

City, University of London Institutional Repository

Citation: O’Connor, R. V. (2000). An Architecture for an Intelligent Assistant System for use

in Software Project Planning. (Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/30807/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

An Architecture for an

Intelligent Assistant System

for use in Software Project Planning

Rory V O’Connor

Submitted for Examination for Doctor of Philosophy

Department of Computing

City University

London

April 2000

Ta b l e o f Co n t e n t s

Ch a pt e r 1 In t r o d u c t i o n ...1

1.1 Ba c k g r o u n d ...1

1.2 So f t w a r e Pr o j e c t Ma n a g e m e n t ..1

1.3 So f t w a r e Pr o j e c t Pl a n n in g ... 3

1.4 Dif f ic u l t ie s Fa c in g So f t w a r e Pr o j e c t Ma n a g e r s 3

1.5 In t e l l ig e n t As s is t a n c e f o r So f t w a r e Pr o j e c t Pl a n n in g 5

1.6 Aim s a n d Ob j e c t iv e s ... 6

1.7 Th e P3 Pr o j e c t ..7

1.8 La y o u t o f Th e s i s ..8

Ch a pt e r 2 So f t w a r e Pr o j e c t Pl a n n i n g ... 10

2.1 In t r o d u c t io n .. 10

2.2 So f t w a r e Pr o j e c t Pl a n n in g ... 10

2.3 So f t w a r e Pr o j e c t Su ppo r t Sy s t e m s ... 12

2.4 So f t w a r e Pr o j e c t Ma n a g e m e n t To o l s ..14

2.4.1 Co m m e r c ia l Ex a m pl e s .. 17

2.5 To o l Us e r s ...19

2.5.1 Pr o j e c t Ma n a g e r A .. 21

2.5.2 Pr o j e c t Ma n a g e r B ... 22

2.5.3 Pr o j e c t Ma n a g e r C... 23

2.5.4 Pr o j e c t Ma n a g e r D .. 24

2.5.5 Pr o j e c t Ma n a g e r E ... 25

2.5.6 Pr o j e c t Ma n a g e r F ... 26

2.5.7 Su r v e y Re s u l t s .. 27

2.6 Su m m a r y ...28

Ch a pt e r 3 Appr o a c h e s t o In t e l l i g e n t As s i s t a n c e ... 29

3.1 In t r o d u c t io n .. 29

3.2 In t e l l ig e n t As s is t a n c e Ap p r o a c h e s ... 29

1

3.2.1 De c is io n Su ppo r t Sy s t e m s ... 29

3.2.2 Ex pe r t Sy s t e m s .. 31

3.2.3 Ex pe r t Cr it iq u in g Sy s t e m s ... 33

3.2.4 In t e l l ig e n t Tu t o r in g Sy s t e m s ...35

3.2.5 Bl a c k b o a r d Sy s t e m s .. 36

3.2.6 In t e l l ig e n t Ag e n t s ... 38

3.2.7 Re v ie w o f a p p r o a c h e s ..40

3.3 Pr o po s a l f o r a n e w In t e l l ig e n t As s is t a n t ... 43

3.4 Su m m a r y ...45

Ch a pt e r 4 Ar c h i t e c t u r a l Pe r s pe c t i v e s ..46

4.1 In t r o d u c t io n ..46

4.2 So f t w a r e Ar c h it e c t u r e s .. 46

4.3 In t e l l ig e n t Sy s t e m Ar c h it e c t u r e s ... 48

4.3.1 ADEPT.. 48

4.3.2 ARCHON.. 52

4.3.3 RISKMAN2.. 55

4.3.4 Re v ie w o f Ar c h it e c t u r e s ...58

4.4 De s ir a b l e Ar c h it e c t u r a l Ch a r a c t e r is t ic s .. 62

4.5 Ar c h it e c t u r a l Tr e n d s ...63

4.5.1 CORBA... 65

4.5.2 Th e Ja v a La n g u a g e ... 67

4.5.3 Ja v a a s a n Ag e n t La n g u a g e ... 68

4.5.4 Ja v a a s a CORBA Ob j e c t La n g u a g e ..69

4.6 Su m m a r y ...70

Ch a pt e r 5 Kn o w l e d g e Ba s e Is s u e s ...71

5.1 In t r o d u c t io n .. 71

5.2 Kn o w l e d g e En g in e e r in g ... 71

5.3 Kn o w l e d g e Re pr e s e n t a t io n Sy s t e m s ... 72

5.4 Ag e n t Re pr e s e n t a t io n La n g u a g e s ...74

5.4.1 KQML...75

5.4.2 Te l e s c r ipt / Od y s s e y .. 77

ii

5.4.3 JESS / CLIPS.. 78

5.4.4 La n g u a g e c h o ic e ..79

5.5 Kn o w l e d g e Ac q u is i t io n .. 80

5.6 Su m m a r y ...82

Ch a pt e r 6 Sy s t e m Ar c h i t e c t u r e .. 83

6.1 In t r o d u c t io n .. 83

6.2 Ar c h it e c t u r a l Is s u e s ...83

6.3 Ar c h it e c t u r e Co m po n e n t s ... 84

6.3.1 Co m po n e n t In t e r f a c e s ... 86

6.3.2 Us e r In t e r f a c e ... 87

6.3.3 Sy s t e m Ke r n e l .. 90

6.3.4 Da t a Ma n a g e r ... 92

6.3.5 Ag e n t Co n t r o l l e r ...93

6.3.6 Bl a c k b o a r d .. 95

6.3.7 Ag e n t Lib r a r y .. 97

6.4 Re v ie w o f Ar c h it e c t u r a l Ch a r a c t e r is t ic s .. 99

6.5 Su m m a r y ... 101

Ch a pt e r 7 Pr o t o t y pe Im pl e m e n t a t i o n .. 102

7.1 In t r o d u c t io n .. 102

7.2 De s ig n ... 102

7.2.1 De s ig n App r o a c h .. 103

7.2.2 Cl ie n t -Se r v e r Co m po n e n t s ...103

7.2.3 Co m po n e n t In t e r f a c e s ... 106

7.2.4 Us e r In t e r f a c e ... 107

7.2.5 Sy s t e m Ke r n e l .. 108

7.2.6 Ag e n t Co n t r o l l e r ...109

7.2.7 Ag e n t Lib r a r y .. 111

7.3 Im pl e m e n t a t io n ..112

7.3.1 De v e l o pm e n t To o l s ...112

7.3.2 IDL In t e r f a c e s ...113

7.3.3 Cl ie n t -Se r v e r Co m po n e n t s .. 116

iii

7.3.4 Im pl e m e n t in g Sy s t e m Co m po n e n t s ... 117

7.3.5 Kn o w l e d g e Ba s e Im pl e m e n t a t io n .. 119

7.3.6 Kn o w l e d g e Ba s e Ev o l u t io n ... 122

7.4 Sy s t e m Us a g e .. 123

7.4.1 Ex a m pl e Us e r Se s s io n .. 124

7.4.2 Ex a m pl e Co m po n e n t In t e r a c t io n ... 129

7.5 Pr o t o t y pe De v e l o pm e n t Ob s e r v a t io n s .. 131

7.6 Su m m a r y ... 132

Ch a pt e r 8 Re s e a r c h Me t h o d o l o g y a n d De s i g n ...133

8.1 In t r o d u c t io n .. 133

8.2 Re s e a r c h Me t h o d o l o g ie s ... 133

8.2.1 Re s e a r c h Me t h o d o l o g ie s in Co m pu t in g ... 134

8.3 Ch o o s in g a Re s e a r c h Ap p r o a c h ... 136

8.4 Su m m a r y ... 140

Ch a pt e r 9 Pr o t o t y pe De p l o y m e n t ..141

9.1 In t r o d u c t io n .. 141

9.2 Tr ia l Us a g e Pr o c e s s ... 141

9.2.1 Tr ia l 1..143

9.2.2 Tr ia l 2 ..146

9.2.3 Tr ia l 3 ..149

9.2.4 Tr ia l 4 ..151

9.2.5 Tr ia l 5 ..153

9.2.6 Tr ia l 6 ..155

9.3 Tr ia l U s a g e Fin d in g s .. 158

9.4 Su m m a r y ... 160

Ch a pt e r 10 Co n c l u s i o n s .. 161

10.1 Re s e a r c h Go a l s ...161

10.2 Re s e a r c h Ou t c o m e s .. 162

10.3 Fu r t h e r Re s e a r c h ... 163

10.3.1 Sy s t e m Ar c h it e c t u r e ... 164

iv

10.3.2 Kn o w l e d g e b a s e .. 165

10.3.3 Pr o t o t y pe Sy s t e m ..167

10.4 Co n c l u d in g Re m a r k s ...168

Appe n d i x A Su m m a r y o f P3 Pr o j e c t ...170

Appe n d i x B Su r v e y o f To o l Us e r s ..172

Appe n d i x C Ca s e St u d y ..173

Re f e r e n c e s 178

Ta b l e o f F i g u r e s

Fig u r e 2.1 - Pl a n n in g Pr o c e s s ... 10

Fig u r e 3 .1 - Co m po n e n t s o f a De c is io n Su ppo r t Sy s t e m .. 30

Fig u r e 3.2 - Co m po n e n t s o f a Ex pe r t Sy s t e m .. 32

Fig u r e 3.3 - Th e Cr it iq u in g Pr o c e s s ..34

Fig u r e 3.4 - Do m a in Kn o w l e d g e Ar c h it e c t u r e ... 36

Fig u r e 3.5 - Bl a c k b o a r d Co m po n e n t s ... 37

Fig u r e 3.6 - De c is io n Ma k in g Pr o c e s s .. 44

Fig u r e 3.7 - De c is io n Ma k in g Fr a m e w o r k ...44

Fig u r e 4.1 - ADEPT Ag e n t Ar c h it e c t u r e .. 50

Fig u r e 4.2 - ARCHON Ag e n t Ar c h it e c t u r e ..53

Fig u r e 4.3 - RISKMAN2 Ar c h it e c t u r e ..56

Fig u r e 4.4 - CORBA In t e r o pe r a b il it y ...66

Fig u r e 4.5 - CORBA Cl ie n t -Se r v e r Re l a t io n s h ip ...66

Fig u r e 4.6 - Ja v a Vir t u a l Ma c h in e Ar c h it e c t u r e ..67

Fig u r e 6.1 - Hig h -l e v e l Vie w o f Ar c h it e c t u r e .. 84

Fig u r e 6.2 - Co m po n e n t Ar c h it e c t u r e ..84

Fig u r e 6.3 - Co m po n e n t Co n f ig u r a t io n ... 85

Fig u r e 6.4 - St u b a n d Sk e l e t o n Co d e (Pr o x y Ob j e c t s) ...87

Fig u r e 6.5 - Us e r In t e r f a c e Co m po n e n t Ar c h it e c t u r e ...88

Fig u r e 6.6 - Sy s t e m Ke r n e l Co m po n e n t Ar c h it e c t u r e ...90

Fig u r e 6.7 - Da t a Ma n a g e r Co m po n e n t Ar c h it e c t u r e ...92

Fig u r e 6.8 - Ag e n t Co n t r o l l e r Co m po n e n t Ar c h it e c t u r e 93

Fig u r e 6.9 - Bl a c k b o a r d No d e Hie r a r c h y ..95

Fig u r e 6.10 - B l a c k b o a r d Se g m e n t s t r u c t u r e ...96

Fig u r e 6.11 - Bl a c k b o a r d Sc e n a r io s t r u c t u r e ..96

Fig u r e 6.12- Ag e n t Lib r a r y Co m po n e n t Ar c h it e c t u r e ...97

Fig u r e 6.13 - Ag e n t St r u c t u r e .. 98

Fig u r e 7 .1 - Cl ie n t -Se r v e r St r u c t u r e ..104

Fig u r e 7.2 - De s k t o p Co n f ig u r a t io n .. 105

Fig u r e 7.3 - Ne t w o r k Co n f ig u r a t io n ..105

vi

Fig u r e 7.4 - In t r a n e t Co n f ig u r a t io n ..105

Fig u r e 7.5 - U s e r In t e r f a c e - Sy s t e m Ke r n e l In t e r f a c e 106

Fig u r e 7.6 - Sy s t e m Ke r n e l - Ag e n t Co n t r o l l e r In t e r f a c e 106

Fig u r e 7.7 - Ag e n t Co n t r o l l e r - Ag e n t Lib r a r y In t e r f a c e 106

Fig u r e 7.8 - Ov e r v ie w o f Us e r In t e r f a c e Cl a s s e s ... 107

Fig u r e 7.9 - Ov e r v ie w o f Sy s t e m Ke r n e l Cl a s s e s ... 108

Fig u r e 7 .10- Ov e r v ie w o f Ag e n t Co n t r o l l e r Cl a s s e s 110

Fig u r e 7 .11- Ov e r v ie w o f Ag e n t Lib r a r y Cl a s s e s ... I l l

Fig u r e 7 .12- Hie r a r c h y o f Kn o w l e d g e Ar e a s ...119

Fig u r e 7 .13- Pr o j e c t Mo d e l Se l e c t io n Sc r e e n ..124

Fig u r e 7 .14- Pr o j e c t Pl a n Pa n e l Sc r e e n ...126

Fig u r e 7.15 - Sc e n a r io W in d o w Sc r e e n ..126

Fig u r e 7 .16- Sc e n a r io Ma n a g e r Sc r e e n ..127

Fig u r e 7.17 - Ad v ic e Co u n t e r .. 127

Fig u r e 7.18- Ad v ic e Ma n a g e r W in d o w ..128

Fig u r e 7.19- Ma in He l p Sc r e e n ... 128

Fig u r e 7.20 - Ev e n t Tr a c e ... 129

vii

A c k n o w l e d g m e n t s

Only one name appears on the cover of this thesis, but a great many people have been

indirectly involved in its production.

Firstly, I would like to express my sincere gratitude to my supervisor, Dr. J.O.Jenkins,

for his assistance and careful guidance. My research has benefited from his insight and

innumerable suggestions.

I would also like to thank all my colleagues at Dublin City University for making it

such a pleasant place to conduct this research. In particular, I would like to

acknowledge the significant input of Prof. J.A.Moynihan, whose encouragement and

assistance were invaluable.

A word of thanks to all my P3 project partners - Annie, Brian, Chantal, Christophe,

Herve, Ioannis, Mark, Martine, Marty, Philippe, Robert, Tristan and Vassilis - who

helped in so many ways. A special thanks to Eamon Gaffney for all his help.

I would also like to thank my family, Kevin, Teresa and Tracy, for their love and

support throughout my prolonged existence as a student.

To my girlfriend Margaret, who was always with me when I needed support, shared

my worries and problems, and provided my mind with a fail safe mechanism. I would

like to thank her for her support and encouragement, but most of all her faith in me.

Finally, a message of thanks to my parents who bought a BBC home computer for me

in 1983 and encouraged me to use it. Looking back, their inspired decision was the

first step on the road that has culminated in this thesis. Thanks.

viii

After some time they crossed the Water, west of Hobbiton, by a narrow plank-bridge.

The stream there was no more than a winding black ribbon, bordered with leaning

alder trees. A mile or two further south they hastily crossed the great road from the

Brandywine Bridge; they were now in the Tookland and bending south-eastwards they

made for the Green Hill Country. As they began to climb its first slopes they looked

back and saw the lamps in Hobbiton far off twinkling in the gentle valley of the

Water. Soon it disappeared in the folds of the darkened land, and was followed by

Bywater beside its grey pool. When the light of the last farm was far behind, peeping

among the trees, Frodo turned and waved a hand in farewell. ‘I wonder if I shall ever

look down in that valley again’, he said quietly.

The Lord of the Rings

J. R. R. Tolkien

IX

De c l a r a t i o n

I grant powers of discretion to the University Librarian to allow this thesis to be

copied in whole or in part without further reference to me. This permission covers

only single copies made for study purposes, subject to normal conditions of

acknowledgment.

Ab s t r a c t

It is the proposition of this research that there are a number of weaknesses in the

current approaches being taken in the provision of software project planning tools and

that there is significant scope to improve on existing systems by the development of

an intelligent assistant system which will provide decision support for the software

project planner in the creation of plans for a software development project.

This research has devised a framework and architecture based on a fusion of a number

of techniques within a multi-agent framework which aims to improve the quality of

the decision making process of software project planners. This framework

incorporates the information gathering and analysis techniques of a Decision Support

System with the ability of an Expert System to propose possible solutions using expert

knowledge and best practices and the power of Blackboard to exchange information

between components. This novel approach enables the inter-working of a variety of

well understood techniques within a single underlying framework - that of the agent-

orientated paradigm.

To assist with validating the proposed architecture, a prototype application was

developed and a series of user trials conducted. The conclusion of these trials was that

the prototype system demonstrated that the notion of an intelligent assistant system for

software project planning was a viable concept, worthy of further investigation.

Further, it demonstrated that the proposed architecture provided a viable framework

for supporting the software project planners decision making process and has the

potential to be of use in a commercial setting.

I
XI

Ch a p t e r 1 In t r o d u c t i o n

1.1 Background

This thesis describes a multi-agent based architecture for an intelligent assistant

system for use in software project planning. The research explored the role of artificial

intelligence techniques for automated tool support as applied to software project

planning and in particular addressed the issues of knowledge capture and reuse in such

a tool environment. This research also examined the issues surrounding the emerging

requirements for support systems for distributed multi-platform software development

projects. In addressing these aims, this research devised a framework and architecture

for use as the basis for the design and construction of an intelligent assistant system

and implemented a prototype system for use by software project managers in the

planning of a distributed multi-platform software development project.

The following sections describe the motivation and background of the work, both

from a user-level and system-level perspective, leading to a discussion of issues

concerned with a new architecture for intelligent assistant systems. The statement of

the aims and objectives of the research and an outline plan for the rest of this thesis

complete the chapter.

1.2 Software Project Management

The Project Management Institute defines project management as [PMI, 96];

“The applications of knowledge, skills, tools and techniques to project

activities in order to meet or exceed stakeholders needs and

expectations from a project”.

Project management is an integrative endeavor - an action, or failure to take action, in

one area will usually affect other areas. The interactions may be straightforward and

1

well understood, or they may be subtle and uncertain. For example, a scope change

will almost always affect project costs, but it may not affect team morale or product

quality. These interactions often require trade-offs among project objectives -

performance in one area may be enhanced only by sacrificing performance in another.

Successful project management requires actively managing these interactions.

Many techniques of general project management are applicable to software project

management, but Brooks [Brooks, 87] pointed out that the processes and products of

software projects have certain characteristics that make them different. One way of

perceiving software project management is as the process of making visible that

which is invisible [Hughes and Cotterall, 99]:

• Invisibility - when a physical artifact such as a road is being built the progress

can actually be seen. With software, progress is not immediately visible.

• Complexity - Per dollar, pound or euro spent, software products contain more

complexity than other engineering artifacts.

• Flexibility - The ease with which software can be changed is usually seen as

one of its strengths. However this means that where the software system

interfaces with a physical or organisational system, it is expected that, where

necessary, the software will change to accommodate the other components

rather than vice versa. This means the software systems are likely to be subject

to a high degree of change.

• Standard Process - in other engineering disciplines with a long history the

processes are tried and tested. Our understanding of software processes has

developed significantly over the past few years, however we still cannot predict

with complete certainty when a particular software process is likely to cause

development problems.

Software project managers are responsible for planning and scheduling software

development. They supervise the work to ensure that it is carried out to the required

standards and monitor progress to check the development is on time and within

budget.

2

1.3 Software Project Planning

Software project planning is an integral part of the software project management

activity. Its objectives are to provide a framework that enables the project manager to

make reasonable estimates of resources, costs, and schedule [Pressman, 97], These

estimates are made within a limited time frame at the beginning of a project and

should be revised regularly as that project progresses. In addition, estimates should

attempt to define ‘best-case’ and ‘worst-case’ scenarios so that project outcomes can

be bounded.

Effective management of a software project requires thorough planning of its

progress. The project manager must anticipate problems which may arise and prepare

tentative solutions to those problems. A plan drawn up at the start of a project, should

be used as a driver for the project. The initial plan is not static but must be modified as

the project progresses and new information becomes available. Project planning is

probably the activity that takes most management time [Sommerville, 95]. The

planning process starts with an assessment of the constraints affecting the project. The

progress milestones and deliverables are then defined and a schedule drawn up.

Project managers revise their assumptions about the project as more information

becomes available.

1.4 Difficulties Facing Software Project Managers

Due to the growing complexity of products and commercial systems, large projects are

facing more constraining production objectives in terms of time, cost, quality and risk.

This evolution in the nature of projects being undertaken by software organisations

has resulted in increased difficulties associated with planning, managing and

executing software development projects.

One of the key issues is decision making. Software project managers make many

decisions every day, ranging from the relatively inconsequential to the significant.

3

Such decisions are based on a combination of judgement and information from staff,

clients, research literature and current market forces, as well as knowledge gained

from previous projects. Ideally, all relevant information should be brought together

before judgement is exercised. The quality of a decision depends on the adequacy of

the available information, the quality of the information, the number of options

available at the time of the decision and the ability of the people involved to interpret

this information.

Software projects often fail because the project managers lack knowledge of good

practices and effective processes which can reduce risk and increase the likelihood of

success. Managers of projects need to know how to establish a set of processes which

are tailored to a project’s requirements in terms of time, cost, quality and their

associated risks [Ould, 90], A desired outcome of this research is a planning tool

which will increase the likelihood of success by helping the project manager who has

to make decisions on these issues. Such a tool will encapsulate expert knowledge and

make it available to all users. Some of the potential benefits of this approach as

applied to the decision-making process in the domain of software project planning are:

• Suggestions are made which help the user balance cost, quality and time in

making decisions about the use of project resources.

• Knowledge is shared about different lifecycle models and why one or another

may be more suitable for the users projects.

• Measurements are suggested which will enable the user to see how well the

project is reaching greater organisational goals and re-plan the ways to reach

these goals, if necessary.

Even the most experienced project manager may have difficulty knowing the best

planning options, even if the critical input parameters of resources, constraints and

requirements are known.

4

1.5 Intelligent Assistance for Software Project Planning

The notion of an intelligent assistant is not new. Indeed, as far back as 399 BC

Socrates claimed to have an intelligent assistant, although not in the strictest sense of

course. But Socrates did claim to have a non-human companion, which he called a

Daemon. Intelligent and always ready to offer good advice, Socrate’s daemon could

be trusted to act without prompting. Real, hard-coded, linguistic and symbolic links

abound between Socrates daemon and today’s notion of an intelligent assistant

[Leonard, 98],

[Boy, 91] offers the following characterisation of an intelligent assistant system:

“In an aircraft cockpit, a human copilot shares the work, but not the

ultimate responsibility, with the captain. The captain is the master on

board: he may consult the copilot at any stage but will take the

ultimate decisions. If the captain delegates a part of his responsibility

to the copilot, then the copilot will take this delegation as a task to be

executed. In addition, the captain may at any time choose to stop the

execution of a task by the copilot, if he judges it to be necessary.

However, a copilot may have personal initiatives, for example, testing

parameters, keeping current with the evolving situation, predicting

deducible faults, etc. A copilot may process the knowledge included in

the operation manual on his own initiative or at the request of the

captain. He should be capable of explaining, in an appropriate amount

of detail, the results of his processing. ”

Weld [Weld, 95] suggests that a software system designed to act as a team member

could help in the planning and execution of a project. Such an intelligent project

assistant could help to preserve knowledge about tasks, to record the reasons for

decisions and retrieve information relevant to new problems. They could function as

co-workers, assisting and collaborating with the design or operations team for

complex systems. They could also supply institutional memory. They could recall the

5

rationale of previous decisions and, in times of crisis, explain the methods and

reasoning previously used to handle that situation.

In software development projects, an intelligent project assistant could keep track of

specifications, design proposals, and implementations for a software project

throughout its life cycle. It can record the design decisions of a constantly changing

team and also be a repository of solutions for new projects. Reasoning techniques can

be used to track the (mis)match between specifications and implementations, while

analogy techniques can be used to look for existing specifications, components or

implementations that match some new requirement.

An intelligent project assistant can additionally be of benefit when training new

personnel. For many tasks, on-the-job training is extremely effective, providing the

trainee with the chance to make real, on-the-spot decisions and see the consequences.

On-the-job training is impossible, however, when a bad decision can be disastrous - as

in the planning of a large complex software development project. Simulations of the

project planning process, would enable the development of training systems for such

situations [Grosz and Davis, 94]. These same simulation capabilities are also

important when the cost of assembling large groups of people for training is

prohibitive.

1.6 Aims and Objectives

One aim of this research was to understand the complex decision making process

associated with planning a software development project. Additionally, the

development of an intelligent assistant system to assist project managers in their

decision-making process was planned. A prototype system was constructed to test the

proposed architecture and feedback from trials by commercial tool users evaluated to

assess the usefulness of such a system.

>
6

This research started from the standpoint that there is significant scope to improve on

existing software project planning systems and in particular to provide capabilities

such as;

• The provision of advice to assist project managers in the decision making

processes associated with the formulation of project plans.

• The ability to reason about a project’s plans, analyse alternatives and select the

most suitable course of action.

• The ability to assimilate knowledge and best practice.

• The ability to assist the project manager in adherence to standards, industry best

practices and implementation of company policy.

• The ability to dynamically update the knowledge base.

• The ability to cope with new and evolving standards and best practices.

• The ability to manage and analyse large amounts of project data.

1.7 The P3 Project

The implementation and testing of the prototype system was conducted within the

scope of the P3 (Project and Process Prompter) project [O’Connor et al., 97a],

The P3 project was funded by the fourth framework programme of the European

Commission as ESPRIT project 22241 (cf. Appendix A). The two main deliverables

of this project are a “Handbook and Training Guide” and a pre-commercial prototype

decision support tool “Prompter”.

The Handbook and Training Guide [Catalyst, 99] is designed as a standalone

document which requires no other documents or tools to be useful and has two main

components:

• Volume 1 considers process planning as it relates to anyone starting a project,

i.e. the basic processes that a project manager needs to know.

7

Part I contains a high-level view of some of the general challenges of project

management. Part II takes the project manager from setting up to closing down

the project. Parts HI, IV, V, and VI are the technical details of project

management, and Part VII examines the pros and cons of following some well-

known standards.

• Volume 2 includes models and decision processes to assist the project manager

which were incorporated into the Prompter tool.

The prototype of the Prompter tool has implemented the decision models above to

assist project managers in the planning of a software development project. Its aims are

to provide project managers with a greater understanding of options available during

planning and why one choice should be made over another. Prompter gives the project

planner the opportunity to input project goals and certain project-specific variables,

match them against a generic model to create a specific project model, then analyse a

set of options which may be used to organise the project so that it will meet its goals.

This researcher’s role in the P3 project was that of project manager in charge of the

overall architectural design (as described in chapter 6) and implementation of the

knowledge base (agents) for the Prompter tool [O’Connor and Renault, 98], As, such

this project provided an ideal framework within which to implement the proposed

architecture, utilising the knowledge from the Handbook and Training Guide.

1.8 Layout of Thesis

In this chapter the motivation and objectives of the work have been explained.

Chapter 2 describes the domain of software project planning in more detail in order to

understand its unique characteristics and assess what special considerations are

necessary when developing intelligent assistance systems. The findings of a survey of

tool users are also presented and analysed in conjunction with a discussion on existing

project support tools to assess the need for, and usefulness of, the integration of

intelligent assistance in software project planning tools. Chapter 3 provides a review

and discussion of approaches to supporting intelligent assistant systems, leading to a

8

proposed architecture for applying intelligent assistance to the domain of software

project planning. Chapter 4 presents a critical review of intelligent assistant systems,

from both a user and system architecture perspective. Chapter 5 discusses issues

relating to the design and development of a knowledge base, including knowledge

representation and acquisition. Chapter 6 details the proposed architecture for an

intelligent assistant system based on the system proposed in Chapter 2 and the issues

discussed in subsequent chapters. Chapter 7 describes the design and construction of a

prototype implementation of the system. Chapter 8 provides an overview of research

methodologies and describes the approach taken to the validation process. Chapter 9

presents a strategy for trial usage by a group of commercial users and discusses the

lessons learned from user feedback gained from these trials. Finally, Chapter 10

contains the conclusions and the recommendations which describe the advances made

in this research.

9

Ch a p t e r 2 So f t w a r e P r o j e c t P l a n n i n g

2.1 Introduction

This chapter describes the domain of software project planning in order to understand

its characteristics and assess what considerations are necessary when developing an

intelligent assistant system for this domain. It also describes the current states of art

and practice in the software industry with regard to the usage of software project

support tools, thus highlighting the potential benefits of incorporating intelligent

assistance into software project planning tools.

2.2 Software Project Planning

Whatever the size of the project, good planning is essential if it is to succeed. The

software project planning process [Fairclough, 96] contains five major activities

(figure 2.1), which can be applied to a whole project or to a phase of a project. Each

activity may be repeated several times to make a feasible plan. In principle, every

activity can be linked to the other activities by feedback loops, in which information

gained at a later stage in planning is used to revise earlier planning decisions.

Figure 2.1 - Planning Process

10

During the life of a project, the management emphasis will shift from initiation

planning to implementation planning according to different time zones, each with its

own time horizon. Usually these time zones cover the immediate, intermediate and

future periods [Procter and Bouchier, 94], At the initiation stage (immediate time

zone), the plan (and its alternatives) will be expressed at a high level, because the

detail is not available and uncertainty will be high. The plan is a ‘theoretical’ model of

the potential project. The system does not issue instructions nor record and respond to

feedback. It does not need to communicate with the ‘real’ world it attempts to

represent and control.

The work scheduling and monitoring in the ‘intermediate’ zone may create the most

serious practical problems. At this stage the planner is concerned with the current

position of the project and its immediate future. Tools are better at reporting on the

current status (based on the inputted data). They can report on what has been done,

what the plans say should be done next and what can be done with resources

available. The danger is that reports may be incomplete, out of date or inappropriate

for the recipient. In this intermediate time zone, of potentially significant benefit to the

project manager is the ability to reason about project plans, analyse alternative

strategies in the approach to problems, seek advice from lessons learned during

previous projects (the knowledge base) and consult organisational and international

standards.

Beyond the intermediate horizon, the future has both ‘micro’ and ‘macro’ planning

modes [Procter and Bouchier, 94], neither of which are well supported by tools. In the

‘micro’ environment of the project, there is little to assist the predictive function

necessary for detailed forward planning, nor is there much support for ‘macro’

strategic planning, which sees the project in relation to the wider environment it seeks

to serve.

11

2.3 Software Project Support Systems

To support project managers, organisations have sought to develop tools to assist with

various aspects of the management of their software processes. As well as general

purpose software project planning tools that support activity definition, PERT and

scheduling, specialised project planning tools are available for constructing process

models and estimating software project costs. Project planning tools normally support

[Fairclough, 96]:

• The definition of work packages and their duration

• The definition of resources and resource availability

• the allocation of resources to work packages

• The highlighting of resource conflicts, or over utilisation

• The construction of activity networks

• The definition of the critical path

• The definition of the schedule

Most projects will benefit from initiation planning with even the simplest tool.

However, constructing, maintaining and extending large complex software systems

pose the problems of managing all the people, systems and agencies involved.

Although many project management systems are readily available, the enormous

scope and complexity of software systems means moving beyond the current state of

the art, as such systems do little to support the ‘average’ project manager. For example

[O’Connell, 96] suggests;

“...if you are a poor project manager, then using Microsoft Project™

will probably make you worse”.

Most project planning tools are successful at showing the outline plan - phases, stages,

etc. - identifying critical path and overall duration. Given appropriate basic cost and

time data, they may be able to do basic ‘what-if analysis.

12

It is the proposition of this research that what would be of greater benefit to the

project manager is advice on basic strategic alternatives such as selection of a lifecycle

process, and reuse of knowledge gained from previous projects undertaken in the

organisation.

We have isolated two main areas in which tool support is weakest: First is the creation

of plans. While support in some areas has significantly improved, few tools yet offer

automatic creation of technical and management plans; the user has still to directly

input the plan data with little support for the accuracy, completeness and quality of the

plan. Of use to the project manager would be the automatic creation of an outline plan

from specified (pre-defined) types of projects, which could be further refined to the

particular project under consideration.

Second is decision support. Most of these systems fall short of supporting the project

manager in the decision making process and do not offer assistance in representing

knowledge about plans and designs, or provide mechanisms for reasoning about plans

and designs in flexible ways. Although most tools offer ‘what if’ analysis in response

to changing parameters, few offer direct ‘recommendations’ for action given a certain

situation. Less still allow for the simulation of a possible future plan, given a key

parameter change, yet such information and decision support would be of great benefit

to the project manager in the immediate and intermediate time zones.

A further aspect to supporting the software project manager which is not addressed by

today’s support systems is the distributed and cross-platform nature of systems

development. The massive reduction in the cost of Personal Computers coupled with

enhanced communications technology, has lead to an increased trend towards the

development of heterogeneous client-server systems. At the system level we have

witnessed the widespread acceptance of distributed middleware technology such as

CORBA (Common Object Request Broker Architecture) [OMG, 96] and at the

programming level, the Java programming language is poised to bring platform-

independent languages to a new level. However, for the software developer there is

nothing by way of support systems which are orientated towards these new trends in

systems development.

13

One of the main reasons for this pattern of strengths and weaknesses is that ‘standard’

software is being offered for the management of ‘unique’ projects. It follows that the

software will concentrate on the common functions, such as calculating the overall

schedule from the set of activities. This is concerned with the logical relationship

between tasks, which can be represented by standard symbols, rather than the

technical content of those tasks. In contrast, short term control and decision support

(where tools are not strong) are more dependent on the specific technical detail of the

way things are actually done. This tends to be industry, organisation, or project

specific.

Users of existing software project planning systems could benefit greatly from the

inclusion of intelligent assistance techniques in such tools. In addition, such new

support systems should provide for the distributed cross-platform nature of modem

client-server development.

