactly the same con-

tract, would then yield K =
�

P1
t,1,1

�

P1
t,1,2 − 1

�

�

δ. Combining these two results leads to the

definition of the fair strike rate process, equation (4.10), while observing that

P1
t,i,1 =

1

D1
t+iδ

EP1
�

D1
t+δ

�

�Gt+iδ

�

=
1

D1
t+iδ

EP1
�

bD1
t+δ|t

�

�Gt

�

,

for i ∈ {0, 1} , and that

P1
t,i,2 =

1

D1
t+iδ

EP1
�

D1
t+2δ

�

�Gt+iδ

�

=
1

D1
t+iδ

EP1
�

bD1
t+2δ|t

�

�Gt+ jδ

�

for i ∈ {0, 1,2} and j = min(i, 1) , which follows by the tower property of conditional ex-

pectation, completes the proof.

B Systemic liquidity indicators

Definition B.1 (General nδ-Term Quoted Rate). Assume that u and t are quoting and trading

times respectively, with u< t . For a nominal amount N, the SST may model a future STR nδ-

term deposit/loan quote rate as

Rn,N
t,α,β := Rn

t Ln,N
t,α,β (B.1)

where α is equal to sgn(1) for a deposit, sgn(−1) for a loan; β is a state variable equal to 3 if

the SST can source perfect liquidity, 2 if the SST can source costly liquidity, 1 if only the SST
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can’t source liquidity and 0 if there is no systemic liquidity; and the liquidity indicator

Ln,N
t,α,β :=



























1 , if β = 3, with probability qn,N
t,α,3 ,

1−α∆n,N
t,α

�

�

nδRn
t Pn

t,0,n

�

, if β = 2, with probability qn,N
t,α,2 ,

0 , if β = 1, with probability qn,N
t,α,1 ,

0 , if β = 0, with probability qn,N
t,α,0 ;

(B.2)

isLt -measurable, with∆n,N
t,α :=∆(t, t+nδ, N ,α) , a positive real-valued function which mod-

els the absolute future cost per unit nominal, and the probability qn,N
t,α,β := q(t, t + nδ, N ,α,β)

both assumed to be deterministic functions. By the law of total probability
∑3
β=0 qn,N

t,α,β = 1 ,

while it must also hold that Ln,N
t,+,0(ω) = Ln,N

t,−,0(ω) a.s. , so that the likelihood of systemic illiq-

uidity is equal for both loans and deposits, i.e., qn,N
t,+,0 = qn,N

t,−,0 .

Proposition B.1 (Expected Future Value and Cost of nδ-Term Liquidity). Consider a set

of nominals {N n
t,α,1, N n

t,α,2, . . . , N n
t,α,b} with associated weights {wn

t,α,1, wn
t,α,2, . . . , wn

t,α,b} that

reflect the respective likelihood of the SST engaging in deposit and loan transactions at such

nominals at time t for a term of nδ, with
∑b

i=1 wn
t,α,i = 1, where b ∈ N. To ease notation

here, Ni and wi are used to denote N n
t,α,i and wn

t,α,i respectively, for i ∈ {1, 2, . . . , b}. From the

vantage point of the SST at time u, the weighted average future value at time t of an nδ-term

deposit/loan with unit nominal is

V n
t,α = α

�

qn
t,α,0

bPn
t,0,n + qn

t,α,1Pn
t,0,n + qn

t,α,2

�

1−α∆n
t,α

�

+ qn
t,α,3

�

, (B.3)

where the aggregated probabilities and cost function are respectively defined by

qn
t,α,β :=

� b
∑

i=1

wiNiq
n,Ni
t,α,β

�

Á

� b
∑

i=1

wiNi

�

, and (B.4)

∆n
t,α :=

� b
∑

i=1

wiNiq
n,Ni
t,α,2∆

n,Ni
t,α

�

Á

�

qn
t,α,2

b
∑

i=1

wiNi

�

. (B.5)

The expected future cost of nδ-term liquidity per unit nominal at time t is given by
�

α− V n
t,α

�

.

