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Abstract

In this work our aim has been to investigate the application of software 
metrics to the area of formal specification. We first look at the nature of 
Formal Methods and those most commonly in use. This suggests the scope 
for the type of specifications that should come under investigation. 
Metrics and the nature of measurement become an important consideration 
as we discuss how to assess Formal Methods themselves and their impact 
on software development. We look at the work already done in software 
metrics to see if parallels can be drawn with the proposed work on formal 
specification. To establish current knowledge about the use and 
effectiveness of Formal Methods we investigate to see how their benefits 
had been assessed by two major surveys. Further information on the 
impact of the methods is obtained by analysing the results from a series of 
case studies. We build on work done in a previous study to investigate and 
compare attributes of three formal specification notations. This gives 
valuable insights into possible attributes, the way measurements might be 
made and possible metrics to establish. Drawing together the knowledge 
and experiences gained from the background research we design three 
experiments to look at metrics for comprehensibility in formal 
specifications. The experiments together with their results and statistical 
analysis are described. The main findings show that the variable names, 
comment levels and structure of Z specifications have an effect on their 
comprehensibility.
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CHAPTER ONE

1. INTRODUCTION

In this chapter we give the background and aims of the thesis, its main 
and subsidiary hypotheses and an overview of the succeeding chapters.

1.1 Background
The search for a software development method which would give assurance about the 

capture of users’ requirements, accuracy in their realisation into code and all at a reduced 

cost, has been almost as long as the history of computing itself. The early proponents of 

Formal Methods were convinced that they had found part, if not all, of the solution to this 

search. However in the last 20 years these methods have not been widely adopted by the 

computing industry as a whole.

We believe that practitioners of software development have yet to be convinced of their 

value because so much of the ‘evidence’ about the benefits of their adoption is anecdotal 

or based on academic examples with little industrial relevance. To make the case for 

Formal Methods or to destroy the myths surrounding them we must produce hard evidence 

both from empirical work that can be replicated, and also from industrial sized case 

studies which have been conducted rigorously.

1.2 Hypotheses
The purpose of this work is to consider the application of metrics in the area of formal 

specification of software. Our aim is to examine a number of hypotheses concerned with 

the usefulness and effectiveness of Formal Methods. We will propose measures of 

attributes such as comprehensibility (of specifications), quality (of programs) and 

measures of the structuredness of the formal specifications themselves so that we can test 

the following hypotheses:

1. Formal Methods can be understood by any intelligent software developer with 
reasonable training,

2. the use of Formal Methods leads to improved software quality,

3. the structure of formal specifications impacts on their comprehensibility.

From a practical viewpoint we also propose the following hypotheses:

4. Formal Methods have not been used extensively in industry in realistic applications,
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5. widespread take up of Formal Methods will occur only after the results from large 
scale case studies are published.

1.3 Aims
Formal Methods are an attempt to introduce mathematical rigour into the software 

development process. They are mostly used as specification techniques in the critical 

initial stage of the software lifecycle when the clients’ requirements are stated and 

interpreted. They are used with the objective of helping to model the natural language 

statements of a specification using a mathematical form of notation, a formal 

specification, which may be expressed and validated using proof and logic. The final 

implementation in code, produced after a formal approach has been used in the initial 

stages, should reflect the thoroughness and precision of this approach. A discussion of the 

terms used and the background to Formal Methods is given at the beginning of Chapter 2.

We are aiming to quantify properties of formal specifications with the objective of 

considering their bearing on software quality. The criteria of interest for our research 

hypotheses are

• improved product quality as indicated by fewer faults or failures, improved reuse 

and easily understandable specifications,

• improved processes as indicated by the lower cost of overall software development and 

a greater predictability of both production effort and fault or failures.

It will be a consistent theme of this thesis that claims and counterclaims must be backed 

by scientifically valid studies and quantitative data. We argue that an attempt should be 

made to apply measurements to assess the benefits of using formal specifications with 

three objectives:

1. To measure the effectiveness of the methods themselves, for example whether using 

Formal Methods produces better quality software, lower re-engineering costs or 

reduced defect density. If a case is to be made for the use of formal specification 

techniques within the software engineering community then there is a need to quantify 

the effectiveness of their use. To provide evidence for this case measurements, both on 

the specification itself and the resulting software, are vital.

2. To measure directly attributes of the specifications themselves, for example size, 

structure, and modularity. The attributes of the specification need to be quantified so
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that we will be able to move towards improving the quality of this stage of the software 

development. For example, it is strongly conjectured that the structure of a 

specification directly impacts on its comprehensibility. We will examine this particular 

hypothesis in depth. We should be able to make judgements about what constitutes a 

‘good’ formal specification by measuring key parts of the documentation. Internal 

properties of the formal notation which have a bearing on its usefulness as the initial 

step in bridging the gap between client and code should be investigated to help these 

judgements.

3. To build predictive models based on these measures, for example development effort 

based on size and structure. We should be able to focus on those aspects of the 

specification which we can use to predict attributes of the resulting software. We need 

to establish if there is a direct link from some of the metrics taken from the formal 

specification and those obtained from the resulting software. We must try and establish 

the manner in which internal attributes measured from the requirements specification 

impact further down the software development lifecycle. In this way we are using the 

metrics obtained from the formal specification both for assessment and prediction.

1.4 Approach
The research approach used to address these issues is a combination of:

• novel analysis of independent studies where we look in detail at the basis of the study, 

the results presented and their interpretation to test hypotheses 2, 4 and 5,

• new controlled experiments to test hypotheses 1 and 3 concerning some of the 

fundamental qualities of a formal specification.

The benefits and limitations of formal specification are discussed in Chapter 2 along with 

a summary of several of the most common notations used.

To tackle all five hypotheses above we need to establish a rigorous framework of 

measurement and experimentation. In Chapter 3 we review those metrics which have 

been applied to software products and processes and look at how they might be related to 

measurements of formal specifications. In most cases we find that the advantages of 

sophisticated metrics over simple measurements like lines of code are not proven. We 

also see that the predictive power of some metrics is not well established.
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To examine evidence of the extent and effect of the use of formal specification 

(hypotheses 2 and 4) we have analysed the findings of two major surveys into the use of 

formal methods in Chapter 4. In Chapter 5 we look in some detail at four large case 

studies where formal methods have been used in commercial settings and question some 

of the published conclusions about their impact. In particular we find the claims for one 

of the most celebrated ‘validations’ of Formal Methods to be based on dubious statistics 

and assumptions. Chapter 5 also includes an overview of the main case studies available 

in the public domain which address hypotheses 4 and 5.

Our consideration of the direct measurement of specification attributes has shown how 

little work has been done in this area. There are very few software metrics developed for 

use in the requirements specification stage of the development lifecycle. Some small 

examples are included in Chapter 6 along with our own comparative work looking at the 

same specification written under different formal notations. These latter studies were 

undertaken to investigate some of the internal attributes that might be measured in formal 

specifications (hypothesis 3).

The main experimental work to test hypothesis 1 is described in Chapters 7 and 8. These 

chapters focus on the attributes of specifications written in Z which we believe have a 

bearing on comprehensibility. Chapter 7 looks at the impact of natural language 

comments, helpful variable identifiers and structure on the comprehension of a 

specification. Here we found that the careful choice of identifiers for variables did have 

an impact on the comprehensibility and that the comment level helped to improve correct 

reading of the specifications. The aspect of structure (hypothesis 3) was further 

investigated in the experiment reported in Chapter 8 where the ‘modularity’ of a Z 

specification was altered to see what effect the size of the schemas had on several aspects 

of its interpretation. The best results from this experiment were obtained using a medium 

size schema whilst reducing the size down to less than 10 lines gave no measurable 

improvement.

The experiments show the effect of changing some of the attributes of several 

specifications under controlled conditions. As part of this experimental work other more 

general conclusions can be drawn about readability of this notation as perceived by its 

users. Full statistical analysis is given of the results of the three experiments conducted.
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1.5 Conclusions and suggestions
Conclusions and suggestions for future work are given in Chapter 9. Broadly these 

concentrate on the 5 issues:

• the extent of the use of Formal Methods today,

• the parallels there are from work in software metrics,

• what can be learnt from industrial case studies,

• what we have shown by our experimental work,

• what further work can be done.

Appendix P contains papers that have been published so far as a result of this work.

The surveys reported here demonstrate a lack of evidence for or against the use of Formal 

Methods. In the research reported here we believe we demonstrate the value of empirical 

work and point to ways in which evidence may be obtained.
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CHAPTER TWO

2. FORMAL METHODS

In this chapter we consider the nature of Formal Methods and give an 

overview of some of the most popular ones. We also consider the myths that 

surround them, some of the positive and negative aspects of their use and 

challenge some of the basic assumptions about them.

2.1 Background to Formal Methods

Formal methods arise from the search for software assurance. Problems in the 

manufacture of software include late delivery, expensive over-budget development and a 

product that does not fulfil the original requirement. As Rushby reminds us in comparison 

with the traditional engineering disciplines, based on the laws of science and the rigors of 

mathematics, software engineering seems more a craft activity based on trial and error 

rather than calculation and prediction [Rushby 1995].

Software systems are complex and in many systems, particularly safety critical ones, there 

is little margin for error. The relationship between the inputs and outputs of software is 

essentially a cumulative effect of many discrete decisions and we need to be concerned 

with correctness rather than limits of tolerance. To check properties of the software we 

need to apply modelling and proving techniques. Rushby states that the formal part of 

Formal Methods derives from formal logic where intuition and judgement are replaced by 

assumptions theorems and proofs written in a restricted language with very precise rules 

about what constitutes an acceptable statement or a valid proof. [Rushby 1993],

2.2 Definitions and origins

In journals and articles the terms formal methods, formal specification and formal notation 

are sometimes used interchangeably. Cohen argues that there are really only formal 

notations [Cohen 1989], These are ways of expressing natural language statements using a 

mathematically based notation. Brinksma distinguishes between the formal notation and 

calculi used to describe and analyse models of a system and the methods which enable the 

user to take the model and obtain a working product [Brinksma 1992], Many of the formal
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notations have had developed around them systematic ways of setting out their 

mathematical statements, together with rules defining the permissible set of manipulations 

possible within that notation. Some of these notation and rule systems are then 

collectively known as Formal Methods. Ehrig et al. give a historical perspective to the 

development of Formal Methods by connecting the rise of algebraic specification to the 

advent in the 1960’s and 1970’s of programming languages with higher levels of 

abstraction. [Ehrig et al.1992]. Bjprner et al. in their overview drawn from 20 years work 

in Formal Methods give the following definition which we shall adopt:

By a formal method we mean a method some o f whose techniques and notations 

are formal, that is: can be mathematically expressed and mechanically 

supported [Bjprner et al. 1992],

Formal methods are distinguished from other design methods by the fact that the 

semantics are defined to such a high degree of rigour that it is possible to use a machine to 

verify proofs about conjectures relating to the specifications. In our studies the notation 

used for this mathematical expression is a very important factor with implications for 

comprehensibility, however we recognise that this may be a grey area when considering 

Formal Methods which allow an ASCII form of expression as an alternative.

Formal notations have their roots in mathematics and are an extension of the ideas of 

elementary algebra which can be used to express natural language statements. Given the 

statement

there are two quantities one of which is three times bigger than the other,

this can be modelled as an algebraic expression of the type

x = 3y

For a fuller discussion of related notions of modelling see [Fitzgerald and Larson 1998]

We start to use letters for quantities and develop semantics so that the symbol = is used for 

“is equal to” and 3y implies a quantity 3 times bigger than y.

With natural language statements such as

all the nice girls love a sailor, (1)
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problems of ambiguity, vagueness, incompleteness and contradiction become apparent. 

Some of these problems are highlighted by the questions:

• do all the girls love the same unique sailor? ( ambiguity )

• do the girls have a distinct single sailor each? (ambiguity)

• if a girl does not love a sailor is she not nice? ( incompleteness )

• can a girl who is not nice still love a sailor? (incompleteness)

• is the sailor the sole object of their love or can others be included as well? (ambiguity)

• what is meant by nice? (vagueness )

• what is meant by love? (vagueness )

If statement (1) is coupled with

Jane is a lovely girl but dislikes sailors, 

then we may even have a contradiction.

It is claimed that formal specifications, as part of the software engineer’s range of 

techniques, should be incorporated from the start of the development lifecycle to try and 

capture the requirements specification precisely and overcome some of these problems of 

natural language. It is proposed that formalism be used in the initial stages of the 

specification to form a mathematically based bridge between the requirements 

documentation and the design and implementation of the software. As with any good 

specification, the formal specification describes what the functional requirements of the 

system are at an abstract level but not how they are to be implemented in code. Recently 

the border between functional requirement and design has become less clear and some 

Formal Methods are seen as an aid to design. Hayes and Jones argue strongly that 

specifications should be kept at an abstract level and should not be restricted by specifiers 

aiming for executable constructs [Hayes and Jones 1989], although an alternative 

viewpoint was presented by Fuchs [Fuchs 1992],

Returning to the phrase (1) above, by ‘translating’, it that is re-expressing it in a formal 

notation, with suitable sets, functions and logic, the mathematical basis of the notation 

should provide clear answers to all questions about the statement or at least highlight areas
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where further information is needed to clarify the true meaning. Unfortunately the original 

easily read natural language phrase could now well resemble an expression of the type

Vx3s((x g  G a  x e  N) => (s e  S a  (x , s) e  L)) (2)

2.3 The problems of understanding formal specifications.
Comparing versions (1) and (2) of the information we can see that in order to try and

express our statement clearly and unambiguously in the language of first order logic as in 

equation (2), we have lost the ‘user friendliness’ of natural language. Moreover, even the 

formal notation does not avoid the more serious problems inherent in any specification. In 

particular we may still have the problem of vagueness if we cannot interpret the sets N and 

L clearly. Validation by the customer becomes difficult once their requirements are 

translated in this mathematical way and the notation becomes a barrier to the reading of 

the specification.

Large sections of the population, particularly in the U.K, have difficulty with concepts of 

basic school algebra where numbers in concrete situations are replaced by abstract 

symbols and equations [Burghes 1992, Roy 1992]. This has implications for the level of 

comprehension which can be expected from clients, designers and programmers when 

presented with a formal method which can contain mathematical symbols, expressions of 

logic and a notation which is specialised to that particular method. We need to understand 

the properties of formal specifications better and measure some of the key attributes in 

order to understand whether these have had an impact on the adoption of Formal Methods. 

Traditionally most Formal Methods exponents are among the small minority of the 

population who have a good advanced mathematics background and training; they may 

therefore fail to appreciate the difficulties a lot of people have becoming at ease with 

mathematical notations. Later we shall see this theme developed in Chapters 6-8 as we 

look at the comprehensibility of formal specifications in more detail.

So far reaction to raising these difficulties (after initial disbelief that anyone could find the 

mathematics a barrier) has been to take the view that only a few specialised groups within 

a company would therefore be trained and familiar with these Formal Methods [Rushby 

1995]. This does conflict with the philosophy of aiming for widespread use of formal 

specification as a solution to problems of software quality. We return to this issue in 

Chapter 4.
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2.4 The procedure from specification to code
A formal notation should support abstraction in the sense that it should not favour any 

particular design or method of implementation. A lot of decisions are postponed until 

later in the development so that the most appropriate representation of the data, functions 

and operations can be chosen by the design and/or programming team.

Hall [Hall 1990] defines the main activities where Formal Methods can be used as:

• writing formal specifications,

• proving properties about a specification (e.g. error conditions and invariants),

• constructing a program by mathematically manipulating the specification (refinement),

• verifying that a program satisfies its specification.

Hayes and Jones suggest that a specification written in a formal notation should not be 

compiled and executed like a program and Wordsworth states that

Formal methods are not methods fo r developing software without facing up to

difficult decisions, but methods fo r  recording those decisions once made

[Wordsworth 1992],

Some methods have set procedures laid out for each of the stages from specification to 

code with a mathematical basis for refining the specification repeatedly until coding is 

finished and these could therefore be described as ‘mature’ methods. Other notations do 

not have such well-documented procedures or have not been developed to a similar level 

and often are only employed in the first of the specification stages to capture the 

requirements from the client. In many projects the use of formal notations has been 

confined to these early stages where their main benefit has been as a means of clarifying 

requirements and design decisions. No attempt has then been made to continue with the 

rigorous demands of refinement.

For those formal notations that are part of a mature Formal Method, the notation supports 

a development method which leads from the specification towards an implementation 

through all the lifecycle stages to the final production of the software itself. Woodcock 

gives the mathematical basis and definition of algorithmic refinement, the transformation 

from specification to code [Woodcock 1992], The process of changing from a formal
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specification to an executable program should incorporate the stages of verification, 

refinement and translation.

At the verification stage the design of the formal specification is checked against the 

clients’ requirements and is shown to satisfy them. During refinement details can be 

added to bring the specification nearer to a design for coding and decisions about 

implementation details like data structures and storage can now be incorporated. Each 

time a change is made the Formal Method usually has a requirement that it should be 

possible to prove that these additions have not introduced errors and that this new, less 

abstract form of the specification still satisfies the original requirements. (We note that 

what is referred to as verification here is often referred to as validation elsewhere)

Wordsworth defines a refinement, Ref, of a specification, Spec, by the two relations given 

below [Wordsworth 1992]. These involve the pre-conditions and post-conditions of the 

specification and its refinement. Pre-conditions are predicates that must be satisfied by the 

inputs to a specification whereas post-conditions are predicates which are concerned with 

the final state as well.

1. pre Spec pre Ref

2. (pre Spec) A Ref Spec

1. is the safety condition where the preconditions of the original specification are 

weakened in the refinement.

2. is the liveness condition where the post conditions are strengthened.

By weakness what is meant is that we allow a wider choice of inputs or less stringent 

conditions applying to the input state. In contrast the conditions on output are strengthened 

and become more rigorous and restrictive.

As an example

Spec is defined on the set R+ (positive real numbers) with the operation OPs to output the 

square root of an input number.

Ref is defined on the set R (all real numbers) with the operation OPR to output the square 

root of the absolute value of an input number .
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y = Vx y = V Ixl

i.e. x > 0 y = Vx or x < 0  y = V-x

Refinement may be done in a series of stepwise operations rather than a single 

transformation. What is produced after the final refinement is known as a concrete 

specification.

The last step of translation moves from the concrete specification to code, this step is also 

sometimes called implementation.

In practise we have seen that despite valiant efforts on the part of academics and others 

there are very few examples where any attempt has been made to use Formal Methods for 

the complete procedure from requirements to code and no real evidence from case studies 

for their use across the whole lifecycle. Most published applications of Formal Methods 

show that even when used with tool support, they have been restricted to the specification 

part of the software lifecycle with little refinement or proof.

2.5 Classification of formal methods
The classification of Formal Methods has parallels with that of programming languages. 

Both can be based on the style, generation or on how widespread their use has been. 

Formal Methods have been classified into types in a number of ways; Barroca and 

McDermid divide them by style into 5 categories [Barroca and McDermid 1992],

Following from Barroca and McDermid’s classification we can divide Formal Methods by 

type.

• Model based methods which give explicit definitions of the state (system) and 

operations which transform the state. No attempt is made to deal with concurrency. 

Examples are Z [Spivey 1992a], B Method [Neilson and Sprensen 1994,Abrial 1996] 

and VDM [Jones 1990],
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• Process algebras which use explicit models of concurrent processes and represent 

behaviour of the system by the constraints on allowable communication between 

processes. Examples are CSP [Hoare 1985] and CCS [Milner 1989].

• Algebraic approaches which use implicit definitions of operations by relating the 

behaviour of different operations without defining the state, again with no concurrency. 

Examples are OBJ [Gougen and Tardo 1979] and general ADT [Martin 1986],

• Logic based approaches, these are a wide classification which covers approaches such 

as use of temporal and interval logics; useful where the timing behaviour of a system 

needs to be captured [Galton 1987] [Kroger 1987],

• Net based approaches which concentrate on the data flow through the system and 

include conditions under which the data can pass from one node to the next. Examples 

are Petri nets [Peterson 1977] and Predicate Transition nets [Voss 1980].

In addition to the McDermid classification, there are some methods which are ‘hybrid’. 

For these there has been an explicit attempt to merge two or more different approaches. In 

this class we have examples like Raise [Havelund et al 1992].

Within categories there can also be a classification by scale and maturity. Some methods 

have been adopted for large-scale industrial use, for example Z, others are small 

individually designed examples that have only ever been used in a single textbook or as an 

academic paper for a ‘toy’ application. There are a large number of this latter class as 

researchers have designed their own specification notation to suit a particular problem 

domain.

2.6 Overview of the main notations
In order for readers to understand the basis for the empirical studies in this thesis it is 

necessary to provide an overview of the main methods that arise in the case studies and 

experiments. We have concentrated on methods from the first three types as these are 

more commonly cited in the surveys of use of formal methods (see Chapter 4).

2.6.1 VDM (model based)
VDM was developed in IBM’s Vienna Laboratory and grew from its predecessor VDL, 

the Vienna Definition Language [Wegner 1972]. VDL was the semantic definition of the 

programming language PL/I constructed by the 8 strong team under Heinz Zemenack at
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the laboratory in the 1960’s and it was not conceived as a general notation. However out 

of this experience the more general Vienna development method, VDM, was bom. The 

notation system used within it to express definitions and operations was referred to as 

Meta- IV, but it was only used in the IBM laboratory in Vienna from 1973-1978. Its use 

began to spread as VDM was applied to the formal definitions of programming languages 

used in the Telecommunications industry and people saw it being used to validate Ada 

compilers. By the mid 1980’s VDM Europe was established and a variety of VDM 

dialects were in use. A definitive textbook was produced outlining the notation and 

methods used by VDM [Jones 1990], The BSI and ISO developed a standard using as a 

basis the books of Bjprner and Jones [Bjprner and Jones 1978,1982] which describe the 

formal semantics of Meta- IV. [VDM 1991] later superseded by the final ISO standard of 

the VDM Specification Language now called VDM -S L  [Andrews 1996]

TOP()e:Item 

ext rd s:Item 

pre s ^  [] 

post e = hd s

The example of VDM given above shows a stack specified using a sequence stmcture and 

the operation TOP which reads the top item by taking the head of the sequence given it is 

non-empty.

2.6.2 Z (model based)
Z developed out of a need to improve on one of the perceived difficulties of VDM, that of 

independence of operations. The interdependence of the component parts of a VDM 

specification is not explicit in the specification’s stmcture, whereas Z permits quoting and 

reuse of specification text at various points through its schema calculus.

We see in this example (a schema which describes the check for a non-empty stack) that 

all information about the stack is included by the statement in the first line.
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The concepts and framework were first proposed around 1981 and developed through pilot 

projects and case studies undertaken by the Programming Research Group at Oxford. A 

large part of the early work was carried out by Spivey following the pioneering work of 

Abrial and published from 1985 onwards. [Spivey 1985,1992] The book on Z by Spivey 

has become the classic reference manual. As was also the case with VDM, variations 

began to spring up as practitioners adapted the notation and added constructions to suit 

their needs. The first publicly available version of the proposed ISO Z standard has been 

produced [Brien and Nicholls 1992] .

2.6.3 B Method ( model based)
One of the developers of Z, Abrial, tried to extend the scope of Z to provide

• a formal development lifecycle from specification to code,

• tool support for all stages to realise the potential of formal methods in large-scale 

projects. These tools would show the correctness of the specification and its 

refinements.

In 1984 having worked on the method and tools in parallel he presented a unified 

foundation for predicate logic, set theory and program construction [Abrial 1984] and a 

proof assistant which was the forerunner of the B-Tool. He developed the work from 

1985 together with the B.P. Research Centre Sunbury and the Oxford Programming 

Group.

The B-Method consists of 3 stages:

1. the system requirements are captured using formal specification in AMN (Abstract 

Machine Notation);

2. this specification is gradually refined until it reaches a final refinement which is in a 

simple imperative style programming language;
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3. code is automatically generated from this final refinement.

The example is taken from the specification of the abstract machine for a sensor which is 

picking up information and storing it in an array [Storey 1992],

A feature of the method and tool are the large number of proof obligations it generates

MACHINE

Sensor(noreads)

CONSTRAINT
noreads :NAT

SEES
Info

VARIABLES 
d array

INVARIANT
darray : DTYPE+->seq(REAL) & 
!(xx).(xx:ran(darray) => size(xx) = noreads) 

INITIALISATION 
BEGIN

darray :={}
END

OPERATIONS
assign_darray(dd.vv)=

PRE
dd:DTYPE & 
vv:seq(REAL) & 
size(vv) = noreads

THEN
darray(dd):=vv

END
END

which must be discharged both to prove the initial specification internally consistent and 

to show the refinements are correct representations. The tool draws on a large library of 

proof rules to discharge these obligations and other rules can be added by the user.

Claims made for the tool are that it incorporates:

Configuration management

Static analysis

Logical consistency analysis

Proof Tools 

Dynamic validation

- for design

-syntax and type checking

-generating proof obligations for consistency and 

correctness

-to discharge the proof obligations 

-prototyping and animation for validation testing
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Code Production -automatic translation from low level design to 

code

Built in reuse -a library of reusable modules

Automatic code generation -generating from entity relationship models

Rapid prototyping

Document preparation tools -indexed cross referenced documents using LaTeX

Automatic rebuilding -remaking facilities when source files are altered

2.6.4 CCS (process algebra)
The development of CCS was a major breakthrough in the modelling of concurrency and 

synchronisation and originated with Milner [Milner 1980,1989]. His objective was to 

develop a framework for constructing and comparing different models in various stages of 

abstraction. He gives a basic syntax to denote processes and also a system of relationships 

between expressions including strong equivalence, observational equivalence and 

observational congruence.

ENDCELL =ax. (CELL! (x) ".ENDCELL) + y $.NEL

The example is taken from [Milner 1980] and shows the construction of a pushdown store 

from a series of cells.

2.6.5 CSP (process algebra)
The standard work on CSP (Communicating Sequential Processes) has long been the book 

which developed from Hoare’s work and lectures on the problems of concurrency [Hoare 

1985]. His ideas deal with the problems caused when a system continually acts and 

interacts with its environment. CSP sets down formally the behaviour of a process in 

terms of traces of the sequence of actions in which it engages. Hoare gives a full 

mathematical basis for the method with algebraic laws to underpin the theory. Non-

CELL i(y) =ax.CELL2 (x,y) + y  y.CELLo

CELLt  (x,y) = p  y.CELLi (x)

CELLo = 8x.((/ x = $ then ENDCELL else CELL] (x ))
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deterministic processes are dealt with and proof rules are given for showing that a design 

satisfies its specification.

This example shows a phase encoder which is a process T which inputs a stream of bits 

and outputs <0,l>for each 0 input and <1,0> for every 1 input. The inputs are denoted by 

having a “?” attached to the channel and the outputs are given a “ !” following the left or 

right channel. A decoder, R, reverses this translation. It is taken from [Hoare 1985].

T = left?x^right!x^right!(l-x)—>T 

R = left?x—>left?y—>if y=x then FAIL else (right !x—>R)

Hoare describes attempts at implementation in Pascal plus, Simula and Ada. However his 

preference was to convert the specification into OCCAM [INMOS 1984] a simple 

programming language chosen to make the transition as straightforward as possible. 

OCCAM syntax was designed to be composed directly on screen with the help of a syntax 

checker and implemented with static storage allocation on a fixed number of processors.

2,6.6 ADT (algebraic)
The particular method of Abstract Data Types described here is taken largely from 

Martin’s book [Martin 1986]. It developed from the ideas of applying an algebraic 

technique for the specification of data types as described in [Guttag 1977] and a good 

introduction to their use is given in [Ehrig et al. 1992], The method concentrates on the 

behaviour of operations on data types and describes the data types axiomatically. Large 

sections of Martin’s book concentrate on developing a good understanding of some of the 

common data types, for example sets, sequences and trees. He demonstrates how to 

implement the resulting structures and expressions in Pascal but points out that other 

programming languages could be used equally well.

As an example the following expression specifies the result of looking for the top element 

of a stack when you have previously put the element e onto the stack s.

TOP(PUSH (e,s)) ::= e

2.6.7 RAISE (hybrid)
Raise (Rigorous Approach to Industrial Software Engineering) was the name of a CEC 

funded ESPRIT project which ran from 1985 - 1990. The Raise specification language
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RSL [Havelund et al 1992] was based on VDM but was designed to incorporate features it 

lacked. The particular deficiencies of VDM it addresses are property oriented 

specification, structuring and concurrency. Raise is an all embracing notation with 

features borrowed from OBJ [Goguen and Tardo 1979], Standard ML [Milner et al 1990], 

CSP and CCS and is therefore able to handle a wide range of specification domains. The 

notation is incorporated into a method defining the rules for refinement (the 

implementation relations) and has a tool set to help with checking, proving and translating.

It claims to cope with a full range of specification features such as parameterisable abstract 

data types, modularity, concurrency, nondeterminism and subtypes for full development 

from initial requirements to programs in Ada or C++. As part of the method there are 

facilities for formal development and correctness proofs.

LIST =
class

end

type
List

value
em pty: List
add : Int xList—>List
head: List — + Int
tail: List----- List

axiom forall i:Int, 1: List • 
[head-add]

head (add(i,l)) = i, 
[tail-add]

tail (add(i,l)) = 1

The example here shows, in the specification of a list some of the elements of classes from 

object oriented languages, type declarations similar to VDM and axiomatic definitions that 

have much in common with ADT. It is taken from Hauvelund’s book.

An extension of the original project from 1990 -1994 was funded with the intention of 

improving the industrial potential of RAISE and transferring formal methods into various 

LaCoS (Large Correct Systems) partners.
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2.7 Tool support
Many software engineers who have attempted to use Formal Methods have noted that tool 

support is essential if anything other than toy size specifications are to be attempted 

[Computer 1996], The need for tools is one of the conclusions drawn from the surveys 

discussed in Chapter 4, [Craigen et al 1993, Austin and Parker 1992], the need is 

especially pertinent for anyone attempting any proofs or checking. As a typical comment 

Holloway and Butler regard inadequate tools as one of the serious impediments to the 

industrial use of Formal Methods [Holloway and Butler 1996], Lafontaine et al. discuss 

the difference between general tools and those designed to support a particular Formal 

Method as they try to apply the B-Tool to a VDM specification [Lafontaine et al. 1991].

Without tools, the claims that a formal specification satisfies certain conditions and 

invariants, or that a refinement from an initial specification has been carried out correctly, 

will be almost impossible to check by hand for any reasonably sized specification. Even 

small specifications can give rise to a large number of statements to check and many 

proofs to undertake. The validity of the specification and resultant code cannot be claimed 

under the Formal Method in question unless these are completed.

Even with tools in place if the tools themselves (particularly proof generators and 

checkers) are not themselves rigorously designed we will be doing the equivalent of 

checking the slope of a brick wall with a faulty spirit level. Holloway and Butler balance 

their argument for tools by warning against relying on those in their first stages of 

development which might contain errors themselves.

Developers of proof assistants must also be aware of the dangers of ‘hiding’ the rule bases 

of their proofs to make the tool more user friendly. To have confidence in the proofs the 

operator of the tool must know how the proof obligations are being discharged and 

whether the underlying assumptions are valid. It is recognised that carrying out checking 

and proofs by hand for all but the smallest specifications is a very laborious procedure. 

Woodcock gives some small examples of proof obligations and their discharge in Z which 

give a flavour of the detail and work involved [Woodcock 1989], Work done on the proof 

theory for VDM-SL and its applications can also be found in [Bicarregui et al. 1994, 

Bicarregui 1998]

However, relying on an automatic prover provided by a toolkit can also lead to difficulties. 

The tool automatically generates large numbers of proof obligations because of the
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problem that, as a machine, no intuition or common sense can be used. Unless the rule 

base the prover works from is thorough and sophisticated, much time and effort can be 

wasted while the tool is discharging ‘obvious’ proofs or ‘trivial’ cases. Even those 

interactive tools which enable the user to modify the rule base ‘on the fly’ as proof 

obligations are generated can leave the operator having to make too many tedious 

interventions.

Tool support has been slow to develop although a range of proving and checking tools in 

various stages of development are available for the more popular methods. As some 

formal notations have matured to become well-established methods, an attempt has been 

made for tool support to be incorporated at every stage to supply:

• syntax checking,

• type and scope checking,

• proof assistants,

• translators from notation into code.

Some tools also have a systematic way of dealing with issues of consistency (ensuring that 

the specification contains no contradictory statements) and completeness (all possible 

conditions are covered).

The development and sophistication of the tool sets which have been developed not only 

vary considerably from one notation to another but also between rival products for the 

same notation. Some companies are now trying to produce more generic tools that can be 

adapted by the user to incorporate their own grammars, libraries of proof rules and 

notations - for example Logica’s Formaliser [Formaliser 1994]. Most are still some way 

from being able to generate a formal specification at one end of the process and, through 

rigorous refinement, produce code at the other although some like the B-Tool make these 

claims [B-Toolkit] although there is no published evidence of the evaluation of them. A 

very comprehensive list of current tools with cross references to their sources and 

suppliers is given as an appendix in the NASA guidebook [Covington 1995],

2.8 Test Generation
Once the software is written Formal Methods can still be useful as part of the testing 

process. By highlighting those cases giving rise to error conditions, they can be used to 

generate test cases. There is some work published on how formal specifications can be
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used for the automatic generation of test [Dick and Faivre 1993, Horcher and Peleska 

1995, Gaudel 1995], As an illustration if we return to our expression (2)

VxBs ((x e  G a  x e  N) => (s e S a  (x , s ) e L))

obvious error conditions to investigate would be (with possible interpretations):

X £ G

x e  G a  x g N 

S E S A (x,s) £ L 

S (É S A (x,s) G L

(What about boys? do they love a sailor?)

(What about girls that is not nice?)

(What about the sailors that the nice girls don’t love?)

(What about the non- sailors that the nice girls love?)

In general by encouraging the writing of pre-conditions to operations or changes of state 

explicitly, many Formal Methods force the specifier to consider the conditions which will 

give rise to errors or will lead to classes of test cases. This can be particularly true of the 

more tabular methods where columns or rows must be completed for each case showing 

that all possible conditions have been covered. However de Neumann reminds us that 

only certain error types will be found by applying formality and also states that to carry out 

the formal proofs of any realistic system is intractable [de Neumann 1989].

2.9 Users of Formal Methods
In their comprehensive survey Austin and Parkin [Austin and Parkin 1993] sent 

questionnaires on what formal methods were being used to those who responded to a 

mailshot of 3000 or to an invitation they posted on an electronic bulletin board. Of the 800 

requests for the questionnaire 444 returned it completed and the majority were using 

formal methods in some form. From the forms that they analysed (just over 100) they 

found that industrial practise of Formal Methods was concentrated on 5 main notations 

although a large number of others were in use. The five were VDM, Z, (each being used 

by 55% of the participants analysed) LOTOS, CSP and CCS (which together were used by 

a further 18%). They did make the point that the latter three were used for situations 

where concurrency was important and, as in general that constitutes a smaller proportion 

of software development, there would be a correspondingly reduced percentage of use.
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In the same survey they also found that 89% of participants would use formal methods for 

the specification phase of software development but this dwindled to 17% for refinement 

and only 5% for verification.

This survey is discussed in greater detail in Chapter 4 together with the International 

survey carried out by Craigen, Gerhart and Ralston.

2.10 Myths, supporters and detractors
In his often quoted article Hall addresses 7 of the myths about formal methods [Hall 

1990], His arguments are summarised here:

• Formal methods guarantee that software is perfect.

No, mistakes will be made and limits are also imposed by the coding language, operating 

system and hardware but some correctness can be demonstrated and some errors found 

earlier.

• Formal Methods are all about program proving.

No, the formal specification should be the basis for the program and the program should 

arise from the refinement of the formal specification.

• Formal Methods are only useful for safety critical systems.

No, they can help to ensure that the right software is built for any system.

• Formal Methods require highly trained mathematicians.

No, the mathematics required is easy. The more difficult aspect is the modelling. The 

inumerate need less than a weeks training in discrete mathematics and a two week course 

in notation. The majority of software engineers would not be able to do proofs easily.

• Formal methods increase the cost of development.

No, writing a formal specification decreases the cost of development. Proving each step is 

probably too expensive and in industrial examples you must be careful how the training 

one off costs are incorporated. The balance of resources used in the lifecycle changes and 

the increase front end costs may be recouped by lower maintenance.

• Formal Methods are unacceptable to users.

No, they help users understand what they are getting. However commenting and natural 

language explanations must be used to supplement the formal specification and some 

limited animation or prototyping is useful.
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• Formal methods are not used on real large-scale software

No, they are used daily on such projects, for example IBM CICS, Praxis CDIS project, 

Rolls Royce and Associates on Nuclear reactor control software.

In this thesis we shall examine some of Hall’s arguments, notably the last four concerned 

with the notation, user-friendliness, cost of development and their use in large scale 

projects. By looking for hard evidence we will try to see whether these ‘myths’ about the 

negative features of Formal Methods can in fact be so easily dismissed.

Alternative scenarios showing the failure to use Formal Methods properly have been the 

practise of ‘reverse specification’. This occurs where there is a legal or contractual 

requirement to use formal methods, the software is written first using traditional methods 

and then the formal specification is derived ‘backwards’ from it.

The lack of published material could be the result of the sensitive nature of the projects. 

When we made requests to some companies for samples of Z specifications the sensitive 

nature of the work was given as the reason for it not being made available. In the USA if 

Formal Methods are used they tend to be for security critical projects rather than safety 

critical ones so publishing results or material might be difficult.

2.10.1 Claimed benefits
Software failures come to our notice when the results have an impact in our lives. If an 

aircraft crashes because of a computer fault, a missile system fails and the ‘wrong’ people 

are killed or a financial institution loses millions of pounds because of an undetected 

computer fraud we are alerted to the repercussion of poor software quality.

There are numerous well-documented cases of such failures [Peterson 1996] and the twin 

consequences of loss of life and revenue drive the search for improved quality. In the 

USA with its bias towards litigation these dual concerns have combined together in recent 

years with cases of companies being sued for incidents indirectly attributable to software 

that they have supplied. In these situations there are incentives for investment in methods 

that will claim to be rigorous in detecting errors before release and aim to show the 

program to be provably correct.

It has always been a feature of developments in computing that they are the subjects of 

hype and vested interests and Formal Methods are no exception. Defect free software is
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promised if you adopt Formal Methods [Sullo and Williams 1992] and Formal Methods 

require no more tools than a word processor that can handle mathematical symbols [Potter 

1991],

It has been claimed that the earlier faults are detected in the software development 

lifecycle, the cheaper it is to fix them [Boehm 1981]. By using formal methods at the 

initial requirements specification stage more of these early faults should be detected. The 

most damaging types of fault, those caused by incorrect requirements capture, should 

become rare using a method that puts so much emphasis on a true translation of the clients 

specification.

A further claimed benefit derived from using the Formal Methods comes after delivery. 

With so many of the problems discovered during development, delivered software should 

be more reliable than that developed using traditional methods and with such rigorous, 

well documented origins it should also be easy to maintain [Hoare 86, Barber 1991].

2.10.2 Indications of limitations
‘Oversold and underused’ is the summary in Barroca and McDermids paper [Barroca and 

McDermid 1992] which tries to detail the arguments used for and against the inclusion of 

formal methods particularly in safety critical systems. In discussion of the strengths of 

formal methods they distinguish between the principle and practise. The theoretical claims 

that these specifications are clear, unambiguous, precise, abstract and concise are not 

always borne out in practise and they make the important point that what is clear between 

two practitioners used to reading formal specifications is not the same as saying that the 

notation has clarity. They also stress that the need for precision of the individual 

statements in formal notation can lead to a mushrooming effect that can make the formal 

specification far longer than the natural language description.

The first of the weaknesses that they highlight is to do with interpretation. This occurs at 

both ends of the bridge that formal specification makes between initial natural language 

requirements and the design and implementation. Here human error creeps in as the 

specifier must first interpret and translate their understanding of the client’s statements. At 

the other end of the bridge the implementor must re-interpret the formal specification in 

terms of coding. We conjecture that the fact that the gap between the requirements and
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code is often filled with a formidable array of mathematical symbols and constructions can 

lead to more of these errors of interpretation.

Larson and Plat [Larson and Plat 1992] argue that specification languages allow a level of 

abstraction that executable programming language do not, but they also state that it is not 

possible to apply a coherent specification notation for all paradigms and applications. This 

echoes the earlier arguments by Hoare [Hoare 1987] who was refuting arguments for 

executable notations and for a universal formal notation system.

Similar conclusions are expressed by Naur who advocated a variety of part-specifications 

in any style that is helpful to the user [Naur 1982]. His conclusion was at the end of a 

much wider argument on the nature of formal and informal expressions, specifications and 

proofs. He also makes the point that analysis of a situation and its specification is 

essentially an intuitive process which can be helped by Formal Methods in appropriate 

cases and if it suits the user. He presents some damning evidence on the limitations of 

Formal Methods by comparing a fragment of the official description of Algol 60 [de 

Morgan et al 1976] with the description of the same part given in VDM [Henhapl and 

Jones 1978], He states that the formal description is incomplete, contains numerous errors 

and inconsistencies and that the proof of consistency seemed to be impossible.

2.10.3 The jury is still out?
In a recent round table feature on Formal methods in Computer [Saiedian 1996] the two 

groups representing the two sides to the arguments about the adoption of formal methods 

seemed to emerge. One led by Hall, Bowen and Dill were on the whole advocating 

training, tool support and investment to spread the methods whereas others represented by 

Zave, Glass, Pamas and Holloway were expressing caution and wondering why after 25 

years the technology transfer had not taken place. They were still waiting for the hard 

evidence that the methods brought tangible benefits. They wanted solutions to problems 

they did have, not elegant ways of dealing with problems that did not occur.

Caught in the middle were several proponents of formal methods, Wing and Jones among 

them, trying to reconcile these arguments either by diluting the rigor with which the 

methods were applied or restricting those who have to deal with them to a specialised few. 

An insight to the popular view of Formal Methods within the software engineering 

community is given by Sullo and Williams:
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Formal Methods are like Latin: they will always be part o f our high culture but 

you don’t see them used a lot in everyday practice [Sullo and Williams 1992].

2.11 Summary
Formal Methods have been proposed as a means of assuring correctness of systems and 

they are especially relevant for critical systems. However a major problem is that the need 

to use formal notation because of the need of formal semantics means that formalism and 

understanding are sometimes in conflict. A major objective of this thesis is to show that 

the problems of comprehension are an impediment to the take up of Formal Methods.

We have looked at the origins and nature of Formal Methods and some of the main types. 

We have considered the importance of tool support and the role of the formal specification 

as a basis for the generation of test cases. Using arguments from both sides we have 

summarised the views of supporters and detractors of Formal Methods.

We believe that to ensure the future use of Formal Methods there must be

• clear reasons to use them :

measurable goals in terms of the improved quality of the resulting software,

• a more user friendly approach :

reducing the steep learning curve involved and the additional knowledge required of users,

• increased standardisation:

encouraging a small number to be widely adopted rather than a large number used rarely,

• hard evidence for their benefit:

industry needs studies which collect relevant data in a scientific way to put together a case 

for their use.
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CHAPTER THREE

3. MEASUREMENT AND FORMAL SPECIFICATIONS

In this chapter we look at the need for measurement to establish the case for 

the use of Formal Methods. We look at the attributes of interest both in 

software and in formal specification and try to establish a scientific basis 

for possible metrics in Formal Methods.

3.1 Introduction

In the introductory chapter of the thesis three objectives were given for the measurements 

made on formal specifications:

1. to measure the effectiveness of the methods themselves,

2. to measure directly attributes of the specifications themselves,

3. to build predictive models based on these measurements.

We now consider the nature of the measurements needed for our objectives. If we aim 

to show that incorporating Formal Methods into software development leads to higher 

quality code, we must then decide how this quality is to be measured. So we must look 

at existing software metrics and decide what we can learn from them. We also need to 

consider whether all Formal Methods will affect the quality of the code produced 

equally or whether there are attributes of the formal specification themselves which have 

a bearing on the production of better software. This leads us to investigate whether we 

can measure the characteristics of particular formal specifications to find factors that 

might influence software quality.

3.2 Why measure at all?

Roche states in [Roche 1994]

The aims o f objective software measurement, i.e. measurement that is 
independent o f the collector, are both technical and managerial in nature and 
include characterisation and evaluation; control and improvement o f software 
quality and productivity and comparison, prediction and estimation.
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Measurement has long been part of the scientific approach to many subject areas. Growth 

and progress in fields as diverse as agriculture and economics are measured by statistics 

which are widely recognised, for example yield/hectare or GNP. We use these statistics to 

monitor performance and to aid the selection of the best methods to ensure a quality result. 

If software engineering is to be accepted as a rigorous scientific profession then it must 

meet the standards applied by researchers and practitioners in other disciplines. Claims 

about improved performance or lower failures must be assessed by measurements and 

statistics that can be applied and interpreted universally.

When new methods or products are proposed they need to be measured against established 

standards. In 1992 the first international standard was proposed for software quality 

measurement, ISO 9126 [ISO 1991] based on earlier work by McCall developed for the 

US Air Force [McCall et al. 1977]. This standard was an attempt to define software 

quality in terms of six factors: functionality, reliability, efficiency, usability, 

maintainability and portability. Many companies now use this model as a framework for 

evaluating software quality despite the fact that many characteristics and subcharacteristics 

related to these six factors are not properly or unambiguously defined.

In an attempt to carry out quality assessment procedures a company may use measurement 

of a generally accepted level of operational quality like defects per thousand lines of code 

or the number of post release failures. We shall show in section 3.5 that this can be a 

problem if faults, failures and defects are not carefully defined. The use of company 

defined ‘in house’ terms or standards make comparisons between different products and 

processes more difficult.

If a business is considering a major overhaul of its software systems it needs hard evidence 

on which to base its decisions before planning what may be a large investment. It must 

weigh up the perceived improvement of the proposed new system against the costs and 

drawbacks of abandoning existing practice. The costs of changing over, with associated 

retraining and re-equipping overheads, must be balanced by the anticipated savings 

through lower maintenance or the predicted higher income from better performance. The 

availability of measurements taken from several products under the conditions most 

pertinent to the company will mean that an informed choice is made and a product suited 

to the company’s needs and meeting its performance criteria is chosen.
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The same is true for companies reviewing their process methods and in particular their 

attitude to Formal Methods. Incorporating them into software development could mean a 

complete change in the company processes and a different cultural approach to projects.

3.3 What is measurement?
If we are going to call for data on Formal Methods we need to understand the meaning 

of measurement. This is a vast topic and the discussions following represent a summary 

of the most relevant aspects of measurement as they relate to our thesis. The 

mathematical basis of measurement as given by representational theory is not covered 

here but can be found in [Krantz at al. 1971],

Measurement of an entity implies assigning to it an objective value which can then be 

conveyed in a meaningful way from the measurer to others. In one of its most common 

uses we can say that a particular person is 183.7 cm tall; this gives an objective standard 

measure well understood by anyone with knowledge of the centimetre. If instead we 

simply say that a person is tall we have also put a measurement to them but we now have 

to be sure that if we are to pass this information on, those receiving it have an 

understanding of what is meant by ‘tali’. A comparative measure, as in ‘he is bigger than 

your Uncle Ed’, will only be useful if the standard (in this case Uncle Ed) is known.

In his book on software metrics Fenton gives the following definition of measurement;

measurement is the process by which numbers or symbols are assigned to 

attributes o f entities in the real world in such a way as to describe them 

according to clearly defined rules.

He follows this with a definition of a measure;

a measure is an empirical objective assignment o f a number (or symbol) to an 

entity to characterize a specific attribute [Fenton 1991],

So a measure can be devised and refined as a result of observations of a particular 

attribute. Metrics are proposed measures which may characterise their attribute with 

varying degrees of success. Underlying any attempts to develop metrics should be an 

understanding of the theory of measurement and a framework for measuring attributes 

which has developed from our understanding of the empirical relations involved.

In scientific disciplines a consensus emerges from the experience of the practitioners of the 

way that attributes will be defined and that in turn leads to the basis of an accepted
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measurement. As an example, one of the classifications of rabbits may be ‘long eared’ 

and biologists could arrive at a consensus about the way that long eared will be defined 

which in turn leads to the basis of a measurement for ears.

In our first example we have considered the attribute of height by assigning a number in 

centimetres as a measurement but also taking a different approach we have given the label 

‘tali’. This leads us to consider the nature of the measurement and the descriptive types 

that can be used. The nature of the different ways of assigning values to the attribute gives 

the scale type for the attribute.

3.4 Scale types for measurement
There are five well-established scale types which we will illustrate using an example of the 

size of a person as it is usually applied to girth.

Nominal - a naming type of label - e.g. fat, a description which has no order about it but 

just characterizes that type of person. You cannot compare a fat person with an obese one- 

there is no underlying scale to tell you which is larger.

Ordinal - labels with an ordering e.g. L from the range S<M<L<XL. This is an ordered 

set of sizes where S is less in some sense than M.

Interval provides a notation of ordering and a notion of interval between entities. For 

example measure of clothes in sizes 10,12,14,16 where the difference between 10 and 12 

is the same as the difference between 14 and 16

Ratio a measure relative to a known scale e.g. waist 91cm gives a comparative measure 

to the known scale of centimetres.

Absolute not applicable here but used for items which can be counted using natural 

numbers, e.g. calories.

The nature of the measurement determines the type of statistics that we can obtain and the 

conclusions we can draw from the results. If we use an inappropriate scale type or misuse 

the statistics this will affect the validity of any results we obtain and any conclusions that 

we try to draw.
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3.5 What do we measure?

When we are considering the production of software there is an almost unlimited set of 

attributes connected to the final product and its production that can be considered. Which 

ones are given particular attention will depend on the goals and objectives of the measurer. 

We are interested in measuring attributes to try and quantify the impact of Formal 

Methods so we will be concerned with two products, the final delivered software and the 

formal specification. We will also need to consider the difference Formal Methods make 

to the processes involved in developing the software. Resource issues such as training 

needs and the use of Formal Methods experts may have a bearing on the arguments about 

their incorporation into projects.

As we look at how we will obtain some of these measurements we also need to classify 

what we mean by attributes. Fenton distinguishes between internal and external attributes 

to differentiate between the case when an attribute can be measured in terms of its self- 

contained properties and alternatively when it is measured in terms of its relation to the 

environment [Fenton 1991]. When we consider the different attributes of software and 

specifications we can investigate, the picture is complex and classifying them will help us 

to focus on the areas relevant to our study.

3.5.1 Classification of attributes

In all these discussions ‘attributes’ has been a rather loose term for the properties and 

characteristics of interest. Fenton in his book Software Metrics [Fenton 1991] puts all 

entities which have attributes we might want to measure into the 3 classes, processes, 

products and resources and gives examples of attributes. Table 3.1 is a summary of the 

information on software attributes and is reproduced from the book.

The first column lists the most common entities in software development under their three 

classes. The second column lists internal attributes which are an integral part of each 

entity. The final column gives the external attributes which are related to the environment 

and may be consequences of the internal attributes.
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ENTITIES EXAM PLE ATTRIBUTES
INTERNAL EXTERNAL

Products
Specifications size, reuse, modularity, redundancy, 

functionality, syntactic correctness
comprehensibility,
maintainability

Designs size, reuse, modularity, coupling 
cohesiveness, functionality

quality, complexity 
maintainability

Code size, reuse, modularity, coupling 
functionality, algorithmic complexity 

control flow structuredness.

reliability, usability, 
maintainability

Test Data size, coverage level quality
Processes

Constructing
Specification

time, effort number of requirements 
changes

quality, cost, stability

Detailed
Design

time, effort number of specification 
faults found

cost effectiveness, cost

Testing time, effort number of bugs found cost effectiveness, stability, cost
Resources

Personnel age, price productivity, 
experience, intelligence

Teams size, communication level, 
structuredness

productivity, quality

Software price, size usability, reliability
H ardware price, speed, memory size reliability
Offices size, temperature, light comfort, quality

Table 3.1 Components of Software Measurement 

In considering the attributes in relation to formal specifications the shaded rows of the 

table will be the most relevant.

