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ABSTRACT 1 Introduction
Offshore wind turbine foundations are exposed to the haz- 

ardous ocean environment and must be designed to survive the
ultimate loads. For the wave loading on the monopile foun- 
dations, the relatively small Keulegan-Carpenter (KC) number
indicates that for non-breaking waves, inertia loading tends to
dominate the total inline forcing and it is common to neglect the
drag force effect. Nonlinear physics further introduces higher- 
frequency components, which could contribute signifcantly to
the total inline force for very steep and nonlinear waves. The
linear part of the inertia loading has the same frequency as the
incoming wave feld, which by design is away from the typi- 
cal structural natural frequency of monopile foundations (around
two or three times the frequency of severe storm waves [1]).
These higher-frequency harmonics, however, can be much closer
or even overlap with the structural natural frequency. This over- 
lap is of concern to the structural and geotechnical design of the
monopile foundations and can potentially lead to a structure res- 
onance, which is usually referred to as the ‘ringing effect’ [2–4].

Model tests are common for coastal and offshore engineer- 
ing purposes. The design of such model tests is important such
that the maximal information of the underlying physics can be
extrapolated with a limited amount of test cases. The optimal de- 
sign of experiments also requires considering the previous simi- 
lar experimental results and the typical sea-states of the ocean
environments. In this study, we develop a model test design
strategy based on Bayesian sampling for a classic problem in
ocean engineering – nonlinear wave loading on a vertical cylin- 
der. The new experimental design strategy is achieved through
a GP-based surrogate model, which considers the previous ex- 
perimental data as the prior information. The feld data are fur- 
ther incorporated into the experimental design through a modi- 
fed acquisition function. We perform a new experiment, which is
mainly designed by data-driven methods including several criti- 
cal parameters such as the size of the cylinder and all the wave
conditions. We examine the performance of such a method when
compared to traditional experimental design based on manual
decisions. This method is a step forward to a more systematic
way of approaching test designs with marginally better perfor- 
mance in capturing the higher-order force coeffcients. The cur- 
rent surrogate model also made several ‘interpretable’ decisions
which can be explained with physical intuition.

Various theoretical works have looked at these higher order
harmonics [5–8]. Experiments and numerical simulations [9,10]
are also used to further explore the underlying physics of these
higher-order harmonics, including the recent progress, where a
phase decomposition method is applied to further separate the
higher frequency components from the linear loading and Stokes
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type force expansion is used to predict the higher frequency
forces with linear loading only [11–13]. With the increasing
number of experiments and numerical datasets produced at var-
ious laboratories, the new experiential design needs to consider
various pieces of information together to further explore the un-
derlying nonlinear physics. This includes the consistency check
for previous experimental data and suggestions for new experi-
mental cases to check the reliability. Additionally, new cases are
preferred to be representative of real sea-state conditions in the
operational wind farm.

Rather than relying on physical intuition or past experience,
a systematic experimental design strategy is preferred to address
these challenges. In this study, we take a data science approach
to design our new experiment and use Bayesian interference as a
small step forward. The Bayesian interference is a widely used
optimisation tool in computer science and machine learning [14].
Recent studies in ocean engineering [15–17] also further utilised
this technique to design numerical simulations based on previous
results, which can lead to signifcant computational savings with
a properly designed sequential sampling strategy.

Hinged-fap type wavemakers are installed at the other end of
the fume. Linear wave generation theory was applied, and the
impact of second-order error waves on the overall wave loading
was analysed carefully. We can also confrm that the second-
order error wave packet is separated from the main group at the
time of interaction with the cylinder.