Proof. At time t if β = 3 then perfect liquidity prevails, the reference nδ-term rate will exist

and the fair value of the SST’s deposit/loan will be

1
πn

t
EP
�

πn
t+nδαNi

�

1+ nδRn,Ni
t,α,3

�
�

�Gt

�

= αNi P
n
t,0,n

�

1+ nδRn,Ni
t,α,3

�

= αNi . (B.6)
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If β = 2, costly liquidity prevails, the reference nδ-term rate will exist and the fair value of

the SST’s deposit/loan will be

1
πn

t
EP
�

πn
t+nδαNi

�

1+ nδRn,Ni
t,α,2

�
�

�Gt

�

= αNi P
n
t,0,n

�

1+ nδRn,Ni
t,α,2

�

= αNi − Ni∆
n,Ni
t,α . (B.7)

If β = 1, only the SST can’t access liquidity, the reference nδ-term rate will still exist and

the fair value of the SST’s position will now be

1
πn

t
EP
�

πn
t+nδαNi

�

1+ nδRn,Ni
t,α,1

�
�

�Gt

�

= αNi P
n
t,0,n . (B.8)

In the case of a deposit, this represents the value foregone by not being able to access the

nδ-term rate. For a loan, this represents the value gained by having to settle a liability early

as opposed to deferring payment by accessing funding through the nδ-term rate.

When β = 0, there is no systemic liquidity and therefore no reference nδ-term rate. In this

scenario, the SST may estimate the fair value of their position as

1
bDn

t

EP
�

bDn
t+nδαNi

�

1+ nδRn,Ni
t,α,0

�
�

�Gt

�

= αNibP
n
t,0,n , (B.9)

by making use of the estimated nδ-term SDF. Then, the estimated value at time t is

V n,Ni
t,α = αNi

�

qn,Ni
t,α,0

bPn
t,0,n + qn,Ni

t,α,1Pn
t,0,n + qn,Ni

t,α,2

�

1−α∆n,Ni
t,α

�

+ qn,Ni
t,α,3

�

, (B.10)

and the weighted average future value equation (B.3) is recovered by setting

V n
t,α :=

� b
∑

i=1

wiV
n,Ni
t,α

�

Á

� b
∑

i=1

wiNi

�

, (B.11)

which holds for both nδ-term loans or deposits, and concludes the proof.

Corollary B.1 (Mid Expected Future Value and Cost of nδ-Term Liquidity). From equation

(B.3), it follows that the mid weighted average future value is

V n
t = α

�

qn
t,0
bPn

t,0,n + qn
t,1Pn

t,0,n + qn
t,2

�

1+ εn
t

�

+ qn
t,3

�

, (B.12)
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where the mid probabilities and cost function are respectively defined by

qn
t,β :=

1
2

�

qn
t,+,β + qn

t,−,β

�

, and (B.13)

εn
t :=

1
2qn

t,2

�

qn
t,−,2∆

n
t,− − qn

t,+,2∆
n
t,+

�

. (B.14)

with the expected future cost of nδ-term liquidity per unit nominal now given by
�

α− V n
t

�

.

Proof. Setting V n
t := α

�

V n
t,+ − V n

t,−

�

�

2 yields the mid future value equation (B.12), with the

expected future cost of liquidity result then following trivially.

Remark B.1 (The Spread Quantity εn
t ). Having constructed a mid value in Corollary B.1, the

quantity εn
t may be interpreted as the mid value of the bid-offer spread associated with nδ-term

deposit and loan liquidity at time t, suitably weighted by the probability of each transaction at

specific nominals, from the perspective of the SST. The magnitude and sign of this mid spread

depends on the funding market climate. In particular, one would expect:

• εn
t > 0 , in a stressed market where the STR has difficulty sourcing term funding;

• εn
t ≈ 0 , in a normal market where ∆n

t,+ and ∆n
t,− may be attributed to profit margins;

• εn
t < 0 , in a stressed market where the STR has excess access to term funding, a scenario

that is most likely to realise for near or shorter terms-to-maturity.

Remark B.2 (Systemic Liquidity Indicators). Proposition B.1 and Corollary B.1 have enabled

the aggregation of the nominal effect in the general nδ-term quoted rates, as well as the averag-

ing of the spread asymmetry due to loans and deposits. The structure of the mid expected future

value, equation B.12, indicates that a simpler symmetric and systemic specification for the liq-

uidity indicator will suffice, especially under the assumption of a normal market, or εn
t ≈ 0.

Therefore, in order to ease the exposition, the Lt -measurable random variable

Ln
t :=







1 , perfect systemic liquidity with probability qn
t ,

0 , no systemic liquidity with probability 1− qn
t ;

(B.15)

is used to model systemic nδ-term liquidity at time t, with qn
t := q(t, t + nδ) being a deter-

ministic function that determines the probability of perfect liquidity or no systemic liquidity.