Classification and measurement of attributes are not always straightforward, and we take 

the example of the attributes of a cake as an illustration.

The taste of a fruitcake will be a key external attribute affecting how attractive it is to 

customers. This external attribute may be very difficult to measure directly but we 

could look for internal attributes which can be measured and which might be related to 

the taste of the cake. The metric could be constructed from such internal attributes as:

• fruitiness -measured by the proportion of fruit in the mixture,

• sweetness- measured by the amount of sugar included,

• lightness- measured by the proportion of flour in the ingredients,

• texture- whether nuts and/or cherries were included.
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The single metric proposed as an indicator for the external attribute taste could be made 

up from numbers relating to each of these four internal attributes.

Not only must we now consider the demarcation between internal and external attributes 

but we must also look at the division between software and specification attributes and the 

connections between them. We shall concentrate mainly on measurements based on the 

products.

3.5.2 External software attributes

External software attributes are characteristics of software quality such as reliability and 

maintainability which are apparent from the users point of view and may be requested as 

part of the specification. These may be measured by using surrogate quality measures 

such as failure rates, fault density data and MTTR (mean time to repair). To base the 

standards of software quality on such measures several terms must be carefully defined. It 

is common for the terms defects, failures, bugs, faults, anomalies, errors and crashes to be 

used with widely different interpretations. This problem is compounded when the 

measurements taken are given in relation to the code length so that rates are used rather 

than absolute values. The definition of lines of code can also be open to misunderstanding 

as we discuss later.

In Adams work at IBM [Adams 1984] he found that a range of major systems contained 

‘large’ faults which caused failures infrequently and also ‘small’ faults leading to the most 

observed failures. For example one third of all faults caused a MTTF (mean time to 

failure) of over 5000 years. Reliability measures are based on failure data, not fault data, 

and this study suggests that this may not give an accurate reflection of the quality of the 

software.

3.5.3 Internal software attributes

In contrast to the external ones, internal attributes are not visible to the end user of the 

software. As examples of these we could include the complexity of the code, the data flow 

through the code or even something as simple as the size of the software given by total 

lines of code. These can often be calculated directly from the code fairly automatically. By 

investigation we may find that there is a relationship between some of the external
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attributes and certain internal attributes of the software. One of the most obvious links 

may be between the complexity of the code and the maintenance effort. In this respect 

McCabe’s cyclomatic number [McCabe 1976] is often used as a guide to maintenance 

effort although by itself it does not give sufficient information about code to be a good 

indicator.

3.5.4 External specification attributes

In a similar way we can look at a formal specification of the software and consider its 

external attributes as they affect those who read and interpret it. The ease with which it 

can be read, its usability and its maintainability will come under this category but these are 

difficult to assess and as for the software attributes we try and find surrogates for them 

which can be more easily captured. So we could link the readability with metrics based on 

the richness of the notations and the structure of the specification.

3.5.5 Internal specification attributes

The internal attributes of a formal specification may be related to the external attributes 

but are properties of the specification itself which might be of interest in their own right. 

The structure of a specification may have a bearing on its comprehensibility (external) but 

also may need to be given a standard or boundary of its own to ensure good practice for 

writing specifications is established (internal).

3.6 Linking attributes

Figure 3.1 shows these four aspects of the software as interlinked and we need to 

investigate both the different types of attributes and their relationships to each other. We 

need to find the key optimal internal attributes in formal specifications as they are linked 

to the external ones. We also need to see if they connect with the desirable attributes of the 

resultant software which are a measure of its quality.
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Figure 3.1 Showing various attribute areas of specifications and software.

Ideally we would want to define metrics related to the attributes of the specification which 

we could link to the established software measurements of quality.

If we return to our analogy of the cake representing the product of finished and delivered 

software, we could take the formal specifications to be analogous to the recipe. Figure

3.2 shows how our attempts to link the various attributes of software and specification 

are like trying to investigate the properties of the recipe and link them to the final cake.

RECIPE CAKE

Figure 3.2 Showing various attribute areas in the cake analogy.
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3.7 How do we measure?
In a word we must measure ‘scientifically’. Measurements which are not carried out 

correctly under stringent and stated conditions cannot have much weight given to them. It 

is as if a measurement has been taken with a bent ruler placed at the wrong angle, it is 

worse than no measurement at all because it could be misleading.

There have been discussions on the nature of software measurement and claims and 

counter claims for different theories and frameworks for measuring. The scientific 

approach should underpin two interconnected aspects of proposed software metrics. First, 

as Fenton has argued, there needs to be an acknowledgement of the role of the 

representational theory of measurement as a basis for the proposed metrics if they are to be 

true measures [Fenton 1994]. As a second issue the rationale and methods of obtaining 

measurements are also to be justified scientifically. In their paper Fenton et al. give 

guidelines for those intending to carry out scientific evaluation of software which include 

emphasis on empirical evaluation and data, the design of experiment and the need to 

have measurements appropriate to the intended goals [Fenton et al. 1994],

The need to establish the circumstances under which the results of measurements were 

obtained is important; where possible the conditions should be replicated so that further 

supporting evidence is produced. This is a guard against freak statistics from favourable 

conditions and unscrupulous operators. Whilst bias can never be totally eliminated, 

repeated experiments under similar conditions minimise its impact.

3.8 The claims and limitations of measurement

The value of software metrics can be dependent on two aspects of their collection. The 

first aspect that needs to be examined is whether a particular measurement made on an 

attribute is an appropriate one for the intended purpose, for example does measuring the 

number of lines of code give a metric relevant to the cost of a project? The second aspect 

that must be considered is the scope of the interpretation of statistics collected for example 

does a metric devised from a small example scale up to an industrial sized project? 

Limitations to the claims for metrics can arise from failures in either of these two areas.
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3.8.1 Internal and external validity
Fenton looks at the validation of software measures and classifies them as internally and 

externally valid with relation to measurement theory. Internally valid measures provide a 

numerical value for an attribute in such a way that there is an accepted underlying model 

of the attribute and the measure used preserves relations over the different software under 

consideration. Internal validity is a necessary requirement for a good measure.

As an illustration if we consider the classification of piano pieces in a fairly common way 

by the three difficulty levels beginner, intermediate and advanced, then we could propose 

an underlying model of difficulty. This model might consist of taking the average number 

of notes per bar, the number of sharps or flats in the key signature and an adjusted total 

number of bars. This could give us some sort of difficulty measure

D = npb x key x b/10

(where npb = average notes per bar, key = sharps/flats in key signature, b = total number 

of bars)

For D to be a valid internal measure it must be clear that the mapping between our D 

values and the levels beginner, intermediate and advanced preserves the ordering so that 

for example an advanced piece would be expected to have a larger D value than an 

intermediate one. We note that for our proposed metric the other characteristics of internal 

validity are present namely that it is a clear attribute we are proposing to capture 

(difficulty) and that there is a clear basis on which D is measured (the given formula).

Inappropriate metrics will make any conclusions virtually useless. It invalidates a series of 

highly respectable scientific trials if the attributes being measured do not have a 

demonstrable bearing on the intended area of concern.

When we consider externally valid software measures we are looking for metrics that will 

be used as predictors of a behavioural aspect of the software such as cost of maintenance 

or expected time to failure. Here it is more difficult to define measures that will map 

directly onto a numerical measure of the attribute concerned. Fenton draws attention to the 

difficulty of using LOC (lines of code) as a predictor of anything except the amount of 

paper used in printing a program out, although he notes that it is an internally valid 

measure of the length of a program. Incorrect inferences are made when we try to use 

LOC as a predictor for other attributes such as complexity or running time. Some
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researchers have, in our view, wrongly rejected internally valid measures on the basis that 

they cannot be proved to be externally valid [Schneidwind 1992], One of the major 

objectives of measurement theory is to find internally valid measures of software 

attributes.

At present one of the difficulties of defining valid measures either internally or externally 

is the problem of agreed definitions of common terms. For example the terms faults, 

failures, bugs and errors are used in connection with code in ill-defined ways which make 

comparisons very difficult. Even when the terms are precise the counting methods are not 

always made explicit in documentation; for example when counting faults is a fault only 

counted on its first appearance in code or is there some account taken of the number of 

times that the section of code containing the fault is used within a single run of the 

software?

Evidence for the effectiveness of externally valid measures must be collected with proper 

experimentation to evaluate the role of these measures in predicting attributes. The design 

of trials and the appropriate use of statistics have a large impact on whether a particular 

measurement can be proved to be valid.

3.8.2 Scaling problems
The abuse of the information collected can arise from incorrect use of scaling to extend or 

project the metrics collected under one set of circumstances to another. As an example it 

would be absurd to say that as a program of 5 lines of code took 1 minute to write, so one 

with 5000 lines would take 1000 minutes or just over 16 hrs. Problems often arise from 

the failure to understand that when a project is scaled up combinatorial factors are 

involved.

Failure to carry out sufficient trials or the use of an inappropriate time scale can also lead 

to false conclusions. Common errors include making judgements based on too low a 

sample size or one that is not representative of the ‘population’ (usually software not 

people) in general. So proposed metrics for software should clearly state if they really 

only apply to particular application domain or special circumstances. Analysis of data to 

help validate a predictive measure should state how far into the lifecycle the data was 

collected. In particular, statistics designed to look at maintenance and reliability should be 

collected well into the post delivery period whilst those designed for cost must take into
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account all the training and preparation which may take place before the official start date 

of the project.

3 .8 .3  S ta tistics

Another source of error is the incorrect use of statistical tests to prove significance. The 

underlying assumptions and the limitations of each technique should be stated when they 

are used. Well-known errors enter the calculations if attention is not paid to independence 

of factors, levels of significance and assumptions of normality. Any conclusion drawn 

relating to correlation must also be carefully examined as there is always a possibility of a 

misleading indirect relationship where both factors under examination are related to a third 

not under investigation. Brooks reminds us that scientists from other disciplines have 

been perfecting these techniques of statistical inference for many years and computer 

scientists should aim for the same standards [Brooks 1980],

A more fundamental problem is the fact that many common statistical operations and tests 

are only meaningful for interval, ratio and absolute measures. It is not possible to cannot 

calculate the mean and standard deviation of 3 ‘excellents’, 2 ‘fairs’ and 5 ‘poors’ or any 

other nominal or ordinal measurements.

3.9  Common software metrics for products

By considering some of the existing metrics used in software engineering we hope to:

• understand some of the general principals used in their application,

• look at their strengths and limitations,

• see if they can be applied to formal specifications.

First we studied some of the most common metrics used and then we looked for evidence 

of their effectiveness as measurements by considering the validation studies carried out on 

these metrics. Full and detailed descriptions of all the metrics considered, both product and 

process, appear in Appendix A and the validation studies are analysed in Appendix B. 

What appears here and in section 3.10 is in the form of a summary of the most relevant 

work.

We can categorise software metrics by the development phase or phases within the 

software lifecycle when they are applicable. We shall concentrate on those most pertinent
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to the specification and design stage but we also touch on some which might apply right 

through to the coding phase.

3.9.1 Function Points
Function Points [Albrecht 1979] and Symons Mark 2 Function Points [Symons 1988] can 

be used at the specification stage as they are based on the structure of the model of the 

software rather than the coding. However the detailed information needed about the 

inputs and outputs and external files could not directly be applied to a Formal Method like 

Z which concentrates on capturing the user requirements in relation to the changes in the 

state. It might be possible to adapt the function points concepts so that they could be used 

on these methods. Different classes of specification methods which are more abstract than 

Z or VDM might also be better suited to being measured by this type of method, notably 

algebraic specification.

The main drawback for both Albrecht and Symonds methods is the subjective nature of 

the measurements. They rely on weightings given twice in the calculations, once to 

categorise the items like outputs and files into the 3 categories (simple, average and 

complex) and secondly to weight the 14 factors which comprise the Technical Complexity 

Factor on a 6 point scale (0 - irrelevant, to 5- essential).

Function Points were devised to study factors affecting productivity and as a predictor of 

size and therefore effort. In their paper Jeffrey et al. concluded that Function Points were 

not much better in this respect than simple count-type metrics. [Jeffrey et al. 1993]

3.9.2 Design metrics
In the initial stages of a system design we sometimes only have data and processes 

identified. As an initial graphical analysis and design method data flow diagrams (DFD) 

show the flow of information through a proposed software system. They are made up of 5 

different elements each shown on the diagram by a different symbol. One symbolic 

representation is given in figure 3.3.

process source or sink

event data flow data store

Figure 3.3 A representation of the main symbols of Data Flow Diagrams
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When a DFD has been constructed certain metrics can be obtained from the diagram. De 

Marco, one of the original exponents of DFDs [De Marco 1979], used the diagrams to 

calculate Function Bang metrics which are a measure of the functionality of the 

specification.

At the same stage of system design entity relationship models (ER) are ways of capturing 

significant aspects of a system concentrating on data elements known as entities, their 

attributes or properties and the relationships between them.

ENTITY 1 ENTITY 2

Figure 3.4 Part of an Entity Relation Diagram showing a one to many relation.

The ER diagrams may consist of items of the form shown in figure 3.4, and the relations 

shown can be of 3 types: one to one, one to many and many to one. De Marco used the ER 

diagram to calculate the Data Bang metric. These two Bang metrics were together later 

called specification weight metrics.

As both these metrics involve only calculations of functions and data structures they could 

be applicable to certain formal specifications but would need adapting from their basis in 

DFD and ER. One of their advantages is that they can be calculated automatically once 

the data and functions are made explicit and are therefore, unlike function points, not 

dependent on subjective judgements.

Z for instance makes its functions very explicit having a different symbol for each type of 

relation. All the data structures are also clear in the declarative part of the schema so they 

could be identified easily. The most obvious difficulties in adapting the DFD based 

methods to Z schemas is the repetition and inheritance of the information from schema to 

schema and the use of base types which may contain hidden details of the attributes of 

data. However it might be possible to link these inheritance mechanisms to the levels used 

in decomposing the top level DFDs into further detailed analysis.
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3.9.3 Flow metrics
The next group of metrics we consider are based on the principle of information flow.

These measurements can be applied at the design stage only if there is detailed control 

flow information and a flowgraph representing an abstract form of the design. At a later 

stage they can be applied more retrospectively when you are modelling the data flow of the 

actual program code.

McCabe’s metrics concentrate on the complexity of the flowgraph using notions derived 

from graph theory. This work was extended from single modules to look at the whole 

system with Henry and Kafura and later Shepperd considering concepts like Fan-in and 

Fan-out [Henry and Kafura 1981, Shepperd 1990]. These terms refer to the flow into and 

out of modules and help form a measurement of the total flow of data through a system. 

Terms like coupling and cohesion are used to describe the relationships between modules 

and these have a bearing on the complexity.

Bandwidth, as defined in [Lind and Vairavan 1989], is another metric dependent on the 

structure flowgraph and concentrates on the idea of nesting levels. Fenton extends these 

ideas by describing how various measurements can be obtained from the flowgraph of a 

program based on the mathematics of graph theory [Fenton and Pfleeger 1996]. If we try 

to apply flow metrics directly to a formal specification it must be one that is structured in 

such a way that there will be forms or constructions with parallels to the flowgraph. For 

some specification methods like Z, which has an ‘inclusion’ mechanism so that 

information is passed down through the structures, it may be possible to apply this type of 

measurement. The work done by Whitty [Whitty 1990, Bainbridge, Whitty and 

Wordsworth 1991] in applying flowgraph methodology to Z specifications is discussed in 

section 3.10. VDM on the other hand has a very flat structure and in its original form did 

not allow linkages between different operations on the state so it would be difficult to see 

how a flowgraph could be applied to the overall specification. The algebraic methods 

where properties are given by recursive definitions would also be difficult to adapt to this 

structural approach.

All these metrics are supposed to measure internal complexity attributes which are chosen 

because of their link to external attributes such as development effort and ease of 

modification.

43



3.9.4 Halstead’s metrics
Halstead developed his Software Science metric to predict the size of code and the effort 

required generating a program. He used information about the operators and operands and 

their total number; from this basis he calculated an expected program length and hence 

effort. This work was later refined by Jensen but in recent years has fallen out of favour as 

a predictive method [Halstead 1975, Jensen and Vairavan 1985],

As it only depends on the operators and operands a formal specification containing that 

information in accessible form would be a suitable candidate for this type of measurement. 

The figures produced are usually used to predict program length and development effort so 

these results would have to be reinterpreted in the light of their impact on a particular 

Formal Method.

3.9.5 Length metrics
The most commonly used measurement of software length is lines of code, LOC. Even 

this simple definition is open to different interpretations as we consider

• blank lines,

• comment lines,

• headings.

Some metrics use non-commented lines of code, NCLOC, as a basis while others rename 

these effective lines of code, ELOC. It is sometimes useful for attributes such as 

maintainability to consider the commented lines of code, CLOC, separately whereas for a 

link with effort and productivity NCLOC might be better. Other length metrics try to take 

into account the difference between ‘headings’ lines which usually contain data 

declarations and header statements and lines of code which are executable. There are still 

problems with all these measurements resulting from the style of individual programmers. 

Whereas one will use a very open structure with a new line for each instmction another 

will condense several statements together on the same line. As with all metrics a measure 

of length will be valid within the constraints of its definition.

In formal specifications similar consideration must be made of the definitions of total 

number of lines of the specification. Many formal notations include headings, comments

and natural language sections. We shall see in Chapters 7 and 8 that the same 

specification can be written with different styles and structures affecting the overall length.
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3.10 Common software metrics for process
We need to consider these as part of our investigation into the effectiveness of Formal 

Methods. If claims are made that by using Formal Methods there is an impact on faults 

found and the maintenance post release we need to consider the metrics that are related 

to these processes. Some of the product metrics like Function Points can be used in a 

predictive way to estimate some of the process attributes like cost of development and 

effort involved.

3.10.1 Defect counting
As has been previously mentioned the terminology here causes difficulties when trying to 

assess whether a project completed using Formal Methods would differ significantly as far 

as defects are concerned. We shall use the standard definition of a fault as a human error 

which had led to a mistake in a software product, usually the code; reviews and testing are 

designed to identify these. A failure occurs when the system does not do what it should 

and is more usually detected when the software is operational. The claims that are usually 

made are:

• using Formal Methods will ensure fewer faults and failures[Hoare 1986],

• the use of formal specification will ensure faults will be detected at a much earlier 

stage and are therefore easier and cheaper to fix [Cohen et al. 1986],

• the rigour of Formal Methods will ensure that the code will be well designed and 

structured and therefore easier to maintain [Baber 1991].

To investigate these claims we are usually looking at the testing and review process and 

comparing defect densities. Defects can be a fault or a failure and the defect density is 

given by

^  . , number of known defects
Defect density = ------------------------------------

product size

This again gives us the problems of measuring size by LOC or some similar metric. A lot 

of defect density figures are concerned with the quality of the delivered software. What is 

also important as far as the influence of Formal Methods is concerned is the stage in 

development at which the defect is detected.

3.10.2 Maintenance metrics
In broad terms maintenance is the process of making changes to a product. These 

changes may be instigated to correct faults and failures or to improve the product with
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new features. To measure this process we are interested in the number of changes 

required and the time spent implementing them. Mean time to repair, MTTR, is defined 

as the average time it takes to make a change and restore the system to working order. 

Maintenance effort will be linked to such product metrics as size, structure and 

complexity and several models have been put forward to connect them [Belady and 

Lehman 1976, Neil and Bache 1993],

3.11 Application of software metrics to formal specifications
As we have stated in the introduction to the chapter we need to use measurement

both for assessing the impact of Formal Methods on software development and for 

considering properties of the methods themselves. Having considered a large number of 

software metrics it would seem that we now need to split these two purposes of 

measurement.

The evaluation of the difference that Formal Methods can make to software needs to be 

achieved by using software metrics in their traditional way - applying measurement to the 

software produced from projects incorporating Formal Methods and to the processes that 

are involved in the development of this software. To this end we need to look at feedback 

from industrial projects and reports from software engineers working in commercial 

settings. These are covered in detail in Chapters 4 and 5.

To investigate the application of measurement on the formal specifications themselves we 

need to see how well we can apply the software metrics to this area.

In our summary shown in Table 3.2 the main metrics described in the Appendices A and B 

are listed together with the stage where they apply, the method of their collection and their 

purpose.

We can see from the third column that most require the specification or design to be in a 

certain form before the metrics can be calculated. Ideally any measurements taken on 

formal methods should be related to the characteristics of the specification itself and not 

after its transformation into graphical, tabular or modular form. Formal specifications are 

not normally written in an executable form (although some Formal Methods have been
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developed to include various prototyping or animating procedures) so measurements 

which are intended to capture behaviour will not be appropriate.

SOFTWARE
METRIC

WHEN
APPLICABLE

HOW IT IS DERIVED ITS PURPOSE

De Marco 
Specification 
weight metric

specification
and
design stage

from DFD & ER to measure complexity 
predict effort

McCabe
Complexity

design stage from the flowgraphs >10 signals problems in 
a module written from 
this flowchart 
predicts effort

Coupling 
Fenton 
and Melton

detailed design 
stage

from coupling model 
graph

Complexity

Cohesion 
Bieman and Ott

detailed 
design stage

from the module 
structure

modifiability
complexity

Henry and Kafura detailed design 
stage

from module diagram 
and length

information flow

Shepperd 
IF0,IF3, IF4

detailed design 
stage

from module diagram software quality 
predicts
development time

Band width 
(Lind and 
Vairavan)

detailed design 
stage

from nodes on control 
graph

effort, modifiability

Halstead’s 
Software Science 
Metrics

design stage from operators 
and operands

to predict size of code 
and the effort needed to 
generate the program

Jensen design stage a refinement of Halstead
Albrecht’s 
Function Points

specification 
and design

data sources 
inputs and outputs

to predict size and 
productivity effort

Mark 2 Function 
Points (Symons)

specification 
and design

data sources 
inputs and outputs

Information processing 
size

COCOMO
(Boehm)

different stages 

mostly coding

cost drivers drawn from 
environment factors 
size from LOC or 
source instructions

cost estimation 
(effort estimation 
and productivity)

LOC
NCLOC
ELOC

at coding stage counting on program 
listing

effort, cost

Table 3.2 Common Software Metrics

There has been very little work on applying metrics to the specifications themselves or 

attempts to capture the characteristics of any individual notation. Ventouris and Pinleas 

did carry out a comparative study of algebraic specification methods using a set of criteria 

including comprehensibility, minimality, and ease of constmction and executibility 

[Ventouris and Pintelas 1992]. Their responses were mostly qualitative in nature but some
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ordinal scales were used. Ardis et al. also tried to establish a framework for evaluating 

specification methods using 11 criteria they describe as fundamental and 5 they class as 

important [Ardis et al. 1996], They evaluate each method on a four point scale giving it 

strength, adequate, weakness or not applicable as a consequence. We now look in a little 

more detail at two attempts to apply metrics directly to formal models.

3.12 Structural metrics on Z

This work by Whitty and others was an attempt to apply measurements to the structural 

nature of Z specifications [Whitty 1990, Bainbridge et al 1991]. It drew on ideas from 

Goal Question Metric (GQM) [Basili and Rombach 1988] and the application of 

metrication through program decomposition [Fenton and Whitty 1986]. In their 

measurement of Z schemas they used the following three restrictions in their 

undertaking:

• they concentrated on single schemas,

• they concentrated on the predicate parts of the schemas ( not the signatures),

• they took a particular model of the predicate expressions.

They proposed the use of the ‘short circuit evaluation model’ which defines the flow of 

control through any predicate. This in turn makes use of the redundancy involved in 

evaluating logical expressions i.e. a a  b and cv d need not be fully evaluated when a is 

false or c is true (assuming a left to right evaluation). So the flow of control for 

expression aAb can be represented by the graph shown in Figure 3.5.

a •

result

Figure 3.5 Graphical representation of aAb
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This can be extended to construct graphs involving quantification and implication 

giving quite complex expressions a graphical representation. In the later paper an 

attempt was made using a predicate file generator and a flowgraph analyser tool to 

collect metrics from the original Z schemas. The output was in the form of

• a boxplot showing node size,

• a scatterplot of depth of nesting against highest value prime.

Two specifications were tested and analysed, the first of 90 pages with 180 schemas and 

the second with 200 pages and 500 schemas. In summary they felt that the automatic 

collection of data derived from the structure of the schemas was essential if the metrics 

were to be used in the design phase of systems development. From the two types of 

plots they obtained as output they felt the most useful information might be the 

identification of the outliers. These might be derived from schemas identified as being 

of a more complex nature and therefore difficult to comprehend. Showing up as 

extreme values might indicate that these schemas should be partitioned into smaller 

ones in later reviews.

A tool was developed based on this work as part of the COSMOS project [Whitty and 

Lockhart 1990]. The authors were trying to model the cognitive notation associated 

with short circuit evaluation but it was not substantiated by empirical data and will not 

be adopted in this thesis.

3.13 Notation metrics
This study by Britton et al. reported at ESCOM 97 was an investigation into the 

notations used in software modelling [Britton et al. 1997], Originally the work had a 

particular context of specification of multimedia for educational systems but in their 

conclusions the authors state that the paper presents a foundation for measurement for 

any specification notation.

They worked on a wide range of modelling techniques, 18 in total, and under the more 

formal notations included Z, VDM, CSP, Predicate Logic, Petrinets and some logic. The 

attributes under consideration were:
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• richness - measured by the entries in a key or glossary,

• perceptual /symbolic- measuring the use of diagrams and labels,

• formality- this measured the relationship of a technique to branches of mathematics 

and its rigour,

• coverage -this covered the extent to which each method could model any of 8 facets 

of a system.

Tables were produced from a theoretical approach i.e. no empirical data was used and 

all calculations and nearly all measurements are taken from the definitions and 

glossaries of the notations. The results are difficult to interpret and use because some 

tables give definite figures for their entries (CSP 104, Petrinets 4 in glossary entries) 

whilst in others the entry does not allow much differentiation between methods (16 out 

of 18 do not handle time). The authors recognise the limitations of the results and 

acknowledge this as a first step to building and validating measures for notations. 

Nevertheless we shall find some of this work is closely related to our early work details 

of which are given in Chapter 6.

3.14 Conclusions
In our search for metrics to measure the effectiveness of Formal Methods we have 

considered the range of existing metrics as applied to software products and processes. 

We have considered two separate ways of using metrics:

1. to use them in a traditional manner to assess the software products and processes in 

various projects which have incorporated Formal Methods,

2. to adapt them where possible to apply them directly to the processes and products of 

formal specification.

We consider the first use of these metrics in Chapters 4 and 5 as we look at the surveys 

and case studies and attempt to measure the effectiveness of Formal Methods in practice.

Few of the metrics seem very suitable to transfer directly as measures of the attributes of 

formal specifications but several give indications of possible areas of interest. They have 

drawbacks for immediate application to Formal Methods for a variety of reasons;

• the attributes they are intended to measure do not correspond to a characteristic in 

Formal Methods,

• they have not proved to be effective as measures or predictors of the chosen attribute,
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• the method of deriving the metric is neither scientific nor objective.

However we explore this second way of using metrics is in Chapters 6, 7 and 8 where 

we look at applying some product metrics to specifications concentrating on aspects of 

the notation and structure. We will also explore their connection with process metrics 

related to the reading and maintenance of the specifications.
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CHAPTER FOUR

4. SURVEYS OF FORMAL METHODS

In this chapter we look at the evidence available on the use of Formal 

Methods presented by those using them in a variety of commercial and 

academic situations. We concentrate on the results presented by two large 

surveys of users of Formal Methods and the validity of the conclusions that 

were drawn from them. In particular we note that many of the results are 

based on subjective judgements rather than quantifiable properties.

4.1 Introduction

The two major surveys analysed here were undertaken as an attempt to get some 

feedback from industrial, research and educational settings concerning the use of Formal 

Methods. The approach by the two surveys is very different as is the presentation and 

analysis of their results. The first survey reported here concentrated on the Formal 

Methods aspect of twelve projects representing three main areas of application and they 

are divided into regulatory, commercial and exploratory categories. The second survey 

took a different approach and invited wide participation by use of bulletin boards and 

mailshots. Of the responses obtained the results are based on the analysis of 126 replies, 

about a quarter of those returned.

Both surveys were trying to look at the benefits of incorporating Formal Methods into a 

project and both tended to rely on subjective judgements from the teams involved.

They each put together a framework of questions referring both to the areas of the 

projects which might be affected by Formal Methods and also the implementation of the 

methods themselves. The first survey obtained responses by using questionnaires 

followed up by personal interviews with the members of the project teams whereas the 

second used postal questionnaires to those who expressed an interest from the original 

advertisements.

4.2 INTERNATIONAL SURVEY OF INDUSTRIAL APPLICATIONS OF 

FORMAL METHODS

by Dan Craigen, Susan Gerhart and Theodore Ralston.
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This was a study sponsored by the U.S. National Institute for Standards and Technology, 

the U.S. Naval Research Laboratory and the Atomic Energy Control Board of Canada. 

Its remit was to look at the then current use of Formal Methods by industry, and to 

assess the efficacy of Formal Methods for meeting the needs of these three 

organisations. The main report was published in September 1993 [Craigen et al 1993] 

and some of the work was summarised in other articles [Gerhart et al 1993, Craigen et al 

1995]. A lot of the material for the tables and summaries is drawn from these papers.

4.2.1 Overview of the projects
They covered 12 projects in a variety of industrial settings across North America and 

Europe. They grouped these by three categories: regulatory, commercial and 

exploratory.

Regulatory
In these cases the project was of a safety or security critical nature leading to some 

involvement from standards committees or regulators. Under this category came:

DNGS

Work done to give assurance to the Atomic Energy Board of Canada about the shut 

down systems for the Darlington Nuclear Generating Station.

SACEM

A project for the rapid transit authority in Paris (RATP) on a signalling system that 

would allow the time separating trains to be cut from 2.5 to 2 minutes whilst not 

compromising safety requirements.

MGS

This Multinet Gateway System is a device that ensures secure delivery of datagrams 

over the Internet. It was tested under the US Trusted Computer Evaluation Criteria 

process.

TCAS

Work on the logic and surveillance parts of the Traffic Alert and Collision Avoidance 

System designed to reduce the risk of mid-air and near mid-air collisions in aircraft.

The work was required by the US Federal Aviation Authority
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Commercial

Concern with profit and savings was the drive for these projects and they were:

CICS

Customer Information Control System, IBM’s large transaction processing system 

(mentioned in more detail in Chapter 5) was re-engineered for a new release.

Cleanroom

Two application of the Cleanroom methodology were investigated. The ground support 

for a Satellite at NASA and the development of a COBOL Structuring Facility 

converting old COBOL to a semantically equivalent form.

Tektronix

The firm in Oregon developed ‘non-executable prototypes’ to develop reusable software 

architecture for a family of oscilloscopes.

Inmos

This manufacturer of microprocessors used Formal Methods in three interrelated 

projects: to specify the IEEE Floating Point Standard, a scheduler for the T-800 

transputer and the Virtual Channel Processor for the T9000.

SSADM

Praxis developed a toolset to support the use of this Structures Systems and Design 

Methodology.

Exploratory

Here the organisations were investigating the potential of using Formal Methods.

HP

The Analytical Information Base of a patient monitoring scheme was a real-time 

database and its specification was undertaken in Hewlett Packard Specification 

Language (HP-SL) to see if there was any value in this type of technique.

LaCoS

Lloyd’s Register and Matra were interviewed on their experiences under the ESPRIT 

projects on the evaluation of RAISE. Lloyds were looking at data acquisition and
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equipment management systems on ships and Matra builds systems for railways and 

other applications.

TBACS

A group from the National Institute for Standards and Technology specialising in 

Computer Security Technology were developing Token -based Access Control Systems 

which involves smartcards with cryptographic authentication.

4.2.2 Methodology
The study was carried out by using questionnaires and structured interviews. An initial 

questionnaire was used to prepare the way by getting participants to consider some of 

the issues involved in incorporating Formal Methods into a project. This was returned 

before the personal interviews and used as initial feedback. The structured basis for the 

interviews was an attempt to get a uniform approach to the 12 projects so that an 

analytic framework could be constructed for the later studies of the interviewer’s 

reports. In total 23 interviews took place with 50 individuals, interviews lasting 

anything from half an hour to 1.5 days. About 1.5-person years in terms of effort was 

spent on the survey. The reports produced as a result of this process were sent for 

comments to the participants.

The varied nature of the projects made it impossible to get a totally uniform approach to 

the questions used in the interview stage but both the initial questionnaires and the 

interview questions covered six areas:

• organisational context,

• project content and history,

• application goals,

• Formal Methods factors ( the why and what of selecting them),

• Formal Methods and tools usage,

• results.

Details of the size of each project and the Formal Methods used is shown in table 4.1.
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PROJECT APPLICATION
AREA

SIZE FORMAL METHODS USED

SACEM Automatic train 
protection

9KLOC Hoare Logic 

(B method)

TCAS Mid Air collisions 7 KLOC Statechart-like language 

TCAS Methodology

DNGS Logic for shut down 1362LOC FTN A-7/SoftwareCostReduction (SCR)
of nuclear generator 1185LOC Asm Tabular descriptions

MGS Internet device 1 Opp maths 

80pp Gypsy 

6 KLOC OS

Gypsy Verification Environment 

Graphical Notation

CICS Transaction
processing

50 KLOC Z

Cleanroom restructuring Cobol 80 KLOC with 

20 KLOC reused

grammars and transformers of 

Cobol Structuring Facility

Tektronix Oscilloscope
products

200 000 KLOC 

(30 pp Z)

Z

Inmos Floating Point unit Occam then VHDL Occam,CSP (not mentioned in Gerhart 1993)
for transputers (100 ppZ) and Z

SSADM Toolset Support 37 KLOC 

(320 pp Z)

Z

HP Real-time database

(55pp HP-SL)

Hewlett-Packard Specification Language

LaCoS Experiment with 
RAISE

RAISE

TBACS Security properties 
of Smartcard

2.5 KLOC related 
to 300 lines FDM

Formal Development Methodology

Table 4.1 Summary information about the 12 surveyed projects
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PNGS MGS SACEM TCAS SSADM CICS Cleanroom Tektronix INMOS LaCoS TRACS HP
Satisfaction + + + + n/a n/a n/a + + + n/a 0

Product Cost n/a n/a n/a n/a n/a n/a n/a n/a + n/a 0 0

Impact + + + n/a n/a + n/a + n/a + + n/a

Quality 0 + + n/a + + + + + n/a + +

Time-to -Market n/a n/a n/a n/a n/a n/a n/a + n/a n/a n/a 0

Process Cost - n/a 0 n/a n/a 0 0 0 + 0 0 0

Impact 0 0 + + + + 0 0 + 0 0 +

Pedagogical + + + + + + + + + + + +

Tools n/a 0 + n/a - + 0 - + 0 + 0

Design + + + + + + + + + + + +

Reuse n/a + + n/a n/a n/a n/a + + n/a + 0

Maintenance n/a n/a n/a n/a n/a + + n/a n/a n/a n/a n/a

Requirements + + + + n/a + n/a + 0 + + +

Verification & 

Validation

+ + + n/a + + + n/a + n/a + +

Table 4.2 The responses to the 14 questions on the influence of Formal Methods
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4.2.3 Analytic framework
By this means Craigen et al tried to highlight patterns across the 12 projects by 

characterising the effect of the use of Formal Methods in 14 areas. They called this the 

‘feature analysis’ as they were concentrating on those features i) considered important 

for industry and ii) where it was suspected Formal Methods might bring benefits. The 

responses for the role of Formal Methods within these 14 areas of the project are graded 

into three types: + positive, 0 neutral or - negative. These subjective judgements were 

made by the researchers on the basis of the reports and using their knowledge of the 

organisations’ usual approach. The gradings that are given are relative to this usual 

approach and the results are given in Table 4.2.

Taking the literature available about this survey as a whole it is hard to get a consistent 

and concrete view of the effectiveness of Formal Methods and our summary in Table

4.3 reflects this problem showing overall from a possible 168 entries the proportions of 

each response. The large numbers of n/a were entered if either there was no information 

available on this characteristic (not available) or if the characteristic was not relevant to 

a particular project (not applicable) and these also make generalised conclusions 

difficult.

Regulatory % Commercial % Exploratory % Overall %

+ 29 52 37 53 19 45 85 51

0 5 9 7 10 12 29 24 14

- 1 2 2 3 0 0 3 2

n/a 21 37 24 34 11 26 56 33

Table 4.3 The response rate of the features for the three different categories.

However we can see from this analysis that overall the Regulatory and Commercial 

projects seem to have a similar profile but the Exploratory cases were slightly different. 

It is interesting to note that the final percentage of positive reactions to the effect of
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Formal Methods is just 50.6% (all figures in the table have been corrected to 2 

significant figures) and that the Exploratory projects, designed to achieve technology 

transfer or experimentation with Formal Methods, seem to have given rise to more 

neutral reactions.

In their reflections on the study, the impact of the researchers’ statements is often 

reduced by the diverse nature of the projects. In some projects there was a concerted, 

management driven, company effort to incorporate Formal Methods and in others just 

one individual who wanted to experiment with a new approach. Dividing and 

subdividing the cases as the survey authors have, (grouping into the three categories and 

dividing into 14 features) has meant that often arguments seem to based in one instance 

on a single experience only to be contradicted by evidence elsewhere in another section. 

For example if the ‘Time to market’ feature is considered, any conclusions from the 12 

projects will in fact be based on two responses one positive reaction and one neutral. 

The authors have stated the limitations of their work but nevertheless try to draw general 

conclusions relating to the three categories of projects.

4.2.4 Conclusions and recommendations

4.2.4.1 Regulatory conclusions
The drive to use Formal Methods here is one of demonstrating a high level of assurance. 

This means that the ability to specify requirements and build models using Formal 

Methods is almost secondary to using them to prove that the code conforms to 

requirements. The main findings of the survey in this area claim to be:

• regulators and developers discovered together what Formal Methods could do and 

how much evidence it provided for certification purposes,

• Formal Methods may be used in a different way according to context (as a design 

tool, as a documentation aid, as a testing framework, as a validating and proving 

mechanism etc.),

• no regulatory body in the survey would accept only Formal Methods based assurance, 

and none accepted just testing; most wanted a combination of techniques,
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• tools support was essential for this group as they had most need of proof and 

refinement. In some cases tools may even be specified to ensure their quality as well 

as that of the development,

• certification is costly and here consumed a large proportion of the project budgets. 

Lengthy time was spent on Formal Methods because of the assurance required,

• it is not clear how Formal Methods should or will be used in this area. The two main 

applications could be for product certification and process evidence.

4.1.4.2 Commercial conclusions
In some senses the dividing line between the regulatory and the commercial projects 

was artificial as many of the companies going for certification under the former category 

were looking to develop the product later on a commercial basis. However in this group 

the main motivation in incorporating Formal Methods was to affect the success of their 

products in the market place, so the factors of most interest here were time to market, 

impact of the product, cost and cost benefit and quality. In the event, parts of several 

projects proved unsuitable for Formal Methods use whilst conversely advantages were 

gained in hindsight beyond the expected benefit of clarity.

The authors noted the bias in this category towards Z with 4 out of the 5 cases using this 

in part or entirely as the specification notation. This seems to have been not because of 

the inherent properties of Z itself, but because of other external factors such as 

availability of experts, availability of tools and strong advocacy from Z enthusiasts and 

governments.

The main findings for this category were:

• conceptual benefits from using Formal Methods can be achieved without an 

extensive toolset, whereas...

• development and assurance aspects of Formal Methods will need tool support to 

achieve full industrialisation,

• cost effectiveness and performance were impossible to assess as the cost and cost 

benefit analysis metrics used by industry cannot be applied to Formal Methods 

processes. The performance data collected using accepted metrics was also 

inadequate.
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4.2.4.3 Exploratory conclusions
These three cases were the hardest to compare and [Gerhart et al. 1993] does not discuss 

them at all whilst [Craigen et al. 1995] absorbs them into the other categories. From the 

original report we can see that the aims, time allowed for incorporating the methods and 

the personnel involved was very varied. The LaCoS project involved a large 

commitment in time and people in a collaborative project under Esprit funding 

(cushioning the real costs) whereas the HP project was a group passing on techniques to 

an individual and TBACS was the reverse with a single person wanting more 

involvement in Formal Methods and passing the ideas to a group and both these projects 

had a brief time span. Perhaps not surprisingly there was a more positive attitude in the 

LaCoS project although as Table 4.2 shows several of the measurable features are left 

without comment. Both HP and TABACS chose not to pursue the specific Formal 

Methods used in their projects after this study.

The main conclusions for this category were:

• the ‘culture’ of a firm may have a significant effect on its willingness to adopt Formal 

Methods (or any new/ different methodology),

• tool support might have been of benefit for editing and checking.

There are fewer conclusions to this section as the exploratory nature of the projects 

meant that there were not many end products or processes to compare. There was also 

the previously mentioned divergency leading to few common experiences or results.

In the authors’ summary the points can be condensed to:

• the role of Formal Methods is wider now than a narrow specification to code process,

• there are now large scale real world applications of Formal Methods,

• Formal Methods are often used in a re-engineering role for clarification and 

precision,

• they may be incorporated in future certification processes,

• tool support was neither necessary or sufficient,

• technology transfer is slow even in ‘sympathetic firms’,

• education in Formal Methods as part of software engineering is weak in the US,

• Formal Methods do not adequately cover all environments,

• metrics and models to measure benefits are not generally available.
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In their recommendations the main points were:

• there is a need for better integration of Formal Methods with other techniques,

• tools need to be robust and integrated with other parts of the development,

• notations less mathematical in nature are required,

• Formal Methods need to evolve alongside OO, CASE, multimedia etc.,

• automatic deduction support is needed at least for regulatory cases,

• the gaps in the application areas that Formal Methods can cope with need to be filled,

• efforts must be made to widen the user base in this and other complex technologies.

4.2.5 Critique of the international survey
This was a very important piece of research in terms of the size of the projects involved 

and the detailed information collected. However there were limitations due to the basis 

on which it was conducted which are noted in [Gerhart 1993] as:

1. limits in time and effort to about 1.5 person years,

2. bias on behalf of the surveyors, sponsors and interviewees who have vested interests 

in applying Formal Methods,

3. the case selection which left out certain classes of methods,

4. cases of failures of Formal Methods were not included.

In their summaries and recommendations they make important points about the slow 

rate of adoption of Formal Methods by the software engineering community and the 

need to continue with quantitative studies that can measure their impact on projects. 

However if studies as detailed and far reaching as this one are to have impact some of 

the bias due to the above limitations must be addressed.

1. This is purely a funding issue and may be a reflection of the lack of interest in Formal 

Methods by commercial software producers.

2. This area is very difficult for all researchers who have to keep an open mind about 

the value of techniques which have become their specialised area. The solution may 

be to form mixed groups of Formal Methods supporters and detractors as an 

assessment panel or to conduct some sort of blind testing as was attempted in a small 

way in the Trusted Gateway project discussed in chapter 5. The dependence on
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opinions rather than facts could be removed altogether with proper objective 

measurements. The strongest argument for the use of metrics to evaluate the benefits 

of Formal Methods is that it removes just this type of bias and the authors in the last 

sentence of the report do suggest that metrics should be an area for further research.

3. This is not such a serious limitation as it gives a clear boundary between what is 

under discussion and what is outside the remit of this study.

4. Possibly this limitation raises the most serious source of bias which makes Table 4.3 

even more difficult to get into perspective. The team argued

... we did not seek examples o f outright failure. Such cases - probably dozens o f them - 

would probably be manifested in drop-outs and dispersion o f personnel. And the project 

duration was too limited. [Gerhart et al 1993]

The failure to include these negative experiences is not entirely explained away by the 

limited duration of the project. At least 3 or 4 cases of this type should have been 

covered to give balance to the report.

Overall the lack of well designed, unbiased, scientific measurements make most of the 

conclusions to this survey very subjective. The authors do allude to some attempts at 

collection of data with reference to metrics but seem to suggest that even these were 

useless because of a lack of comparative data from similar projects without Formal 

Methods. They imply that because the development of a project using Formal Methods 

is such a different process that the ‘typical’ metrics would not handle these cases. They 

also do not distinguish between metrics which could have been derived from the 

specifications and those which could have been obtained from the resulting software.

Clearly we would disagree strongly with these conclusions on the use of metrics. 

Simple size and effort metrics would have been easy to collect on the specifications and 

faults and failures must have been noted in the development processes and testing 

reports.

The report’s findings and recommendations, seen in the light of the subjective nature of 

the results, seem to leave the researcher open to the criticism that have made supporters’ 

claims for Formal Methods based on the selected opinions of other supporters.
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4.3 AUSTIN AND PARKER’S SURVEY

by Stephen Austin and Graeme I Parker

This was a literature survey and a survey of industry conducted in 1992 to look at the 

reasons for the low acceptance of Formal Methods in industry. A preliminary summary 

was produced [Austin and Parker 1992] and then four papers were written and 

combined together in Parts I - IV of the later report [Austin and Parker 1993], These will 

be considered separately. In chronological order the literature survey reported in Part IV 

took place first and the industrial survey was an attempt to see if the claims and 

counterclaims were matched in practice.

4.3.1 Part 1 Overview: Survey of Formal Methods in Software Engineering

This was the overview of the industrial survey and there is much duplication between 

this and Part II. In general the information that is printed in full in Part II with tables of 

individual questions and detailed responses is condensed here and histograms are used 

to present the information as percentage summaries. All conclusions are reproduced 

exactly in both parts.

4.3.2 Part 11 Survey of Formal Methods in Software Engineering

This survey was conducted to try and find out the reasons for the low acceptance of 

Formal Methods in industry. After a mailshot of 3000, a questionnaire was sent to the 

800 who requested it, 444 replies from industry were received and of these only 126 of 

these replies were analysed.

No reason for the use of just 126 replies is given nor is the method of selecting the 126 

from the 444 stated. These are serious flaws in the basis for the survey and Table 4.4 

taken from the paper shows apparent bias in the way the 126 were selected.
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Questionnaires Received

(abs)

Received

%

Analysed

(abs)

Analysed

%

Post (UK) 385 87 104 83

Post (Foreign) 48 11 3 2

Electronic (Foreign) 9 2 3 2

Discarded 15 12

Electronic (UK) 2 0 1 1

TOTAF 444 100 126 100

Research (UK) 60 14 18 14

Research (Foreign) 3 1 0 0

Table 4.4. Analysis of returned questionnaires

We see that for example although 11% of the 444 returned questionnaires returned by 

post were from a foreign source only 2% of those analysed were from this source. This 

could imply that the 126 were not truly representative of the original 444 responses.

The discarded replies consisted of those that were not complete or some from 

participants who thought that a structured method was a formal method.

The authors aimed to reach a wide spectrum of people and organisations and of the 109 

different company businesses they put them in the following categories:

7 Safety Related businesses,

8 Scientific & Technical consultancies,

11 Education businesses,

20 Research,

35 categories with 6 or less participants of the same type (averaging 2 returns per 

category).

They asked 24 questions that were designed to be completed in under half an hour in 

total. Throughout the results tables Austin and Parker have distinguished between the 

wider group containing both those who have considered using Formal Methods as well 

as those who use them, and the narrower group containing just practitioners of Formal 

Methods. The main results are given in five sections:
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1. The method used.

Under this heading came the question about which Formal Methods had been used and 

they found the main ones to be 

Z 58%

VDM 62%

LOTOS CSP CCS 26% (concurrency methods)

There were a large number of other less popular methods mentioned.

2. The way it was used.

The extent to which Formal Methods were used in the lifecycle was 

Specification 92%

Proof 48%

Refinement 26%

Formal Methods were not used by more than 6% of participants in later stages of the

software development.

3. Combinations with other methods

The only other methods that seem to have been combined successfully with Formal 

Methods were structured analysis and design methods (SSADM and Yourdon).

4. Benefits, limitations and barriers

This section partly mirrors the one used in Part IV but there were large amounts of 

additional information from the industrial questionnaire respondents. For each of the 

three questions on benefits, limitations and barriers several answers could be accepted 

from the respondent and they were asked to rank their answers in order of importance. 

For example if the question was

What do you consider to be the barriers to the use o f Formal Methods?

The answer might be:

1. notation

2. training

3. cost
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This ranking system makes the interpretation of the tables in this section quite 

complicated.

Benefits

Over half of the respondents put the lack of ambiguity leading to a clarification of 

requirements as the highest priority on their answers. Few named cost saving as a high 

priority benefit.

Limitations

No limitation was given priority over any other although readability, costs, difficulty and 

mismatch with problem domains were all mentioned.

Barriers

Lack of tools was given by about a quarter of the replies and increased costs was 

mentioned here as well as in the limitation responses.

When asked for suggestions to overcome these problems training was given as the first 

priority by about 40% of the respondents.

5. Ways of assessing Formal Methods

Here 23% of returns mentioned a lack of suitable metrics as a problem in assessing the 

contribution of Formal Methods to the software lifecycle. A further 19% mentioned the 

difficulty of collecting metrics and using them in comparisons.

Under the section asking for suggestions on assessment methods 39% wanted detailed 

case studies of actual projects. These should be undertaken preferably in parallel to 

studies not using Formal Methods.

Summary

Austin and Parker conclude from the industrial survey:

• that lack of tool support is an important factor in adoption of Formal Methods,

• there is insufficient evidence of cost benefit in adopting Formal Methods,

• many barriers and limitations are only a symptom of a new methodology being 

adopted.

4.3.3 Part 111 Survey of Formal Methods in Higher Education

This was a survey of the teaching of Formal Methods in higher education and was 

carried out by a questionnaire delivered by mailshot to 94 institutes likely to be teaching
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Formal Methods. Messages were also left on electronic bulletin boards and e-mail 

replies were encouraged. The total responses were 39 from the mailshot and 26 via 

electronic mail and out of this a total of 60 replies were used.

The statistics quoted are on the basis of 7 questions about the type of Formal Methods 

taught which courses it was taught on and to what level was the method taken. Another 

8 background questions were asked for which no results are given but if these are the 

same ones as reproduced in Part II they are just information like contact details and 

addresses. In brief the results were

• Z was the most popular model based specification notation (78%) followed by VDM

(54%),

• CSP was the most popular concurrency specification notation (17%),

• as expected, Formal Methods is taught on Computer Science, Mathematics and 

Software Engineering courses,

• whilst all respondents used Formal Methods for specification only 56% had gone as 

far as refinement and 54% had attempted proof.

Summary

The authors state that these conclusions are not very surprising.

4.3.4 Part IV Benefits , limitations and barriers to Formal Methods

This was stated to be a literature survey and concentrates in each section looking at the 

claims made throughout a range of about a dozen papers and books. They looked at the 

meaning of each statement in the three categories and discussed its validity. Their table 

of ‘results’ gives six possible responses to the statements

Yes definitely true No definitely false

Yes' true with reservations No' false with reservations

Yes but n/a true but does not apply Undecided

Benefits

In this section they draw heavily on Hall’s statements [Hall 1990] and comment on 

claims that formal specifications

1. are unambiguous,
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2. are no harder to understand than a program,

3. are shorter than a program,

4. are shorter than an informal specification,

5. can to be analysed with tools,

6. remove errors at an early stage,

7. can describe functionality,

8. can prove properties,

9. can be used to develop implementation,

10. can be produced for any piece of software,

I l.are easily produced for large packages,

12. have been used on large commercial projects,

13. decrease implementation costs.

In their opinion they found all these benefits to be true, definitely true for the majority of 

points and true with reservations only in the cases of points 3,4, 9,11 and 13.