2.4 Software Project Management Tools

In the 1980’s there was a marked increased in the number of organisations using

software engineering methodologies and tools to assist in the planning, control and

execution of software development projects. In 1984 70% of organisations said they

used no recognised methods or tools. This figure reduced to 30% by 1988 and a

survey in 1992 suggested this has fallen to less than 15% [Mair, 92], It is clear that the

number of tools in the market place and the number of organisations using them will

continue to increase, thus leading to increased demands from users for more

sophisticated tools [Hughes and Cotterall, 99]. Recent studies of project management

software trends indicate that the worldwide project management software market has

grown to US$750 million and it will continue to grow, exceeding US$1.2 billion by

the year 2000 [Hodges and Rogers, 97],

Software project management tools are available at different levels of sophistication

and can typically be categorised by the types of project managers who use them

[Hampton, 97]:

14

1. The multi-project manager - Some organisations have a need to track

multiple projects simultaneously. It requires software that can identify

conflicting demands on the same resources as well as allow the project

manager to set priorities among the projects that require the same resource.

2. Mid-range project managers - These users manage large projects - up to

2000 tasks. They may have a couple of projects going at the same time, but

the emphasis is not on multiple projects and they are typically interested in

planning, scheduling, tracking and the production of reports.

3. Low-end project managers - Are typically used by project managers who

want to automate the process of laying out plans, prepare occasional status

reports and produce simple Gantt and PERT charts. Such users may be in

charge of small development projects and thus require limited functionality

from a project management tool.

Table 2.1 shows a classification [Jones, 94] and description of the main types of

features found in project management tools.

Feature Description

Input methods A key task for users is the entry into the system of a task

breakdown, task details and dependencies between tasks. If

this is to be done with the minimum of errors it is essential

that input can be performed in an intuitive manner.

Applying dependencies The range of dependency types which a product can support

is a key factor in its usefulness in particular situations.

Among the key types are; start to finish, finish to start, lags

and inter-project logic.

Scheduling Scheduling is a key activity for project managers and the

sophistication of the algorithm affects the usefulness of the

product. Aspects which should be taken into account

include; task priorities, multiple schedules, fixed date, as

soon as possible and as late as possible.

Data import / export Users may wish to import or export data to other packages.

15

Resource control Initial and ongoing control of the resources applied to a

project is a key element of project management. Typically

tools assist with allocating and monitoring resources.

Cost monitoring Information regarding actual and estimated costs should be

captured, such as; timesheets, committed costs, cash flows,

borrowing needs, etc.

Progress tracking There are a wide variety of metrics for the progress of a

project against its plans. Products normally support a

variety of these types such as; % completion for time, cost

or work, estimation of end date or cost and baseline

comparison for time or work effort.

Reporting features A varied reporting mechanism is essential and should

include a variety of reports such as; milestone report,

variance reports, status per task/team member, etc.

Multiple projects A project manager may be responsible for many projects

and will require support to handle issues such as;

prioritisation between projects, staff / resource sharing and

viewing consolidated information.

Charts A variety of charting mechanisms is desirable, such as;

Gantt, Pert, work breakdown structure, resource, etc.

What-if capabilities A common requirement for project managers is to be able

to investigate the effects of potential changes in the

situation of a project. They may need to see the effects of

adding or withdrawing a particular resource.

Help facilities There are a number of aspects to help including; online

tutorials, internet support, on-screen context sensitive help.

Networking Organisations may require packages to operate in a network

environment and allow for multiple simultaneous users.

System parameters The limitations of the tool may be an important factor.

Among the principal limits are; maximum number of

projects, tasks, resources and levels of granularity.

Table 2.1 - Classification of project management tool features

16

0

The following section will briefly contrast some project management tools which are

representative of the current state of the market, from the perspective of the provision

of intelligent assistance. For a definitive review of project management tools the

reader is directed to [Budd, 98].

2.4.1 Commercial Examples

A market leader for type 1 (multi-project managers) projects discussed above would

be Primavera Project Planner (supplied by Primavera Systems Inc.), which is

primarily aimed at the high end of the multi-project market [Heck and Mitchell, 96], It

provides all the standard project management functionality outlined above and in

addition provides extra functionality specifically orientated towards the needs of

managers of large-scale multi-project organisations. It also provides for developing

what-if scenarios but little in terms of intelligent assistance as discussed in section 1.5

and does not assist with analysing the suggested alternatives and selecting the most

suitable course of action.

PE/Project Manager (supplied by LBMS Corporation) is primarily orientated towards

organisations with a well defined software process [Humphrey, 89], with its typical

users being in charge of type 2 (mid-range project managers) projects. PE/Project

Manager provides much of the standard project management functionality outlined in

table 2.1 and in addition provides extra functionality specifically orientated towards

software process management. Unlike Primavera, PE/Project Manager claims to have

some intelligent assistance capabilities. These are mainly concerned with the selection

of the most appropriate process model (from a supplied set) and providing assistance

in guiding the process of converting it into an outline project plan. However, much of

the information that is used in the procedure is gained from pre-existing process

models which are supplied with the tool. It is therefore rather general and offers

nothing by way of assisting the project manager in reasoning about the selection

process. Although it does provide a facility to build and reuse process models, it does

not provide any features for capturing knowledge gained during the execution of a

17

process, or the rationale behind the choices made during the execution of the

project/process.

MS-Project (supplied by Microsoft) is the popular choice of type 3 (Low-end project

managers) project managers [Heck and Mitchell, 96], It provides a number of the

project management functionality outlined in table 2.1, and is primarily orientated

towards basic project planning and scheduling. Project does advertise an “intelligent

assistant to provide guidance while you work”. However, this is actually a ‘Microsoft

style Wizard’, referred to as a Microsoft Agent [Microsoft, 97], It appears as a

‘friendly’ face or icon on the screen which provides advice on how to achieve certain

tasks using the Project tool. A number of intelligent agent projects including

Microsoft Bob [Miller, 97] have explored the concept of giving human-like attributes

to agents by visually representing them in the form of cartoon-like animated faces

[Maes, 97], However, in Project, this assistant uses a predefined mechanism to

provide the user with tool assistance and does not provide any features for capturing

knowledge or assisting the user in reasoning about a project.

IntraPlan (supplied by Intra2000) is an Internet groupware project management

application orientated towards organisations involved in Internet/Intranet development

[Stone, 97], with a typical client being a type 3 (Low-end project manager) project

manager. IntraPlan does advertise some ‘intelligent’ capabilities. However, these are

also a ‘Microsoft style’ Wizard [Microsoft, 97] which guides the user through a series

of predefined questions in an attempt to identify a set of suggested solutions.

A number of commercial tools claim to have ‘intelligent’ features. However, when

these features are further investigated, it can be seen that they primarily refer to

efficient algorithms, task automation, or other clever labour and time saving facilities.

Some of these tools feature Wizards or graphical assistants which assist the user in

interacting with the tool or in following a predetermined recommended series of

actions. These however, only react to predetermined situations and do not have any

capabilities for analysing the current situation or for providing advice unique to that

situation. Most of these tools do provide a ‘What if’ method of generating scenarios to

allow the project manager hypothesise about the impact of possible future decisions.

18

These features simply use algorithmic techniques to generate project plans, etc. based

on altering the value of given project variables. They do not analyse the impact of a

potential decision on the project or the organisation as a whole, or attempt to give

advice to the project manager on best practices in a given situation.

None of these tools provide the intelligent assistance features discussed in chapter 1,

such as:

• Assisting the user in assimilating knowledge and best practices, with regard

to decision making.

• Providing the capability for project managers to reason about a project’s

plans, analyse alternatives and select the most suitable course of action.

• Providing a facility to capture knowledge gained during a project, and reuse

this knowledge as an aid to future project decision-making.

• Assisting the project manager in adherence to standards, industry best

practices and implementation of company policy.

2.5 Tool Users

In this section, the results of a tool user survey are presented. The purpose of the

survey was to obtain an appreciation of the type of tools that are being used by project

managers and to get a better understanding of the actual state-of-practice regarding

these tools, i.e. what do the project managers actually use these tools for and is this

consistent with the tool vendors intended usage. In addition, users were asked to

consider the aspects of intelligent assistance and comment on the possible benefits of

incorporating these into a project management support system.

It was not the purpose of this survey to provide a comprehensive in-depth study of

tools users. In order to guarantee a wider range of opinion and thus be further assured

of the representative nature of the survey results, a more comprehensive survey of

project managers would be required. However, this small scale survey provides

enough data to obtain an appreciation of the general trend of user opinion.

19

A group of six project managers from three European countries took part in this study.

These project managers represent a variety of software development organisations,

from small project teams of 2-3 developers, to large multi-national organisations with

over one hundred developers. The project managers themselves varied from novice

(first time), to experienced (greater than 10 years) senior managers. The projects they

manage vary from small projects of 2-3 months duration (2-6 person months of

effort), to large scale complex projects in excess of 2 years duration.

Each interview lasted approximately two hours and was tape recorded to assist the

interviewer in writing a report after the meeting. Each project manager was asked a

series of questions (cf. Appendix B), ranging from the highly specific - aimed at

investigating a particular area - to the more generic, to allow the project manager to

further consider and develop their own opinions. The questions asked in the survey

were divided into the following categories:

• General background questions regarding the person and employer.

• Questions to assertain the type of projects normally undertaken.

• Questions about methodologies, standards and development tools used.

• Questions about the use of project management tools.

• Questions regarding the potential benefits of an intelligent assistant system.

In relation to project management tools, each project manager was asked a series of

questions aimed at finding out what (if any) tools were being used for project

management, the manner in which they were being used and the usefulness of certain

types of features. Each manager was also asked to consider the proposal of an

intelligent assistant in the context of a software project planning tool and offer an

opinion on the proposed features.

The following six sections present a synopsis of the interview with each of the six

project managers, in order of the size of the organisation. A profile of each of the

project managers and their working environment is presented, as well as summary of

the interview under the main heading above. In order to respect the privacy the project

managers, they will be referred to as subjects ‘A’ to ‘F \

20

2.5.1 Project Manager A

Heading Description

Organisation Software Competency Centre, Group Schneider Electric (France).

Organisation

profile

Specialist software development division (100 software engineers) of

a large multi-national specialising in industrial control and

automation products. Within the organisation there is a strong

emphasis on adherence to agreed processes, standards and quality

procedures.

Personal

profile

15 years in software business, 8 of them as a project manager.

Tools

available

There are a range of high-end and low-end tools, with the choice

usually dependent on the individual preferences of the project

manager.

Tool usage There is a strong bias towards the use of the Artemis (high-end

enterprise tool). Low-end tools such as Microsoft Project are also

used for planning small projects and also as an aid to ‘sketch out’

new projects.

Recurring

project

management

difficulties

The main areas of recurring difficulties in project management for

subject are estimation and scheduling of priorities between tasks. She

suggested that existing project management tools are not of much

help in these areas.

Benefits of

intelligent

assistant

She considered that an intelligent assistant system could prove useful

- in particular the notion of a tool which a manager could ‘bounce’

ideas of, in terms of project plans. She also believed a tool which

could assist a project manager in ensuring the implementation of

company policy (in respect of quality, organisational processes, etc.)

would be advantageous.

Table 2.2 - Profile of project manager A

1
21

2.5.2 Project Manager B

Heading Description

Organisation Development Programmes Department, Intracom (Greece).

Organisation Research and development division (50 software developers) of long

profile established telecommunications organisation.

Personal 15 years in research and development, 5 as a project manager.

profile

Tools A number of different tools are available. The choice of tool usually

available depends on the scale of the project or the individual preference of the

project manager.

Tool usage Microsoft Project is frequently used in pre-project planning stages, to

help build possible views of the project and in trying to get a ‘feel

for’ it. This information is often used to assist in developing tentative

schedules and calculating potential resource requirements for the

project. For the actual management of an individual project, a

number of mid-range tools such as the LBMS tool set are often used.

Recurring Scheduling of multiple projects and ensuring that all relevant steps

project were taken into account in the planning stages. This issue is often

management compounded by the fact that the developers on some projects are

difficulties geographically dispersed throughout a number of locations and often

with access to different computer platforms.

Benefits of He had a number of suggestions for improved tool support: a tool

intelligent which could be used to centrally manage project plans for a multi-

assistant location project (distributed heterogeneous network); the ability to

analyse the impact (knock-on effect) on other projects of a decision

taken in one project; assistance with ensuring traceability is kept

between requirements and product functionality. He also suggested

that a tool which could ‘coach along’ a project manager in aspects of

improving control and quality would be valuable.

Table 2.3 - Profile of project manager B

22

2.5.3 Project Manager C

Heading Description

Organisation Siemens Business Services (Ireland).

Organisation

profile

Software development and consulting division, with approximately

30 software engineers.

Personal

profile

17 years in IT business, 6 as a senior project manager.

Tools

available

Microsoft Project, some use of LBMS tools for certain clients.

Tool usage Although subject C is a senior project manager, with 3 project

managers reporting to her, the organisation has a very low usage of

specialist project management software. Spreadsheets are widely

used to create and update schedules. Microsoft Project is used on

occasion for scheduling and other reporting to clients.

Recurring

project

management

difficulties

The main areas of recurring difficulties in project management for

subject C are that of scheduling and estimation, as well as coping

with new technologies. However, in general, C stated her projects

usually ran on time and within budget, but that there is scope for a

more useful tool (than Microsoft Project) to assist in routine work.

Benefits of

intelligent

assistant

Among her suggestions were; a tool facility which could prompt her

about the various phases of a project - to act as a reminder of what

management activities should be carried out when; assistance/advice

on how to build concepts such as quality into particular projects; a

facility in which to record the lessons learned from a project and

provide easy access to it when a similar situation occurred again in

another project.

Table 2.4 - Profile of project manager C

i
23

2.5.4 Project Manager D

Heading Description

Organisation Irish Distillers, member of Pernod Ricard group.

Organisation IT department, with 7 software developers and numerous support

profile staff. IT consultants are regularly used.

Personal 21 years in IT, 15 of them as a project manager.

profile

Tools Microsoft Project.

available

Tool usage Pen and paper charts and occasionally Microsoft Excel are used to

sketch out required resources for a particular project. The only time a

project management tool is used is on larger new projects, when

Microsoft Project is used to schedule high level tasks.

Recurring Slippages in project deadlines, mostly due to a lack of prior

project notification of new projects which have to be started in parallel with

management existing projects.

difficulties

Benefits of D was very articulate about what he would require from a project

intelligent management tool and responded to the notion of intelligent assistant

assistant capabilities in a project management tool with several suggestions:

The tool should be ‘very easy to use and not require loads of data

input’; He felt that tools should be able to capture information

regarding people’s skills and abilities, and assist with using this

information when assigning people to tasks and scheduling those

tasks; The ability to insert data about tasks and priorities and to

‘bounce schedule ideas’ of a tool which could develop possible

schedule scenarios.

Table 2.5 - Profile of project manager D

2.5.5 Project Manager E

Heading Description

Organisation BTT Systems (Ireland).

Organisation Software house, with 10 software engineers.

profile

Personal Owner-director, 30 years experience in IT, 10 in project

profile management.

Tools Microsoft Project.

available

Tool usage Microsoft Project, which is used to develop schedule reports which

are shown to customers. However, E admits that “th e s e s c h e d u le s a r e

n o t e v e n lo o k e d a t b y d e v e lo p e r s ”, they are produced “to k e e p th e

c u s to m e r h a p p y " . All actual management aspects of projects are

done manually using paper based plans and charts.

Recurring Problems are primarily due to the rapidly changing pace of

project technology, particularly in the area of network software and the

management multi-vendor situation they work in. They have constant difficulties

difficulties in keeping up to date with new technology/products and capturing

the associated knowledge gained from using this technology.

Benefits of He believed the availability of an intelligent assistant would be of

intelligent great benefit to him, if it incorporated a knowledge base which

assistant would keep track of the “Eureka Factor”, (i.e. specialist knowledge

gained during projects), which could then be searched when similar

problems occur again. Other additions he suggested would be

appropriate for such a system included; an ability to assist the project

manager in identifying complexity in a project; help with formulating

steps to deal with customers, especially during the requirements

phase; and a tool which would assist with, and enforce a procedure

for documenting knowledge learned on projects.

Table 2.6 - Profile of project manager E

25

2.5.6 Project Manager F

Heading Description

Organisation Softworks Computing (Ireland).

Organisation Recently established software house, specialising in human resources

profile management software. 5 software developers.

Personal Owner-director, 6 years experience in software development.

profile

Tools None.

available

Tool usage All plans and schedules are “scribbled on bits of paper” and when a

“reasonable looking plan” emerges, it is translated onto a whiteboard

which is altered in an ad-hoc manner over time to reflect the current

state of all tasks and people assigned to them in all current projects.

Recurring They have had requirements management problems due to clients

project who regularly change their requirements, thus causing a knock-on

management effect throughout the project. Like project manager E, he would like

difficulties a tool which could assist in the requirements engineering process.

Benefits of F has previously conducted postgraduate research in Expert Systems

intelligent and thus had a good understanding of the proposal of intelligent

assistant assistance in project management tools. He considered the proposed

intelligent assistant to be very useful and had potential to be of use in

other aspects of management, not just for software development. He

warned of potential user problems, which could be overcome with

careful user interface design and subtle direction by the tool. He also

suggested that a tool for capturing knowledge about projects, and the

reasons behind design and other decisions would be most useful. In

addition, the notion of being able to automatically create possible

alternative project plans and receive advice on which may be the

most appropriate ‘text book’ approach, would also be useful.

Table 2.7 - Profile of project manager F

26

2.5.7 Survey Results

The project managers who participated in the study represented a range of

organisations, both in terms of number of software developers and types of project

management tools used. However, it is interesting to note that the majority of project

managers had similar problems, particularly in respect to estimation and scheduling.

Additionally, they identified similar difficulties with existing project management

tools. The project managers surveyed provided a number of suggestions for

enhancements to such tools, and a number of these suggestions serve to reinforce the

proposition previously discussed. The project managers considered an intelligent

project assistant to be a useful addition to the existing range of features in project

management tools. In particular, they supported the concept of a tool which could

intelligently manage project knowledge and capture knowledge and lessons learned

about projects into a project knowledge base. Apart from the intelligent assistant

aspects of this research, the problems associated with organisations having distributed

project teams coupled with multiple hardware platforms was identified by all the

project managers surveyed, thus highlighting the need for a distributed platform tool.

The main purpose of the tool user survey was to validate the proposition of an

intelligent assistant system and obtain user feedback on the notion of incorporating

intelligent assistance in a project planning tool. Having analysed both the software

project management tools discussed above and the survey of tool users, it is

considered that the initial premise of this thesis has been validated.

To obtain further feedback from potential tool users and from the wider software

engineering community, the results of this survey coupled with details of the proposed

intelligent assistant system were presented at the 9th European Software Control and

Metrics (ESCOM) conference [O’Connor and Jenkins, 98], A number of positive

comments were made about the need for, and potential usefulness of, such a tool. The

main concern that was expressed was in relation to aspects of knowledge elicitation

and knowledge representation. These issues will be dealt with in chapter 5.

27

Further validation was obtained by the implementation of a prototype system, which

was demonstrated to the tool users previously surveyed, in conjunction with a wider

study. This exercise allowed users to more easily appreciate and consider the proposed

system, and in addition, a prototype system provided an easier mechanism to

demonstrate the system to a larger audience.

2.6 Summary

This chapter contains a description of software project planning and its characteristics

in order to better understand what is required from an intelligent assistant system for

software project managers. This has also presented a discussion on the functionality of

software project planning tools and a survey of software project planning tool users in

an attempt to validate the premise of this research.

Chapter 3 will examine intelligent assistant systems in other domains with an

emphasis on their underlying architecture. The issues surrounding the architectural

concerns of client-server and distributed systems will also be examined to set the

context for a discussion on the architecture for the proposed system.

\
28

Cha pte r 3 Approa che s t o In tel li gen t Ass istance

3.1 Introduction

This chapter describes several commonly used approaches to intelligent assistance.

Following this discussion, a strategy for implementing intelligent assistance within the

scope of a software project planning tool is proposed.

3.2 Intelligent Assistance Approaches

Many solutions have been proposed to the notion of intelligent assistance (in different

domains) over the years. These fall under several main categories: Decision Support

Systems, Expert Systems, Expert Critiquing Systems, Intelligent Tutoring Systems,

Blackboard Systems and Intelligent Agents.

The following sections review each of the above approaches and attempt to assess the

potential application of each to the development of more powerful and useful software

project management tools. Finally, in section 3.3 a proposal for the incorporation of

intelligent assistance within a software project planning tool will be presented.

3.2.1 Decision Support Systems

Decision Support Systems are interactive computer based systems which help decision

makers utilise data and models to identify and solve problems and make decisions.

[Bonczek et al., 81] offers the following description of a DSS:

“ T h e s y s te m m u s t a id a d e c is io n m a k e r in s o lv in g u n p r o g r a m m e d ,

u n s tr u c tu r e d (o r s e m is tr u c tu r e d) p r o b l e m s ”.

29

Essentially DSS are computer-based systems that bring together information from a

variety of sources, assist in the organisation and analysis of this information and

facilitate the evaluation of underlying assumptions [Mallach, 94], They help

managers/decision makers use and manipulate data; apply checklists and heuristics;

and build and use mathematical models. The availability of DSS provides the

opportunity to improve data collection and analysis processes associated with decision

making, and further, DSS provide opportunities to improve the quality and

responsiveness of decision making and hence the opportunity to improve the

management of projects. According to Turban [Turban, 95], a DSS has four major

characteristics: DSS incorporate both data and models; they are designed to assist

managers in their decision processes in semistructured (or unstructured) tasks; they

support, rather than replace, managerial judgment; their objective is to improve the

effectiveness of the decisions, not the efficiency with which decisions are being made.

Figure 3.1 - Components of a Decision Support System

A DSS is typically composed of four components (figure 3.1); DBMS (Database

Management System) - providing access to data and control programs to get the data

into appropriate forms for analysis; MBMS (Model-Base Management System) keeps

track of all models running during an analysis and provides the user with a facility to

question the assumptions of models; A user interface provides the mechanism

30

whereby information is presented to the user; and recently a new component - the

MMS (Mail Management System) has emerged which incorporates mail and other on-

line data into the decision support models.

DSS have been successfully applied in a number of fields. For example the DESSERT

project [Tierney and Davison, 95], a European Commission funded RACE II project

which examined the use of DSS technology to help users (suppliers of

telecommunications products) cope with increasingly complex engineering problems

associated with telecommunications service provision. The project implemented the

GSAC (Generation and Selection of Alternative Configurations) prototype DSS which

took customers technical requirements as input and generating all feasible

telecommunications access configurations and established the best (optimal) solution

that meets both the customer and service providers requirements. The group’s

conclusions, supported by prototype trials by British Telecom and SEMA Group

Telecom, suggested that DSS technology was an important element in making key

parts of service management more efficient.

3.2.2 Expert Systems

An Expert System (ES) is a computer program that represents and reasons with

knowledge of some specialist subject with a view to solving problems or giving

advice [Jackson, 90]. An ES may completely fill a function that normally requires

human expertise, or it may play the role of assistant to a human decision maker. The

symbolic reasoning of an ES enables it not only to draw conclusions, through a

process similar to the one used by human experts, but also enables them to provide

explanations concerning their estimations. ES technology is based on the domain

knowledge of the problem being addressed. A problem domain defines the objects,

properties, tasks and events within which a human expert works and also the

heuristics that trained professionals have learned to use in order to perform better

[Klein and Methlie, 95],

31

The DENDRAL project [Lederberg, 87] initiated by Ed Feigenbaum and others at

Stanford University in the mid 1960s was the first system to demonstrate that it was

possible for a computer program to rival domain experts in a specialised field. In the

case of DENDRAL the domain was the identification of complex compounds in a

molecular structure.

DENDRAL was an early example of the basic structure of an expert system: problem

solving behavior and formalized domain specific knowledge (in the form of a rule-

based system). It had the ability to explore and abandon potential goal paths and is

considered one of the earliest successes in expert systems. Many systems were

spawned from DENDRAL. Two of the most noteworthy are Meta-DENDRAL and

GENOA [Buchanan and Feigenbaum, 78].

Figure 3.2 - Components of a Expert System

The heart of every expert system consists of two principal parts (see figure 3.2): the

knowledge base; and the reasoning, or inference, engine. The knowledge base of

expert systems contains both factual and heuristic knowledge. Factual knowledge is

that knowledge of the task domain that is widely shared, typically found in textbooks

or journals, and commonly agreed upon by those knowledgeable in the particular

field. Heuristic knowledge is the less rigorous, more experiential, more judgmental

knowledge of performance. In contrast to factual knowledge, heuristic knowledge is

rarely discussed, and is largely individualistic. It is the knowledge of good practice,

good judgment, and plausible reasoning in the field. It is the knowledge that underlies

the “art of good guessing”. Other system components include: Working memory,

which is used to store the current ‘facts’ or state of the domain - and a user interface to

handle user input and output.

32

• Improved quality of decision making.

• A speed-up of human professional or semi-professional work.

• Preservation of scarce expertise. ESs are used to preserve scarce know-how

in organizations, to capture the expertise of individuals who are retiring, and

to preserve corporate know-how so that it can be widely distributed to other

factories, offices or plants of the company.

• Introduction of new products. For example, a pathology expert advisor sold

to clinical pathologists to assist in the diagnosis of diseased tissue.

A more recent example of ES technology applied to a technical domain would be the

EXPIDER system [Shen et al., 97] which was applied to solving channel routing

problems in VLSI (Very Large Scale Integration) design. The system was built using

CLIPS (C Language Integrated Production System) [Giarratano and Riley, 94],

3.2.3 Expert Critiquing Systems

Expert Critiquing Systems (ECS) [Silverman, 92] are a class of programs that receive

as input the statement of the problem and the user-proposed solution. They produce as

output a critique of the users judgement in terms of what the program considers is

wrong with the user-proposed solution. Simple, yet widely used examples of

critiquing system are spell checkers.

Critiquing programs may be user invoked (passive) critics or active critics. They may

work in ‘batch mode’ - process the entire solution after the user has finished it; or

incremental mode - interrupt the user during their problem-solving task. They do not

necessarily solve problems for the user. Their core task is to recognise and

communicate debatable issues concerning a product. Critiquing systems point out

errors and suboptimal conditions that might otherwise remain undetected. They also

advise users on how to improve the product and explain their reasoning, thus helping

users avoid problems and learn different views and opinions.

P rim arily , the b enefits o f E S ’s to en d users include [E ngelm ore , 93]:

33

An appealing characteristic of ECS is that they can be employed in a wide variety of

situations with a broad range of supportive functions. They can, for example,

complement problem-solving systems with or without full (i.e. global) knowledge of

the problem space by being able to comment on particular sections of the

problem/solution at hand. They can also function in situations where no near-optimal

or optimal solution can be given at all and still be able to provide useful comments.

The critiquing process is illustrated in figure 3.3. The user initiates the task using

some task support software. For a given task, the users input to the system consists of:

1. A description of the problem (e.g. design requirements). The problem may

also be one the computer is displaying to the user, as perhaps in a process

control application.

2. The proposed solution to the problem, such as the final design or completed

diagnosis.

Domain ^ Proposed
Expertise f Solution

User
Model

Figure 3.3 - The Critiquing Process

The critic applies its domain knowledge to the user problem and attempts an analysis

of the user supplied solutions. It produces a critique and advises on possible flaws in

the solution and on possible unforeseen implications of the proposed solution. This

information is then used by the user to apply in the next iteration of this process.

Critiquing systems have appeared in fields such as LISP programming environments

[Fischer, 87] and CAD (Computer Aided Design) [Gupta et al., 96], They have also

been applied in the field of software project support systems - the IMPW project

(Integrated Management Process Workbench) [Jenkins et al., 87] a European

Commission funded ESPRIT project, designed a workbench of tools to aid project

Domain
Knowledge

34

managers organise and control projects. One of the tools developed was RISKMAN

[Verbruggen et al., 89] which enabled project managers ‘walk around’ a proposed

project and help him/her anticipate any major risks. This project was taken further

with the development of the RISKMAN2 tool [Moynihan et ah, 94],

3.2.4 Intelligent Ttitoring Systems

Intelligent Tutoring Systems (ITS) [Poison and Richardson, 88] allow the emulation

of a human teacher in the sense that an ITS can know what to teach (domain content),

how to teach it (instructional strategies), and leam certain teaching-relevant

information about the student being taught. This requires the representation of a

domain expert's knowledge (Expert Model), an instructor's knowledge (Instructional

Model) and the particular student that is being taught (Student Model).

The expert model represents information specific to the subject being taught, the

student model portrays the current student understanding or misunderstanding of the

subject and the instructor model contains knowledge required of teachers to select

meaningful lessons for their students. Through the interaction of these models,

intelligent tutoring systems are able to make judgments about what the student knows

and how well the student is progressing. Instruction can then be automatically tailored

by the Instructional Model to the student's needs, without the intervention of a human

instructor. The ITS acts as the student's private tutor, while the human trainer or

teacher is then free to focus on more complex and individualised student needs.

The design of most ITS is closely linked to how the ITS presents the domain to a

student: knowledge from the simulation, knowledge packaged as rules, frames, or

scripts, or intuitive interfaces. Figure 3.4 illustrates the dimensions of device or

operational simulation, the domain expert and the interface.

A large number of ITS’s have been constructed, although few are in widespread use

[Frasson and Gauthier, 86], ITS have been applied in many domains such as: IDE

(Instructional Design Environments) [Russell et al., 89] which has been used in

35

foreign language instruction; ISD Expert [Merrill, 87] for instructional developers;

teaching concepts in debugging electronic circuits [Brown et al., 82] and EDUC [Cox,

94] in the domain of engineering education.

Figure 3.4 - Domain Knowledge Architecture

3.2.5 Blackboard Systems

The Blackboard [Hayes-Roth, 83] is a problem solving model prescribing the

organisation of knowledge, data and the problem solving behavior within the overall

organisation. The blackboard paradigm is best described using the following analogy

[Englemore and Morgan, 88]:

“Imagine a number of people in a room trying to solve a jigsaw puzzle

together. The room has a large blackboard and around it there is a

group of people each holding pieces of the puzzle. Some volunteer to

put their most ‘promising’ pieces on the blackboard and the others

look at the pieces in place on the blackboard and then examine their

own pieces to see if any fit. Those who have pieces that fit then go to

the blackboard and fit their pieces. This process continues until all the

pieces have been placed on the blackboard and the problem is solved. ”

36

Essentially blackboard systems use multiple independent knowledge sources to

analyse different aspects of a problem. Each knowledge source contributes its

information to the common working memory (the blackboard). Blackboards compose

solutions from component subsolutions, each of which may be generated or modified

by its own knowledge sources.

Blackboards consist of three major components (figure 3.5):

1. Knowledge sources - (KSs). Like the human experts, each KS provides

specific expertise needed by the application.

2. The blackboard - a shared repository of problems, goals, partial solutions,

suggestions and contributed information. The blackboard can be viewed as a

dynamic library of requests and contributions that have been recently

published by other KSs.

3. The control shell - which controls the flow of activity in the application.

Just as eager human specialists sometimes need a moderator to prevent them

from trampling in a mad dash to grab the chalk, KSs need a mechanism to

organize their use in the most effective and coherent fashion.

Figure 3.5 - Blackboard Components

The blackboard paradigm offers a number of important advantages, including:

Modularity - KSs can be developed independently (for example, by

programming teams) or even developed long before the application itself is

developed.

• I n te g r a tio n - KSs can be implemented using widely differing approaches

and programming languages. They may run remotely, on diverse hardware.

• E x te n s ib i l i ty - New KSs can be added easily, and existing KSs can be

replaced with enhanced versions.

• R e u s a b il i ty - KSs that provide expertise to one application can be

redeployed in new applications.

• S tr a te g ic C o n tr o l - Strategic control knowledge can be used to determine

where the application expends its computational resources. Effective control

is important when the number of KSs grows, when KSs have overlapping

capabilities and when the best approach to solving today’s problem differs

from the approach used in yesterday’s problem.

Blackboard technology has been successfully applied in a number of problem

domains. The RISKMAN2 expert critiquing system project discussed in section 3.2.3

used a blackboard approach to pool knowledge from multiple knowledge sources.

More recently USA based BBTech have developed Generic Blackboard Builder

[Corkhill, 97] a generic blackboard product which has been used by the Ford Motor

Company in their engineering design process and the US Army for logistics planning.

3.2.6 Intelligent Agents

The area of Intelligent Agents has emerged in recent times as a ‘hot topic’ in several

branches of computing research from artificial intelligence to information systems.

Among the agent community there is no commonly agreed definition of a software

agent, indeed Carl Hewitt remarked1:

“ . . . th e q u e s t io n w h a t is a n a g e n t? is e m b a r r a s s in g f o r th e a g e n t-b a s e d ,

c o m p u tin g c o m m u n ity in j u s t th e s a m e w a y th a t th e q u e s t io n w h a t is

in te l l ig e n c e ? is e m b a r r a s s in g f o r th e m a in s tr e a m A I c o m m u n i ty ”.

1 At the 13th International Workshop on Distributed Artificial Intelligence, Washington, USA, 1994.

38

The problem is that although the term is widely used by many people working in

closely related areas, it defies attempts to produce a single universally accepted

definition. With this in mind it is possible to distinguish two general usages of the

term ‘agent’: the first is weak, and relatively uncontentious; the second is stronger,

and potentially more contentious [Wooldridge and Jennings, 95],

The weaker, and perhaps the most general way in which the term agent is used, refers

to a kind of UNIX-like software process which exhibits the following properties:

• Autonomy - agents operate without the direct intervention of humans and

have some kind of control over their actions and internal state.

• Social ability - agents interact with other agents (and possibly humans) via

some kind of agent-communication language.

• Reactivity - agents perceive their environment and respond in a timely

fashion to changes which occur in it.

• Pro-activeness - agents do not simply act in response to their environment,

they are able to exhibit goal-directed behaviour by taking the initiative.

This weak notion of agency is basically that used in the emerging discipline of agent-

based software engineering [Genesereth and Ketchpel, 94] and describes agents as

being able to “communicate with their peers by exchanging messages in an expressive

agent communication language”.

For some researchers - particularly those working in AI - the term ‘agent’ has a

stronger and more specific meaning than that sketched out above. These researchers

generally mean an agent to be a computer system that, in addition to having the

properties identified above, is either conceptualised or implemented using concepts

that are more usually applied to humans. For example, it is quite common in AI to

characterise an agent using mentalistic notions such as knowledge, belief, intention,

and obligation [Shoham, 93]. Some AI researchers have gone further and considered

emotional agents [Bates et ah, 92], Another way that agents have been given human-

like attributes is by visual representation in the form of an animated face [Maes, 97],

39

Agent technologies also offer models of social cooperation. Using agent-based

approaches, economists have constructed informative (if not completely predictive)

models of economic markets. Agent technologies have exerted an increased influence

on the design of distributed computing systems, the construction of internet search

tools and implementation of cooperative work environments.