With this indicator, states β ∈ {2, 3} and β ∈ {0, 1} of the general indicator are essentially

combined, and provide a similar composite effect with V n
t = α

�

(1− qn
t )bP

n
t,0,n + qn

t

�

now being

the mid expected future value of nδ-term liquidity per unit nominal at time t.

40



A more general version of the systemic liquidity indicator, defined in Remark B.2, which

incorporates the state of costly liquidity is considered next. Using the definition of this new

liquidity indicator, the lemma below reveals the impact of costly liquidity on the fair δ×2δ

FRA rate that is derived in Lemma 5.1.

Definition B.2 (Costly Systemic Liquidity Indicators). At time u ∈ R≥0 , the random variable

Cn
u :=















0 , no systemic liquidity with probability qn
u,0 ,

1 , perfect systemic liquidity with probability qn
u,1 ,

1+ εn
u , costly systemic liquidity with probability qn

u,2 ;

(B.16)

models nδ-term systemic liquidity, where εn
u ∈ R is the deterministic spread quantity as defined

in Corollary B.1 and described in Remark B.1. If the current time is t, then the natural filtration

associated with liquidity is

Lt := σ
��

{C1
u , C2

u , . . . , Cm
u } ; u ∈ {t0, t1, . . . , tk}

	�

, (B.17)

where {t0, t1, . . . , tk} denotes the set of trading days that lie within the interval [0, t]. These

costly systemic liquidity indicators are assumed to exhibit both serial and cross-sectional inde-

pendence, or more formally:

EP
�

Cn
u

�

�Lt ∩σ
�

{Cn
u /∈ {0, 1,1+ εn

u}}
��

= EP
�

Cn
u

�

= P
�

Cn
u = 1

�

+
�

1+ εn
u

�

P
�

Cn
u = 1+ εn

u

�

= qn
u,1 + qn

u,2

�

1+ εn
u

�

,

for all t ≤ u, with qn
u,i := qi(u, u+ nδ) being a deterministic function for i ∈ {0,1, 2}.

Lemma B.1 (δ × 2δ FRA Pricing under Potentially Costly Liquidity). The fair strike rate

process for the general version of the δ× 2δ FRA defined in Lemma 4.2 is

F
1
t,i,1 =







F1
t,0,1

�

q1
t+δ,1 + q1

t+δ,2

�

1+ ε1
t+δ

�

�

, i = 0 and conditional on C1
t = C2

t = 1 ,

F1
t,1,1 , i = 1 and conditional on C1

t+δ = 1 ,

which is also Gt+iδ-measurable.

Proof. Assuming thatLt =Lt− ∨σ
��

C1
t = 1, C2

t = 1
	�

, the standard FRA replication strat-

egy yields eVt+2δ = Vt+2δ −αNδ
�

1− C1
t+δ

�

R1
t+δ, as was the case in Lemma 5.1.

LetMt := Gt ∨Lt , then using the hybrid-term LDPK from Definition 5.4, the current value
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of the above payoff is

eπt eVt = EP
�

eπt+2δeVt+2δ

�

�Mt

�

= EP
�

EP
�

eπt+2δeVt+2δ

�

�Mt , C1
t+δ

� �

�Mt

�

= EP
�

EP
�

eπt+2δeVt+2δ

�

�Mt , C1
t+δ = 0

�

P
�

C1
t+δ = 0

� �

�Mt

�

+EP
�

EP
�

eπt+2δeVt+2δ

�

�Mt , C1
t+δ = 1

�

P
�

C1
t+δ = 1

� �

�Mt

�

+EP
�

EP
�

eπt+2δeVt+2δ

�

�Mt , C1
t+δ = 1+ ε1

t+δ

�

P
�

C1
t+δ = 1+ ε1

t+δ

� �

�Mt

�

which follows by the tower property of conditional expectations. Then, it follows that

eVt = −EP
�

π2
t+2δαNδF1

t,0,1

�

�Mt

�

q1
t+δ,0 +E

P �π1
t+2δVt+2δ

�

�Mt

�

q1
t+δ,1

+EP
�

π1
t+2δ

�

Vt+2δ +αNδε1
t+δR1

t+δ

� �

�Mt

�

q1
t+δ,2

= −αNq1
t+δ,0δF1

t,0,1P2
t,0,2 + q1

t+δ,1Vt + q1
t+δ,2Vt +αNq1

t+δ,2δε
1
t+δF1

t,0,1P1
t,0,2

=
�

q1
t+δ,1 + q1

t+δ,2

�

Vt +αNδF1
t,0,1P1

t,0,2

�

q1
t+δ,2ε

1
t+δ − q1

t+δ,0

�

since eπt := 1, using the definition of the hybrid-term LDPK and taking note that the δ-term