Limitations

The limitations are drawn from a much wider range of literature by Hall, Wing, Cohen 

and Jackson and are stated as:

1. the drawbacks of the modelling process itself, abstraction necessarily leaving out 

some aspects,

2. some situations (time constraints performance) are difficult to define with formal 

specifications,

3. highly trained mathematicians are needed,

4. Formal Methods do not design the system,

5. proofs are essential to Formal Methods and add considerably to development time,

6. mistakes can be made in specifications,

7. Formal Methods cannot be applied to all types of software,

8. development costs increase with Formal Methods,

9. the specification is not readable by the clients,

10. Formal Methods do not scale up,

II .Formal Methods do not integrate with other software techniques,

12.different Formal Methods cannot be combined.
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They found a lot of the limitations were due to the nature of modelling in general, (1 and 

2), or limitations that don’t just apply to Formal Methods (4,6, and 7). Other limitations 

that were raised were refuted with some reservations (3,5, 8-11). Only limitation 12 was 

left undecided by the authors.

Barriers

There were eight barriers to the use of Formal Methods drawn from the literature:

1. finding a problem with software when Formal Methods should have guaranteed a 

perfect product,

2. highly trained mathematicians required,

3. the software lifecycle will change and become more front loaded in time and effort,

4. Formal Methods have not been integrated into the software lifecycle,

5. Formal Methods have not been used on commercial projects,

6. Formal Methods are not mature enough,

7. tools are not available for Formal Methods,

8. no standards exist for Formal Methods.

The authors were undecided about the first barrier, agreed with 2 and 3 and refuted the 

rest.

Summary

Austin and Parker felt that all the claims for Formal Methods were justified and 

discounted most of the limitations as being of a general modelling nature only taking the 

need for mathematicians seriously. To the use of mathematics they added tool support 

as a possible barrier.

4.3.5 Critique of Austin and Parker’s survey

The industrial survey had a flawed basis in its methodology. Designed to confirm or 

refute the conclusions drawn from the literature search, there is no rationale given for 

the way that responses to the questionnaire were chosen for analysis. The layout of the
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results is made more complicated by double entries for each table and yet nothing is 

made of the different responses for those actually practising the use of Formal Methods 

as opposed to the wider group. Open ended responses are difficult to quantify and the 

priority system of ranking responses from each individual, whilst giving an idea of the 

relative importance of the answers, makes interpretation of the results difficult.

The educational survey gave limited information about the teaching of Formal Methods 

in higher education but it would have been useful to have more background on the type 

of courses, the expertise available, whether there was industrial involvement etc. The 

eight questions not discussed may have contained this information. Some of the 

drawbacks here may be due to the limitations of the survey method which required 

academics to fill in and return questionnaires. It is perhaps better to get a good response 

rate for a small number of questions than to give people so much to fill in that they do 

not bother to return the questionnaire.

The literature survey seems to be a flawed piece of research with a lack of objectivity 

which leave the study open to charges of bias in favour of Formal Methods. Arguments 

are dismissed in a couple of lines and the only reservations they seem to have are with 

the use of mathematics and some lack of tools. It is a useful summary of the arguments 

taking place in the literature around the time (1992) but the tone of the ‘discussion’ 

seems to be dismissive of anyone who was not a supporter of Formal Methods. Their 

conclusions about the benefits have no doubts and seem in direct contrast to other work 

we have already discussed in Chapter 2, Naur for example. Some of the points are 

repeated in more than one section and the number of different responses could have 

been reduced to eliminate ‘No’ by rephrasing the statements with use of negatives. This 

would have made the summary tables much easier to read instead of the mixture of 

Yes’s and No’s to positive and negative statements giving four different possible 

combinations.

Together these papers and results represent a lot of time and effort. However the biased 

view of the authors, which clearly comes over in the literature survey, and the questions 

about the statistical basis of the results unfortunately devalue the authors’ conclusions.
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4.4 Conclusions

The glaring omission from both of these surveys is the lack of hard unbiased evidence 

on which the conclusions are based. Very little is reported about measurements taken or 

data collected and they are both full of opinions and conjectures. Measurements taken 

on the projects are not mentioned and the use of metrics are largely dismissed by 

Craigen et al. as impossible to use in the context of Formal Methods.

Austin and Parker had a broad sweep approach to the collection of data but did not use a 

scientific, quantifiable analysis of the data they amassed.

None of the studies had a base line with which to compare software quality. All 

judgements were then rather subjective and isolated.

In terms of evidence for the benefits or otherwise of Formal Methods both surveys fail 

to provide it in a form which can pass any rigorous examination.
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CHAPTER FIVE

5. A CRITICAL REVIEW OF FORMAL METHODS (IN PRACTICE)

In this chapter we consider commercial or industrial projects where Formal 

Methods have been used in practise. We give detailed analysis of four in 

particular: the Cyclotron at Washington University, the CICS project at 

IBM, the CDIS project developed by Praxis for CAA and a smaller project at 

BASE developing a trusted gateway.We also include brief summaries for a 

selection of other published cases.

5.1 Introduction

So far in the preceding chapters we have looked at the twin themes of Formal Methods 

and metrics which run through this work. To focus on possible attempts at measuring the 

effect of Formal Methods we have analysed the results of two surveys which sought to 

catalogue their usage both in education and industry. Unfortunately we found that the 

results and conclusions from these surveys were not based on objective scientific 

measurements but more on subjective opinions collected in a somewhat biased manner. 

We now try to look more closely for evidence of the measurable effects of Formal 

Methods by studying cases of their usage in commerce and industry.

In their recent book entitled Applications of Formal Methods, Hinchey and Bowen have 

compiled 15 reports from a wide range of industrial applications to inspire others who 

wish to look at the possibility of incorporating Formal Methods in their own domain 

[Hinchey and Bowen 1995]. It was made clear in the preface to this book that the aim of 

the authors was to inspire others. However on closer inspection these reports contain very 

little hard evidence on which to base the inspiration. Only two give any indication that 

measurements were taken, results analysed or that there was even a working hypothesis 

underlying the introduction of Formal Methods into the projects.

With the two exceptions, any details or explanation given tend to be as examples of the 

formal notation or as descriptions of the problem domain. No data is included which 

could be used as a basis for measurements and quantitative analysis. If the system reaches
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the stage of implementation no comments are made about the difference the inclusion of 

Formal Methods made.

This is not only true of this book (which is in other ways interesting) but also of computer 

literature as a whole where it is very difficult to find case studies which have been carried 

out with the intention of gathering evidence about the effects of Formal Methods within a 

project. Literature searches using standard library resources, computer journal databases 

and the wealth of information available on the World Wide Web have yielded 

disappointingly few studies where any attempts have been made to evaluate the difference 

Formal Methods make.

Liu, Stavridou and Dutetre in their article giving examples of the use of Formal Methods 

in safety critical systems imply that judgements are made on some other basis than 

empirical evidence [Liu et al 1995], They state:

Interestingly, and despite the lack o f any documented factual evidence as to their efficacy, 

formal methods are clearly considered desirable in safety critical systems.

What we have collected here are four main case studies in which an attempt has been 

made to address some of the questions about the effect of Formal Methods in a realistic 

commercial setting. Each one has been included because it illustrates a different aspect of 

the practise of incorporating Formal Methods.

The first study, the cyclotron project, is of special interest as we have had access to the 

development of this project in a very privileged way and been in touch over a period of 

years with Jonathan Jacky, the main force behind it. This has given us insight to the 

development processes and the unique nature of the specification and implementation of 

this safety critical process. The evidence presented in this case is not given from many 

measurable quantities but from the insight and experiences of Jacky as he investigated new 

territory and techniques. He has also reflected on what benefits and drawbacks formal 

specification has brought to his project and the limitations of the Formal Methods used.
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In contrast we look at one of the most commonly cited applications of Formal Methods in 

industry, the CICS project at IBM Hursley. There was documented evidence that 

measurements were taken in this case and an often quoted figure of 9% saving in costs 

together with a claim for a significant increase in post-delivery quality. We question the 

basis of the study and the interpretations of the results.

While considering the third project, the CDIS work undertaken by Praxis, we have the 

benefit of the detailed analysis undertaken by the team working on the SMARTIE project 

[Pfleeger et al 1995]. Their very thorough documentation on faults and testing added a 

second quantitative dimension to the comments from the original specification team.

The last study is small in size but is of interest because the scale of the problem allowed 

parallel development to take place, that is the same project was undertaken with and 

without Formal Methods. The team also attempted to take some relevant measurements 

during the development of the project.

In addition to these four studies a collection of projects are mentioned at the end of the 

chapter which represent most of the well known applications of Formal Methods.

5.2 CASE STUDY 1 The Radiation Therapy Machine

(The application of Z in the design of a control system in a safety critical area.)

5.2.1 The history of the project.

The University of Washington installed a machine called a cyclotron as part of its cancer 

treatment department in 1984 which was supplied with a computer operated control 

system. This facility was considered at the time a significant step forward in the treatment 

of cancer patients. Under the American health system patients are referred to the Radiation 

Oncology department at the University from their doctors. The cost of the treatment is 

normally paid out of the patients’ health insurance directly to the department. Referrals 

come from all parts of the state, from other states and even from abroad in the cases of 

special types of cancer.
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The smooth installation and running of this machine is vital not only because of the safety 

issues involved, but also for economical reasons. Failure of the machine to meet its 

specification in any way could result in the closure of the department. In particular

• incorrect delivery of prescribed treatment could lead to damaging patients’ health, and 

the resulting law suits for incompetence would be financially crippling,

• a small interruption to treatments because of temporary breakdown would lead to great 

inconvenience to patients who have travelled long distances to get treatment,

• a major breakdown of the machine could lead to referrals being switched to other 

similar facilities with a subsequent loss of revenue.

In the extreme case of a major breakdown the loss of revenue and ‘customer loyalty’ 

would probably mean an irrecoverable situation and the closure of the department. We can 

see that the software driving this machine, as well as being safety critical due to the nature 

of the machine, had also to be reliable due to its vital role in the department’s future.

The present system, installed in 1984, took 9 months to be fully functioning from delivery 

as there were many problems associated with its operation. After installing and working 

with this system for some time the department were not very happy with it and wanted to 

develop a new control system that would be easier and quicker to use, would be easy to 

maintain and could incorporate future hardware and software developments. They decided 

to develop a new control system while there was no immediate need so that there would be 

no time pressure on the project. However this time they could not afford a delay in getting 

the replacement machine fully operational as this would mean a gap in service when no 

cyclotron was working either under the old or the new system, so the new control system 

had to run correctly immediately from installation. No existing commercially available 

system met the requirements of the department.

5.2.2 The Cyclotron
The computer systems for the cyclotron controls among other items a 900 A electromagnet 

and a 30 ton rotating gantry and the system has to deal with large numbers of input and 

output signals. The main treatment room using the apparatus has a patient couch that can 

be moved into different positions and a moving floor that can be opened to let the gantry 

rotate underneath the patien (see figure 5.1).
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The operation of these positions is part of the control function. The delivery of the 

treatment beams uses many control mechanisms including the angle of delivery, the 

appropriate dosage and the manipulation of the multileaf collimator (a device to ensure the 

beams are targeted onto to the right area).

Figure 5.1 A diagrammatic sketch of the cyclotron and the patient area.

The beam can also be switched between the main room and a second treatment room 

which is mainly used for experimental work. When a patient has been set up in the correct 

position on the couch and the dosage and other parameters have been checked, the 

operation of the beam takes place remotely from another room. The set up of the beam is 

the responsibility of the cyclotron operator but the final administration of the dosage is in 

the hands of the therapy technologist.

The set of people involved in the use of this machine includes operators and therapists 

using the machine for treatments together with physicist and engineers concerned with its
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operation and maintenance. Some researchers are also involved with work carried out in 

the second treatment room.

5.2.3 The software project team

One of the unique features about the development of this project was the involvement 

throughout of Jonathan Jacky. He has been at the department for about 15 years after some 

time in animal laboratory research following a Doctorate in Physiology. Since the 

beginning of the project to rewrite the control system he has been working on the informal 

specification, the formal specification and also writing the resultant code for the 

implementation. Until the last year or so this has been in addition to his other work and he 

estimates that over the life of the project the time spent on it has added up to about 3 man 

years for him.

To date those who have been named as co-authors of the published literature on this 

project are

Informal specification Formal specification Implementation/Coding

J Jacky J Jacky J Jacky

R Reider J Unger J Unger

I Kalet M Patrick M Patrick

P Wootton D Reid

J Unger R Risler

S Brossard

However due to the length of time of the project (nearly 10 years), some changes in 

personnel have meant that the formal specification and implementation have largely been 

carried out by Jacky working with one other person at a time.

The original computer control system consisted of over 60,000 lines of code in Fortran and 

several thousands of lines of assembler code. None of this old code was reused as the new 

design was intended to be very different from the old.

5.2.4 The informal specification

There had been a small team of people working closely together for several years under 

the old control system. They understood the requirements very well and were quite
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articulate in their demands for what the new system should deliver. The informal 

specification of the new system, written in natural language, took all their experiences and 

requirements into account. The informal specification was very thorough and consisted of 

about 250 pages of prose and diagrams capturing the desired behaviour and user interface. 

It was collated and edited by Jacky and had many iterations before a final version was 

produced [Jacky et al 1990,1992], It was the intention that by taking great care to ensure 

the prose would capture the requirements specification, the rest of the development would 

be easier. These informal specification documents also formed the basis of the user 

manual and have not changed except in minor details since they were completed. None of 

the informal specification was written with a view to turning it into a formal specification 

as at the time nobody in the team had any knowledge of Formal Methods.

5.2.5 The formal specification

This was undertaken mainly by Jacky working with Unger and Patrick..

Jacky has estimated that there have been about 20 revisions of the Z specification and at 

least 3 major rewrites involving starting the whole formal specification from the 

beginning. The most recent version available has about 130 schemas so far and a total of 

1137 lines ofZ.

A major difficulty has been to get the level of abstraction right. If the level was too 

abstract then the jump to code seemed impossible. If the level was too concrete they 

ended up writing pseudo code. The strategy for the modularisation of the control system 

into logical subsystems was also a major problem. It was decided to split the formal 

specification into 2 levels:

• an abstract level expressing the overall safety requirements. This would provide a basis 

for properties that might need to be checked or proved,

• a concrete level serving as a detailed design and the basis for coding. It was intended 

that the formal specification should be written in such a detailed way that the 

translation to code should be obvious.

File organisation, file access and the appearance of the VDU displays were not specified 

formally as it was felt that the informal description captured their behaviour adequately.
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In his paper [Jacky et al 1997] Jacky comments on the lack of guidance on large 

commercial specifications in available literature. He developed his own strategy for coping 

with a large Z specification, as follows:

• identify high level invariants,

• identify state variables,

• partition the state,

• define sets of Identifiers,

• define functions from these identifiers to values,

• identify the operations,

• identify when the operations are to be invoked,

• identify processes,

• decide what to leave out,

• use tabular form to organise the schemas and conditions.

This last point was crucial in the implementation stage.

Jacky also noted the dearth of examples on the linkage between the three stages of the 

development; informal specification, formal specifications and the code. In order to 

provide a connection between the informal and formal specifications the team, and in 

particular Jacky, undertook an extensive system of reviews and cross checking. Each 

paragraph of the Z was accompanied by the reference to pertinent sections, page numbers 

and often line numbers of the informal specification. In this way the team satisfied 

themselves that all the informal specification had been captured within the Z specification.

The formal specification concentrates on the therapy console which in turn consists of five 

subsystems. These subsystems are concerned with the following parts:

gantry/psa (all motion of the apparatus around the beam and the patient)

filters (flattening filters and wedges)

leaf collimator (the control of the shape of the final area to be treated) 

dosimeter (dose monitoring channels)

therapy interlocks (safeguards on items like doors and operator keys)
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5.2.6 The resulting Z

The Z document was produced after the extensive informal specification to act as a bridge 

between the natural language and the implementation code. It was intended to be the main 

source of guidance for the development of the software. In the event this proved to be the 

case largely because once again the main writer of code was Jacky together with other 

software engineers (Unger then Patrick then Reid)

The Z document became a very detailed design document showing every action of the 

console operator modelling right down to the level of individual key strokes. Consistently, 

preconditions were used as guards so that operations would not take place unless they 

were true in a logic sense.

The constant reviewing process of the Z against the informal specification meant that 

some errors were discovered by inspection. Numerous trivial errors had already been 

found by the type checker fUZZ [Spivey 1992].

It was during the pencil and paper review process that one of the most significant aspects 

of this case study came into use. As Jacky mentioned in his recommendations for tackling 

large Z specifications the team made great use of tables. These are similar to state 

transition tables and consist of columns under the headings:

• Z Operation name,

• state precondition,

• input precondition,

• progress post-condition.

In this way there was a systematic drawing together of all the relevant schemas to a 

particular operation. The completion of these very detailed tables with their lists of 

preconditions and post - conditions formed the basis for confidence about invariance, 

completeness, determination and liveness. It also brought out errors of conflict as there 

was, within the table, the opportunity to see schemas acting together.

Some main classes of errors are mentioned in [Jacky et al 1997], Of particular interest are:

• omitted cases,

• inconsistent inclusion of schemas,

• displaced preconditions,
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• overbooked state variable,

• implicit invariant.

5.2.7 Implementation

Implementation was spearheaded by Jacky. The final implementation had to be in C 

because of the interfaces to existing software and hardware. Pascal had originally been the 

target language but platform changes and technology updates half way through the project 

forced changes on the team. At the time of writing about 6000 lines of code have been 

written and trials and tests are underway before the target date of the first real trial in 

August 1997. Jacky suggests that the process of converting the Z to C is very obvious as

• there is a Z schema for i) each system event and ii) the transmission or receipt of every 

message. Each of these become modules in C,

• basic types and free types in Z become enumerations in C,

• Z state variables became program variables and data structures,

• Z operation schemas become functions and procedures,

• module inclusion in C arises naturally from Z schema inclusion.

5.2.8 Proof and refinement

No serious attempts have been made to refine the Z to code although Jacky did attempt 

early formal proofs of correctness on a portion of Z with less than 100 lines. This portion 

of Z led to a page of Pascal which was not in the final version after the target language had 

changed to C.

In his talk to the Z User Conference Hall [Hall 97] considered the analogy between the 

process of software development and a string of beads, see figure 5.2. With the 

requirements at one end and the code at the other he stressed that the “length of string” or 

gap between them could not be shortened but might be bridged in a variety of ways with 

many informal and formal techniques.
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informal specification Z

Figure 5.2 Hall’s String of beads applied to Jacky’s specification

What Jacky and his team did was to work very hard on the informal specification to make 

the match to requirements very strong and that part of the “string” short. They also put in 

a great deal of effort in making the step from Z to code a small one so that implementation 

into C could be almost automatic by inspection of the Z structures. This however left a 

large gap between the informal and formal specification and it was only after considerable 

effort, review and cross checking that the team satisfied itself that all the information had 

been correctly mapped between the two.

5.2.9 Summary

Jacky himself admitted in a review of the work at the Z User Conference in 1997 that the 

uniqueness of their situation led them to plough on through with little guidance and that in 

retrospect the constant reiteration and redesign was not perhaps the best approach. He 

stressed that over the 10 years, the processes of ensuring that the specification was 

captured informally, the formal specification matched the informal, and the final 

refinement to code was faithful to the specification had all been very hard. However he 

remains a supporter of Z and felt that it clarified the thinking about the requirements into a 

form which could be translated into code.

The process of specifying in Z was used very much as a design tool to discover the best 

model and there was no obvious bridge from the informal to the formal. The important use 

of the tabular forms, translating groups of schemas into a basis for coding, meant that the 

formal notation seemed to need an ‘organisational tool’ to make it a useful basis for code.
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The fact that there was no direct mapping between the formal and informal led to a large 

amount of time spent on cross-referencing between these two. This might make 

modification of the system difficult.

The very unique set of circumstances in this project make it difficult to draw any firm 

conclusions about the way Z has been used or the measurable benefits of incorporating it 

in the development. The errors (if any!) in the software produced from the Z won’t be fully 

apparent until the code testing is nearer completion.

As was mentioned in the introduction to this chapter the analysis of the impact of Formal 

Methods on this project has largely been a subjective one by Jacky. Even in retrospect 

some further work could be undertaken to evaluate their effect. Jacky’s implicit 

hypotheses seemed to be

• using formal methods would ensure the safe operation of the machine,

• the resulting software would install and run smoothly

As there are as yet no details of any code metrics, the installation process or of the 

operational performance of the machine, so we rely on Jacky’s judgements that the formal 

specification added to his assurance about the system.

What we do have are several versions of the Z specification. As a basis for future research 

it would be possible to analyse these for internal characteristics and to link them with the 

final code. As these versions are from 1990,1994 and 1997, it would also be interesting to 

note those parts of the Z specification which were discarded, changed or added as the 

specification evolved. Attributes of the specification which could be investigated and 

measured include:

• structure-did this alter between versions and was it more or less complex in the final 

version?

• readability- did familiarisation with the project lead to more or less effort in making the 

specification comprehensible to others? What technical level is assumed? Are natural 

language explanations a large part of the specification?
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• style- was the Z written in good style so that other users (programmers and designers) 

could read and interpret the Z? Is the notation used with regard to reading by non-

specialists?

The uniqueness of this project makes recommendations difficult about similar studies. The 

shortage of manpower in the specification team meant that few measurements were taken 

and version control was patchy. For a future undertaking along these lines more control, 

measurement and documentation of the specification together with metrics on the code 

and the post delivery performance could lead to a greater evaluation of the effects of 

Formal Methods on this type of project.

5.3 CASE STUDY 2 CICS: Customer Information Control System

The material for this section is drawn largely from the 3 reports by Phillips [Phillips 1989], 

Houstan and King [Houstan and King 1991] and Collins Nicholls and Sorensen [Collins et 

al 1991] Some of the analysis here has already been published [Finney and Fenton 1996],

5.3.1 What is CICS?

CICS stands for the Customer Information Control System and it is an on-line transaction 

processing system with many thousands of users worldwide. It was originally developed in 

1968 by IBM with new releases approximately every two years since then. By 1991 it 

consisted of 800,000 lines of code, some in Assembler some in PLAS (a high level 

internal language). A major restructuring was planned in 1983 to clarify internal interfaces 

and as a basis for future developments. The aims of this revision were to increase the 

reliability, reduce modification costs and improve the documentation.

5.3.2 History of Oxford IBM collaboration

In 1981 Professor Tony Hoare of the Oxford University Programming Research Group 

had met Tony Kenny the IBM CICS manager at Hursley Park by chance. This resulted in a 

research contract between IBM and PRG in 1982 to study the application of formal 

techniques to large-scale software development. In the initial studies undertaken by PRG 

two notations were used for comparison, CDL (IBM’s internal Common Design 

Language) and Z (the specification language developed at PRG). Primarily because of this
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research it was decided that Z would be used for most of the new code required in the 

restructuring of CICS.

The training of IBM staff in the use of Z techniques was contracted to PRG whose 

personnel were on hand throughout the project in a consultancy role.

The training that took place included

• 2 weeks for programmers on Software Engineering techniques,

• Z courses for writing intended for designers and developers,

• Z readers’ courses for non-programmers.

In 1984 there were about 130 on writing courses, 33 on courses for reading specifications 

and 51 taking courses in refinement techniques.

From the point of view of PRG their involvement in the CICS project had as one of its 

aims to see if the concepts and techniques developed by PRG could be applied by 

programming teams in industry to control the development process and increase 

confidence in final correctness. Their aim was to answer the questions:

• could aspects of large and complex systems be captured in mathematics?

• would there be practical benefits?

• who in the development team should use the methods?

• what training would be needed?

• what tools support was necessary?

5.3.3 Claims and awards

This case study concentrates on reports and claims relating to the IBM’s CICS/ESA 

version 3.1 which was released in 1990. The project was prominent in the international 

survey of industrial uses of formal methods [Gerhart et al 1993, Craigen et al 1995] as the 

largest commercial application.

The quantitative claims made about the effectiveness of using Z on CICS are impressive. 

The most notable are:

• 2.5 times fewer customer-reported errors,

• 9% saving in the total development costs of the release.
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The cost saving is particularly important because, while reliability improvements are an 

expected benefit of using formal methods, there had been no such expectation of economic 

benefits. Indeed, [Bowen and Hinchley 1995] cited this cost saving in the CICS study as 

the main counterexample to the ‘myth’ that ‘formal methods delay the development 

process’. Because of the high profile nature of the project, the claims about CICS have had 

far-reaching ramifications on the public perception of formal methods. For example, in 

1992 IBM together with the Oxford University Programming Research Group won the 

highly prestigious Queen’s Award for Technological Achievement. The citation reads:

The Queen’s Award fo r  Technological Achievement 1992

Her Majesty the Queen has been graciously pleased to approve the Prime 

Minister’s recommendation that The Queen’s Award fo r  Technological 

Achievement should be conferred this year upon Oxford University Computing 

Laboratory. Oxford University Computing Laboratory gains the Award jointly 

with IBM United Kingdom Laboratories Limited fo r the development o f a 

programming method based on elementary set theory and logic known as the Z  

notation, and its application in the IBM Customer Information Control System 

(CICS) product. The use of Z reduced development costs significantly and 

improved reliability and quality. Precision is achieved by basing the notation on 

mathematics, abstraction through data refinement, re-use through modularity and 

accuracy through the techniques o f proof and derivation. CICS is used worldwide 

by banks, insurance companies, finance houses and airlines etc. who rely on the 

integrity o f the system fo r  their day-to-day business.

5.3.4 First project details

The CICS/ESA version 3.1 which came out in June 1990 included :

• 500 000 lines of unchanged code,

• 268 000 lines of new and modified code including,

• 37 000 lines ‘produced from Z specifications and designs’,

• 11 000 lines partially specified in Z,

(2000 pages of formal specifications in total).
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There was only limited use of refinement techniques and very little proof. Specifications 

and one or two levels of design were written in Z but a notation based on Dijkstra’s 

guarded commands [Dijkstra 1975] was used to express designs and bridge the gap to 

procedural code. In most cases there was no formal relationship between the stages and 

noting the preconditions was the only attempt at rigour.

The claims for the benefits of the use of Z in this project seem to be based on the 

comparison between the development of the code from the specifications where Z has 

been used and that where no Z was involved (see figure 5.3). This still leaves a number of 

doubts about exactly what is being compared with what (see 5.3.4.1), but no matter what 

assumptions are being made it is clear that the ‘Z data’ is defined on a relatively tiny 

amount of code compared with the ‘non Z data’. It is also clear from the reports that the Z 

modules were not chosen at random. From an experimental viewpoint these are major 

(related) problems that could have been easily averted.

5.3.4.1 Claim 1: Fewer problems overall during development

Figure 5.3 (which is copied from the only graph given in the literature) is a comparison of 

the reported ‘problems per KLOC’ (Thousands of Lines of Code) at each key phase of the 

project development. These phases are defined as part of the standard IBM development 

life cycle. [Phillips 1989] drew the graph up to the system test phase, but [Houston and 

King 1991] added the Customer availability data (8 months after release).

The problem rate appears to be larger in the early stages of development with the code 

derived from Z specifications but in the later stages of the life cycle of the software it has 

fewer errors. This is consistent with the findings when the effectiveness of formal methods 

were analysed on our third case study as part of the SMARTIE project [Pfleeger et al 

1995], It is proposed that the reason for this is that by using Z, specifiers are forced by the 

rigour of the notation to tackle all the complexities of the problem and therefore make a 

larger proportion of their mistakes at this stage. In contrast the non-Z users have 

developed code which has errors in it right up to the final stages of the process when 

fixing errors will be more expensive.
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Z u s e d
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KEY Pld Product level design Ut Unit Test

Cld Component level Design Fv Function Verification

Mid Module level design St System test

Ca Customer Availability

Figure 5.3 Reported comparisons between code resulting from Z and non-Z methods

The most serious concerns about the validity of this claim are:

• The omission of a scale on the vertical axis of the graph in Figure 5.3.

• From the text there is a lack of clarity, any of the following could be interpreted as the 

basis for comparison:

37K lines with Z : (268- 37)K lines without Z,

37K lines with Z: (268 - 37 -  11)K lines without full Z,

37K lines with Z: (268 + 500) K lines without Z.

[Houston and King 1991] assert that

Since similar measurements were made on the non-Z code on this release, and on all 

the code in previous releases, meaningful comparisons are possible.



From this assertion it is our understanding that the most likely comparison being made 

is between 37 KLOC with Z and 768 KLOC without Z but the public papers do not 

make this clear. This basis for comparison is the most worrying scenario since the non- 

Z code is heavily biased with old code which has problem reports dating back many 

years whose impact on the study is not made clear. In particular the number of post 

release problems for such code could well be higher but these cannot have been 

included in the Z code from the timescale involved in the graph.

• The fact that we do not know what proportion of the Z specification relates to new 

modules (as opposed to just changed) is really crucial. Where an existing module is 

being re-specified we would expect to see a significant drop in problem reports 

compared to both the previous version and the baseline. This is true irrespective of the 

specification method used. After all, IBM has many years of experience with the 

existing code and has extensive knowledge of where the problems lie; this is a major 

rationale for making changes. If, as seems likely, the proportion of changed code in the 

Z specified portion is significantly different from the proportion of changed code in the 

non-Z portion, then this is further evidence that the problem density data between the Z 

and non-Z code cannot be meaningfully compared.

• As any involvement from Z stops after the 3rd stage (module level design), it is not clear 

what effect Dijkstra’s language had and whether it was used on the non-Z code.

• It is not clear if the two types of code were subjected to the same regime of inspections 

and testing (it is highly unlikely this would be possible given the very different nature 

of the documents). Consequently it is not clear if the class of problems being reported 

(especially prior to Ut-Unit Test) are comparable. Nor do we know how problems were 

counted. If an error originated in a schema was it counted with every inclusion? It is 

also certain that not all errors are equally serious (there appears to have been no attempt 

to weight them by fixing time or severity); because of this the absence of a scale in 

figure 5.3 is an even more serious omission. It is not clear what KLOC means for non-

code documents. Every phase prior to Ut in figure 5.3 involves a document which is not 

code. The most likely explanation is that the KLOC at, say, Pld (product level design), 

is measured as the KLOC in the code that is eventually implemented from the design. 

Also, it is not clear if comments are included in KLOC and if this is significantly 

different in the two types of code.
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• The increased supervision of those writing in Z may have been a factor as they were 

employing a completely new technique.

• The expertise available from PRG on the Z parts may have been a critical factor.

5.3.4.2 Claim 2: Development savings

Of all the claims made about the benefits of using Z on CICS the most impressive and 

surprising is the well publicised 9% reduction in overall project costs. Specifically, 

[Houston and King 1991] assert:

IBM has calculated that there is a reduction in the total development cost o f the 

release. Based on the reduction in programmer days spent fixing problems, they 

estimate a 9% reduction as compared to developing the 37,000 lines without Z 

specifications.

The ‘problems’ on which the figure is based are restricted to those discovered during 

development; we believe that they do not include post-release user reported problems. 

[Houston and King 1991] do not state this, but a very similar quote using the 9% figure 

appears in [Phillips 1989] which was published before the new release (in fact Phillips’ 

version of figure 5.3 only goes as far as system test).

The concerns we have already expressed about the basic comparison between Z and non-Z 

derived code make the 9% figure already seem less convincing. However, we are also 

concerned about how the figure was calculated. The second sentence in the [Houston and 

King 1991] quote is as much detail as is presented in all the papers about this, so we can 

only speculate on what it really means. There is a suggestion that the extra time spent on 

doing the Z specifications (not to mention training etc.) is not accounted for. This is a 

gross omission. We are also concerned about the word ‘estimation’. It suggests that no 

actual data on time to fix the problems was recorded. Rather it appears that an IBM 

standard ‘cost to fix a problem’ was used. Let this cost be c. Now suppose the problem 

density of the portion of code derived from the Z specification was x  KLOC and the 

problem density of the portion of code derived from the non-Z specification was y KLOC. 

Then it appears that they have computed

c*37*(y- x)
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and that this comes to 9% of the actual total cost of the release.

It is still very unclear from the literature how much comparative measurement went on and 

what statistics were collected.

5.3.4.3 Claim 3: Customer benefits

[Houston and King 1991] assert:

... the figures on number o f problems reported by customers are extremely 

encouraging: in the first 8 months after the release was made available, the code which 

was specified in Z seems to have approximately 2.5 times fewer problems than the code 

which was not specified in Z. These figures are even more encouraging when it is 

realised that the overall number o f problems reported is much lower than on previous 

releases. There is also evidence to show that the severity o f the problems fo r  code 

specified in Z  is much lower than fo r  the other problems.

There are actually three claims being made here that we address in turn:

1. That the Z  code has 2.5 times fewer problems than the non-Z code. The 2.5 figure is 

presumably the differential shown in the last phase of the graph of figure 5.3. The 

authors do warn that

the length o f time and the size o f the sample mean that figures available so fa r  

should be treated with some caution... that many customers do not change 

immediately to a new release when it is made available.

This is a very obvious drawback to the 2.5 claim. We have already noted that the non-Z 

code contains a very high proportion of old and well used code, which would inevitably 

attract more problem reports. All of the Z code is either new (hence contains new 

functionality not yet much used on IBM’s own admission) or changed (hence inevitably 

reducing the number of known problems). It is therefore our view that the 2.5 figure 

should be treated with more than just ‘some caution’.

2. The overall number o f problems reported is much lower than on previous releases. In 

fact it is not clear what is being compared. The problem reports for the new release only 

cover the first 8 months; the problem reports for previous releases cover their entire 

lifetime (in each previous release this is at least two years). It is therefore inevitable that 

the number of problems reported here is much lower. However, if the comparison is
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genuine (that is if the comparison is with the number of problems reported in previous 

releases restricted to their first 8 months), then it is strange that IBM have not provided 

details of the data. There seem to be no subsequent reports to describe what happened 

after the first 8 months

3. The severity o f the problems fo r  code specified in Z is much lower than fo r the other 

problems Unfortunately, the ‘evidence’ is not presented at all. For example, we do not 

know if this is based on a subjective classification of the problems or on something 

more scientific like the relative time to fix the problems.

5.3,5 Summary

The CICS experience is widely regarded as the most significant application of formal 

methods to an industrially sized problem. From their original questions the two most 

relevant to the use of metrics with Formal Methods are

• could aspects of large and complex systems be captured in mathematics?

• would there be practical benefits?

There could be further investigation done with regard to the first question if measurements 

were available on the characteristics of the parts of the system chosen for specification in 

Z. Did the attributes of the specification itself reflect these characteristics and did that 

mean that these parts were particularly well chosen? For example it may have been the 

case that the portion chosen for specification in Z was suitable for modularisation and that 

this could have been demonstrated to be a strong aspect of the resulting specification with 

suitable metrics. From the second question the practical benefits could also have been 

supported by the use of metrics on the Z specification itself and more detailed 

measurements from the resultant code.

The claims made about the effectiveness of using Z on this project are highly impressive 

and often quoted. It is therefore essential that the claims are substantiated with rigorous 

quantitative evidence. We have found that the public domain articles do not provide such 

evidence. We believe the following are needed if any firm conclusions are to be drawn:

• an update with the results for the 1990 release under further customer experience,

• clarification of the basis under which the measurements were made,
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more details of the analysis of the comparative statistics mentioned in the papers.

Until these points are cleared up it remains a valuable case study but a flawed one.

5.4 CASE STUDY 3 CDIS : Central Control Function Display Information 

System

This project is of interest because it has been subject to much more rigorous measurement 

and analysis than the previous two. The CDIS system was developed and built using 

Formal Methods by Praxis under Anthony Hall and their use was monitored as the project 

progressed. Once the system was complete all records, including the data collected during 

the development and the post delivery fault reports, were made available to the team 

undertaking the SMARTIE (Standards and Methods Assessment using Rigorous 

Techniques in Industrial Environments) project. The motivation for this unusual co-

operation came from Praxis. They have always been supporters and users of Formal 

Methods but they also wanted to know how the use of formal methods had affected the 

final code.

Much of the information here is derived from the findings of the SMARTIE project 

[Pfleeger et al 1995] and from the papers on the original project by Hall [Hall 1996] and 

Pfleeger and Hatton [Pfleeger and Hatton 1997],

5.4.1 Background

The UK is currently in the process of upgrading its air traffic management system. The 

Central Control Function (CCF) which provides automated support for controllers in 

London Area Terminal Control Centre (LATCC) is part of this system and its 

development is part of the upgrading process. This support is handled by several systems:

• an upgraded National Airspace System,

• new Radar System,

• closed Circuit Television,

• a new information system CCF Display Information System, CDIS.

94



Praxis was responsible for developing this last feature and delivered it to the Civil 

Aviation Authority (CAA) in 1992 and it subsequently went into operational use in 

Autumn 1993. In its final form it amounted to nearly 200,000 non comment, non blank 

lines of C code and the specification and design documents ran to 1200 and 2000 pages 

respectively. The total effort on the project was 15536 person days of which 270 were 

spent on requirements, 1274 on specification and 1556 on design.

5.4.2 What does CDIS do?

CDIS is the support system responsible for

• displaying information about departing and arriving flights,

• giving information about weather conditions,

• reporting equipment status at airports,

• displaying support information input by CDIS staff

Its output is displayed on a monitor in the form of ‘pages’ of information which can be 

scrolled through. Its data is received from three sources:

• the National Airspace System,

• the Airport Data Information System,

• closed circuit television through the CDIS Central Processing System which also acts 

in a failure management role.

Because of its safety critical nature information must be displayed quickly and accurately 

and the system must be operational 99.97% of the time.

5.4.3 Who uses it?

In LATCC there are about 30 controller workstations displaying the CDIS information 

along with the other support systems including radar and flight progress.

As well as these there are 20 simpler machines and 6 administrative workstations used by 

supervisors, engineers and data entry staff. One of the controller’s workstations is shown 

in figure 5.4. The main CDIS display is on the screen marked 1. and 4. shows the device 

for scrolling through the pages of the display.
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1. CDIS electronic display device

2. Closed Circuit television

3. Radar

4. Page selection device

5. Computer entry and readout device

6. Flight progress strip rack

Figure 5.4 the CCF controller’s workstation

There were two main areas of this project where formal methods were used - the system 

specification and the system design.

5.4.4 How was it specified?

The functional requirements of the system were developed using three techniques:

• entity relation diagrams to look at real world object (arrivals, displays) and the 

relationships between them,

• a real-time extension of Yourdon-Constantine structured analysis, using dataflow 

diagrams (DFD) to define the processing requirements,

• VDM to define the data being held by CDIS and the operations on this data,

5.4.4.1 First thoughts

Initially the idea had been to use DFD at the top level to define systems operations and 

bring in VDM to define the lower levels from these diagrams. This proved unsatisfactory 

as the lowest level got too near a design rather than a specification and the DFD did not 

clarify the meanings of the dataflows (Hall’s string of beads problem again).
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5.4.4.2 Second thoughts

It was decided to do a complete top level specification in VDM. So a VDM state was 

defined that represented the whole CDIS system and events in the structured model were 

transformed into VDM operations. Using VDM was intended to have the effect of 

clarifying understanding of the requirements and making them complete and 

unambiguous. However, although using it did force the team to a point where they had a 

good understanding of the system, there were several drawbacks to VDM:

• it did not capture global features like properties that had to hold for all operations,

• it only captured functional requirements not aspects of performance,

• it did not help in specifying user interface details,

• it did not deal with the concurrency issues.

5.4.4.3 Final solution

The development team finally used different formal methods to specify different aspects of 

the system. They produced a system specification in three parts - namely a core 

specification, user interface definitions and a concurrency specification.

Core specification

This was specified in VVSL which is a notation with a VDM type syntax [Middleburg 

1989]. VDM was rejected because of its shortcomings in modularisation and Z rejected 

because of its clumsy error handling and the gap between its style and VDM. In fact 

VVSL had to be extended to handle combinations of operations.

User interface specification

This was specified with two types of information. The physical appearance was modelled 

using pictures and text whereas the syntax of the user dialogues was specified with state 

transition diagrams.

Concurrency specification

This was specified in two parts using CSP [Hoare 1985] for the processes and VVSL for 

the alphabet of the traces. Modified data flow diagrams were used to show the processes 

and the state variables they read and wrote to.
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5.4.5 Lessons learnt

The specifications provided a good description of the functionality of the system and were 

a solid foundation on which to base the design. In writing them and reviewing the 

functionality with the CAA the requirements were clarified precisely. However there were 

problems:

• once the three specifications were finished there were difficulties in getting an 

overview of the system,

• problems arose in reading the core specification which were attributed to the lack of 

natural language comments,

• the nature of the threefold split caused boundary problems between them,

• separation of concerns was not as good as it might have been leading to changes in one 

area impacting on others,

• the level of detail was difficult to choose between this and the design phase,

• some of the assumptions and abstractions in the specification made it a crude 

approximation to the real operation of the system.

Once completed the specification was used for a variety of purposes:

• managing the change control,

• as a basis for design and implementation,

• to derive system tests ( used in preference to the original functional requirements),

• as a basis for user documentation.

5.4.6 How was it designed?

We have seen that the system requirements specification had three different views of the 

same system. When it came to the design phase there was a split into four different parts of 

the software. Hall summarises the design components and their relationship by a diagram 

similar to figure 5.5.
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Figure 5.5 The design components of CDIS

The use of Formal Methods was proposed in three out of four of the design areas;

• functional design; the application modules were intended to be specified in VVSL,

• process design; from the concurrency specification the processes were modelled using 

finite state machines and VVSL,

• the infrastructure; the LAN software requirements using VVSL.

The user interface design was implemented using IBM Presentation Manager so the 

specification of this design followed the style of this particular package.

Functional design

The module structure of the applications modules was derived from the core specification. 

Each module was layered into an operational layer (used by processes or user interface) 

and a services layer (used by other application modules). Each module was divided into 

three parts for CDIS Central Processing System (CCPS) specific processing, Workstation 

processing and common code. Originally the plan for the more critical modules was to
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refine the VSSL used in the corresponding specification modules, writing down the 

refinement relations and proof obligations. For the less critical modules more code- 

oriented specifications were planned.

In the event all modules were specified using VVSL (according to Hall or VDM according 

to Pfleeger) and there was no attempt to formally connect the specification and design 

stages. This was partly because although there was refinement of the data, there was no 

obvious correspondence between the operations on the specification module and the 

application module. There was a team of 10 developers used on the application modules.

Process design

This was derived from the concurrency specification. DFD’s were used to document the 

processes and their communication, Finite state machines diagrammed the process designs 

and VSSL predicates characterised the complex states and the actions in the finite state 

machines.

On reflection it was felt it might have been better to encode the FSM in VSSL 

Infrastructure design

This mainly involved the LAN software in three respects:

• definition of the LAN protocol,

• the interface between LAN and the rest of CDIS,

• the design of the LAN software.

As we noted VSSL did not suit the requirements specification of concurrency and CSP 

was used instead but for the later parts of the requirements specification CCS [Milner 

1989] was preferred. They translated straight from the CCS design into code but did 

attempt some proofs of correctness. In trying the proofs they detected a concurrency 

problem that would have otherwise not shown up even by testing.

5.4.7 Lessons learnt

The main benefits of the design were:

• the functional design produced few faults attributable to incorrect mapping between 

specification and design,
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• the application design gave clients an exact description of the features they could 

expect from the module interfaces,

• implementation was straightforward from code to design,

• the CCS design of the infrastructure coped very well with the complexity.

On the other hand drawbacks were:

• again the problem of fragmented design, done in four parts meant that an overview of 

the design was hard to obtain and there was no unifying method that could draw the 

four design techniques together or validate the design as a whole,

• refinement broke down when the design structure was very different from the 

specification structure,

• proofs or formal procedures were not carried out to any great extent.

Overall Hall acknowledges that the use of Formal Methods was combined with good 

engineering practises to make the project a success. On reflection he felt the addition of 

good commenting and better structure would have helped when including Formal Methods 

as part of the specification and design.

5.4.8 Claims and measurement results

Hall claims

Using formal methods helped us to build the right system and helped us to build 

it right - at no extra cost. Our project shows that using formal methods on real 

large-scale projects is not only practicable but beneficial.

In analysing the effects of Formal Methods on this project Pfleeger and Hatton summarise 

the work undertaken as part of the SMARTIE project. Praxis made their records available 

to the research team and in particular gave them access to all the fault and fix data kept 

during the development.
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5.4.8.1 Pre - delivery analysis 

Fault data analysis

To analyse the effect of Formal Methods on the code each final coded module was 

categorised as being influenced by four design types:

VDM, FSM VDM/CCS or informal.

The faults were also categorised by four severity types:

0 Problem non existent or previously reported

1 Operational System Critical

2 System Inadequate

3 System Unsatisfactory

The researchers used about 3000 fault reports having discarded about 900 reports labelled 

0. The period of time covered by these reports was 1990 to June 1992 i.e. they stop at 

delivery. Other reports were used to compile the post-delivery results. Table 5.1 

summarises the differences in modules developed using the different methods 

concentrating on the changes made to modules brought about by fault reports.

From this data it appears that the claims that a Formal Methods design would produce 

better quality code are not obviously supported and there was no one method that looked 

significantly better than the others. Flowever the team went on to undertake further studies.

Timing data analysis

They considered the code changes as a result of fault reports and noted at what quarter of 

the year they occurred within the 8 quarters of the study. This would measure whether 

faults are found earlier in the lifecycle when Formal Methods are used (as is often 

claimed) and look at the pattern of fault reporting over time for the different design 

methods.

The results were inconclusive although each type of code seemed to reach a peak of 

changes late around the onset of system testing. The VDM/CCS code seemed to have its 

peak at an earlier point than the others but that may be due to other factors.
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FSM VDM VDM/CCS Total formal Informal

Total lines of delivered 
code

19 064 61 061 22 201 10 2326 78 278

Number of changes in 
delivered code caused by 
fault reports

260 1539 202 2001 1644

Code changes per KLOC 13.6 25.2 9.1 19.6 21.0

Number of modules of 
this design type

67 352 82 501 469

Total number of modules 
changed

52 284 57 393 335

% of delivered modules 
changed

78 81 70 78 71

Table 5.1 Relationship of changes in code to design type

Code audit

Using automated tools the code was analysed in two ways:

• looking for remaining faults in the modules (categorised into 6 types),

• calculating several structure and dependency measures (cyclomatic number, static path 

count, nesting levels etc.) for comparison with similar standard C software.

The results did not prove very useful for the first analysis but the team noticed some 

unusual features from the second. CDIS had an unusually low proportion of units with 

high complexity. The modules have simple design and loose coupling and because this 

was true for all code regardless of the design method it was concluded that the simplicity 

seemed likely to be a direct legacy o f a formal specification.

However as with all previous analysis the researchers could not be sure that other factors 

might not have led to this simplicity of code.

Unit testing

The thorough testing on this project was due in part to a contractual obligation for Praxis 

to carry out 100% statement coverage. They used a variety of software, unit testing the 

VDM and FSM code using Softest, the VDM/CCS code end to end and the informal code 

with a test harness. The number of faults and the number of modules within that design
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type are given in the first 2 rows of table 5.2 resulting in a normalised figure for 

comparison.

FSM VDM VDM/CCS Total formal Informal
number of 
faults

43 184 11 238 487

number of 
modules in 
type

77 352 83 512 692

faults/module 0.56 0.52 0.13 0.46 0.70

Table 5.2 Comparison of the normalised unit testing fault analysis.

Faults discovered at this stage clearly occur more often in informally designed modules. 

Taking the distribution of pre-delivery faults over the three phases of testing as

• 340 during code review,

• 725 in unit testing,

• 2200 during system and acceptance testing,

an unusual pattern for the distribution of faults was noted. Normally more faults are found 

in the code review rather than the unit testing but again the reasons for a reversal of this 

pattern were not clear.

The delivered code was certainly less fault prone after systems testing with only 273 

problems recorded post delivery (up to June 1994).

5.4.8.2 Post - delivery analysis

The results presented so far were collected from the pre-delivery data but now post-

delivery changes were recorded and compared. These covered a period from the 1992 

delivery and the end of the data used by the SMARTIE study in June 1994. There were 

185 changes to delivered code broken down as shown in table 5.3.
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Design

Type

Number 

of Changes

Lines of code 
with this design

Changes 
normalised by 
KLOC

FSM 6 19 064 0.31

VDM/CCS 9 61 061 0.72

VDM 44 22 201 0.41

Total formal 59 103 326 0.58

Informal 126 78 278 1.61

Table 5.3 Comparisons of the changes to delivered code.

We can see from these comparisons that we are led to the conclusion that formally 

designed modules were much more reliable post delivery. The failures per KLOC for the 

formally designed code were a remarkable 0.58. In comparison with other reported project 

figures given by Hatton, which range from 1.4 for a Lloyd’s language parser to 30 for an 

IBM standard project, this was an excellent result and partly due to very thorough testing 

pre-delivery [Hatton 1995],

5.4.9 Summary

A lot of the results from the analysis of this project seemed inconclusive. There were 

several other factors including:

• the sizes of the development teams,

• the overall ‘culture’ of development within Praxis,

• the nature of the problem domain,

• the concentration of the formal design in the critical modules which were then given to 

the best developers,

• the use of the informal design for the user interface where faults are noticed early.

These could all have affected the quality of the software produced and insufficient 

background data on these factors meant it was not possible to eliminate the bias they may 

have caused.

The main conclusions seem to be:
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• there was no quantitative evidence to support the hypothesis that formal design 

techniques alone will produce higher quality code than informal ones,

• no one formal method used here is significantly different from another,

• formal specification led to simpler structure which was easier to test,

• high reliability can be obtained by using formal specification, static inspection and 

good testing but all three are needed.

5.5 CASE STUDY 4 BASE: Trusted Gateway

This was a project carried out at British Aerospace Systems and Equipment Ltd and 

reported by Larson, Fitzgerald, Brookes and Green [Fitzgerald et al 1994, 1995, Larson et 

al 1996],

Its purpose was to study the effect of introducing a modest amount of formal specification 

into an existing development process. Funding became available from the European 

Software Systems Initiative (ESSI) for a comparative study to look at development with 

and without formal specification. It was expected that information about costs and benefits 

could be gained from the results. For the comparison, parallel development took place so 

that two separate teams worked on this same problem. There was to be no formal proof so 

that the emphasis would be on system and software modelling.

5.5.1 The problem

The task was to develop a small but security- critical message handling device called a 

trusted gateway (see figure 5.6).

This device prevents accidental disclosure of classified or sensitive information. It is used 

when two information systems are connected to control the information flow between 

them and to filter the stream of messages. Each message is read as a stream of characters 

and the first test checks to see if it is a valid message and if not outputs it through the error 

port. A second check on those messages which are valid looks for the presence of a 

category string to match against those held in two lists within the trusted gateway. These 

category strings within a message will indicate the security classification of the message, 

high or low, and the message will then be output through the appropriate port.
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• its model oriented form and straightforward notation make it accessible (although 

Larson et al note that the engineers preferred not to use the mathematical form of the 

notation preferring a more verbose ASCII representation particularly when presenting 

the formal specification to colleagues),

• VDM has been quoted in surveys as one of the most widely used formal notations and 

as well as the large VDM bibliography users have an electronic mailing list,

• there were a number of tools available and the team used the IFAD (Instituttet For 

Anvendt Datateknik) VDM-SL Toolbox because it enabled validation of the 

specification by systematic testing.

5.5.3 The personnel

Two teams were involved in the development of the trusted gateway. One took the 

conventional path using standard BASE methodology of structured analysis (based on 

Yourdon) with Cadre’s Teamwork and RTM (Requirements and Tracability Maintenance) 

CASE tool support. The other team took the formal path with essentially the same design 

process but adding Formal Methods wherever appropriate and at least in the security 

enforcing functions in the system. Both were working from the same initial customer 

specification given in the form of an initial system context diagram and first level data 

flow diagram.