From an architectural viewpoint, [Luger and Stubblefield, 98] argue that a single

architecture cannot account for all intelligent behavior. Instead, intelligence results

from the cooperation of highly specialised agents. [Minsky, 85] outlines such a model

in which the mind consists of a collection of specialised agents. Each agent

contributes a particular ability to such tasks as understanding data or high-level

problem solving. Other proponents of this multi-agent view of the mind include Hebb

[Hebb, 49], Selfridge [Selfridge, 59], Fodor [Fodor, 83], Brooks [Brooks, 89] and

Dennett [Dennett, 91].

When compared with the technologies discussed in the previous sections, agents are a

young research area. However, a number of agent based systems have emerged; for

example the ARCHON (ARchitecture for Cooperative Heterogeneous ON-line

systems) project [Jennings et ah, 96a], a European Commission funded ESPRIT II

project aimed at developing an architecture, software framework and methodology for

multi-agent systems for industrial applications in the area of power system control

supervision. Another example is the ADEPT (Advanced Decision Environment for

Process Tasks) project [Alty et al., 94], which provides an agent-based infrastructure

for managing business processes. Both of these systems will be examined in further

detail from an architectural perspective in Chapter 4.

3.2.7 Review of approaches

In this section, the six approaches to intelligent assistance previously discussed are

contrasted to assess their comparative strengths and weaknesses in order to appraise

their suitability as approaches to implementing intelligent assistance in software

project planning tools.

40

Expert Critiquing Systems are different to Expert Systems in that ES only accept the

problem statement as input and provide their machine generated solution as output, by

applying rules in its knowledge base to the problem under consideration. ECS take as

input a user proposed solution and a statement of the problem and attempt to offer an

opinion on this solution. ECS do not necessarily solve problems for the user, they

simply point out errors and sub-optimal conditions in the user-proposed solution that

otherwise may remain undetected. ECS are particularly well suited to complex

problem domains (such as project planning) as they do not always have an optimal

solution and the problem cannot be precisely specified before attempting a solution

[Fischer et al., 91]. In contrast to ES, ECS can function with only a partial

understanding of the task, as they can provide support by applying generic domain

knowledge, whereas ES are inadequate in situations where it is difficult to capture

sufficient domain knowledge, because they leave the human out of the decision

process and all ‘intelligent’ decisions are made by the computer.

Both ES and ECS have been applied in various problem domains. For example, the

EXPIDER system [Shen et ah, 97] successfully applied ES technology to the domain

of VLSI design and the RISKMAN2 tool [Moynihan et ah, 94] implemented an ECS

in the domain of software project risk. Both of these technologies have proved to be of

benefit to the user and can be seen to have a complementary approach, where ES

assist the user in arriving at a solution and ECS enhance solutions by providing a

critique of them. This dual approach to problem solving can potentially overcome the

difficulties of operating in a situation where domain knowledge may be incomplete or

inconsistent. However, it is worth noting that most implementations of ES’s have

been for well understood domains, which lend themselves more easily to capturing all

necessary decision making data in the form of rules or other similar representation.

In contrast to ES and ECS, where domain knowledge in problem solving is embedded

in a knowledge base, Decision Support Systems provide a framework for users in

which models of the domain may be built, data gathered and decisions arrived at

through informed analysis. Traditionally DSS do not have ES style prescriptive

knowledge bases, rather they assist the user in analysing and evaluating assumptions

underlying a problem by using models, but do not propose or critique a solution. In

41

the complex ‘data rich’ domain of large scale software development projects, DSS

could prove useful in the gathering and analysis of project data, in an attempt to

evaluate models of potential solutions. The results of the DESSERT project [Tierney

and Davison, 95] in the telecommunications domain affirm this proposition. However,

DSS may be more useful to the software project manager if coupled with the advisory

and critiquing capabilities of both ES and ECS.

A view of an ITS would be that a persons problem solving skills would be represented

by a set of production rules. Errors in problem solving efforts can be explained by the

absence, incorrectness, or misuse of one of these rules. Intelligent computer-aided

instruction seeks to identify the missing or incorrect rule and then teach the learner

that skill or rule. ITS ‘reconstruct’ a problem solving process in a data driven way

whereas an ES ‘executes’ a problem solving process in a goal driven manner.

[Kamsteeg and Blerman, 89] illustrate this by the example of using an ES as the

domain knowledge component of an ITS, which results in the writing of a new ES

specifically designed to use the domain knowledge component of an ITS. This is due

to having to add knowledge (e.g. incorrect knowledge, more levels of detail) and

change knowledge representation to make it more explicit. In the context of providing

training support for software project managers, the ITS approach would be a primary

candidate. However the ITS approach would be less useful in the context of tool

support for project managers, as this is removed from the notion of training support.

The Blackboard concept is a general model of problem solving and is particularly

useful where there exists a number of (independent) knowledge sources. It provides a

framework in which these knowledge sources may work cooperatively to assist the

user in arriving at a solution. In common with DSS, the blackboard approach does not

propose or critique a solution. It provides a framework for arriving at a solution state.

The blackboard concept has been successfully applied within a number of approaches:

DSS blackboards have been used in a number of systems, including DESSERT project

mentioned earlier. In ES projects such as ESHELL blackboards were used to enhance

working memory of the ES; and in ECS such as RISKMAN2, blackboards are used as

a framework for each critic (or knowledge source) to add its advice and inspect the

state of the developing solution. It is clear from previous research that blackboards are

42

both a viable and enhancing technology around which to base a future intelligent

assistant systems.

Intelligent Agents are a relatively new and potentially exciting aspect to intelligent

assistance systems. The agent properties of autonomy, reactivity and pro-activeness

which fit naturally with the characteristics of the technologies discussed above.

Blackboards are a natural candidate for use by agents, as they can represent

(‘autonomous’) knowledge sources each of which cooperates via a blackboard to

arrive at a solution state. Agents may also function as critics (as in the ‘reactive’

nature of ECS) or expert advisors (where an agent represents a ‘pro-active’ mini ES),

where each agent is a specialist in some aspect (or sub-domain) of the greater problem

domain being addressed. The former (critic mode) of agents was explored in

conjunction with the blackboard model in the RISKMAN2 project and the latter

(expert mode) was tested during the ADEPT project. From the research outlined

previously and other current work in the area of agents it is apparent that agent based

technology has a significant role to play in the development of future intelligent

assistant systems.

3.3 Proposal for a new Intelligent Assistant

It is the proposition of this research that, in the complex domain of software project

planning, a useful framework to support the project manager in the decision making

process is a hybrid of a number of techniques including DSS, ES, ECS and the

blackboard model. It has therefore been proposed [O’Connor et al., 97b] [O’Connor

and Renault, 98] to incorporate the information gathering and analysis techniques of

DSS, with the ability of ES to propose possible solutions using expert knowledge and

best practices and the power of ECS to critique the possible solutions, thus providing

the project manager with every facility to make an informed and quality decision.

It is considered that an agent based system will provide for an approach which enables

the inter-working of a variety of well understood techniques within a single

underlying framework - that of an agent-orientated system as illustrated in figure 3.6.

43

Agents with
domain knowledge

Advice &
criticism

Project decision
making procès^

Figure 3.6 - Decision Making Process

The system proposed therefore is composed of a library of intelligent software agents -

where each agent would play the role of a ‘mini-expert system’ or ‘mini-critiquing

system’, each with an associated knowledge base. These agents would utilise the

blackboard model of problem solving to communicate and thus converge on possible

solution states and examine those states to assess their suitability given current

conditions. This agent-orientated system would operate within the overall framework

of a Decision Support System, which would provide for the gathering and analysis of

data regarding a project and the development of models of the project with the aid and

critique of the agents, as illustrated figure 3.7.

Decision Support System

DSS provides data gathering, analysis
and storage facilities and user interface

Inter-agent
communication

Blackboard

Blackboard
provides global

problem solving state

Agents acting as
mini-expert system or

mini-expert critiquing system

Figure 3.7 - Decision Making Framework

The major perceived benefits of this approach are the facilitation and improvement of

the quality of decision making by a software project manager by reducing information

overload and augmenting the cognitive limitations and bounds of the decision maker.

This hybrid method of assistance, coupled with the architectural properties of

intelligent agents (dynamic and distributed objects), present an ideal strategy to

implement intelligent assistance system for use in software project planning.

44

In addition to the properties outlined above, an agent-orientated architecture is a

natural choice to address the issue of heterogeneous client-server systems

development. Recent research in Java-based agents [Watson, 97] [Caglayan and

Harrison, 97] and mobile Java-based agents [Lange and Oshima, 97] has concluded

that they are a viable technology on which to establish a platform independent agent-

orientated architecture. To address the client-server issue, Orfali [Orfali and Harkey,

98] has successfully demonstrated the use of CORBA (Common Object Request

Broker Architecture) as a basis for developing platform independent client-server

systems, including agent-orientated systems.

To provide the necessary flexibility for the proposed system and to tackle the issues

above, it is considered that both Java and CORBA provide an appropriate framework

on which to base the system.

3.4 Summary

This chapter has described several commonly used approaches to intelligent

assistance. They are contrasted to gain a better understanding of how to approach

intelligent assistance in the domain of software project planning. Finally, a proposal

for an agent-orientated hybrid approach to implementing an intelligent assistance tool

for software project planners was presented.

Chapter 4 contains a review of the architectural aspects of intelligent systems and the

trend towards distributed client-server platform independent systems. A number of

intelligent assistant systems are investigated and the concepts of agent-based

architectures for intelligent assistant presented.

45

Ch a p t e r 4 A r c h i t e c t u r a l Pe r s p e c t i v e s

4.1 Introduction

This chapter describes architectures of intelligent assistant systems. A number of

systems and research projects which fall under the heading of ‘intelligent systems’ and

which are related to the concept of an intelligent assistant which has been proposed,

are examined in conjunction with general aspects of software architecture. This

chapter also describes an investigation into the trend towards distributed client-server

platform-independent systems and its implications for the development of an

architecture for the proposed intelligent assistant system.

4.2 Software Architectures

Recently, software architecture has emerged as an important field of study for

software engineering researchers and practitioners [Bass et al., 98]. Software

architecture can be defined as [Shaw and Garlan, 96];

“S tr u c tu r a l i s s u e s c o n c e r n in g th e o r g a n is a t io n o f a s y s te m a s a

c o m p o s i t io n o f c o m p o n e n ts ; g lo b a l c o n tr o l s tr u c tu r e s ; th e p r o to c o l s

f o r c o m m u n ic a tio n , s y n c h r o n iz a t io n a n d d a ta a c c e s s ; th e a s s ig n m e n t

o f f u n c t io n a l i t y to d e s ig n e le m e n ts ; th e c o m p o s i t io n o f d e s ig n e le m e n ts ;

p h y s ic a l d is tr ib u t io n ; s c a l in g a n d p e r f o r m a n c e ; d im e n s io n s o f

e v o lu t io n ; a n d s e le c t io n a m o n g d e s ig n a l t e r n a t i v e s ”.

Abstractly, software architecture involves the description of elements from which

systems are built, interactions among those elements, patterns that guide their

composition, and constraints on these patterns.

Good architectural design has always been a major factor in determining the success

of a software system. However, while there are many useful architectural paradigms

46

(such as pipelines, layered systems, client-server), they are typically understood only

in an pragmatic way and applied in a non standard fashion. Consequently, software

systems designers have been unable to exploit commonalties in system architectures,

make principled choices among design alternatives or specialize general paradigms to

specific domains.

A sound basis for software architecture promises benefits for both development and

maintenance. For development, it is increasingly clear that effective software

engineers require proficiency in architectural software design. First, it is important to

be able to recognise common paradigms, so that high level relationships among

systems can be understood and so new systems can be built as variations of old

systems. Second, getting the right architecture is often crucial to the success of a

software systems design. Third, detailed understanding of software architectures

allows the engineer to make principled choices among design alternatives. Fourth, an

architectural system representation is often essential to the analysis and description of

the high level properties of a complex system. Fifth, fluency in the use of notations for

describing architectural paradigms allows the software designer to communicate new

system designs to others.

One of the difficulties in working with software architecture is that different designers

may interpret an architectural paradigm in different ways. For example, although two

designers may both claim that their design is built around a client-server paradigm,

they may mean quite different things by that term [Berson, 92]. A related problem is

that several systems may be designed with similar architectural structures, but the

designers never recognise that the similarities exist, consequently they overlook

opportunities to capitalise on the experience of other designers.

Choosing the most appropriate architecture for a given situation remains an open

problem [Bass et al., 98], The rules of the style usually determine how to package

components, for example, as procedures, objects, or filters. As a result, components

cannot usually be interchanged across styles, for example code, may not be reusable

because its interface makes it incompatible.

47

4.3 Intelligent System Architectures

Given the above discussion, it follows that in order to fully understand the

architectural requirements for an intelligent assistant system, an examination of

existing architectures must take place. Examining these architectures in conjunction

with the characteristics of the problem domain will lead to an improved understanding

of the nature of architectures for intelligent assistant systems and assist with the

specification of an architecture for the proposed system.

In the following sections, three assistant systems will be analysed from an

architectural perspective. These systems all operate in the area of management

decision making and have diverse architectures which are based around the agent-

orientated paradigm. For each system a brief description of its origin will be given,

followed by an examination of its architecture and implementation as well as a

discussion about its impact on the decision makers who use the system.

4.3.1 ADEPT

The ADEPT (Advanced Decision Environment for Process Tasks) project [Alty et al.,

94] had as it main aim the implementation of an agent-based approach to managing

business processes. The system was expected to:

• Allow decision makers access to relevant information wherever it is situated

and request and obtain information from other departments within the

organisation and outside the organisation.

• Provide timely and relevant information to decision makers which may not

have been asked for.

• Inform decision makers of changes made elsewhere which impinge on

current decision processes.

• Identify parties which may be interested in the outcome and results of the

decision making activity.

48

The ADEPT system involves the transformation of some business process

descriptions into a number of agencies, each with a connection to some common

communication medium. An agency is recursively defined: an agency consists of a

single responsible (or controlling) agent, a set of tasks the agent can perform and a

possible set of sub-agencies. This relationship between sub-agency and responsible

agent can be viewed as a type of social commitment and provides a mechanism for the

encapsulation and abstraction of services. The responsible agent provides a

specification of the services that it can and is willing to provide to its peers, even

though some of the activity will require the assistance of its sub-agents.

Essentially each agent is able to perform one or more ‘services’, where a service is a

unit of problem solving activity. The simplest service (called a task) represents an

atomic unit of problem solving endeavor. These atomic units can be combined to form

‘complex services’ by addition of ordering constraints (e.g. two tasks can run in

parallel, must run in parallel, or must run in sequence) and conditional control. The

nesting of services can be arbitrarily complex and at the topmost level the entire

business process can be viewed as a service.

Services are associated with one or more agents which are responsible for managing

and executing them. Each service is managed by one agent, although it may involve

execution of sub-services by a number of other agents. Since agents are autonomous,

there are no control dependencies between them; therefore, if an agent requires a

service which is managed by another agent, it cannot simply instruct it to start the

service. Rather, the agents must come to an agreement about the terms and conditions

under which the service will be performed (called a service level agreement).

In ADEPT, all agents have the same architecture (figure 4.1) which involves a

‘responsible agent’ that interacts with its peers and the ‘subsidiary agencies’ and tasks

within its agency. An agents agency represents its domain problem solving resources.

The responsible agent has a number of functional components concerned with each of

its main activities - communication, service execution, situation assessment and

interaction management.

49

Figure 4.1 - ADEPT Agent Architecture

• The communications module routes messages between an agent and its

agency and between peer agents.

• The interaction management module (IMM) provisions services through

negotiation. It generates initial proposals, evaluates incoming proposals,

produces counterproposals and finally accepts or rejects proposals. If a

proposal is accepted then it generates a new SLA (service level agreement).

• The situation assessment module (SAM) is responsible for assessing and

monitoring the agents ability to meet the SLAs it has and the potential SLAs

which it may agree in the future. For example, if a service is delayed then

the SAM may decide to reschedule it, to renegotiate its SLA, or to terminate

it altogether.

• The service execution module is responsible for managing services

throughout their execution. This involves execution management,

information management and exception handling.

• The models are the primary storage site for SLAs to which agents are

committed, descriptions of the services the agent can provide and generic

domain information.

50

The agent knowledge base is represented as a set of strategies and a mechanism for

selecting between them, which is implemented using a modified version of the CLIPS

system. For agents to participate in the ADEPT environment, it is necessary for them

to communicate using a common expressive language. This common language KIF

[Genesereth and Fikes, 92], consists of a protocol and a syntax for expressing

information and allows agents to interpret other agents intentions.

The overall ADEPT framework contains three basic components (or layers): The

application layer is at the level of user interaction, where service descriptions and

other information is gathered. The management layer contains all the agents and their

sub-agents and the convergence layer presents a standard interface between the agent

system and the underlying platform. The agents themselves are implemented on top of

a CORBA compliant distributed platform.

The ADEPT system was tested by British Telecom, who used the system to support a

number of concurrent business processes, such as the generation of customer

quotations for designing a network to provide particular services to a customer. This

would involve up to six parties: the sales department, the customer service division,

the legal department, the design division, the surveyor department and the provider of

an out-sourced service for vetting customers. For representing this business process, a

full description of the process was translated into an agent system, where (at an

abstract level) each agent represented a distinct department involved in the process.

ADEPT agents themselves do not carry out the totality of a business process; much of

the work is ultimately carried out by humans or other software (often legacy) systems

that are externally interfaced to ADEPT agents. ADEPT agents do need a certain

amount of domain knowledge (or meta knowledge) and in most cases this domain

knowledge can be of considerable size and complexity. However, this type of

information can be extracted during a business process re-engineering exercise, which

many efficient organisations conduct.

51

4.3.2 ARCHON

The ARCHON (ARchitecture for Cooperative Heterogeneous ON-line systems)

project [Jennings et al., 96a] had as its aim the development of a general purpose

architecture which would allow pre-existing expert systems, dealing with different

aspects of decision making of a given complex environment, to cooperate in a

mutually beneficial way. The main design feature of ARCHON was that it put an

emphasis on loose coupling as a means to increased cooperation between a set of

systems. Thus, systems that participate in mutual cooperation are conceived of as

autonomous and capable of completing their allocated tasks without much reliance on

other systems in the community, but benefiting from each others activities through

cooperation mechanism.

ARCHONs design objectives [Wittig et al., 94] were for the interworking of semi-

autonomous agents. It can complement integration architectures that provide for tight

coupling of systems, such as client-server architectures in which a client would

demand a service and a server is mandated to provide that service. ARCHON agents

may enter into a client-server relationship with each other for a contracted set of tasks,

but are never designated (pre-destined) to perform one or the other of those roles.

ARCHON agents can pass unsolicited information to their acquaintances, leaving it to

the recipient to decide what to do with it.

Figure 4.2 illustrates the modules which form the ARCHON architecture and shows

the interface to the intelligent system.

• The architecture needs a communications facility, which is called the High

Level Communications Module (HLCM). It is the ‘high level’ since it not

only provides communications facilities, but also addressing and filtering.

For example, if the domain system produces a result that may be relevant for

other agents, the Planning and Coordination Module (PCM) just asks the

HLCM to send it to all interested agents without specifying them.

52

• The Agent Information Module (AIM) provides an object orientated

information management model and a query language to define and

manipulate the information.

• The Agent Acquaintance Models (AAM) contain representations of other

agents in the community in terms of their skill, interests, current status of

workload, etc. Agents will not actually maintain models of all agents in the

community, simply a subset based on similar interests/capabilities.

• The Self Model (SM) is an abstract representation of an agents domain

system. It primarily contains information about the current state of this

system i.e. its workload, or what tasks are being executed, but also embodies

the precompiled plans (behaviors).

• The Monitor is responsible for the control of the intelligent system and for

passing information to and from it.

• The Planning and Coordination Module (PCM) represents the main

reflective part of ARCHON. If an exception occurs, it is the task of the PCM

to reason about it and find a way out.

AL-IS interface

ARCHON
layer
(AL)

Intelligent
System

(IS)

Figure 4.2 - ARCHON Agent Architecture

53

In an ARCHON agent community there is no centrally located authority, each agent

controls its own IS (Intelligent System) and mediates its own interactions with other

agents. The systems overall objectives are expressed in separate local goals of each

community member. Because the agents goals are often inter-related, social

interactions are required to meet the global constraints and to provide the necessary

services and information. Such interactions are controlled by the agents AL

(ARCHON Layer), for example: asking for information from other agents, requesting

processing services from them, or volunteering information to other agents.

Essentially an agents AL needs to control tasks within its local IS and decide when to

interact with other agents.

The ARCHON architecture concentrates upon loose coupling of semi-autonomous

agents. If an organisation has a collection of pre-existing systems, each dealing with a

separate aspect of the same domain, then this architecture presents an opportunity for

bringing these together into a useful co-operative framework. However, ARCHON

was not only designed for pre-existing systems, but for providing cooperation between

any set of semi-autonomous systems, which had not been adequately explored. Before

this can be achieved, one must consider that ARCHON, on its own, restricts an

integration approach to formulating a solution only in terms of loosely coupled, semi-

autonomous agents.

The ARCHON project’s principal test environment was in the domain of alarm

analysis in the electricity supply network of Iberdrola in Bilbao, Spain. The increased

automation and complexity of the automatic controllers has brought the electricity

utility to the point where human intervention is scarcely needed, but whenever it does

occur, the responsibility on the decision maker is even greater than ever before. This

increase in automation also produced an increase in the amount, reliability and

complexity of information received. In order to help human operators during the

monitoring of the network at Iberdrola, several expert systems were developed over

the years, such as; alarm analysis system and black-out identifier system - which were

modelled using ARCHON agents. When one agent (expert system) identified a

problem (e.g. alarm message caused by a fault), it could analyse the situation and

(voluntarily) inform other agents which it considered needed to know. This inter-agent

54

communication reduced the need for the operator to input information from one

system to another, allowed other systems (agents) to have more timely information

about a potential situation and cumulate more efficient and precise information

communication to the human operator (decision maker).

Although several applications were evaluated using the ARCHON approach, all had

some pre-existing systems. The project itself did not evaluate how the ARCHON

approach might complement an existing client-server or distributed type integration

environment. In addition, the ARCHON project has not been extended to systems

with many (hundreds of) agents and it is likely that in such a situation the designer

may need to consider if some of the smaller agents need to be coalesced again.

4.3.3 RISKMAN2

The RISKMAN2 project [Moynihan et ah, 94] aimed to develop a critiquing system to

support risk analysis for software development projects. This project built upon the

lessons learned from Integrated Management Process Workbench project [Jenkins et

ah, 87], which developed the RISKMAN tool [Verbruggen et al., 89].

The goal of the RISKMAN2 project was to build a tool which would enable project

managers ‘walk around’ a proposed project and help them anticipate any major risks

to which the project might be exposed. The major inputs to the system are ‘Risk

Drivers’, where each risk driver is seen as contributing in a linear, additive fashion to

the risk measure (i.e. value) for one or more areas of risk management. The values of
►

the risk drivers are elicited from the user (a project manager) by a Project Definition

Tool. The major output of the tool is a risk report, which is split in two sections. The

first section provides the computed risk measures, one for each of the risk

management areas identified. The second section, consists of advice paragraphs,

where each paragraph consists of text offering comments and advice to the user

relating to the management of risk on the project. The user is provided with the ability

to query the risk report to determine the basis upon which the risk measures and the

advice paragraphs were arrived at.

»
55

The outline architecture of RISKMAN2 [Power, 94] [Henry, 94] is illustrated in figure

4.3 and contains five major components: Generic Project Model (GPM), the software

risk taxonomy, the Risk Analysis Daemon Library (a collection of risk analysis agents,

each of which specialises in a different element of the risk taxonomy), the Blackboard

and the Reporter. The user begins a session by instantiating the GPM for the project

under consideration. Then the risk analysis daemons (agents) inspect the instantiated

GPM, compute their results, and write these to the blackboard. In computing their

results, daemons have access to results which other daemons may have written to the

blackboard. When the daemons have completed their analysis, the user can invoke the

reporter to retrieve the daemons results from the blackboard and display the results in

different ways.

Figure 4.3 - RISKMAN2 Architecture

The RISKMAN2 components are:

• The Generic Project Model (GPM) is a very general, customisable model

of a software project. The GPM takes the form of an object-model and uses

the notation and semantics of the OMT modelling technique.

56

• The project Risk Taxonomy is a description of the types of risk to which a

software development project can be exposed. For example, the risk of a

product not meeting its performance requirement. The taxonomy takes the

form of a classification in which risk types are broken down into sub-types

and is based on the US AIR Force risk management taxonomy [USAF, 88].

• The Generic Project Model Instantiator (PMI) through dialogue with the

user, customises the GPM to produce a model of the particular project under

consideration. The PMI is driven by the GPM in the sense that the PMIs

goal is to instantiate as many of its elements as possible. The PMI does this

by asking the project manager a series of multiple-choice questions, to get

values for the GPM elements.

• The Risk Analysis Daemons are mini-experts in some aspect of risk

management, one for each area in the risk taxonomy. Each daemon (or

agent) is structured as a set of small rule-based production systems, with

variables in the conditional rule-set corresponding to elements in the GPM.

• The Daemon Library acts as a storage point for a collection of daemons.

• The RISKMAN2 Blackboard is a generic blackboard. When a daemon has

performed its risk calculations, it must write its results to the appropriate

place on the blackboard. In this way every daemon can access the results of

any previously executed daemon.

• The function of the Risk Analyser Reporter is to deliver a structured report

to the user. It does this by accessing the conclusions written to the

blackboard by the daemons.

All daemons are controlled by a ‘daemon supervisor’. A daemons begins its task by

attempting to assign values to the variable in the conditional part of its rule-set. If it

finds the data it needs, it proceeds with its analysis (executes its production rules). If it

cannot find all the data it needs, the daemon terminates and returns ‘failure’ to the

supervisor, in which case the supervisor will schedule that daemon to execute at a

later time. Eventually, assuming data becomes available, the daemon writes its

conclusions to the blackboard, from which they can be read by other daemons and the

risk reporter. A daemons conclusions are in three parts: A risk metric which is a

57

measure representing the degree of risk which the daemon considers is present in the

project; why text which is hard-wired into the daemon and explains how the daemon

worked and reached its conclusions; and advice text which includes suggestions as to

how the particular risk may be reduced or otherwise managed.

The RISKMAN2 architecture represents an open and flexible architecture which

facilitates, over time, the ability to improve the system by adding extra daemons,

enhancing the GPM, adding or replacing the risk taxonomy and the blackboard

approach allows for a degree of modularity and dynamic control. However, a number

of weaknesses exist in relation to the daemons; The daemons are organised like an

army in the sense that each daemon must write to a single place on the blackboard and

‘higher up’ daemons must only take as their input the output of lower daemons in the

taxonomy. Also, no mechanism exists for handling disagreement or conflict between

daemons, or to ensure the system can still function if the user does not fully instantiate

the GPM. In addition, the variables in the conditional part of a daemons rule-set are

constrained to be elements of the GPM - in other words, a daemon may only view the

project through the lense of a GPM. This excludes the possibility of building daemons

which ‘see’ projects in a richer or different way.

4.3.4 Review of Architectures

In this section, the three different architectural approaches to implementing intelligent

assistance systems for management decision making are contrasted to assess their

comparative strengths and weaknesses in order to appraise the suitability of agent-

based architectures to support management decision making and the possibility of

adapting these approach to the domain of software project planning.

The ADEPT system encapsulates business processes in agents, where each agent can

provide a ‘service’ (or task) to other agents and enters into ‘service agreements’ with

other agents to provide a service to them. In the ADEPT hierarchy, agents at a high

level may only enter into such service agreements with their peer agents, although

these agents usually require the services of subordinate agents (those lower in the

58

hierarchy) to provide such services. Such service provisioning requires complex inter-

agent communication, as well as the ability for service negotiation and a knowledge of

the agent hierarchy. Therefore each agent has additional structures to cope with such

communications, which represents an implementation overhead for each agent in

addition to the overall system overhead of continuous complex inter-agent

communication traffic. Further, all knowledge in the ADEPT system is embedded in

‘models’ within its agents, which does not allow for the dynamic updating of the

ADEPT knowledge base - which may only be achieved by manually replacing agents.

A positive aspect of the ADEPT implementation is the support for multiple platforms.

Agents are implemented on top of a ‘convergence layer’ which represents a

communications interface to the operating system. In the case of ADEPT, the CORBA

broker DAIS was used in implementation however further expansion was envisaged

(although not tested) using OLE (Object Link and Embedding - now ActiveX).

It is worth mentioning that members of the ADEPT project consortium considered the

project successful and provided a useful step forward in investigating agent-based

support systems [Alty, 97]. However, they recognized that the implementation of the

user-orientated section of the tool (application layer), through which the user

interacted with the system, was poorly constructed and diminished the end users

productivity.

While there are many interesting architectural lessons to be learned from the ADEPT

approach, it does not provide a suitable basis upon which to implement an intelligent

assistant system for software project planning. The ADEPT approach to intelligent

assistance is closely related to software process enaction environments [Finkelstein et

al., 94] as the system simply automated existing (business) processes. ADEPT agents

are not adaptable to a situation where there is no pre-defined process, nor can they

provide a facility to define additional processes (such as a software project plan). In

addition, much of the knowledge required by ADEPT agents is restricted to low-level

design guidelines and ADEPT agents have an inherent lack of expressive power, with

explicit support only for top-down design processes [Jennings et al., 96b].

I
59

The ARCHON system essentially provides an agent-based shell or wrapper within

which a pre-existing expert system may operate and exchange information with other

subsystems via an inter-agent communication mechanism. Unlike ADEPT agents,

ARCHON agents do not themselves directly contain any problem solving data, but

contain a model of other agents in the system and the ability to communicate with

them. Like ADEPT, all ARCHON agents must have structures to cope with complex

communications, which represents an implementation overhead for each agent, in

addition to the overall system overhead of continuous complex inter-agent

communication traffic. It should be noted that in this agent community there is no

centrally located authority - the system is simply made up of a community of loosely

coupled agents, each of which represents a subsystem capable of completing some

task. Further, the ARCHON approach was designed only with a small number of pre-

existing systems in mind. To expand the ARCHON system requires the addition of

new agents, however, these agents represent pre-existing subsystems which must be in

place before the agent can be deployed - thus adding an extra layer of complexity and

inhibiting the possibility of dynamically updating the system. Further, the ARCHON,

unlike ADEPT implementation does not provide any support for multiple platforms

as it is tied directly to the underlying operating system.

The ARCHON system does not directly provide a suitable framework for a software

project planning intelligent assistant system. Overall, ARCHON can be characterised

as approximating the functionality of a DSS, as it provides for a number of pre-

existing systems to operate in a more timely manner and provide the user with more

accurate and timely information upon which to base a decision. ARCHON agents

themselves do not conduct any problem solving or interact with the user to solve their

problems. ARCHON agents were designed to interact with other ARCHON agents

and their associated intelligent systems and, as such, are not readily adaptable to

directly represent an area of problem solving activity for a given domain (such as

software project planning). However, the ARCHON approach could be used to co-

ordinate multiple (discrete) intelligent systems for software project management

where ARCHON agents represent a software project planning system, software

project risk analysis system, etc.

60

The RISKMAN2 approach provides a framework in which a community of agents

can operate and exchange information. Unlike ADEPT or ARCHON agents,

RISKMAN2 agents use a simple form of communication, that of a blackboard

structure, and in addition have a controlling entity which directs the agent community,

thus reducing the overheads associated with inter-agent communication. In addition,

this approach allows agents to be pro-active, in that all agents can access the

blackboard and may respond in an opportunistic manner, unlike ADEPT or ARCHON

agents which rely on explicit message passing. Another advantage the RISKMAN2

approach has over the others is the ability to dynamically update the knowledge base

via the ‘Daemon Writer Kit’ [Power, 94], which provides a template for the

construction of agents. As every agent is autonomous and fully self-contained, any

agent may be removed or updated without affecting the rest of the system. However

the RISKMAN2 approach also has a number of problems: Agents are only capable of

viewing a project through a predefined project model (the GPM) and agents may only

take input from agents which are lower in the hierarchy than themselves. Like

ARCHON, the RISKMAN2 implementation does not provide support for multiple

platforms and is tied directly to the underlying operating system. Further, RISKMAN2

suffered from a number of implementation problems and, unlike ADEPT and

ARCHON, the end system was not sufficiently tested in real world situations.

The RISKMAN2 approach has potential to be of use in implementing an intelligent

assistant system for software project planning. Unlike both ADEPT and ARCHON,

the RISKMAN2 system was not simply a DSS. It also incorporated features of both an

expert system - in that it could diagnose the existence of a given situation (e.g. high

level of risk in a certain area), and an expert critiquing system - in that it could

provide advice on how to deal with that situation (e.g. advice on mitigating an

identified risk in a particular area). However, the GPM view of the users project was

very restrictive as was the hierarchical approach to agent communications. The

RISKMAN2 system was designed with a narrow view of a software project in mind -

that of risk identification and associated advice generation. Therefore the structures of

the Risk Taxonomy, GPM, Agent and Blackboard are not readily extendible.

►

61

4.4 Desirable Architectural Characteristics

The architectural approaches discussed above have demonstrated the suitability of an

agent-based approach to the support of decision making. There are a number of

interesting lessons to be learned from the above discussion. Specifically the list below

comprises the desirable architectural characteristics which should be provided by

candidate architectures for an intelligent assistant system for the domain of software

project planning.

1. Specialism - A multi-agent approach - that of having a community of

cooperating agents - provides flexibility in the design of a system. Each

agent can be responsible for, or, an expert in, one particular area.

2. Information exchange - The multi-agent approach also provides for

enhanced information sharing, as agents within the community will

exchange information and volunteer information to other interested agents.

3. Collaboration - To fully support a multi-agent community, a complex inter-

agent communication mechanism must be in place. This represents an

overhead in both complexity and system performance.

4. Blackboard - The blackboard approach to agent communication reduces the

level of complexity and volume of communications traffic.