PK is well-defined when C1
t+δ 6= 0. Vt is the fair value of the FRA under perfect liquidity, and

therefore equal to 0. Trading this FRA with the strike rate equal to the fair FRA rate defined

in the perfect liquidity setting therefore leads to an initial loss (gain) if the market-maker

is long (short). As with Lemma 5.1, the assumption here is that Vt+2δ will still be the FRA

payoff even when C1
t+δ = 0 and the strong case of no systemic liquidity is in effect.

Setting the FRA rate to an arbitrary value, F
1
t,0,1, and pricing via the same process gives

eVt = α
�

q1
t+δ,1 + q1

t+δ,2

�

N
�

P1
t,0,1 −

�

1+δF
1
t,0,1

�

P1
t,0,2

�

−αNq1
t+δ,0δF

1
t,0,1P2

t,0,2 +αNq1
t+δ,2δε

1
t+δF1

t,0,1P1
t,0,2

= αN
�

1− q1
t+δ,0

�

δF1
t,0,1P1

t,0,2 +αNq1
t+δ,2δε

1
t+δF1

t,0,1P1
t,0,2

−αN
�

1− q1
t+δ,0

�

δF
1
t,0,1P1

t,0,2 −αNq1
t+δ,0δF

1
t,0,1P1

t,0,2

= αNδF1
t,0,1P1

t,0,2

��

1− q1
t+δ,0

�

+ q1
t+δ,2ε

1
t+δ

�

−αNδF
1
t,0,1P1

t,0,2

��

1− q1
t+δ,0

�

+ q1
t+δ,0

�

while setting eVt = 0 , recalling that P2
t,0,2 = P1

t,0,2 , and solving for the fair FRA strike rate

yields F
1
t,0,1 = F1

t,0,1

�

q1
t+δ,1 + q1

t+δ,2

�

1+ ε1
t+δ

�

�

, as required. Repeating this pricing process

at time t + δ , for exactly the same contract and assuming that C1
t+δ = 1 at this time, it is

trivial to show that F
1
t,1,1 = F1

t,1,1 , which completes the proof.
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C Liquidity-dependent pricing Kernels

Definition C.1 (nδ-Term LDPK over a Single Period). At the current time t , under the CPL

or CPFL liquidity regime the nδ-term LDPK is defined by

eπn
t+inδ := πn

t+inδ , (C.1)

for i ∈ {0, 1}, i.e., perfect liquidity enables the definition of the nδ-term PK. This scenario

therefore allows a market-taker, such as the SST, to access nδ-term liquidity.

If the NPFL or NPL liquidity regime prevails then the nδ-term LDPK is given by:

eπn
t+inδ := bDn

t+inδ , (C.2)

for i ∈ {0,1}, i.e., no liquidity requires the estimation of an nδ-term rate using the respective

estimated SDF. This scenario therefore requires market-making to create liquidity.

Under the PPL liquidity regime with the nδ-term being illiquid but the iδ- and jδ-terms being

liquid such that j < n< k, the SST may define the nδ-term LDPK by

eπn
t+inδ := Λn

t+inδDn
t+inδ , (C.3)

where the {(Gu) ,P}-martingale
�

Λn
t+vnδ

�

0≤v≤1 must be chosen so that

EPn
�

bDn
t+nδ

�

�Gt

�

= Dn
t+nδ ∈

�

Dk
t+kδ , D j

t+ jδ

�

in order to ensure positive forward rates over [t + jδ, t + kδ] . Therefore, this scenario also re-

quires market-making to create liquidity, however liquidity in the other adjacent terms provides

information to create an arbitrage-free range for the calibrated SDF.

Definition C.2 (nδ-Term LDPK over Multiple Periods). At the current time t , under the CPFL

liquidity regime the nδ-term LDPK is defined by

eπn
t+iδ := πn

t+iδ , (C.4)

for i ∈ Nn
0,m+n , i.e., perfect liquidity enables the definition of the nδ-term PK over the interval

[t, t +mδ] if m mod n= 0 , or [t, t +mδ) otherwise.