The two teams were independent and kept apart physically so that they did not 

communicate about the project. Their background and skills levels were similar but their 

approach to working was not necessarily the same.

A very intensive one week course on Formal Methods and using the Toolbox was 

provided for the engineers, managers and quality assurance staff on the formal path and 

also some of the other BASE engineers so there would be the opportunity for the team to 

discuss their problems with a wider group.

Due to time constraints the other team were not given formal training on RTM and 

Teamwork. Informal introduction and extensive support on tool use was provided for 

both teams. Consultation and ‘expert’ help was available but in all but the simplest cases 

hints (not solutions) were given.
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5.5.4 Development process

This followed a traditional ‘V ’ lifecycle model where each main development step is 

accompanied by a test plan against which it will be tested. The development was divided 

into three phases: systems design, software design and implementation. At the end of each 

phase a review was carried out which included an inspection of designs and 

documentation by senior engineers and quality assurance personnel.

5.5.5 Systems analysis

This was carried out by a single engineer on each path who translated the customer 

requirements into collections. of numbered clauses which were then translated by 

Teamwork into a model of the system. The engineer on the formal path in addition 

produced a formal specification in VDM-SL of;

• the data types recorded in the Teamwork data dictionary,

• the principal functions recorded in the process specification.

A central monitoring authority took on the customer role and recorded independently the 

questions and answers against the requirements.

At the end of this stage both teams produced a system specification and a system test plan. 

The document from each team was reviewed and then the monitoring team carried out a 

third comparative review (whose results were not given to the developers).

5.5.6 Evaluation
The log of the queries kept by the monitoring team showed that the engineer on the 

conventional path submitted about 40 questions about the requirements whilst the engineer 

on the formal path submitted about 60. These queries were categorised by several other 

engineers into four groups an the percentage of each type is given in table 5.4 (presumably 

a rounding error gives the total for the formal path >100%)
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Formal Path Conventional Path

Function 42% 60%

What the system does

Data 31% 10%

Exceptions 14% 8%

What the system does under certain conditions

Design constraints 14% 22%

Table 5.4 The analysis of requirement queries from each path

This looks like a significant difference in the pattern of results with a much higher 

proportion of data queries in the path where the data was formally modelled, and a 

reduction in design constraint queries although this difference is not so marked. The effect 

of the Formal Method seems to have forced the engineer to clarify the requirements at an 

early stage while the engineer on the conventional path could leave a number of the 

assumptions implicit.

The number of queries about the function seem very different but it is interesting that if we 

convert back to the absolute values (given that the literature states the approximate total 

number of queries as 60 and 40 for each path) then the numbers are as shown in table5.5

Formal Path Conventional
Path

Function 24.6 24

What the system does

Data 18.6 4

Exceptions 8.4 3.2

What the system does under certain conditions

Design constraints 8.4 8.8

Table 5.5 The analysis of requirement queries in absolute values from each path

We now see that both engineers asked about 24 questions about the function which seems 

logical as you would expect them both to want the same quantity of information at this 

stage. The figures for data now show how many more queries were asked by the formal
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path engineer as the information was needed for the extra data modelling. The exceptions 

queries now become noticeably different whereas the design constraints, like the function 

queries, have a global nature leading to the same number of queries independent of path.

The comparative review at the end of this phase showed that the formal path engineer 

raised some crucial queries about the trusted gateway which led to the identification of an 

exception not noted in the original requirements document. The exception was then 

incorporated into the formal design but was missed by the conventional path engineer and 

this omission had a large impact on the project at a later stage. This does seem to support 

the theory that the rigour of formal methods encourages practitioners to focus on defining 

exactly what the system does before getting into design details.

This may be particularly relevant in this problem domain as message processing systems 

are prone to errors caused by data definitions and exception behaviour both of which were 

the subject of greater scrutiny on the formal path.

5.5.7 Systems design

The main drawback with evaluating this phase of the project was that the engineers 

assigned to the formal and conventional path had different levels of experience. This fact 

must affect the validity of most of the comparisons that are made between the two paths.

Most of the queries raised on either path were about the models that were passed to them 

from the previous phase and not about any underlying assumptions. The engineers for this 

phase did not question the ‘correctness’ of what they had been given. This led to the error 

already noted in the conventional path specification persisting through this phase.

Despite the training in formal methods given to all the engineers at the outset of the project 

the engineer on the formal path used his normal design process. The literature suggests 

this could be for one of two reasons:

• he was not trained in techniques needed to refine the specification,

• he was an experienced engineer and did not feel that Formal Methods would result in 

any improvement to his normal practise.

For whatever reason he ‘worked backwards’ and wrote in pseudo code first and then 

translated type definitions and procedural specification of functionality into VDM-SL for 

testing.
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Both engineers produced designs and test plans which were reviewed and compared as 

before. The formal design was noted to be at quite a high level of abstraction leaving 

more design decisions to the implementor. Testing the functionality at this stage on the 

conventional path might have found the error that persisted through this stage. The skills 

required to turn an abstract specification into a more concrete design are different from 

those required in the initial specification stage and need different training.

5.5.8 Implementation and code characteristics

It was at this stage as each detailed design in pseudocode was coded into C that the error in 

the conventional path specification came to light. A common user interface was supplied 

to each path so that blind testing could be done by the implementation engineers. The test 

suites produced by each path were used with their own code and then with the code from 

the other paths. It was at this stage the conventional code failed several of the tests from 

the formal test suite and the deficiency was spotted.

The authors point out that had the formal path test suite not been used i.e. only 

conventional development had taken place, then this error would have gone through to the 

delivered code. The patch that was then written to fix this problem affected the whole 

structure and efficiency of the code and again made further comparisons difficult. Some 

that are included are shown in table 5.6.

LOC Comments Initialising 

Time (sec)

Processing 

rate (cps)

McCabe %Budget

allocation

formal 63 63 70 250 10 81

conventional 371 82 17 18 10(74) 87

Table 5.6 Comparisons made on the code between the formal and conventional paths

We can see the code for the formal path looks precise, better structured, slower to initialise 

but much faster to process messages. The conventional code has a lower ratio of 

commenting and does worse on every measure except initialising time. However, as has 

been mentioned previously, the last minute patch must have affected a great number of 

these characteristics and it is interesting to note that the only time that ‘before and after
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patch’ numbers are quoted, with the McCabe complexity measures, then the conventional 

code before patching has a complexity of 10 (the same as the formal) whereas after it 

shoots up to 74 showing the impact of putting in a last minute code adjustment.

5.5.9 Summary

The small size of this trial in terms of the personnel involved and the size of the final code 

produced means that generalisations about the benefits of incorporating formal methods 

into larger projects cannot be made. However it was a useful study because of the parallel 

development enabling a direct comparison between formal and conventional development.

The results have to be interpreted carefully because other factors such as the difference in 

experience of the systems developers, or the effect of the software patch, can add bias.

It seems that the impact of using formal methods was:

• the rigorous semantics gave the required level of assurance to this security critical 

software,

• the specification process improved understanding of the system and identified errors,

• no cost or time overheads were incurred by using formal methods (if training is 

excluded).

The summaries contained in sections 5.6 - 5.9 are the results of searches for uses of 
Formal Methods in practise.

5.6 Further case studies of Formal Methods (no measurements given)
In each of these studies no useful metrics were given although it may be that they were 
collected in some cases.

5.6.1 Formal Requirements Analysis of an Avionics Control System
The re-specification of an existing system showing tools use and giving impressions of the

benefits gained [Dutertre and Stavridou 1997]. This was new ground to a certain extent as 

Formal Methods were applied here to real-time systems and PVS was used. This is a tool 

supported analysis method concentrating on proof and verification, aspects often ignored 

in favour of the specification itself. However no measurements were taken of benefits or 

drawbacks and no details are given of the size of the project except it was declared to be 

large scale and that the work took 18 months to complete instead of the estimated 6 

months. Work had already been undertaken in VDM and new problems were not
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anticipated. It was felt to be of benefit but the proof process was expensive and difficult to 

estimate.

5.6.2 The specification of part of a marine diesel engine monitoring system

This was a specification exercise using an early version of B as an example of this new 

Formal Method [Storey 1992], The full version of the engine monitoring system was 

already being specified in RAISE. The paper concentrates on the features of B and the B 

tool.

5.6.3 Viper and INMOS

These case studies were included as examples in a paper which discusses the value of 

Formal Methods as a verification for hardware design and their possible transfer to 

industrial use. [Stavridou 1994]. The formal verification work on Viper (Verifiable 

Integrated Processor for Enhanced Reliability) was a design quality assurance exercise and 

proved very expensive. No measurements were taken and the exercise was not repeated 

with Viper 2. The INMOS work built on the earlier specification of the T800 floating 

point unit by Shepherd and May, which claimed a 12 month reduction in testing time 

[May and Shepherd 1987, Shepherd 1990] and is a report of May’s findings for the T9000 

version of the transputer as far as 1992. It gives no measurements but states the problem 

of compatibility with the earlier versions, unifying different notations and trying to find a 

‘window of opportunity’ to apply Formal Methods.

5.6.4 Darlington Nuclear Power Generating Station

This work summarised by Pamas was essentially a formal specification arising out of a 

code inspection process [Pamas 1995], A team of 60 took a year to conduct the inspection 

and tabular formal notation was used. The code had previously been thoroughly tested for 

many years and the main product of the inspection was confidence. The conclusion 

appears to be that Ontario Hydro, AECL and AECB, the three organisations involved, 

seemed to be sufficiently happy with appraisal that they would all continue to use Formal 

Methods in some way.

5.6.5 MSMIE at Sizewell B

The Multiprocessor Shared Memory Information Exchange (MSMIE) is a protocol for 

communications between processors in a real time system [Brans and Anderson 1995],
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There had already been code verification for Sizewell B using MALPAS [Ward 1993] 

which took about 200 person years. They now used CCS to construct two models for a 

subsystem. The first modelled hardware components as CCS agents and the second 

focused on the possible transitions between states. These were compared using 

behavioural equivalencies. The authors draw out comparisons of their requirements-driven 

specification to the process-driven specification carried out in MALPAS. All judgements 

appear to be subjective.

5.6.6 The Attitude Monitor

This project used a combination of Z and tabular notation [Coombes et al 1995], It was set 

up to answer questions posed by British Aerospace about the necessary and sufficient set 

of requirements against which a design can be verified. Formal Methods were used on an 

element of the gust alleviation filter to try and answer some of these questions. Partial 

answers were obtained and the authors point to more work needed in this area.

5.6.7 Application of the B method to CICS

This follows the earlier work we reported as the second main case study, where Z was 

used. Part of a new component was specified and the B Tool adapted to the task. As yet no 

data is available to analyse the success of the project [Hoare 1995, Hoare et al 1996], It 

was claimed to be successful in capturing new functional requirements but less successful 

at meeting the non-functional ones.

5.6.8 Formal Verification of AAMP5 Microprocessor

Specification was carried out in PVS using a theorem prover to check on correct 

implementation [Srivas and Miller 1995], Costs were noted as significant, no figures were 

given and they were dismissed as normal for a new technology, acceptance on the part of 

the engineers seemed to be slow. The benefits seemed to be increased confidence.

5.6.9 CombiCom- the Rail Traffic Tracking System

CombiCom (Combined Transport Communications System) is a distributed System 

capable of tracking and tracing rail traffic across Europe. It was designed using VDM and 

VDM++ and implemented in Ada [Durr et al 1995] One of the motivations of Cap 

Volmac in undertaking this approach was to unify and co-ordinate the approach of 7
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different companies operating on several different traffic systems. A prototype was 

produced without any notion of distribution. Much resistance on the part of the partners to 

any reading formal specifications led to the use of graphical representation, informal 

descriptions and demonstration prototypes instead.

5.6.10 A330/A340 CIDS Cabin Communication System

This was a Z specification applied with the support of CASE tools to try and understand 

the complexity of the airborne computer system which controls such functions as the cabin 

PA system, the emergency signs and the cabin illumination [Hamer and Peleska 1995], 

The benefits were felt to be a reduction in the complexity, the uncovering of logical errors, 

reduced effort in the design and implementation and the identification of test cases. No 

data is given about the claimed reduction in effort or costs.

5.6.11 AT&T Switching System

This was a small specification with only 25 pages of Z but is built on the work by Mataga 

Zave and Jackson on the multiparadigm approach [Zave and Mataga 1993, Mataga and 

Zave 1993, Zave and Jackson 1994, Mataga and Zave 1995].

5.6.12 The Design of a Human Computer Interface

This was work done by Jacob as part of the Military Message System [Jacob 1986]. State 

charts and Backus - Naur Form were used and the two representations compared.

5.6.13 The Electricity Meter

This was part of the EUROTRI project to develop a static electricity meter [Arnold et al 

1996], Formal methods were used to conceive design develop and test embedded software 

in a mass-produced device. The rationales for including Formal Methods were the short 

time to development and the low cost of production.

5.6.14 An application of TRIO
The TRIO formal specification notation is an extension of temporal logic. Here Mandrioli 

describes TRIO and gives the results of applying it to an industrial application. Important 

“lessons learnt” are given [Mandrioli 1996].
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5.6.15 A Banking application

The banking system in question had been written in Cobol and this was an attempt to 

renovate the code using algebraic specification [van den Brand et al 1996].

5.6.16 Using AMN in a GKS case study

From the starting point of the draft Graphics Kernel System (GKS) given in a Z style 

specification, a re-engineering approach was used with Abstract Machine Notation (AMN) 

and the B-Toolkit [Ritchie et al 1994], Refinement on the specification was attempted.

5.7 Further case studies of Formal Methods (some measurements given)

In these studies some data is given although not always relevant to the issue of metrics and 
Formal Methods.

5.7.1 The Groupe Bull’s Flowbus

This was an application of both B and VDM to specify, design and implement an 

administrative sub-system of the second release of Bull’s product. Metrics for quality and 

effort were collected and compared with historic data from 2 other similar projects.

[Dick and Woods 1997], The comparisons are weakened by the use of estimates to cover 

the way the B Tool has generated code and the lack of detail on the nature of the faults. 

Some questions are left about the expertise used and the size of the project.

5.7.2 Railway Signalling

This work carried out by GEC Alathom was on the formal development of safety critical 

systems in railway signalling [Dehbonei and Mejia 1995], The B Method was used 

and this was the largest application they had used it for. The resulting program was about 

35 KLOC in Ada, with the preliminary design taking 6 months with 3 engineers and the 

detailed design stage 7 months with 2 engineers. Cost and planning estimations were too 

small and the proofs were not completed because the program could not be delayed 

further. 13 500 proof obligations were generated by the B Tool but only 90% of those for 

the preliminary design were discharges and 50% of those associated with detailed design. 

The proof mechanism was difficult to manage and a better user interface will be designed. 

No further measurements are given and the benefits are thought to be modular 

maintainable code although no supporting evidence is given.
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5.7.3 Crane protection system

This was a pilot study into techniques for developing safety critical software carried out by 

Rolls Royce for the Ministry of Defence [Hamilton 1995]. It involved the control and 

protection system for a crane handling hazardous material. Z was used supported by 

CADiZ, the tool developed by York University [York Software Engineering 1993],

The successes were felt to be the demonstration that it could be done, the highlighting of 

some deficiencies in the defence standards and the provision of a prototype. The 

drawbacks were the usual problems of front loading in effort. The results given include 

low error rates and no faults in the software in testing. Translation into Ada was done 

manually.

5.7.4 French Population Census

This work shows B Method applied to the geographical data part of the survey [Bernard P 

and Lafitte G 1995], This was a real life example but the reference gives a simplified 

version. The system was developed using Pascal as the target language and the 

specification resulted in 65 pages of B achieved in 2 weeks with 2 men. The refinement 

and implementation took 2 months and resulted in 14000 lines of Pascal. No time 

allowance was made for training or familiarising with the B tool. The authors comment 

on the need for a background in mathematics from all members of the project team. The 

system was implemented in 1990 and is still in use. Benefits were felt to be clarity, speed 

and reliability.

5.7.5 NASA Case Studies

In their book written as a guidebook on specification and verification, NASA gives details 

of 6 case studies with measurements relating to the goals for each and the cost in terms of 

time spent [Covington 1995]. The benefits stated in each case seem to be in terms of 

clarifying requirements of finding omissions and some numbers are given for the errors 

found.

5.7.6 FME Applications Database

At their web sites Formal Methods Europe give a list of Industrial users of Formal 

Methods but only manage to find 2 well documented cases [FME a] and also several case 

studies which are otherwise unpublished [FME b]. They classify the studies by the size of
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the specification and it seems that those in the category 10 000 to 50 000 lines of 

specification are all checkers, tools and code generators for different specification 

notations. In the category 5 000 -10 000 lines the following 8 projects are mentioned.

1. B27 Traffic Control System

No conclusions about this specification in Z given except to comment on the 

underestimation of the effort involved. No work published as yet.

2. NewCoRe

This was a project undertaken by AT&T between 1990 and 1992 as a feasibility study 

for applying SDL. Published work mainly by Holzman. [Holzman 1994] Some 

statistics are given about the length of the specification and the time taken and errors 

found.

3. ELSA (control system of a power plant)

TRIO was used to specify the control system that balances the load on various 

generators [Basso et al 1995], Validation by means of simulation and some 

comparisons were made with similar projects which had used more traditional 

methods. They claimed that costs were slightly reduced overall.

4. The ITSEC-E4 Secure Gateway

The security policy for the gateway was modelled using B. The number of proof 

obligations was about 500 [Bieber 1996] It was commented that elaborating the 

security model was more time-consuming than writing the formal specification.

5. T2: The global Second Level Trigger

A Specification in VDM++ and implemented in Modism EL [Balke 1995] They found 

no problems in using VDM++ and found it an asset in analysing and developing model 

solutions.

6. Specification of Tracking Manager Architecture

An application of VDM to the monitoring and controlling of the movement of 

materials through a processing plant. Some reservations were expressed about the 

difficulty of specifying the real-time aspects of some of the operations. Details of the 

architecture and proof can be found in [Fitzgerald 1996, Fitzgerald and Jones 1998]

7. European Space Agency project

This was the specification of an instrument control unit in RAISE and LOTOS which 

was then architectured in HOOD and implemented in Ada. The main aim of the
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project was to consider the provision of tools to improve ESSDE (European Space 

Software Development Environment). [ESSDE 1997]

8. Data Management System (DMS) Design Validation (DDV)

Work done for the European Space Agency to use a provable formal specification for 

verification and to show that error free transmission could be achieved in a component 

of a space system, the Fault Detection Isolation and Recovery. SDL was used and the 

investment in Formal Methods was deemed to have been worthwhile when a design 

error was uncovered. [DMS]

5.8 Case studies giving comparisons of Formal Methods

These studies either compare different Formal Methods or methods of validation.

5.8.1 An overview of common methods

The paper by Fraser, Kumar and Vaishnavi gives an overview of the most common 

Formal Methods and distinguishes between direct and transitional ways of incorporating 

them into the software lifecycle [Fraser et al 1994], In the transitional method some other 

devices such as tables or state charts are used as a bridge between the natural language and 

the formal specification.

5.8.2 The framework approach

In their paper Ardis et al try to establish a framework for comparing 7 different Formal 

Methods and look at them in relation to the specification of a simple problem of 

Automatic Protection Switching [Ardis et al 1996], They give two tables of analysis, one 

which identifies the importance of the various criteria to the different stages of the 

software development and the other which gives each Formal Method an evaluation based 

on these criteria. All judgements are subjective on a 3 point scale (+ = strength, 0 = 

adequate and - = weakness). Some criteria were judged as not applicable to certain Formal 

Methods.

5.8.3 The steam boiler problem.

This arose from a competition at an international seminar where researchers were invited 

by Abrial, Borger and Langmaack to take part in a case study. The World Wide Web was 

then used to invite further solutions with a deliberate late modification required. From 

those solutions submitted 21 were collected in a book [Abrial et al 1996]. It was noted at
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the Z Users conference in 1997 that nearly all specifiers had adapted and simplified the 

problem so that it would fit into their specification technique. It was also noted that the 

late modification sent to test the flexibility of the specifications had failed as a strategy 

because most researchers had left the work so close to the deadline that they had not made 

much progress or even started on the specification by the time the modification was sent.

5.8.4 The library problem
This was an analysis by Wing [Wing 1988] of the solutions to the library problem which 

was first posed by Kemmerer in 1981 in the course of his teaching of Formal Methods at 

the University of California at Santa Barbara. In 1986 a call for solutions to this problem 

at the Fourth International Workshop on Software Specification and Design resulted in the 

12 specifications which are compared here. Wing concentrates on general problems of the 

capture of requirements.

5.8.5 The Nuclear Waste Tracker and the Trusted Gateway System
In this work Fitzgerald compares the use of Formal Methods and in particular the

approaches to validation [Fitzgerald 1996], He contrasts the use of proof to check the 

consistency of the specification of the first study taken from the nuclear industry, with the 

validation by testing undertaken in the second smaller study.

5.9 Conclusions

In Chapter 1 we presented a practical hypothesis in relation to Formal Methods namely

widespread take up o f Formal Methods will occur only after the results from large scale 
case studies are published .

We propose that a careful case study approach can avoid the prohibitive expense of 

conducting a formal experiment by including the following:

• clear aims,

• a hypothesis to test,

• minimal external factors,

• minimal confounding factors,

• the planning and collecting of relevant measurements,

• analysis and presentation of results.
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The four main case studies detailed in this chapter have been an attempt to consider the 

effect of using formal methods in software development. In the light of these six points 

we can consider how far they were successful.

The Jacky study was not very precise about its aims except for the need to avoid failures in 

the installation and running of the cyclotron. Some of the external factors were well 

controlled by having such a small team involved in the specification and implementation 

but the uniqueness of development process, controlled for 10 years by one man, was also a 

confounding factor. The measurements possible in this case would have to be carried out 

after the event and would consist of metrics applied to the specifications and code. As the 

installation is not yet complete the post-delivery maintenance and fault data is yet to be 

collected.

All this adds up to a valiant attempt at the use of formal methods for a real commercial 

and safety critical situation which cannot be evaluated as yet for lack of quantifiable data.

For all its obvious qualitative benefits, the CICS study only managed to be moderately 

successful in one or two of the above case study criteria. This partially explains why the 

claimed quantitative benefits of using Z in this study have not had the expected impact on 

current industrial practice. In contrast to the previous study we are sure there is more data 

in terms of fault reports and maintenance records but as yet this has never come into the 

public domain. The famous 9% will continue to be quoted but, as we have seen, with little 

hard evidence behind it.

The best of these studies in terms of the six pointers is the CDIS project. It had the benefit 

of the linkage between Praxis whose interest in Formal Methods is well developed and the 

SMARTIE project to carry out detailed data collation and analysis. The aims were clear 

so that appropriate measures were taken and only the effect of confounding factors such as 

team membership were not fully evaluated. The final analysis seemed to be that the whole 

project was of high quality and the use of Formal Methods would have been a contributing 

factor to this but not the only factor. The figure quoted of 0.81 per KLOC for post 

delivery failures certainly bears comparison with other reported projects. There may have 

been a significant number of other factors leading to the improvement but the suggestion 

to come from this work is that it will be of benefit to include Formal Methods where 

appropriate as one of a range of software engineering techniques. This case study
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represents the best attempt so far in data collection and analysis for validating the claims 

of Formal Methods.

The BASE project had very clear aims and methods in trying to provide evidence for the 

effects of introducing Formal Methods to a project. They did have good methodology and 

collected meaningful statistics. Unfortunately the small size of the project, which was an 

advantage in that it allowed parallel development with and without Formal Methods, is 

such a significant factor that it is not at all certain that the measurements made would scale 

up to larger scale systems.

As we have seen from these and additional studies mentioned there has been a great deal 

of time spent trying to apply Formal Methods to a variety of problem domains. 

Unfortunately, by comparison, little time has been spent collecting quantitative data that 

might help in evaluating the results.

The metrics which have been used here have largely been concerned with the 

characteristics of code resulting from a development which has incorporated Formal 

Methods. We shall now consider ways in which metrics can be developed from the formal 

specification itself.
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CHAPTER SIX

6. EXTRACTING MEASUREMENTS FROM FORMAL 
SPECIFICATIONS

This chapter looks at work done on the development of metrics for formal 

specifications. We propose a classification of some of the characteristics of 

three notations; Z, VDM and ADT. Measurements are shown for small 

specifications.

6.1 Introduction

We have seen in the previous two chapters some attempts at collecting evidence of the 

effects of Formal Methods. We have criticised much of this evidence for its qualitative 

nature which is so easily misinterpreted and for the subjective nature of the judgements 

which formed the basis for many of the conclusions. The advantage of measurement over 

opinion is in its quantitative nature and therefore its objectivity.

Some of the case studies mentioned previously attempted to collect metrics from software 

that had been developed as a result of incorporating Formal Methods into its evolution. 

Measurements were taken to see if it could be demonstrated that the methods made a 

difference to software quality. In other studies claims were made about the development 

process. The most common claims were that the extra time and effort spent using Formal 

Methods at the beginning of a project, would be offset by the reduction in the need for 

fixing faults and by the ease of maintenance.

We now consider attributes of the formal specifications themselves rather than qualities of 

code subsequently produced or the development process involved. Our motivation is to 

try and establish those characteristics of the formal specifications themselves which 

influence external attributes which may have a bearing on the software development 

process and to determine if we can find suitable metrics to capture them. These will then 

provide possible indicators of the quality of resulting software. We will concentrate on 

impartial objective measurement rather than notions and feelings.
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Most software metrics are attempts at measuring external attributes of software achieved 

indirectly by considering some internal attribute. In Chapter 3 we looked at some of the 

existing software metrics to see whether they could be applied to Formal Methods or 

provide pointers to possible metrics for formal specifications. We also looked at attempts 

to apply metrics directly to formal specifications and in particular the work of Whitty who 

tried to use flowgraphs to obtain structural metrics from a Z specification.

There has been very little work done on establishing metrics for formal specifications. Our 

starting point here is to reflect on the desirable qualities of a specification as perceived by 

the user, that is the observable external characteristics. In their paper Ardis et al. give a 

selection of fundamental criteria they felt were important for any specification notation 

proposed for reactive systems [Ardis et al. 1996]. Those they noted as especially 

important in the requirements and design phases were stated as:

• applicability - can it describe real world situations and be applied in a compatible way 

with current technology?

• testability / simulation - whether the specification be used to test the implementation,

• checkability- is the specification readable by domain experts who are not Formal 

Methods experts?

• level of abstraction / expressibility,

• soundness- whether the semantics are precise so that inconsistencies and ambiguities 

will be uncovered,

• verifiability - checking formally the links between levels of refinement.

In general the key attributes important to the user relate to:

• understandability,

• consistency,

• accuracy,

• completeness.

In Chapters 7 and 8 we describe experimental work which concentrates on aspects of 

understandability and which also have a bearing on the Ardis criteria of applicability, 

checkability and expressability. These would seem to be crucial to the use of Formal
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Methods. It is self evident that these methods will not be widely adopted unless users are 

confident in reading and applying them. There is a lot of anecdotal evidence that formal 

specifications are part of a ‘write only’ operation and that only a few specialists can 

actually read and interpret them.

An alternative approach which may overcome these problems is the increasing use of 

validation by animation and prototyping. An example of this is given in [Agerholm and 

Larsen 1997] who describe an animation of the formal specification of an astronaut’s 

backpack. Here users can alter conditions and parameters and see the effects on screen 

with a small astronaut figure in the manner of a computer game. While this type of 

validation can be very valuable we believe that the client, or more probably their technical 

advisors, will want to inspect the actual specification.

In this chapter we consider some key internal attributes of specifications such as:

• conciseness,

• clarity,

• complexity,

• flexibility.

As a means of measuring these internal attributes we find static measurements which can 

be extracted directly from the specification. We believe these impact on the external 

attributes such as comprehensibility investigated later in Chapters 7 and 8.

In studies of software metrics the following statistics are often recorded:

• total lines including comments,

• code lines excluding comments,

• total characters,

• lines of comments.

It has been found that both the simple LOC (lines of code) and other more refined metrics 

such as DSI (delivered source instructions) are not only useful measurements of length, 

but can also be incorporated into other more complex metrics reflecting measures of 

complexity, functionality and effort (see Chapter 3). The length of the formal
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specifications will need to be considered in a similar way with due account taken of 

commenting and characters. This will have a bearing on its conciseness.

The clarity and complexity of a specification will be affected by the variety of the notation 

used. Britton et al. in their investigation into measuring notations (not all of them formal in 

the strict sense) look at their richness by considering the size of the glossaries needed for 

each one [Britton 1997].

The flexibility of a specification relates to the ease with which it can be modified. One of 

the drawbacks mentioned in connection with Formal Methods is the poor re-use of 

specifications and the idea that adding some new information to the requirements or 

updating the software to a new version will entail creating a completely new formal 

specification from scratch.

6.2 Previous work on counting methods

The remaining work in this chapter is based on an earlier study carried out by the author 

and a fuller account of the work can be found in [Finney 1993].

6.2.1 Background

With the four aspects of conciseness, clarity, complexity and flexibility in mind a study 

had been set up to try and extract suitable measurements from formal specifications to try 

and reflect these attributes.

6.2.2 Defining the attributes and measurements

As part of this previous study we looked at some counting methods to undertake a 

comparison of the notations used in VDM, Z and a method using algebraic specification 

which we call ADT [Finney 1993]. These formal notations were chosen as three of the 

most popular described in journals and surveys on the use of Formal Methods. The 

experiments and results are summarised, expanded and extended here.

After some preliminary work to consider the desirable attributes of formal specifications a 

subset of these was formed. A loose mapping was set up between those attributes that 

might be of interest and the concrete parts of the specifications which might have a bearing
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on these. Table 6.1 gives a summary of the mapping between attributes (broken down into 

sub-attributes) and the measurable characteristics of the specifications.

Overall Attribute Sub-attributes Measured by

CLARITY Readable number of brackets and non-standard 

symbols /line

Ambiguous no measure was found

Language comment lines/total lines

FLEXIBILITY Modifiable(ent) number of extra lines for entity

Modifiable(op) number of extra lines for operation

Standard the number of forms of notation currently in use

Modular whether part of the specification could be 
developed independently

Size a count of entities and operations

COM PLEXITY Abstract the number of stages to implementation 

(a subjective judgement not used in the final table)

Vocabulary(not) the number of special symbols

Vocabulary(mat) the number of mathematical symbols

Read time no. of operations x no. of entities x 5 minutes

Write time no. of operations x no. of entities x 30 minutes

Hidden detail the number of auxiliary functions used

CONCISENESS Symbols the reduction in characters over natural language

Repetition counting one for each block

Base types counting each base type

Length total lines of specification

Table 6.1The mapping between attributes and measurable characteristics of specifications
[Finney 1993]

6.2.3 Explanations and notes on the attributes and measurements in Table 6.1

6.2.3.1 CLARITY

Readable

This measurement of brackets and symbols was split into two components. The raw 

scores were counted but the normalised ones were also included for ease of comparison 

between specifications. It was expected that whilst VDM and Z would have the
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greatest use of symbols, ADT would have the most use of brackets because of its nested 

algebraic expressions. Symbols were divided into two types: special and mathematical. 

The mathematical category covered notation used as a standard part of set theory, 

mathematics and logic (covered in any introductory course on these topics) whilst the 

special notation was used for symbols which would only be seen in relation to formal 

specification or more advanced mathematics.

Ambiguity

This was a difficult measurement to make as it involved subjective judgements of 

meaning. One approach would be to try and estimate the number of possible 

interpretations for each statement. Another aspect of ambiguity would be to decide 

where the source of difficulty was. If a statement involved membership of a set for 

instance the ambiguity might arise from the poor definition of the base set rather than 

the interpretation of set membership as described by the notation. It was decided to 

omit the measure of ambiguity from the study.

Language

In the examples used for this study it should be noted that the specifications were laid 

out in accordance with versions of Z, VDM and ADT based on [Wordsworth 1992, 

Jones 1990 and Martin 1986]. Slight variations were sometimes used without loss of 

meaning due to the limits of the word processors at the time. A new line was started 

and counted following the standard practices for layout described in these books.

6.2.3.2 FL E X IB IL ITY

Modifiable (entities)

This is an estimate of the changes needed to the specifications if a modification occurs 

in part of the data stmcture rather than in an operation. This would most commonly be 

an additional item to be considered as an input variable.

From experience the calculation of this attribute developed into the rules;

for VDM : total changes = 2 x number of w r operations + 1,

for Z : total changes = number of modifying schemas,
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for ADT : total changes = an extra 2 lines for the more involved conditional 

statements brought about by more entities to consider.

These mies were tested by considering modifications to stack and queue examples by 

adding a size limit. This introduced a constant ‘max’ to be checked. In the later 

example concerning aircraft boarding the modification involved introducing a luggage 

component to the boarding process so that both passengers and luggage are checked in.

Modifiable (operations)

The changes to a specification required when adding an extra operation are quite 

similar for VDM and Z but very different in ADT. In the former two methods all that is 

required is an extra operation with pre and post conditions for VDM or an extra schema 

in Z. In the case of ADT, the axioms which form the basis of the specification are 

formed as combinations of types of functions called constructors and non-constructors. 

The axioms are given as statements involving each constructor with each non-

constructor. As an example if there are 2 constructors and 7 non-constructors then there 

are 14 axioms. It follows that in this case adding a constructor would increase the 

axioms by 7 x 1 but adding a non-constructor would only increase the axioms by 2 x 1. 

So the nature of the operation to be added is significant.

Modular

The modularity and independence of the specifications were intended as measures of 

how much a specification could be split up as independent parts so that different 

sections could be developed by different specifiers. This would depend to some extent 

on the good style of the specification and the overall linking. Efficient management of 

the passing of common parameters (in the case of VDM) and the correct use of 

schema calculus (in the case of Z) would affect the modularity. The problem domain 

could also make choice of modular structure easier in some cases than others. From the 

size of specification considered here it seemed that ADT did not allow separation of 

part of the specification, VDM did allow it and with Z it might be possible.

6.23.3 COMPLEXITY

Abstract

It had been hoped to try and measure the level of abstraction at which a specification 

was written by considering the gap between the concepts in the formal specification and
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their final implementation in code. This proved a difficult measure to define as the 

reification involved from the specification to code would be attempted by some 

practitioners in one large step whilst others would want a more cautious iteration 

towards implementation. In the final table this measurement was therefore omitted.

Read/Write time

These times were based on estimates derived from observing students.

Vocabulary

We should note that at the time this study was carried out the syntax for VDM and Z 

used had deviations from what would be the present day standard.

Here the notation was divided into:

• specialised vocabulary peculiar to these formal notations,

• more common mathematical symbols.

We attempted to get a measure of how much expertise is necessary to read 

specifications so using these measurements in a similar way to Britton’s glossary. It 

should then be possible to note the difference between a notation that has a small basic 

vocabulary to master and one which introduces many new symbols for every part of its 

construction. Table 6.2 shows our division between the types of notation based on the 

examples used.

Hidden detail

Considering the auxiliary functions and looking ahead to the more complex problems, a 

distinction was made between the built in functions such as max and head and those 

defined by the specifier because they were not available in the standard notation. The 

number of functions defined by the specifier was counted. It should be noted that in a 

rapidly evolving and maturing area such as this, what is user defined today is often built 

in to the notation tomorrow. Since the initial work was completed, both VDM and Z 

have had standards or draft standards printed which may help to define the commonly 

accepted forms of the notation.
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Specialised formal notation Standard mathematical notation

A modifiable e is a member of

E read only c  is a subset of

# length of > greater than

\ without < less than

3 there exists < less than or equal to

:: consists of > greater than or equal to

: of type v  logical or

V for all a  logical and

3 such that g is not a member of

^'“'^concatenated with u  union with

—> maps to

1 old state of

reduces to

A is defined as

* sequence of

<=> if and only if

t  overrides the domain with

< overrides

Table 6.2 The classification of notation types.

6.23.4 CONCISENESS

Symbols

Table 6.2, defining the different types of notation used, also shows the note of meaning 

of each symbol in natural language. This leads us to estimate the overall saving made 

by the use of the symbols in the specifications rather than words. It will be a large 

element of the conciseness of a specification that a single symbol can represent a longer 

natural language phrase, for instance writing ‘= ‘ for ‘is equal to’. As can be seen from 

Table 6.2, by counting a symbol as a token word there is an estimated average saving of 

one word every time a specialised formal notation symbol is used and a saving of two 

words every time a mathematical symbol is used. In our example ‘is equal to’ is 3 

words and is replaced by the ‘word’ =, giving a saving of two words. It may be a better
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measure to relate this to the overall totals in the readable measurement rather than put it 

as a vocabulary measurement because ADT, which is clearly the most concise, seems to 

save little by this method of counting. This latter discrepancy arises because the 

algebraic method has a very small vocabulary of terms which are used repeatedly. 

Length

Boxes round schemas and details about states were left out of this total.

6.2.4 First evaluations with nine specifications

These first attempts at measuring characteristics of formal specifications concentrated on 

the standard text book problems where there were only five operations to be carried out 

with usually a single entity. Nine small specifications were written and the measurements 

calculated by hand. The specifications were checked by hand and by a second specifier.

6.2.4.1 P1,P2,P3 The priority queue

These specifications relate to a queue consisting of items where each has a priority 

attached so that the item with the highest priority is removed from the queue. The 

specification was approached in three different ways within VDM using the different 

underlying structures used by this notation; sequences, sets and maps.

6.2.4.2 SI,S2,S3 The stack.

This example must appear in nearly every introductory book on Formal Methods. It is an 

ordinary stack with items being placed on and taken off the top of the stack. In the VDM 

and Z versions the underlying structure was a sequence in both cases and here the 

difference with ADT becomes apparent. Using the method of algebraic data types the 

behaviour of the abstract form under the operations is what is being described and the fact 

that the stack is specified as a sequence is not apparent. All details about the sequence 

structure are abstracted out. These three specifications are included in Appendix C for 

comparison.

6.2.4.3 A1,A2,A3 Aircraft Boarding.

These specifications, again written in all three notations, are using a set based structure to 

describe the movement of people on and off an aircraft. It is a simple version of the
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problem and could equally well apply to students joining a course or any membership 

class of problems.

The example given in figure 6.1 shows one of the small VDM specifications of a priority 

queue and, within the box, some of the measurements given on the types of notation used. 

All nine specifications are given in [Finney 1993]. Appendix D shows the results of the 

counting from all nine specifications.

6.2.5 Further examples with a refined set of measurements

A refined set of measurements was applied to a larger problem. The readable sub-

attribute of the specification was split into 4 measurements to refer to brackets, symbols 

and the normalised figures of brackets / line and symbols / line. The hidden detail count 

took note of the number of built in functions used as well as the number of specifier 

defined functions. The measurement of symbols was split into 2 counts. The first only 

took into account the initial instance whereas the second figure estimated the occurrences 

for the specification as a whole.

Three specifications SP1, SP2, SP3 were written in Z, VDM and ADT relating to the same 

statistical calculating device. These specifications included definitions of standard 

mathematical procedures such as mode and variance. There was as much commonality as 

possible among the three specifications so that comparisons could be meaningful. When 

the results were analysed the differences between the notations became more apparent than 

in the previous smaller specifications and more significant conclusions could be drawn 

about the effectiveness of the measurements. Appendix E gives the results of this second 

set of comparisons.
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Model symbol count

Qtp = Qitem* *

q;Qtp

q =  [p 1.p 2 .p 3 ,- [2]

q1.q2.q3,-.]

inv(q) p(q(i))<p(q(i+l)) (10) <

CREATEO (2)

ext wr q:Qtp

post q = [ ] [2]

ENQ(it:Qitem) :(2 )

ext wr q:Qtp

post 3 i g  inds q 9 396

del(q,i) = q’ a  q(i) = it ’( 4 ) a

DEQO It: Qitem (2):

ext wr q:Qtp

pre q *  [ ] [2]

post q = tl q ’ a  hd q’= it ”a

TOP() it:Qitem (2):

ext rd q:Qtp

pre q *  [ ] [2]

post it = hd q

ISMTO b:Boolean (2):

ext rd q:Qtp

post b <-> q = [ ] ~ [ 2 ]

This gives totals of 34 brackets
22 symbols split into 6 formal types : _ 3 <=> ’ *
and 4 mathematical types < e  9 a

the total lines were 23
NB = and ^  were ignored and all brackets were treated alike so (4) + [2] = 6 brackets

Figure 6.1 The sequence version of a VDM priority queue (PI) with its counting totals
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From these larger specifications it seems that:

6.2.5.1 Length

The overall length of the specifications was a good indicator of the differences in the 

conciseness of the methods. It is highest in VDM mainly because of the repetition of the 

specifier-defined functions; Z is more concise but ADT is the shortest as expected

6.2.5.2 Brackets

Counting brackets led to the conclusion that Z is the least complex as is to be expected by 

the structure of the schemas which do not insist on inputs in brackets and use line 

separation to imply conjunction. The higher numbers on ADT are what would be expected 

of a specification method that has many nested statements. The surprising result is the 

large total of brackets in VDM which was mainly the result of the application of so many 

specifier-defined functions.

6.2.5.3 Symbolic count and symbols normalised by lines

A simple count of the symbolic notation proves to be a good indicator of the inheritance 

properties of Z which is again seen to be reduced in its overall count because of its schema 

inclusion. This means that repetition is avoided whereas in VDM the statements and 

functions must be repeated in each operation as these are regarded as independent. 

However this measure proved to be misleading in the case of ADT because of the number 

of repetitions of the standard axiom form (::=.)

6.2.5.4 Normalised comment counts

It is difficult to know whether the measurement of comments per line reflects the true 

paucity of comments for ADT or whether it is impossible to put an explanation to what is 

essentially just an equation. It is more natural to insert natural language comments in the 

other two notations after each schema or section. Using the ratio measure of comments to 

lines might show a general indication of readability but the very diverse nature of the 

methods, particularly ADT in comparison to the other two, makes this measurement 

difficult to use for comparison.

136



6.2.5.5 Modification counts

Modification counting with respect to the entities did show up the drawbacks of VDM. 

The reduction for Z over VDM in the extra lines generated by an additional entity is due to 

the schema calculus that allows information stated in the original schema in Z to be 

automatically carried through to later parts of the specification whilst it must be restated in 

the ‘wr’ and ‘rd’ parts of each of the VDM operations. In ADT the extra entity is 

incorporated into the inputs with very little extra work. We recognise here that work and 

effort may not always be equated. For example propagating a change in state definition 

through the operations may be tedious and repetitious but will also be light in effort.

Counting modifications from the operations shows the problem of trying to introduce an 

extra operation into an ADT. If it is a constructor then the effect in this example is to add 

another 7 axioms estimated at an average of 5 lines each. A non-constructor would only 

lead to about 6 lines extra.

Revalidation effort associated with modifications has not been included here.

6.2.5.6 Hidden details

In tabulating the results for the hidden detail in specified base types or user functions there 

was a presumption that ADT does not have any built-in functions. It brought out again the 

richness of the VDM notation over the version of Z used here and also highlighted the fact 

that ADT needs very little in the way of functions as it operates at a more abstract level 

and only gives reduction rules rather than methods on the whole state.

6.2.5.7 Language reduction

This was one of the most striking features to come out of the comparison. The language 

reduction tabulated was taken as a sample from one of the operations and then multiplied 

up by a suitable factor. However it was obvious that the ADT notation was going to show 

very little saving in words because of its appearance as a precise method. Conversely 

VDM and Z both made heavy use of symbols in this particular operation and therefore the 

saving over natural language specification was great. In this instance the counting results 

are a reflection of how verbose the specification could be in natural language which may 

not be quite the same as how concise it is. The implication for this measurement is that 

other factors are affecting the reduction from natural language apart from the notation.
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The problem domain has an influence on the language used and the form of the notation 

dictated by the style of the method itself also has an impact on the way that the natural 

language is translated and reduced to symbols. Certain structures are an integral part of 

the notation and perhaps should be treated in a similar way to type declarations or 

procedure headings within programming languages. These latter aspects of code are 

discounted in some counting methods and it could be argued that a similar approach might 

be taken with some elements of the formal notations.

6.2.5.8 Repetition

Finally the assumption was made in looking at the re-use of specifier defined functions 

that ADT requires them to be restated if used again. Obviously VDM is assumed to 

restate as the operations are regarded as independent. It was therefore a good indication of 

the redundancy of the methods or the advantage of ‘inheritance’ mechanisms.

6.3 Summary of results

From these first attempts at applying metrics directly to the formal specifications we have 

noted:

• Some attributes seem impossible to capture with a simple measurement.

• The issue of modularity, inclusion and re-use within the specification could be 

reflected by several of the metrics. The method which had the highest repetition count 

was least able to promote structures or inherit properties. Length as a comparative 

measure between methods gave an indication of the concise nature of ADT and also 

the schema inclusion of Z which both helped to reduce the number of lines needed in 

relation to VDM.

• The symbol metrics had to be normalised to reflect the very concise nature of ADT. 

Even then it was difficult to reflect the small vocabulary repeatedly used in this 

method rather than the larger diversity of symbols in the other two. The metric should 

take into account the number of different symbols.

• The metric used with respect to brackets emphasised the nesting used in ADT which 

can make it difficult to read and interpret.

• The richness of the notation can be measured by looking at how many additional 

functions have to be added by the specifier.
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• No comparative information was gained from the read or write times as these were 

speculative estimates rather than experimental results. They do give a very rough idea 

of the time to be expected but a lot of other factors such as the expertise of the user 

would affect these figures.

6.4 Conclusions

In this chapter we have considered some of the desirable external attributes of formal 

specifications. We have formed a subset of these characteristics and linked them with 

internal properties of specifications. Using examples from three different Formal Methods 

(YDM, Z and ADT), we have tried to construct suitable metrics to capture the internal 

attributes of each. We have taken a comparative approach to see how well the proposed 

metrics could capture the diversity and similarities between the three Formal Methods.

The metrics used have concentrated on the structural aspects of the specifications which 

were thought to have a bearing on aspects of clarity, flexibility, complexity and 

conciseness. We found some sub-attributes, for example abstraction, impossible to 

capture using measurement. Some proposed metrics were easily distorted by the problem 

domain or the specifier’s approach. Other metrics were poor indicators of the properties 

of the specification and this was shown when they were not sensitive enough to 

distinguish between the different methods.

The metrics which were judged to have some value in measuring attributes were further 

refined in the later experiments of the statistical device to better reflect the attributes they 

were intended to measure. Finally a small set of metrics proved to capture well the 

structural attributes of the specifications and provide indications of the ways in which 

these properties of the specifications might be investigated further.
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CHAPTER SEVEN

7. EXPERIMENTAL WORK

This chapter contains the background and rationale to the experimental 

work. We consider both the parallels with similar work on the 

comprehension of programming languages and also other experimental work 

with specifications. We then describe the first two experiments that were 

designed to look at some of the attributes of a formal specification in Z with 

the emphasis on the factors affecting the comprehension of the specification. 

Results and analysis are given.

7.1 Introduction
Formal Methods have been proposed as part of the software development lifecycle for 

about 25 years but there is still much debate on the benefits their inclusion will produce 

and the claims that can be made, [Hall 1990], [Saiedian 1996], [Bowen and Hinchey 1995] 

and [Cohen 1989]. As we have stated before their widespread adoption in industry will 

only take place when there is convincing evidence of the advantages to be gained from 

using them. Whilst there is much anecdotal and qualitative support there is little in terms 

of facts, figures and statistics to make the case for Formal Methods and provide hard 

evidence. We have looked in Chapters 4 and 5 at some of the efforts made to collect this 

evidence.

Empirical work has been carried out to investigate areas of concern in programming and a 

variety of metrics have been developed in relation to software and its development as we 

have seen in Chapter 3. So far there has not been a similar move from the formal methods 

community to develop metrics which can be applied to formal specifications. In Chapter 6 

we described our first attempts at establishing ways of measuring attributes of formal 

specifications that could lead to an understanding of the nature of the specification itself. 

In particular we concentrated on aspects of the comprehension we could measure by 

inspecting the notation.
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There have been almost no formal experiments conducted to investigate the efficacy of 

Formal Methods so the experimental work relating to the comprehension of Z 

specifications we describe in this and the following chapter breaks new ground.

We begin by looking at some related research in three areas:

• general experimental work in software engineering on factors affecting quality,

• particular experiments carried out on the comprehensibility of programming 

languages,

• Formal experiments on logic and specifications.

7.2 Related experimental work

7.2.1 General experimental work in software engineering

Much of the work in this category was carried out to try and establish the validity of 

certain metrics or methods that might affect program quality. As such some of these have 

already been mentioned in Chapter 3 as part of the survey of software metrics. In the late 

1970’s and early 1980’s there was an explosion in the number and variety of programming 

languages and this led to an interest in experimental work to try and investigate the 

properties of the ever increasing amount of software. Basili and his colleagues at the 

University of Maryland initiated work on the quantitative analysis of the software 

development process and its products. He has published papers on the methodology of 

empirical work, for example [Basili 1981, Basili 1985, Basili and Selby 1984, Basili and 

Weiss 1984, Basili et al. 1986], but also reports on his own experiments with results and 

statistical analysis. In [Basili and Hutchens 1983] he describes experiments to look at 

complexity metrics on student written compilers, and in [Basili et al. 1983] an attempt is 

made to compare metrics using about 110 KLOC in Fortran. His work on the TAME 

project [Basili and Rombach 1988] was an attempt to use the empirical lessons learnt to 

develop a software engineering process model. In more recent years Basili’s prolific 

output has included experimental work in many diverse aspects of software including 

pattern recognition [Briand et al. 1992] and knowledge based analysis [Abd-El-Hafiz and 

Basili 1996].

For background on experimental methodology many papers still refer to Brooks’ work 

which discusses the problems of the selection of subjects, materials and measures when
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carrying out studies on programmer behaviour [Brooks 1980]. It also contains a much 

quoted justification for using student subjects in experiments although this still has to be 

balanced by those who have reservations about this group of participants [Curtis 1986].

As examples of general experimental work done with student subjects we choose three 

representative papers. Zweben et al. describe three controlled experiments to look at the 

effect of layering in Ada on quality and development effort [Zweben et al. 1995], they 

found that with layering there was a reduction in effort while quality was maintained. 

Shepperd based his studies on student teams working in Cobol to look at the validation of 

some design metrics [Shepperd 1990]. A more recent paper discussed experiments to 

evaluate the effect of inheritance depth on the maintainability of C++ programs. [Daly et al. 

1996], They found that three levels of inheritance seemed easier to maintain than the 

equivalent software with either no inheritance or five levels.

7.2.2 Experimental work on factors affecting programming comprehension

We now consider some of the empirical work carried out with relevant attributes of 

programming languages in order to see if parallels can be drawn in order to develop a 

similar approach with formal specifications. One of the starting points for these 

experiments was the work done by Tenny [Tenny 1988], Harold [Harold 1986] Takang 

[Takang et al. 1996] and Jprgensen [Jprgensen 1980], who conducted studies with 

programmers to look at effects of style and structure within programs. There is much 

other relevant work in programming comprehension and among others Curtis, Green, 

Gilmore and Solloway have undertaken this [Curtis 1980, Green 1980, Gilmore 1990, 

Gilmore 1994 Solloway et al. 1983],

Tenny analysed the results from 148 student programmers with experience of Fortran, 

Pascal and Cobol who had been given one of 6 variations of a program in PL/I. He tested 

the effects of adding or omitting comment lines in natural language. He also looked at the 

effect of breaking down the program using procedures. He measured their scores obtained 

by answering 12 questions. From his results he concluded that the commenting had a 

significant effect on the readability but that the structure of the programs had little effect 

on the readability. He also concluded that even if a program was badly structured good
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commenting might overcome that disadvantage. He felt that a larger program would be 

necessary to test the effect of structuring alone.