5. Supervision - In an agent community, there does not have to be a single

controlling agent. However, the indications are that the existence of such a

supervisory agent leads to more organised communications in the

community.

6. Hierarchy - It seems natural to develop a hierarchy when modelling a multi-

agent community. However, the placing of limitations on the operation of

agents according to rank within such a hierarchy appears to diminish

flexibility, therefore agents should be allowed to operate regardless of rank.

7. Knowledge evolution - Using an agent approach to modelling a knowledge

base provides the ability to dynamically update the knowledge base by

adding, updating and deleting agents. However, the exact internal

62

architecture of the agents is a factor in this flexibility and as such, they must

be designed with this in mind.

8. Data separation - The separation of data and agents leads to a more open

and flexible system. This allows alterations in the data storage mechanisms

and the agents themselves to be carried out independently of each other.

9. Platform independence - Agents provide an ideal basis on which to

develop a platform independent system. ADEPT demonstrated that agents

can be successfully implemented in a CORBA distributed environment.

10. Multiple inference strategies - If agents in the community are autonomous,

they may be implemented in disparate manners and therefore each agent

may be implemented in the most suitable fashion for their given purpose.

11. Component separation - In separating the agents (which represent the

‘intelligence’ of the system) from the user-orientated framework (which

represents the ‘application’) the result is a flexible architecture, where either

application or intelligent components may be altered independently.

12. Multiple paradigms - An agent approach allows the development of a

number of different supporting frameworks such as decision support or

expert systems. It may also be possible to develop a hybrid framework

within which a community of agents could function.

The remainder of this chapter will be devoted to a discussion of the trend towards

distributed client-server platform-independent systems and its implications for the

development of an architecture for the proposed intelligent assistant system. However,

the above characteristics will be further considered in chapter 6 in terms of the

proposed architecture.

4.5 Architectural Trends

With the increase in globalization, distributed information systems are rapidly

becoming the norm. As the need to both compete and cooperate using information

systems becomes more clear, system designers are becoming increasingly aware of

issues associated with distributed information systems. These systems cross

I
63

geographical and often organisational boundaries and are typically broadly

heterogeneous in both hardware and software terms. Indeed it has been remarked

[Orfali et al., 99] that the IT industry stands at a new threshold brought on by; 1) the

exponential increase of low-cost bandwidth on Wide Area Networks (WAN), such as

the Internet; and 2) a new generation of network-enabled, multithreaded desktop

operating systems, such as Windows NT. This new threshold may mark the beginning

of a transition from small (LAN-based) client-server systems, to larger (WAN-based)

client-server system that will result in the irrelevance of proximity.

This trend in global distributed information systems and the associated issues of

project management is not new. Indeed it has been investigated by projects such as

GOAL [Goal, 95], an ESPRIT funded project which addressed the definition of a tool

set supporting multi-organisational project management. However, this trend has been

intensified by the technological advancements outlined above.

The design and implementation of software is a difficult and expensive activity even

where this can be done on a single stable platform using a single operating system and

a single programming language. A considerable amount of the software being written

now faces additional complexities:

• It must run on a network of machines with the overall functionality

distributed among those machines.

• The machines on the system may run different operating systems.

• The components of the system must be integrated easily into new systems,

perhaps systems that are not yet planned.

• Legacy systems must be integrated into the system, either to allow the new

software to access legacy data or to request the legacy code to carry out

some processing.

• It may be necessary to use different programming languages for the

components, perhaps because of the use of legacy systems or because a

particular programming language is a good choice for some subset of the

components.

*
64

There are a number of candidate solution technologies for addressing the concerns

above, which include; CORBA, DCOM, RMI and sockets. Of these, the two strongest

candidates are OMG’s CORBA and Microsoft’s DCOM, on the basis of both industry

popularity and the power of the organisation(s) behind them. However, it is the

opinion of many industry observers that CORBA provides a level of openness,

flexibility, and industry standardization that brings it ahead of its competitors and as

such provides an ideal basis for addressing the needs outlined above in the context of

this research. For an in-depth discussion of these technologies the reader is directed to

[Orfali and Harkey, 98], which provides a detailed comparison and critique.

The following sections provide an introduction to the technologies of CORBA and

Java. CORBA is investigated as a potential candidate to cater for the needs of

distributed client-server systems and Java is introduced as an ideal partner to CORBA

to provide the extended flexibility of platform independence.

4.5.1 CORBA

CORBA [OMG, 96] (Common Object Request Broker Architecture) has two aims;

Firstly, it makes it easier to implement new applications that must place components

on different hosts on a network or use different programming languages. Secondly, it

encourages the writing of open applications, ones that can be used as components of

larger systems. The ORB (Object Request Broker) is the middleware that establishes

the client-server relationships between objects. Using an ORB, a client can

transparently invoke a method on a server object, which can be on the same machine

or across a network. The ORB intercepts the call and is responsible for finding an

object that can implement the request, pass it the parameters, invoke its method, and

return the results. The client does not have to be aware of where the object is located,

its programming language, its operating system, or any other system aspects that are

not part of an object's interface. In so doing, the ORB provides interoperability

between applications on different machines in heterogeneous distributed environments

and seamlessly interconnects multiple object systems.

I
65

, Java

St. r ^ n
IDL IDL IDL

Client

St.
IDL IDL

<>
IDL

Server

t
CORBA ORB

t
Figure 4.4 - CORBA Interoperability

Within the CORBA framework, all objects are written in a neutral Interface Definition

Language (IDL) that defines a components boundaries - that is, the services (or

methods) the object provides to potential clients. As DDL is completely language

independent, objects specified using IDL are portable across languages, tools,

operating systems and networks. IDL is used to specify a components attributes, the

parent classes it inherits from, the exceptions it raises, the methods it supports -

including the input and output parameters and their datatypes. IDL specified interfaces

can be written in any programming language for which there exists a CORBA

binding. Essentially IDL allows client and server objects written in different languages

to interoperate, as illustrated in figure 4.4.

t

Figure 4.5 - CORBA Client-Server Relationship

►
66

Even though CORBA uses the term client and server, this does not mean that the

system must have a star-shaped architecture, where a set of client machines uses a

single server. Instead, the objects in one server may use the objects in other servers.

This is very useful when decomposing a system into components, because it allows a

client to invoke an object in a server, and for that object to invoke on others in order

to fulfill the clients request. A server that makes a call to an object remote to it (in

another server, on the same or a different machine) is acting as a client for the

duration of that call. This relationship is illustrated in figure 4.5

4.5.2 The Java Language

The Java programming language was developed by Sun Microsystems in 1990 and

since then has created a large amount of hype and discussion in the computer industry.

The purpose of the following sections is to show that Java is a platform independent

language which is suitable for implementing CORBA based agent applications.

Sun Microsystems define Java as [Gosling and McGilton, 96];

“A simple, object-orientated, distributed, interpreted, robust, secure,

architecture neutral, portable, high-performance, multithreaded and

dynamic language

(
Compile

Java virtual machine

Operating system

Figure 4.6 - Java Virtual Machine Architecture

67

Much of the excitement about Java comes from the self-contained, virtual machine

environment in which Java applications run. Java compilers generate machine

independent bytecode - an architecture neutral intermediate format designed to

transport code efficiently to multiple hardware and software platforms. The

interpreted nature of Java solves both the binary distribution problem and the version

problem; the same Java language byte codes will run on any platform. These

bytecodes are then interpreted by a Java Virtual Machine (JVM) - a layer of software

on a machine, which takes the Java bytecodes and executes them. This results in code

that executes the same no matter what its underlying architecture is. Thus Java

bytecodes can be shipped over the net and are guaranteed to function the same on all

platforms. This relationship is illustrated in figure 4.6.

4.5.3 Java as an Agent Language

Since Java is a mobile code system it is considered by many as an ideal language for

the implementation of mobile systems and mobile agents [Srinivas et ah, 97]. Mobile

code refers to the ability to transfer executable binaries to wherever they are needed to

be executed. Though the basic Java support for bytecode migration implies Java code

mobility this capability is not completely viable as all Java objects reside on a single

host and Java lacks mechanisms for transmitting arguments from one host to another.

In contrast, the fundamental premise of CORBA, is that an object on one host can

invoke a method of an object on another host, with CORBA employing a referencing

model to avoid the issues of object migration.

In distributed systems, the idea of an agent is seen as a natural metaphor, and by some

as a development of the concurrent object programming paradigm [Agha et ah, 93].

Much of the attention that currently surrounds agent-based technology is related to the

phenomenal growth of the Internet. In particular there is great interest in ‘mobile

agents’, that can move around a (local or wide area) network of machines on a users

behalf. Many well publicised mobile agents fall into the category of Internet search

and filtering agents such as BarginFinder, ShopBot and CyberYenta [Lesnick and

Moore, 97].

68

Recently a large number of languages for agent-orientated systems have been

proposed by both the research community and commercial organisations [Muller et

ah, 99]. Languages such as General Magic’s ‘Telescript’ [White, 94] - which is

closely related to the functionality provided by languages such as Java - have failed to

gain widespread acceptance. Due to its unique characteristics and overwhelming

industrial support, Java is seen by many as providing the ideal candidate for

implementing agent-based frameworks and also agents themselves.

4.5.4 Java as a CORBA Object Language

Java language bindings for DDL provide an application programmer with CORBAs

high-level distributed object paradigm. With this in mind, CORBA can be said to

bring a number of benefits to Java, as its extends Java with a distributed object

infrastructure [Orfali and Harkey, 98]:

• CORBA provides a scalable server-to-server infrastructure - Pools of

server objects can communicate using the CORBA ORB, and these objects

can run on multiple servers, thus providing load-balancing for incoming

client requests. The ORB can dispatch the request to the first available

object and add more objects as demand increases.

• CORBA extends Java with a distributed object infrastructure - CORBA

allows Java to communicate with other objects written in different languages

across address spaces and networks. In addition, CORBA provides a rich set

of distributed object services that augment Java - including transactions,

security, trader and persistence.

The Java infrastructure starts where CORBA ends. CORBA provides a distributed

object infrastructure that lets applications extend their reach across networks,

languages and operating systems. Java provides a portable object infrastructure that

works on every major operating system. CORBA deals with network transparency,

while Java deals with implementation transparency. Java offers a number of

attractions for implementing CORBA objects:

69

• Java allows CORBA to move code around - Java’s mobile code facility

allows code to dynamically move across the CORBA infrastructure to where

it is needed, thus allowing clients and servers to dynamically gain behavior.

• Java simplifies code distribution in CORBA systems - Java code can be

deployed and managed centrally from the server. This means that code on

the server is updated once and clients can receive it when they need it.

• Java complements CORBA’s agenting infrastructure - CORBA defines a

framework for distributed objects which lets ‘roaming objects’ move from

node to node. Java bytecodes are ideal for shipping such behavior around.

Orfali [Orfali and Harkey, 98] states that “Java is almost certainly the ideal language

for writing both client and server objects”. Java’s built-in multi-threading, garbage

collection and error management makes it easier to write robust network objects.

Also, Java’s object model complements CORBA’s, as they both use the concept of

interfaces to separate an objects definition from its implementation.

4.6 Summary

This chapter has presented the architectural aspects of intelligent systems and

discussed the trend towards distributed client-server platform independent systems. A

number of intelligent assistant systems were investigated and the concept of agent-

based architectures for intelligent assistance presented. In addition, CORBA and Java

were presented as a solution technology to the issues previously identified.

Chapter 5 will outline the issues surrounding the knowledge base which forms the

basis of the intelligent agents for the proposed system. There will also be an

examination of the selection of a suitable method for acquiring and representing

knowledge.

70

Ch a pt e r 5 Kno wl e dg e Bas e Iss ue s

5.1 Introduction

This chapter describes the issues surrounding the knowledge base, which forms the

foundation for the intelligent agents for the proposed system. The subject areas of

knowledge engineering and knowledge representation are introduced, and the issues

of choosing a suitable method for acquiring knowledge as well as the choice of agent

implementation language are investigated.

5.2 Knowledge Engineering

The term Knowledge Engineering is now commonly used to describe the process of

Knowledge Based System (KBS) development. Knowledge engineering includes

[Smith, 96]:

• Acquiring from experts the knowledge that is to be used in the system.

• Choosing an appropriate method for representing the knowledge

• Implementation in an appropriate computer language.

Just as with traditional computer systems development, the notion of a systems

development lifecycle has been applied to the development of KBS’s. The following

are the main activities in the KBS development lifecycle [Bochsler, 88]:

• Planning - produces a formal workplan for the KBS development.

• Knowledge definition - defines the knowledge requirements of the KBS.

• Knowledge design - produces a detailed design for the KBS.

• Code - produces the actual code implementation of the KBS.

• Knowledge verification - determines the correctness, completeness and

consistency of the system.

►
71

A number of KBS development methodologies have evolved such as - GEMINI

(General Expert systems Methodology INItiative) [Montgomery, 88] RUDE [Bander

et al., 88] and KADS (Knowledge Acquisition and Design Process) [Schreiber et al.,

93]. However surveys [Smith, 96] [DTI, 92] indicate that a prototyping approach is

most popular among KBS developers - perhaps because KBS development relies

heavily on the involvement of the systems users (those with the appropriate expertise).

In addition, prototyping is well suited to the types of problems often encountered in

KBS development, where the initial requirements are typically ill-defined and the

problem itself often ill-structured. The concept of intelligent agents provides an ideal

basis on which to pursue a prototyping approach to the development of an intelligent

assistant system. Individual agents can be rapidly prototyped, as each agent can be

relatively small and in addition be an expert in just one small area of the problem

domain, thus allowing a basic agent to be developed quickly and used in the testing

and exploration process discussed above.

5.3 Knowledge Representation Systems

Knowledge representation is the formalising and storing of knowledge in some

suitable structure to allow for subsequent computer processing. To represent

knowledge in a meaningful way it is important to relate facts in a formal

representation scheme to facts in the real world. The formal representation will be

manipulated using a computer program, with new facts concluded. Therefore the main

issue in knowledge representation is to find a suitable knowledge representation

language in which domains of knowledge can be described.

A knowledge representation language should allow complex facts to be represented in

a clear and precise way, and in a way that easily allows the deduction of new facts

from existing knowledge. The main requirements of a knowledge representation

language are as follows [Ringland and Duce, 88] [Cawsey, 98]:

• Representation adequacy - It should allow the representation of all the

knowledge that is needed to reason with.

I
72

• Inferential adequacy - It should allow new knowledge to be inferred from a

basic set of facts.

• Inferential efficiency - Inferences should be made efficiently.

• Clear syntax and semantics - It should be known what the allowable

expressions of the language are and what they mean.

• Naturalness - The language should be natural and easy to use (in a

linguistic sense).

However, no one representation language satisfies all these requirements (perfectly).

In practice the choice of representation language depends on the reasoning task - just

as the choice of programming language depends on the problem. Given a particular

task it will generally be necessary to choose an appropriate language for the particular

requirements of the application.

The remainder of this section will briefly compare three commonly used knowledge

representation schemes - Production Rules, Semantic Nets and Predicate Logic - in

order to give an appreciation of the types of schemes that may be employed. Section

5.4 will then outline the main agent languages that can be used to implement

knowledge representation in an agent-orientated framework.

A classical way to represent human knowledge is the use of production rules, where

the satisfaction of the rule antecedents gives rise to the execution of the consequence

[Ringland and Duce, 88], Production systems represent knowledge in terms of a set of

IF-THEN rules, a set of facts normally representing things that are currently held to be

true, and some interpreter (inference engine) controlling the applications of the rules,

given the facts. Production systems exhibit useful modularity, in that rules are

independent of each other and of the rest of the system, as each rule encodes a ‘chunk’

of independent domain knowledge. Further, the straightforward if-then form of a rule

often maps well into English for the purposes of explanation. Due to the independence

of the rules from each other and from the control strategy, it is very difficult to

rigorously determine the properties of the systems behavior by static analysis. Further,

rules have no intrinsic structure, which makes management of large knowledge bases

difficult.

73

Semantic Networks were first developed as a way of representing human memory and

language understanding [Quillian, 68], but since then have been applied to knowledge

representation. In a semantic net, knowledge is represented as a graph, where the

nodes represent objects and the links represent relations between objects, where an

object can be any physical item such as a book or a person. Nodes can also be used to

represent concepts, events or actions. The nodes in a semantic net are interconnected

by links or arcs which show the relationships between objects. Semantic nets allow

knowledge to be represented about objects and relationships between objects in a

simple and fairly intuitive way, with a graph notation that allows for easy knowledge

organisation. However, semantic nets have certain limitations, such as the lack of link

and node name standards and the combinatorial explosion of searching nodes.

Prolog is a programming language that is used for solving problems that involve

objects and the relationships between objects [Clocksin and Mellish, 81] and as such

is considered to be a highly suitable implementation language for semantic nets.

Prolog is a declarative programming language that allows the programmer to express

‘what’ a problem is, without having to worry about ‘how’ a solution to that problem is

to be obtained. Essentially a Prolog program takes the form of a database of

knowledge about a particular problem domain, with a facility to query that database.

Essentially Prolog can be thought of as a ‘question and answer’ environment which is

continually waiting to answer queries about knowledge in its database. Prolog (and

predicate logic) provides a powerful mechanism to represent and reason with

knowledge. However, some things are difficult to represent using Prolog, particularly

facts that involve uncertainty and beliefs.

)

5.4 Agent Representation Languages

Various research projects have investigated languages for implementing intelligent

agents in recent years [Muller et al., 99]. In the early stages, agents were local to

individual projects and their languages were mostly idiosyncratic. As a result there are

a large number of representation languages, each with their own particular

characteristics, which do not have inter-agent communication capabilities. An obvious

74

solution is to have a lingua franca, where ideally all agents that implement the same

lingua franca would be mutually intelligible [Huhns and Sing, 97], However, the agent

community is still a long way from attaining this goal.

The following sections discuss three commonly used agent languages that can be used

to implement knowledge representation in an agent-orientated framework, in order to

give an appreciation of the types of languages that may be employed.

5.4.1 KQML

KQML (Knowledge Query and Manipulation Language) [Finin et al., 97] is a

language and protocol for exchanging information and knowledge. It is part of a larger

effort, the ARPA Knowledge Sharing Effort [Bradshaw, 97] which is aimed at

developing techniques and methodology for building large-scale knowledge bases

which are shareable and reusable. KQML is both a message format and a message-

handling protocol to support run-time knowledge sharing among agents. KQML can

be used as a language for an application program to interact with an intelligent system,

or for two or more intelligent systems to share knowledge in support of cooperative

problem solving.

Communication takes place on several levels. The content of the message is only part

of the communication. Locating and engaging the attention of another agent with

which an agent wishes to communicate is part of the process, packaging a message in

a way that makes it clear the purpose of an agents communication is another. KQML

assumes the message transport is reliable and preserves the order of messages, but

does not guarantee delivery times. For this reason, the underlying paradigm of

communication is asynchronous. At the application level, synchronous

communication is achieved by tagging messages to relate to each other. For example,

responses to queries may be linked. In this way, KQML supports some elementary

interaction protocols, although more sophisticated protocols must be built externally

to KQML.

75

When using KQML, a software agent transmits content messages, composed in a

language of its own choice, wrapped inside a KQML message. The syntax of KQML

is based on a balanced-parenthesis list. The initial element of the list is the

performative; the remaining elements are the performatives arguments as

keyword/value pairs. For example, a message representing a query about the price of a

compiler might be encoded as follows:

(ask-one

: content (PRICE VisualJava ?price)

: receiver query-server

: language standard _prolog)

In this message, the KQML performative is “ask-one”, the content is “(PRICE

VisualJava ?price)”, the receiver of the message is to be a server identified as “query-

server” and the query is written in standard form of Prolog.

KQML still suffers from poorly defined semantics and as a result many KQML

implementations seem unique. [Cohen and Levesque, 97] discuss difficulties with the

current specification of KQML. In particular they have identified ambiguity and

vagueness in standard performatives, misidentified performatives and missing

performatives. In addition, the issues of security and authentication are only beginning

to be addressed by the KQML community.

KQML has been successfully used to implement a variety of information systems

using different software architectures, and include projects such as: Magenta (Stanford

University Logic Group), KATS (Lockheed Corporation) [Mayfield et al., 95] and

COBALT [Benech and Desprats, 97] (Toulouse University and HP - an agent

communication toolkit based on KQML and CORBA. COBALT is coded in both Java

and C++ languages and uses HP ORBPlus / JORBPlus ORBs.

76

5.4.2 Telescript / Odyssey

Telescript [White, 1994] is an object-oriented mobile agent language developed by

General Magic Inc. and is arguably the first commercial agent language. Telescript

technology has been overtaken by the commercial success of the Internet in general

and Java. This, coupled with Telescript being a proprietary language, lead General

Magic to reimplement the paradigm in Java and launch a new technology, Odyssey

[White et al., 97]. This system effectively implements the Telescript concepts in the

form of Java classes.

There are two key concepts in Telescript / Odyssey: Places and Agents. Places are

virtual locations that are occupied by Agents. Agents are providers and consumers of

goods in the electronic market place. Agents are software processes and are mobile:

they are able to move from one place to another, in which case their program and state

are encoded and transmitted across a network to another place where execution

recommences. Agents are able to communicate with one another - if they occupy

different places then they can connect across a network in much the standard way. If

they occupy the same location, then they can meet one another.

Four components have been developed to support Telescript / Odyssey. Firstly the

Telescript language which is designed for carrying out communication tasks. Secondly

the Telescript engine acts as an interpreter for the Telescript language, maintains

places, schedules agent execution and provides an interface with other applications.

The third component is the protocols set, which deals primarily with the encoding and

> decoding of agents, to support transport between places. The final component is a set

of software tools (and API’s) to support the development of Telescript / Odyssey

applications.

Although Telescript / Odyssey is technically a very sophisticated mobile agent system

it is also costly. The engine requires significant computer resources to run and

financially it is an expensive item of software which inhibits its acceptance as a

general mobile agent system among nearly all mobile agent developers.

»
77

5.4.3 JESS / CLIPS

CLIPS (C Language Integrated Production System) [Giarratano and Riley, 94] is a

multiparadigm rule based programming language, based on the OPS5 production rule

language [Brownston et al., 85]. CLIPS was originally developed by NASA in 1984

for internal use, but after modifications, version 3 of CLIPS was made available to

groups outside of NASA in 1986. Since then CLIPS has undergone continuous

improvement. Version 5 was released in 1991, introducing two new programming

paradigms: procedural programming and object-oriented programming. Version 6.0,

released in the Spring of 1993, added fully integrated object/rule pattern matching and

support features for rule based software engineering. Version 6.1 was released in

1998, adding C++ compatibility and functions for profiling performance. Because of

its portability, extensibility, capabilities and low-cost, CLIPS has received widespread

acceptance throughout industry and academia and has a user base in excess of 5,000

developers.

JESS (Java Expert System Shell) [Friedman-Hill, 99] is a clone of the core of the

CLIPS expert system shell. JESS was originally developed by Sandia National

Laboratories and contains the main features of CLIPS and is downward compatible

with CLIPS, in that every valid JESS script is a valid CLIPS script. The primary

representation methodology in both CLIPS and JESS is a forward chaining production

rule language based on the Rete algorithm [Forgy, 82].

CLIPS / JESS production systems consist of both conditional statements known as

rules stored in production memory and a global database known as working memory.

When every condition in a rule is satisfied by matching data in working memory, the

rule is placed in the conflict set. Conflict resolution is performed on the conflict set to

determine which actions in the production rules are eligible to be executed. CLIPS

uses a LISP-style syntax where expressions are enclosed in parentheses and use a

prefix functional form. The following is an excerpt from a deftemplate statement

which is used to define a working memory structure and a simplified example of a

rule to print all Java programmers.

78

(deftemplate employee

(slot last_name)

(slot job jiescription)

(slot favoured_language

(default Java)))

(defrule printprogrammer

(employee

(last_name ?last)

(job_description ?job)

(favoured_language ?language))

= >

(printout “Likes Java: ” ? last, ? job))

JESS can be used in two overlapping ways - as rule engine for an expert system and as

a general purpose programming language. JESS can directly access all Java classes

and libraries, and for this reason is also frequently used as a dynamic scripting or rapid

application development environment [Friedman-Hill, 99]. While Java code generally

must be compiled before it can be run, a line of JESS code is executed immediately

upon being typed. This allows developers to experiment with Java APIs interactively

and build up large programs incrementally. It is also relatively easy to extend the JESS

language with new commands written in Java or in JESS itself, and so the JESS

language can be customised for specific applications. JESS is therefore useful in a

wide range of situations.

5.4.4 Language choice

The previous sections have outlined some of the commonly used knowledge

representation schemes and agent languages which are widely available. Chapter 4

outlined the suitability of both Java and CORBA as an ideal framework on which to

base the proposed assistant system. Given this, the choice of scheme / language used

to implement agents should complement the chosen framework.

79

Currently, only a small number of Java based products for the development of expert

system tools exist in the market place. [Hall, 97a] [Hall, 97b] reviews the five

commercially available tools: Advisor/J (Neuron Data Inc.), Ilog Rules for Java (Ilog

Inc.), CruXpert (Crux Inc.), Selectica SRx Selection Engines (Selectica Inc.) and JESS

(Sandia National Laboratories). JESS, unlike previous Java based expert system tools,

is based on CLIPS which is an open, mature and portable knowledge representation

language. A further pragmatic issue in the context of this research is that of cost - as

tools such as Selectica and Advisor/J cost large amounts per developer license,

whereas JESS is provided free for research purposes.

It is put forward that the use of production rules implemented under JESS provide an

appropriate language scheme for the implementation of the agent rules for the

proposed system. JESS provides a powerful knowledge representation scheme - in the

form of production rules - and an open and flexible Java component which is suited

for implementation in a CORBA environment. The choice of JESS may be seen as

both a technical and pragmatic one.

5.5 Knowledge Acquisition

Knowledge acquisition is defined as [Buchanan et al., 83]:

“The transfer and transformation of potential problem-solving

expertise from some knowledge source to a program”.

Essentially knowledge acquisition is the process of acquiring knowledge from a

human expert (or group of experts). Knowledge acquisition involves elicitation of data

from the expert, interpretation of the data to deduce the underlying knowledge and the

creation of a model of the experts domain knowledge in terms of the most appropriate

knowledge representation mechanism. For this, knowledge engineers must familiarise

themselves with the domain of the expert and represent the knowledge in a form that

can be computerised.

I
80

Although there have been several moves to use software tools for knowledge

elicitation, a UK survey [Smith et al., 94] revealed that 77% of KBS had used some

form of unstructured interview to obtain information. Most of these started out with

informal discussions to explain the project and to gather preliminary information,

followed by more formal structured interviews.

There are a number of commonly used knowledge elicitation methods as follows:

• Printed / Electronic Sources - The simplest form of knowledge acquisition

is from printed sources. This includes searching through documents, books

and other items of printed material to find the knowledge necessary to build

a knowledge base.

• Interviews - This is the most widely used method. Informal interviews

consist of the knowledge engineer asking spontaneous questions, where

there has been little or no planning prior to the interview. By contrast,

formal interviews use a variety of techniques exist such as: tutorial

interviews, trigger-question interviews, introspective (or ‘think aloud’)

interviews and retrospective interviews.

• Questionnaires - are a less frequently used technique and are best suited to

a well understood domain.

• Observational Studies - are carried out at the same time as actual problem

solving. That is, the knowledge engineer is present at the exact time that the

experts apply their knowledge. Consequently, this allows for the observation

of the experts behavior.

For the purpose of this study, the particular method of knowledge acquisition

employed is not a primary concern. The chosen method should elicit a sufficient

quantity of useful data which can in turn be represented by JESS in the proposed

system, thereby demonstrating the usefulness of the intelligent assistant system.

Further consideration should be given to the appropriateness of any given method

after the demonstration of a prototype system. For this reason, a combined choice of

printed / electronic sources and interviews will be used for the purposes of this study.

Opinions about the use of interviews vary widely. [Kawaguchi et al., 91] consider they

are “essential in eliciting new knowledge from domain experts”, while [Cooke and

McDonald, 86] refer to them as “a less than optimal knowledge acquisition

technique”. However the interview process remains the most frequently used method

for obtaining domain knowledge from human experts. This, coupled with printed /

electronic sources, should provide an adequate mechanism to elicit knowledge for the

proposed system.

5.6 Summary

This chapter presented the key issues surrounding the development of the knowledge

base for the proposed assistant system. In particular, three commonly used knowledge

representation schemes were outlined and three commonly used agent languages were

presented, which concluded with the choice of a production rule representation based

on JESS. In addition, the issues of choosing a suitable method for acquiring

knowledge was investigated.

Chapter 6 describes the architectural implications for the proposed intelligent assistant

system in light of the architectural presentation in chapter 4 and the knowledge base

issues in this chapter. An architecture for the proposed system will be described and

its component modules presented.

I

I
82

Ch a p t e r 6 Sy s t e m A r c h i t e c t u r e

6.1 Introduction

This chapter describes a high level view of the architecture of the proposed intelligent

assistant system, its component modules and the interfaces between these modules.

6.2 Architectural Issues

The design of the system architecture has been motivated by a number of issues

previously discussed. This section will summarise these choices, prior to description

of the system architecture.

In chapter 3, a number of candidate solution technologies were discussed - Decision

Support Systems, Expert Systems, Expert Critiquing Systems, Blackboards and

Intelligent Agents - with the proposal of a hybrid approach being set forth [O’Connor,

98], This hybrid approach consists of a library of intelligent agents (multi-agent

system), where each expert advisory agent is a specialist in an individual area of

software project planning within the framework, on an overall tool which represents

the Decision Support System. Communication amongst agents is facilitated by a

Blackboard structure in which agents may write their conclusions or interim findings

and the rest of the multi-agent community may read, thus allowing for effective inter-

agent communication.

The uses of Java and CORBA have been described in chapter 4 as solution

technologies to the issues of building a platform independent, distributed, client-server

system, with the use of JESS being put forward in chapter 5 as an agent

implementation language. The choices allow for the creation of a Java-based DSS

system containing a JESS-based multi-agent community, in which the various

components communicate via CORBA [O'Connor and Moynihan, 98].

83

6.3 Architecture Components

Figure 6.1 illustrates a high-level view of the system architecture being proposed to

implement the intelligent assistant system. This consists of a user interface, the

decision support system itself and the underlying knowledge base which contains the

expertise and knowledge (ie. agents).

Decision
maker

Figure 6.1 - High-level View of Architecture

These architectural components can be further subdivided into their constituent

modules which represent CORBA (client and server) components. This view of the

system architecture is illustrated in figure 6.2, followed by a description of the

component modules.

Figure 6.2 - Component Architecture

• User Interface - This component handles the management of all the screen

elements (menus, dialog boxes, etc.), validates data entered by the user and

passes on clear functional messages to the rest of the system.

84

• System Kernel - This is the core component of the system and handles all

the processing and storage of user entered data. It manages all aspects of

project plans and channels advice from the agents to the user.

• Data Manager - This manages all aspects of the mapping from the logical

view of data to its physical storage. It is under the control of the System

Kernel, through which all requests for data must be channelled.

• Agent Controller - This module acts as a controller (or supervisor unit)

over the agent community and manages the scheduling and execution of

agents, as well as governing write access to the Blackboard.

• Blackboard - This represents the global problem solving state of the

system. Over time, agents produce changes to the Blackboard which lead

incrementally to advice on the project under consideration. The Blackboard

is under the control of the Agent Controller and all requests for data read /

write must be channelled through the Agent Controller.

• Agent Library - All agents are contained in an Agent Library, but remain

under the control of the Agent Controller. The purpose of the Agent Library

is to manage the physical agents themselves and to service requests for agent

interactions from the Agent Controller.

Host machine A

User Interface
¡1

Host machine B

System Kernel,
Data Manager,

Agent Controller
and Blackboard

Figure 6.3 - Component Configuration

This CORBA based architecture allows for several possible implementation

configurations in terms of what host machine a particular component may be installed

on (in a network environment). Figure 6.3 illustrates one such configuration in which

85

the User Interface is installed on host machine A (say a typical desktop PC), the main

DSS components (ie. System Kernel, Data Manager, Agent Controller and

Blackboard) are on host machine B (say a standard network fileserver) and the Agent

Library is installed on host machine C (say a backend server).

6.3.1 Component Interfaces

The systems component modules communicate via interfaces (or API - Application

Programmer Interface) and are of two types: public CORBA IDL interfaces and

internal interfaces, which are not implemented in IDL.

IDL interfaces essentially define each components boundaries - that is, the services (or

methods) the objects in that component can provide to other components. As IDL is

completely language independent, objects specified using IDL are portable across

languages, operating systems and networks. Thus the component modules with IDL

interfaces may be implemented in different languages and reside on different

machines (in a network or Internet environment). For example, in an extreme case, the

four main modules (GUI, Kernel, Agent Controller and Agent Library) could reside on

four separate host machines in a network, with all inter-module communication being

automatically handled by the CORBA ORB.

The use of internal (or private) interfaces between modules provides a control

mechanism over the global data structures of the Blackboard and file system and also

provides for encapsulation of data with its appropriate control structure. This is

achieved by allowing access to both the Blackboard and Data Manager only via

calling an IDL method in the appropriate controlling module, which can then choose

to pass on the request or modify it. In such a configuration, these two (non-EDL

interface modules) must have their interfaces implemented using standard

programming language constructs, thus both modules must reside on the same

machine as their controlling module.

86

CORBA DDL is a declarative language used to define object APIs. When an DDL file

(i.e. an object API specified in the DDL language) is compiled (by an DDL compiler), it

produces two sets of code files: sub code to create proxy objects that a client can use

for making invocations on object references of the interface types defined in the DDL

file, and skeleton code for access to objects that support those interfaces. The role of

the stub and skeleton are illustrated in figure 6.4. If the client and the target object are

in the same address space, no extra code is required to communicate between them. If

they are in different address spaces, on the same or different hosts, then extra code is

required in the client to send the request to the server side, and extra code is required

at the server side to accept the request and pass it to the target object.

Same address space Different address space

Figure 6.4 - Stub and Skeleton Code (Proxy Objects)

The following sections will described each of the component modules in further

detail, including a description of the modules functionality and its interface.