In this study, we are primarily interested in focused wave
groups, which are also interconnected with the averaged shape
of the largest events in the random time series (according to
NewWave theory [18,19]). The focus point of these wave groups
is at the centre of the cylinder. In the experiments, the waves are
generated based on the JONSWAP spectrum [20] with peak en-
hancement factor, γ = 3.3. As the wave group propagate along
the wave tank, signifcant nonlinear evolution is expected for
steep wave groups [21–23]. Local properties of wave group pro-
fles at focus are measured without the presence of the cylinder
and are used for further analysis. Wave breaking occasionally oc-
curs before the wave group arrives at the position of the cylinder
and these cases are excluded from our analysis.

In this study, we performed an experiment that is primarily
designed by machine learning at the University of Strathclyde. A
surrogate model based on Gaussian Process is used to interpolate
previous experimental results and a new acquisition function is
proposed to integrate feld data from the ECWMF dataset. The
proposed design strategy allows the integration of different types
of information: experiments, and feld data to assist the decision-
making process in the design of new experiments. This model
provides information to assist the choice of several critical ex-
perimental parameters including the size of the cylinder and all
the wave conditions. We compare the performance of the pro-
posed model against the traditional experimental design strategy
and observed some improvement in the fnal predictions of non-
linear loading on a vertical cylinder.

3 Previous experiments
Datasets obtained from the previous three experiments are

used as the prior information for guiding the design of this new
experimental campaign (details are given in [11–13]). Similar
focused wave group profles were generated during these exper-
iments with the same JONSWAP spectrum (γ = 3.3) but with
different peak periods and amplitudes. The relative water depths
and the cylinder sizes also vary due to the physical constraints in
the experimental facilities. The detailed design of these experi-
ments in terms of three non-dimensional parameters (kA, kd and
kR) is given in Figure 7, where k is the peak wavenumber, A is
the wave group amplitude at the focus point if the wave evolves
linearly, d is the water depth of the fume and R is the radius of
the cylinder. The similar experimental setup and wide range cov-
erage of these previous experimental data provide the basic infor-
mation to start the design of our new experimental campaign.

All the experiments including the previous and current cases
are primarily focused on the unidirectional wave conditions (ex-
cept for [11] where spreading sea states are also considered),
which is different for the directionally spread waves in the open
ocean [24]. This is unfortunately due to the limitation of ex-
perimental facilities, however, a better understanding of unidi-
rectional wave loading as a limiting case provides insights into
nonlinear wave-structure interactions.

We structure this paper as follows. We frst introduce the
experimental setup in section 2 and provide a brief introduction
of the feld and experimental data used in this study in sections 3
and 4. We then provide all the machine learning model details in
sections 5 and 6 and present results in section 7.

2 Experimental setup
In this paper, we aim at designing a new set of experiments

in the large fume (76 m long, 4.6 m wide with a constant wa-
ter depth of 1.8 m) at the Kelvin Hydrodynamics Laboratory,
the University of Strathclyde. We are primarily interested in
the nonlinear wave loads on a single bottom-mounted surface-
piercing vertical cylinder placed 35.3 m away from the wave-
maker. There is a parabolic beach at the far end of the fume op-
posite the wavemakers for wave absorption. Refections from the
beach are expected, however, the refected wave packets reach
the cylinder at a later time and are excluded from the analysis.

4 Field data
Field data is critical to the design of new experiments as

these data provide information on the typical sea-states which
are representative of ocean environments where offshore wind
turbines are and will be constructed in the near future. The design
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of new experiments should be tailored to feld data to avoid any 

cases that are unlikely to occur in realistic sea states. 
In this study, we obtain the metocean data from the ERA5 

reanalysis dataset from ECWMF [25]. We have collected the 

sea-states parameters at 36 current and potential locations of off- 
shore wind farms around UK, as shown in Figure 1. The res- 
olution of ocean wave data is 0.5◦ x 0.5◦ and the nearest node 
to the location of the wind farm is used for the analysis herein. 
Rigorous data quality control and validation of this dataset has 
been done previously in [25] and missing entries are carefully 

checked throughout. In this study, we are primarily interested in 

three metocean parameters: signifcant wave height (Hs), hourly 

maximum wave height (Hmax) and peak period (Tp). We have 
collected the hourly variation of these three data at all 36 wind 

farm locations between the period of 2004 and 2024, which con- 
tains a total of 87600 hourly sea-sates. We have also collected 

the monopile size information and the averaged water depth of 
the wind farm from the company offcial or project website for 
these 36 UK based wind farms. 