In his studies of Cobol programmers Harold tried experimental evaluation of program 

quality and included features of ‘readability and understandability’. As factors that might 

affect these two aspects of a program he included comments, procedure names, sequential 

flow of logic, module size, indentation and logical simplicity. He found evidence to link 

the quality of programmes to the techniques of structuring; however the sample size of 20 

was quite small and some of the results needed further evaluation.

In the study undertaken by Takang et al. the authors stress the need for proper statistical 

techniques to analyse the data from experiments on program comprehension data. In order 

to use these techniques in a valid way there also needs to be some understanding of the 

theories of experimentation. In their recent work they conducted an experiment using 89 

students and used both an objective and subjective means of assessing comprehensibility. 

Three hypotheses were tested:

1) that programs with comments were more understandable than those without,

2) that programs with full identifier names were more understandable than those without,

3) the combined effect of comments and full identifier names was better than either one 

independently.

Only hypothesis 1 was supported by the objective scores and only hypothesis 2 was 

supported by the subjective scores.

Jorgensen followed up previous experiments by Weissman who concentrated on five 

significant style characteristics in programs [Weissman 1974]. These were:

• choice of variable names,

• structure of the program,

• use of comments,

• choice of control structures,

• paragraphing of the listing.
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He based his experiments on Algol programs and tried to correlate the readability of the 

programs, as judged by 10 experts, with some computer evaluated characteristics of the 

code. His results were not very conclusive but the criteria he undertook act as pointers to 

possible characteristics in formal specifications.

7.2.3 Experimental work on Logic

As Formal Methods are based on logical expressions we were also interested in 

experimental work done in this area. Studies by Almstrum [Almstrum 1994] and Vitner 

and Loomes [Vitner et al., Loomes and Vinter, Vitner 1996a, Vitner 1996b] have looked 

at the comprehension of logic and the limitations of computer science students and 

lecturers in this area.

Almstrum’s work compares the difficulty students have with those parts of computing 

which are related to logic against the other areas that they study. She first used 40 

‘judges’, including some well known names such as Dijkstra and Gries, to classify 

computing topics by their relation to logic (strongly related or not). The source of these 

topics was from the Advanced Placement Examinations in Computer Science (APCS) in 

America which is taken by several thousand students each year and is based on the first 2 

courses in the post- secondary computer science curriculum. She chooses 2 levels either 

“liberal partitioning” where she assigns a strongly related label to a topic if 50% or more 

judges rated it a main concept or vital subconcept, or “conservative partitioning” where 

she uses a figure of 75%. Under liberal partitioning she found there was a significant 

difference between the difficulty distributions of the strongly related items to those only 

weakly related to logic. These results have a direct bearing on the willingness of people to 

adopt Formal Methods: if people experience difficulty with logic they will have problems 

trying to master Formal Methods.

In a set of technical reports Vitner looks at the psychology of reasoning about logical 

statements and does pilot tests on 12 subjects using logic and Z. He then extends this 

work with two further experiments making comparisons using computer scientists, 60 and 

40 subjects respectively. These were found in several different institutions and took part 

by answering a series of questions sent by post. The conclusions seem to be, from the 

results of this work to date, that there are errors in reasoning about logic arising from the
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use of Z which are similar to those found when using the same information expressed in 

natural language. Again this has an impact on the case for the adoption of Formal 

Methods as it seems to imply that people will continue to make errors in reasoning even 

when presented with a formal specification designed to be unambiguous and clear.

7.3 Background to the new experiments

7.3.1 Teaching experiences
When we analyse the difficulties people have with formal specifications, we can see 

parallels in the general resistance there is to mathematics. One of the main barriers in the 

comprehension of mathematics has to do with the problems of its own specialised 

‘language’. Experience in the teaching of mathematics at any level reveals the difficulty 

that a large proportion the population have with the use of abstracted symbolic notations 

[Hackney, 1991], Some, who have mastered arithmetic and can cope with geometry, 

reach an insurmountable barrier with algebra. An Assessment of Performance Unit 

(APU) report shows decreases year by year in the ability of the average pupil of the United 

Kingdom to cope with algebra and number, whilst reporting small increases in ability in 

geometry and data handling [Burghes, 1992], Reasons cited include: the sudden 

introduction of ‘modem mathematics’; a serious cutback in work involving natural 

numbers; a massive reduction in the basic algebraic content of the GCSE syllabus and 

indiscriminate use of calculators both in the classroom and in all examinations [Roy, 

1992],

Information which is easily understood in natural language becomes incomprehensible to 

many people when expressed symbolically. In both the surveys described in Chapter 4 

and in the majority of articles on Formal Methods the issues of training and mathematical 

background are usually mentioned as being cmcial to the acceptance of the method.

Those who have taught formal methods to first and second year undergraduates all 

experienced the same resistance to Z as to ordinary school algebra. Students express 

difficulties with the Z notation because by its nature it has large numbers of expressions of 

predicate logic. On top of the logic symbols Z also has extra specialised symbols for such 

items as partial injective functions, schema promotion and post operation states. These we
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have found leave some students confused and unable to read even simple specifications 

with any ease.

7.3.2 Experimental rationale
The aims of the experimental work described here and in Chapter 8 were:

• to mirror the work already done in programming languages,

• to look at the problems already highlighted in the teaching of formal methods,

• to collect empirical evidence to test the hypothesis on comprehension.

Following the lead of the work done on program comprehension the experiments were 

designed to test the readability of formal specifications with special attention to naming of 

variables, added commenting and structure.

7.3.3 Scale constraints and external factors

To carry out an experiment which involved reading a formal specification we considered 

the following questions:

• could an existing commercial example be used?

• what effect would the experimental model have?

• what time scale was involved?

• what resources were available?

• could it be replicated?

One or two companies were approached regarding the use of portions of formal 

specification used in real projects, but it soon became clear that there was a commercial 

sensitivity about making them available to others outside the companies. This meant that 

a publicly available specification would have to be used. However, because it was decided 

to use a comparative type of experiment several versions of the same specification would 

be required. The solution would be to write a purpose built specification or part of a 

specification in several versions.

The time scale was dictated by the availability of subjects. Modifications to curricula 

meant that, although subjects were available in large numbers this might not be the case in
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the future. This piece of experimental work was not funded in any way and relied largely 

on the good will and co-operation of colleagues and students.

7.3.4 Subject availability

To get the numbers required for a comparison, and to be able to control external factors 

such as timing, the best option was to use the students of the Computing and Mathematical 

Sciences Department at the University of Greenwich. Other alternatives, such as postal 

testing, questionnaires or the use of practising software engineers, all had experimental 

disadvantages particularly as timing data would be one of the components.

7.3.5 Formal notation choice

From the surveys and the journals the relative popularity of Z seemed to make it a logical 

choice as the results could then be given a wider application and audience than if some 

more obscure notation was used. The use of subjects from the University also meant that 

Z would be the most practical option as this gave the widest choice of participants.

7.4 EXPERIMENT 1 - An experiment to consider variable names, comments 

and structure

7.4.1 Design

The two primary factors considered important in affecting the comprehensibility of a 

formal specification in Z were:

• the use of meaningful identifying names within the schemas, and

• The effect of comments in natural language between schemas.

The null hypothesis being tested was;

the meaningful names and comments in a specification make no difference to its 

comprehensibility.

Thus the experimental design was a 2x2 factorial, involving four versions of the same 

specification, each having a different combination of these factors, as indicated in Table 

7.1.
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Meaningful Names

No Yes

Comments No A B

Yes C D

Table 7.1 Specifications in terms of the two primary factors

It was conjectured that version D (with meaningful variable names and additional natural 

language comments) would be the most comprehensible and A (without either) the least. 

All these specifications contain a certain degree of structuring although they are only 

small fragments of a larger specification. To enable an assessment of the effect of this 

structuring, a monolithic form of D was produced, E, by combining the original schemas 

into one. There are two possible effects of this:

• the lack of structure will not affect the expected advantage of D, or,

• the lack of structure will undermine the advantage expected in specification D.

The five specifications were assigned random numbers so that the subjects of the 

experiment could not deduce anything from the rank. They were coded as shown in Table 

7.2.

Specification 1(D) 2(C) 3(A) 4(E) 5(B)

Meaningful names 1 0 0 1 1

Comments 1 1 0 1 0

Structure 1 1 1 0 1

Table 7.2 The coding of specification labelling

The hypothesised ranking, in terms of comprehensibility, from easy to difficult, was

1 4 (5 2) 3. It was conjectured that the lack of structure in such small specifications would 

be small, and the bracketing of 5(B) and 2(C) indicates our prior lack of view of the 

relative importance of comments and naming in isolation. The possibility of an 

interaction between comments and names was also of interest.
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7.4.2 Response variables

The response variables were in three forms:

Times

The times taken to read the introductory document to the test, and the times taken to 

answer each of three questions.

Scores

The scores obtained on these three questions, where 1 was awarded for a correct answer 

and 0 for an incorrect one. The nature of the questions made it easy to allocate the marks 

and an answer sheet of acceptable answers was prepared before marking. All marking was 

done by one person so that there was consistency.

Rankings

Subjective rating of the comprehensibility of the specifications, by each of the subjects. A 

symmetric five point scale was used with -2 corresponding to ‘unclear’, and 2 

corresponding to ‘clear’.

7.4.3 The conduct of the experiment

The subjects of the experiment were undergraduate and postgraduate students at the 

University of Greenwich. They all had some knowledge of Z and were willing to spend 

time taking part in an experiment. The uniformity of the background and experience of the 

students also helped to control some of the bias to the results.

The students came from four classes which were, for the purposes of the experiment, 

called A, B, C and D. The students in A, B, and C were part-time evening computer 

science undergraduates. Class A were nearing the end of a one semester unit in formal 

specification using Z and was at level 2, that is, the equivalent of the second year of a full 

time degree. Nine students participated in the experiment. Five of these were direct 

entrants having successfully completed an HND with appropriate grades. The sixteen 

students of Class B were also level 2 but had completed (but not necessarily passed) the 

formal methods unit the previous semester and were now on a ‘Theory of Computation’ 

unit. Class C was in a software engineering unit at level 3, that is equivalent to the final 

year of a full-time degree; eleven of these students participated in the experiment. Their 

experience of Z had been part of a formal methods course in the previous year covering 

much of the same ground as the new formal specification unit taught to the current level 2
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students. Twenty six students of Class D took part in the experiment. These were a mix 

of day-release part-time and full-time MSc Software Engineering students who had had 

one three-hour lecture on Z with tutorial exercises three weeks prior to the experiment. 

This was not a conversion MSc and all had a background in mathematics and computing.

Instruction Sheet

Do not turn over the question paper until you are asked to.

Thank you for agreeing to participate in this experiment. It is being conducted as part of research 
into styles and metrics in formal specification which we hope to publish in the coming year. The 
results will be treated confidentially and will not be used as part of any assessment of you or any 
other person.

As well as this instruction sheet, you will be given an answer sheet to record your answers on and 
a question sheet which you must not look at until you are asked to do so. The experiment will 
take part in two phases.

Phase I
On the other side of the question sheet is a simple Z specification and three questions for you to 
answer about the specification. We would like you to answer those questions and time your 
response at each step.

When you are asked to start, turn over the question sheet and record the start time on the answer 
sheet. There are five different specifications of which you have been allocated one on a random 
basis. Working as quickly as you can record the number of your specification on the answer sheet 
and then read through the specification.

When you have finished reading through the specification and you are ready to answer the 
questions record the time again. Answer each question in turn noting the time as you complete 
each answer. Raise your hand when you have finished. Do not attempt to modify your answers 
after you have recorded your finish time.

Phase II
After you have looked at one specification you will be given all five and asked to compare them 
for comprehensibility.

Taking as much time as you need put the five specifications into order on the basis of how 
comprehensible you feel they are. Carefully sort the specifications until you feel you have ranked 
them with the least comprehensible first, and the one which is most understandable last. Write 
down the numbers of the specifications in order on the answer sheet.

Once again, thank you for your time and effort.

Figure 7.1 The instruction sheet given to students
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The students were thanked by the experimenter and told the experiment was being 

conducted as part of research into styles and metrics in formal specification. The students 

were each given an instruction sheet and a sheet to record their responses. The instmction 

sheet is reproduced in figure 7.1. It was explained that the results would be treated 

confidentially and not used as part of any assessment. The instruction sheet was read 

through and any arising questions answered.

The experiment was then conducted in two phases. In the first phase the students were 

asked to answer the three questions about a randomly allocated specification and record 

the time as they responded to each question. These times were later translated into elapsed 

time. An example of a specification used in the experiment with comments but without 

meaningful variable names is given in figure 7.2 and the same specification but without 

the comments but with meaningful names is presented in figure 7.3.

Answers to the three questions were marked generously and sample answers to the 

example given in fig 7.2 are given below.

Questions
1. What conditions give rise to error messages?

Ans x? e dom Net or Avids = 0  (just identifying the correct section of Z)
Or user already in group or no identity numbers available

(explaining the problems giving rise to error messages)

2. The size of which set would give you the number of current users on the network?
Ans Net’ (after user added)
Or Net (before user added)
3. Which set or sets give you information about the total number of users the network 

will support?
Ans size of Net together with size of Avids

It was later realised that there may have been some minor mistakes in the Z but there was a 

loose enough marking scheme to allow for several interpretations. The choice of 

questions was based on testing the students ability not only to pick out the right part of a 

specification when looking for a particular aspect (in this case the error conditions) but 

also to understand the significance of the Z in relation to the data modelled.

In the second phase, when this task was completed, each student was given copies of all 

five specifications and asked to rank them in order of comprehensibility and record the 

ranking.
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The new user’s name is taken in and an identity number is assigned from the pool of 
unused numbers. The unused number set is amended and the new pair of user and their 
number is added to the existing users.

— A d d —  
A System 
J? : Ngrp 
n?\ N 
m! : Res

n?e. Avids 
x! £ dom Net 
Avids ' = Avids \ { n? } 
Net ' — Net u  { T? I—» n?  } 
ni = OK

Here error messages are generated by the failure of either of the two preconditions in the 
Add schema.

I—  AddFail---------------------------------------
| HSystem 
| x l : Ngrp 
| n?\ N 

e m \ : Res

(x?e  dom Net a  e jn \  -  error_lypel) v  
(Avids = 0  a  e_m ! -  error_type2)

Finally the behaviours are combined 

AddUser = Add v  AddFail 

Questions
1. What conditions give rise to error messages?

2. The size of which set would give you the number of current users on the 
network?

3. Which set or sets give you information about the total number of users the 
network will support?

Figure 7.2 Specification with comments, without helpful variable names and with 
structure
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— A d d ------------------
ASystem 
name? : Person 
n?\ N
message! : Response

//?& Unused_Ids 
name? £ dom Users 
Unused_Ids ’ = Unused_Ids \ { n?  } 
Users ’ = Users u  { name? i-> /??} 
message! = OK

— AddFail----------------
System

name? : Person 
n?\ N
e_message\ : Response

{name? e  dom Users a  e_message\ = name in use) v  
{Unused_lds = 0  a  e_message\ = no_id_available)

AddUser = Add  v  AddFail

Questions
1. What conditions give rise to error messages?

2. The size of which set would give you the number of current users on the 
network?

3. Which set or sets give you information about the total number of users 
the network will support?

Figure 7.3 Specification without comments, with helpful variable names and with 
structure
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7.4.4 Results

The first analysis of the results was a simple examination of the differences in scores and 

times between the classes. Class D, as might be expected having had the least training in 

Z, were on average slower in completing the first phase of answering three questions. 

They took an average of 577 seconds. These students were postgraduates and therefore 

with a higher educational level, but their shorter time studying Z seems to have led to a 

longer reading time. Class B, who had completed the course and taken an examination in 

Z a few months previously, performed the best, taking an average time of 363 seconds. 

One outlier distorts the figures and ignoring this reduces their mean-time to just 317 

seconds. Class C, surprisingly, did better than A with an average time of 391 seconds as 

opposed to 541. However class A ’s times were distorted by an outlying result which if 

ignored reduced the class average time to 480 seconds. A graph showing the total time 

taken to complete the reading of the specification by the individual students, and grouped 

by class, is given in figure 7.4. Only 58 students are represented here as four failed to 

provide either a start time or a finish time on their answer sheet and therefore their results 

had to be ignored.

The scores obtained in answer to the three questions are shown in a bar chart in figure 7.5. 

This reveals a high proportion (19/62) of the students that could not answer any of the 

questions correctly, demonstrating a poor understanding of the specification. The bar 

chart also shows that a similar proportion (20/62) could correctly answer every question 

implying that with Z, as with a lot of mathematics, it is common that students divide into 

those who have finished a problem and those who cannot even start it.
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Figure 7.4 The total time taken by each of the students in the four classes

Score

Figure 7.5 The total scores represented in a frequency chart
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In figure 7.6 the scores for answering the questions are plotted against the time taken to 

answer them. The mean times have been marked showing an inverse relationship; this 

suggests that if students could read and understand the specification then they did not need 

a long time to do so, whereas those who took a long time to answer the questions got more 

of them wrong.

Figure 7.6 The distribution of the scores and times together

Regression analysis was performed on the scores against the three attributes: comments, 

names and structure. A simple linear regression was fitted by the ordinary least squares 

method.

The regression equation was:

score = 0.974 + 0.259c + 0.676n - 0.059s

where

c is the variable showing the presence or absence of comments

n is the variable showing the presence or absence of helpful names

s is the variable showing the presence or absence of blocked schemas

As a result of the analysis only the use of meaningful or helpful identifier names in the 

schemas seemed to have a significant effect on the score with a p  value of 0.05.
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Finally the cumulative rankings of the five specifications in terms of their 

comprehensibility are shown in figure 7.7. This clearly shows the specification with 

comments and meaningful variable names is rated as most comprehensible and that with 

neither is the least. These match closely the predicted order 1, 4, 5, 2, 3 only differing in 

the order of specifications 4 and 5. This implies that in order of importance for the 

readability of a specification, helpful names are more important than comment levels and 

least important by comparison is the blocking of one or more schemas together. It is clear 

that different comments may produce different rankings. Similarly decomposition of 

schemas may be more important on large or complex specifications and further 

investigation does need to be conducted.

□  3

□ 2
□  4

□  5

□ 1

Figure 7.7 The distribution of the rankings over the five specifications

The data was analysed using Minitab [Minitab] and any incomplete data was not included. 

As only four students did not have either scores or total times this had little overall effect. 

The different classes taking part were used as a blocking factor in the model.
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Large claims for statistical validity and inferences of a far reaching nature about the 

readability of Z could not be justified by such a small scale experiment. There were 

sufficient subjects to make some limited observations and to give pointers for further 

work.

However, it can be concluded that a positive difference can be made to a specification in Z 

by the use of helpful variable naming and the attachment of appropriate comments. 

Although there are compelling reasons to believe that large specifications are more 

readable when partitioned by judicious use of schemas, the scale of the specification used 

in this experiment was not large enough to show this effect.

From this experiment it seems valid to say that several lessons can be learnt for the 

teaching of formal methods. One should not underestimate the difficulty of reading a 

formal specification written in a mathematical notation. Specification must be recognised 

as a unique form of communication between human beings. Every opportunity should be 

taken to make the reading easier, particularly by suitable naming of variables and data. 

Time to assimilate the techniques involved is important and reading does not always imply 

semantic comprehension or the higher skill level - the ability to articulate. As it was clear 

that 19 of the subjects did not understand the specification sufficiently to answer any of the 

questions correctly despite their background, then we should not automatically expect 

clients and software engineers to master Z and other formal methods without training. 

Empirical studies such as those of Naur provide strong evidence that a significant 

proportion of engineers may never master formal techniques irrespective of the training 

given [Naur 1993],

It is not only for the benefit of the client that the specifications should be read easily but 

also the author. It is well known in programming, that a time lapse can create difficulties 

for the writers themselves with their own code. Indeed, the poor style of many 

programmers’ use of C, for example, has given it the undeserved label of a ‘write-only’ 

language.

Training practitioners from the start to have appropriate names for identifiers and to 

include suitable explanatory text will ensure better comprehension from clients, fellow 

software engineers and implementors.

7.4.5 Conclusions to experiment 1
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7.5 EXPERIMENT 2 - Extending experiment 1 with double the subjects and 

further statistical analysis

When the opportunity arose of a further set of subjects the first experiment was repeated 

so that a larger data set could be used and more sophisticated statistical analysis applied. 

The experimental design was the same as before.

7.5.1 Conduct of the Experiment

There were now a total of 147 undergraduate and postgraduate students involved. They 

came from 6 different classes studying at levels from Higher National Certificate to 

Masters, and are, for the purposes of the analysis, re-labelled C l to C6. It was expected 

that there might be significant differences in the performances of these classes. However 

in this analysis ‘class’ is largely treated as an experimental ‘blocking’ factor to improve 

the sensitivity of the main factors of the experiment.

7.5.2 Data ‘Cleaning’

All missing values have been treated as such and no missing value imputation has been 

used. Also responses where the time spent on either reading the introductory details or 

answering any of the questions were zero have been treated as erroneous, probably due to 

rounding, and the associated times have also been treated as missing values. The data 

obtained from the experiment, and a summary can be found in Appendix F.
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7.5.3 Analysis of timing data
The times taken (in seconds) to answer each question and the total time taken for 

all three questions are displayed in Figures 7.8 - 7.11.

m o  200.0 300.0 400.0 500.0 600.0

a d . Dev = 110.65 
Mean = 1492 
N = 11100

Figure 7.8 Distribution of times taken in seconds to answer Question 1

a d . Dev =73.21 
M ean = 105.8 
N = 139.00

100.0 200.0 300.0 400.0 500.0

Figure 7.9. Distribution of times taken in seconds to answer Question 2
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Std. Dev = 66.35 
M ean = 98.5 
N = 127.00

50.0 150.0 250.0 350.0 450.0

Figure 7.10. Distribution of times taken in seconds to answer Question 3

3d. Dev = 174.30 
Mean = 3415 
N = 98.00

200.0 400.0 600.0 800.0 1000.0

Figure 7.11 Distribution of time taken in seconds to answer all questions

Note that the multi-modality in Figures 7.8-7.10 is caused by the tendency of subjects to 

round times to the nearest minute. This has been smoothed out in Figure 7.11 for 

TOTQT. It would be possible, in principle, to take into account the ‘rounding’ tendency,
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in a model-based analysis of this timing data. However, such an analysis would be 

unnecessarily complicated in view of the relatively limited information contained in the 

timing data. The raw (cleaned) timings have therefore been used in the analyses reported 

in this case.

The correlation matrix between the timing variables is shown in table 7.3.

TQ1 TQ2 TQ3 TREAD
TQ1 1.0000 .1360 .2700 .0384

( 111) ( 108) ( 101) ( 90)
p=. P= .161 P= .006 P= .719

TQ2 .1360 1.0000 .2371 .0483
( 108) ( 139) ( 122) ( 93)
P= .161 P=. P= .009 P= .646

TQ3 .2700 .2371 1.0000 .1093
( 101) ( 122) ( 127) ( 87)
P= .006 P= .009 P=. P= .313

TREAD .0384 .0483 .1093 1.0000
( 90) ( 93) ( 87) ( 95)

P= .719 P= .646

fOIId, P=.

(Coefficient / (Cases) / 2-tailed Significance)

Table 7.3 The matrix of correlation of the times for each question

The times to complete Q1 and Q2 are significantly correlated with the time for Q3, but not 

with each other. None of the times to complete the questions are significantly correlated 

with the time to read the introduction.

A Factor Analysis of the timing data was carried out using the correlation matrix, based on 

an initial Principal Components Analysis. Only one principal component had an 

eigenvalue greater than one, and hence only one factor was extracted. Hence, we conclude 

that there was no internal structure to the timings of the components of the test. We note 

that the proportion of variance accounted for, (the commonalties), are largest for Q1 and 

Q3 and that the time to read the introductory material is not significantly related to the 

common time factor. Details are given in Appendix G.

7.5.4 Analysis of scores data

Clearly, the variable most likely to give a good measure of comprehension is the total 

score. Figure 7.12 shows the distribution of total score, which is bimodal.
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Figure 7.12. Frequency diagram of total score

The modes, 0(the ‘failures’) and 3(the ‘successes’), are analysed in detail later.

With total score as response variable an initial Analysis of Variance (ANOVA) was 

performed with two factors:

• NLVL, level of student class,

• SPEC, the specification

while the total time taken was used as a covariate. The ANOVA table is given in 

Appendix H.

It may be seen that the form of specification, SPEC, is significant with a p-value of 0.026, 

but that the effect of class level, NLVL, and the interaction, NLVL*SPEC, have not been 

found to be significant. Accordingly, NLVL has been omitted from the next ANOVA. 

The mean scores for the different specifications are given in Table 7.4

SPEC

1 2 3 4 5

1.71 .84 1.06 1.74 1.32

( 21) ( 19) ( 18) ( 19) ( 19)

Table 7.4 Mean total scores,(number of cases), by specification

We see that the ranking of the specifications, by decreasing mean TOTS, is 4(E) 1(D) 5(B) 

3(A) 2(C), which may be compared with the conjectured 1(D) 4(E) (5(B) 2(C)) 3(A). It is 

seen that 1(D) and 4(E), distinguished by the presence or absence of structure, are not
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significantly different in terms of mean response, with means 1.71 and 1.74 respectively. 

Also, the mean scores for 3(A) and 2(C), (1.06 and 0.84), without meaningful names are 

substantially less than that for 5(B), with meaningful names, (1.32).

The experiment had been designed with a factorial 2x2 + (1) ‘treatment-structure’, and the 

ANOVA for this design is given in Appendix I. The only significant factor is MNFUL, 

i.e. the indicator of whether meaningful names are given to variables. Commenting, CMT, 

and Structure, STRCT, with p-values of 0.169 and 0.667, are not significant, and there is 

not a significant interaction between naming and commenting. We note also that the 

covariate, TOTQT, the total time to answer the questions has been found to be very 

significant with an estimated regression coefficient for TOTQT of -0.00214 (se = 0.001), 

establishing an inverse relationship between total score and total time to answer the 

questions. Unsurprisingly, the better students take less time.

7.5.5 Success and failure analysis

Individual Question Analysis

Multiple Logistic Regression Analysis was done on the responses to each of the three 

questions. In all three analyses the use of meaningful variable names was the only 

significant factor, with a significant negative coefficient for time taken for both questions 

2 and 3. The results are therefore confirmatory of the results obtained above.

Factors affecting Success, (score=3/3), and Failure, (score=0/3)

Multiple Logistic Regression Analysis was carried out separately on the outcomes: 

‘Success’, (score=3/3), and ‘Failure’, (score=0/3). The results of the analysis of ‘Success’ 

are shown in Appendix J.

1 9
The fitted model is, prob(Success) = ---------------  , where r/ = V  B V  .

1 + ex p (-/7)
Bi is the estimated coefficient of V,, (B0 = constant, and V0 = 1).

This model has an 81 % correct classification rate on the data.

We note that the meaningfulness of variable names, MNFUL, is N O T  a significant 

beneficial factor, but commenting, CMT, IS , with a p-value of .0241. More able subjects
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are able to make use of the information in comments, and hence obtain high scores, but for 

these subjects the use of meaningful names is of minor relative importance, on such small 

specifications. We also note that the total time to answer all questions, TOTQT, is a 

significant inverse indicator of good performance, and that there is a more noticeable 

variation between the groups when considering this response variable.

In contrast, the logistic analysis of the probability of obtaining a 0/3 score unsurprisingly 

shows that none of the experimental factors are significant, but that there is a significant 

positive dependency of the probability of a 0/3 score on the total time to answer the 

questions, (p=0.034).

We conclude that none of the factors can really be used to help the weakest group who 

will take a long time over the test and still score zero. For the better group who answer all 

questions correctly they seem to do this quickly and get help only from the added 

comments.

7.5.6 Analysis of perceived-comprehensibility rankings

In the second part of the experiment, students ranked all five specifications, from least 

comprehensible (-2) to most comprehensible (2). Analysis is primarily by graphical 

means. The data may be found in Appendix K.

Examination of the data/graph for all the subjects, Figure 7.13, confirms that Spec.l, (with 

comments and meaningful names), is found most comprehensible by most candidates, and 

is found to be least comprehensible by the least candidates, as conjectured. The converse 

result is found for Spec.3, (no comments and names without meaning), also as 

conjectured. The ratings of Spec.’s 2 and 5 are arbitrarily dispersed, with neither getting 

high or low proportions of the extreme ratings. Spec.4 seems to be perceived similarly to 

2 and 5 on the whole.
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Perceived Comprehensibility (All Subjects)

Figure 7.13 Frequency plot of perceived comprehensibility, by specification

Hence it would seem that the monolithic nature of the code in Spec.4 detracts from the 

perceived clarity of Spec.l, in spite of the fact that structure has not been shown to be a 

significant factor in the analysis of scores. This is an interesting result with a discrepancy 

between the actual performances shown by the scores and the perceived comprehensibility 

as shown by the ratings. It suggests that perceptions of comprehensibility are quite 

different from reality.

Kendal’s W measure of concordance in rankings, [Kendal 1948], of the specifications has 

the value of 0.147, with a p-value of 0.193 for the null hypothesis that W=0.0. The clear 

trends for specifications 1 and 3 have been obscured by the lack of concurrence 

concerning the other specifications, when all subjects are considered together.

We can consider if the perception of the comprehensibility of the alternative specifications 

depends upon the ability of the subjects, as measured by their total score on the questions, 

TOTS. For those with TOTS=3, (full marks), the conclusions do not change, and 

Kendal’s W measure of concordance is higher at 0.6047 with a p-value of 0.11, slightly 

closer to significance as we would expect from the graphical display, but still reduced by
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the effects of Specs 2,5 and 4. For those with less than full score, the lack of clarity of 

Spec.3 is unanimous. Also, whilst relatively few of these weaker subjects rate Spec.l at 

the low end of the scale, rather surprisingly, few of them see Spec.l as being superior to 

Spec.’s 2, 5 and 4. Perhaps the lack of perception of the advantages of comments and 

meaningful names (and structure), as present in Spec. 1 indicates that the weaker subjects 

do not have the intellectual skills to make use of these meaningful cues. Reasons for this 

will undoubtedly vary and will include lack of basic intellectual ability and insufficient 

training.

7.5.7 Conclusions to experiment 2

This experiment has extended the results of the previous study to evaluate the impact of 

the style factors, of naming, commenting and structure on the comprehensibility of the five 

versions of a small specification.

It was found that those obtaining higher scores take less time than those who obtain low 

scores. Total time taken is therefore as a correlational surrogate of ability, and has been 

used as an adjusting covariate in the analysis of how the style factors affect the 

comprehension scores. Meaningful naming is the only style variable found to be 

significant in ANOVA, but commenting is found to be the only style factor predictive of a 

3/3 score.

For the small specification of this study the contrast between monolithic and structured 

schemas does not significantly influence the scores obtained. However, the monolithic 

schema does seem to reduce the perceived comprehensibility.

From these results it would seem that:

• a significant number of people with aspirations of becoming software engineers will 

never be competent to read (let alone write) even the most basic formal specifications. 

This is irrespective of training and also unaffected by factors relating to the 

comprehensibility of the specification.

• variable names and commenting can make a small improvement for those people that 

are competent,
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p e r c e p t i o n s  o f  c o m p r e h e n s i b i l i t y  a r e  n o t  m a t c h e d  b y  p e r f o r m a n c e .

7.6 Summary and overall conclusions
The results of these first two experiments are not good news for the Formal Methods 

proponents. Their suggestion that with relatively little training software engineers can use 

formal specifications does not seem to be supported by these findings.

The combined measurements of timings, performance scores, and attitude measurement as 

used in these two experiments might be taken as a paradigm on which the development of 

a comprehensibility metric may be based. Clearly, in order to improve the 

comprehensibility of Z specifications, attention must be paid to the way variables are 

named and comments used.

Acceptance of these principles is evident in the more recently published textbooks on Z. 

In most of these efforts are made to use variable names which give clues to the reader and 

much more natural language explanation is included to supplement the schemas and text. 

(Compare [Diller 1990] and [Lightfoot 1991] with [Rann et al. 1994]).

In order to develop the work of these experiments, a further study was needed of a 

specification large enough to investigate the effects of structure as a factor. This is 

described in Chapter 8.
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CHAPTER EIGHT

8. FURTHER EXPERIMENTAL WORK

In this chapter we describe a third experiment which was designed to look at 

the effect of structure within a Z specification. We analyse the reactions to 

the same specification presented in three ways: one monolithic form, six large 

schemas or eighteen smaller schemas.

8.1 Introduction

In the experiments described in Chapter 7 we have investigated factors affecting the 

comprehensibility of a Z specification. From our results we found that the structure of the 

schemas did not significantly affect the comprehensibility as measured by the scores of the 

students. However we also noted that the perceived comprehensibility was affected and 

this has serious implications for the spread of Formal Methods. If Z specifications appear 

hard to understand because of the structural layout of the schemas, software engineers 

might be unwilling to put the effort into investigating them further.

Our specification fragments used for Chapter 7 were small, only 15 lines in total in 2 

schemas (discounting comments and titles), so that there was a limit to how much 

structural variation could be introduced. Consequently we decided to conduct a further 

experiment with a larger specification to investigate the effect of altering the structure.

Here we describe this experiment and the analysis of the results. The subjects were tested 

on their understanding of the specification using a set of questions. The questions were 

graded to reflect the fact that they were written to test different aspects of comprehension. 

The subjects’ scores on these questions form the basis of the analysis and are used as 

indicators of the comprehensibility of the specification. Additional information about the 

academic background of those taking part was then used to investigate the connection 

between their general ability and their competence in handling the Z specification. 

Conclusions are given at the end of the chapter.

169



8.2 EXPERIMENT 3 -The effects of structure on the comprehensibility of Z  

specifications

8.2.1 The experimental design

To be able to control the contributing factors completely we again decided that the 

specifications would not be adapted from existing work but written especially for the 

experiment. The null hypothesis being tested was:

the particular structure of a specification makes no difference to its 

comprehensibility.

To this end a Z specification was written of a small internal business telephone directory 

designed to deal with employees telephone numbers and office location. The same 

specification was re-written in three ways:

• Specification A was monolithic in form and consisted of 121 lines of which lines 12 - 

121 were a single Z schema. (See Appendix L for specification).

• Specification B grouped the same information into 6 main schemas consisting of 3 

schemas dealing with operations and 3 matching schemas dealing with error handling. 

Each of the schemas was about 20 lines long and there were 159 lines in all as some 

repetition was incurred by this process (see Appendix M for specification).

• Specification C, the longest at 165 lines, took 18 smaller schemas to convey the same 

information. (See Appendix N for specification).

All the material contained in each of the 3 specifications was identical. Great care was 

taken to ensure that commenting and notation matched in all 3 specifications so that each 

reader was given the same information, the only difference between them being their 

structural forms.

Twenty questions were designed to test the reading of the specification in a variety of 

ways (see Appendix O for a sample). All lines of the specification were numbered so that 

reference could be made to particular parts of the specification in the questions and 

answers. Broadly the questions fell into 4 categories, testing the subject’s competence in:

170



• finding a relevant part of the specification -

e.g. Which line in the specification tells you.....

• understanding the notation -

e.g. What is indicated by the difference in number? and number! in lin e .....

• relating the specification to the model-

e.g. Describe the purpose of line......

• modifying the specification by writing an extra feature -

e.g. add the lines needed to include information about the department where an 

employee works.

The subjects of the experiment were 65 students who were just finishing a one semester 

course in Z. Their tuition time was approximately 40 hours. To ensure an even 

distribution of abilities among the 3 different specifications the students were ranked using 

the average mark for their previous year of study. The students were then assigned to a 

specification so that the average mark in each group and the spread of abilities were the 

same for all specification types.

8.2.2 The experiment

At the time of the experiment each student was given a named pack containing the correct 

specification, a question sheet and an answer template. They were then given an hour to 

attempt the 20 questions.

All marking was done by one person to ensure uniformity, scores were recorded for each 

individual question and a total out of 60 was awarded.

There was some small imbalance in the group sizes due to students not attending on the 

day. In the event the numbers in each group were

Specification A 23

Specification B 23

Specification C 19

8.2.3 The results

The results by score for all students sorted in ascending order are shown in Table 8.1 and 

the comparisons of the scores for each specification are illustrated in figure 8.1. From a

171



possible total of 60, the scores varied from the highest at 47 to the lowest at 7. An initial 

inspection shows specification A clearly with lower overall scores than the other two.

SPEC A 7 8 10 11 13 14 17 17 18 18 19 19 19 21 23 23 24 28 28 29 30 35 41

SPEC B 9 14 15 15 19 21 22 23 24 25 26 27 27 29 29 31 32 34 35 35 35 39 47

SPEC C 10 16 19 19 19 19 23 25 25 26 28 28 29 32 38 40 40 41 45

Table 8.1 Results by score for each student

The average scores were Specification A 20.52

Specification B 26.65

Specification C 27.47

Comparisons of scores for 3 specifications

Figure 8.1 Comparison of student scores for each Specification

Figure 8.1 shows the tabular information graphically and Specification A can be seen 

clearly below the others. The horizontal axis represents the student’s place in a ranked list 

and the vertical axis represents their score. We can see that there is the clearest difference
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in the lower score range inferring perhaps that the better students could overcome some of 

the disadvantages of a monolithic structure.

8.2.4 Statistical analysis
The first aim was to see if there were significant differences among the three 

specifications, bearing in mind the large variation in scores within each treatment. A one 

way independent measures analysis of variance (ANOVA) was applied to the data using 

the Minitab statistical package [Minitab] and Table 8.2 shows the output.

8.2.4.1 One- Way Analysis of Variance

Source DF SS MS F P

Data 2 627.7 313.9 3.86 0.026

Error 62 5042.1 81.3

Total 64 5669.8

Table 8.2 The Output from the ANOVA using Minitab

We can see with a value of p = 0.026 that were significant differences amongst the 3 

specifications.

With these differences established it is legitimate to look at some pair-wise comparisons 

amongst the different schema arrangements. These are shown in Table 8.3.

Specification No. of 
Values

Mean Standard
Deviation

Standard 
Error of 
mean

A (Monolithic) 23 20.52 8.48 1.8

B (6 schemas) 23 26.57 8.95 1.9

C (small schemas) 19 20.9 9.71 2.2

Table 8.3 Comparisons amongst different specifications

Using a two sample t-test we obtained the results for the three pair-wise comparisons at 

the 5% level:

173



A and B; p = 0.023 with a 95% confidence interval for the difference of the means A-B 

[-11.2,-0.9]

A and C; p = 0.020 with a 95% confidence interval for the difference of the means A-C 

[-12.7,-1.2]

B and C; p = 0.76 with a 95% confidence interval for the difference of the means B-C 

[-6.8, 5.0]

By applying these pair-wise tests we confirmed that there were significant differences 

between A and B and also between A and C. There is no significant difference between B 

and C.

With the operation of 3 comparisons, the danger of using a t-test is the introduction of an 

unacceptable level of Type I error, i.e. we may falsely reject the null hypothesis when it is 

in fact true. The more the number of comparisons the greater the error and we can show it 

is approximately 14% in this case using

error = 1- (0.95)3

To check these results we used a more stringent test which makes use of

Tukeys Honestly Significant Difference (HSD) = q,
I Mean square error

where q is the

value obtained from the Studentised Range Statistics tables. In this case the value of q 

(3,62) was 3.4. As there are unequal numbers in each group we use

3
n = 1 1 1

----- 1-------1-----
23 23 19

=  2 1 . 5

This led to a value of HSD = 6.63. This is simply used as a guide to the difference in 

means between the groups compared. We can see from Table 8.4 that the numerical 

differences were:

differences A B

between means

B 6.13

C 6.95 0.82

Table 8.4 Differences of mean scores of specifications (signs ignored)
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By comparison with the Tukeys statistic we can see the differences between A and C were 

clearly significant and A and B were very close to significant while B and C again showed 

no difference. In his book [Hinton 1995] stresses the need to use judgement on those 

differences which almost reach the level of significance. In conjunction with the results of 

the t-tests we can take the difference between A and B to be important.

It is perhaps surprising to see such a low figure for the comparison between B and C. The 

Scheffe test allows a post hoc comparison of particular aspects of the experiment while 

omitting others. In this case we can form a weighted comparison between B and C but 

ignore A using weights of 0, -1 and 1 as coefficients in the calculation of the F statistic of 

comparison.

We find F = 2.425 which must be compared with the table value of F (1,62) = 4.00 and so 

is a confirmation of all the other tests that there was no significant difference between 

specifications B and C.

By applying pair-wise tests we can confirm that these differences were significant between 

A and B and also A and C, whilst there was no significant difference between B and C. 

All tests were done at the 5% level.

8.2.4.2 Initial conclusions
From this initial analysis we can reject the null hypothesis. The main conclusion is that a 

large monolithic schema is less comprehensible than a specification broken up into 

modules. Clearly one large block of Z makes comprehensibility difficult but there seems 

to be no significant improvement in comprehensibility to be gained by breaking down the 

schemas further once they are reduced to about 20 lines long. We can therefore 

recommend that in writing a formal specification some care should be taken over the 

structural presentation.

8.2.43 Further analysis
To investigate the connection between the performance of the students on the Z 

specification and their known ability from their previous academic history, scatter 

diagrams were plotted (Figures 8.2-8.5). Each of the diagrams shows the student’s score 

for the specification plotted on the horizontal axis with their previous average mark 

plotted on the vertical axis.
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Figure 8.2 Scatter diagram for Specification A
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Figure 8.3 Scatter diagram for Specification B

Figure 8.4 Scatter diagram for Specification C
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Figure 8.5 All Specifications scores against previous marks

Pearson’s r correlation coefficient was calculated for each of the specifications and 

compared with the expected value. Not all students had a known previous history so only 

those with complete pairs of marks were used. The degree of freedom for each set of n 

students was n-2 and the test was one tailed as we would predict that those students with a 

good previous result would obtain high scores.

pairs 
of marks

Calculated
correlation
coefficient

degrees 
of freedom

Expected 
value of r

significant

specification A 17 0.7819 15 0.4124 yes

specification B 16 0.3933 14 0.4000 no

specification C 17 0.5980 15 0.4124 yes

overall 50 0.5669 48 0.2400 yes

Table 8.5 The correlation between the three specifications 

8.2.4.4 Results o f  the correlation tests
We can see from Table 8.5 that there is clear correlation between the scores of the test and 

the known ability of the groups given specifications A and C. The coefficient is not quite 

in the significance range for specification B. The very strong correlation in the first case 

would seem to imply that the monolithic specification has acted as a good differentiator of
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abilities; only the known able students could score well and the weak ones found the 

questions very difficult. This is less true of specification C where the correlation 

coefficient at 0.5980 is not as strong. Overall there is correlation as can be seen from the 

scatter diagram in Figure 8.5 showing all the students on the same diagram.

8.2.4.5 Analysis o f  question type
Analysis was undertaken of the scores for different types of question. The graph in Figure

8.6 shows the average score for each question plotted as a bar chart and the linear display 

over the top displaying the maximum marks available for that question. It can be seen that 

the questions at the end show a larger discrepancy between the average and the maximum. 

This is partly explained by the time factor. The average marks for questions 15-20 were 

reduced overall because several students failed to finish. It was perhaps a design fault that 

the most difficult questions were placed at the end but they required modification of the 

specification and so could best be attempted after the initial questions had been answered.

maximum
score

Question number

Figure 8.6 Average student scores for each question shown with the maximum 

The questions were of 4 different types and were allocated a degree of difficulty from
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1-4. The bar chart showing their classification of difficulty is given as Figure 8.7 and the 

full type classification is in Table 8.6

question difficulty

question number

Figure 8.7 Showing the 4 point scale of difficulty assigned to each question
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QU difficulty type

1 3 connecting model and spec

2 2 Z notation significance

3 3 connecting model and spec

4 3 connecting model and spec

5 4 writing Z

6 1 finding relevant sections

7 3 connecting model and spec

8 2 Z notation significance

9 1 finding relevant sections

10 2 Z notation significance

11 1 finding relevant sections

12 2 Z notation significance

13 2 Z notation significance

14 2 Z notation significance

15 2 Z notation significance

16 3 connecting model and spec

17 3 connecting model and spec

18 3 connecting model and spec

19 4 writing Z

20 4 writing Z

Table 8.6 Showing the classification of each question type.

1 8 0



The normalised scores for each question were calculated (that is the average scores of 

those attempting that question). This should take out the effect of those who ran out of 

time. Figure 8.8 shows a plot of the degree of difficulty with these normalised scores. The 

difficulty plot has been shifted up the vertical axis by one unit to enable a clearer view of 

the graph.

■■■normalized scores 
- ♦ —degree of difficulty

Figure 8.8 The normalised scores with the degree of difficulty

The expected interaction of these two plots would be low scores with high degrees of 

difficulty and vice versa. This does not seem to be the case and to investigate it further a 

scatter diagram was drawn to consider the correlation. From Figure 8.9 we can see that 

there is no obvious correlation.
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Scatter Diagram mean/deg diff

normalised mean

Figure 8.9 Plot showing poor correlation between scores and difficulty

8.3 Conclusions

We have shown through this last experiment that the structure of a formal specification in 

Z can affect its comprehensibility. We have measured the ease with which the subjects 

handle the specification with a combination of questions testing four key levels of 

comprehensibility:

• reading the specification,

• understanding specialised notation,

• relating the specification to the model,

• modifying the specification.

These have been shown to be improved when each part of the specification is kept to a 

length of about 20 lines. Larger unbroken structures are significantly worse in terms of 

comprehensibility. Breaking the specification down further does not make a worthwhile 

improvement.
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We have seen confirmation that those subjects most able in terms of their academic 

background might well be those who can read the specification best.

These results have implications for the proponents of Formal Methods and those who 

would argue for their widescale adoption in industry. Some in the Formal Methods 

community have argued that only specialised groups of software engineers would need to 

be able to use Formal Methods to the extent that they could write specifications, but 

original writing is not one of the skills tested here. Specifications which can be written 

but not read by anyone other than the author are of limited use. If Formal Methods are to 

be used in industry on a wider scale than at present, the reading, understanding and 

modification skills tested here will be needed by a broad range of personnel including 

clients and programmers.

Clearly a good academic background is a help in reading the specifications but it should 

not be only the academic elite from the research departments or the specialised Formal 

Methods groups who can handle the specifications. Our results here give pointers to 

improving the quality of formal specifications with the wider audience in mind by 

adopting user friendly structural design.

From the results here and in the previous chapter, it should be possible to improve the

quality of specifications in terms of their comprehension by:

• giving attention to the variable names, making them cues to further information and 

easily recognised shorthand for the objects which they refer to,

• improving commenting levels so that there is a high proportion of natural language 

providing explanation and information in addition to the more specialised notation of 

the Formal Method,

• keeping the structure to an optimum level so that the reader has a manageable amount 

of the specification to retain at a time. If it is too large there is an information 

overload; if it is too small there is too much fragmentation.
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Timing data was unavailable in this experiment but could be incorporated in future work. 

It may be conjectured that the physical separation of a large number of small schemas 

would add considerably to the time taken to read a specification when compared with a 

more dense but compact structure.

Further analysis could also be carried out by isolating those components in the students’ 

previous academic record which might seem to have a particular bearing on their abilities 

with Formal Methods. For instance at this level all students would have taken a first year 

mathematics module so that their performance in mathematics could be used for tests of 

correlation with their scores for reading Formal Methods.

Larger specifications could be used but there are many practical problems to overcome 

when conducting experiments on industrial sized specifications, not least the shortage of 

subjects with the time available.

This experiment represents an attempt to provide proper empirical evidence about 

specifications in Z. To make the case for or against Formal Methods we must stop relying 

on notions, feelings, biased opinions or unvalidated claims. Results such as these where 

the basis of the experiment is clear, the hypothesis stated and the statistical analysis given 

provide proper evidence with a firm scientific basis.
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CHAPTER NINE

9. SUMMARY

In this chapter we summarise the work described in the thesis. We state 

again the hypotheses and place them in the context of existing research. We 

review the principal results and analyse the contribution they make to 

software engineering. Finally we suggest possible future directions and 

developments.

9.1 Introduction and overview

In this work our aim has been to investigate the application of software metrics to the 

area of formal specification. We focussed the work in our research hypotheses:

1. Formal Methods can be understood by any intelligent software developer with 
reasonable training,

2. the use of Formal Methods leads to improved software quality,

3. the structure of formal specifications impacts on their comprehensibility.

4. Formal Methods have not been used extensively in industry in realistic applications,

5. widespread take up of Formal Methods will occur only after the results from large 
scale case studies are published.

In Chapter 2 we first looked at the nature of Formal Methods and those most commonly 

in use. This suggested the scope for the type of specifications that we would later 

investigate. Metrics and measurement came under consideration in Chapter 3 as we 

sought to see what could be gained by looking at the work already done in software 

metrics. Concentrating on Formal Methods again in Chapters 4 and 5 we tried to 

establish current knowledge about their use and effectiveness. We investigated to see 

how their benefits had been assessed by surveys and case studies. Chapter 6 was based 

on work carried out in a previous study to investigate and compare attributes of three 

formal specification notations. This gave valuable insights into possible attributes, the 

way measurements might be made and possible metrics established. Drawing together 

the knowledge and experiences gained thus far experiments were designed to look at 

possible metrics for comprehensibility in formal specifications. The experiments, 

together with their results and statistical analysis were described in Chapters 7 and 8.
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9.2 The context of the work

A recurrent theme of this work has been the claims and counter claims of Formal 

Methods. We believe that for these methods to be adopted or rejected by software 

engineers empirical work must be carried out to provide hard evidence. In software 

development as a whole much research effort has gone into trying to identify suitable 

metrics to capture software attributes such as complexity and information flow. 

Experiments have been conducted to validate suggested metrics and refinements have 

taken place in the light of the results. No similar work has been carried out in the area 

of formal specifications.

Proponents of Formal Methods claim that their use will improve the quality of the 

resultant software and yet with one or two honourable exceptions no attempt has been 

made to quantify this improvement. Worse still, some of the studies claiming to 

demonstrate this improvement are clearly flawed.

It was in this context that we set out to try and establish ways of assessing the 

contribution of Formal Methods to software development.

9.3 The contribution of this work to the field

We have shown that there is a plethora of opinions but very little scientific data to make 

the case for or against Formal Methods. We have tried to suggest ways to remedy this.

9.3.1 The surveys
To look at the current usage of Formal Methods we analysed two important surveys, one 

national and the other international. We considered the way the data was collected, the 

results given, their interpretation and the validity of the arguments put forward. Much 

of this data collected by survey and interview, we have shown to be subjective and the 

methods and interpretation we considered flawed.

9.3.2 The case studies
We considered case studies as another source of evidence and so looked for those 

projects in industry that had incorporated Formal Methods into their development. Few 

studies were available, few of these had made an attempt at quantifying the effect of 

Formal Methods. Those we have considered provided limited evidence and some of the
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claims seemed hardly justified by the data given. The results were mainly concerned 

with the final software product rather than intrinsic properties of the specifications 

themselves.

9.3.3 The experiments

We then focused on properties of the specifications themselves to see what attributes 

were important and whether we could construct specification metrics to measure them. 

We have made the first serious attempt to establish measurements on specifications 

themselves concerning the internal attributes which might have bearings on 

comprehensibility. Conducting three experiments, we looked at the effects of variable 

names, comments and structure on specifications written in Z. Our results gave pointers 

to the way these specifications should be written and warnings about the level of 

training assumed adequate for those who have to read them.

9.4 The limitations

With the time, money and opportunities available certain limitations were placed on the 

work:

• there was difficulty in obtaining unbiased first hand evidence of Formal Methods in 

practice. Papers and reports seemed to contain flaws, inaccuracies and 

inconsistencies that were difficult to check.

• no tool support was available to help with the production, checking and analysis of 

the Z specifications that formed the basis for the experiments.