»

fe

6.3.2 User Interface

The user interface (or GUI) has two tasks within the system; GUI management, which

includes managing the screen elements, validating data inputs and passing on

commands to the system kernel; and the management / control of the overall structure

of screens and dialog boxes. This functionality is represented (at an architectural

level) by three components, as illustrated in figure 6.5:

87

U s e r In te r fa c e

i
System Kernel

Figure 6.5 - User Interface Component Architecture

• GUI components - are divided into two layers: The first layer maps the

proxy objects (CORBA object layer) to the logical component layer, which

allows for the provision of a model of user interface components to be

developed. The second layer (physical component layer) contains the actual

GUI objects based on the Sun Swing toolkit. This layer (or separation)

approach is based on the user interface management paradigms of Model-

View-Controller and Presentation-Abstraction-Control model [Coutaz, 87],

• Kernel proxies - are Java objects which are created by compiling the IDL

interface specification and are used to communicate with the Kernel.

• Kernel callback implementation2 - handles service requests from the

System Kernel, and represent objects which implement the interface as

specified by DDL specification. This component is necessary to allow the

Kernel get the attention of the GUI when, for example, an agent has

produced some advice and it wishes it to be presented to the user.

2 In CORBA, a callback is a method call from a server to a client, which reverses the client-server roles.

They extend a clients architecture to include messages from their servers and are generally invoked

when a server has something important to send to a client. The implementation code of the callback

method exists on the client side, with a callback proxy method on the server side.

88

GUI management is an abstract layer of the user interface which exists between the

actual GUI functions (as implemented using the Sun Swing JavaBeans components)

and the rest of the modules. It’s main areas of functionality are:

• Data input checking - Receive data inputted by the user and check it for

validity. This may involve ensuring that an integer or real number is within

certain bounds, checking that a date is valid and checking that text strings

are correct when possible.

• Data pre-processing - Some types of data need to undergo an element of

pre-processing prior to transmission via a CORBA ORB. For example, a

date in the format DD/MM/YYYY would needed to be converted to a long3

number of the format NNNNNNNN.

• Data request batching - In many cases it is desirable (and more economical

from a CORBA data transmission point of view) to batch groups of related

data for subsequent processing. For example, many of the agents will require

a series of data inputs simultaneously in order to execute - this user-entered

data could be batched in small groups for communication to the rest of the

system. Likewise, when advice is received from agents, it may be more

desirable to batch the incoming advice data and present it in small groups to

the user, instead of interrupting the user on a frequent basis with individual

items of advice.

• General screen house-keeping - While most screen house-keeping

functions (such as updating menus, windows management etc.) can be

performed by the physical GUI components themselves, some functions

require more complex processing. For example, whenever the GUI needs to

process an item of data which is managed by the kernel, the GUI must first

negotiate with the kernel to send/receive that data.

3 In the CORBA IDL mapping scheme, the Java datatype int maps to the IDL datatype long.

89

6.3.3 System Kernel

The System Kernel provides the main interface between the User Interface

component, the knowledge (advice) generator component provided by the Agents and

the Data Manager. The Kernel represents the main data processing / management

aspects of the system and acts as the overall controlling component of the system. It is

represented (at an architectural level) by five main components and five further sub-

components, as illustrated in figure 6.6:

Figure 6.6 - System Kernel Component Architecture

• GUI proxies implementation - are the implementation of the Kernel

Proxies as seen by the GUI. These objects implement the interface as

specified by DDL specification and are used by GUI components to

communicate with the Kernel to send or receive data.

90

• GUI callback proxy - are Java objects which are created by compiling the

DDL interface specification. They handle service requests which are

generated by the Kernel and destined for the User Interface and are

represented on the User Interface side by the Kernel Callback

Implementation.

• Kernel components - The main kernel components are as follows:

• Process Manager - is concerned with assisting the user to select a

suitable process template from the process repository (via data manager)

to form the basis of a project definition.

• Scenario Manager - Projects are categorized by scenarios, which are

different views (work breakdown structures) of the same project. Two

scenarios may be practically the same except for differences in two or

three small pieces of information. For example, the duration of a sub-

task of one scenario may be longer than another, thus enabling the user

to ‘experiment’ with small variations in a project and possibly receive

different advice from agents.

• Advice Manager - packages advice received from the agents for

subsequent delivery to the user interface. As advice is generated in an

asynchronous manner by agents, it is the job of the Advice Manager to

ensure advice is batched according to scenario under examination, etc..

The Advice Manager also ensures that advice is in the appropriate

format (e.g. HTML) before being sent to the User Interface.

• Data Analyser - undertakes any calculations required on project data,

particularly in the creation and analysis of scenarios.

• Project Workspace - acts as a temporary storage container for all

project data (i.e. scenarios and related data) for any given user session.

At the start of a session, the project under consideration will be

retrieved by the Data Manager and placed in the Project Workspace

until the end of the session, when it be stored by the Data Manager.

• Agent proxies - are Java objects which are created by compiling the IDL

interface specification. They are used by Kernel components to

communicate with the Agent Controller to send or receive data.

91

• Agent callback implementation - handles service requests generated by the

Agent Controller and represent objects which implement the IDL interface.

This component is necessary to allow the Agent Controller get the attention

of the Kernel when, for example, an agent has produced some advice and it

wishes it to be given to the kernel’s Advice Manager.

6.3.4 Data Manager

The Data Manager handles all aspects of the mapping from the logical view of data to

its physical storage and maintenance. It is under the direct control of the System

Kernel, thus all requests for data must be channelled through the Kernel. Figure 6.7

illustrates the main components of the Data Manager:

Kernel

Data Manager

File Loader File Storer

Project
^data files ̂

Process
j-epository^

Figure 6.7 - Data Manager Component Architecture

• File Loader - reads in data from a physical file (project data file and/or

process repository) and passes that data to the Kernel.

• File Storer - is used to write out to a physical data file (project data file) all

data passed to it from the Kernel.

• Project Data Files - are the physical files containing project data.

• Process Repository - are the physical data files which contain all the

process templates.

6.3.5 Agent Controller

The Agent Controller is a supervisor unit over the agent community, which manages

the scheduling and execution of agents. In addition, it governs read / write access to

the Blackboard. It is responsible for all communications between the Kernel and the

Agents / Agent Library. At an architectural level it is represented by 3 main

components and 4 further sub-components, as illustrated in figure 6.8:

CORBA
object
layer

(Kernel)

Kernel
component

layer

CORBA
object
layer

(Agent
Library)

System Kernel

♦
CORBA ORB

± Agent Controller f
Kemel proxies Kernel callback
implementation proxy

c ----------------------- \
Agent Controller components

Jess
engine

—

Kernel
handler

Library
handler

Blackboard
handler

__y

Agent Library
proxies

2STo
7?O'opH
Cl

CORBA ORB

i
Agent Library

» Figure 6.8 - Agent Controller Component Architecture

• Kernel proxies implementation - are the implementation of the Agent

Proxies as seen by the Kernel. These objects implement the interface as

specified by IDL specification and are used by the Kernel to communicate

with the Agent Controller to send or receive data.

• Kernel callback proxy - are Java objects which are created by compiling

the IDL interface specification. They handle service requests which are

k
93

generated by the Agent Controller and destined for the Kernel and are

represented on the Kernel side by the Agent Callback Implementation.

• Agent Controller components - The main agent controller components are

as follows:

• Kernel Handler - is concerned with managing all communication

between the Kernel and the other Agent Controller components. For

example, when the JESS Engine requires actual (live) data values

(from Data Manager) about a project, it is the Kernel Handler

component that deals with processing the request. All such

communication takes place via the CORBA ORB using the Kernel

Proxies implementation

• Library Handler - has a similar management role to the Kernel

Handler. It manages all aspects of communication with the Agent

Library, via the Agent Library Proxies.

• Blackboard Handler - like the other handlers is responsible for the

management of communications with the Blackboard. As the

Blackboard interface is non-IDL (i.e. not using the CORBA ORB),

communication is via a direct set of APIs. For example, when an

individual agent wants to write information to the Blackboard, it is the

Blackboard handler which manages the communication of this data to

the Blackboard component.

• JESS Engine - This component contains the inference engine and

related modules for the JESS system. When an agent executes (under

the control of the Agent Controller), its rules will be processed by the

JESS engine and subsequent output processed by the system. As

previously described, this architecture allows for a number of distinct

inference mechanisms to be used, in which case they would reside as

separate sub-components of the Agent Controller components.

• Agent Library Proxies - are Java objects which are created by compiling

the IDL interface specification. They are used by Agent Controller

components to communicate with the Agent Library to send or receive data.

94

6.3.6 Blackboard

The Blackboard represents the current problem solving state of the agents with respect

to the project under consideration. For each area of expertise, the Blackboard holds

state information on Tokens (data items in a process template / project model) which

are manipulated by agents, state information on the agents and any advice agents have

provided to date. The Blackboard is under the direct control of the Agent Controller.

Any agents wishing to access the Blackboard must have read requests channelled

through the Blackboard Handler component of the Agent Controller. Any write

requests to the Blackboard are similarly processed, allowing co-ordination of read /

write access, thus avoiding any possible access conflict.

To impose order on the information stored in the Blackboard it is necessary for the

Blackboard to have a strictly defined structure. In keeping with traditional Blackboard

framework design [Englemore and Morgan, 88], this Blackboard is organised as a tree

structure where each node in the tree represents an area of project planning expertise.

Figure 6.9 illustrates this tree structure with nodes from 1...N, where a node

represents data stored about one specific area such as activity planning, risk analysis,

etc.

Lifecycle Activity Measurement Risk
selection planning selection analysis

Figure 6.9 - Blackboard Node Hierarchy

As there may be many agents operating in any one area (ie. node in the tree), each

agent is assigned a segment in a node within which there is a container for multiple

scenarios. Figure 6.10 illustrates a detailed view of Node 1. Within this node there are

95

segments 1...N for each of the agents operating in this area. Likewise within each

segment there are a number of containers 1...J for each of the possible project

scenarios.

Node 1 Lifecycle selection

Segment 1
fo r

Agent 1

Scenario 1

Scenario J

Segment N
fo r

Agent N
Scenario 1

Scenario J

Figure 6.10 - Blackboard Segment Structure

In each scenario container there are a number of slots which hold state information on

a specific agent for a specific scenario. These include a slot for each token an agent

manipulates and a slot for any advice information an agent may have previously

generated. Figure 6.11 illustrates a detailed view of segment 1 of node 1 and shows

slots 1.. .K for each scenario.

Node 1 Lifecycle selection

)
Segment 1 fo r Agent 1

Figure 6.11 - Blackboard Scenario Structure

»
96

6.3.7 Agent Library

Agents are located in the Agent Library, but remain under the control of the Agent

Controller. The purpose of the Agent Library is to manage the physical agents

themselves and to service requests for agent interactions from the Agent Controller,

where the physical agents themselves are represented as JESS rule scripts which are

held on the file system. An example usage would be when the Agent Library

interrogates the JESS scripts at the request of the Agent Controller and creates an

instance of an agent for execution. The architecture of the Agent Library is illustrated

in figure 6.12.

CORBA
object
layer

Agent Controller

I
CORBA ORB

Ì
Agent Controller

proxies implementation

Agent
layer

Agents

Agent 1 Agent 2 Agent N

Agent Library

Figure 6.12 - Agent Library Component Architecture

• Kernel proxies implementation - are the implementation of the Agent

Library Proxies as seen by the Agent Controller. These objects implement

the interface as specified by DDL specification and are used by Agent

Controller to communicate with the Agent Library to send or receive data.

• Agents - are the JESS rule scripts which implement the knowledge base. In

addition to the actual rules, the script also contains identification

information about the agent.

97

Individual Agents are represented as separate files within the system, which contain

JESS rule scripts and identification / configuration information. The structure of an

agent is shown in figure 6.13.

• Agent Header - contains all the basic information which an agent needs to

identify itself to the system, including an identification and version number,

and the area of proficiency of the agent.

• Agent Tokens - are a list of the data items in a process template / project

model (that represent the actual data items held about a project) which the

agent uses in its rule set.

• JESS Rule - is the actual JESS rule script.

Figure 6.13 - Agent Structure

As can be seen from the above, agents are not directly embedded within the Agent

Library or Agent Controller. Instead there is a link from the Agent Library to the set of

available agents, i.e. agents installed on the file system. This architectural property

allows for a dynamic agent population as the Agent Library will interrograte the file

system at the initiation of a session and dynamically build a view of the set of

available agents for the duration of that session. Furthermore, this data is passed to the

Blackboard which creates the appropriate number of segments in its nodes, therefore

any individual agent may be added or removed from the Agent Library by the addition

or deletion of their corresponding agent file on the file system.

98

The architectural property of a resizable agent population is a key factor in the agent-

orientated framework as it allows for dynamic updating of the knowledge base, where

knowledge (agents) may be added, revised or removed without impact on the rest of

the system. In particular, any such alteration in the knowledge base is completely

independent of the other architectural components and does not require any explicit

changes in system configuration. Thus the knowledge base may grow over time to

take account of new expertise or techniques in software project planning or to add

organisational specific knowledge. For example, if an organisation was planning a

project to CMM level 2, they may wish to add a series of agents dedicated to that

standard, or a company / project specific standard.

6.4 Review of Architectural Characteristics

Chapter 4 proposed a number of desirable architectural characteristics which should

be taken into consideration when developing an architecture for an intelligent assistant

system for less well understood domains, and in particular for the domain of software

project management. In the light of this, and having discussed the proposed

architecture above, it is necessary to pause and consider the how well this architecture

satisfies these desirable characteristics.

1. Specialism - In this architecture, each agent is a specialist in a particular

area of software project management, thus providing for a community of

cooperating agents and the associated flexibility of the system.

2. Information exchange - This multi-agent approach provides for enhanced

information sharing, as agents within the community can exchange

information. Although each agent is a specialist in its own area, they have

the ability to communicate with agents of other specialisms via the

Blackboard.

3. Collaboration - The concern here is the overhead of both complexity and

system performance due to collaboration. This has been streamlined by the

use of a Blackboard attached to the Agent Controller, thus reducing both

99

system overhead and complexity of implementation, whilst providing for

collaboration.

4. Blackboard - The blackboard approach was put forward in chapter 3 as

being an aid to reducing both the level of complexity and volume of

communications traffic. As stated in point 3 above, this has been

incorporated into the proposed architecture.

5. Supervision - In an agent community, there does not have to be a single

controlling agent. However, the indications are that the existence of such a

supervisory agent led to more organised communications in the community.

The provision of the Agent Controller will lead to more organised activity

within the agent community.

6. Hierarchy - The concern here was that a hierarchy could diminish the

flexibility of a system, thus agents should be allowed to operate regardless

of rank. In the proposed system architecture, all agents are equal, but the

Agent Controller may choose to impose a level of importance at run-time in

accordance with local system performance, conditions, etc..

7. Knowledge evolution - The multi-agent approach to knowledge base

implementation allows for dynamic updating of the knowledge base by

adding, updating and deleting agents. In addition, CORBA provides for

remote discovery of objects and services, and thus provides an ideal

transportation bus for new agents.

8. Data separation - Is concerned with the separation of data and agents

leading to a more open and flexible system, which is provided by the data

communication between the Data Manager and the Agent Controller. This

allows alterations in the data storage mechanisms and the agents themselves

to be carried out independently of each other.

9. Platform independence - As the proposed architecture takes full advantage

of both CORBA and Java, true platform independence is achieved.

10. Multiple inference strategies - As previously described, the proposed

architecture allows for a number of distinct inference mechanisms to be

employed. Each separate inference engine would reside as a separate sub-

component of the Agent Controller.

100

11. Component separation - The separation of the agents components (which

represent the ‘intelligence’ of the system) from the Kernel and GUI

components (which represents the user-orientated framework or

‘application’) results in a flexible architecture, where either application or

intelligent components may be altered independently.

12. Multiple paradigms - An agent approach allows the development of a

number of different supporting frameworks. A traditional expert system

approach may be employed by some agents, while others can adopt an

expert critiquing system approach of critiquing user entered plans or data.

6.5 Summary

This chapter presented the architecture of the proposed intelligent assistant system.

Each of the main architectural components have been further described, with the

interfaces between these components outlined and the module interactions outlined.

Chapter 7 presents the issues surrounding the design and implementation of a

prototype of the proposed system. It will outline both the design approach and the

actual system design. In addition, the development of the prototype implementation of

the system is presented.

101

C h a p t e r 7 P r o t o t y p e Im p l e m e n t a t i o n

7.1 Introduction

This chapter describes the design and the development of a prototype implementation

of the architecture for an intelligent assistant system. In addition it describes a typical

tool session from both a user and system level perspective. Finally, some observations

and lessons learned from building the prototype system are presented.

7.2 System Design

One of the first questions that presents itself is the choice of design methodology.

These choices are restricted to object orientated methods as this system will utilise

both Java and CORBA which are both fully object orientated.

Object Orientated Analysis (OOA) is a semiformal specification technique for the

object-orientated paradigm. There are currently over 40 different techniques for

performing OOA [Schach, 97], and new techniques are put forward on a regular basis.

The most popular techniques are: Booch’s technique [Booch, 94], OMT [Rumbaugh

et al., 91] and UML [Fowler, 97] - although it would currently appear that UML is

becoming the more popular [Pooley and Stevens, 99]. However, most techniques are

largely equivalent and consist of three basic steps:

• Class modelling - Determine the classes and their attributes. Then

determine the interrelationships between the classes.

• Dynamic modelling - Determine the actions performed by or to each class

or subclass.

• Functional modelling - Determine how the various results are computed by

the various products.

102

The choice of which particular method of OOA to employ for a given project is

usually arbitrary and linked to the experience or preference of the system designer, or

dictated by outside influences. With this in mind, OMT was chosen as the OOA

method for the design of the prototype system.

For the sake of clarity, all OMT class diagrams in this thesis are represented as ‘class

only’, and as such, no attributes and operations appear in the class diagrams.

7.2.1 Design Approach

The proposed architecture can be viewed as containing three major components: User

Interface, Kernel and Agents. This architectural division allowed for an allocation of

design and implementation tasks among the three developer partners of the P3 project,

with the Agent components being the sole responsibility of this researcher.

The use of CORBA imposes a sequence on the design activity. Firstly, each

component in the system should be defined as either a client or a server (in the

CORBA sense) and subsequently the appropriate IDL interfaces between them

defined. These IDL interfaces define the services (methods) provided by each

component (client or server) and the data structures that are transferred between them.

7.2.2 Client-Server Components

Although CORBA uses the terms Client and Server, this does not mean that CORBA

systems have a traditional client-server architecture where a set of clients use a single

server. Instead, the objects in one server may use the objects in other servers. For

example, a client may invoke an object in a server, and that object may invoke others

in order to fulfill the client’s request. This can be achieved using the callback

mechanism which reverses the roles, allowing servers to call a remote object, thus

acting as a client for the duration of that call. This mechanism is often used by a server

to get the attention of a client or another server.

103

From a CORBA perspective, the proposed architecture has four major components as

illustrated in figure 7.1, which may be classified as either clients or servers:

Server to
Server call

Figure 7.1 - Client-Server Structure

• User Interface - Is the only true client in the classical sense. It appears as

the ‘front end’ of the system and will always reside on the client machine,

i.e. users desktop. It only invokes methods on System Kernel objects.

However, the System Kernel may invoke methods on the User Interface

(callbacks), if it requires its attention.

• System Kernel - As Acts as a server to the User Interface as it provides a

number of services for it, for example, management activities associated

with storing data. In addition, the System Kernel views the Agent Controller

as a server, as it will request certain services from it such as “give me some

\ advice for this situation”.

• Agent Controller - Provides services to the System Kernel and as such acts

as a server to it. However, the Agent Controller requires certain services

from the System Kernel (such as data retrieval) for which it will perform a

callback, thus using the System Kernel as a client for the duration of the call.

• Agent Library - Performs services on behalf of the Agent Controller and as

such views it as a client. For example, the Agent Controller would request

the Agent Library to extract a particular agent for execution.

r
104

These four CORBA components have several possible implementation configurations

in terms of which component(s) may be installed on which host machine. There are

three typical configurations envisaged, as illustrated in figures 7.2 to 7.4.

1. Desktop configuration - Where all components are installed on a single

machine, say a typical end user desktop PC.

2. Network configuration - Where the User Interface is installed on the

desktop and all other components are on the network server machine.

3. Intranet configuration - A variation of a standard network configuration,

with the Agent Library being hosted by the corporate Intranet server and

therefore a central knowledge base available to a wider corporate user group.

Desktop PC

User Interface, System Kernel,
Agent Controller and Agent Library

Figure 7.2 - Desktop Configuration

Desktop PC

User Interface

Network server

System Kernel,
Agent Controller

and Agent Library

CORBA access over Local Area Network

Figure 7.3 - Network Configuration

■
Desktop PC

User Interface
ff

Î t

*1 Network server

1 System Kernel and
Agent Controller

*
105

7.2.3 Component Interfaces

As can seen from figure 7.1 there are three DDL component interfaces which have to

be specified, as follows: The User Interface - System Kernel interface (figure 7.5)

shows the User Interface sending either token values or advice requests to the System

Kernel, and the System Kernel sending advice objects or details on the project.

Figure 7.5 - User Interface - System Kernel Interface

The System Kernel - Agent Controller interface (figure 7.6) shows the three main

types of information communicated between the two components - information or

values of tokens, advice requests advice and the advice itself.

Figure 7.6 - System Kernel - Agent Controller Interface

The Agent Controller - Agent Library interface (figure 7.7) shows the Agent Library

sending information on agents dependent tokens to the Agent Controller and servicing

requests for agents to be extracted by returning a handle to an agent.

f \ ^ Token dependency r a

Agent Agent extraction „ Agent
Controller ► Library

^ Agent handle

Figure 7.7 - Agent Controller - Agent Library Interface

I
106

7.2.4 User Interface

The User Interface components are organised into three main areas:

• The main window of the application, which deals with the display issues and

CORBA communication initialization.

• The scenario window, which displays a project and allows the user to create

scenarios based on a project situation.

• Dialog boxes which display information and allow the user to enter data.

The main classes in the User Interface are illustrated in figure 7.8:

Figure 7.8 - Overview of User Interface Classes

• The MainFrame manages all the GUI components (images, windows and

other resources) and initialises CORBA communications between the User

Interface and the System Kernel.

• The ScenarioManager is used to display the scenario windows and control

all actions associated with it.

• The DialogManager acts as a generic manager for all dialog boxes and

manages all actions associated with them.

• The GUICallbacklmplementation provides the implementation to the

proxies for the System Kernel callbacks. It runs in a thread and listens to

events coming from the System Kernel. A typical usage would be the

System Kernel indicating the arrival of some advice from an agent.

107

7.2.5 System Kernel

The main classes of the System Kernel are illustrated in figure 7.9:

Figure 7.9 - Overview of System Kernel Classes

• The RootObject is the controlling class of the System Kernel and provides a

central storage and access point for different ProjectWorkspace objects. Its

main functionality is concerned with the creation and maintenance of the list

of ProjectWorkspace objects. It also provides access to some of the data

files and is also used to pass CORBA information from the User Interface to

the System Kernel concerning hostnames and callback functions.

• The ProjectWorkspace object is the central storage object for data in the

package. It allows the user to access the scenarios (work breakdown

structures) and therefore the stages and tokens associated with a project. The

principal functionality of this object is the loading and storing of data for

this Java package.

• The Scenario objects contain pointers to the stages of a project and the

associated advice generated by the agents for those stages. Any given

ProjectWorkspace may contain multiple scenarios which represent different

108

work breakdown structures or views of a project. This allows the user to

examine a project from different perspectives.

• The Stage object is used to store the elements of the lifecycle (i.e. the

different activities such as requirements, specification, etc.) and

characteristics connected to a particular part of the lifecycle.

• The Advice object is used to convey the agent generated advice information

to the User Interface component.

• The GUICallback object implements the callback features of CORBA which

allow the server (ie. System Kernel) to use part of the functionality of a

client (user Interface).

• The TokenDictionary groups different TokenDetails objects for display,

where these groupings correspond to different classifications of tokens.

• The TokenDetails object stores the static information for each token.

Examples of this type of information would be a question that would be

asked (to get a token value) or an explanation (of a tokens meaning). Other

information such as bounds, data types and enumerated lists are stored.

7.2.6 Agent Controller

The main classes of the Agent Controller are illustrated in figure 7.10:

• The Supervisor object is the main controlling object in the Agent Controller

component. It ensures that all requests are serviced and all advice is

forwarded to the System Kernel. Its main tasks are:

• It is responsible for initialising CORBA communications with the

System Kernel and the Agent Library.

• It is responsible for creating new threads of control for new agents.

• It must maintain these agent threads and time them out after a period.

• It is responsible for acquiring both the status and values of tokens from

the System Kernel.

• It is responsible for the creation and maintenance of the AdviceTable.

109

It must ensure all advice generated by agents is placed in the

AdviceTable and the System Kernel is notified.

It manages the creation of the Blackboard.

Figure 7.10 - Overview of Agent Controller Classes

• The Project object implements the core functionality of the Agent Controller

and is linked to a single project. It does not have to concern itself with

Kernel communications as this is managed by the Agent Supervisor object.

• The AdviceTable is responsible for storing all items of advice (i.e. Advice

objects) which are generated by agents. Essentially this object contains a

vector of Advice objects and the methods necessary to maintain the vector.

• The Advice objects are responsible for storing the actual advice itself.

• The Blackboard object is responsible for the control of the Blackboard

structure. It must ensure that all relevant data is kept up to date. The object

structure of the Blackboard is the same as described in section 7.3.6.

• The InferenceEngine is a generic object used to control the execution of an

agent. It is responsible for the interrogation the agent to be executed and

passing it to the appropriate inference engine, along with the actual token

I
110

and related data values. In addition, it communicates generated advice to the

AdviceTable via the Project object.

• The JessParser object is responsible for the integration of JESS into the

system. It prepares and interprets data sent to/from the ReteCompiler.

• The ReteCompiler is responsible executing an agents rules. This object is

supplied as part of the JESS system.

7.2.7 Agent Library

The main classes of the Agent Library are illustrated in figure 7.11:

Figure 7.11 - Overview of Agent Library Classes

• The AgentLibrary object is responsible for all the management aspects of

the Agent Library component of the system and for the direct interaction

between the agents and the rest of the system, via its CORBA

communications link with the Agent Controller. Upon system startup it is

responsible for passing information to the Agent Controller about the agents,

which is used to construct the Blackboard.

• The Agents object acts as a storage container for information (tokens, rule

scripts and head information) about each of the agents in the system.

»
i l l

7.3 Systen Implementation

The following sections will present a discussion on the implementation of the

prototype system. Firstly the development tools used will be presented, followed by an

example of the DDL interfaces and CORBA client-server setup procedures. This is

followed by a discussion on the implementation of the main system component and

the knowledge base.

7.3.1 Development Tools

The development platform used was a standard Windows NT PC connected via a

LAN to several Netware and UNIX servers. For the development of the system, three

main tools were required: a Java compiler, a Java CORBA ORB and a suitable

development environment.

There are currently several vendors of Java CORBA ORBs in the marketplace, but at

the time of the design phase there were only two main Java CORBA ORBs available:

Iona’s OrbixWeb and Visigenic’s VisiBroker. For the purposes of this research, both

of the ORBs provided the necessary features for the development of the prototype.

OrbixWeb was selected as the implementation ORB primarily because Iona

technology are the recognised world leader in CORBA technology and also because of

this researchers previous research connections with the organisation.

The compiler chosen was Sun’s JDK (initially version 1.1.2) because of the problems

associated with developing CORBA components which needed 100% pure Java, thus

(at that point in time) ruling out compilers supplied by vendors such as Microsoft

[Hunt, 98], This was used in conjunction with the JBuilder environment which

provided a graphical editing and debugging tool only, not a compiler.

112

7.3.2 IDL Interfaces

As discussed in section 7.2.3, there are three IDL interfaces, each of which is

represented in a single IDL file which is compiled by the OrbixWeb IDL compiler.

This produces several Java files that implement the CORBA communications

facilities for the interface. The main elements that constitute a CORBA IDL file are:

• Interfaces - which define a set of methods (or ‘operations’ in OMG

terminology) that a client can invoke on an object. Essentially this is a class

definition without an implementation section.

• Operations - denote a service (method) that clients can invoke.

• Data types - denote the accepted values of CORBA parameters, attributes,

exceptions and return values. These are named CORBA objects which are

used across multiple languages, operating systems and ORBs.

To illustrate the contents of an interface, the following is an extract from the IDL file

for the System Kernel - Agent Controller interface.

interface AdviceObject {

readonly attribute long projectID;

readonly attribute long scenarioID;

readonly attribute long agentID;

readonly attribute long advicelD;

readonly attribute string advice;

};
typedef sequence<AdviceObject>AdviceTable_vector;

interface AdviceTable {

readonly attribute AdviceTable_vector AdviceTable;

};

113

interface AgentController {

oneway void startSession();

oneway void createScenario(in long projectID, in long scenarioID);

AdviceTable getAdvice();

};

The components of the IDL specification are as follows:

• Advice object interface - describes five data members (attributes) of the

AdviceObject class, four of which are long and one string4. The keyword

‘readonly’ indicates the attributes cannot be directly modified by a client.

• Advice table datatype - This typedef statement defines an array (sequence)

of AdviceObjects called ‘AdviceTable_vector’.

• Advice table interface - describes the one data member (attribute) of the

AdviceTable object, which is an array (sequence) as above.

• Agent controller interface - defines three of the methods (operations)

which are performed in the AgentController interface.

• startSession() is used to instruct the Agent Controller that a tool session

has started. This is a ‘oneway’ call, which means the client which

makes the call (System Kernel) does not block while the remote object

processes the call.

• createScenario() instructs the Agent Controller to create a new scenario

for a given projectID and scenarioID. The ‘in’ keyword indicates that

the parameters are being passed from the client (System Kernel) to the

server (Agent Controller). This is also a oneway call.

• getAdvice() is used by the System Kernel to retrieve advice from the

Agent Controller. The return value is an instance of the object

AdviceTable, which contains an array of AdviceTable_vector as defined

by the typedef statement above. As this is not a oneway call, the client

(System Kernel) will block while this operation is being serviced.

4 In IDL, a Java int maps to an IDL long and a Java string maps to an IDL string.

k
114

To illustrate how a method (interface) is implemented in Java on the server side, the

following code segment shows the getAdvice() method call as described above.

class ACImpl implements _AgentControllerOperations {

public AdviceTable getAdvice() {

AdviceTable adviceTableRef = null;

adviceTableRef = new _tie_AdviceTable(adviceTable);

return adviceTableRef;

}

}

This method call is defined in the ACImp class which implements the

_AgentControllerOperations - a class generated by the IDL compiler, which

implements the AgentController interface as described in the IDL file. This

‘implements’ approach to interface implementation is standard when developing Java

based CORBA systems.

The getAdvice() method itself contains three steps:

1. Create a new reference variable adviceTableRef of type AdviceTable (as

defined in the AdviceTable interface in the IDL file) and assign it to null.

2. Assign the reference variable to the previously created adviceTable variable

by way of the _tie_AdviceTable() method (which was generated by the IDL

compiler).

3. Finally return the instance of the AdviceTable reference.

To illustrate how the above method (interface) is called on the client side, the

following code segment shows how the System Kernel uses the getAdvice() method:.

AdviceTable adviceTableRef = null;

adviceTableRef = ACproxy.getAdvice();

»
115

T his call in vo lves tw o steps:

1. Create a new reference variable adviceTableRef of type AdviceTable (as

defined in the AdviceTable interface in the IDL file) and assign it to null.

2. Assign this reference to the results of the getAdvice() call. This call is made

by prefixing the call with a reference name (proxy name) for the server

(Agent Controller) on which the method call resides. This reference name

(‘ACproxy’) is assigned when the CORBA server is first launched and a

bind takes place. This notion of a bind is explained in the following section.

7.3.3 Client-Server Components

In order to service client requests on a particular interface, the server which provides

the service must inform the ORB that it is available. This is done by initializing the

ORB (using the ORB.init() method), creating an instance of the interfaces

implementation class and informing the ORB that the server is available (using the

_CORBA.Orbix.impl_is_ready() method). The Java code segment below shows how

the Agent Controller server would perform this.

public class AgentControllerServer {

public static void main(String args[]) {

ORB. init();

AgentController ACImpl = null;

ACImpl = new _tie_AC(new ACImpl ());

_CORBA. Orbix. impl_is_ready("AC_Server"),

}

}

In order for a client to use the services of a server, it must first establish a link to the

server. The following Java code segment shows how the System Kernel would

establish a CORBA communications link to the Agent Controller.

116

public class SystemKernel {

public static void main(String args[]) {

ORB. init();

String hostname;

AgentController ACproxy = null;

hostname = new String(_CORBA.Orbix.myHost());

ACproxy = ACHelper.bind("AC_Server", hostname);

}

}

The above procedure involves the following steps:

1. Initialize the ORB using the ORB.init() method.

2. Create a reference variable (proxy) to act as a pointer to the server.

3. Identify the host on which the server program resides. In this case it is

assumed to be the same as the client program.

4. Bind to the server using the ACHelper.bind() method and specifying the

name of the server and the host on which it resides.

Finally, all servers must register their presence to the CORBA ORB via an

implementation repository, which acts as a database of mappings from server names

to Java bytecodes. This allows the CORBA ORB to find the actual Java bytecode for a

given implementation when a client binds to it. In OrbixWeb this is done by using the

‘putit’ utility with the parameters of server name and location.

7.3.4 Implementing System Components

The following tables summarise the development of a series of five prototype

implementations of the system:

117

Heading Description

Prototype First prototype - codename ‘Cavan’.

Purpose At the time of implementation there was almost no commercial Java-

CORBA development being conducted, therefore an architectural

proof was developed to highlight any technical issues associated with

using Java and CORBA.

Functionality A skeleton of the four main CORBA components which operated by

sending a series of messages to a DOS window indicating the calls.

Contained no other functionality or graphical user interface.

Tools used OrbixWeb 2.0, JDK 1.1.2 and JBuilder 1.0 as editing environment.

Heading Description

Prototype Second prototype - codename ‘Noumea’.

Purpose To implement the basic functionality of the system and put in place

mechanisms for the entering and management of data.

Functionality A small number of basic JESS agents developed. This version also

included a crude graphical user interface.

Tools used OrbixWeb 2.0, JDK 1.1.4 and JBuilder 1.0 as editing environment.