.5° W 2 

FIGURE 1. Site map for 36 locations of UK-based wind farms. 

We also performed a data pre-fltering to these collected sea- 
sates, where only 50% of sea-states with large (based on Hmax) 
and 50% sea-states with long waves (based on Tp) are considered 

(see Figure 2 for details). The threshold for this pre-fltering is 
arbitrary but is a compromise of the limited availability of exper- 
imental facilities. Nonlinear wave-wave interactions are more 
pronounced for steeper wave groups [12], and these cases are 
favoured given limited tank time in terms of both scientifc in- 
terests and the extreme loading conditions during severe winter 
storms. Additionally, the wavemaker also struggles at high fre- 
quency wave groups, where the accuracy of the wave generation 

is more of a concern. We also note that such pre-fltering is not 
critical for the current proposed experimental design method and 

potential improvements will be further discussed in section 7.3. 

and a covariance function k(x,x∗): 

F(x) ∼ G P (m(x),k (x,x∗)) 
m(x) = E[F(x)] (1) 

k (x,x∗) = cov(F(x),F (x∗)) 

where x ∈ (kA,kd,kR) is a parameters space input vector with 

three dimensions, F(x) and F (x∗) are force amplitude coeff- 
cients response indexed by x and x∗. Generally, ke(x,x∗) is also 

referred to as a kernel function, which is further parameterised 

by hyperparameter θ . 
GP is a common Bayesian non-parametric model used for 

both regressions and parameterisation purposes. This method is 
particularly suitable in our prediction model because of its strong 

resistance to under-ftting the problems. In this study, one of the 

key challenges for the accurate prediction of force coeffcients 
is the limited data available from previous experiments. A GP’s 
expressiveness in proportion to the size and complexity of the 

growing dataset avoids the under-ftting problem [27] for small 
datasets. Additionally, the ability to provide uncertainty quan- 
tifcation based on the prior about modelled system also favours 
the wide application of the GP model in many engineering prob- 
lems, such as system identifcation [28], control [29] and fore- 
casting [30]. 

In this study, the variation function of force amplitude co- 
effcients F(x) in parameters space x ∈ (kA,kd,kR) is assumed 

to be a complex system without existing expert domain knowl- 
edge. For systems without any accurate description of the dy- 
namics model, a GP model is commonly initialised with a zero 

mean function, which leads to the prior in GP is solely dependent 

5 Gaussian Process as a surrogate model 
To separate the nonlinear loading on a vertical cylinder from 

the linear components, we use a four-phase harmonic extrac- 
tion method [26]. This method is also used in previous studies 
[ 12, 13], which decomposes nonlinear forces into different har- 
monics in frequency by repeating the experiments with four dif- 
ferent phases (see Eqn 2 in [13] for details). These decomposed 

higher-order frequency components can be further ftted based 

on the linear force envelope raised to the appropriate power. The 

ftted amplitude and phase coeffcients can be used to predict the 
nonlinear force inertial loading on a vertical cylinder based on 

linear wave force only. 
In this study, we describe the variation of force amplitude 

coeffcients F(x) with three non-dimentionalised parameters kA, 
kd and kR with a GP model (G P) using a mean function m(x) 
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ꢀ ꢂ ꢃ ꢂ ꢃꢁ 

F∗ 

y 
m(X∗) 
m(X) 

k (X∗,X∗) k (X∗,X) 
k (X ,X∗) K +σ 2I, 

, (3) 