• all experiments were conducted in an educational setting with computer science 

students as subjects. It has been suggested that this could be a limitation to the 

validity of the results as far as industry is concerned. However we believe that in all 

respects that are pertinent to the result there is no appreciable difference between our 

participants and practising software engineers.

• timing data (which might have given more information about the extra effort 

required to read badly structured specifications) was not available because of the 

constraints of operating within an academic timetable.
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9.5 The achievements

We believe this thesis describes an original approach to the problems besetting the 

evaluation of the contribution of Formal Methods. We have questioned the basis of 

current opinion and argument. We have looked for the supporting evidence of the 

impact of Formal Methods in software development and challenged some of the results 

currently accepted. To investigate the nature of the specifications themselves we have 

tried to take the first steps in establishing empirically based data from well designed and 

conducted experiments. We believe this will enable future researchers to establish 

criteria for quality in specifications which may be linked to the quality of the software 

produced from them.

So far this work has resulted in several publications, reproduced in Appendix P.

9.6 Future research directions

There are several further areas to pursue following on from this work.

9.6.1 Additional metrics
We have concentrated on the factors affecting comprehensibility, reasoning that unless 

software engineers can read and understand formal specifications they will not be 

persuaded to adopt Formal Methods. Other possible areas for metrics could include;

• the effort required to refine the specification to code,

• the complexity of specifications perhaps related to layering approaches,

• the possibility of functional metrics along the lines of Function Points.

Including timing data as a factor in future experiments could also add to the assessment 

of complexity and comprehensibility.

9.6.2 Different specification notations

We have concentrated our experiments on writing specifications in Z. Other state-based 

notations could be used, such as VDM, and the results compared. Algebraic 

specification notations and those taking concurrency into account could also form a 

basis for further experiments.
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9.6.3 Tool support

Due to a lack of resources no tool support was used in this work to write, check or 

analyse the formal specifications. There are now quite a few tools available that could 

be used to extend this work by analysing characteristics of formal specifications and 

refining them under prescribed conditions. This would extend the scope of the work by 

reducing the limitations imposed by writing, checking and testing everything by hand.

9.6.4 Industrial trials

Ideally the experiments that we have carried out on a student population should be 

replicated with practising software engineers to counteract charges against the validity 

of the results in commercial settings. The main drawback to this in practice is that it is 

hard to find a comparable number of software engineers with training in Formal 

Methods willing to participate. Again funding is an issue as trials in a commercial 

setting would have to be supported by grants or sponsored by interested industries.

Data could be obtained from specifications used in industry if more were made available 

in the public domain. Some automated analysis of the characteristics of large formal 

specifications could lead to further indications for metrics.

9.6.5 Links to software metrics

An exciting area of future research would be into the possible links between the metrics 

obtained from formal specifications and those available from the resulting software. We 

suspect that a specification which scores well in terms of the metrics we have applied 

will not necessarily lead to quality software. The two sets of metrics may not be related 

at all or may in fact be inversely related. To tailor the user requirements into a 

specification which scores well under specification metrics may impact badly on the 

attributes that form the basis of a measure of the quality of resulting software. It seems 

to have been borne out by anecdotal evidence that a specification which has been 

formally and very rigorously written becomes a very difficult document to use as a basis 

for a good implementation.
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9.7 Conclusions

We feel that this thesis gives an account of an original piece of research that makes a 

valuable contribution to the debate on the role of Formal Methods in software 

development.
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APPENDIX A A brief description of some of the most common 
software metrics

DeMarco /  Bang metrics

These are now known as specification weight metrics and based on De Macro’s structured 

analysis and design methods. They incorporate counts taken from both the data flow 

diagrams (DFD) and the entity relation diagrams (ER)that form part of his methods of 

software specification. [DeMarco 1979]

Function Bang Measure
This is based on the data flow diagram, the pictorial representation of the system. In this 

picture the flow of the data is modelled with its component pieces and all interfaces 

between the components shown. It looks like a series of connected circles where each 

circle represents a transformation performed and each connection follows the flow of data. 

The DFD is developed using a top down approach and each original process within a its 

circle is expanded layer by layer until no further breakdown of is possible.

The function bang measure is based on counting the functional primitives i.e. the number 

of circles when the model is fully expanded. This count is weighted according to the type 

of functional primitive and the number of data tokens it uses.

Data Bang Measure
This is based on the entity relationship model which is a diagram showing all entities 

involved in the specification with connections showing the relationships between them 

and distinguishing the type of relationship as one to one, one to many or many to many.

The data bang measure is based on the number of entities in the ER diagram and is 

weighted by looking at the number of relationships involving each entity.

McCabe Complexity/cyclomatic number

The complexity of software has generally been associated with
• the number of components

• their maturity

• the relationships between them
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A large number of complexity measures have been suggested over recent years but 

McCabe’s [McCabe 1976] is one of the best known. He defines the complexity of a 

program on the basis of the program’s flowgraph, the graphical representation of the 

structure using directed graphs. In these graphs the nodes represent the program statements 

and where edges join 2 nodes, they represent a flow of control between the statements.

He defines the complexity as v = e - n +2p

where e is the number of edges, n the number of nodes and p the number of connected 

components.

This number is derived from graph theory and measures the number of linearly 

independent ‘walks’ through the graph.

If p = 1 and predicate nodes have outdegree 2, then it can be shown that v = n  +1 

where n  is the number of predicates in the graph.

McCabe used empirical evidence to suggest that any module giving a value of v higher 

than 10 would cause problems.

Coupling and Cohesion

In a generalisation of McCabe, which looks at the internal structure of a single module, we 

can consider features of the design of the whole system which is composed of many 

modules. Two features of this modular design the coupling between modules and the 

cohesion within them are common features of the move towards object oriented design 

methods.

Coupling

This is a measure of the connections between each module and Fenton [Fenton 1991] 

mentions six different classifications.

1. No coupling where two modules are completely independent.

2. Data coupling where data is passed between modules.

3. Stamp coupling where a record type is shared.

4. Control coupling where a parameter is passed as a control.
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5. Common coupling where there is shared global data .

6. Content coupling where one module has an impact on the content of another.

This is an ordered list. The further down the list the type of coupling is, the tighter the 

classification of coupling.

Fenton and Melton [Fenton and Melton 1990] propose a measure of cohesion between 

two modules x and y:

c(x,y) = i H— —  where i is the worst coupling between them (1-6) and n is the number 
n + 1

of interconnections between them .

They give a measure of the overall cohesion C of the system S which consists of n 

modules Di to Dn as

C(S) = median value of the set { c(Dj ,Dj) : 1 < i < j <n]

Cohesion

There can be various definitions of cohesion but one of the most common is functional 

cohesion. This is a measure of the relatedness of the internal components so that a 

highly cohesive module has one basic function which is indivisible.

Yourdon and Constantine [Yourdon and Constantine 1979] proposed 7 classes of 

functional cohesion

1. Functional cohesion where the module carries out a single function.

2. Sequential cohesion where more than one function is performed by the module but in 

a prescribed order.

3. Communications cohesion where the module has a number of functions to perform 

on a single body of data.

4. Procedural cohesion where a number of functions are carried out related only to a 

general procedure ( not sequentially).
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5. Temporal cohesion has the functions of a module related by the time in which they 

must occur.

6. Logical cohesion where the relation between the functions performed by the module 

is one of logic.

7. Coincidental cohesion is where the functions contained within a module have no 

relationship to one another.

The order here (1-7) denotes the extent of the functional strength of the modules from 

1 (the most desirable) to 7 (the least desirable).

Bieman and Ott [Bieman and Ott 1994] noted that using this model there was no scale 

for the cohesion so that a module was either functionally cohesive or not. They tried to 

develop quantitative measures of functional cohesion based on the slice abstraction of a 

program, based on data slices. In their paper they give the definition of a slice:

A slice o f a procedure at statement s with respect to a variable v is the sequence o f all 

statements and predicates that might affect the value o f v at s.

This is modified to a metric slice when both the used and used by relationships are taken 

into account and then further refined to a data slice when the metric slice is applied to 

data tokens which they define as variable and constant definitions and references.

The other two aspects of their assessment of cohesion are glue and super glue to give a 

measure of adhesiveness. This looks at the number of slices that each data token 

appears in and classifies the tokens as superglue if they appear in every slice of a 

module, or glue if they appear in more than one but not every slice of a module.

Strong Functional Cohesion (SFC) and Weak Functional Cohesion (WFC) are 

definitions based on the relative numbers of superglue and glue tokens respectively.

In their example of a three slice abstraction their figures are given as

Tokens 11

Glue 5

Super glue 2
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From their diagram 2 tokens occur on 3 slices and 3 on 2 so their calculations become

W FC = gluej0k en s=5/11 SFC= super glue tokens 
total tokens total tokens

. „ . T  slice sxtokens 2 x 3 + 3 x 2
A = Adhesiveness = — ------------------ = -----------------= 12/33

tokens x slices 11x3

They show W FC <A <SFC  and conclude that Adhesiveness is the most sensitive 

measure of program modifications. It has the advantage that a lot of the computations 

could be automated and with the right tool support the information on slices and tokens 

could be generated .

There is no need for any subjective judgement as tokens are clearly defined and 

implicated in slices by clear definition.

Macro and Buxton [Macro and Buxton 1987] looked at abstract or data cohesion. This 

was an extension of functional cohesion to the field of abstract data types, But instead of 

concentrating on functional cohesion it looked at the cohesion of data.

Henry and Kafura’s information flow measures

This is based on the flow of data between modules and was one of the earliest design 

metrics [Henry and Kafura 1981],

To understand the calculation of their metric several terms to do with the information 

flow through the system must be defined:

• local direct flow: when two modules pass data directly between them,

• local indirect flow: when data is passed through a module onto another,

• global flow: flow of data between two modules via a global data

structure.

Fan in and fan out are properties of the modules.
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• Fan in of a module: number of local flows terminating there + number 

structures used by the module, 

number of local flows starting there + number of 

data structures modified by the module.

of data

• Fan out of a module:

This gives the information flow measurement on a module:

Information Flow Complexity = Length x (Fan in x Fan Out) 2

and the total information flow complexity is the sum of these measurements over all 

modules.

Shepperd’s refinement to Information Flow Metric

Shepperd refined the measures used by Henry and Kafura by tightening the definitions 

of some types of data flow [Shepperd and Ince 1990], Their main change was to ignore 

the module length in the formula as it meant the metric could be applied at the design 

stage before coding information was available . This Shepperd names IFO so:

IFO = (Fan In x Fan Out)2

Problems that arise with information flow metrics are mainly to do with the definition of 

the data flows and the way that they are counted. In general Shepperd and Ince proposed 

that a lot of the repeated calls and duplicate flows should only be counted once. They felt 

that these refinements distinguished better between data flow which was for control 

purposes and that which was passing information. In his experimental work Shepperd 

[Shepperd 1990] uses two more refinements of the Henry and Kafura metric which he 

labels IF3 and IF4.

IF3 = (fan_ in x fan_ out)2

In this metric he is using his own definition of Fan in and Fan out

fan_in : the total number of local and global flows terminating at a module

fan_out : the total number of local and global flows emanating from a module
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The refinement for IF4 is to consider the uniqueness of the flows so that

IF4 = (unique_fan_ in x unique_fan_ out)2

unique_fan_in : the total number of local and global unique flows terminating at a 

module

unique_fan_out : the total number of local and global unique flows emanating from a 

module

All these measures are computed module by module and then summed over all modules.

He notes his uneasiness with the modules which make no contribution to the overall total 

because they have a zero value for either fan-in or fan-out. He concludes that these must 

be sources or sinks for information and that these must add little to the complexity but 

that it would need further investigation.

Band width

This is a simple measure of the level of nesting in a program which could also be used 

from a design stage if there was a flow chart of control. Band Width (BW) is given as an 

indicator of the average level of nesting of a program .

BW = - XL(l)  where 
n

i is the level , L(i) is the number of nodes at level i and n = number of nodes in the 

graph.

So a straight line program results in a band width of 1 but a deeply nested one has a 

higher BW value.

In their work Lind and Vairavan found this metric to be poorly correlated with 

development effort [Lind and Vairavan 1989],

Halstead Software Science metric

This is a size metric developed by Maurice Halstead in the early 1970’s to predict size of 

code; he also derives an expression for the effort required to generate the program 

[Halstead 1975], Evaluating the formulas involves counting the number of unique
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operands and operators as well as the total number of each. Using these figures Halstead 

derives several relationships including the predicted length, a number representing the 

maximum length of the program. Any program exceeding this length would be 

susceptible to features which may include ambiguity, redundancy in expressions or 

unfactored expressions.

Let a = number of unique operators and Na the number of occurrences of these operators,

and b = number of unique operands and Nb the number of occurrences of these operands;

then the estimated program length is given by 

alog2Na + blog2Nb

then Halstead defines the estimated length

vocabulary

volume

estimated level 

estimated difficulty

N= Na + Nb 

c = a+b 

V =Nlog2c

t  2  b
a N b

The effort required to generate the program is given by E where

E _ aNbN logc 
2b

This effort is measured in numbers of elementary mental discriminations. To convert this 

to a time scale the Stroud number is used, which is named after a psychiatrist who 

estimated that humans can make up to 20 mental discriminations per second.

In Halstead’s examples he uses 18 as the divisor of E, finally giving a time in seconds. 

Jenson program length

Jensen [Jensen and Vairavan 1985] refined the estimated program length by using 

log2 a! + log? b! rather than alog2Na + blog2N2
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In recent years there has been less support for some of Halsteads theories and in their 

paper Lind and Vairavan conclude that cruder measures such as total lines in code were 

some of the best to correlate to development effort [Lind and Vairavan 1989].

Function Points

This is intended as a measure of product size that can be derived as early as the 

specification stage since they deal with data sources, inputs and outputs rather than coding 

details. However it can also be used at later stages of the development when more accurate 

detail can be incorporated into the factors. They were first described in the late 70’s by 

Allen Albrecht [Albrecht 1979] and were subsequently revised by him and others. 

[Albrecht and Gaffney 1983], [Symons 1988]. Albrecht proposed them initially as 

measures to:

• study factors affecting productivity , taking the size of the system in isolation from its 

environmental factors,

• give a technology independent view of the system from the user’s point of view,

• aid estimation by being easy to obtain early in the lifecycle,

• be understood by non-technical users.

The Function Point count

This is based on a system of categories:

External Inputs 
External Outputs 
External Inquiries 
External Files 
Internal Files

After counting each category a weight is assigned to it according to a 3 point scale:
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External Inputs

simple

3

average

4

complex

6

External Outputs 4 5 7

External Inquiries 3 4 6

External Files 7 10 15

Internal Files 5 7 10

The unadjusted function count UFC is given by the formula

15

^  (number of items of type i) x (weight of i)
i=l

This sum allows for all 15 possible categories

e.g. given a small system with 4 simple inputs, 5 average inputs, 2 complex outputs, 5 

average external inquiries and 1 simple external file and 2 complex internal files would 

give

UFC = 4 x3  + 5x4  + 2x 7 + 5 x4  + 1 x 7  + 2x10 =93

The function point FP is derived by multiplying the UFC by a technical complexity factor 

TCF

Factors contributing to TCF -technical complexity factor

FI Reliable back up and recovery F2 Data Communications

F3 Distributed functions F4 Performance

F5 Heavily used configuration F6 On- line data entry

F7 Operational ease F8 On-line updating

F9 Complex interface FIO Complex processing

FI 1 Reusability F12 Installation ease

F13 Multiple sites F14 Facilitate change

Each of the above factors is given a rating 0,1,2,3,4,5, with
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0 Irrelevant, not present or no influence

1 Insignificant influence

2 Moderate influence

3 Average influence

4 Significant influence

5 Strong influence, throughout, essential
14

then the TCF = 0.65 +0.01 £  F,
i

his gives a range of TCF from 0.65 when all 14 factors are rated irrelevant to 1.35 when 

all are given the rating essential.

e.g. in our above example if we decided that this system had only 2 essential factors 

reusability and operational ease and nothing else mattered (an unlikely scenario ) then

TCF = 0.65 + 0.01(10) = 0.75

Finally this gives a FP in our example of 93 x 0.75 = 69.75 

Issues

It can be seen that although it would be easy to count categories, the distinction of internal 

and external is not always clear cut and assigning values to each category could be 

difficult. The definitions of simple, average and complex might be open to wide 

interpretation which would affect the total UFC although these distinctions are based on 

factors such as the number of data elements in each type. The range allowed between these 

categories also does not allow very much differentiation so for example an increase of 

four in data elements in an external input may still only double the value given to it as 

simple but regarding the initial four as complex would have the same effect. Similar 

problems occur when assigning ratings to the fourteen technical complexity facors.

It is easy to see that two different assessors of a project could end up with very different 

Function Point answers. The figure for the answer cannot be derived until a full 

specification is in place; the user requirements documentation is insufficient.

By comparison with a finished system the estimates can be out from 400 to 2000%. This 

is mainly due to a coarse initial view in comparison to a final product with extra 

complexity and enhanced functions appearing .
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Subjectivity means that the estimation cannot be fully automated. There can also be 

confusion over the distinction between inputs and enquiries.

The counting is not independent of the system analysis and design method used so it is 

reliant on the style of design. It has been used successfully for data processing 

applications that have low procedural complexity but its use in real time and scientific 

applications has been controversial. This is mainly because it does not deal with internal 

complexity or complex mathematical algorithms but concentrates on external 

functionality.

The GUIDE project tried to clarify the detailed rules for counting the FP to make it easier 

to apply but did not alter the underlying weaknesses involved because of the weighting 

[Zwanzig 1984],

Mark 2 Function points
These were developed by Symons as an alternative way of calculating function points to 

overcome the weaknesses he lists in the paper [Symons 1988], The main area he was 

concerned with was the validity of the method for general application.

His Unadjusted Function Points (UFP) are given by:

UFP = NiW i + NeW e  + N0W0 where 

Ni = number of input data elements 

Wj = weight of an input data element type 

Ne  = number of entity type references 

WE = weight of an entity type reference 

No = number of output data elements 

W0 = weight of output data element type

and Ni ,Ne  and N0 are summed over all transaction types.

He calibrated his weightings by using practical data from two clients who supplied 6 

systems each. Having arrived at his W values he scaled them so that they would be 

comparable to Albrecht’s for values of UFP < 500.

This gives

UFP = 0.44 N, + 1.67Ne  + 0.38No

213



He then modifies the Technical Complexity factor by using 

Y
TCF = 0.65 (1 H— ■) where 

X

Y = man hours devoted to technical complexity factors 

X = man hours devoted to information processing size as defined by FP 

He notes that comparing this with Albrecht’s TCF, the weighting should take into 

account the technology involved with each project. The original work was based on the 

projects around in the late 1970’s and his main conclusion is that weightings should be 

sensitive to the type of technology involved in each project and cannot be routinely 

applied across different application areas.

The following merasurements of LOC, Development Effort, Cocomo and other cost/effort 

predictors can only be used on the basis of lines of code written so are applied at a much 

later stage of development.

L O C

Lines of code, a seemingly simple measurement of source code program length has been 

one of the most common metrics used. However it is open to many interpretations, 

Jones has identified 11 main variations in ways of defining LOC [Jones 1988], They 

differ most in the handling of:

• comments (extra lines added in natural language to help explanation but which are 

not essential to the running of the software),

• declaration lines (declaring data types or procedure headings),

• empty lines (added to give clarity to the presentation ),

• artificial line breaks ( writing x=3 y=4 on separate new lines for better style).

This can lead to a difference in LOC for 2 similar programs which may be almost 

entirely accounted for by the style and layout of the programmers rather than the nature 

of the program. It is fairly easy to eliminate blank lines and comments in counting as the 

latter must have some type of marker to avoid being considered as code by the compiler. 

Using these tighter definitions of LOC have led to NCLOC (non commented lines of
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code) also sometimes known as ELOC( effective lines of code). The most widely 

accepted model just uses a simple code listing with comments and blanks removed.

The drawback of using this last definition, as Fenton points out, is that information 

about the proportion of total lines of code made up from comments is lost [Fenton 

1991]. When studying issues of comprehensibility this information is vital. Some first 

year programming courses even insist on a fixed commenting percentage (40% has been 

known) to encourage new programmers to explain the workings of their programs.

To overcome this loss of data Fenton suggests recording both separately:

Total Length (LOC) = NCLOC + CLOC

where CLOC is defined as commented lines of code.

And giving, incidentally, another metric concerned with the commenting level by

, ,  CLOCconsidering the fraction ---------
LOC

You can change to a language dependant LOC from a function point count by using an 

expansion factor for that language.

As an example in Cobol you might use factors 110 lines / function point whereas it might 

be 330 lines of assembler code. So a system with 50 FP will code up to 5500 lines of 

Cobol and 16500 lines of assembler.

This is an attractive proposition for systems written in 4GL languages because LOC can be 

difficult to use in systems suited to 4GL as they have more emphasis on external rather 

than internal functionality.

Development Effort

Metrics based on counting lines of code have been the simplest and most traditional used 

for estimating software development effort and measuring productivity. However as we 

have seen LOC is not a straightforward metric to define.

Effort estimation usually comprises of two parts, the first being a base estimate as a 

function of software size. This is usually given in man months the form
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Effort = A + B (KLOC)c where various values of A, B and C have been proposed and 

KLOC is the abbreviation for thousands of lines of code.

The second part of the estimation model usually modifies the first estimate by taking into 

account the effect of environmental factors such as hardware and personnel.

Conte et al [Conte et al. 1986] give some of the most common of these models including

Watson - Felix A = 0 B= 5.2 C = 0.91

Bailey-Basili A = 5.5 B= 0.73 C =  1.16

Doty > ii o B= 5.288 C =  1.047 For KFOC>9

Boehm Simple A = 0 B= 3.2 C = 1.05

Boehm Average A = 0 B= 3.0 C = 1.12

Boehm Complex > ii o B= 2.8 C =  1.20

These last three have become the basis for the COCOMO model.

COCOMO

Short for the Constructive Cost Model and proposed by Boehm [Boehm 1981], this is a 

widely used cost estimation model developed with information from applications written 

mainly in assembly, Fortran PL/I and Cobol.

There are three Cocomo models: basic, intermediate and detailed, each of which can be 

used at a different stage of the software cycle.

The basic model can be used for initial estimates and leaves out the factors attributed to 

cost drivers. The intermediate model is used when major components have been 

identified and the detailed model used when the design has got to the level of identifying 

individual components.

The formula used to find effort depends on a number of factors.

Cost drivers

There are 15 cost drivers incorporated into Cocomo and default values are given for each, 

but they should be adjusted to fit the circumstances of the particular project.

They refer to four categories
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3 Product attributes (reliability, complexity, database size)

5 Personnel attributes (experience and capability of analysts and programmers)

4 Computer attributes ( execution time, storage, virtual machine volatility, turnaround 

time)

3 Project attributes ( programming practises, use of tools, development schedule)

Each cost driver is given a level of importance which must be estimated on a six point 

ordinal scale very low, low, nominal high, very high, extra high

and an adjustment factor is assigned to each of these points of the scale. For all factors the 

nominal value is 1.

Modes of development

There are 3 modes of development which will affect the effort formula: 

organic ( small to medium in-house data processing projects), 

embedded ( ambitious and tightly constrained projects), 

semi-detached ( somewhere between the two).

The effort estimation used by Cocomo is given in man months as 

Effort = a(size)b x (product of cost drivers )

where size is the number of source instructions measures in thousands (usually equated 

with LOC) and a and b depend on the mode of development.

Organic a = 2.4 b =  1.05

Embedded a = 3.6 b =  1.20

Semi-detached a = 3.0 b = 1.12

As well as being used as an estimation of effort Boehm uses the same equation with 

different values of a and b to give estimates of duration. It is intended to give the best 

estimate of the project duration given the effort.

The equation is adapted for duration by fixing a at 2.5 and varying b:

Organic b = 0.38

Embedded b - 0.35

Semi-detached b = 0.32
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Cocomo is a mixture of prescribed values, i.e. those for a and b and estimated ones. It 

relies on the weighting being assigned correctly to each product driver after assessments of 

the importance are made. In this respect it has the drawbacks of Function Points, relying 

on a subjective judgement to decide whether, for example, the analyst capability on a 

particular project should be rated as of extra high importance or just very high.

218



APPENDIX B Validation studies of software metrics

Lind and Vairavan

This study had two main aims; the authors were interested in the relationship of metrics to 

software development effort but also in the comparison of different metrics [Lind and 

Vairavan 1989]. They compared 11 different metrics:

Total Lines (Including comments)

Code Lines 

Total Characters 

Comments 

Comment Characters 

Halstead’s N 

Halstead’s NH 

Jenson’s Nj 

McCabe’s MC 

Bandwidth BW

The software they used for the comparison was a large medical imaging system. It 

consisted of 4500 routines and 400 000 LOC of which 58% was in Pascal and 29% in 

Fortran. In the first part of the experiment a sample of 390 routines were used as a random 

sample. In the second part the System Performance reports were analysed with relation to 

a sample of 10 software features which together accounted for just over 1000 routines.

They found no major differences in the results and conclusions that could be drawn from 

these two approaches.

Summary

High comment level could indicate major future development effort as programmers tend 

to put more comments in to difficult code.

The simple LOC correlated to the development effort just as well or better than the more 

complex metrics. The other two well correlated metrics were MC complexity and 

Halstead’s program length.
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Defect density (program changes per 100 lines of code) changes in relation to LOC, 

declining to a minimum and then increasing; it seems to be related to the MC value.

Schneidewind

Schneidewind tested a metrics validation methodology using six criteria: association, 

consistency, discriminative power, tracking, predictability and repeatability [Schneidewind 

1992], These were chosen to support the quality functions of assessment, control and 

prediction. He tested his metrics on a set of 4 Pascal programs whose application areas 

were string processing, data base management and 2 directed graph analysis projects.

He looked at a total of 112 procedures and included 1600 source statements in his 

analysis. He aimed to see if the cyclomatic number (a combination of complexity C and 

size S) could be used to control reliability as measured by a factor error count E.

Summary

He concluded that C and S are valid with respect to his ‘Discriminative Power Criterion’ 

and could be used to distinguish quality. He notes that, as they are strongly correlated, only 

one needs to be collected and recommends that a size metric be used for economy 

reasons.

Kitchenham, Pickard and Linkman

In their study of 226 programs the aim was to look at the relationships between a set of 

design metrics and their ability to identify change prone, error prone and/or complex 

programs [Kitchenham, Pickard and Linkman 1990]. The set were compared with 

simple code metrics to assess their usefulness. To measure complexity a subjective test 

was used rather than a ‘side effect’ measure such as observed faults. The data was 

collected manually.

The quality indicator metrics that were collected from design and code were:

• information fan out (IFO),

• information fan in (IFI),

• information flow complexity (IFC),
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• lines of code (LEN),

• control flow in branches (CF),

The quality characteristic metrics that would be used to assess the performance of the 

first set were:

• number of known errors (KE),

• number of planned changes (CHNG),

• subjective complexity (SC),

Summary

They found that

• IFO was correlated to the quality characteristic metrics but IFI was not.

• Code metrics had greater correlation with KE and SC than IFO.

• Overall, although large values of IFO, CF and LEN coincide with high values of KE, 

CHNG and SC it is a weak relationship.

• Large IFI values were related to small KE and CHNG.

• General correlation is weaker for programs with high values of CHNG than those 

with high values of KE.

So they did not find the information flow metrics significantly better as indicators over 

the simple code metrics. However some of the findings did indicate that judicial use of 

development effort to concentrate on those programs with high IFO values might be 

efficient and effective.

Harold

The principal aim of this experimental work was to look at the impact of structured 

programming techniques on program quality [Harold 1986], In order to measure the 

quality of the programs Harold developed a set of metrics and refined them after 

comments and suggestions from a panel of experts (Baker, Basili, Boehm, Gilb and 

Wienberg). He aimed to make them free of structured programming bias and his final 

list of attributes together with metrics were :
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Readability

Comments

Data and procedure names 

Sequential flow of logic 

Module size

Indentation

Logical Simplicity

Modifiability

Program modularity 

Logical linkages 

Program size 

Empirical Modifiability

Verifiability

Satisfaction of Specification 

Debugging difficulty

He gave very specific ways of obtaining each of these metrics and went to considerable 

lengths to train the assessors. He tested 122 programs which had each been assessed 3 

times giving 366 metric score sheets; 16 variables were evaluated.

Summary

He found his metrics adequate to assess program quality but thought that a reduced 

number might yield equally good results.
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Chidamber and Kemerer

In their paper the authors aimed to look in particular at metrics which could be applied to 

object oriented design [Chidamber and Kemerer 1994], They had three objectives in 

mind:

• to propose metrics incorporating the experiences of software engineers,

• to test these against established criteria for validity,

• to obtain empirical data from commercial products to illustrate the use of the metrics on 

real applications.

They designed metrics to capture the complexity of the classes in an object oriented 

design. They did not apply them to the dynamic behaviour of the system. They validated 

their metrics against a subset of six of Weyuker’s original nine properties [Weyuker 

1988], The explanations are in terms of classes P,Q and R and a metric m where P+Q 

stands for the combination of the two classes.

Noncoarseness (VP 3Q 3 mP *  mQ)

Non uniqueness (it is possible for some P and Q that mP = mQ)

Design details are important (same functionality does not imply equal m values)

Monotonicity (mP< m(P+Q) and mQ<m(P+Q))

Non equivalence of interaction (mP = mQ m(P+R) = m(Q+R))

Interaction increases complexity (3P, 3Q 3 mP+mQ < m(P+Q))

The proposed metrics were

Weighted methods per class WMC

Depth of inheritance tree DIT

Number of children NOC

Coupling between object classes CBO

Response for a class RFC

Lack of cohesion in methods LCOM
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In relation to Booch’s OOD Steps [Booch 1991] they note that these metrics only apply to 

the first 3 stages and give a table showing their position his OOD steps.

Metric Identification Semantics Relationships

WMC X X

DIT X

NOC X

CBO X X

RFC X

LCOM X

Data from two sources was used to validate the metrics. The first source consisted of two 

C++ libraries consisting of 634 classes used in the design of graphical user interfaces and 

the second was 1459 classes from the libraries used in a CAD application for the 

production of VSLI circuits.

Summary

They found that there were only a few exceptions when their metrics were tested 

against Weyuker’s criterion. Property 6 was not met by any of them and they argued that 

it could imply that their complexity metric could increase rather than reduce as a class is 

subdivided.

Property 4 was not satisfied by DIT and, under certain circumstances, LCOM failed too.

They saw their metrics as an aid to the management and design of projects and as a 

predictive tool. Using WMC , DIT and NOC they could judge whether the application 

was top heavy and RFC and CBO could keep a check on the interconnections.

They suggested tracking the metrics through the life of the project (as they will change 

as implementation takes place) and correlating them with some of the managerial 

performance indicators.
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Shepperd

Shepperd aimed to look at design metrics and identify those which could be used 

diagnostically to pinpoint weaknesses with a view to minimising effort [Shepperd 

1990], He considered 8 metrics:

M 1 Number of modules 

M2 Program Size ELOC

M3 Module global data structure reads

M4 Module global data structure writes

M5 Indirect unique flows (H&K)

M6 Number of duplicate information flows (IF3)

M7 Number of unique information flows (IF4)

M8 Connect time (a measure of development effort)

He wanted to find out if the size metrics (M1-M4) and the structural metrics (M5-M7) are 

good predictors of development effort as measured by M8, the time students spent at the 

computer.

The metrics were tested on a subset of 27 versions of the same software written by student 

teams from the same specification. In size the programs varied from 313 ELOC to over 

2000 ELOC but Shepperd eliminated those at either end of the spectrum, i.e. those which 

contained no error handling and those which added a lot of unspecified additional features, 

so that a subset of 13 programs constructed by 50 students was used for the testing . These 

had between 14 and 33 modules.

Summary

He found that size metrics were weakly associated with development effort but that IF4 

(the Henry and Kafura metric adapted to consider unique information flows) gave a
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strong association with effort. However the size of the project and the teams associated 

with them may have had a bearing on these results and Shepperd acknowledges that this 

might be the case.

Radcliffe and Rollo

In this work an attempt was made to adapt the use of function point analysis (FPA) to the 

context of Jackson Systems development (JSD) [Radcliffe and Rollo 1990]. They gave 

their interpretation of the counting rules from two versions of FPA , those of Albrecht and 

Gaffney and by Symons. [Albrecht and Gaffney 1983, Symons 1988] as mapped to its 

interpretation in JSD.

They tested their metrics on a JSD based pensions project carried out by the Abbey 

National Building Society. Cobol was the target language and Effort and ELOC were 

calculated using Albrecht and Gaffney formulas. The results are given in the table below

Adaptation of FC(UFP) CAF Adjusted EFFORT KSLOC

FP work hrs Cobol

Albrecht and Gaffney 1132 0.84 951 37445 106.4

Symons 1009 0.94 948 37293 106

They found that the estimates of Effort and LOC were considerably higher than the actual 

figures for the project which were 16000 hrs and 57 KSLOC. They attribute this 

overestimate partly to the automated tool support available on the project. This meant that 

Cobol code was generated automatically affecting both the effort and also the style of 

code. With automatic generation the code is considerably more compact and so will have 

an impact on the KSLOC figure.

However they do cite their previous study when a similar reduction from 26KSLOC to 

12-14 KSLOC was estimated .
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The FP methods were adapted to JSD with mixed results. As a predictor of size and 

effort the two adapted methods seemed to overestimate both the size and the effort by a 

factor of two. They suggest further adaptations to the FP method to make it more 

accurate.

Abran and Robillard

This study looked at the validity of Function Point Analysis by considering intermediate 

measurement of some of the components that make up the metric and the implicit 

relationships behind them [Abran and Robillard 1996],

They tested 23 of the independent variables on a historic database of 37 projects of a 

finance organisation. These 37 were reduced to a set of 21 for data collection to avoid 

major differences between projects. The variables collected were:

17 Primary Components including:

data elements, logical groups of data elements,

data in Data Measurements Process,

data in Transaction Measurement Process,

data elements in internal files,

data elements in external files,

data on inputs,

data on outputs,

data on inquiries.

6 Variables with weights including:

AFP & UFP,

subtotals of UFP for each of 5 types- internal files, external files, inputs, outputs and 

enquiries.

They did a great deal of statistical analysis looking at the regression equations for a 

single dependent variable, Work-Effort, in terms of combinations of the 23 independent 

variables. They also considered the correlation between the 5 different FP types.

Summary
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They found that the component parts of the FPA model in this homogeneous 

environment gave almost as good an answer in relation to the Work-Effort as the full 

model. By choosing suitable combinations of the 23 factors the model was almost 

equivalent to full FPA. However any generalisation would be dangerous in view of the 

nature of the data used for testing. Looking at the correlation of the 5 different FP 

components they claimed that there was no pairwise correlation so that all 5 could have 

been used to build their model.

Basili and Hutchens

This study looked at a family of syntactic complexity measures and derives two further 

metrics[Basili and Hutchens 1983], They defined slope, a measure skill of a 

programmer in handling complexity, and r square, an indirect measure of the 

consistency of a programmer. The five metrics collected were:

STMT- counting the executable statements,

SynC -syntactic complexity involving nesting, length, structure and organisation counts,

CALL- the number of calls to procedures and functions,

v(g)- measures cyclomatic complexity by adding decisions to segments,

DecS- a count related to If, WHILE and CASE statements.

The metrics were collected from 19 compilers written by student teams. Comparisons 

were made between the metrics and their efficacy in predicting the number of changes 

made.

Summary

Summary

The measurements of slope and r square gave contradictory indications about the team 

approach to programming although they do suggest a specific disciplined team as 

opposed to a specific ad hoc team will behave in a more predictable and capable way 

when dealing with complexity.

They found that the statement count, STMT, correlated best with the program changes 

and that metrics which count specific parts of the code, like CALL and DecS, seem to
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be poorer predictors of program changes than those which count a feature spread all 

through the code.

B asili, Selby and Phillips

In this work the authors validated a collection of metrics looking particularly at Halstead’s 

Software Science and McCabe’s Cyclomatic Complexity [Basili , Selby and Phillips 

1983]. They were looking at the effectiveness of the metrics in predicting effort , as 

measured in man hours, spent by programmers and managers counting the time from 

functional design through to acceptance testing. They also looked at the metrics as 

predictors of the quality of the software where this was to be measured in errors reported 

during development.

They broaden the number of metrics considered by looking at some of the estimators of 

the basic parameters to the Software Science metrics and also some of the more common 

metrics from the code. They used a code analysing program (SAP)to carry out the 

counting for the metrics and the data was drawn from ground support software for 

satellites which consisted of projects containing up to 112000 lines of Fortran code with 

200- 600 modules ( subroutines) in each project. Effort data was obtained from 

Component Status Reports filled out weekly by programmers and Resource Summary 

Forms fdled out weekly by managers.

Internal and External Validation of the metrics

They carried out a number of tests and comparisons mostly on a total of about 1800 

modules and considered:

• the correlation between the different estimators used for program length and level,

• the correlation between Software Science metrics and others,

• the relationship between the metrics and effort.

• the relationship between the metrics and errors

The table shows a list of metrics collected or calculated
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Traditional Metrics
calls number of calls in a module to a function or subroutine
calls and jumps total calls and decisions
source lines source code include comments excluding blanks
source lines difference between source lines and comment lines
comments
executable Fortran Executable statements
statements
cyclomatic
complexity

1+sum of the constructs ( do-loop etc. + AND ,OR )

cyclomatic 
complexity 2

1+ sum of the constructs (without AND ,OR)

revisions number of versions of a module generated in the program library
changes changes affecting the module ( 9 types)
weighted
changes

effort spent making changes as reported by programmers on a 4pt scale

Software Science metrics
B = rii + r|2 vocabulary metric measures of numbers of unique operators and operands
r|* = n ,* + r|* 2 potential vocabulary metric, minimum numbers of operators and operands
error (fault) a ‘mistake’ in code caused by a misconception or document 

discrepancy originating with the programmer. Counted by number of 
system changes citing error correction.

weighted error effort spent fixing errors on a 4pt scale
program length 
N= N!+N2

total number of operators and operands

NA estimator r)i log2r|i +r|2log2r |2
program volume 
V

Nlog2 r|

potential volume 
v*

(2+ri*2) log2 (2+r|*2)

program level L V*/V
estimated 
program level LA

2r|2 /T |iN 2

program 
difficulty D

1/L

program 
difficulty D2

1/LA = rp N2/ 2t )2

Effort E V/L = V2 / V*
Approximated 
effort EA

V/LA = r| i N2 Nlog2r) / 2r\2

Refined 
approximated 
effort EAA

NA log2r| / LA

Program bugs B V/Eo Eo the mean of elementary discriminations between potential errors
Program bugs BA E2/3 /3000

The metrics considered by Basili, Selby and Phillips
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They considered several sets of projects written by different sets of programmers for

comparisons. They also broke down the validating metrics on effort into different levels

Summary

They found that considering the internal validation:

• the relationship of the Software Science metrics with their estimators seemed to be size 

dependent. Their accuracy seemed to vary with the size of the modules,

• N and V correlated well to the traditional program measures,

• program size metrics N i N2 N V and correlated well with lines of code,

• none of the Software Science metrics correlated well with the number of revisions or 

the sum of procedure and function calls.

When looking at the effort and error data they found the correlation was greatly affected

by the reliability of the report data . In general

• EA and EAA the estimators correlated better to actual effort than E but it was still not a 

very good correlation.

• There were disappointing results for correlation to errors except when restricting the 

projects to a particular programmer.

Errors are correlated best to the number of revisions.
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Appendix C Specification of a Stack in VDM, ADT and Z

Operations

CREATE

PUSH

TOP

POP

ISMT

creates an empty stack, 

puts an item on the stack, 

reads the value of the item 

at the top of the stack, 

removes an element from the 

stack.

checks to see if the stack is 

empty.

Signatures

CREATE: —> Stack

PUSH : Item x Stack —> Stack

TOP : Stack —> Item

POP : Stack —» Stack

ISMT : Stack —» Boolean
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VDM ADT

Stack :: s : Item" Axioms

CREATE

ext wr s:Item*

e: Item s : Item

post s = [] TOP(CREATE) ::= error

PUSH(e:Item)

TOP(PUSH (e,s)) ::= e

ext wr slitem" POP(CREATE) ::= CREATE

post s = [e] _ s’ POP(PUSH (e,s)) s

ISMT( C REA TE) ::=T

TOP()e:Item 

ext rd s :Item’

ISMT(PUSH (e,s)) F

pre s ^  [] Note the underscore denoting concatenation

post e = hd s 

POP()

ext wr s: Item’ 

pre s ^  [] 

post s = tl s’

ISMT()b:Boolean 

ext rd s: Item* 

post b = <—> s = []

is a variant from the standard VDM.
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z
Stack

s:Item*

Create

Stack

s = <>

Push

A Stack 

e? : Item

s’ = <e?> s

Pop

A Stack

s’= tail s

___Top___

S Stack 

e!:Item

e! = head s

E Stack 

b! : Boolean

b! <=> s = <>

234



Appendix D Results of the counting metrics on 9 initial specifications

ATTRIBUTE VDM VDM Z ADT VDM Z ADT

Attribute/metric PI P2 P3 SI S2 S3 A1 A2 A3

Readable

brackets / line 1.48 1.33 1.31 1.00 0.43 2.25 0.95 0.36 3.33

Modifiable(ent) 7 7 7 7 3 2 7 4 2

Modifiable(op) 3 4 5 3 4 4 3 4 6

Standard 1 1 1 1 2-5 >5 1 2-5 >5

Modular yes yes yes yes poss no yes Poss no

Size

Vocabulary(not) 6 4 9 6 6 3 5 6 3
Vocabulary(mat) 4 4 5 0 13 0 5 5 0

Read time- mins 25 25 25 25 25 25 25 25 25

Write time 100 100 100 100 100 100 100 100 100

Hidden detail 3 0 6 2 2 0 1 1 1

Symbols 14 12 19 6 32 3 15 16 3

Base types 1 1 1 1 1 1 1 1 1

Length 23 24 29 18 14 8 19 22 12
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Appendix E Results of the counting metrics on 3 larger specifications

A T T R IB U T E V D M 7 A P T

SP1 S P 2 S P 5

to tal o f  .svm hols u sed 231 82 107

brack e ts /! ines 2 .2 2 1 22 4  07

sv m h o ls /lin e s 1.55 0  6 6 0 Q 8

T .ammape, c o m m e n ts /l in e 5 0 /1 5 5 5 0 /1 2 5 15/104

M o d ifia h le /e n f)_____________________ 7 2 J2___
M o d if ia h le /o n l______________________ 15 10 6  o r  55

S ta n d a rd _____________________________ 1 2.-5 m o re

M o d u la r_____________________________ ves n o no

A b strac t so m e so m e m o re

V o c ah n la rv tn o t'l_____________________ 8 14 8

V o cah n larv O ria fl 4 5 6

R ead  tim e___________________________ 7 0  m in 7 0  m in 7 0  m in

W rite  tim e 5 6 0  m in 5 6 0  m in 5 6 0  m in

B u ilt in n o ta tio n _____________________ 8 4 0

sp e c if ie r  d e f in e d  n o ta tio n 8 17 4

o v era ll sy m b o ls  c o u n t_______________ 14 x 26 14 x 18 1 4 x 5

R en e titio n ___________________________ 15 0 5

B a se  tv n es 2 7 7

I .enpfh 155 125 104
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Appendix F The cleaned data set

The cleaned data set consisted of: 

NLVL,

student id number,

SPEC;

CMT (Comment), 

MNFUL(Meaningful_names), 

STRCT (Structured)

TREAD

TOTQl,TOTQ2,TOTQ3,

TOTQT

S1,S2,S3

TOTS

Summary o f  variables

Variable Mean Std Dev Minimum Maximum

course level (Cl to C 6 ). 

from 1-147

one of the five specifications 1-5 

these three

were dummy variables

indicating the type of specification given

time to read to intro (in seconds),

times to answer Questions 1,2, and 3

respectively,

total time to answer the questions; 

rankings of the 5 specs from least 

comprehensible to most; 

coded as -2 -1 0 1 2

Scores on the three questions; either 0 or 1 

Total score out of 3.

N

Scores for questions 1,2,3, and total-score:

SI .46 .50 .00 1.00 146

S2 .55 .50 .00 1.00 146

S3 .32 .47 .00 1.00 146

TOTS 1.33 1.23 0 3 146

Indicator variables for subjects with zero and three total-score

IZERO .37 .48 0 1 146

ITHREE .27 .44 0 1 146

Times to read the introduction, and the three questions

TREAD 168.24 129.29 30.00 780.00 95

TQ1 149.23 110.65 27.00 660.00 111

TQ2 105.79 73.21 25.00 480.00 139

TQ3 98.47 66.35 17.00 480.00 127

TOTQT 341.52 174.30 120.00 960.00 98
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The matrix of factor loadings are:

Appendix G Details of the Factor Analysis of the timing data.

Factor 1

TQ1 .67773

TQ2 .45367
TQ3 .80060

TREAD .36831

Note that all the loadings are positive, with the times for questions 1 and 3 

having the highest loadings on the Common factor. The loadings would have to 

be divided by the response standard deviations to obtain the relevant 

correlations.

Final Statistics:

Variable Communality * Factor Eigenvalue P c to fV ar Cum Pet

TQ1 .45932 * 1 1.44174 36.0 36.0

TQ2 .20581 *

TQ3 .64096 *

TREAD .13565 *
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Appendix H Analysis of Variance of total scores

Anova of TOTS by NLVL and SPEC, with TOTQT.

HIERARCHICAL sums of squares; Covariates entered AFTER main effects

Sum of Mean Sig
Source of Variation Squares DF Square F of F

Main Effects 25.016 9 2.780 2.235 .030

NLVL 10.355 5 2.071 1.665 .155

SPEC 14.661 4 3.665 2.947 .026

Covariates 17.283 1 17.283 13.895 .000

TOTQT 17.283 1 17.283 13.895 .000

2-Way Interactions 18.020 18 1.001 .805 .688

NLVL SPEC 18.020 18 1.001 .805 .688

Explained 60.320 28 2.154 1.732 .035
Residual 83.337 67 1.244

Total 143.656 95 1.512

147 cases were processed.

51 cases (34.7 pet) were treated as missing through incomplete data.
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Appendix I The Analysis of Variance for the experimental design

* * * * * * A n a l y s i s o f  V a r i a n e e * * * * *

Tests of Significance for TOTS using Cov Adj SEQUENTIAL Sums of Squares

Source of Variation SS DF MS F Sig ofF

WITHIN+RESIDUAL 119.70 91 1.32

REGRESSION 12.90 1 12.90 9.81 .002

CMT 2.53 1 2.53 1.92 .169

MNFUL 5.80 1 5.80 4.41 .039

STRCT .24 1 .24 .19 .667

CMT * MNFUL .76 1 .76 .58 .449

(Model) 25.74 5 5.15 3.91 .003

(Total) 145.44 96 1.52

R-Squared = .177

Adjusted R-Squared = .132

Regression analysis for WITHIN+RESIDUAL error term 

— Individual Univariate .9500 confidence intervals 

Dependent variable .. TOTS

COVARIATE B Beta Std. Err. t-Value Sig. oft 

TOTQT -.00214 -.30393 .001 -3.132 .002

COVARIATE Lower-95% CL-Upper 

TOTQT -.003 -.001
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Appendix J Logistic Analysis of question success

LOGISTIC ANALYSIS OF THE PROBABILITY OF 
GETTING 3/3

Number of selected cases: 147
Number rejected because of missing data: 50 
Number of cases included in the analysis: 97

Dependent Variable.. ITHREE

Initial -2 Log Likelihood 110.71022

Fitted model
-2 Log Likelihood 79.978 
Goodness of Fit 78.204

Chi-Square df Significance

Model Chi-Square 30.733 9 .0003

Classification Table for ITHREE
Predicted 

0 1 Percent Correct

Observed
0 1 1

+ .......... + ...........+
0 0 1 67 1 5 1 93.06%

1 1
+ .......... +..........+
1 13 1 12 1 48.00%

+......... +..........+
Overall 81.44%

Variables in the Equation

Variable B S.E. Wald df Sig

C l -3.3108 1.4739 5.0462 1 .0247
C2 -2.2444 1.3642 2.7070 1 .0999
C6 -3.7509 1.2891 8.4669 1 .0036
C4 -1.5814 1.2642 1.5649 1 .2109
C5 -.4114 1.3227 .0967 1 .7558
CMT 1.7208 .7630 5.0872 1 .0241
MNFUL .6734 .7109 .8973 1 .3435
STRCT -.6645 .7724 .7402 1 .3896
TOTQT -.0111 .0036 9.5154 1 .0020
Constant 3.7577 2.0728 3.2864 1 .0699
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Appendix K Perceived Comprehensibility Rating data

Frequency tables for the comprehensibility of specifications, 
1,2,3,4,5; and horizontally by comprehensibility coded as:

least comprehensible.....  ....most
-2 -1 0 1 2

1 2 3 4 5

The first three tables are for each of the total scores 3,2,1
subjects. T o ts =3 (N=39)

l l 1 7 29
2 17 14 3 2
30 5 1 2 1
4 2 18 14 2
2 14 5 13 5
T ots=2 (N=24)
1 0 3 4 3
1 9 9 5 9
19 2 0 1 0
1 5 8 5 8
2 8 4 9 4
T o ts = l (N=28)
0 1 3 6 3
6 8 5 6 5
12 10 4 1 4
7 3 11 2 11
3 6 5 13 5
T ots= 0 (N=47)
2 5 8 8 8
3 15 10 15 10
25 9 5 3 5
9 5 16 10 16
8 13 8 11 8
A ll  S u b je c ts (N=138)
4 7 15 25 87
12 49 38 29 8
86 26 10 7 8
21 15 53 31 21
15 41 22 46 14

vertically ordered by spec

The final table is for all
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Appendix L The monolithic Specification A

The staff telephone directory contains names, phone numbers and office labels.

1 [ NAME, NUMBER, OFFICE ]

Each member of staff is identified by N AM E  has an OFFICE  and a phone 
extension NUM BER. Each member of staff can have only one phone number and 
one office. However several people can share an office and share phones. A 
member of staff is only recorded in the phone directory if they have a phone 
number. Although a phone number can be reassigned to a different physical 
telephone that phone can only be in one office at any given time. Telephones may 
be in offices even though people are not assigned to the phone or the office.

Operations
The operations on the phone directory are:

2 OPERATION ::= InitPhoneDir I AddPerson I MovePerson I DeletePerson I Move 
Phone
3 DisconnectPhone I ConnectPhone I QueryPersonNumber I QueryPersonOffice I
4 ListNumberPeople I ListOfficePeople I ListOfficeNumbers

• InitPhoneDir - Initially the directory is emptied.
• AddPerson - Assign a person a phone and an office.
• DeletePerson - Remove a person from the directory.
• MovePerson - Reassign a person to a different office and phone.
• MovePhone - Move the location of a phone.
• ConnectPhone - Associate a phone number with an office.
• DisconnectPhone - Remove the phone number from the directory.
• QueryPersonNumber - Check which phone extension a person has.
• QueryPersonOffice - Check which office a person is in.
• ListNumberPeople - List the people on a given phone number.
• ListOfficePeople - List the people who share a given office.
• ListOfficeNumbers - List the phones in a given office.

Responses
T h ese  are resp o n ses g iv en  as a  resu lt o f  th e o p era tio n s. I f  a ll is w ell th e n orm al 
o p era tio n  resp o n se  is a re tu rn  m essa g e  o f  ‘o k ’.