Heading Description

Prototype Third prototype - codename ‘Salonika’.

Purpose To create the first functioning version of the system to be

demonstrated to users as part of the validation exercise.

Functionality An enhanced System Kernel, including file storage and scenarios. A

complete GUI and the implementation of a small set of ‘realistic’

JESS agents which were capable of providing advice on scenarios

developed by the user.

Tools used OrbixWeb 3.0 (which contained the official OMG mapping), JDK

1.1.5 and JBuilder 2.0 as editing environment.

Table 7.3 - Prototype Three

118

Heading Description

Prototype Fourth prototype - codename ‘Burgundy’.

Purpose To create a more fully functioning version of the system. This

version was the main subject of the user validation process.

Functionality Additional number of fully functioning agents and the optimisation

of the System Kernel, including the removal of a number of bugs.

Tools used OrbixWeb 3.0, JDK 1.1.7 and JBuilder 2.0 as editing environment.

Table 7.4 - Prototype Four

Heading Description

Prototype Fifth and final prototype - codename ‘Tipperary’.

Purpose The creation of a pre-commercial prototype.

Functionality Two main enhancements: the addition of a larger set of fully

functioning agents and the removal of identified bugs in the system.

Tools used OrbixWeb 3.0, JDK 1.1.7 and JBuilder 2.0 as editing environment.

Table 7.5 - Prototype Five

7.3.5 Knowledge Base Implementation

The knowledge base (agents) are structured according to areas of expertise which are

represented by nodes in the Blackboard hierarchy as described in chapter 6. This

hierarchy of advice areas is illustrated in figure 7.12 and shows seven main areas of

expertise and a number of sub-areas, each of which may contain a number of agents.

Analysis & planning] [Activity planning

Selecting lifecycle | Selecting method |

Analysing estimates

Identifying activities

Scheduling

Measurement

Analysis

Resource allocation I I Risk management I I Project re-planning

-| Identfying needs | -j Identification |

-J Scheduling resources | -j Analysis

Lj Team skill mix | -| Mitigation j

-| Monitoring

Figure 7.12 - Hierarchy of Knowledge Areas

119

For the series of prototypes previously described, four main areas of expertise were

selected and a total of twenty five agents developed for those areas [O’Connor and

Jenkins, 99a]. These areas are:

• Lifecycle Selection - covered advice on how to choose the most appropriate

lifecycle for a project. This knowledge was elicited from several printed

sources, including empirical studies such as [Alexander and Davis, 91].

• Activity Planning - assists with identifying activities that a project should

involve, developing a schedule for the activities and the resources it will

consume. This knowledge was elicited from several sources, in particular

the SPIRE handbook [Sanders, 98] from ESPRIT / ESSI project 23873.

• Risk Management - A series of risk agents were developed to cover the

four main areas of risk - cost, schedule, technical and operation risk. The

primary source for these agents was the US Air Force risk management

taxonomy [USAF, 88], as used in the RISKMAN2 project.

• Measurement and Metrics - covers advice on the selection of appropriate

measures for a project to be used as indicators of product and process

quality. The advice for this area was mainly provided by one of the partners

in the AMI (Application of Metrics in Industry) project [Pulford et al., 96],

The structure of an agent was described in chapter 6 and contains three main

components: Agent Fleader (identification / configuration data), Agent Tokens (data

about a project) and Rules (JESS rule script). Table 7.6 shows the three sections for an

agent which specialises in requirements characteristics of the activity planning area.

Here four tokens (table 7.7) may be assigned one of three values which correspond to

advice text (table 7.8) and associated SPICE (ISO 15504) recommended best practices

[Sanders, 98], These tables are taken from volume 2 of the Handbook and Training

Guide [P3, 99] of the P3 project, which contains a complete set of decision tables.

120

Heading Description

Agent Header ; 1,1,2

; Agent zero for Characteristics Requirements

; Version 1.1a

; 12,13,14,16

Agent Tokens (deftemplate AgentO

(slot _12) (slot _13) (slot _14) (slot _16))

(AgentO

(_12 ?tkl) (_13 ?tk2) (_14 ?tk3) (_16 ?tk4))

Partial section of

JESS rule script for

tokens 14 and 16

; token 14

(if(= ?tk3 3)

then (bind ?c "C.R.5 C.C.l C.C.3 " crlf))

(if(= ?tk3 2)
then (bind ?c "C.R.5 C.C.3 C.C.l " crlf))

(if(= ?tk3 1)

then (bind ?c "C.P.3 " crlf))

(if(= ?tk3 0)

then (bind ?c "" crlf))

; token 16

(if (or (= ?tk4 3)(= ?tk4 2))

then (bind ?d "C.R.l C.R.5 C.R.6 " crlf)

else (bind ?d "" crlf))

Table 7.6 - Example Agent

Token High Medium Low

C.R.Complexity C.R.l C.R.l None

C.R. Volatility C.R.2, C.R.3, C.R.4 C.R.2, C.R.3, C.R.4 None

C.R.Inflexibility C.R.5 C.R.5 C.R.5

C.R.Application None C.R.l, C.R.5, C.R.6 C.R.l, C.R.5, C.R.6

Table 7.7 - Token Values

»
121

No. Advice Recommended Activities

C.R.l Allocate extra time for requirements

analysis.

LAI, IIA2, IIA4, ÜA6, IIA7, UBI,

IIB2, IIB3, IIB7, IIB8, IIC5

C.R.2 You need an extremely good

configuration management system,

especially for change control.

IIIB1-IIIB9

C.R.3 Prioritise your development so the parts

with most volatility have a longer

analysis period and the latest

development slot.

LAI, IIA2, DA4, ITA6, IIA7, IIB1,

IIB2, IIB3, IIB7, IIB8, IIC5

C.R.4 Establish a good verification process. IIID1-IIID4

C.R.5 Make sure you get the requirements

right the first time with a strong

requirements gathering process.

IF1-IF6

C.R.6 Try to prototype as much as possible.

Table 7.8 - Advice Text

7.3.6 Knowledge Base Evolution

As described in section 6.3.7, the agent-orientated framework allows for a dynamic

agent population, as the Agent Library builds a view of the set of available agents at

the start of a session. This allows agents to be added or removed from the system by

the addition or deletion of their corresponding agent file, thus providing for a

dynamically updateable knowledge base, where knowledge (agents) may be added,

revised or removed without impact on the rest of the system. Thus the knowledge base

may grow over time to take account of new expertise or techniques in software project

planning.

During the implementation phase of the prototypes a total of twenty five agents were

developed, as follows:

122

• Prototype 1 - contained five agents for test purposes only. They did not

contain any real knowledge, rather they were used for testing component

communication and data structures.

• Prototype 2 - contained nine basic JESS agents, four of which were in the

area of lifecycle selection and five in risk management.

• Prototype 3 - contained fifteen agents, which included an addition of six

activity planning agents.

• Prototype 4 - contained twenty agents, which included an addition of three

metrics and measurement agents and two further risk management agents.

• Prototype 5 - contained twenty five agents, which included an addition of

two more metrics and measurement agents and two additional activity

planning agents.

As described in section 7.3.5, each agent contains three main components: Agent

Header (identification / configuration data), Agent Tokens (data about a project) and

Rules (JESS rule script). The process of constructing the prototype systems agents (as

above) consisted of the translation of the decision tables from volume 2 of the P3

Handbook and Training Guide into the set of token value tables (figure 7.7) and the

corresponding advice text tables (figure 7.8). These tables were subject to verification

by the original author of the decision tables prior to the implementation of a set of

JESS rules to implement the decision table. These rule scripts were then tested using

the JESS interpreter and corrections made as appropriate. Finally the agent file was

added to the Agent Library directory on the file system, where it would be

automatically detected upon tool invocation. The process of creating a new agent (i.e.

translating a decision model to JESS rule script) while not trivial, is a reasonably

straightforward process, which can be completed within a short period of time.

7.4 System Usage

The following two sections illustrate an example of a typical user session with the

prototype system and provide an explanation of both the user level and system

(component) level interaction.

123

7.4.1 Example User Session

This section illustrates an example of a typical user session with the prototype system

and provides a narrative detailing the user level interaction with the system

components.

A typical session is started by the user selecting a previous project or starting a new

project. In the later case, they select New Project Workspace from the menu which

displays the ‘Project Model Selection’ screen (figure 7.13). This screen allows the

user to select the type of project model they wish to use, where the choice is

represented by a grid showing project size versus complexity. For each model, a

description is displayed in a text area at the bottom of the screen. When the user

selects a model and clicks on the New button, a project workspace is created, along

with its first scenario.

medium

LowComple

MediumCom MediumCompl. MediumCom

HighComple, HighComplexit. HighComplex,

Prompter - Creating New Project

Basic APM I y Ser Defined APM]

sm a ll

simple

medium

complex

LowComple... LowComplexit...

This APM describes the starting point of a .
project where there is a small familiar
software development team with experince inj|J Cancel

Figure 7.13 - Project Model Selection Screen

124

After selecting the appropriate APM, the system sets up the relevant default values for

the project and then opens the main scenario window. The user now enters the second

typical stage of a session, that of defining the project.

There are five main areas or domains in which information can be specified and

choices made. Each domain is represented by a separate panel (screen), which can be

selected either from the main menu or by using the toolbar buttons provided.

Depending on the APM selected, many of these choices will be already selected with

initial default values (any of which can be changed if required). The five domain

panels are:

• Characteristics panel - the basic characteristics of the project such as

requirements, customer, business drivers and project environment.

• Project panel - covers matters connected with the nature of the project

itself, such as resources, estimation, schedule and cost.

• Quality panel - asks questions concerned with quality systems in the

organisation, quality characteristics relevant to a planned product (or

specified by the customer) and includes sub-domains such as organisation,

product and customer.

• Plan panel - presents a list of standard stages making up the life cycle, and

asks the user to specify some plan details about each. Each of these stages

can then be further divided, if required, into sub-stages to allow for a finer

degree of management of the project.

• Metrics panel - gives some recommendations for a minimum set of metrics

for a project.

Figure 7.14 shows the ‘Project Plan Panel’ screen, with the project’s tasks organised

in a tree structure on the left hand side. Here the user has the ability to increase,

decrease, re-order, add or remove tasks for a given project.

ft
125

Figure 7.14 - Project Plan Panel Screen

Figure 7.15 shows a ‘question and answer session’ for a given scenario. The user

chooses the most appropriate answer for their situation and thus communicates

specific information about the project to the tool (and also to the agents).

[| | j P ro je c t - R o o t S c e n a rio m
File Ed* Domain too l A d v ice W in d o w Help

i 1 -— U 0 1 0 1 o
r 1

¡P h y s ic a l R e s o u rc e s Physical Resources AnalysisS o ftw a re R e s o u rc e s ^

H u m a n R e s o u rc e s i

E s t im a tin g

S c h e d u le

The computer resources for the project can be

described as (28)
r m ature and flexib le, g ro w th capacSy w ith in the design

| r available w ith som e g ro w th capa city

r n e w developm ent, indexible w ith no g ro w th capacity

The equipment at the disposal of the

development team is (48)
f ~ M ore than adequate

i f “ A dequate

i f Less than adequate

What is the technical target environment that

the product is running on) (4)
i f " v e ry m aturaitested

fa irly m a h jre « e d e tf

i f fa irly novelA intested

F v e ry novellUritested

Figure 7.15 - Scenario Window Screen

Figure 7.16 shows the Scenario Manager window, which allows users select a

scenario for further examination or delete an existing scenario. In addition, some

information on the selected scenario is displayed in the bottom section of the screen.

Figure 7.16 - Scenario Manager Screen

As the user continues to refine the project plan, the project parameters (tokens) are

being continuously analysed by the agents. When advice is available, it is indicated on

the bottom right of the main screen (see figure 7.17).

A d v ic e : 0 / 1

Figure 7.17 - Advice Counter

In order to view advice, the user selects the Advice Manager window (see figure 7.18)

which in this case is displaying some of the advice text for the requirements

characteristics agent above. This text is formatted using HTML and displayed using

the Sun Swing GUI components. The user may choose to store, print or delete the

advice.

The user may then choose to amend some aspect(s) of the project plan based on the

advice received, which in turn may cause more advice to be generated. Thus the user

enters a loop of refining project plans and exploring different project plan scenarios.

127

Figure 7.18 - Advice Manager window

At any point, the user has access to the systems on-line help facility. Figure 7.19

shows the Main Help Screen Window. The final prototype included a limited number

of help screens and a basic user manual.

& Prompter
FJe Edit Bookmark Qptions Help

Contents Index gack glint |

Prompter
A Decision Support Tool for Software Project Planning

Prompter is a tool which provides active advice for software project
planners based on the parameters of the target project. It provides
advice on issues which pose risks to the project, or which are pointers
to good practice.

The general rationale and function of Prompter is ouotlined in the Overview

There are two basic screens which control the operation of Prompter. The main Prompter
window, which is displayed after the initial splash screen disappears, shows the advice as it
is generated. The other window - the Project window - allows the user to select and define
the parameters of the target project. Select the reference below to see the details of each of
these windows:

Prompter Window
Protect Window

The main steps in using Prompter are

Setting up your Project
Select a Life Cvcle. zl

Figure 7.19 - Main Help Screen

i
128

7.4.2 Example Component Interaction

This section illustrates the system level interaction between components which take

place during a typical user session, as described in the previous section. In particular it

focuses on the messages passed between the Agent Controller, Blackboard, Agent

Library and Agents themselves, from the starting of the tool and a project through to

the subsequent closure of both a project and the tool.

Figure 7.20 is an event trace diagram which illustrates an abstract view of the message

passing between system components. Due to the complex nature and large number of

messages passed between the various components and their associated objects, this

diagram illustrates the message passing at a high-level abstract view and not at the

level of object method invocation.

System
Kernel

Agent
Controller

Blackboard

Tool started

Project started

Project data

Advice

Project close

Tool close

.Library, setup

Blackboard se tu p ,

Write data

M onitor status

Extract agent

Execute agent

Advice

Agent
Library

Agent

Agent reference

Advice

Figure 7.20 - Event Trace

§
129

• When the tool is started, the Kernel starts both the Agent Controller and

Agent Library CORBA servers and initialises the Agent Controller.

• Upon being started, the Agent Controller initialises the Agent Library, which

interrogates the file system in order to build a view of the set of available

agents for the duration of that tool session.

• When the user creates a project via the user interface, the System Kernel

informs the Agent Controller, which in turn initialises an instance of a

Blackboard for that project, ie. it creates the Blackboard data structure for

that project.

• At this point, the user enters a cycle of entering and refining project data (via

the user interface) as described in section 7.3.6. The project data (tokens) are

communicated by the Kernel to the Agent Controller, which in turn writes

them to the appropriate Node, Segment and Slot in the Blackboard.

• As the user continues to enter data (which is recorded as above) the Agent

Controller monitors the state of the Blackboard. When the necessary data

(tokens) is available for an agent to execute, it is extracted from the Agent

Library by the Agent Controller and executed using the Jess Engine.

• When an Agent has completed execution, it communicates its advice to the

Agent Controller, which then forwards this advice (via the AdviceTable

object) to the System Kernel for subsequent display to the user. The Agent

Controller also notes the advice generation in the Blackboard.

• This sequence of component interactions will continue while the user

continues to enter and amend data about a project, thus generating further

advice.

• When the user closes a project, the System Kernel informs the Agent

Controller. If the user has chosen to save the project under review, the

appropriate contents of the Blackboard will be saved, along with other data

under control of the System Kernel.

• When the user closes the tool, the System Kernel informs the Agent

Controller, which shuts down the Agent Library CORBA server and the

Agent Controller CORBA server.

130

7.5 Prototype Development Observations

This section will present some technical observations and lessons learned from the

construction of the prototype system [O’Connor and Jenkins, 99b]:

• The CORBA imposed design sequence (defining DDL interfaces first)

proved to be advantageous as it removed the possibility of ambiguity in the

interpretation of the interfaces by the system developers, which was

especially useful given the distributed nature of the development.

• Configuration management of DDL is particularly important as any change to

an IDL definition must be replicated on both client and server sides.

• Not all Java structures are supported by the DDL mappings. For example;

arrays of an undefined size are permissible in Java, but no mappings exist

for such structures in IDL.

• Subsequent to the release of the official OMG IDL-Java mapping standard,

all interfaces had to be revised to conform to the standard, which required

changes to IDL and server initialisation routines.

• One of the main programming issues was the additional complexity in code

due to CORBA. For example; synchronisation issues in relation to non-

oneway IDL operations which complicated the introduction of Java threads.

• Debugging CORBA-Java programs is more difficult because standard debug

tools are not capable of tracing a remote method call across an ORB.

At this point it is also worth noting some of the positive points in relation to the

I development of the prototype system:

• Java and CORBA work well together. This in the most part is due to Java’s

built-in multi-threading, garbage collection and error management which

makes it easier to write robust network objects. Also, Java’s object model

compliments CORBA’s as they both use the concept of interfaces to

separate an object’s definition from its implementation.

ft
131

• For the reasons stated above, Java has proven to be a faster platform in

which to develop CORBA based applications by comparison to C++.

• The incorporation of JESS proved to be a technical success in that JESS

components were seamlessly integrated into the prototype system.

• The addition of new agents into the system proved to be a reasonably

straightforward process, which was achieved without any re-configuration or

alteration to other system components.

7.6 Summary

This chapter contains a description of the issues surrounding the implementation of

the prototype system, including both the design and development of the prototype. In

addition, some observations made and lessons learned from building the prototype

system were presented.

Chapter 8 presents the field of research methodology and provides a review of a the

approaches that are used within the field of computing and information systems.

Further, it has described the approach which shaped the design user trials process.

»

»
132

Ch a p t e r 8 Re s e a r c h M e t h o d o l o g y a n d De s i g n

8.1 Introduction

This chapter gives a brief overview of the field of research methodology. It contains a

review of a variety of research perspectives and approaches which are used within the

field of computing and information systems and describes the methodology used in

this thesis.

8.2 Research Methodologies

Research methods can be classified in various ways, however, one of the most

common distinctions is between quantitative and qualitative research methods.

• Quantitative research methods - were originally developed in the natural

sciences to study natural phenomena. Examples of quantitative methods now

well accepted in the social sciences include surveys, laboratory-based

experiments and simulations.

• Qualitative research methods - were developed in the social sciences to

enable researchers to study social and cultural phenomena. Examples of

qualitative methods are action research, case study research and

ethnography. Qualitative data sources include observation and participant

observation, interviews and questionnaires, documents and texts, and the

researcher’s impressions and reactions.

The motivation for pursuing qualitative research, as opposed to quantitative research,

comes from the observation that the main characteristic which distinguishes humans

from the natural world is the human ability to communicate. Qualitative research

methods are designed to help researchers understand people and the social and

cultural contexts within which they live. [Kaplan and Maxwell, 94] argues that the

goal of understanding a phenomenon from the point of view of the participants and its

133

particular social and institutional context is largely lost when textual data are

quantified.

Cornford [Comford, 96] offers the following warning in relation to the pursuit of

qualitative research methods:

“Qualitative researchers are less certain as the possibility of the

pursuit of a value-free, time and place independent, fact...the

qualitative researcher, in seeking out the individuals experience and

awarding it its own value, must accept a more subjective view of

reality. ”

[Archer, 88] suggests than within the broad heading of qualitative research there are

three distinct rationales. First, there is a position that sees qualitative research as

complementary to a quantitative approach and providing access to research questions

that otherwise might not be accessible. The second position sees qualitative research

as a precursor and poor relation, providing an entry point into new fields of study that

may be subsequently treated by ‘hard’ approaches. In this way qualitative research

provides reconnaissance and orientation before the main research effort. The third

position is one which sees qualitative research as the only true approach, and a

significant improvement on the ‘pseudo-science’ practiced by those who adhere to

quantitative approaches. This view is based upon a notion of social science being in

an immature or pre-science stage in which “empirical research cannot go beyond a

sort of (natural) history, conducted in a disciplined fashion” [Archer, 88].

I

8.2.1 Research Methodologies in Computing

The question of how to undertake research within the discipline of computing and

information systems is a topic that increasingly exercises the minds of those who work

within this domain [Mumford et al., 84] [Galliers, 92]. There have been attempts to

map out a broad research agenda for the discipline of computing [Boland and

Hirschheim, 87] [Keen, 91]. The overall research endeavour in computing, as in any

134

other discipline, involves many different styles and types of work. Loosely, these may

be considered as two streams, one of ‘theoretical’ research and one of ‘empirical’

research. Theoretical research is concerned with developing and refining a body of

abstract understanding of phenomena and issues. It may be undertaken through a

purely mental set of procedures, though sometimes these will need to be fed with

stimuli from outside sources. Empirical research, on the other hand, is work that

concerns itself more centrally with observing events in the world (sometimes in a

laboratory setting) and then seeking to ‘make sense’ of what is observed.

There are three distinct approaches to research within the domain of computing and

information systems [Comford, 96]:

• Constructive research - is concerned with developing frameworks, refining

concepts and pursuing technical developments. The concern here is with

‘models and frameworks which do not describe any existing reality, but

rather help to create a new one’.

• Nomothetic research - is concerned with exploring empirical data in order

to test hypotheses of a general character about phenomena studied. Such

research emphasises systematic protocols and hypothesis testing within the

scientific tradition.

• Idiographic research - is concerned with exploring particular cases or

events and providing the richest picture of what transpires. Idiographic

research emphasises the analysis of subjective accounts based on

participation or close association with everyday events. In information

systems there is a strong tradition of case studies which may be seen as

idiographic research.

[Straub et al., 94] provide a classic taxonomy of styles of research within information

systems:

• Laboratory experiments - These imply a research activity that is

undertaken within controlled conditions. Within an experimental research

design, the researcher manipulates some variables and observes the results.

135

Most often, data will be quantitative in nature and will relate to a limited

number of phenomena.

• Surveys - a single survey provides a cross-sectional picture of affairs at a

point in time. The basic technique may be extended to provide longitudinal

data by repeating the process over time. Commonly, the researcher has to

acknowledge that while a small scale survey can provide interesting

information from a real population, it is not statistically representative.

• Reviews - one way to describe research in this category is to suggest that it

looks backwards rather than forwards. That is, the researcher is concerned

with charting the development of a set of ideas and with placing them within

a descriptive framework. A well executed review of prior work can make its

own research contribution by providing a more refined understanding of the

theoretical and empirical work which has been done in a particular area.

• Case studies - a case study is an in-depth exploration of one situation. The

strength of a case study is in the richness of data that can be obtained by

multiple means when researchers restrict themselves to a single situation.

This leads people to recommend the case study approach for topics and

areas of study which are novel or which have little theory as yet [Comford,

96], The case study, in this way, might be seen as a preliminary research

exercise out of which potential theories can be developed for subsequent

validation through other methods.

The term ‘research’ itself may take on a range of meanings and thereby be legitimately

applied to a variety of contexts [Eilon, 79]. Indeed, there is no single or commonly

agreed approach to conducting research in the field of computing and information

systems.

8.3 Choosing a Research Approach

Zuboff offers the following commentary in relation to the choice of a research

methodology [Zuboff, 88]:

i
136

“Behind every method lies a belief. Researchers must have a theory of

reality and of how that reality might surrender itself to their

knowledge-seeking efforts. These epistemological fundamentals are

subject to debate but not to ultimate proof’’.

The choice of method depends on many factors, in particular the nature of the research

being undertaken and constraints on that research. As previously presented, research

in the field of software engineering (as a specialism within the field of computing)

tends towards qualitative research methods. This is due in the main to two influencing

factors; the nature of the research and the time frame within which the research is

conducted.

In general, software engineering research does not represent classical hypothesis

testing to which empirical methods such as statistical tests can be applied [Comford,

96], Rather, software engineering research is more often concerned with the

appropriateness of a methodology, technique or computer system for a given purpose.

Such non-empirical methods usually yield large amounts of qualitative and anecdotal

evidence which must be rigorously analysed to discover underlying trends. In

addition, due to the dynamic and rapidly evolving nature of software systems and

technologies, the time frame within which research must be evaluated is usually many

times smaller than that of other domains. For example, in domains such as medicine,

the evaluation of new drug therapy requires a longitudinal study over a number of

years. By contrast, the domain of software engineering is so rapidly evolving that the

time to market necessitates a shorter time period within which to evaluate the entity

under study.

[Jeffery and Votta, 99] offer the following opinion on quantitative approaches to

software engineering research:

“At this point in time, there is no widely held collective agreed model

of the definition and role of empirical (quantitative) software

engineering ’’.

ft
137

[Seaman, 99] advocates qualitative methods in software engineering research with the

following commentary:

“The principal advantage of using qualitative methods in software

engineering is that they force the researcher to delve into the

complexity of the problem rather than abstract away from i t . Thus, the

results are richer and more informative...however, qualitative results

are often considered ‘softer’ or fuzzier’ in technical communities, but

then so are the problems we study in software engineering. ”

The research described in this thesis is typical of many software engineering research

projects. By its nature it does not lend itself to empirical techniques of quantitative

study, rather to the qualitative research methods. This presents the questions of which

method, approach and style is more appropriate to this research and why. In order to

satisfy the objectives of this research a number of issues must be addressed:

• An enquiry into the current state of art and practice in the software industry

with regard to the usage of software project planning tools was necessary.

The purpose of this enquiry was to assess the position of existing project

planning tools, thus highlighting the potential benefits of incorporating

intelligent assistance into project management tools.

• It was also necessary to develop some form of yardstick which may be used

to assess the architecture developed in this thesis and measure (in some

form) its appropriateness.

• Some appropriate form of evaluation of the prototype system was also

required. This evaluation should have regard to a number of aspects,

including the prototypes position with regard to existing project planning

tools and users perception of the system itself and its benefits as an

intelligent assistant system.

Each of the above issues has a corresponding impact in relation to the choice of

research methodology:

138

• The most appropriate mechanism to assess the current state of art and

practice in the software industry with regard to the usage of software project

planning tools was to conduct a survey of software project managers who

are users of such tools. It was not necessary to provide a comprehensive in-

depth study of software project planning tool users, rather the purpose of the

survey was to obtain an appreciation of the type of tools that are being used

by project managers and to obtain a better understanding of the actual state-

of-practice regarding these tools. As this survey is concerned with user

opinion and perception, qualitative methods would be more appropriate than

quantitative methods.

• In order to develop a yardstick against which to assess the proposed

architecture, it is first necessary to conduct a review of the architecture of

existing related systems. From this a set of desirable architectural

characteristics can be derived, against which the proposed architecture may

be compared.

• The most appropriate form of evaluation of the prototype system would be

to expose the system to actual users, i.e. software project managers in

commercial organisations. There are a number of options for an evaluation

such as laboratory experiments, where a group of users are exposed to the

prototype system in a controlled environment, or a case study situation

where a ‘real world’ project is reconstructed and executed using the

prototype system.

From the above it is clear that qualitative research methods are more appropriate for

this type of software engineering research project. This leads to the question of which

is the most appropriate approach to take. A mixture of constructive and idiographic

approaches would be the most suitable, as the constructive approach is concerned with

developing new frameworks and models for technical development and as such it fits

with the task of developing a novel architecture to support the development of an

intelligent assistant system. In addition, idiographic research approaches may be

regarded as a supporting approach to the conducting of user trials for the prototype

system.

ft
139

The final decision on style of research has been addressed above with the use of

surveys on existing tool users and reviews of software architectures. The user trials

may be seen as a preliminary case study through which a decision may be made in

respect to subsequent validation.

The overall approach to evaluation of this research may be characterised as a

combination of participation and observation. The decisions in relation to the choice

of research methodology for this work have been motivated by a number of factors,

including practical considerations such as the time frame and available resources. It

may be that the ‘ideal’ approach would be to conduct a more in-depth study over an

extended period of time, with a larger number of people involved in the survey and

user trials process.

8.4 Summary

This chapter described the field of research methodology and provides a review of a

variety of research perspectives and approaches that are used within the field of

computing and information systems. Further, it has described the research method,

approach and style which shaped this thesis.

Chapter 9 contains an overview of the user trials process as well as details on the

actual user trials themselves. A summary of the results of these trials and the feedback

gained from users is then provided.

140

Cha pte r 9 Prot ot ype De plo ym ent

9.1 Introduction

This chapter describes the trial usage of the system by a group of end users and

presents an overview of the trial usage process and details on the actual trials. A

summary of the results of these trials including the feedback provided by users is also

presented.

There are several reasons for conducting user trials of the system. Firstly, it exposes

the system to ‘real world’ project managers and obtains feedback from them in

relation to the systems functionality and advice. In addition, it provides a mechanism

to elicit opinion from users as to the added value of the system as compared to

traditional project planning systems. It should be noted that it was not the purpose of

these trials to provide a comprehensive in-depth test of the system, but rather to gain

an appreciation of user perception of the system - its usefulness and added value.

9.2 Trial Usage Process

The user trial process was conducted in two main phases:

• Phase 1 - involved the P3 member organisations using the prototype system

as described in chapter 8. It was conducted over an eight month period and

contained four sets of user trials - one for each of the major prototype

releases.

• Phase 2 - involved non-P3 organisations using the pre-commercialisation

beta version of the system. It was conducted over a two month period and

contained two sets of user trials.

The six trials are summarised in table 9.1 below:

141

Trial Version Users Main Objective

1 Noumea 10 users from 1 P3

partner organisation.

Test the user interface with

respect to data capture.

2 Salonika 6 users from 2 P3

partner organisations.

Test scenarios and generated

advice associated with them.

3 Burgundy 11 users from 2 P3

partner organisations.

Test the total functionality of the

system and quality of the advice

produced by the system.

4 Tipperary 9 users from 2 P3

partner organisations.

Test the total functionality of the

system and quality of the advice

produced by the system.

5 Pre-commercial

beta prototype

5 users from 4 non-P3

organisations.

Additional feedback from non-

PS project organisations.

6 Pre-commercial

beta prototype -

same version as

used in trial 5

4 users from 4 non-P3

organisations.

Additional feedback from

original tool users survey

participants.

Table 9.1 - Overview of User Trials

Each of the trials consisted of three main steps:

1. A formal presentation given to the trial participants to introduce the scope

and nature of the system.

2. A period of actual usage of the tool by the participating users from which a

trial usage report was produced.

3. A review meeting involving all trial participants in which the trial usage

report was discussed and analysed.

The actual usage of the tool consisted of one or more of the following steps,

depending on the prototype version being used and the individual user:

142

• Creation of a fictitious project to allow experimentation with the system.

• Selection of a recent (previous) project and the creation of a project plan for

it using the system, including a comparison of the two plans.

• Selection of a new or forthcoming project and the creation of a project plan

for it using the system.

• Creation of a project plan for a supplied case study (see Appendix C).

At the end of each trial, the users were required to formally document their findings in

a trial usage report and specifically to consider the tool under headings such as:

• Defining and refining a project plan.

• Creation and manipulation of project plan scenarios.

• Advice produced by the system while conducting the above.

• Suitability of the decision support framework provided by the system.

• Comparison in relation to other project planning tools used.

• Interaction issues such as GUI look and feel, etc.

The following six sections will present the main findings of the each of the trials. For

each trial a high level view of its participants, duration and objectives is given. A

summary of the main finding of each trial usage report which are pertinent to the

objectives of this research are presented. For the sake of clarity, details on issues such

as the GUI and installation program are not presented.

9.2.1 Trial 1

Trial Trial 1 using Noumea prototype.

User details Ten staff from various departments of one P3 organisation. These

included software developers, project managers and quality managers.

Duration Trial conducted over a three day period.

Objectives • Assess user perception of added value of an intelligent assistant

system as compared to traditional project planning tools.

• Evaluate user understanding of the tokens used to characterise

project modes in the system.

• Test the user interface with respect to data capture.

Main finding

of trial usage

report

• Generally, users considered that the system appeared to provide a

good framework for supporting decision making - although much

of the detailed functionality had not yet been implemented. They

considered the tool provided a novel approach to decision making

and had the potential to be of use in a commercial setting.

• They also noted that the tool was not a replacement for decision

making by the project manager, but potentially a useful aid to

support the decision making process.

• Users suggested that the system could be used from two

complementary perspectives depending on a persons job function:

The first could be for the quality manager who defines an

organisations good practices from those of state-of-the-art and

locally used standards. The second could be the person in charge

of a project who applies these defined practices.

• The users considered that the overall success of the system was

directly linked to the quality (suitability, understandability, etc.) of

the advice it offered. Some participants noted that they would be

disappointed if the tool only provided general or non-pertinent

advice.

• Users considered it important to have a balance between the

requested information by the user and the automated provision of

information so the user will not be swamped with information.

• The perception of a number of participants was that the system

could be viewed as a complementary tool to other existing project

support tools, such as PSN6. It would therefore be desirable to

have links between these tools and also to spreadsheet packages.

• Generally the tokens (project parameters) were easily understood

by users. A small number of them were not understood or were

considered not to be valid in a particular project / product context.

144

• The prototype was difficult for users to evaluate as it only

contained a basic element of the main functionality of the system.

Additionally, as the prototype only contained a small number of

simplistic agents, users commented that they were unsure about

the exact nature of the advice as it would appear in future

prototypes.

Table 9.2 - Summary of Trial 1

This trial was very important as it was the first time the system was exposed to end

users. Therefore, of principal concern was user reaction to the approach and

framework provided by the system. The majority of users responded in a positive

manner to the framework, however, it should be noted that the prototype system used

in this trial contained only the basic functionality of the system. Because of this, some

of the users comments may have been based on their perception of what the fully

functioning system would provide from the perspective of the presentation made to

them and the partially functional prototype used as the basis for the trial.

Many of the users specific comments were based on the fact that the prototype (as

evaluated by them) only contained some of the main functional services to be

provided. In retrospect, this may have been caused by inappropriate guidance during

the initial presentation session. The specific comments and concerns of this group

were considered valid and were taken into account in the development of the third

prototype, although some requests, such as an export facility were considered to be

outside the scope of the early prototypes.

The second trial session was based on a substantially more complete prototype - for

example, scenario support was not included in the prototype for the first trial. This

additional functionality allowed trial participants to get a more complete picture of the

decision support framework provided by the system.

I
145

9.2.2 Trial 2

Trial Trial 2 using Salonika prototype.

User details Six staff from two P3 partner organisations.

Duration Trial conducted over a two week period.