T 

where k (X∗,X) = k (X ,X∗) = [k (X ,X∗) , · · ·  ,k (X ,X∗)], X are 1 N 

observation datasets, σ 2 is the noise variance, and I is the identity 

matrix. 
According to the properties of joint Gaussian distributions, 

the prediction results for the outputs can be obtained as: 

ꢄ ꢅ 
− 
1 µ (F∗) = m(X∗)+ k (X∗,X) K +σ 2I 
(Y −m(X)) (4) 

 

2 − 
1 
k (X ,X∗) , var(F∗) = k (X∗,X∗)− k (X∗,X) K +σ I 

where µ (F∗) is the predicted force amplitude coeffcients and 

var(F∗) is the variance of the predicted force amplitude coeff- 
cients (see an example of GP prediction in Figure 3). 

FIGURE 2. An example of sea-state feld data obtained from EAR5 

dataset from ECWMF for (a): signifcant wave height, (b): hourly max- 
imum wave height, and (c): peak period. The two red lines indicate the 

threshold for data pre-fltering, where only 50% of sea-states with large 
(based on Hmax) and 50% sea-states with long waves (based on Tp) are 

considered. 

on the choice of the covariance function k(x,x∗). Although the 

covariance functions k(x,x∗) is fully customisable for any func- 
tion, which can provide a positive defnite covariance matrix, the 

selection of this function determines the periodicity and smooth- 
ness of the trained GP model. Hence, a suitable covariance func- 
tion type and hyperparameter θ initial values are required during 

the initialisation of a GP prior. 

FIGURE 3. An illustration of prediction from GP as a surrogate 

model for second order force coeffcients for (a) prediction residual and 

(
b) confdence interval. Blue circles represent the previously acquired 
sampling points via experiments. 

In this study, we follow the most common covariance func- 
tion: squared exponential, which is also noted as Radial Basis 
Function: For a limited size of dataset, the random split of the training 

and validation data may also introduce bias in the prediction re- 
sults. To minimise the impact of this split, bootstrapped k-fold 

cross-validation process [32] is applied to further examine the 

accuracy of our GP model. In this study, the dataset is uniformly 

divided into n subsets and n − 1 uniform-sized subsets are used 

for GP model training. The performance of the currently trained 

GP model can be evaluated by validating against the out-of-bag 

sample. After repeating the training and validation process cov- 
ering all the data points as the out-of-bag sample, the overall 
performance measurements can be calculated as the average of 

# ꢀ  ꢀꢁ 
x − x 2 j 

, (2) 

which can be further optimised by using a loss function based on 

the log marginal likelihood function following [31]. 

The trained GP model can make the prediction F∗ for a new 

given input X∗ based on the extended joint distribution as: 
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across the k-folds. where xd,+ and x are the maximal and minimal domain 
d,− 

bounds (i.e. the maximum and minimum value of kA,kd,kR 

that is achievable with the current experimental setup), and rl 
is a user-defned percentage, where we choose a static value of 
r = 0.05 and N is the batch size which is 45 due to the physical 6 Acquisition function 
l D 

Uncertainty sampling is a common active sampling method, 
ˆ 

constraints of the current experimental setup. Trading marginally 

reduced performance with more completed experiments is bene- 
fcial to the experimental campaign overall. 

which locates the next best sampling point (X) to be the position 

where the predictive variance achieves a maximum value: 

7 Results x̂ = argmax
x 
var[(F∗)]. (5) In this section, we will frst summarise the typical sea-sates 

of 36 locations of UK-based offshore wind farms. We will then 

reveal the ML interpretation of the best design of the current ex- 
perimental campaign and compare the performance against the 

traditional grid search method. 