5  R E S P O N S E  ::= ok I adderror I notfound I connecterror

Basic State
T h e te lep h o n e  d irec to ry  co n sists  o f  th ree  fu n ctio n s re la tin g  th e  se ts  N A M E , 
N U M B E R , a n d  O F F IC E .
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6 — PhoneDir-------------------------------
7 1 p/jone : NAME  -> NUMBER
8 1 addr : NAME  -> OFFICE
9 1

|
location : NUMBER —»• OFFICE

10
n

dom addr = dom phone
11

1
ran phone c  dom location

This schema includes setting up an empty phone directory, plus all operations and 
the errors arising from the failure of the operations: AddPerson, Delete Person, 
QueryPersonNumber, QueryPersonOffice, ListNumberPeople, ListOfficePeople, 
ListOfficeNumbers, MovePerson, MovePhone, ConnectPhone and DisconnectPhone.

Note as both Moving operations use the override function we need not produce 
error conditions it will be the trivial override.

12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

■ PhoneOperations----------------
A PhoneDir 
name? : NAME 
office?, office! : OFFICE 
number?, number! : NUMBER 
operation? : OPERATION 
resp\ : RESPONSE 
people ! : P NAME  
phonesl : P NUMBER

( resp\ = ok
( ( operation? = InitPhoneDir

addr' = phone' = location' = 0
) v
( operation? = AddPerson 

name? g dom phone 
phone ’ = phone u  {name? I—> number?} 
addr ’ = addr u  { namel l—» office! }
( ( number? £ dom location

location' = location u  { number1 l—> office? }
) v
( number? e  dom location 

location number? = office? 
location’ = location

) ) ) v
( name! e  dom phone

( operation? = MovePerson
phone ’ = phone ® { namel l—> number1} 
addr’ = addr © { name? h-» office!  }
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40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 
61 
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80 
81 
82
83
84
85
86

location' = location ® { number? 1-> office1. }
) v
( ( operation! = DeletePerson

phone ’ = phone \ {name? I—> phone name? } 
addr ’ = addr \ { name? I—> addr name? }

) v
( ( operation? = QueryPersonNumber

numbed. = phone name?
) v
( operation? = QueryPersonOffice 

office\ = addr name?
)
phone ’ = phone 
addr’ = addr

)
location' = location

)
) v
( operation! = ListNumberPeople 

number? e ran phone
people\ ={ p : NAME \ phone p = number! }

) v
( operation! = ListOfficePeople 

office! e ran addr
people! = { p : NAME \ addrp = office? }

) v
( operation! = ListOfficeNumbers 

office! e ran location
phones\ = { p : NUMBER \ location = office! }

) v
( phone ’ = phone 

addr’ = addr
( operation! = ConnectPhone 

( ( number! <£ dom location
location' -  location u  { number! h-> office! }

) v
( number! e  dom location 

location number? = office? 
location' = location

) ) ) v
( operation! = DisconnectPhone 

number! e dom location
location' = location \ { number! I—> location number! } 

) v
( operation! = MovePhone

location' = location © { number! I—> office! }
)  v
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87
88
89
90
91
92
93
94
95
96
97
98
99
100 
101 
102
103
104
105
106
107
108
109
110 
111 
112
113
114
115
116
117
118
119
120 
121 
122
123
124

( ( operation! = QueryPersonNumber v
operation? = QueryPersonOffice v 
operation! = ListNumberPeople v  
operation! = ListOfficePeople v  
operation! = List OfficeNumbers

)
location ’ = location

) )
) )  v
( phone ’ = phone 

addr’ = addr 
location’ = location
( operation! = AddPerson v  operation? = ConnectPhone 

location number? ^  office? 
resp\ = connecterror

) v
( operation? = AddPerson 

name? e  dom phone 
resp\ = adderror

) v
( ( ( operation? = QueryPersonNumber v

operation? = QueryPersonOffice v  
operation? = DeletePerson v  
operation? = MovePerson

)
name? £ dom phone

) v
( operation? = ListNumberPeople 

number? £ ran phone 
) v
( operation? = ListOfficePeople

office? <£ ran afiWr
) v
( operation? = ListOfficeNumbers 

office? & ran location
)
respl = notfound
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Appendix M The six main parts of Specification B

The staff telephone directory contains names, phone numbers and office labels

1 [NAME, NUMBER, OFFICE]

Each member of staff is identified by N A M E  has an O F F IC E  and a phone 
extension N U M B E R . Each member of staff can have only one phone number and 
one office. However several people can share an office and share phones. A 
member of staff is only recorded in the phone directory if they have a phone 
number. Although a phone number can be reassigned to a different physical 
telephone that phone can only be in one office at any given time. Telephones may 
be in offices even though people are not assigned to the phone or the office.

Operations
The operations on the phone directory are:

2 QUERY QueryPersonNumber I QueryPersonOffice I ListNumberPeople I
3 ListOfficePeople I ListOfficeNumbers
4 UPDATE ::= AddPerson I DeletePerson I MovePerson I DisconnectPhone I
5 InitPhoneDir I MovePhone I ConnectPhone
Responses
These are responses given as a result of the operations. If all is well the normal 
operation response is a return message of ‘ok’.

6 RESPONSE ::= ok I adderror I notfound I connecterror

Basic State
The telephone directory consists of three functions relating the sets NAME, 
NUMBER, and OFFICE

7
8
9
10

11
12

PhoneDir-------------------------------
phone : NAME  -> NUMBER 
addr : NAME -> OFFICE 
location : NUMBER —»• OFFICE

dom addr=  dom phone 
ran phone c  dom location

This schema sets up an empty directory :

13 |—  InitPhoneDir-------------------------
14 I PhoneDir'

15 | addr' = phone' = location' = 0
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The operations described here on the phone directory are:
• AddPerson - Assign a person a phone and an office.
• DeletePerson - Remove a person from the directory.

16
17
18
19
20 
21 
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

BasicOperations------
APhoneDir 
name?: NAME  
office? : OFFICE 
number? : NUMBER 
operation? : UPDATE 
resp\ : RESPONSE

( operation? = AddPerson 
name! £ dom phone 
phone ’ — phone u  { name? I—> number?} 
addr’ = addr u  { name? office? }
( ( number? <£ dom location

location' = location u  { number? \—> office? } 
) v
( number? e dom location 

location number? = office? 
location' = location

) ) ) v
( operation? = DeletePerson 

name? e dom phone
phone ’ = phone \ {name? I—» phone name? } 
addr’ = addr \ { name? I—> ¿/¿/¿/r name? }

)
resp! = ok

This schema shows the errors arising from the failure of the operations AddPerson 
and DeletePerson.
40 i—  BasicFallures--------------------
41 H PhoneDir
42 | name? : NAME
43 | number? : NUMBER
44 operation? : UPDATE
45 respl : RESPONSE

\
46

1
1 ( operation? =Delete Person

47 name? £ dom phone
48 respl = connecterror
49 ) v
50 ( operation? = AddPerson
51 name? e dom phone
52 respl -- adderror
53 1 )
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The operations described here on the phone directory are::

• QueryPersonNumber - Check which phone extension a person has.
• QueryPersonOffice - Check which office a person is in.
• ListNumberPeople - List the people on a given phone number.
• ListOfficePeople - List the people who share a given office.
• ListOfficeNumbers - List the phones in a given office.

55 i—  PhoneQueries--------------------------
56 H PhoneDir
57 n a m e l: NAME
58 | office?, office'. : OFFICE
59 number?, number! : NUMBER
60 operation? : QUERY
61 resp! : RESPONSE
62 | people! : P NAME
63 ; phones'. : P NUMBER 

1
64 1 ( ( operation? = QueryPersonNumber
65 1 namel e dom phone
66 number*. = phone namel
67 ) V
68 ( operation! = QueryPersonOffice
69 namel e  dom addr
70 1 office'. = addr namel
71 )
72 ) V
73 ( operation! = ListNumberPeople
74 number1 e  ran phone
75 1 people! = { p  : NAME \ phone p  = number? }
76 ) V
77 ( operation! = ListOfficePeople
78 1 office1 e ran addr
79 1 people! = { p : NAME \ addrp = officel }
80 ) V
81 ( operation! = ListOfficeNumbers
82 1 officel e ran location
83 1 phones'. = { p : NUMBER \ location p  = officel
84 ) ) A
85 ■ resp! -  ok
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This schema shows the errors arising from the failure of the operations
QueryPersonNumber, QueryPersonOffice, ListNumberPeople, ListOfficeP eople and 
ListOjficeNumbers.
86 — FailQueries--------------------------
87 1 ,EPhoneDir
88 name?: NAME
89 1 office? : OFFICE
90 1 number? : NUMBER
91 1 operation? : QUERY
92 respl : RESPONSE

93
\~
1 ( ( operation? = QueryPersonNumber

94 1 name? £ dom phone
95 ) v
96 1 ( operation? = QueryPersonOffice
97 1 name? g dom addr
98 ) v
99 ( operation? = ListNumberPeople
100 1 number? g ran phone
101 1 ) v
102 1 ( operation! = ListOfficePeople
103 1 office! <£ ran addr
104 1 ) v
105 ( operation! = ListOfficeNumbers
106 office! <£ ran location
107 1 ) ) A
108 1 res/?! = notfound

The operations described here on the phone directory are::

109
110 
111 
112
113
114
115

116
117
118
119
120

MovePerson - Reassign a person to a different office and phone.
MovePhone - Move the location of a phone.
ConnectPhone - Associate a phone number with an office.
DisconnectPhone - Remove the phone number from the directory.

- ModifyOperations---------------------------
A PhoneDir 
name?: NAME 
office! : OFFICE 
number? : NUMBER 
operation? : UPDATE 
resp\ : RESPONSE

( ( operation? = MovePerson
phone ’ = phone © { name? number?}
addr' = addr © { name? h-> office? } 
location' -  location © { number? I—> office? }
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121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

( operation! = ConnectPhone 
phone ’ = phone 
addr’ = addr
( number! <£ dom location

location' = location U { number! \—> office? }
) v
( number! e  dom location 

location number? -  office? 
location' = location

)
) v
( number! e dom location

( operation! = DisconnectPhone
location' = location \ { number? I—» location number! } 

) v
( operation! = MovePhone

location '-  location © { number! I—> office? }
)
phone ’ = phone 
addr’ = addr

) ) A
resp\ = ok

This schema shows the errors arising from the failure of the operations
MovePerson, MovePhone, ConnectPhone and DisconnectPhone.
143 — FailM odify-------------------------
144 1 ’EPhoneDir
145 1 office? : OFFICE
146 1 number? : NUMBER
147 1 operation? : UPDATE
148

1
respl : RESPONSE

149
1
1 operation? = DisconnectPhone

150 resp! = connecterror
151 ( office? ^  location number?
152 l V

153 1 number! i  dom location
154 1 )

Note as both Moving operations use the override function we need not produce 
error conditions it will be the trivial override.

PhoneOperations = InitPhoneDir a  (BasicOperations v  Basic Failures) a  

(PhoneQueries v  FailQueries) a  (ModifyOperations v  FailModify)
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Appendix N The small schemas used in Specification C

The staff telephone directory contains names, phone numbers and office labels.

1 [NAME, NUMBER, OFFICE]

Each member of staff is identified by N A M E  has an O F F IC E  and a phone 
extension N U M B E R . Each member of staff can have only one phone number and 
one office. However several people can share an office and share phones. A 
member of staff is only recorded in the phone directory if they have a phone 
number. Although a phone number can be reassigned to a different physical 
telephone that phone can only be in one office at any given time. Telephones may 
be in offices even though people are not assigned to the phone or the office.

Responses
These are responses given as a result of the operations. If all is well the normal 
operation response is a return message of ‘ok’.

2 RESPONSE ::= ok I adderror I notfound I connecterror

Basic State
The telephone directory consists of three functions relating the sets NAME, 
NUMBER, and OFFICE

3
4
5
6

7
8

PhoneDir-------------------------------
phone : NAME -> NUMBER 
ad dr : NAME ->  OFFICE 
location : NUMBER —» OFFICE

dom addr = dom phone 
ran phone cz dom location

This schema sets up an empty directory :

9 |—  InitPhoneDir---------------------------
10 I PhoneDir'

11 | addr' = phone' = location' = 0
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The operation described here on the
phone directory is: A ddP erson
Assign a person a phone and an office.

This schema shows the
errors arising from

The failure of the operation AddP erson

12
13
14
15
16
17

18
19
20 
21
22
23
24
25
26
27
28 
29

AddPerson------------
A PhoneDir 
name?: NAME 
officel : OFFICE 
number? : NUMBER 
resp\ : RESPONSE

namel <£ dom phone 
( ( number! <£ dom location

location' = location u  
{ number! I—> officel }

) v
( number! e dom location 

location number? = office? 
location' = location

) ) A
phone ’ -  phone u  {name1 h-> number! } 
addr’ = addr u  { name? I—> officel } 
respl = ok

30 — AddFallures----------
31 H PhoneDir
32 n a m el: NAME
33

1
resp\ : RESPONSE

34 namel e  dom phone
35 resp\ = adderror

The operation described here on the 
phone directory is: DeletePerson 
Remove a person from the directory.

This schema shows the
errors arising from
The failure of the operation
DeletePerson

36 r— DeletePerson--------------------------
37 | A PhoneDir 45 r — DeleteFailures-------
38 | n a m e l: NAME 46 S  PhoneDir
39 respl : RESPONSE 47 n a m e l: NAME

[- 48 respl : RESPONSE
40 | namel e  dom phone b
41 phone’ =phone \{ namel l—>phonenam el} 49 | namel <£ dom phone
42 | addr' = addr \ { namel t—> addr namel } 50 | respl = connecterror
44 resp! = ok L
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The operations described here on the
phone directory is: Q ueryPersonN um ber
and Q ueryPersonO ffice

This schema shows the
errors arising from
the failure of the operations

QueryPersonNumber - Check which phone extension a person has. 
QueryPersonOffice - Check which office a person is in.

51 r — QueryPersonNumber----------
52 E PhoneDir
53 name?: NAME
54 number! : NUMBER
55 | 

1
resp\ : RESPONSE

r
56 | name? e dom phone
57 | number*. = phone name?___

1
OOIT4 respl = ok

65 |—  QueryPersonOffice
66 1 H PhoneDir
67 1 n a m e l: NAME
68

1
respl : RESPONSE

69
1
1 name? e  dom addr

70 1 number*. = addr name?
71 1 respl = ok

59 | - —FailQueryPerson-------
60 EPhoneDir
61 n a m e l: NAME
62

1
respl : RESPONSE

i
63 | name? e  dom phone
64 respl = notfound

The operation described here on the This schema shows the
phone directory is: ListNumberPeople errors arising from

the failure of the operation

ListNumberPeople - List the people on a given phone number .

72 r— ListNumberPeople ------------- 80 r — FailListNurnberP ----
73 EPhoneDir 81 EPhoneDir
74 | number?: NUMBER 82 number?: NUMBER
75 people! : P NAME 83 | respl : RESPONSE
76 respl : RESPONSE h

\- 84 | number? 0 ran phone
77 | number? e ran phone 85 | respl = notfound
78 | people*. = {p :NAME\ phone p= number! } 1
79 respl = ok
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The operations described here on the
phone directory is: ListO fficePeople
and ListO jficeN um bers

This schema shows the
errors arising from
the failure of the operations

ListOfficePeople - List the people who share a given office. 
ListOjficeNumbers - List the phones in a given office.

86 |— ListOfficePeople —
87 | 'ELPhoneDir
88 | office? : OFFICE
89 | people'. \ P NAME
90 | resp'. : RESPONSE

91 | office? e ran addr
92 | people! = { p  : NAME \ addr p -
office? }
93 | resp\ = ok

94 — FailListOffice -----
95 H PhoneDir
96 office! : OFFICE
97

|
resp'. : RESPONSE

n
98 | office? 0 ran addr
99 | resp'. = notfound

1001—  ListOfficeNumbers —  
1011 SPhoneDir 
102| office? : OFFICE
1031 phones'. : P NUMBER 
104| resp'. : RESPONSE

1051 office! & tan location
106| phones'. -  { p  : NUMBER \ location p  = office!} 
107| resp'. = ok
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The operations described here on the phone directory are:

MovePerson - Reassign a person to a different office and phone.
MovePhone - Move the location of a phone

Note as both Moving operations use the override function we need not produce 
error conditions it will be the trivial override

108,—— M ovePerson--------------------------
109| A PhoneDir
11 o| name?: NAME
111 office? : OFFICE
112 number? : NUMBER
113 resp\ : RESPONSE

\~ 
114| phone ’ = phone © {name? I—> number! }
115 addr’ = ad dr © { name? l—> office? }
116 location' — location © { number! I—> office? }
117 resp! = ok

118r-— M ovePhone--------------------------
119 A PhoneDir
120 office? : OFFICE
1211 number? : NUMBER
122| resp\ : RESPONSE

r~
1231 location' = location © { number! I—» office? }
124 phone ’ = phone
125 addr’ = addr
126| resp\ -  ok

L
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The operation described here on the This schema shows the
phone directory is: ConnectPhone errors arising from

the failure of the operation
ConnectPhone - Associate a phone number with an office.

1271—— ConnectPhone-----------------------
128 A PhoneDir 135,—— FailConnectPhone-------
129 office? : OFFICE 136 EPhoneDir
130 number? : NUMBER 137 number? : NUMBER
131

1_
respl : RESPONSE 138

l_
respl : RESPONSE

132| number! £  dom location
h

139| number! e  dom location
133 location '  = location U { number! 140 respl = errorconnect
office? }
134| respl = ok

The operation described here on the This schema shows the
phone directory is: DisconnectPhone errors arising from

the failure of the operation

DisconnectPhone - Remove the phone number from the directory.

1411—  DisconnectPhone —  
142] A PhoneDir
143| number? : NUMBER 
144| respl : RESPONSE

1451 number! e dom location
1461 location' = location \
1471 { number? i-> location
number! }
1481 phone ’ = phone
149| addr’ = addr
150| resp\ = ok

1511
152
153
154

155
156
157
158

FailDisconnectPhone 
SPhoneDir 
number? : NUMBER 
respl : RESPONSE

( office? location number? v 
number! £ dom location

)
respl = errorconnect

Operations
The operations on the phone directory are therefore:

PhoneOperations = InitPhoneDir a  (AddPerson v  AddFailures) a  (DeletePerson v 
DeleteFailures) a  (QueryPersonNumber v  FailQueryPerson) a  (QueryPersonOffice v 
FailQueryPerson) a  (ListNumber People v  FailListNumberP) a  ( ListOfficePeople v 
FailListOjfice) a  (ListOfficeNumbers v FailListOffice ) a  MovePerson a  MovePhone a  

(■ConnectPhone v  FailConnectPhone) a  (DisconnectPhone v 
FailDisconnectPhone)
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Appendix O An example of the set of 20 questions to accompany 
Specification A

1. What information is contained in the line numbered ‘ 1 ’ of the 
specification?

2. What is indicated by the difference between num ber? and num ber! in line 
16?

3. What information is given in line 28 of the specification?
4. Describe the purpose of line 68.
5. Show how lines 27 and 28 would appear if a new person, ‘Jones’, is to be 

given office number ‘48B’ and a phone number ‘376’.
6. List all the lines of the specification that would need to be changed if it 

was decided to rename the function ciddrl
7. Describe the condition(s) which give rise to the response ‘adderror’.
8. Why is the type of ‘phonesV  in line 20 PNU M BER  and not just 

N U M BE R ?
9. Which 5 conditions in the telephone system give rise to the response 

‘notfound’ ?
10. Explain the significance of the ‘©’ symbol in line 89.
11. Which line informs you that a phone remains in the same office when a 

person is removed from the directory?
12. Which line in the specification tells you that a person can only have one 

phone?
13. Which line or lines inform you that the telephone directory is unchanged by 

the operation Q ueryPersonN um berl
14. Which variable(s) remain unchanged if a phone is disconnected?
15. Which variables are modified when a person is added to the phone 

directory?
16. Can an office appear in the directory if it does not have any phones in it? 

On which line(s) of the specification did you find the answer?
17. Can an office appear in the directory if it does not have any people in it? 

On which line(s) of the specification did you find the answer?
18. When adding a person to the directory what two things happen if the phone 

number is already associated with an office? (give line references)
19. Write the additional lines that would be required if the phone directory 

specification were to be modified so that it stores the department that a 
person works in. State where these new lines would be inserted into the 
specification.

20. Using your answer to question 19, write the additional lines that would be 
needed to add an operation called ‘Q ueryP ersonD epf that, given the name 
of a person, checks which department that person is in. State where these 
new lines would be inserted
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Correspondence___________________________
Mathematical Notation in Formal 

Specification: Too Difficult for the Masses?

Kate Finney

A b s t r a c t— The p h ra s e  “n o t m u c h  m a th e m a tic s  re q u ire d "  c a n  im p ly  a 
v a r ie ty  o f skill le v e ls . W h e n  th is  p h ra s e  is a p p lie d  to  c o m p u te r  
s c ie n tis ts , s o ftw a re  e n g in e e rs , a n d  c l ie n ts  in th e  a re a  o f fo rm a l 
S pec ifica tio n , the  w o rd  “m u c h "  c a n  b e  w id e ly  m is in te rp re te d  w ith  
d is a s tro u s  c o n s e q u e n c e s . A  s m a ll e x p e r im e n t in re a d in g  
s p e c if ic a tio n s  re v e a le d  th a t s tu d e n ts  a lre a d y  tra in e d  in  d is c re te  
m a th e m a tic s  and th e  s p e c if ic a tio n  n o ta tio n  p e r fo rm e d  v e ry  p o o rly ; 
m uchH vorse  than  c o u ld  re a s o n a b ly  b e  e x p e c te d  if fo rm a l m e th o d s  
p ro p o n e n ts  are  to  be  b e lie v e d .

In d e x  T e rm s — F o rm a l s p e c if ic a tio n , m a th e m a tic s ,  re a d in g  Z.

1 Intr od uc tio n
Th e r e  has been a recognition in recent years that education in the 
uses of formal m ethods is vital, and that the role of m athem atics is 
central in this [1], [2], It is encouraging to see the increasing em -
phasis on discrete m athem atics as a basis for softw are engineering 
and the early insertion of general m athem atics teaching in under-
graduate courses for com puter science. O ne of the difficulties 
caused bv the sequential na tu re  of m athem atics is that the previ-
ous level of understanding is constantly  overw ritten  as new  skills 
are acquired, making it hard  to recall a prev ious stage. Experi-
enced practitioners of formal m ethods also pass along this learn-
ing curve assimilating concepts and  notation  so that read ing  speci-
fications become as easy as if it w ere w ritten in natural language. 
In prom oting formal m ethods to new' users the strangeness of the 
notation as well as the underly ing  m athem atical background m ust 
be taken into account.

The early pioneers in the field of p rogram m ing  had  excellent 
mathematical training and background  and  often held the view 
that program m ing was essentially an  application  of m athem atics
[3], The developm ent of formal m ethods w ith the rigorous proofs 
and stringent rule bases has by definition its origin in m athem ati-
cal constructions and its first practitioners from centers such as 
IBM and Oxford University P rogram m ing  Research G roup were 
opera ring with a high skill base in this respect. It is often people 
from this background who p ropose that the level of m athem atics 
required for the understanding of form al specification is not great. 
Hall in his Seven Myths [4] asserts "m athem atics for specification 
is easv." A simple formal specification will contain as a m inim um , 
concepts and notation from set theory and logic, and these are 
often quoted as all that are required.

The formalization of problem s into abstract statem ents and the 
manipulation of symbolic expressions seem to be real stumbling 
blocks to Lhe vast majority of the population. Even teachers of 
mathematics at A level (the standard course for 16-18 year olds in-
terested in mathematics), are reporting problem s with the algebraic 
competence of their pupils and as schools are moving awav from the
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teaching of algebra and rem oving geometric proofs from the cur-
riculum  low er dow n the school this situation will not improve. [5].

A gainst this background it is no t surprising that problem s are 
experienced by users in the area of form al m ethods. O ur conjecture 
was that people find formal specifications difficult to read because 
of the large use of sym bols. W hen they attem pt to w rite a specifica-
tion the need for great attention to detail and correct use of m athe-
matical statem ents add  to the notation difficulties. These users mav 
include those w ho w rite the specifications, those w ho interpret and 
try to im plem ent them  in code, and those w ho need to read the 
specification to check it has captured  the client's requirements. 
H owever, the assum ptions m ade are that w ith a short period of 
training, as little as two days according to Potter [6], they will 
quickly feel com fortable w ith the concepts and expressions and be 
reading and w riting specifications.

On the basis of ou r ow n experim ental w ork we show that the 
language of m athem atics of the type required in form al m ethods is 
not w idely know n or easily used even am ong interested groups. We 
also contend that assum ptions about general m athematical experi-
ence are becoming increasingly ou t of touch.

The experim ent that w as carried out involved 62 students, un-
dergraduate and postgraduate , in reading a very small portion (less 
than 20 lines) of a specification in  Z. All were attending computing 
courses and m ost had been through a basic grounding in discrete 
m athem atics in addition  to separate  tuition in the use of Z. The 
hours of tuition varied betw een student groups with all under-
graduate classes com pleting a sem ester of formal m ethods while the 
postgraduates had a shorter tim e concentrating on the reading and 
w riting of Z specifications. Details of the background to the experi-
m ent can be found in [7], Each studen t w as asked three questions to 
test their ability to read and understand  the specification.

The context of the experim ent was to assess the effects on com-
prehensibility of adding m eaningful variable nam es and annotated 
English to Z. The full results are described elsewhere [7], What we 
concentrate on here is a different outcom e of the experiment, namely 
that in general the studen ts found it difficult to understand any of 
the very sim ple Z specifications. (Am exam ple of one such specifica-
tion appears in Fig. 1.)

The results given here (Fig. 2) show  the num bers of questions 
each stu d en t answ ered  correctly. The po in t to note is that 19 stu -
dents, nearly  a th ird  of the group , could not answ er a single ques-
tion and found the specification incom prehensible.

These results m ust be treated with caution, and we recognize that 
this is not a rigorous treatment, the experience, ability, and motivation 
of the subjects could all be factors affecting this outcome. This initial 
study, nevertheless, gives cause for concern and could provide a 
pointer to areas for further investigation. Assumptions are being made 
about the ability of your "average" software engineer, programmer, 
and even client to interpret specifications which may be false. In their 
recent paper Fenton et al. [8] strongly advocate empirical validation or 
methods used in software engineering. While these results only give an 
indication of some of the underlying difficulties of applying forma; 
methods, it has been tin attem pt to pu t some statistics to an argument 
otherwise based on opinion and feelings.

2 Co n c l u s io n
Ln conclusion, if form al specifications are to becom e an acceptable 
and useful aspect of softw are engineering those w'ho w ould be 
their cham pions should  recognize:

• the level of m athem atics even am ong interested parties mav 
be som e w ay  below  the "not m uch" category they have m 
m ind.
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• the familiarity with notation and structure that comes natu-
rally to them takes time, training, and practice to acquire. 

S p e c i f i c a t i o n  l

The new users name is taken in and an identity number is as-
signed from the pool of unused numbers. The unused number set is 
amended and the new pair of user and their number are added to 
the existing users.

f—  .-1 dd -----------------------------------------
j ¿1System 
I name'7: Person 
| n? . \
j message!: Response

| /r.7e UnusedJds 
| name7 s dom Users 
| Unused J d s ' = Unused Jds \ { n? } 
! Users ’ = Users u  [ name91—> n? } 
j message1 = OK

Here error messages are generated by the failure of either of the 
two preconditions in the Add schema.

f—  AddFail--------------------------------—
| RSystem

name '! : Person
*?: \
e_message\ : Response

(name? s dom Users a  ejnessage\ : 
( Unused Jds  = 0  a  e_message\ = no

= name in_use) v 
id available)

Finally the behaviors are combined.
AddUser = Add v  AddFail

Questions

1) What conditions give rise to error messages?
2) The size of which set would give you the number of current 

users on the network?
3) Which set or sets give you information about the total num-

ber of users the network will support?
F ig . 1. A  s a m p le  s p e c if ic a tio n  w ith  its  a c c o m p a n y in g  q u e s t io n s .

20_

10 .

Numper of 
stucents

Numoer of correct responses
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An empirical study of specification 
readability

8.1 Introduction

Experience in the teaching of mathematics at any level reveals the difficulty that 
a large proportion the population have with the use of abstracted symbolic nota-
tions (Hackney, 1991). Some, who have mastered arithmetic and can cope with 
geometry, reach an insurmountable barrier with algebra. A recent Assessment of 
Performance Unit (APU) report shows decreases in U.K. pupil’s ability to cope 
with algebra and number, whilst reporting small increases in ability in geometry 
and data handling (Burghes, 1992). Reasons cited include: the sudden introduc-
tion of modern mathematics; a serious cutback in work involving natural numbers; 
a massive reduction in the basic algebraic content of the GCSE syllabus and indis-
criminate use of calculators both in the classroom and in all examinations (Roy, 
1992). The ability to read and interpret information condensed into equations and 
to be at ease with abstract notation seems to be increasingly rare among the student 
body. Similar problems occur in the teaching of programming languages when 
introducing concepts of variables and parameters.

In formal methods the aim is to express the essence of a specification in a math-
ematically precise form using a concise, well-founded notation, therefore some of 
these same difficulties will occur. There are many claims and counter claims about 
formal methods and the ease with which they can be used but very little published 
empirical work. This paper reports the results of an initial experiment to test some 
aspects of specifications that may be pertinent to these claims. The aim was to 
try to quantify the effect of various factors on the ability to read and understand 
formal specifications and is part of broader on-going work examining and identi-
fying metrics for them. The initial results and some experimental observations are 
reported in this paper.

8.2 Experimental context

The main factors to consider when undertaking this work were: the formal method 
to be examined, the attributes to be measured and the subjects of the experiment.

Copyright ©  1996 Academic Press Ltd All rights or reproduction in any form reserved
TEACHING AND LEARNING FORMAL METHODS ISBN 0-12-349040-5

117



118 Specification Readability

One of the frustrations of the existing studies of formal methods is the tendency 
of researchers to invent new versions of existing notations or even entirely new 
notations and methodologies. It was decided to use the Z specification language 
(Spivey, 1992) as the basis for the study to give the results wide applicability. The 
Z notation is becoming a d e  fa c to  lingua franca within the software engineering 
and computer science communities. This breadth of applicability in both academia 
and industry is evidenced by the rapid rise in the number of publications about 
Z or using Z as a notation and the number of quoted applications. The schema 
structure of Z also lent itself to the presentation of part of a larger specification 
whilst still being a meaningful fragment.

As an initial study the main attribute of concern was the readability of the 
specification. This becomes quite a complex attribute because aspects of com-
prehension, interpretation and inference can all be considered as part of the skill 
of reading. This is reflected in the learning process which involves two distinct 
phases: comprehension and articulation. The testing of reading literature also 
brings these issues into focus. When children learn to read they are initially tested 
by reading out loud to see that they have mastered the mechanics of putting the let-
ters together and joining the words into sentences. At this stage no comprehension 
is tested although some interpretation could be implied by phrasing and inflexion. 
A more advanced stage of reading is tested by a comprehension test which requires 
the child to answer questions to see if the passage has been understood, it being 
assumed that they have already mastered the initial mechanistic stage (Harris and 
Sipay, 1975). The experiment included both aspects of reading.

The comprehension of a language may be understood in three phases or levels: 
lexical, syntactic and semantic. By analogy, the way in which the child’s reading 
material is written can make a difference to their ability to understand it. Familiar 
names which they can easily recognize give them key words to work round. 
Anyone reading a long novel with complicated Russian names will be familiar 
with the difficulty of maintaining the sense of the narrative whilst recalling the 
different characters’ names. The presentation of the material also has some bearing 
on the ease with which it is read. The use of paragraphs and short sentences in the 
structure of the page will aid the reading process. Finally, illustrations in a book 
give valuable extra information in a visual form about the meaning of the text and 
give the child confirmation that their interpretation is correct or cues the child into 
the correct interpretation.

Formal specifications can become more user-friendly if they are presented in 
a way which increases readability. In an analogy with a child’s reading three 
aspects of a specification were examined: the use of variable names, the inclu-
sion of explanatory comments and text, and the decomposition of the schemas. 
These are each factors which have been considered essential to the production of 
quality software where, as in English prose, the style of writing can illuminate or 
obscure the ideas which are expressed. It is intuitively appealing and has long 
been generally accepted that the use of meaningful variable names and appropriate 
explanatory comments enhance program readability (Rushby, 1980) and the parti-
tioning of large or complex programmes into smaller modules is essential to their
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intellectual manageability (Wirth, 1974). This has to some extent been confirmed 
by experiment (Harold, 1986) and (Tenny, 1988).

8.3 The experiment

The subjects of the experiment were undergraduate and postgraduate students at 
the University of Greenwich. They all had some knowledge of Z and were willing 
to spend time taking part in an experiment. The uniformity of the background and 
experience of the students also helped in the control of some of the bias to the 
results.

The students came from four classes which were, for the purposes of the 
experiment, called A, B, C and D. The students in A, B, and C were part-time 
evening computer science undergraduates. Those in Class A were nearing the end 
of a one semester unit in formal specification using Z and were at level 2, that is, the 
equivalent of the second year of a full time degree. Nine students participated in 
the experiment. Five of these where direct entrants having successfully completed 
an HND with appropriate grades. The sixteen students of Class B were also 
level 2 but had completed the formal methods unit the previous semester and 
were now on a theory of computation unit. Class C was in a level 3 software 
engineering unit, that is equivalent to the final year of a full-time degree. Of these, 
eleven students participated in the experiment. Their experience of Z had been 
part of a formal methods course in the previous year covering much of the same 
ground as the new formal specification unit taught to the current level 2 students. 
Twenty six students of Class D took part in the experiment. These were a mix of 
day-release part-time and full-time MSc software engineering students who had 
had one three-hour lecture on Z with tutorial exercises three weeks prior to the 
experiment. Five mini-specifications were prepared varying only in the naming of

Table 8.1: Experimental specifications
Specification Comments Meaningful names Single schema

1 Yes Yes No
2 Yes No No
3 No No No
4 Yes Yes Yes
5 No Yes No

variables, the use of comments and the decomposition into more than one schema. 
Each specification was randomly assigned a number from a set of random number 
tables (Murdoch, 1974). These are summed up in Table 8.1. An example of 
a specification used in the experiment with comments but without meaningful 
variable names is given in Figure 8.1 and the same specification but without the 
the comments but with meaningul names is presented in Figure 8.2. The students 
were each given an instruction sheet and a sheet to record their responses. The
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The new user’s name is taken in and an identity number is assigned from the 
pool of unused numbers. The unused number set is amended and the new pair 
of user and their number are added to the existing users;

A d d ______________________________________________
A S y s te m  
x ? : N g rp  
n l : N  
m\ : R es

nl € A vid s  
x ? ^  dom N e t  
A v id s ' =  A v id s  \  nl 
N e t1 =  N e tU  { x l  h * ai!} 
ml =  O K

Here error messages are generated by the failure of either of the two precon-
ditions in the Add schema:

_A d d F a il___________________________________________
E S y stem  
x l  : N g rp  
nl : TV 
e -m l : R es

(x? € dom N e t A e ^m l =  e r ro re ty p e !)  V 
(A v ids  =  0  A e -m l  =  error_ typeT )

Finally the behaviors are combined: 

A d d U se r  =  A d d  V A d d F a il

Figure 8.1: Specification 2
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A d d
A S ys te m  
n a m e? : Person  
n\ : N
m essa g e \ : R e sp o n se

-

n\ € U n u se d -Id s  
n a m e? ^  dom lAyers 
U n u se d -Id s ' =  U n u se d -Id s  \  n\ 
U sers' — U sers U {n a m e?  a i!} 
m essa g e \ =

_A d d F a il______________________________________
SS ys te m  
n a m e? : P erson  
n \ : N
e -m e ssa g e \ : R e sp o n se

(n a m e?  € dom U sers A e -m e ssa g e \ =  n a m e - in -u s e )  V 
(U n u s e d -Id s  =  0  A e -m e ssa g e \ =  n o - id -a v a ila b le )

A d d U s e r  =  A d d  V A d d F a il

Figure 8.2: Specification 5
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instruction sheet is reproduced in Figure 8.3. The students were thanked by the 
experimenter and told the experiment was being conducted as part of research into 
styles and metrics in formal specification. It was explained that the results would 
be treated confidentially and not used as part of any assessment. The instruction 
sheet was read through and any arising questions answered. The experiment was 
then conducted in two phases. In the first phase the students were asked to answer 
three questions about a randomly allocated specification and record the time as 
they responded to each question. These times were later translated into elapsed 
time. The questions were:

♦ What conditions give rise to error messages?

♦ The size of which set would give you the number of current users on the 
network?

♦ Which set or sets give you information about the total number of users the 
network will support?

In the second phase, when this task was completed, each student was given 
copies of all five specifications and asked to rank them in order of comprehensibility 
and record the ranking.

8.4 Results

The first analysis of the results was a simple examination of the differences in 
scores and times between the classes. Class D, as might be expected having had 
only one brief lesson in Z, were on average slower in completing the first phase of 
answering three questions. They took an average’of 577 seconds. These students 
were postgraduates and therefore with a higher educational level, but they had 
also received the shortest amount of teaching time which seems to have led to 
a longer reading time. Class B, who had completed the course and taken an 
examination in Z a few months previously performed the best, taking an average 
time of 363 seconds. One outlier distorts the figures and ignoring this reduces 
their mean time to just 317 seconds. Class C, surprisingly, did better than A with 
an average time of 391 seconds as opposed to 541. However class A’s times were 
distorted by an outlying result which if ignored reduced the class average time 
to 480 seconds. A graph showing the total time taken to complete the reading 
of the specification by the individual students, and grouped by class, is given in 
Figure 8.4. Only 58 students are represented here as four failed to provided either 
a start time or a finish time on their answer sheet and therefore their results had 
to be ignored. The scores obtained in answer to the three questions are shown 
in a bar chart (Figure 8.5). This reveals a high proportion (19 out of 62) of the 
students that could not answer any of the questions correctly, demonstrating a 
poor understanding of the specification. The bar chart also shows that a similar 
proportion (20 out of 62) could correctly answer every question implying that with 
Z, as with a lot of mathematics, it is common that students divide into those who
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Instruction Sheet

Do not turn over the question paper until you are asked to.

Thank you for agreeing to participate in this experiment. It is being conducted 
as part of research into styles and metrics in formal specification. The results 
will be treated confidentially and will not be used as part of any assessment 
of you or any other person.

As well as this instruction sheet, you will be given an answer sheet to record 
your answers on and a question sheet which you must not look at until you 
are asked to do so. The experiment will take part in two phases.

Phase I
On the other side of the question sheet is a simple Z specification and three 
questions for you to answer about the specification. We would like you to 
answer those questions and time your response at each step.

When you are asked to start, turn over the question sheet and record the start 
time on the answer sheet. There are five different specifications of which you 
have been allocated one on a random basis. Working as quickly as you can 
record the number of your specification on the answer sheet and then read 
through the specification.

When you have finished reading through the specification and you are ready 
to answer the questions record the time again. Answer each question in turn 
noting the time as you complete each answer. Raise your hand when you have 
finished. Do not attempt to modify your answers after you have recorded your 
finish time.

Phase II
After you have looked at one specification you will be given all five and asked 
to compare them for comprehensibility.

Taking as much time as you need put the five specifications into order on the 
basis of how comprehensible you feel they are. Carefully sort the specifica-
tions until you feel you have ranked them with the least comprehensible first, 
and the one which is most understandable last. Write down the numbers of 
the specifications in order on the answer sheet.

Once again, thank you for your time and effort.
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have finished a problem and those who cannot even start. In Figure 8.6 the scores 
for answering the questions are plotted against the time taken to answer them. The 
mean times have been marked showing an inverse relationship suggesting that if 
students could read and understand the specification then they did not need a long 
time to do so, whereas those who took a long time to answer the questions got more 
of them wrong. Regression analysis was performed on the scores against the three 
attributes: comments, names and structure. We would like to note that this was 
done as an exploratory rather than definitive analysis. Since the response variable 
is ordered and discrete, a polytomous logistic regression would be an appropriate 
form of analysis. However, for indicative purposes we restrict ourselves to linear 
regression fitting by the ordinary least squares method.

The regression equation became:

score  =  0.974 +  0.259c + 0.676n — 0.059j  

where:

c is the variable showing the presence or absence of comments;

n  is the variable showing the presence or absence of helpful names;

s is the variable showing the presence or absence of blocked schemas.

As a result of the analysis only the use of meaningful or helpful identifier 
names in the schemas seemed to have a significant effect on the score with a p  
value of 0.05.

Finally the cumulative rankings of the five specifications in terms of their 
comprehensibility is shown in Figure 8.7. This clearly shows the specification 
with comments and meaningful variable names is rated as most comprehensible 
and that with neither is the least. These match closely the predicted order 1,4,5, 2, 
3, only differing in the order of specifications 4 and 5. This implies that in order of 
importance for the readability of a specification, helpful names are more important 
than comment levels and least important by comparison is the blocking of one or 
more schemas together. It is clear that different comments may produce different 
rankings, similarly decomposition of schemas may be more important on large or 
complex specifications and further investigation does need to be conducted. The 
data was analyzed using Minitab^ and any incomplete data was not included. As 
only four students did not have either scores or total times this had little overall 
effect. The different classes taking part were used as a blocking factor in the 
model.

8.5 Conclusions

Large claims for statistical validity and inferences of a far-reaching nature about the 
readability of Z could not be justified by such a small-scale experiment. However,
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Figure 8.4: Individual student times

0 1 2  3
Score

Figure 8.5: Student scores
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there were sufficient subjects to make some limited observations and to give 
pointers for further work.

However, it can be concluded that a positive difference can be made to a speci-
fication in Z by the use helpful variable naming and the attachment of appropriate 
comments. Although there are compelling reasons to believe that large specifica-
tions are more readable when partitioned by judicious use of schemas, the scale of 
the specification used in this experiment was not large enough to show this effect.

From this experiment it seems valid to say that several lessons can be learnt 
for the teaching of formal methods. One should not underestimate the difficulty- 
of reading a formal specification written in a mathematical notation. Specification 
must be recognized as a unique form of communication between human beings. 
Every opportunity should be taken to make the reading easier particularly by 
suitable naming of variables and data. Time to assimilate the techniques involved 
is important and reading does not always imply semantic.comprehension or the 
higher skill level — the ability to articulate. As it was clear that 19 of the subjects 
did not understand the specification sufficiently to answer any of the questions 
correctly despite their background, then we should not expect clients and software 
engineers to master Z and other formal methods without training.

It is not only for the benefit of the client that the specifications should be read 
easily but also the author. It is well known in programming that a time lapse can 
create difficulties for the writers themselves with their own code. Indeed, the poor 
style of many programmers, use of C, for example, has given it the undeserved 
label of a write-only language.

Training practitioners from the start to have appropriate names for identifiers 
and to include suitable explanatory text will ensure good comprehension from 
clients, fellow software engineers and implementors.

8.6 Discussion

In the Educational Issues session of the 1994 Z User meeting Wordsworth (1 9 9 4 r  
argued that almost everything that the software engineer does has a mathematical 
theory that can explain and illuminate it and therefore, that mathematics should be 
made the teaching medium and basis of an entire education program in software 
development. He acknowledges that software engineers may not be good at 
teaching mathematics and their students not good at understanding it. He concludes 
that universities have a critical part to play in changing this situation by finding 
ways to improve their teaching and enthuse their undergraduates, or improve 
selection of undergraduates.

There is no option of changing student selection criteria given the pressures 
political or otherwise. However, it is possible, as Wordsworth suggests, to look 
for new ways of improving our teaching and inspiring the students. We have, for 
example, found the use of Logica’s Formalizer tool for writing and type checking 
Z specifications valuable in providing direct feedback to the student, in much the 
same way that a compiler provides feedback to a programming student.
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This experiment suggests that in teaching formal methods it is crucial that 
appropriate time and effort is put into the early lexical and syntactic comprehension 
of the notation, supporting this through semantic cues in good choice of variable 
names and comments.

Whilst good software engineering does rest on mathematical rigor and formal-
ism, teaching it in the abstracted way of many mathematicians with terse term 
identifiers will do nothing to enthuse the students, instead it will create feelings of 
confusion, demotivation and inevitably failure.

8.7 Future developments

The experiment has now been repeated with a further 71 students and although 
the analysis is not yet complete the preliminary results-appear to confirm those 
presented here. To examine this further more research is needed, on a more 
in-depth and broader scale.

♦ A fully interactive approach could be used. This would entail writing further 
specifications so that all combinations of attributes are covered.

♦ More diverse subjects could be tested including representatives from indus-
try who employ formal specifications.

♦ The experiments could be replicated in other institutions to see whether 
similar results occur.

Other attributes could be included or investigated separately in these further ex-
periments.

The size of the Z specification needs to be increased to test further the effect 
of schema decomposition on readability and give a more realistic simulation of 
the type of specification normally encountered. Mitchell e ta l .  (1994) suggest that 
different Z specification structurings can lead either to versions where it is easy 
to understand the component parts but harder to see how they fit together or to 
those where it is easier to get an overall view of the system’s behavior but harder 
to understand the individual component parts. This implies that different styles of 
specification writing might be appropriate for different levels of abstraction and 
would need to be explored further.
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Notes

1. Minitab is a trademark of Minitab, Inc.
2. A revised version of that paper is to be found as Chapter 1 of this book.
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There have been few genuine success stories about 
industrial use of formal methods. Perhaps the best 
known and most celebrated is the use of Z by IBM (in 
collaboration with Oxford University's Programming 
Research Group) during the development of CICS/ESA 
(version 3.1). This work was rewarded with the presti-
gious Queen's Award for Technological Achievement 
in 1992 and is especially notable for two reasons: 1) 
because it is a commercial, rather than safety- or 
security-critical, system, and 2) because the claims 
made about the effectiveness of Z are quantitative as 
well as qualitative. The most widely publicized claims 
are: less than half the normal number of customer-re-
ported errors, and a 9% savings in the total develop-
ment costs of the release. This paper provides an 
independent assessment of the effectiveness of using 
Z on CICS based on the set of public domain docu-
ments. Using this evidence, we believe that the case 
study was important and valuable, but that the quanti-
tative claims have not been substantiated. The intel-
lectual arguments and rationale for formal methods 
are attractive, but their widespread commercial use is 
ultimately dependent upon more convincing quantita-
tive demonstrations of effectiveness. Despite the pio-
neering efforts of IBM and PRG, there is still a need 
for rigorous, measurement-based case studies to as-
sess when and how the methods are most effective. 
We describe how future similar case studies could be 
improved so that the results are more rigorous and 
conclusive. © 1996 by Elsevier Science Inc.

Address correspondence to Norman Fenton, Centre fo r  Software 
Reliability, City University, Northhampton Square, London E C IV  
OHB United Kingdom.

1. INTRODUCTION
In the last 10 years, there has been fierce debate 
within the software engineering community about 
the merits of using formal methods. The authors of 
this paper have been actively involved in this debate: 
on the one hand by doing research and technology 
transfer in this field (Fenton and Mole, 1988; Fenton 
and Hill, 1992), and on the other by doing empirical 
assessment of formal methods (Pfleeger et al., 1995, 
Finney, 1996). We therefore feel well placed to 
comment on the state-of-the-art of industrial use of 
these methods. While there is a grudging acceptance 
of their usefulness in safety and security critical 
applications, there is no such consensus for commer-
cial applications. Here the perceived benefits in 
terms of improved reliability are outweighed by per-
ceived overheads in development costs and training. 
In fact, the present position can be summarized as 
follows.

• Most formal methods have not penetrated far 
from their academic roots.

• Very few companies in the world use any formal 
methods systematically.

• Most major IT companies have no plans to use 
formal methods.

• The rare industrial uses of formal methods are 
restricted to formal specification; there is almost 
no evidence of any serious attempt at formal de-
velopment or program proof. Thus, the original 
raison-d’etre of formal methods has not been seri-
ously tested.

J. SYSTEMS SOFTWARE 1996; 35:209-216 
'5> 1996 by Elsevier Science Inc.
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• Although not widely used, there is now reasonably 
widespread awareness of two notations, Z and 
VDM, thanks mainly to the existence of training 
resources in these.

• The need to apply formal methods on security- 
and safety-critical systems is beginning to be rec-
ognized by some regulatory and standards authori-
ties (Bowen and Stavridou, 1993), but there are 
extremely few documented examples of such use.

Part of the reason for the lack of penetration is 
the near absence of convincing empirical evidence to 
support the benefits of using formal methods (Fen-
ton et al., 1994). However, one ongoing study has 
been routinely cited in many papers on formal meth-
ods as a rare example of how Z has been used 
effectively on a large and important commercial 
system. This is IBM's CICS/ESA (version 3.1) which 
was released in 1990. The project was prominent in 
the international survey of industrial uses of formal 
methods (Gerhart et ah, 1993; Craigen et al., 1995) 
as the largest commercial application.

The quantitative claims made about the effec-
tiveness of using Z on CICS are impressive. The 
most notable are

• 2.5 times fewer customer-reported errors;
• 9% saving in the total development costs of the 

release.

The cost savings is particularly important because, 
while reliability improvements are an expected bene-
fit of using formal methods, there has been no such 
expectation of economic benefits. Indeed, Bowen 
and Hinchey (1995) cited this cost savings in the 
CICS study as the main counterexample to the ‘myth’ 
that ‘formal methods delay the development pro-
cess’. Because of the high profile nature of the 
project, the claims about CICS have had far-re-
aching ramifications on the public perception of 
formal methods (it is also likely that UK research 
funding agencies have been influenced by the claims). 
For example, in 1992, IBM together with the Oxford 
University Programming Research Group won the 
highly prestigious Queen's Award for Technological 
Achievement. The citation includes the following 
text (our italics).

Oxford University Computing Laboratory gains the 
Award jointly with IBM United Kingdom Laboratories 
Limited for the development of a programming method 
based on elementary set theory and logic known as the 
Z notation, and its application in the IBM Customer 
Information Control System (CICS) product. The use o f  
Z  reduced development costs significantly and improved 
reliability and quality.

210 J. SYSTEMS SOFTWARE
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In light of the claims made about the use of Z in 
CICS, it seems reasonable to examine the evidence 
rigorously. There are a number of public domain 
reports about the study, although none have ap-
peared in the major software engineering publica-
tions. Of these, three focus to some extent on the 
evidence to support the effectiveness of the use of Z 
(Phillips, 1989; Collins et al., 1991; Houston and 
King, 1991). These reports are not easily accessible 
(appearing mainly in relatively minor conference 
proceedings). Our first aim is therefore to bring 
together these fragmented results from an indepen-
dent perspective. Thus, in Section 2 we describe the 
background to CICS/ESA and the way that Z was 
used during the development. In Section 3 we de-
scribe the specific claims that have been made, and 
we analyze these in the light of the evidence that is 
publicly available. We conclude that, while there are 
some grounds for optimism, the material in the 
public domain does not support the strong quantita-
tive claims that have been made. The problems with 
the quantitative evidence on CICS are a direct result 
of an inadequate case study set-up and an ad-hoc 
approach to measurement. These weaknesses in turn 
are probably explained by the fact that the project 
was set up before the issues of empirical validation 
and software measurement were as widely accepted 
as they are today. The empirical problems we iden-
tify are solvable for future similar studies simply by 
adhering to well-known best practice in software 
experimentation and measurement. With a small 
amount of additional investigation, the problems 
could even be partly resolved retrospectively for 
CICS. This improved approach to assessment is dis-
cussed in Section 4. It is our firm belief that the 
future of formal methods is critically dependent on 
these kinds of quantitative studies revealing benefits. 
The claims made for Z in CICS are exceptionally 
strong but need to be substantiated. Studies (con-
ducted along the rigorous lines we propose) that 
produce even modest quantifiable improvements ad-
vance the cause of formal methods. Indeed, in our 
own work on the SMARTIE project (Pfieeger et al., 
1995) we applied such an approach to demonstrate 
small but significant quality benefits of using formal 
methods on a major commercial system.