Objectives • The main goal of this prototype was the development of scenario

support, therefore the emphasis was on obtaining user feedback on

scenario usage and associated advice generated in scenarios.

• Assess users attitudes towards the nature and type of advice being

offered by the agents.

• Gain additional user feedback with respect to the user interface,

having taken account of the changes made since the last prototype.

• As with the previous trial, assessing user perception of the added

value of the system was an important issue.

Main finding

of trial usage

report

• This review confirmed the report from the first trial that the system

was generally considered to provide a good framework for

supporting decision making and the system had the potential to be

of use in a commercial setting.

• Users considered a strength of the system was that it could provide

guidance and assistance on the “good rules of planning” by

providing a clearly defined way of building a project.

• Users also remarked that the system acted as a “planning

reminder”, in that its approach provided a subtle mechanism to

remind or prompt users about certain actions or issues to be

considered in a plan which they may have inadvertently omitted.

This facility may be of use to both new / inexperienced and

experienced project planners.

• In general, users considered that the use of scenarios to develop

alternative views and paths through a project was useful. They

considered it was useful to simulate variants of a plan and

suggested that for most projects the capability to create five

fundamentally different scenarios would be sufficient.

• A number of specific comments and suggestions were made in

relation to improving the mechanism by which scenarios are

developed for a project.

• Participants expressed a need for the system to offer guidance on

the selection of the most appropriate lifecycle for a project.

• Many of the users considered the advice given by the agents to be

general and not sufficiently specific. Some of the users expected

the advice to be presented in a more conversational format and

make explicit reference to the specific values associated with a

particular scenario.

• Users requested that the advice displayed should be permanent (for

the duration of a session) so users can see an advice history. The

advice was considered by users to contribute to their overall

understanding of a project and also assisted with the evaluation of

risk to the project.

• There were issues relating to a duplication of advice being offered

during any one user session. Users considered this could be a

distraction from important issues.

• A small number of users commented that it would also be useful if

some advice was expressed in more quantitative terms (for

example, 70% probability of the project failing in a specific issue).

• Some users expressed the desire for the system to provide support

for the on-going tracking of a project during its execution and not

just during the planning phase.

Table 9.3 - Summary of Trial 2

This trial was important as it was the first version of the tool to contain scenario

support and a number of realistic agents. Further, this trial was conducted using a

wider audience and over a longer time frame. The general comments of the users were

very supportive of the concept of a support tool as they considered it a novel approach

to planning by comparison to existing systems.

147

At the review meeting there was substantial discussion on the possible usage patterns

of the tool. The consensus was that the system was most appropriate for medium to

large projects or projects where the level of uncertainty was high. The real potential of

the system was perceived to be as an aid to pre-planning, to assist the project manager

“get a better mental picture of the shape of the project” prior to creating full and

detailed plans, possibly using existing traditional systems. For this reason the ability to

export project plan data from the tool was considered a priority issue.

Another important issue which arose during this trial was the desire for specificity and

quantitative attributes of an agents advice. In particular, the issue of more quantitative

advice - which could offer exact percentages or absolute numbers - in relation to a

given situation was considered to be very important by a small number of users in one

of the organisations. The possibility of offering more quantitative advice was

discussed with the authors of the P3 Handbook and Training Guide and was

considered to be very difficult and often not appropriate in many circumstances. For

example, while it may be appropriate (and not unusual) for a risk management expert

(agent) to comment that a particular project (or scenario based on a given project) was

70% likely to fail for a given reason, it would be unusual for an expert to comment

that a particular lifecycle was 70% appropriate for a given project. However, as a

direct response to this request, the scope of the search for suitable material - for use as

the basis for agents - was widened to include more empirical studies which could be

used to produce more quantitative advice.

The initial comments of the users in relation to performance and speed were

considered to be a reasonably important issue, but given time restrictions it was

considered more appropriate to use the majority of remaining time in the development

of new agents, with a small time allocation for performance issues. Comments

regarding the construction of scenarios were considered and some alterations made to

the presentation of this information in subsequent prototypes.

148

9.2.3 Trial 3

Trial Trial 3 using Burgundy prototype.

User details Eleven staff from two P3 partner organisations which included most of

the reviewers from trial 2.

Duration Trial conducted over a three week period.

Objectives • One of the principal goals of this prototype was to include a larger

set of agents, therefore the emphasis of this trial was on gathering

user feedback with respect to the advice being offered by the

agents.

• Get additional user feedback in respect of the construction and

usage of scenarios - having taken into account the changes made

since the last prototype.

• As with both previous trials, assessing users perception of the

added value of the system was also an important issue.

• A secondary objective was the testing of a comprehensive

automated installation program. This was an important issue as the

development of an automated installation program for a distributed

CORBA based system is a challenging process.

Main finding

of trial usage

report

• This review confirmed the report from the previous two trials, that

users generally considered the system provided a useful framework

for supporting their decision making process.

• There were a large number of comments made about the type and

content of the advice being produced by agents. These included

issues such as the same advice being produced more than once in a

session, ambiguity in the wording of advice and the relevance of

advice not always being obvious.

• A number of users (mostly from one organisation who employ a

rigorous process and quality programme) again expressed the

desire for (some) advice to be expressed in more quantitative

terms.

• In addition, suggestions were made that specific corrective advice

149

should be given. For example, "...as your project is running 10%

late, increase staff overtime".

• The general user opinion was that using the scenario-based method

to examine alternative paths through a project was valuable.

However, there was a need expressed to have a mechanism to

visualize the currently active paths / scenarios through a project.

This arose as some users considered it was possible to “get lost” or

disorientated when multiple paths existed.

Table 9.4 - Summary of Trial 3

The general comments in regard to advice (ambiguity, relevance, etc.) were dealt with

by making minor changes in either the advice structure and format or trapping the

execution mechanism to ensure that duplicate advice is either not produced or not

passed to the User Interface. The revised advice presentation format (which including

the ability to browse the advice history) was considered to by the previous trial

participants to be useful and meet their expressed need. They pointed out that this

allowed them to look back at the reasons/motivation behind decisions made and also

to refer back to suggested best practices and advice when necessary.

Once again, the point of major concern of these user comments was the desire to have

advice expressed in more quantitative terms. This request was again discussed at

length with the authors of the P3 project Handbook and Training Guide in addition to

a widened search for more empirical published studies. However, there was little by

was of quantitative advice incorporated into the agents in this prototype as little

(suitable) knowledge was elicited prior to the trial of this prototype.

There were a number of performance issues in respect of this version which were

subsequently rectified. In particular, a change to use the “InProcess” method of server

threads increased the general speed of the tool. However, the initial tool startup was

still extremely slow, due in the most part to the delay in starting the ORB and

launching the CORBA servers associated with the tool.

150

9.2.4 Trial 4

Trial Trial 4 using Tipperary prototype.

User details Nine staff from two P3 partner organisations and included most of the

reviewers from trials 2 and 3.

Duration Trial conducted over a two week period.

Objectives • The main addition to this prototype was a larger and more

comprehensive set of agents with a wider scope of expertise.

Therefore, particular emphasis was placed on user reaction to the

nature and type of advice being offered by the expanded agent

library.

• This prototype also included a limited number of help screens and

a basic user manual, therefore user assessment of this material was

also required.

• As with previous trials, assessing user perception of the added

value of the system as a decision support framework was also an

important issue.

• A secondary objective was user testing of the efficiency and

reliability of the system as a whole. This information was

particularly important from a commercialisation perspective.

Additionally, the testing of an updated CD-ROM based install and

uninstall utility was being monitored.

Main finding

of trial usage

report

• Again as with previous trials, users generally considered the

system provided a good framework for supporting the decision

making process and had commercial potential.

• The users who had been involved in the previous three trials

considered that the development prototypes to date had (in the

most part) brought the tool in line with the expected functionality

of a standard pre-commercial (beta or release candidate) system.

• There were numerous suggestions made as to the possible usage

patterns of the system, ranging from a project pre-planning tool to

a project manager training tool.

*
151

• There were a number of favourable comments made regarding

users understanding of a project and its parameters and the quality

of decisions subsequently made. Users commented that they “had a

better feel for” and “understood potential danger areas” of a

project.

• The comments received in respect of advice being produced by the

agents were generally favourable and were due to the expanded

amount of advice being produced as a direct result of an increase

in the number of agents in the agent library.

• A number of specific comments were made about the type and

content of the advice being produced by agents. Users appreciated

the expanded amount of advice being produced by agents in this

prototype version and also the reduction in duplicate advice.

• As with two previous trials, there were more suggestions made

with regard to the provision of quantitative advice.

• Some participants expressed the desire to have a high level of

customisability in terms of a process model, tokens, etc., as they

found the predefined models a little restrictive.

• The improvements in the appearance of certain aspects of the GUI

which were made in this prototype were well received by users, in

particular the alteration of a number of icons on the main screen

which were now considered more intuitive.

Table 9.5 - Summary of Trial 4

During the review meeting there was substantial discussion on the possible usage

patterns of the tool. As had emerged from previous trials, users considered it most

appropriate for medium to large projects and not for small-scale projects. It was

considered that the potential customer would be interested in using a tool which

would help them “get an understanding of what the project required”, or use the tool

to “help with thinking aloud about different approaches to a project”. This pre-

planning usage was considered to be a reasonably unique aspect of the tool which

could be used to complement existing traditional planning and management tools.

152

9.2.5 Trial 5

Trial Trial 5 using pre-commercial beta prototype.

User details 5 users from 4 non-P3 organisations.

Duration Trial conducted over a one week period.

Objectives • The main objective of this trial was to expose the system to users

who were not connected to the P3 project or P3 project

organisations, thus getting feedback from a different perspective

and from users who had not seen the tool evolve over time.

• As with previous (P3 project based) trials, assessing user

perception of the added value of the system as a decision support

framework was an important issue.

• Also of particular interest was user reaction to the nature and type

of advice being offered by the expanded agent library.

• A secondary objective was testing user reaction to the final system

in terms of its commercial readiness, particularly in relation to

issues such as install program, GUI look and feel, ease of use, help

files, user manual and related product attributes.

Main finding

of trial usage

report

• The users considered that the system provided a novel approach to

the creation of project plans and had potential to assist project

planners with decision making.

• They considered that the system could help project planners in

“respecting good planning rules” and “remembering all the small

things” about a plan.

• It was suggested that the system may be of use to senior project

managers to get “a view of what a project might look like” and

therefore be better placed to understand the resources it may need.

• Further, it was considered that the system had potential to “close

the distance” between senior and junior project managers, as it

could be used by the two managers to “sketch a basic high-level

plan”, thus leading to common agreement on a basic project plan.

• Users felt it would be useful if the system provided a facility in

153

which they could attach there own (free text) comment to certain

stages of a project as a memory aid on a particular project aspect

or decision made.

• On a related point, some users expressed the desire to be able to

annotate advice (with their own additional comments) created by

the system and have that stored along with the system generated

advice.

• In terms of the advice presentation (advice window) some users

commented that it would be useful to have the facility to save

advice to disk or export it to a word processor. Also they thought it

would be useful if the advice contained web like hyperlinks to the

appropriate sections of the handbook and training guide or relevant

web sites to assist with getting more information on certain topics.

• The users placed great emphasis on the systems data export and

reporting facilities. In particular they expressed a wish to have a

data export connection to more tools that just Microsoft Project.

Table 9.6 - Summary of Trial 5

This trial was of particular importance as it was the first time the system was tested by

non-P3 project users. The five trial participants were from four medium to large-scale

software organisations. Two of the users elected to use the supplied case study, two

used a recent project and the last developed a fictitious project.

The users responded positively to the system and considered it provided a novel

approach to project planning and associated decision making, by comparison to

existing systems. Much of the general feedback was in relation to the potential

marketing strengths of the system - it was suggested that it would complement

existing traditional planning and management tools and/or that it could be used to

create high-level project plans by senior project managers in a multi-project

environment as an aid to assigning personnel to projects.

154

9.2.6 Trial 6

Trial Trial 6 using pre-commercial beta prototype.

User details 4 users from 4 non-P3 organisations who had participated in the

earlier tool user survey. Only four of the original six surveyed were

able to participate.

Duration Trial conducted over a three week period.

Objectives • The main objective of this trial was to ‘close the loop’ between

the survey of tool users conducted prior to system development

and the actual system developed. This provided feedback from a

different perspective and from users who had not seen the tool

evolve over time but who were familiar with the initial objectives

of the research.

• Another objective was assessing if the prototype system fulfilled

the expectations of the survey participants, based on their

understanding of what the proposal system was going to provide.

• In line with previous (P3 project based) trials, assessing user

perception of the added value of the system as a decision support

framework was an important issue.

• A secondary objective was testing user reaction to the final system

in terms of its commercial readiness, particularly in relation to

issues such as install program, GUI look and feel, ease of use, help

files, user manual and related product attributes.

Main finding • In general the users considered the system met their expectations

of trial usage in terms of provision of advice on project planning and the

report construction of project plans. However, some had expected the

system to be more orientated towards the subsequent management

and tracking of a live project rather than just planning.

• They considered that one of the potential benefits / uses of the

system was in allowing a project planner “walk around” a project

and get a “feel for” or understanding of “what the final plan could

look like”.

155

• A criticism was that the system did not have any explicit /

dedicated services directed at the planning of the software

maintenance stage of a product or legacy system. It was suggested

that the lifecycle of a maintenance project differs from that of

systems development.

• The users considered that the system could be useful in a wide

range of projects and should have the potential to be tailored to

different types of project. For example, they suggested that the

agent library be expanded to include features for typical data

processing applications, internet applications, embedded systems,

etc. and provide a feature for the user to select the general

classification of project they are working on and provide specific

advice for that classification.

• Likewise the users suggested that the agent library should contain

a series of agents which were specialists in different standards,

such as CMM, ISO 15507, etc.. The user could then select the

standard they wished to work with and receive advice on creating

project plans using that standard.

• The users further suggested that the system should provide the

ability to ‘turn off agents that a user ‘didn’t like’ or ‘didn’t agree

with’.

• One of the potential strengths of the system which was identified

was the ability to expand the agent library. It was suggested that of

great potential benefit to an organisation would be the facility to

create a set of company-specific agents (for internal standards,

practices, etc.) and have these inserted into the agent library. This

suggestion fitted closely with the intranet / network system

deployment approach.

• It was suggested that the system could be used in a ‘training mode’

or as a training tool to assist with training new project planning /

management staff, or as an aid to transfer of know-how within a

company or department.

156

• Furthermore, they suggested that the system could be of potential

use in an academic environment as a training tool which could be

used to complement a project planning / management course.

Table 9.7 - Summary of Trial 6

This trial was important, because, as with trial five, the participants were also non-P3

project users. Furthermore, these users had participated in a survey of project planning

/ management tools and were aware of the initial objectives of this research. Of the

original six survey participants, two had worked in P3 partner organisations at the

time of the survey, but no longer worked for those organisations at the time of this

trial. Furthermore, only four of the original six survey participants were able to be part

of the trial process. Three of the users elected to used a recent project and re-create a

project plan for it, while the final participant developed a fictitious project.

Overall the users response to the system was favorable and they made a large number

of suggestions and recommendations. Of particular interest were their suggestions of

several possible enhancements to the agent library and the functioning of the agents.

Many of these are suggestions which should be incorporated into further releases of

the tool.

One of the objectives of this trial was assessing if the prototype system fulfilled the

expectations of the users based on their participation in the survey. Notwithstanding

the suggestions noted above, the general impression of these users was that the system

did provide the type of features they had expected. Further, they considered the system

was commercially viable but probably not to small software organisations. Of

particular importance from a commercial perspective was tool interoperability and

data export facilities, which were considered to be of high level importance to

potential customers. They also noted that the system should be marketed as a

companion or complementary system to existing (traditional) project planning and

management tools. In this respect they shared the views of the users in trial five that

the system could be aimed towards the pre-planning or feasibility stage of a project.

i
157

9.3 Trial Usage Findings

The motivation for conducting the user trials was twofold. Firstly to test the tool in

operation by project managers and secondly to assess user opinion of the added value

of an intelligent assistant system. The trials were conducted in six distinct stages, one

for each of the four major prototype releases plus two additional trials based on the

pre-commercial prototype release. The initial four trials were conducted at an early

enough stage during this research to influence the evolution of the subsequent

prototypes.

For the first phase of trials a total of fifty person weeks effort over a six month period

involving twenty two different participants was logged. These users represented

project management staff from two of the P3 project partner organisations and

represented a broad range of experience from novice to highly experienced.

The second phase of trials involved fifteen person weeks effort over a two month

period involving nine different participants. These users represented project

management and quality assurance staff from eight different organisations and

represented a broad range of experience from relatively novice to highly experienced.

The main output of these trials was a set of review documents which detailed the

comments and opinions of the users involved in each trial. To summarise, the

combined findings of these reports were:

H • Decision support - The general feeling of users was that the prototype

system demonstrated that the notion of intelligent assistance for software

project planning was feasible. In addition, they considered that the prototype

implementation provided a suitable framework for supporting decision

making and had the potential to be of use in a commercial setting.

• Plan descriptions - The general opinion of users was that the mechanisms

of describing projects plans (via models and scenarios based on a model)

was an appropriate and useful device to capture information about a project.

»
158

• Scenarios - Users considered the ability to create multiple scenarios to

examine multiple views or a projects plan (with corresponding advice) to be

very useful.

• Advice - Of paramount interest in these trials was user feedback in relation

to advice produced by agents. The overall trend was that novice users

considered the advice appropriate and useful as either a reminder of a

particular aspect of planning or as an indicator of which direction to

consider. However, more experienced users expressed the desire for more

specific and quantitative advice.

• Plan understanding - There were many comments made such as “get a

better mental picture of the shape of the project”, “get a better feel for a

project”, “understand potential danger areas” and “remember all the small

things about a plan”. These comments related to the project planner /

managers understanding of a project and the parameters which influence the

decisions made about it. A common theme in many user comments was that

this aspect of understanding a project (either a specific project or general

project planning) was increased.

• Training tool - A suggestion put forward by a number of users was the

possibility of a repositioning of the system for use as a training tool in which

users could develop a model of a fictitious project and thus practice project

planning skills on a ‘virtual project’.

• Deployment - The prototype system was successfully deployed on a number

of user machines via an automated setup program. Notwithstanding a

number of small problems with ORB / JVM identification and access to the

Windows NT registry, the prototype was successfully deployed by end users

on a variety of machines.

• Operation - The prototype system was successfully operated by a number of

users on a variety of machines. This was an indication that the prototype

system was capable of being executed in a commercial environment,

although the slow speed of execution in early prototypes was an important

issue. However, users acknowledged that the speed issue was not of great

importance for a research prototype, but would be for a commercial version.

*
159

• User interface - In general, users were satisfied with the GUI and its ability

to handle data input. A large number of comments were made in the early

stages and these were incorporated in subsequent prototypes.

One of the most difficult issue to tackle which arose during the user trials was the

request for advice which was more quantitative in nature. This has proven difficult for

two reasons; Firstly, little suitable source material was available which contained

quantitative data / results that could be used as the basis for agents. Secondly, it is

difficult for humans to discern the differences between quantitative values at a fine

grain level with domains such as software project planning. For example, there is no

appreciable difference between the values of 70% and 75% if they were expressed as a

measure of suitability for a given lifecycle model. However, it is worth noting that this

quantitative issue - while important in its own right - is not a central issue to the

proposed architecture of this thesis. It is however an indicator of the nature of advice

users perceive to be useful in addition to advice already produced.

Following from the series of users trials described in this chapter, the pre-commercial

beta prototype system is currently being further enhanced - based on many of the

comments made above - with a view to launch on the commercial tool market.

9.4 Summary

This chapter has presented a discussion on a series of user trials. For each trial the

objectives were presented and the users comments discussed. In addition, this chapter

also presented a brief discussion on the outcome of the trials.

Chapter 10 will present the conclusions of this research based on the proposed

architecture, the construction of a prototype implementation and the series of user

trials. This chapter will also propose directions for future work in all areas addressed

in this research.

i
160

Cha pte r 10 Conclusions

10.1 Research Goals

It was the proposition of this research that there are a number of weaknesses in the

current approaches being taken in the provision of software project planning tools and

that there is significant scope to improve on existing systems in areas such as:

• Creation of project plans - few tools offer automatic guidance on the

creation of technical and management plans. Of use to the project planner

would be the automatic creation of an outline plan from specified (pre-

defined) types of projects, which could be further refined to the particular

project under consideration. In addition, users have to input large amounts

of project plan data with little or no support for the accuracy, completeness

and quality of the plan.

' • Decision support - Most systems fall short of supporting the project planner

in the decision making process. They do not offer assistance in representing

knowledge about plans, or provide mechanisms for reasoning about plans in

flexible ways.

• Flexible Knowledge Base - In the continuously evolving domain of

software technologies, of great importance in the provision of automated

decision support is the ability to dynamically update the knowledge base to

cope with new and evolving standards and best practices.

i • Scenarios - Although some tools offer ‘what if analysis in response to

changing parameters, they do not offer direct ‘recommendations’ for action

given a certain situation. Of use to the project planner would be the ability to

create several different scenarios (or work breakdown structures) of possible

future plan, based on the variation of a number of key project parameters,

with associated decision support and plan verification. This would allow the

project planner to examine alternate project plans from different

perspectives.

161

• Distributed cross-platform systems - A further aspect to supporting the

software project planner which is not addressed by today’s support systems

is the distributed and cross-platform nature of systems development. Users

of existing software project planning systems could benefit greatly from

support for the distributed cross-platform nature of modern client-server

development.

This research set out to explore the role of artificial intelligence techniques in the

provision of an intelligent assistant based software project planning tool which would

address the issues described above. In addressing these aims, this research devised a

framework and architecture which was used as the basis for the design of an

intelligent assistant system. From this design a prototype system was implemented for

use by software project managers in the planning of a distributed multi-platform

software development project.

The main outcome of this was an architecture for an intelligent assistant system for

use in software project planning. A prototype system was constructed to test the

proposed architecture, and feedback from a series of end user trials by commercial

tool users was evaluated to assess the usefulness and suitability of the system.

10.2 Research Outcomes

This thesis reviewed the main approaches to providing intelligent assistance and

proposed that in the complex domain of software project planning, a useful tool to

support the project manager would be a hybrid of a number of techniques - Decision

Support System, Expert System, Blackboard and Intelligent Agents - encapsulated

within an agent-orientated framework. This approach enables the inter-working of a

variety of well understood techniques within a single underlying framework.

This research also reviewed the typical services currently provided by software project

planning tools and conducted a survey of tool users to highlight user need for an

intelligent assistant within a software project planning tool and to further identify

162

possible shortcomings in the services provided by existing tools. The results of this

review and survey were an increased understanding of the needs of software project

planners and the perceived deficiencies in existing tools. This survey also provided

supporting evidence for the usefulness of an intelligent assistant based system.

This research conducted a review of a number of diverse architectures based around

the agent-orientated paradigm and proposed a set of desirable architectural

characteristics - which should be taken into consideration when developing an

architecture for an intelligent assistant system - and compared the proposed

architecture against these characteristics, demonstrating that the system satisfied these

criteria.

Following this investigation, Java and CORBA were adopted as suitable solution

technologies to implement the architectural properties of distributed platform-

independent systems. Furthermore, JESS was put forward as a suitable agent language

for the purpose of implementing a prototype system within a Java-CORBA

architecture.

In order to validate this research, a prototype application based on the proposed

architecture was developed. The successful construction of this application

demonstrated that the architecture was implementable and could be deployed in a

commercial setting. Furthermore, this facilitated the end user testing of the application

which concluded that the system provided a novel approach to the creation of project

plans and had potential to assist and support project planners with making project

plans and the associated decision making.

10.3 Further Research

This section will briefly outline some of the research directions which could be further

pursued as a result of the research reported in this thesis. This list is not intended to be

exhaustive.

163

10.3.1 System Architecture

The agent-based architecture described in this research provides a novel, open,

flexible and adaptable approach to the implementation of an intelligent assistant

system for in software project planning. However, there are a number of areas which

could be further investigated.

The User Interface is a light-weight system component which handles the

management of all the screen elements (menus, dialog boxes, etc.), validates data

entered by the user and passes on clear functional messages to the rest of the system.

The User Interface component is an ideal candidate for incorporation into a web

browser, as the existing functionality could be re-implemented using Java applets.

This would provide for a thin network client executing in a web browser with the

remainder of the system located elsewhere on the network, thus extending the system

to any client platform for which there exists a web browser.

The Agent Controller is a supervisory unit over the agent community which manages

the scheduling and execution of agents. It contains the inference engine and related

modules for the JESS system. This approach of allowing a separate inference engine

for each agent language allows for a number of distinct inference mechanisms to be

used, in which case they would reside as separate sub-components of the Agent

Controller. A natural extension to this architecture would be to extend the number of

inference engines, possibly to consider some of the other languages and knowledge

representation schemes.

Agents are located in the Agent Library, but remain under the control of the Agent

Controller, whose purpose is to manage the physical agents themselves and to service

requests for agent interactions. This architecture allows for the updating of the

knowledge base by adding, updating and deleting agents in the Agent Library. There

are a number of strategies which may be employed to update the Agent Library, with

the most promising being via the Naming and Trader service of CORBA. The

CORBA Trader Service provides an ‘advertising directory’ for CORBA objects,

164

which allows objects to publicise their services and bid for jobs, whereas the Naming

service provides a ‘name directory’ for objects, which allows applications to look up

objects by name. Using these two CORBA services it would be possible to maintain

an Internet site (single or multiple) which contains new agents and has a situation

where the Agent Controller could interrogate the CORBA ORB to identify new

(remote) agents. These agents could then be acquired and inserted into the local Agent

Library and possibly be subject to an electronic commerce style of payment for such

new agent.

10.3.2 Knowledge Base

The knowledge base for this intelligent assistant system is encapsulated in a series of

intelligent agents which are located in the Agent Library. In the previous section, a

number of proposals for further work have been put forward. In addition there are also

other knowledge-orientated aspects which warrant further investigation.

For the purpose of this research it was considered that the particular method of

knowledge acquisition employed was not of primary concern. Rather, the method

should elicit a sufficient quantity of useful data which could be used to construct

agents. This research has used a combination of printed sources and informal

interviews as the primary method of knowledge acquisition. At this point it is worth

considering the appropriateness of these methods of knowledge acquisition within the

context of this research. It would be useful to explore other methods of knowledge

acquisition as well as the broader consideration of the knowledge lifecycle. For

example, given a large set of agents (and thus elicited knowledge), some form of

knowledge management procedure would be necessary. Another aspect of the

knowledge lifecycle which would benefit from further consideration would be the

validation of elicited knowledge prior to its incorporation into agents.

In relation to the knowledge base, the main issue which arose during the user trials

was the request for advice which was more quantitative in nature. During the

development of agents as part of this research, the request proved difficult primarily

165

because little suitable source material was available which contained quantitative data

/ results which could be used as the basis for agents. In addition, a barrier to

developing such material would be the difficulty which humans have in discerning the

differences between quantitative values at a fine grain level for less specific domains

such as software development. For example, there is no appreciable difference

between the values of 70% and 75% if they were expressed as a measure of suitability

for a given lifecycle model. However, this request is an indicator of the nature of

advice users perceive to be useful in addition to the advice already produced by the

system. It is therefore worth investigating the issues surrounding the provision of such

quantitative advice in conjunction with the previous issue of knowledge acquisition

and validation.

The prototype system developed as part of this research contained a relatively small

number of agents which operated in a small number of potential advice areas. To

provide a more complete knowledge base a larger set of agents, covering a larger

number of areas, would be necessary. For example, a series of agents dedicated to

standards such as ISO 15504, CMM, etc., would be useful for users operating within

those standards or for those considering adopting such standards.

The task of constructing agents (as described in this thesis) is a manual procedure and

consists of first writing the agent header and subsequently constructing the agent rules

in a suitable language - in this case JESS. Of potential interest would be automated

tool support to assist agent developers (possibly user-organisations) in constructing

their own agents. For example, the RISKMAN2 project (cf. section 4.2.3) developed

an associated product, “Daemon Writers Pack” [Power, 94], to assist experts in risk

management write Daemon’s (RISKMAN agents). It consisted of a series of forms

with a strict set of heading / formatting guidelines which acted as a generic rule

template from which a developer would code a C++ Daemon. A major limitation of

this approach was the complex implementation issues surrounding the translation of

the text based forms into C++ Daemons.

To date all agents developed for the prototype system have been manually coded

following the process described in section 7.3.6. The translation from a decision table

166

to JESS rule scripts is a reasonably straightforward process, as JESS IF-statements

follow a clear and simple format. It should therefore be possible to create a ‘user

friendly’ GUI based tool which allows a user to enter conditions (dependent token

values) and associated actions (advice to be generated), and produce a JESS rule script

in the appropriate agent format. As part of the P3, project an experimental prototype

of a ‘Agent Developer Kit’ was developed using Visual Basic, which was capable of

taking simplistic conditions / actions and producing basic JESS scripts. However, this

was not pursued further for commercial reasons.

It should be possible to develop a series of add-on tools for end users with features for

automatically generating agents via a GUI based system and the editing of existing

agents. Such a system could also implement Agent Library housekeeping and other

procedures. Such a tool would be of benefit to users interested in creating a set of

agents dedicated to internal company standards or practices.

10.3.3 Prototype System

For the purpose of this research, issues such as the execution speed of the system were

not of primary concern, although a number of measures were taken to address such

issues. However, a number of issues remain, mostly in relation to CORBA ORB

initialisation, the launching of server objects and the presence of the OrbixWeb debug

window. Successfully addressing these issues, would result in a subsequent prototype

system operating at more acceptable levels (from a commercial perspective) and thus

be in line with users comments received during the trials.

The addition of extended functionality within the prototype system, in particular

enhanced scenario analysis and the provision of a larger set of agents would lead to a

pre-commercial prototype system which could be used as the subject of further user

trials to assess the commercial viability of an intelligent assistant system for software

project planning.

»
167

During the users trials there was the suggestion of repositioning the system for use as

a training tool, in which users could develop a model of a fictitious project and thus

practice project planning skills on a ‘virtual project’. There are a number of

possibilities for such a repositioning which are worthy of further consideration, which

include the possibility for an interactive (possibly web based) version of the P3

Handbook and Training Guide with a slimmed down version of the system acting in a

project simulator / advisor role.

This research set out to examine the provision of an intelligent assistant system within

the domain of software project planning. However, it should also be possible to

extend this approach to the parent domain of software project management and the

associated tasks of managing and tracking a software development project.

10.4 Concluding Remarks

Due to the growing complexity of software systems and the current economic context,

software projects are facing more and more constraining production objectives in

terms of time, cost, quality and risk. This evolution in the nature of projects being

undertaken by software organisations results in increased difficulties associated with

planning, managing and executing software development projects. Indeed, software

projects often fail because the project managers lack knowledge of good practices and

effective processes which can reduce risk and increase the likelihood of success.

Existing project planning tools do give support to the project manager and have

several basic strengths; planning calculation and re-calculation; recording progress

and feedback data; comparison of planned against actual achievement and re-

calculation of the plan in relation to progress update. These reflect the strengths of

data processing by computers applied to project planning. However, such tools do not

provide support for the project manager in the decision making process and do not

offer assistance in representing domain knowledge about plans and designs or provide

mechanisms for reasoning about plans and designs in flexible ways.

168

This research has proposed an agent-orientated framework as the basis for an

intelligent assistant system for use by software project planners and designed a novel

architecture upon which this system can be constructed. This architecture is based on a

fusion of a number of techniques within a multi-agent framework which aims to

improve the quality of the decision making process of software project planners. This

framework incorporates the information gathering and analysis techniques of a

Decision Support System with the ability of an Expert System to propose possible

solutions using expert knowledge and best practices and the power of Blackboard to

exchange information between components. This novel approach enables the inter-

working of a variety of well understood techniques within a single underlying

framework - that of the agent-orientated paradigm.

To assist with validating the proposed architecture, a prototype application was

developed and a series of trials conducted. The conclusion of these trials was that the

prototype system demonstrated that the notion of an intelligent assistant system for

software project planning was a viable concept, worthy of commercial investigation.

Further, it demonstrated that the proposed multi-agent framework provided a viable

architecture for supporting decision making which has the potential to be of use in a

commercial setting.

This research is a significant step forward in the development of a new generation of

software project planning tools. The approach described in this thesis is a fusion of a

number of well understood techniques within a single unifying framework. An

important characteristic of this approach is the combination of these techniques in an

open distributed environment with the potential for continuous evolution.

169

Appe nd ix A Sum ma r y o f P3 Pro ject

Project Acronym: P3

Title: Project and Process Prompter

Objective: The P3 project intends to develop a prototype tool, Prompter, which can

be used to assist project planners in deciding: What resources will be needed for their

project? What parameters need to be measured during the course of the project? What

trade-offs in project variables could lead to reduced risk and greater chance of

success?

General Information: Prompter has the potential to satisfy a need in the software

industry for greater understanding of the options available during planning and why

one choice should be made over another. For example, certain criteria have been

established for selection of one life cycle rather than another; these criteria are not

always well-understood, nor are the ramifications of that selection. Prompter will give

the project planner the opportunity to input project goals and certain project-specific

variables, match them against a generic model to create a specific project model, than

analyse a set of options which may be used to organise the project so that it will meet

its goals. Part of the project model will be definition of measurements that should be

taken during the project and submitted as input to Prompter so that the original choice

of options is either validated as correct, or possibly needs changing.

The final deliverable of this project will be a pre-commercial tool which will be

further "productised", then marketed initially to the software industry. Prompter will

be a stand-alone Windows-based software tool; it will run on any version of Microsoft

Windows later than Windows 3.1 since this is where the major market opportunity

exists. The user interface will be standard in that pull-down menus and other well-

understood features will be used. In addition, this basic user interface will be

enhanced as far as is feasible with advanced visualisation and dialogue techniques to:

improve understanding of the underlying tool complexities; allow a user perspective

rather than a purely technical perspective; and support teaching as part of project and

process planning.