43



If the CPL or PPL (as defined in Definition C.1) liquidity regime prevails then

eπn
t+iδ =







πn
t+iδ , i ∈ Nn

0,2n ,

bDn
t+iδ , i ∈ Nn

2n,m+n ,
(C.5)

i.e., potential future illiquidity requires market-making beyond the first period.

If the NPL or NPFL liquidity regime prevails then the nδ-term LDPK is defined by

eπn
t+iδ := bDn

t+iδ , (C.6)

for i ∈ Nn
0,m+n , i.e., no present liquidity and no/uncertain future liquidity requires market-

making to create liquidity for all periods.

D Reduced-form model development

D.1 Proof for Lemma 6.1

Proof. At time t + iδ, the present value of 1 unit of currency due at time t + jδ is equal to

P j−i
t,i, j =

1

1+ ( j − i)δR j−i
t+iδ

,

provided that i ≤ j ≤ m, according to Assumption 6.1. Therefore, considering a syn-

thetic nδ-term LCZCB with tenor less than or equal to nδ, i.e. ( j − i) ≤ n, it follows that

P
(n)
t,i, j = P j−i

t,i, j , which is the result shown in equation (6.5).

For the case of n < ( j − i) ≤ m and mod( j − i, n) = h, with h ∈ N0,n−1, a synthetic nδ-

term LCZCB with ( j − i)δ-tenor may be constructed using Assumptions 6.1, 6.2 and 6.3 as

follows. At time t + iδ, if h> 0:

(i) Borrow (Deposit) M units of currency at the hδ-term rate.

(0) Long (Short) the hδ× (h+ n)δ fair FRA with nominal equal to M
Dh

t+iδ

Dh
t+(i+h)δ

.

(1) Long (Short) the (h+ n)δ× (h+ 2n)δ fair FRA with nominal equal to

M
Dh

t+iδ

Dh
t+(i+h)δ

�

1+ nδF
n
t,i,i+h

�

.
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...
...

(N) Long (Short) the ( j − n)δ× jδ fair FRA with nominal equal to

M
Dh

t+iδ

Dh
t+(i+h)δ

�

1+ nδF
n
t,i,i+h

��

1+ nδF
n
t,i,i+h+n

�

. . .
�

1+ nδF
n
t,i, j−2n

�

.

At time t + (i + h)δ, using Assumption 6.3:

(i) The loan (deposit) matures which costs (yields): M
Dh

t+iδ

Dh
t+(i+h)δ

.

(ii) Refinance (Re-deposit) the costs (proceeds) from (i) at the nδ-term rate.

At time t + (i + h+ n)δ, using Assumption 6.3:

(ii) The loan (deposit) matures which costs (yields): M
Dh

t+iδ

Dh
t+(i+h)δ

Dn
t+(i+h)δ

Dn
t+(i+h+n)δ

.

(0) The long (short) FRA payoff: (−)M
Dh

t+iδ

Dh
t+(i+h)δ

h Dn
t+(i+h)δ

Dn
t+(i+h+n)δ

−
�

1+ nδF
n
t,i,i+h

�
i

.

(iii) Add (ii) and (0), and refinance (re-deposit) the costs (proceeds) at the nδ-term rate.

Repeating this process at each time t + (i + h+ nk)δ, for k = 2,3, . . . , ( j − i − n− h)/n, will

eventually result in a total cost (yield) equal to

M
Dh

t+iδ

Dh
t+(i+h)δ

�

1+ nδF
n
t,i,i+h

��

1+ nδF
n
t,i,i+h+n

�

. . .
�

1+ nδF
n
t,i, j−n

�

.

at time t + jδ, which is measurable at time t + iδ. This strategy may then be used to create

the synthetic nδ-term LCZCB with ( j − i)δ-tenor by setting:

M :=
Dh

t+(i+h)δ

Dh
t+iδ

�

1+ nδF
n
t,i,i+h

�−1 �
1+ nδF

n
t,i,i+h+n

�−1
. . .
�

1+ nδF
n
t,i, j−n

�−1
,

and therefore P
(n)
t,i, j = M , which is consistent with equation (6.4) for h> 0. If h= 0 then the

relevant contracts are the (k+n)δ×(k+2n)δ FRA contracts for k = 0, n, 2n, . . . , ( j− i−2n).

The same strategy may be employed for h= 0, which completes the proof.
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