2. BACKGROUND TO THE CICS STUDY

CICS is the Customer Information Control System 
developed by IBM. It is an on-line transaction pro-
cessing system with many thousands of users world-
wide. It was originally developed in 1968. with new 
releases approximately every two years since then.

K. Finney and N. Fenton



Evali taring the Effectiveness of Z J. SYSTEMS SOFTWARE
1996; 35:209-216

211

In 1983 IBM decided to invest in a major restructur-
ing of the internals of CICS. Two years earlier 
Profe ssor Tony Hoare of the Oxford University Pro-
gramming Research Group had by chance met Tony 
Kenry, the IBM CICS manager at Hursley Park. 
This resulted in a research contract between IBM 
and PRG in 1982 to study the application of formal 
techniques to large-scale software development. In 
the initial studies undertaken by PRG, two notations 
were used for comparison, CDL (IBM’s internal 
ComKion Design Language) and Z (the specification 
language developed at PRG). Primarily because of 
this research it was decided that Z would be used for 
most of the new code required in the restructuring 
of CICS.

In the event when CICS/ESA version 3.1 came 
out in June 1990 it included (Houston and King, 
1991)

• 500,000 lines of unchanged code;
• 268,000 lines of new and modified code including

37.000 lines ‘produced fr0m Z specifications and 
designs’ and

11.000 lines partially specified in Z
(2,000 pages of formal specifications in total).

In none of the published reports is it made clear 
what proportion of the ‘Z code’ was modified (and 
hence, respecified based on a previous version) com-
pared with new code. We shall see that this is one of 
several omissions that have serious implications on 
the results.

There had been a thorough program of education 
and training in the use of Z for the IBM personnel, 
and this was concentrated on the specification and

design techniques. Throughout the project, help was 
available from the Oxford team; workshops, tutori-
als, and a specially written Z manual were provided. 
There was only limited use of refinement techniques 
and very little proof. Specifications and one or two 
levels of design were written in Z, but a notation 
based on Dijkstra’s guarded commands (Dijkstra, 
1975) was used to express designs and bridge the gap 
to procedural code. In most cases, there was no 
formal relationship between the stages, and noting 
the preconditions was the only attempt at rigour.

3. THE QUANTITATIVE CLAIMS MADE

The claims for the benefits of the use of Z in this 
project seem to be based on the comparison be-
tween the development of the code from the speci-
fications where Z has been used and that where no 
Z was involved (see Figure 1). This still leaves a 
number of doubts about exactly what is being com-
pared with what (see below), but no matter what 
assumptions are being made, it is clear that the ‘Z 
data' is defined on a relatively tiny amount of code 
compared with the ‘non-Z data’. It is also clear that 
the Z modules were not chosen at random. From an 
experimental viewpoint, these are major (related) 
problems that could have been easily averted.

Claim 1. Fewer Problems Overall During 
Development

Figure 1 (which is copied from the only graph given 
in the literature) is a comparison of the reported 
‘problems per KLOC’ (Thousands of Lines of Code) 
at each key phase of the project development. These 
phases are defined as part of the standard IBM

figure 1. Comparison between Z use and 
ton-Z use.
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development life cycle. Phillips (1989) draws the 
graph up to the system test phase, but Houston and 
King (1991) adds the customer availability data (eight 
months after release).

The problem rate appears to be larger in the early 
stages of development with the code derived from Z 
specifications, but in the later stages of the life cycle 
of the software, it has fewer errors. This is consistent 
with our own findings when we analyzed the effec-
tiveness of formal methods on another industrial 
system as part of the SMARTIE project (Pfleeger et 
al., 1995). It is proposed that the reason for this is 
that by using Z, specifiers are forced by the rigour of 
the notation to tackle all the complexities of the 
problem and therefore make a larger proportion of 
their mistakes at this stage. In contrast, the non-Z 
users have developed code which has errors in it 
right up to the final stages of the process when fixing 
errors will be more expensive.

The most serious concerns about the validity of 
this claim are
• The omission of a scale on the vertical axis of the 

graph in Figure 1.
• It is not clear what is being compared
37K lines with Z: 268-37K lines without Z;
37K lines with Z: 268-37-1 IK lines without full Z; 
37K lines with Z: 268 + 500K lines without Z.
Houston and King (1991) assert that ‘Since similar 
measurements were made on the non-Z code on this 
release and on all the code in previous releases, 
meaningful comparisons are possible.’ From this as-
sertion, it is our understanding that the most likely 
comparison being made is between 37KLOC of Z 
and 768KLOC without Z, but the public papers do 
not make this clear. This basis for comparison is the 
most worrying scenario since the non-Z code is 
heavily biased with old code which has problem 
reports dating back many years. In particular, the 
number of post release problems for such code must 
inevitably be higher, but these cannot have been 
included in the Z code from the timescale involved 
in the graph.
• The fact that we do not know what proportion of 

the Z specification relates to new modules (as 
opposed to just changed) is really crucial. Where 
an existing module is being respecified, we would 
expect to see a significant drop in problem reports 
compared to both the previous version and the 
baseline. This is true irrespective of the specifica-
tion method used. After all, IBM has many years 
of experience with the existing code and has ex-
tensive knowledge of where the problems lie; this
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is a major rationale for making changes. If, as it 
seems likely, the proportion of changed code in 
the Z specified portion is significantly different 
from the proportion of changed code in the non-Z 
portion, then this is further evidence that the 
problem density data between the Z and non-Z 
code cannot be meaningfully compared.

• As any involvement from Z stops after the 3rd 
stage (module level design), it is not clear what 
effect Dijkstra’s language had and whether it was 
used on the non-Z code.

It is not clear if the two types of code were subjected 
to the same types of inspections and testing (it is 
highly unlikely this would be possible, given the very 
different nature of the documents). Consequently, it 
is not clear if the class of problems being reported 
(especially prior to Ut) are comparable. Nor do we 
know how problems were counted. If an error origi-
nated in a schema, was it counted with every inclu-
sion? It is also certain that not all errors are equally 
serious (there appears to have been no attempt to 
weight them by fixing time or severity); because of 
this, the absence of a scale in Figure 1 is an even 
more serious omission.

• It is not clear what KLOC means for non-code 
documents. Every phase prior to Ut (Unit Test) in 
Figure 1 involves a document which is not code. 
The most likely explanation is that the KLOC at, 
say Pld (product level design), is measured as the 
KLOC in the code that is eventually implemented 
from the design. Also, it is not clear if comments 
are included in KLOC and if this is significantly 
different in the two types of code.

• The increased supervision of those writing in Z 
may have been a factor as they were employing a 
completely new technique.

• The expertise available from PRG on the Z parts 
may have been a critical factor.

Claim 2. Development Savings
Of all the claims made about the benefits of using Z 
on CICS, the most impressive and surprising is the 
well publicized 9% reduction in overall project costs. 
Specifically, Houston and King (1991) assert

‘IBM has calculated that there is a reduction in the 
total development cost of the release. Based on the 
reduction in programmer days spent fixing problems, 
they estimate a 9%  reduction as compared to develop-
ing the 37,000 lines without Z specifications.

The 'problems’ on which the figure is based are 
restricted to those discovered during development;

K. Finney and N. Fenton
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we believe that they do not include post-release user 
reported problems. Houston and King (1991) do not 
state this, but a very similar quote using the 9% 
figure appears in Phillips (1989) which was published 
before the new release (in fact, Phillips’ version of 
Figure 1 only goes as far as the system test).

The concerns we have already expressed about 
the basic comparison between Z and non-Z derived 
code make the 9% figure already seem less convinc-
ing. However, we are also concerned about how the 
figure was calculated. The second sentence in the 
Houston and King (1991) quote is as much detail as 
is presented in all the papers about this, so we can 
only speculate on what it really means. There is a 
suggestion that the extra time spent on doing the Z 
specifications (not to mention training, etc.) is not 
accounted for. This is a gross omission. We are also 
concerned about the word ‘estimation’. It suggests 
that no actual data on time to fix the problems was 
recorded. Rather, it appears that an IBM standard 
‘cost to fix a problem’ was used. Let this cost be c. 
Now suppose the problem density of the portion of 
code derived from the Z specification was x  KLOC 
and the problem density of the portion of code 
derived from the non-Z specification was y  KLOC. 
Then it appears that they have computed

c*3|*(y -  x)
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t y  -  x,
that this comes to 9% of the actual total cost of 

¡release.
is still unclear from the literature how much 

iparative measurement went on and what statis-
jwere collected.

31a: m 3. Customer Benefits 
Houston and King (1991) assert

‘ 1.. the figures on number of problems reported by 
customers are extremely encouraging: in the first 8 
months after the release was made available, the code 
which was specified in Z seems to have approximately 
2 5 times fewer problems than the code which was not 
specified in Z. These figures are even more encourag-
ing when it is realised that the overall number of 
p-oblems reported is much lower than on previous 
releases. There is also evidence to show that the sever-
ity of the problems for code specified in Z is much
lewer than for the other problems’, 

he-e are actually three claims being made here 
nat we address in turn.I l l  W C  u u v i j  . . .

That the Z code has 2.5 times fewer problems 
than the non-Z code. The 2.5 figure is. presum-
ably the differential shown in the last phase of 
the graph of Figure 1. The authors do warn that

‘the length of time and the size of the sample mean 
that figures available so far should be treated with 
some caution... that many customers do not change 
immediately to a new release when it is made available’

TfiiS is a very obvious drawback to the 2.5 daim.
We have already noted that the non-Z code con-
tains a very high proportion of old and well-used 
code which would inevitably attract more prob-
lem reports. All of the Z code is either new 
(hence, contains new functionality not yet much 
used on IBM’s own admission) or changed (hence, 
inevitably reducing the number of known prob-
lems). It is therefore our view that the 2.5 figure 
should be treated with more than just ‘sonic 
caution’.

2 q^e overall number of problems reported is much 
lower than on previous releases. In fact, it is not 
clear what is being compared. The problem re-
ports for the new release only cover the first eight 
months; the problem reports for previous releases 
cover their entire lifetime (in each case this is at 
least two years). It is therefore inevitable that the 
number of problems reported is much lower. 
However, if the comparison is genuine (that is. if 
the comparison is with the number of problems 
reported in previous releases restricted to their 
first eight months), then it is strange that IBM 
has not provided details of the data. There seem 
to be no subsequent reports to describe whut 
happened after the first eight months.

3 The severity of the problems for code specified in 
Z is much lower than for the other problems. 
Unfortunately, the ‘evidence’ is not presented at 
all For example, we do not know if this is based 
on a subjective classification of the problems or 
on something more scientific, like the relative 
time to fix the problems.

4 . COMPARING THE CASE STUDY WITH BEST 
p r a c t ic e

IBM does not claim to have run a scientific experi-
ment to evaluate the effectiveness of Z. To a certain 
extent this is understandable because when the pro- 
iect began, the necessary knowledge of empirical 
software engineering and software measurement 
were not widely understood. However, it is impor-
tant to investigate just how the evaluative study was 
conducted, and to identify areas where it could have 
been improved (and indeed may still be improved).

An important contribution has recently been made 
by Kitchenham et al.. in the study of experimental 
validation of software tools and techniques. Kilchcn- 
ham et al. (1995) argue that in order to be able to



draw significant inferences from a case study, certain 
basic steps must be taken so that the conclusions 
have a valid statistical basis. In carrying out such a 
case study, they have suggested guidelines to follow 
in the design and administration stage, and a check-
list to run through in the planning stage. With these 
in mind, we shall reassess the CICS project and its 
importance as a case study in the use of formal 
methods.
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Aims and Objectives
The first stage in planning a project to assess the use 
of Z in CICS should have been to define clearly the 
objectives and to state the hypothesis that was to be 
tested.

To some extent this was done. The literature 
states that the incorporation of Z into the new CICS 
release was intended to improve the quality of the 
product and extend its life (Phillips, 1989). The aim 
of the statistics collected should have been to lead to 
a conclusion about whether this had been achieved. 
However, the baseline against which any compar-
isons were made is not at all clear. Some of the 
literature seems to imply comparisons were only 
made within the project (Phillips, 1989), while other 
writers hint that measurements made on other simi-
lar projects were used for comparison (Houston and 
King, 1991).

The lack of clarity over the subjects for the com-
parison reinforces the idea that the aims and objec-
tives were not really thought out at the start. Exter-
nal project constraints affecting the aims are not 
mentioned. The effect of working very closely with 
an academic group, PRG, whose expertise was on 
call throughout and whose aims might not have been 
primarily commercial is not taken into account. 
There is mention of the shift in the emphasis of the 
project with the introduction of Z, but no details are 
given for comparison (Collins et ah, 1991). It is also 
not clearly stated if the time constraints imposed by 
the extra training in Z are taken into account in 
evaluating the project budget.

Collins et al. (1991) widen the aims of the case 
study to say that its purpose is to address the issues 
of

whether aspects of large and complex systems could
be captured using mathematics;

whether there would be practical benefits from do-
ing that;

who in the development team should use the meth-
ods;

what training should be given; 
what tools would be required.

Analysis of these issues is vague, however. Collating 
the various views and intentions together, the sim-
plest hypothesis adopted seems to have been by 
implication:

Using formal methods in the CICS project would im-
prove the quality of the resulting software and reduce 
development and maintenance costs.

Measurements
The response variables and how they are to be 
measured should be the next items on a case study 
checklist. Here the literature is divided on what was 
intended before the study and what is reported to 
have taken place.

Collins' paper, written for a conference in July 
1988 at a stage when the implementation of the new 
version of CICS was still underway, clearly states 
their intentions (listed below).

(1) To collect data to consider for comparison

the CICS process before the introduction of Z; 
the CICS process using Z; 
processes used by similar products using other 

methods.

(2) To measure in the specification and design phase 

time spent on producing documentation;
size of documentation;
resources spent on inspections;
number of problems found and their severity.

(3) To measure at the coding stage 

time spent writing and testing code; 
number of lines of code produced; 
problems at each stage (unit test, function test.

etc.);
problems after shipping;
Categorization of problems by type (specifica-

tion, design... );
Categorization of problems by severity.

There does not appear to be a follow up paper 
where the results of these measurements are re-
ported.

As discussed earlier, Phillips (1989) gives a single 
graph which shows results of a comparison of prob-
lems per KLOC through the development process as 
far as the system test. The other data tables in the 
paper show lines of code and schema variables
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counted, but no conclusions are drawn from this 
data. Houston and King (1991) use the same graph 
but extend the horizontal scale to show problems 
per KLOC up to the customer availability stage.

They also mention that measurements were taken 
relating to

time spent producing specification and design docu-
ments;

the size of documents; 
the resources spent on inspection; 
the number of problems found; 
the severity of problems found.

No results are given, however, and all claims seem to 
be made on the number of problems found. There is 
also mention made of similar measurements made 
on non-Z developed code on this release and com-
parisons with all code in previous releases, but again, 
details are elusive.

From the diagrams available, it is clear that the 
measurements were made at several development 
stages, but the latest stage reported seems to be 
eight months after the release, and in fact, the 9% 
statistic quoted is in the paper written before that 
release, so customer feedback could not have been 
included.

Practical Issues
In Section 3 we raised the concern about the fact 
thatj the ‘Z data’ is defined on a relatively tiny 
amount of code, compared with the ‘non-Z data’. 
Frojn an experimental viewpoint, this is a major 
problem that could have been easily averted. Ideally, 
a set of similar modules should have been randomly 
assigned in equal numbers to Z and non-Z develop-
ments. Literature on the statistical design of experi-
ments would provide models for this (Montgomery, 
1984). Even retrospectively it may be possible to 
salvage something by selecting a ‘similar’ non-Z 
module for each of the Z modules and then restrict-
ing the comparative analysis with non-Z code to the 
chosen modules.

The basis under which Z was incorporated into 
the CICS project is not clear. The criteria for the 
selection of the modules to be specified using Z is 
not made explicit. The complexity, length, function-
ality, and isolation of these modules are factors 
which should have been taken into account. Hous-
ton notes that unless this is clear, any comparison of 
error rates is meaningless.

The team that worked on Z (originally a team of 
about 12) were separate from the other project

workers, but we are not told how the team was 
chosen and whether they had particular specialisms 
or expertise which would affect the outcomes. Collins 
does say that accelerated development of selected 
modules was achieved by using two senior and expe-
rienced developers.

There seems to have been an initial intention to 
use Z for specification and take this through design 
to code. However, in practice, no rigor was applied 
to the interface between the different levels of ab-
straction, and in particular, the links between Z and 
Dijkstra’s language of guarded commands do not 
appear to have been formalized.

So far we have looked at the aims, hypothesis, and 
some possible confounding factors. As a basis for a 
study which makes claims about the improvement 
derived from using Z, there seem to be deficiencies. 
The project did not have a clear basis for the factors 
that were to be measured, and in the published 
work, the single relevant statistic quoted is based on 
an ill-defined comparison.

The only measurement given on which to base the 
claims is the problem per KLOC of the Z specified 
code compared with that of non-Z. It is not clear 
how far this goes in validating the first part of the 
hypothesis. Using problems per KLOC as a single 
‘quality’ measure has many well-known pitfalls (see 
Fenton (1996) for a comprehensive discussion).

If the second part of the hypothesis concerns 
maintenance and the long term future and develop-
ment of the code, it is unfortunate that there have 
been no studies published about customer reaction 
and experience. Houston and King (1991) remind us 
that when a new release takes place, many cus-
tomers do not change over immediately, and even 
those that do, will not use all the new functionality 
straight away. They also state that the overall num-
ber of problems reported is lower than on previous 
releases. The fact that well over 50% of the code 
was unchanged from the previous release may invali-
date any argument based on that statistic. Also given 
is a comment on the severity of the problems, but 
there are no figures or details to back this up.

5. CONCLUSIONS AND RECOMMENDATIONS
The CICS experience is widely regarded as the most 
significant application of formal methods to an in-
dustrially sized problem. The claims made about the 
effectiveness of using Z on this project are highly 
impressive and often quoted. It is therefore essential 
that the claims are substantiated with rigorous quan-
titative evidence. We have found that the public 
domain articles do not provide such evidence. We



216 J. SYSTEMS SOFTWARE
1996; 35:209-216

K. Finney and N. Fenton

believe the following are needed if any firm conclu-
sions are to be drawn.

• An update with the results for the 1990 release 
under further customer experience.

• Clarification of the basis under which the mea-
surements were made.

• More details of the analysis of the comparative 
statistics mentioned in the papers.

The formal methods community should address 
the problems of measuring the effect of incorporat-
ing their ideas into large-scale projects if there is to 
be a significant shift towards their adoption. Busi-
ness needs hard evidence to convince them that the 
outlay in training and front loading of effort are 
worth the benefits in the resulting software. We 
believe this can be achieved without the prohibitive 
expense of conducting a formal experiment. We 
adopted such an approach in the SMARTIE project 
(Pfleeger et al., 1995; Pfieeger and Hatton, 1996) 
with the effect that we were able to quantify rigor-
ously the moderate benefits (in terms of improved 
operational reliability) achieved with formal specifi-
cation using VDM and CCS. Thus, we recommend a 
careful case study approach, which involves the fol-
lowing.

Have clear aims.
Set up a hypothesis.
Minimize external factors.
Minimize confounding factors.
Plan and collect relevant measurements.
Analyze and report the results.

For all its obvious qualitative benefits, the CICS 
study only managed to be moderately successful in 
one or two of the above case study criteria. This 
partially explains why the claimed quantitative bene-
fits of using Z in this study have not had the ex-
pected impact on current industrial practice.
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Abstract

The effects of natural language comments, meaningful variable names, and structure on the comprehensibility of Z specifications 
are investigated through a designed experiment conducted with a range of undergraduate and post-graduate student subjects. The 
times taken on three assessment questions are analysed and related to the abilities of the students as indicated by their total score, 
with the result that stronger students need less time than weaker students to complete the assessment. Individual question scores, 
and total score, are then analysed and the influence of comments, naming, structure and level of student's class are determined. In 
the whole experimental group, only meaningful naming significantly enhances comprehension. In contrast, for those obtaining the 
best score of 3/3 the only significant factor is commenting. Finally, the subjects’ ratings of the five specifications used in the study in 
terms of their perceived comprehensibility have been analysed. Comments, naming and structure are again found to be of impor-
tance in the group when analysed as a whole, but in the sub-group of best performing subjects only the comments had an effect on 
perceived comprehensibility. © 1998 Elsevier Science Inc. All rights reserved.

1. Introduction

th

Formal methods have been proposed as part of the software development lifecycle for many years but there is still 
miich debate on the benefits their inclusion will produce and the claims that can be made, (Hall, 1990; Saiedian, 1996; 
Bowen, 1995; Cohen, 1989). Their widespread adoption in industry will only take place when there is convincing ev-
idence of their advantages and when the methods and notation are more accessible to a wide range of users. Compre-
hensibility in terms of reading and understanding a specification written in a formal notation is one of a number of 
factors that may affect the willingness of practitioners to adopt these methods. To add to the debate it is necessary 

at well designed empirical studies should be conducted to demonstrate aspects of the use of formal methods within 
software development project. Their results will help identify those factors which produce benefits, or drawbacks, 

ar d give some quantifiable evidence to augment the arguments based on the valuable experiential knowledge we al- 
re ady have.

There are obvious difficulties in carrying out experimental work in the context of a large software project. The de- 
lopment costs of software are high enough without supporting duplication or control projects. Nevertheless if evi-
nce is to be produced to support the claimed improvements of a particular method, software engineers must face the 
ue of how this is to be obtained (Fenton et al., 1994).
As Craigen et al. (1995) have noted, studies that are carried out on the application of formal methods within large 
ale projects frequently fail to collect relevant data on the benefits and drawbacks. Those case studies which have col-

ve
de
is:

to

sc
leoted data are often statistically inadequate, not following the good practice in the design of factorial experiments as 
shlown by Kitchenham et al. (1995).

Within a large project a relatively small group may be involved in writing a specification, but if that specification is 
be useful for refinement, as a basis for testing or for verification of a client’s requirements, a larger group of people 

should be able to read the documents and understand the notation. The appropriate education of future software en-
gineering practitioners in this area will be vital if there is to be widespread adoption of formal methods in the industry 
beyond specialised research and development departments. It is necessary to equip these future practitioners with a 
broad knowledge of the latest techniques which may be required, including the use of a formal requirements specifi-
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cation notation, for example Z. (Spivey, 1992; Woodcock, 1989). Z is model oriented, and its use involves identification 
of key parts of a proposed system and the provision of predicate logic statements to describe their structure and be-
haviour under certain conditions. A knowledge of relational set theory and first order predicate logic and a facility with 
symbolic manipulation are all essential in interpreting the specification. In Z, declarations about sets and variables, 
together with the logic predicates which apply to them, can be grouped together in structures called schemas represent-
ed diagrammatically rather like a small table. These schemas often refer to the effect of a particular operation on some 
part of the overall state or system. Z therefore requires a considerable conceptual framework, and, for fluent manip-
ulation and comprehension, a relatively high level of mathematical ability, (Finney, 1996).

We have observed that just the reading of specifications written in Z causes great difficulty to a wide range of soft-
ware engineering students, and conjecture that the same problems will be found in the software development industry.

In this paper we extend the work of a pilot study reported elsewhere, (Finney and Fedorec, 1996). In order to quan-
tify the difficulties that arise in reading specifications written in Z, an experiment was carried out with the aim of id-
entifying the effect of three factors, (commenting, variable naming, and structure), on the comprehensibility of a small 
portion of a specification, (see Appendix D for sample specification and questions). The work is also an attempt to 
reflect similar studies carried out on the comprehensibility of programming languages (Tenny, 1988). It is hoped that 
the insights gained may improve our approach to the teaching of formal methods, and also form a basis for future 
research on a larger scale with members of the software engineering community.

2. The experiment

. 1. Design

The two primary factors considered important in affecting the comprehensibility of a formal specification in Z were; 
(i) the use of meaningful identifying names within the schemas, and (ii) the effect of comments in natural language be-
tween schemas. Thus the experimental design was a 2 x 2 factorial, involving four versions of the same specification, 
each having a different combination of these factors, as indicated in Fig. 1.

It was conjectured that version D (with meaningful variable names and additional natural language comments) 
would be the most comprehensible and A (without either) the least. All these specifications contain a certain degree 
o f structuring although they are only small fragments of a larger specification. To enable an assessment of the effect
0 f this structuring, a monolithic form of D was produced, E, by combining the original schemas into one. There are 
two possible effects of this:
1 the lack of structure will not affect the expected advantage of D, or, 

the lack of structure will undermine the advantage expected in specification D.
T|he five specifications were assigned random numbers so that the subjects of the experiment could not deduce anything 

om the rank, (see Table 1).
The hypothesised ranking, in terms of comprehensibility, from easy to difficult, was 1 4 (5 2) 3. It was conjectured 

tat the lack of structure in such small specifications would be small, and the bracketing of 5(B) and 2(C) indicates our

Meaningful Names

0 1

Comments 0 A B

1 C D
Fig. 1. Specifications in terms of the two primary factors.

Table 1
Showing the coding of specification labelling

Specification 1(D) 2 ( 0 3(A) 4( E) 5(B)

Meaningful names 1 0 0 i 1
Comments 1 1 0 i 0
Structure 1 1 1 Ü 1



prior lack of view of the relative importance of comments and naming in isolation. The possibility of an interaction 
between comments and names was also of interest.
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2.2. R esp o n se  variab les

The response variables were in three forms.
Tim es: The times taken to read the introductory document to the test, and the times taken to answer each of three 

questions.
Scores: The scores obtained on these three questions, where 1 was awarded for a correct answer and 0 for an incor-

rect one. The nature of the questions made it easy to decide on the marks and an answer sheet of acceptable answers 
was prepared before marking. All marking was done by one person so that there was consistency.

R ankings: Subjective rating of the comprehensibility of the specifications, by each of the subjects. A symmetric five 
point scale was used with -2  corresponding to ‘unclear’, and 2 corresponding to ‘clear’.

2.3. C onduct o f  the  e x p e r im e n t

2.3.1. S u b je c ts
These were 147 undergraduate and postgraduate students at the University of Greenwich. They came from six dif-

ferent classes studying at levels from Higher National Certificate to Masters, and are, for the purposes of the exper-
iment, labelled C1-C6. It was expected that there might be significant differences in the performances of these classes. 
However in this paper ‘class’ is largely treated as an experimental ‘blocking’ factor to improve the sensitivity of the 
main factors of the experiment.

2.3.2. A d m in is tra tio n
The experiment took place in the normal course of the students’ attendance at the university but the participation 

was voluntary. The students were assigned one of the five specifications randomly. They were given an instruction sheet 
and a separate question/answer sheet. The experiment consisted of two phases. In the first phase each subject studied 
one of the specifications, answered three questions on it and recorded their times to read and complete the questions. In 
the second phase each subject was issued with all five specifications and asked to rank them according to the ease with 
which they could read them.

2.4 . D a ta  ‘c le a n in g ’

¡Ail missing values have been treated as such and no missing value imputation has been used. Also responses such 
thpt the time spent on either reading the introductory details or answering any of the questions were zero have been 
treated as erroneous, probably due to rounding, and the associated times have also been treated as missing values. The 
data obtained from'the experiment, and a summary can be found in Appendix A.

DO.O 200.0 300.0 400.0 500.0 600.0

Std. Dev = 113.65 
M ean = 1492 
N = 11100

Fig. 2. Frequency distribution of times taken in seconds to answer Question l.
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Analysis

A n a ly s is  o f  tim in g  d a ta

The times taken (in seconds) to answer each question and the total time taken for all three questions are displayed in 
Fists. 2-5. ^

Note that the multi-modality in Figs. 2-4 is an artefact resulting from the tendency of subjects to round times to the 
neiirest minute. This has been smoothed out in Fig. 5 for TOTQT. It would be possible, in principle, to take into ac- 
co .int the 'rounding’ tendency, in a model-based analysis of this timing data. However, such an analysis would be un-
necessarily complicated in view of the relatively limited information contained in the timing data. The raw (cleaned) 
timings have therefore been used in the analyses reported in this paper. The correlation matrix between the timing vari-
ables was:

TQ1 TQ2 TQ3 TREAD

TÇf1 1 . 0 0 0 0 0 . 1 3 6 0 0 . 2 7 0 0 0 . 0 3 8 4
( 1 1 1 ) ( 1 0 8 ) ( 1 0 1 ) ( 9 0 )

P - 0. 161 0. 0 0 6 0. 719

TQ2 0 . 1 3 6 0 1 . 0 0 0 0 0 . 2 3 7 1 0 . 0 4 8 3
( 1 0 8 ) ( 1 3 9 ) ( 1 2 2 ) ( 9 3 )

P 0. 161 - 0. 0 0 9 0.  646

TQ3 0 . 2 7 0 0 0 . 2 3 7 1 1 . 0 0 0 0 0 . 1 0 9 3
( 1 0 1 ) ( 1 2 2 ) ( 1 2 7 ) ( 8 7 )

P 0. 0 0 6 0. 0 09 - 0.  313

TREAD 0 . 0 3 8 4 0 . 0 4 8 3  • 0 . 1 0 9 3 1 . 0 0 0 0
( 9 0 ) ( 9 3 ) ( 8 7 ) ( 9 5 )

P 0.  719 0.  646 0.  3 13 -

( C o e f f i c i e n t / ( C a s e s ) / 2 - t a i l e d  S i g n i f i c a n c e )

The times to complete Q1 and Q2 are significantly correlated with the time for Q3, but not with each other. None of 
thfe times to do the questions is significantly correlated with the time to read the introduction.

A Factor Analysis of the timing data was carried out using the correlation matrix, based on an initial Principal 
Components Analysis. Only one principal component had an eigenvalue greater than one, and hence only one factor 
wis extracted. Hence, we conclude that there was no internal structure to the timings of the components of the test. We 
ncite that, the proportion of variance accounted for, (the commonalties), are largest for Q1 and Q3 and that the time to 
rekd the introductory material is not significantly related by the common time factor. Details are given in Appendix B.

3 d . Dev =73.21 
M ean = D5.8 
N = 139.00

Fig. 3. Frequency distribution of times taken in seconds to answer Question 2.
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a d .  D ev =66.35 
M ean = 98.5 
N = 127.00

Fig. 4. Frequency distribution of times taken in seconds to answer Question 3.

3 d . Dev = 174.30 
Mean = 3415 
N = 98.00

200.0 400.0 600.0 800.0 1000.0

Fig. 5. Frequency distribution of time taken in seconds to answer all questions.

Fig. 6. Frequency diagram of total score.

3.2. A n a ly s is  o f  scores da ta

Clearly, the variable most likely to give a good measure of comprehension is the total score. Fig. 6 shows the dis-
tribution of total score, which is bimodial.

The modes. 0 (the 'failures') and 3 (the 'successes'), are analysed in detail later. With total score as response variable 
an initial Analysis of Variance (ANOVA) was performed with two factors: (i) NLVL, level of student class, and (ii) 
SPEC, the specification, with the total time taken was used as a covariate. The ANOVA table is given in Table 2.
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Ta ble 2
At alysis of variance of total scores ,l

So u r c e  o f  v a r i a t i o n Sum o f  s q u a r e s DF Mean S q u a r e F S ig .  o f  F
Ma i n  e f f e c t s 2 5 . 0 1 6 9 2. 780 2. 235 0. 030
NL VL 1 0 .3 5 5 5 2. 071 1. 665 0. 155
SR EC 1 4 .6 6 1 4 3. 665 2. 947 —JO. 026
Co v a r i a t e s 1 7 .2 8 3 1 1 7 . 2 8 3 1 3 .8 9 5 0. 000
TC TQT 1 7 .2 8 3 1 1 7 . 2 8 3 1 3 .8 9 5 0. 000
2- Way i n t e r a c t i o n s 1 8 . 0 2 0 18 1. 001 0. 805 0. 688
MI VL, SPEC 1 8 . 0 2 0 18 1. 001 0. 805 0. 688
E:< p l a i n e d 6 0 .3 2 0 28 2. 154 1. 732 0. 035
Re s i d u a l 8 3 . 3 3 7 67 1. 244
To t a l 1 4 3 .6 5 6 95 1. 512

51
147 c a s e s  w e re  p r o c e s s e d ,  
c a s e s  (3 4 .  7 p e t )  w e re  m i s s i n g .

a A nova o f  TOTS by  NLVL a n d  SPEC, w ithTO TQ T. HIERARCHICAL sums o f  s q u a r e s ;  C o v a r i a t e s  e n t e r e d  AFTER m a in  e f f e c t s .

Ta ble 3
Mean total scores, (number of cases), by specification

SPEC

1, 71
(21)

0. 84
( 19 )

1. 06 
(1 8 )

1. 74
(1 9 )

1, 32
(1 9 )

It may be seen that the form of specification, SPEC, is significant with a p-value of 0.026. but that the effect of class 
level, NLVL, and the interaction, NLVL*SPEC, have not been found to be significant. Accordingly, NLVL has been 
omitted from the next ANOVA. The mean scores, for the different specifications are given in Table 3.

We see that the ranking of the specifications, by decreasing mean TOTS, is

4(E) Meaningful names, comments but no structure 
1(D) Meaningful names, comments and structure 
5(B) Meaningful names, no comments but structure 
3(A) No meaningful names, no comments but structure 
2(C) No meaningful names, but comments and structure

which may be compared with the conjectured 1(D) 4(E) (5(B) 2(C)) 3(A). It is seen that 1(D) and 4(E), distinguished by 
the presence or absence of structure, are not significantly different in terms of mean response, with means 1.71 and 
1.74, respectively. Also, the mean scores for 3(A) and 2(C), (1.06 and 0.84), without meaningful names are substantially 
less than that for 5(B), with meaningful names, (1.32).

The experiment had been designed with a factorial 2 x 2 + (1) ’treatment-structure7, and the ANOVA for this de-
sign is given below:

T e s t s  o f  S i g n i f i c a n c e  f o r  TOTS u s i n g  Cov Adj  SEQUENTIAL Sums o f  S q u a r e s

S o u r c e  o f  V a r i a t i o n  SS DF MS F  S i g .  o f  F

WITHIN + RESIDUAL
REGRESSION
CMT
MNFUL
SjTRCT
CMT * MNFUL

( M o d e l )
( T o t a l )
R - S q u a r e d  =  
A d j u s t e d  R - S q u a r e d :

119 . 70 91
12. 90 1

2. 53 1
5. 80 1
0. 24 1
0. 76 1

25. 74 5
145 . 44 96

0. 177
0. 132

1. 32
12.  90 9. 81

2. 53 1. 92
5. 80 4. 41
0.  24 0. 19
0.  76 0.  58

5. 15 3. 91
1. 52

0 . 002  
0.  169 
0.  039  
0.  667 
0.  449

0.  0 03
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R e g r e s s i o n  a n a l y s i s  f o r  WITHIN + RESIDUAL e r r o r  t e r m - - I n d . i v i d . u a l  U n i v a r i a t e  0.  9 5 0 0  c o n -
f i d e n c e  i n t e r v a l s .  D e p e n d e n t  v a r i a b l e  TOTS

c o v a r i a t e B B e t a S t d .  E r r . t - V a l u e S i g .  o f  t

TOT
CO
TOT

QT
l/ARIATE

QT

- 0 . 0 0 2 1 4  
L o w e r  - 9 5 %  
- 0 . 0 0 3

- 0 . 3 0 3 9 3  
CL- U p p e r  
- 0.001

0 . 001 -3. 132 0 . 002

The only significant factor is whether MNFUL, i.e. the indicator of whether meaningful names are given to variables. 
Commenting, CMT, and Structure, STRCT, with a /7-values of 0.169 and 0.667, are not significant, and there is not a 
significant interaction between naming and commenting. We note also that the covariate, TOTQT, the total time to 
answer the questions has been found to be very significant with an estimated regression coefficient for TOTQT of 
-0.00214 (se = 0.001), establishing an inverse relationship between total score and total time to answer the questions. 
Ur surprisingly, the better students take less time.

3.3. S u ccess  a n d  fa i lu r e  a n a ly s is

3.3.1. In d iv id u a l q u es tio n  a n a ly s is
Multiple Logistic Regression Analysis was done on the responses to each of the three questions. In all three analysis 

the use of meaningful variable names was the only significant factor, with a significant negative coefficient for time 
taken for both Questions 2 and 3. The results are therefore confirmatory of the results obtained above.

3.3.2. F acto rs a ffec tin g  success, (sc o re  =  313), a n d  fa ilu re , (sc o re  =  0 /3 )
Multiple Logistic Regression Analysis was done separately on the outcomes: ‘Success’, (score — 3/3), and ‘Failure’, 

(score = 0/3). The results of the analysis o f ‘Success’ are shown below:

Logistic analysis of the probability of getting 3/3
Nu mber  o f  s e l e c t e d  c a s e s  =  147 .
Nu mber  r e j e c t e d  b e c a u s e  o f  m i s s i n g  d a t a  =  50.  
Nu mber  o f  c a s e s  i n c l u d e d  i n  t h e  a n a l y s i s  =  97 .

D e p e n d e n t  v a r i a b l e : ITHREE  

I n i t i a l  - 2  Log  l i k e l i h o o d  =  1 1 0 .  7 1 0 2 2 .

F i  t  t e d  m o d e l
- 2  Log l i k e l i h o o d =  79.  9 78  
G o o d n e s s  o f  f i t  =  78 .  2 0 4 .

C h i - S q u a r e  DF S i g .
M o d e l  C h i - S q u a r e  3 0 . 7 3 3  9 0 . 0 0 0 3

C l a s s i i i c a t i o n  t a b l e  f o r  ITHREE

P r e d i c t e d
0 1 P e r c e n t  c o r r e c t
0 1

67 5
13 12

O v e r a l l

O b s e r v e d
0
1

9 3 .  0 6 %  
48 .  0 0 %  
8 1 .  44%
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Va r i a b l e  s i n  t h e  e q u a t i o n

Va r  i  a b 1 e B S t d .  E r r . W a ld DF S i g .

Cl - 3 . 3 1 0 8 1 . 4 7 3 9 5 . 0 4 6 2 1 0 . 0 2 4 7
C2 - 2 . 2 4 4 4 1 . 3 6 4 2 2 . 7 0 7 0 1 0 . 0 9 9 9
C6 - 3 . 7 5 0 9 1 . 2 8 9 1 8 . 4 6 6 9 1 0 . 0 0 3 6
C4 - 1 . 5 8 1 4 1 . 2 6 4 2 1 . 5 6 4 9 1 0 . 2 1 0 9
C5 - 0 . 4 1 1 4 1 . 3 2 2 7 0 . 0 9 6 7 1 0 . 7 5 5 8
CMT 1 . 7 2 0 8 0 . 7 6 3 0 5 . 0 8 7 2 1 0 . 0 2 4 1
Mil FUL 0 . 6 7 3 4 0 . 7 1 0 9 0 . 8 9 7 3 1 0 . 3 4 3 5
SI RCT - 0 . 6 6 4 5 0 . 7 7 2 4 0 . 7 4 0 2 1 0 . 3 8 9 6
TC TQT - 0 . 0 1 1 1 0 . 0 0 3 6 9 . 5 1 5 4 1 0 .  0 0 2 0
Co n s t a n t 3 . 7 5 7 7 2 . 0 7 2 8 3 . 2 8 6 4 1 0 . 0 6 9 9

The fitted model is, prob(Success) = 1/1 +  exp( —if), where i] =  ZloBiV,. Bj is the estimated coefficient of V„

ex
on

tes.

co

(B\) = constant, and V0 = 1). This model has an 81% correct classification rate on the data.
We note that the meaningfulness of variable names, MNFUL, is NOT a significant beneficial factor, but comment-

ing, CMT, IS, with a /7-value of 0.0241. More able subjects are able to make use of the information in comments, and 
ace obtain high scores, whilst for such subjects the use of meaningful names is of minor relative importance, on such 

sir all specifications.
We also note that the total time to answer all questions, TOTQT, is a significant inverse indicator of good perfor-

mance, and that there is a more noticeable variation between the groups when considering this response variable.
In contrast, the logistic analysis of the probability of obtaining a 0/3 scores unsurprisingly shows that none of the 
perimental factors are significant, but that there is a significant positive dependency of the probability of a 0/3 score 
the total time to answer the questions, {p = 0.034).

We conclude that none of the factors can really be used to help the weakest group who will take a long time over the 
t and still score zero. For the better group who answer all questions correctly they seem to do this quickly and get

help only from the added comments.

3.4 .  Analysis o f perceived-comprehensibility rankings

In the second part of the experiment, students ranked all five specifications, from least comprehensible (-2) to most 
mprehensible (2). Analysis is primarily by graphical means. The data may be found in Appendix C.
(Examination of the data/graph for all the subjects, Fig. 7, confirms that Spec.l, (with comments and meaningful 

names), is found most comprehensible by most candidates, and is found to be least comprehensible by the least can-
didates, as conjectured. The converse result is found for Spec. 3, (no comments and names without meaning), also as 
conjectured. The ratings of Spec.’s 2 and 5 are arbitrarily dispersed, with neither getting high or low proportions of the 
extreme ratings. Spec. 4 seems to be perceived similarly to 2 and 5 on the whole. Hence it would seem that the mono- 
litpic nature of the code in Spec. 4 has detracts from the perceived clarity of Spec.l, in spite of the fact that Structure 
has not been shown to be a significant factor in the analysis of scores.

R a t in g

Fig. 7. Frequency plot of perceived comprehensibility, by specification.
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Kendal’s W measure of concordance in rankings (Kendal, 1948), of the specifications has the value of 0.147, with a 
p-value of 0.193 for the null hypothesis that W=0.0. The clear trends for specifications 1 and 3 have been obscured by 
the lack of concurrence concerning the other specifications, when all subjects are considered together.

We may ask if the perceptions of the comprehensibility of the alternative specifications depends upon the ability of 
the subjects, best measured by their total score on the questions, TOTS. For those with TOTS = 3, (full marks), the 
conclusions do not change, and Kendal’s W measure of concordance is higher at 0.6047 with a p-value of 0.11, slightly 
clcjser to significance as we would expect from the graphical display, but still reduced by the effects of Specs. 2, 5 and 4. 
For those with less than full score, the lack of clarity of Spec. 3 is unanimous. Also, whilst relatively few of these weak-
er subjects rates Spec. 1 at the low end of the scale, rather surprisingly, few of them see Spec. 1 as being superior to 
Spec.’s 2. 5 and 4. Perhaps the lack of perception of the advantages of comments and meaningful names (and struc-
ture), as present in Spec. 1 indicates that the weaker subjects do not have the intellectual skills to make use of these 
meaningful cues. Reasons for this will undoubtedly vary, from lack of basic intellectual ability to insufficient training.

4. Conclusions

This paper has reported on the results of a study to evaluate the impact of the style factors, of naming, commenting 
and structure on the comprehensibility of a small specification. The specification environment chosen has been Z, 
though it should be emphasised that no conclusions are possible in this study about the comprehensibility of Z com-
pared to other specification notations. However we would expect that our conclusions about the influence of these fac-
tors on comprehensibility might be applicable to other specification environments.

We have found that those obtaining higher scores take less time than those who obtain low scores. Total time taken 
is therefore a correlational surrogate of ability, and has been used as an adjusting covariate in the analysis of how the 
style factors affect the comprehension scores. Meaningful naming is the only style variable found to be significant in 
ANOVA, but commenting is found to be the only style factor predictive of the best score 3/3 with all three questions 
correct. For the small specification of this study the contrast between monolithic and structured schemas does not sig-
nificantly influence the scores obtained. However, the monolithic schema does seem to reduce the perceived compre-
hensibility. These conclusions are specific to the specification used, and to its Z environment. However, since all of 
the style factors are significant in one guise or another, the study confirms the conventional wisdom of good program-
ming practice, that style is very important to comprehensibility.

There is an extensive literature on metrics concerned with the production and maintenance of software e.g. (Inglis, 
1985; Fenton, 1994). It would be desirable to have available indices of comprehensibility which are able to indicate the 
extent to which good style has been followed at the specification stage. High comprehensibility scores might be expect-
ed to incur increased costs in time spent and training given at the initial part of the lifecycle but would also be expected 
tp provide benefits at de-bugging, maintenance and modification stages.
< A comprehensibility index or metric would have to involve the factors of naming, commenting and structure, as well 

a  ̂ others, but it is not clear, a priori, what the relative weights should be for these factors in the overall index. We 
suggest that such weights are best determined as a result of measurement of performance evaluations on the target 
group of users. The final resulting framework would be a quantified set of measures that could be used at the software 
specification to aid in the optimisation of the software quality.

While performance based determination of a comprehensibility index is recommended, other factors other than ob-
jective performance should also be taken into account. A feeling of ease in practitioners is clearly important, since it 
vsjill be likely to enable sustained activity on the part of the practitioner. As a specification is also part of the overall 
drain of design and development of the software, the ease with which this early stage is accomplished and understood 
will have repercussions for the later stages. Determination of the way that style influences the perceived comprehen- 
s bility and maintainability is therefore important, and might be obtained at the same time that performance measures 
are determined. The combined measurement of timings, performance scores, and attitude measurement as used in this 
study might therefore be taken as a paradigm by data may be collected and on which the development of a compre-
hensibility index may be based. The relative importance of performance-based, and attitude-based measures of com- 
p rehensibility may well be based on prior experience, but could be established using a number of extended case-studies.

It is clear that the best way forward is the use of well designed statistical experiments to ensure results are obtained 
as efficiently as possible with the rigour to give supporting evidence for any conclusions drawn. An increased use of 
experimental design in the conduct of empirical research in the area of formal specification will put some objective ev- 
i lence into the area to challenge and support those arguments which at present may rely too much on subjective opin- 
i :>ns. By the same token, use of the techniques of modern statistical analysis are required to look at how the evidence 
t ollected can be interpreted to give valid conclusions.
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As the development of the work described here further pilot studies need to take place on other aspects of compre-
hension. in particular a study is needed of a specification large enough to investigate further the effect of structure as a 

: tor. Larger studies across the student populations of several institutions would ensure that the variation due to fac- 
s such as background, learning experience and environment could be taken into account.
However the development of metrics which could apply to formal methods needs to be based on research which is 

mmercially based and on a realistically large scale. To date few such studies of the benefits of using formal methods 
i hin an industrial setting have been conducted and most have been inconclusive.
Those involved with software engineering stress the importance of the delivery of software which meets its specifi- 
ion, is easy to maintain and can be modified, all within budget constraints. Development of a set of metrics to be 

in relation to formal methods, which would be able to demand or produce a high level of quality over a range of 
tributes including comprehensibility could be one way forward.
<:d
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Appendix A

The cleaned data set consisted of: 
NLVL
Student id number 
SPEC
CMT(Comment)
MNFUL(Meaningful_names)
STRCT(Structured)
TREAD
TOTQl,TOTQ2,TOTQl
TOTQT

S1;S2,S3
TOTS

Course level (C1-C6)
From 1-147
One of the five specifications 1-5 
These three
Were dummy variables
Indicating the type of specification given
Time to read to intro (in seconds)
Times to answer Questions 1-3 respectively
Total time to answer the questions rankings of the five specifications from least 
comprehensible to most; coded as -2  -1 0 1 2 
Scores on the three questions; either 0 or 1 
Total score out of 3

Summary of variables

V a r i a b l e  . Mean S t d .  d e v .  Minimum Maximum N

S c o r e s  f o r  q u e s t i o n s  1 - - 3 ,  a n d  t o t a l - s c o r e
S I 0.  46 0.  50 0.  00 1.  00 146
S2 0.  55 0.  50 0.  00 1.  00 146
S3 0.  32 0.  47 0.  00 1. 00 146
TOTS 1. 33 1. 23 0 3 146

I n d i c a t o r  v a r i a b l e s  f o r s u b j e c t s  w i t h  z e r o  a n d  t h r e e  t o t a l - s c o r e
IZERO 0.  37 0.  48 0 1 146
ITHREE 0.  27 0. 44 0 1 146

T i m e s  t o r e a d  t h e  i n t r o d u c t i o n ,  a n d  t h e t h r e e  q u e s t i o n s
TREAD 1 6 8 . 2 4 1 2 9 . 2 9 3 0 .  00 7 8 0 . 0 0 95
TQ1 1 4 9 . 2 3 1 1 0 . 6 5 2 7 .  00 6 6 0 . 0 0 111
2Q 2 1 0 5 . 7 9 73.  21 2 5 .  00 4 8 0 . 0 0 139
TQ3 93 .  47 65.  35 1 7 .  00 4 8 0 . 0 0 127
TOTQT 3 4 1 . 5 2 1 7 4 . 3 0 1 2 0 . 0 0 9 6 0 . 0 0 98
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Appendix B

Details of the Factor Analysis of the timing data. The matrix of factor loadings are:

F a c t o r  1

TQ1
TQ2
TQ3
TREAD

0 . 6 7 7 7 3  
0 . 4 5 3 6 7  
0 . 8 0 0 6 0  
0 . 3 6 8 3 1

Note that all the loadings are positive, with the times for Questions 1 and 3 having the highest loadings on the Com-
mon factor. The loadings would have to be divided by the response standard deviations to obtain the relevant corre-
lations.

F i n a l  s t a t i s t i c s

v a r i a b l e C o m m u n a l i t y F a c t o r E i g e n v a l u e P e t  o f  v a r Cum P e t

T'Ql
TQ2
TQ3
TREAD

0 . 4 5 9 3 2  
0 . 2 0 5 8 1  
0 . 6 4 0 9 6  
0 . 1 3 5 6 5

1 1 . 4 4 1 7 4 36 .  0 36.  0

Appendix C. Perceived comprehensibility rating data

Frequency tables for the comprehensibility of specifications, vertically ordered by specs. 1-5; and horizontally by 
comprehensibility coded as:

_east comprehensible... most
--2 -1 0 1 2

2 3 4 5

The first three tables are for each of the total scores 3,2,1. The final table is for all subjects.

l o t s  =  3 ( N =  39 )
1 1 1 7 29
2 17 14 3 2
30 5 1 2 1
4 2 18 14 2
2 14 5 13 5

T o t s  =  2 { N =  24)
1 0 3 4 3
1 9 9 5 9
19 2 0 1 0
1 5 8 5 8
2 8 4 9 4

T o t s  =  1 ( N =  28)
0 1 3 6 3
6 8 5 6 5
12 10 A 1 4
n( 3 11 2 11

3 6 5 13 5
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T o t s  =  0 ( N =  47 )
2 5 8 8 8
3 15 10 15 10
25 9 5 3 5
9 5 16 10 16
8 13 8 11 8 '

A l l  Sub j  e c t s  ) N =  1 3 8  )
4 7 15 25 87
12 49 38 29 8
86 26 10 7 8
2 1 15 53 31 21
! 5 41 22 46 14

Appendix D. Specification 1

The new users name is taken in and an identity number is assigned from the pool of unused numbers. The unused 
number set is amended and the new pair of user and their number are added to the existing users.

i - j -  A d d ---------------------------------------------
| ASystem 
| name?: Person 
| /??: N
| m essage!: Response

I n? e  U m isedjds 
j name'? g dom Users 
| U m isedjds ’ = U m isedjds \ { n? } 
| Users' = Users k j  { name? i—> n? } 
j messaged. -  O K

Here error messages are generated by the failure of either of the two preconditions in the Add schema.

— A ddFail-----------------
ESystem 
name? : Person
yi? \ N
e message\ : Response

Fihally the behaviours are combined 
A c'dU ser= A dd  V A ddF ail

name? e  dom Users a  e message! = name in use) v  
Unused Ids = 0  a  e_message\ = no id available)
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D\l. Questions

1. What conditions give rise to error messages?
2. The size of which set would give you the number of current users on the network?
3. Which set or sets give you information about the total number of users the network will support?
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