170

Start Date: Ol-Sep-1996

End Date: 28-Feb-1999

Duration: 30 months

Programme Acronym: ESPRIT 4

Subprogramme Area: Emerging Software Technologies

Programme Type: 4th FWP (Fourth Framework Programme)

Prime Contractor

Organisation: Catalyst Software

Organisation Type: Industry

Org. Country: Ireland

Other Contractors

Organisation Name: Dublin City University

Organisation Type: Education

Org. Country: Ireland

Organisation Name: Objectif Technologie

Organisation Type: Industry

Org. Country: France

Organisation Name: Intracom Sa

Organisation Type: Industry

Org. Country: Greece

Organisation Name: Schneider Electric Sa

Organisation Type: Industry

Org. Country: France

171

A p p e n d i x B Su r v e y o f To o l U s e r s

Each project manager was asked a series of questions, ranging from the highly

specific to the more generic. The questions were divided into the following categories:

• General background questions regarding the person and employer.

• Questions to ascertain the type of projects normally undertaken.

• Questions about methodologies, standards and development tools used.

• Questions about the use of project management tools.

• Questions regarding the potential benefits of an intelligent assistant system

Each project manager was asked a series of questions aimed at finding out what (if

any) tools were being used, the manner in which they were being used and the

usefulness of certain types of features. Each manager was also asked to consider the

proposal of an intelligent assistant in the context of a software project planning tool

and offer an opinion on the proposed features. The following list shows a sample of

the type of tool-orientated questions that was asked of each interviewee:

• What project management tools do you use?

• What exactly do you use the tool for?

• What tool feature(s) do you find most useful?

• What tool feature(s) do you find least useful?

• What feature(s) do you think they lack?

• What was the most successful project you have worked on, and could tool

support (intelligent or otherwise) have made it better?

• What was the least successful project you have worked on, and could tool

support (intelligent or otherwise) have made it better?

• Do you think intelligent assistance could help you in managing your

projects?

• What features do you think an intelligent assistance tool should provide?

• What do you consider such a tool could offer the first-time project manager?

172

Ap p e n d i x C Ca s e St u d y

Introduction

Accurate Data Ltd is a company which develops and maintains inventory software

(.MEDIN) for hospitals and medical supply companies. The original system which has

to be maintained is based on an Oracle database and DEC equipment and has a

decidedly old-fashioned mainframe look to it. AD is planning a project to:

1. move to a client server environment using DEC servers and workstations

2. update the user interface to include graphics

3. provide running inventory control with scanners

AD has not had too many competitors until a few years ago, but now they must make

these changes or lose their market share and probably go out of business. Newer

systems are already Y2K compatible and one competitor is ISO 9001 certified. In the

medical business this is starting to be important. AD has managed to keep their

customers in spite of this because of frequent and regular presence at customer sites to

understand any problems and keep au courant of the customer business needs.

Software emergencies are dealt with quickly; regular maintenance releases deal with

non-emergency bug fixes and minor upgrades. AD has the best reputation in the

business for customer service, but that is not enough any more.

The AD customer base is two large hospitals, 32 medium sized hospitals, and 30 large

clinics. The older product is sold in three ‘sizes’ to suite the differences in these

markets. AD would like to take advantage of the new changes to move to only one

product. Old customers can upgrade for a graduated fee, depending on their size. One

of the medium sized hospitals has a specialist (Grace Ibeza) who is interested in being

part of the development team for the new product, but most of the other users just

meet in a User Group meeting once a year to formally submit suggestions for

improvement and any complaints. AD has promised this User Group that a major

upgrade will be released every 6 months with the entire project to be finished (and

173

Y2K compliant) by the year 2000. AD realises this is a very tight schedule, but they

feel there is no choice. Somehow they have to make the schedule. AD has no long-

term debt and could borrow money if they need to, but of course the less borrowed,

the happier the Managing Director (Corbin Corvette) will be.

AD is not interested in being on the bleeding edge of technology. They want to use

tested equipment that is upgradable and likely to be around for the next five years or

that can easily be replaced with other brands if necessary. In the past, they satisfied

these needs by using transportable COBOL. Now they are interested in a language like

Java or something else which can cross platforms.

AD has 5 software employees:

• Jean Rolls, senior software engineer who has been with the company since

its beginning,

• Mercedes Carrumba, system designer who is only a few years out of

University but has a very good knowledge of software engineering in

general and the languages and platforms being used at Accurate Data

• Haley Ford and Sue Subaru, junior software engineers who mostly

code/test/document

• Tonya Trap, part-time student who is just starting out

In addition, there is a part-time software manager (Kelly Volvo) who is also

supporting sales and a full-time sales manager (Volks Polo) who gets the customer

requirements and does the acceptance testing of the products before they go to the

customers.

This is a massive job compared to anything they have ever tried and the AD personnel

are not sure how to begin the work. What do they do now? Can Prompter help?

174

Part I A bird’s eye view of this project

1-1 When to start

The schedule is defined (18 months), the budget is flexible, although Corbin would

like to see a solid estimate before they begin. The decision has already been made to

do the following:

• No more fixes to the old system except for an emergency. The software is very

stable and this should be possible so that the entire group is working on the new

system.

• Document the processes the software people follow now, the location of hard

copy/soft copy data that might be useful for employees, and generally ‘clear the

decks for action’.

• Hire from the outside a project manager who’s sole responsibility is to make this

happen, co-ordinating the new software releases through Kelly Volvo and Volks

Polo. Corbin Corvette is talking to Grace Ibeza from Mercy Hospital about

becoming the project manager and she looks like she will be hired.

1-2 Objectives of the project manager

Since the project manager hasn’t been hired yet, Kelly and Volks worked together to

develop a preliminary schedule. The initial tasks to document the current processes,

inventory what exists and where it was located were scheduled to take place first and

these did not require the project manager at first. Based on what had been done in the

past, the activities were defined but only loosely scheduled. When Grace arrives in 4

weeks, she can put more detail to the schedule.

175

1-3 Where are the risks?

• Technical risks do not seem too high here; although nobody is an expert in Java,

Jean and Mercedes both have a good background in other languages. They are not

concerned about the client/server environment since Mercedes worked in such an

environment while at University.

• Cost isn’t the highest risk, although such an ambitious set of goals may have

unknown and unexpected costs.

• Schedule is the highest risk, particularly for Y2K issues.

• Operational risk is also high since two of the three upgrades (graphics and

scanners) require an new way for the user to view the system; they may not like

what AD produces.

Grace will have to include risk management in the project plan and monitor the risks

carefully during the project.

1-4 Making decisions

Grace has already started working on the project management plan, including:

• risk management

• control of processes and corrective actions when problems occur

• communications links to the customers, Corbin Covette and the rest of the staff

• analysis of options for make or buy decisions

• quality management

• design and development planning

Grace has experience with ISO 9001 and knows that these cover some of the key areas

in that.

176

1-5 Managing expectations

Grace knows it is important to communicate to everyone the information they need to

know. So she starts by proposing a public display of the schedule, metrics which show

planned vs. actual work completed, and high-level bullet points of decisions made or

project status, to be updated at the end of every day or two. This will provide the raw

data to Volks and Corbin so they can communicate with the customers, the media,

measure status against the promises made to the User Group. In addition, Grace plans

a daily ‘stand-up’ meeting with the development staff to discuss any issues and

prevent problems from growing too large. Other meetings will be held formally and

informally, and technical and management reviews included on the schedule.

1-6 Managing change

Grace is not worried too much about organisational change because AD is such a

small company, but she is very conscious of how dependent she is on each person in

the staff. Everyone has their special skills that would be difficult to replace. Enough

time will be scheduled for reviews and audits so that at least two people are aware of

all parts of the new system.

Grace will depend very much on Kelly and Volks to keep up with customer

requirements and needs. Grace comes from a hospital herself so she knows the

business, but only at one place. She plans to go with Kelly and Volks on some of the

customer visits so she can see for herself the differences and commonalties in the

customer base.

1-7 Managing quality in your project

This is somewhat difficult to manage. Grace knows the processes which can be

included to help ensure quality but AD is a small company and has always relied on

the personal commitment to quality of its people. Is that good enough for this project?

Nobody is quite sure how to set ‘quality targets’ or even define when is good, good

enough?

177

Re f e r e n c e s

[Agha et al., 93]

G.Agha, P.Wegner and A.Yonezawa (Eds.), “Research Directions in Concurrent

Object-Orientated Programming”, MIT Press, 1993.

[Alexander and Davis, 91]

L.Alexander and A.Davis, “Criteria for Selecting Software Process Models”, In

Proceedings of the 15th Annual International Computer Software and Applications

Conference (COMPSAC), IEEE Computer Society, 1991.

[Alty et ah, 94]

J.Alty, D.Griffiths, N.Jennings and E.Mamdani, “ADEPT - Advanced Decision

Support Environment for Process Tasks: Overview and Architecture”, In Proceedings

of the 1994 BCS Expert Systems conference, British Computer Society, 1994.

[Alty, 97]

J.Alty, (Lutchi Research Centre, Loughborough University), Personal

Communication, March 1997.

[Archer, 88]

S.Archer, “Qualitative Research and Epistemological Problems of the Management

Disciplines”, in A.Petigrew (Ed.), “Competitiveness and the Management Process”,

Blackwell, 1988.

[Bander et al., 88]

J.Bander, J.Edwards, C.Jones and D.Hannaford, “Practical Engineering of Knowledge

Based Systems”, Information and Software Technology, Voi. 30, No. 5, 1988.

[Bass et al., 98]

L.Bass, P.Clements and R.Kazman, “Software Architecture in Practice”, Addison

Wesley, 1998.

178

J.Bates, A.Bryan-Loyall and W.Scott-Reilly, “Integrating reactivity, goals, and

emotion in a broad agent”, Technical Report CMU-CS-92-142, Carnegie-Mellon

University, 1992.

[Benech and Desprats, 97]

D.Benech and T.Desprats, “A KQML-CORBA based Architecture for Intelligent

Agents Communication in Cooperative Service and Network Management”, in

Proceedings of EFIP / IEEE International Conference on Management of Multimedia

Networks and Services, 1997.

[Berson, 92]

A.Berson, “Client/Server Architecture”, McGraw-Hill, 1992.

[Bochsler, 88]

D.Bochsler, “A Project Management Approach to Expert System Applications”, In

Proceedings ofISA’88, 1988.

[Boland and Hirschheim, 87]

R.Boland and R.Hirschheim (Eds.), “Critical Issues in Information Systems Research”

Wiley, 1987.

[Bonczek et al., 81]

R.H.Bonczek, C.W.Holsapple, and A.Whinston, “Foundations of Decision Support

Systems”, Academic Press, 1981.

[Booch, 94]

G.Booch, “Object Orientated Analysis and Design With Applications” (2nd Edition),

Addison Wesley, 1994.

[Boy, 91]

G.Boy, “Intelligent Assistant Systems”, Academic Press, 1991.

[B ates e t al., 92]

179

[Bradshaw, 97]

J.Bradshaw (Ed.), “Software Agents”, MIT Press, 1997.

[Brooks, 87]

F.P.Brooks, “No Silver Bullet: Essence and Accidents of Software Engineering”,

IEEE Computer, 20 (4), 1987.

[Brooks, 89]

R.Brooks, “A Robot that Walks: Emergent Behaviors from a Carefully Evolved

Network”, Journal of Neural Computation, Vol.l, No.2, 1989.

[Brown et al., 82]

J.Brown, R.Burton, and J.deKleer, “Pedagogical, Natural Language and Knowledge

Engineering Techniques in SOPHIE”, In D.Sleeman and J.Brown (Eds.), “Intelligent

Tutoring Systems”, Academic Press, 1982.

[Brownston et al., 85]

L. Brownston, R.Farrell and E.Kant, “Programming Expert Systems in OPS5- An

Introduction to Rule-Based Programming”, Addison-Wesley, 1985.

[Buchanan and Feigenbaum, 78]

B.Buchanan and E.Feigenbaum, “DENDRAL and Meta-DENDRAL: Their

Applications Dimension”, Artificial Intelligence, 11, 1978.

[Buchanan et al., 83]

B.Buchanan, D.Barstow, R.Bechtel, J.Bennet, W.Clancey, C.Kulikowski, T.Mitchell

and D.Waterman, “Constructing Expert System”, in F.Hayes-Roth, D.Waterman and

D.Lenat (Eds.), “Building Expert Systems”, Addison-Wesley, 1983.

[Budd, 98]

M. Budd (Ed), “Ovum Evaluates: CASE Products”, Ovum, 1998.

180

[Caglayan and Harrison, 97]

A.Caglayan and C.Harrison, “Agent Sourcebook”, Wiley, 1997.

[Catalyst, 99]

“Plan Your Projects Better”, Catalyst Software, 1999.

[Cawsey, 98]

A. Cawsey, “The Essenance of Artificial Intelligence”, Prentice Hall, 1998.

[Clocksin and Mellish, 81]

W.F.Clocksin and C.S. Mellish, “Programming in Prolog”, Springer-Verlag, 1981.

[Cohen and Levesque, 97]

P.Cohen and H.Levesque, “Communicative Actions for Artificial Agents”, in

J.Bradshaw (Ed.), “Software Agents”, MIT Press, 1997.

[Cooke and McDonald, 86]

N.Cooke and J.McDonald, “A Formal Methodology for Acquiring and Representing

Expert Knowledge”, In Proceedings of the IEEE, pp. 1422-30, IEEE, 1986.

[Coutaz, 87]

J.Coutaz, “PAC - An Object Orientated Model for Dialog Design”, in H.Bullinger and

B. Shackel (Eds.), “Human Computer Interaction - INTERACT’87”, North-Holland,

1987.

[Corichili, 97]

D.Corkhill, “Countdown to Success: Dynamic Objects, GBB and RADARSAT-1”,

Communications of the ACM, Voi. 40, No.5, 1997.

[Cornford, 96]

T.Cornford, “Project Research in Information Systems: A Students Guide”,

Macmillan, 1996.

181

B.Cox, “Explaining and Understanding Engineering Problems - An Intelligent

Tutoring Approach”, International Journal of Engineering Education, Vol.10, No.3,

1994.

[Dennett, 91]

D.Dennett, “Consciousness Explained”, Penguin Press, 1991.

[DTI, 92]

Department of Trade and Industry, “KBS: Survey of UK Applications”, Touche Ross

and Co., 1992.

[Eilon, 79]

S. Eilon, “Seven Faces of Research”, In S.Eilon, “Aspects of Management” (2nd

Edition), Pergamon Press, 1979.

[Engelmore, 93]

R.Engelmore (Ed.), “JTEC Panel on Knowledge-based Systems in Japan”, ARPA

Technical Report, Advanced Projects Research Agency, 1993.

[Englemore and Morgan, 88]

R. Englemore, T.Morgan, “Blackboard Systems”, Addison Wesley, 1988.

[Fairclough, 96]

J.Fairclough (Ed.), “Software Project Management”, in “Software Engineering

Guides”, Prentice Hall, 1996

[Finin et al., 97]

T. Finin, Y.Labrou, and J.Mayfield, “KQML as an agent communication language”, in

J.Bradshaw (Ed.), “Software Agents”, MIT Press, 1997.

[C ox, 94]

182

A.Finkelstein, J.Kramer and B.Nuseibeh (Eds.), “Software Process Modelling and

Technology”, Research Studies Press, 1994.

[Fischer, 87]

G.Fischer, “A Critic for LISP”, In Proceedings of the 10th International Joint

Conference on Artificial Intelligence, Los Altos, USA, Morgan Kaufman, 1987.

[Fischer et al., 91]

G.Fischer, A.C.Lemke, T.Mastaglio, A.Morch, “The Role of Critiquing in

Cooperative Problem Solving”, ACM Transactions on Information Systems, April

1991.

[Fodor, 83]

J.Fodor, “The Modularity of Mind”, MIT Press, 1983.

[Forgy, 82]

C.Forgy, “Rete: A Fast Algorithm for the Many Pattern / Many Object Pattern Match

Problem”, Artificial Intelligence, No. 19, 1982.

[Fowler, 97]

M.Fowler, “UML Distilled - Applying the Standard Object Modelling Language”,

Addison Wesley, 1997.

[Frasson and Gauthier, 86]

C.Frasson and G.Gauthier (Eds.), “Intelligent Turoring Systems - Proceedings of the

Third International Conference (ITS’96)”, Lecture Notes in Computer Science 1086,

Springer, 1996.

[Friedman-Hill, 99]

E.J.Friedman-Hill, “Jess - The Java Expert System Shell”, User Manual version

5.01b 1, Sandia National Laboratories, USA, 1999.

[F inkelste in et al., 94]

183

R. Galliers, “Choosing Appropriate Information Systems Research Methods”, in

H.Nissen (Ed), “Information Systems Research: Contemporary Approaches and

Emergent Traditions, North-Holland, 1992.

[Genesereth and Fikes, 92]

M.Genesereth and R.Fikes, “Knowledge Interchange Format Version 3 Reference

Manual”, Technical Report 92-1, Logic Group, Stanford University, 1992.

[Genesereth and Ketchpel, 94]

M.Genesereth and S.Ketchpel, “Software Agents”, Communications of the ACM,

Vol. 37, No. 7, 1994.

[Giarratano and Riley, 94]

J.Giarratano and G.Riley, “Expert Systems - Principles and Programming”, PWS

Publishing Company, 1994.

[Goal, 95]

“The GOAL Project”, ESPRIT 6283 - Generic Object-Oriented Multi-Application

Project Management Tool for Large Inter-Organisational Projects, Public Report,

1995.

[Gosling and McGilton, 96]

J.Gosling and H.McGilton, “The Java Language Environment”, White Paper, Sun

Microsystems, May 1996.

[Gupta et ah, 96]

S. Gupta, W.Regli and D.Nau, “Integrating DFM with CAD through Design

Critiquing”, Concurrent Engineering, Vol. 2, No. 2, 1996.

[Grosz and Davis, 94]

B.Grosz and R.Davis (Eds.), “A Report to APRA on Twenty-First Century Intelligent

Systems”, American Association for Artificial Intelligence, 1994.

[G alliers, 92]

184

[Hall, 97a]

C.Hall (Ed.), “Intelligent Software Strategies”, Cutter Information Corp., Summer

1997.

[Hall, 97b]

C. Hall (Ed.), “Intelligent Software Strategies”, Cutter Information Corp., Fall 1997.

[Hampton, 97]

“A Buyer Guide to Selecting Project Management Software”, The Hampton Group,

1997.

[Hayes-Roth, 83]

B.Hayes-Roth, “The Blackboard Architecture - A Generic Framework for Problem

Solving?”, Technical Report, HPP-83-30, Stanford University, 1983.

[Hebb, 49]

D. Hebb, “The Organisation of Behavior”, Wiley, 1949.

[Heck and Mitchell, 96]

M.Heck and K.Mitchell, “Project Management Solutions”, InfoWorld, Voi. 18, Issue

23, 1996.

[Henry, 94]

W.Henry, “Software Project Risk Management: A Support Tool”, M.Sc. Thesis,

Dublin City University, 1994.

[Hodges and Rogers, 97]

J.Hodges and S.Rogers, “Cross-Industry Application: 1997 Worldwide Markets and

Trends”, Report 13705, International Data Corporation, 1997.

[Hughes and Cotterall, 99]

B.Hughes and M.Cotterall, “Software Project Management” (2nd Edition), McGraw-

Hill, 1999.

185

[Humphrey, 89]

W.Humphrey, “Managing the Software Process”, Addison-Wesley, 1989.

[Humphrey, 95]

W.Humphrey, “A Discipline for Software Engineering”, Addison-Wesley, 1995.

[Hunt, 98]

J.Hunt, “Tooled up for Java”, SIGS Application Development Advisor, Voi. 2, No. 2,

1988.

[Huhns and Sing, 97]

M. Huhns and M.Sing, “Conversational Agents”, IEEE Internet Computing, Voi. 1,

No. 2, 1997.

[Jackson, 90]

P.Jackson, “Introduction to Expert Systems” (2nd edition), Addison-Wesley, 1990.

[Jeffery and Votta, 99]

R.Jeffery and L.Votta, “Guest Editors Special Section Introduction”, IEEE

Transactions on Software Engineering, Voi. 25, No. 4, 1999.

[Jenkins et ah, 87]

J.O. Jenkins, R.Verbruggen and M.Bosco, “Integrated Management Process

Workbench (IMPW): Intelligent assistance for the Software Project Manager”, In

Proceedings of CASE’87 - 1st International Workshop on Computer-Aided Software

Engineering, Cambridge, USA, 1987.

[Jennings et al., 96a]

N. Jennings, J.Corera, I.Laresgoiti, E.Mamdani, F.Perriollat, P.Skarek and L.Varga,

“Using ARCHON to develop real-world DAI applications for electricity

transportation management and particle accelerator control”, IEEE Expert, Voi. 11,

No. 6, 1996.

186

[Jennings et al., 96b]

N.Jennings, P.Faratin, T.Norman, P.O’Brien, M.Wiegand, C.Voudouris, J.Alty,

T.Miah, E.Mamdani, “ADEPT: Managing Business Processes using Intelligent

Agents”, In Proceedings of the 1996 BCS Expert Systems conference, BCS, 1996.

[Jones, 94]

M.Jones, “Project Management Report”, Cambridge Market Intelligence, 1994.

[Kamsteeg and Blerman, 89]

P.Kamsteeg and D.Blerman, “Differences Between Expert Systems and Domain

Components of Intelligent Tutoring Systems”, in J.Cambell and J.Cuena (Eds.),

“Perspectives in Artificial Intelligence”, Wiley, 1989.

[Kaplan and Maxwell, 94]

B.Kaplan, and J.Maxwell, “Qualitative Research Methods for Evaluating Computer

Information Systems”, in J.Anderson, C.Aydin and S.Jay (Eds.), “Evaluating Health

Care Information Systems: Methods and Applications”, Sage, 1994.

[Kawaguchi et al., 91]

A.Kawaguchi, H.Motoda and R.Mizoguchi, “Interview Based Knowledge Acquisition

Using Dynamic Analysis”, IEE Expert, Vol. 6, No. 5, 1991

[Keen, 91]

P.Keen, “Relevance and Rigour in Information Systems Research: Improving Quality,

Confidence, Cohesion and Impact”, in H.Nissen (Ed), “Information Systems

Research: Contemporary Approaches and Emergent Traditions, North-Holland, 1992.

[Klein and Methlie, 95]

M.Klein and L.B.Methlie, “Knowledge Based Decision Support Systems with

Applications in Business” (2nd edition), John Wiley & Sons, 1995.

187

D. Lange and M.Oshima, “Programming Mobile Agents in Java with the Java Aglet

API”, White Paper, IBM Japan, 1997.

[Lederberg, 87]

J.Lederberg, “How DENDRAL was Conceived and Born”, ACM Symposium on the

History of Medical Informatics, National Library of Medicine, 1987.

[Leonard, 98]

A.Leonard, “Bots - The Origin of New Species”, Penguin, 1998.

[Lesnick and Moore, 97]

L.Lesnick and R.Moore, “Creating Cool Intelligent Agents for the Net”, IDG Books,

1997.

[Luger and Stubblefield, 89]

G.F.Luger and W.A.Stubblefield, “Artificial Intelligence and the Design of Expert

Systems”, Benjamin-Cummings Publishing, 1989.

[Luger and Stubblefield, 98]

G.Luger and W.Stubblefield, “Artificial Intelligence - Structures and Strategies for

Complex Problem Solving”, Addison Wesley, 1998.

[Maes, 97]

P.Maes, “Software Agents”, In Proceedings of the Unicom conference on Agents and

Intelligent User Interfaces, Unicom, 1997.

[Mair, 92]

P.Mair, “CASE: A State of the Market Report”, Unicom, 1992.

[Mallach, 94]

E. Mallach, “Understanding Decision Support Systems and Expert Systems”, Irwin,

1994.

[L ange and O sh im a, 97]

188

J.Mayfield, Y.Labrou, T.Finin, “Evaluation of KQML as an Agent Communication

Language”, in M.Wooldridge, J.Muller, M.Tambe (Eds.), “Intelligent Agents H:

Agents Theories, Architectures and Languages”, Lecture Notes in Computer Science

1037, Springer Verlag, 1995.

[Microsoft, 97]

“Introduction to Microsoft Agent”, White Paper, Microsoft Corporation, August 1997.

[Miller, 97]

J.Miller, “I Dream of Genie: Microsoft’s new active agent control can grant your

wish”, Lecture presented at Microsoft SiteBuilder Conference, 1997.

[Minsky, 85]

M.Minsky, “The Society of Mind”, Simon and Schuster, 1985.

[Montgomery, 88]

A.Montgomery, “Gemini - Government Expert Systems”, In Proceedings of the 1988

BCS Expert Systems conference, British Computer Society, 1988.

[Moynihan et ah, 94]

T.Moynihan, J.Power, W.Henry, “A Critiquing System Architecture for Software Risk

Management”, In Proceedings of 5th European Software Control and Metrics

conference (ESCOM), Italy, May 1994.

[Muller et ah, 99]

J.P.Muller, M.P.Singh and A.S.Rao (Eds.), “Intelligent Agents V: Agents Theories,

Architectures and Languages”, LNCS 1555, Springer Verlag, 1999.

[Mumford et al., 84]

E.Mumford, R.Hirschheim, G.Fitzgerald and A.Wood-Harper (Eds.) “Research

Methods in Information Systems”, Proceedings of the IFIP WG 8.2 Colloquium,

North-Holland, 1984.

[M ayfie ld et al., 95]

189

“CORBA: Architecture and Specification”, Object Management Group, 1996.

[O’Connell, 96]

F.O’Connell, “How To Run Successful Projects II”, Prentice Hall, 1996.

[O’Connor et al., 97a]

R.O'Connor, T.Moynihan, T.Renault and A.Combelles, “PROMPTER - A Decision

Support Tool for Software Project Management”, Technical Report CA-2997, Dublin

City University, 1997.

[O’Connor et al., 97b]

R.O'Connor, T.Renault, C.Floch, T.Moynihan and A.Combelles, “Prompter - A

Decision Support Tool using Distributed Intelligent Agents”, In Proceedings of 9th

International Conference on Artificial Intelligence Applications, England, 1997.

[O’Connor, 98]

R.O’Connor, “A Multi-Agent Approach to Knowledge Base Implementation”, In

Proceedings of the International Postgraduate Research Student Conference, Dublin,

Ireland, 1998.

[O’Connor and Jenkins, 98]

R.O'Connor and J.O.Jenkins, “Supporting Effective Software Project Management

and Control by the use of Intelligent Knowledge-based Guidance”, In Proceedings of

9th European Software Control and Metrics conference (ESCOM), pp. 133 - 141,

Rome, Italy, 1998.

[O'Connor and Moynihan, 98]

R.O'Connor and T.Moynihan, “A Multi-Agent Approach to Project Planning”, In

Proceedings of 10th International Conference on Artificial Intelligence Applications

(EXPERSYS), Virgina, USA, 1998.

[O M G , 96]

190

R.O’Connor and T.Renault, “Designing an Internet Enabled Decision Support Tool in

the Domain of Software Project Management”, In Proceedings of the International

Symposium on Engineering of Intelligent Systems, Spain, 1998.

[O’Connor and Jenkins, 99a]

R.O’Connor and J.O.Jenkins, “Intelligent Project Guidance”, In Proceedings of 10th

European Software Control and Metrics conference (ESCOM), pp. 27 - 36,

Herstmonceux, England, 1999.

[O’Connor and Jenkins, 99b]

R.O'Connor and J.O.Jenkins, “Using Agents for Distributed Software Project

Management”, In Proceedings of 8th International Workshops on Enabling

Technologies: Infrastructures for Collaborative Enterprises, IEEE Computer Society

Press, USA, 1999.

[Ould, 90]

M.Ould, “Strategies for Software Engineering: The Management of Risk and

Quality”, Wiley, 1990.

[Orfali et al., 99]

R.Orfali, D.Harkey and J.Edwards, “Client/Server Survival Guide”, Wiley, 1999.

[Orfali and Harkey, 98]

R.Orfali and D.Harkey, “Client/Server Programming with Java and CORBA”, Wiley,

1998.

[Orlikowski and Baroudi, 91]

W.Orlikowski and J.Baroudi, “Studying Information Technology in Organizations:

Research Approaches and Assumptions”, Journal of Information Systems Research

Vol. 2, 1991.

[O ’C o n n o r and R enau lt, 98]

191

[P3, 99]

“The P3 Project - Handbook and Training Guide”, ESPRIT 22241, 1999.

[Poison and Richardson, 88]

M.Poison and J.Richardson (Eds.), “Foundations of Intelligent Tutoring Systems”

Lawrence Erlbaum Associates Inc., 1988.

[Pooley and Stevens, 99]

R.Pooley and P.Stevens, “Using UML - Software Eningeering with Objects and

Components”, Addison Wesley, 1999.

[Power, 94]

J. Power, “A Critiquing System Architecture in the Risk Management Domain”, M.Sc.

Thesis, Dublin City University, 1994.

[Pulford et ah, 96]

K. Pulford, A.Kuntzmann-Combelles and S.Shirlaw, “A Quantative Approach to

Software Management - The AMI Handbook”, Addison Wesley, 1996.

[Pressman, 97]

R.Pressman, “Software Engineering - A Practitioners Approach”, McGraw Hill, 1997.

[Procter and Bouchier, 94]

I.Procter and S.Bouchier, “Software Tools for Project Management”, Information

Technology Report, Unicom, 1994.

[PMI, 96]

“A Guide to the Project Management Body of Knowledge”, Project Management

Institute, 1996.

[Quillian, 68]

M.R.Quillian, “Semantic Memory”, In Semantic Information Processing, M.Minsky

(Ed.), MIT Press, 1968.

192

[USAF, 88]

“Software Risk Abatement”, AFSC/AFLC Pamphlet 800-45, US Department of the

Air Force, 1988.

[Ringland and Duce, 88]

G.A.Ringland and D.A.Duce, “Approaches to Knowledge Representation”, Research

Studies Press, 1988.

[Rumbaugh et al., 91]

J.Rumbaugh, M.Blaha, W.Premerlani, F.Eddy and W.Lorensen, “Object Orientated

Modeling and Design”, Prentice Hall, 1991.

[Russell et al., 89]

D.Russell, T.Burton, D.Jordan, M.Jensen, R.Rogers and J.Cohen, “Creating

Instructions with IDE: Tools for Instructional Designers”, Technical Report PS-

00076, Xerox Palo Alto Research Center, 1989.

[Sanders, 98]

M.Sanders (Ed.), “The SPIRE Handbook - Better, Faster, Cheaper Software

Development in Small Organisations”, ESPRIT/ESSI project 23873, European

Commission, 1998.

[Seaman, 99]

C.Seaman, “Qualitative Methods in Empirical Studies of Software Engineering”,

IEEE Transactions on Software Engineering, Vol. 25, No. 4, 1999.

[Selfridge, 59]

O.Selfridge, “Pandemonium - A Paradigm for Learning”, Symposium on the

Mechanization of Thought, HMSO, London, 1959.

[Schach, 97]

S.Schach, “Software Engineering with Java”, Irwin, 1997.

193

[Schreiber et al., 93]

G.Schreiber, B.Wielinga and B.Brenker (Eds.), “KADS: A Principled Approach to

Knowledge Based Systems Development”, Knowledge Based Systems, Vol. 11,

Academic Press, 1993.

[Shaw and Garlan, 96]

M.Shaw and D.Garlan, “Software Architecture - Perspectives on an Emerging

Discipline”, Prentice Hall, 1996.

[Shen, et al., 97]

D.Shen, C.Wu and S.Lee, “EXPIDER: A Channel Routing Expert for VLSI Design”,

Journal of Expert Systems with Applications, Vol. 12, No. 2, 1997.

[Shoham, 93]

Y.Shoham, “Agent-oriented programming”, Artificial Intelligence, Vol. 60, No. 1,

1993.

[Silverman, 92]

B.Silverman, “Survey of Expert Critiquing Systems: Practical and Theoretical

Frontiers”, Communications of the ACM, Vol. 35, No. 4, April 1992.

[Smith et al., 94]

P.Smith, P.Ross and E.Awad, “A Survey of the Skills and Personality Attributes of

the Knowledge Engineer in the UK”, KnowledgeBase, Vol. 8, No. 2, 1994.

[Smith, 96]

P.Smith, “An Introduction to Knowledge Engineering”, International Thomson

Computer Press, 1996.

[Sommerville, 95]

I.Sommerville, “Software Engineering”, Addison Wesley, 1995.

194

K.Srinivas, V.Jugannathan and R.Karinthi, “Java and Beyond Executable Content”,

IEEE Computer, June 1997.

[Stone, 97]

W.Stone, “Project Management for the Internet”, Mainspring Communications, June

1997.

[Straub et al., 94]

D. Straub, S.Ang and R.Evaristo, “Normative Standards for IS Research”, Database,

Vol. 25, No.l, 1994.

[Tierney and Davison, 95]

M.Tiemey and R.Davison, “Decision Support for the Provision of Services”,

Communicate, Vol.2, No.l, June 1995.

[Turban, 95]

E. Turban, “Decision Support and Expert Systems: Management Support Systems”,

Prentice Hall, 1995.

[Verbruggen et al., 89]

R.Verbruggen, T.Moynihan and G.McCloskey, “RISKMAN1: A Prototype Risk

Analysis Tool for Software Development Project Managers”, In Proceedings of

CASE’89 - 3rd International Workshop on Computer-Aided Software Engineering,

1989.

[Watson, 97]

M.Watson, “Intelligent Java Applications”, Morgan Kaufmann, 1997.

[Weld, 95]

D.Weld (Ed.), “The Role of Intelligent Systems in the National Information

Infrastructure”, AI Magazine, Fall 1995.

[S rin ivas e t al., 97]

195

T.Wittig, N Jennings and E.Mamdani, “ARCHON - A Framework for Intelligent Co-

operation”, Journal of Intelligent Systems Engineering, Vol. 3, No. 3, 1994.

[White, 94]

J.White, “Telescript Technology: The foundation for the electronic marketplace”,

White paper, General Magic Inc., USA, 1994.

[White et al., 97]

J.White, C.Helgeson and D.Steedman, “Introduction to the Odyssey API”, White

Paper, General Magic Inc., USA, 1997.

[Wooldridge and Jennings, 95]

M.Wooldridge and N.Jennings, “Intelligent Agents: Theory and Practice”, Knowledge

Engineering Review, Vol. 10, No. 2, 1995.

[Zuboff, 88]

S.Zuboff, “In the Age of Smart Machines - The Future of Work and Power”,

Heinemann Professional Publishing, 1988.

[W ittig e t al., 94]

196