This acquisition function is easy to use and particularly use- 
ful when limited data are available [15]. However, for this partic- 
ular engineering problem, the acquisition function requires fur- 
ther modifcation as the largest uncertainly will inevitably occur 
at the parameter space x ∈ (kA,kd,kR) where the test case can 

not be physically achieved (i.e. too steep waves that exceeding 

the breaking limits), as shown in Figure 3 (b) as an example. 
Hence, we further modify the likelihood-weighted acqui- 

sition functions proposed in [33] to incorporate the conditional 
statistics calculated from Section 4 as: 

7 .1 Field data 

We present the distribution of hourly sea-sates parameters 
(i.e. Hs, Hmax and Tp) for all 36 locations of UK offshore wind 

farms in Figure 4. We have also calculated the peak wavenumber 
kp based on the fnite depth dispersion relationship with the aver- 
aged water depth information of the local wind farm. We also ap- 
proximate the amplitude (A) of the hourly maximum wave as the 

half of the maximum wave height (Hmax), as the wave height dis- 
tributions are less affected by the second order bound waves [35]. 

From Figure 4, we found that the majority of sea-states for 
UK-based wind farms are in fnite water depths, where the rel- 
ative water depths kpd are below 3. This is expected as other 
confgurations of wind turbines such as the foating ones will be 
used in relatively deep water sites. The striped pattern is also 

clear from the k d vs. k R plot, which is primarily due to the 

x̂ = argmax
x 
var[(F∗)w(x)], (6) 

where the w(x) is the conditional statistics estimated from the 

probability of such a combination of parameters occurring at the 

location of UK-based wind farms, which can be visualised in 

the bin scatter plot in Figure 4. This acquisition function allows 
direct assimilation and integration of the fled data into the ex- 
perimental design, which provides realistic test conditions. 

We note that the current experimental campaign also bene- 
fts from batch sampling as the automated wave generation sys- 
tem allows performing experiments overnight. The data anal- 
ysis and surrogate model training, however, still require man- 
ual supervision. Batching the experimental design for running 

overnight provides more observations over a limited tank time 

slot. As such, we follow the batching procedure suggested in [34] 
in searching for sub-optimal sampling points at multiple local 
minima of the acquisition function. 

p p 
fxed water depth (d) to monopile radius (R) ratio. Apart from 

4 wind farm sites with a large d/R ratio on the top left corner, 
the majority of the wind farms tend to have a similar d/R ratio 

and cluster towards the right bottom corner. This indicates there 
is a correlation between the monopile radius and relative water 
depths, which is expected as larger monopile foundations will be 

used for wind farms in deeper water. 

7 .2 Bayesian interference-based design 

It is of interest to investigate how the GP model will design 

a new experiment based on previous experimental results. As 
such, we have visualised the acquisition function for second or- 
der force coeffcients for three water depths in Figure 5. As the 

acquisition function is assembled based on three parts: predic- 
tion residual, variance and conditional statistics from the feld 

data (see details in section 6), a larger value in the acquisition 

function indicates a more important sampling region in the pa- 
rameter space suggested by the GP model. This could due to ei- 
ther less accurate predictions during cross-validation, uncertain 

To fnd multiple regions with local optima from the acquisi- 
tion function, a constraint parameter imposing no Bayesian sam- 
ple may occur closer than a distance is introduced [34] as: 

  ! 

2 N 

D ꢆ ꢇ 
∑ 

2 rmin = rl xd,+ − xd,− , (7) 
d=1 
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FIGURE 4. Bin scatter for sea-state parameters distributions between 2004 and 2024 for 36 locations of UK offshore wind farms. 

predictions from the confdence interval or important sea-states 
that commonly occur in these wind farms (or maybe a combina- 
tion effect). 

sign of such an experimental campaign. The frst and foremost 
constraint comes from the fxed d/R ratio. Similar to the fxed 

d/R ratio for the monopile foundations in UK-based wind farms, 
it is also very challenging to alter this ratio during experiments. 
Varying the cylinder size simply requires replacing the cylinder 
and re-calibrate the load cells, which takes about an entire day 

to fnish. Varying water depth is also very diffcult to achieve 
and further requires the re-calibration of wavemakers and wave 
probes. As such, instead of directly using the location in the pa- 
rameter space, where the acquisition function reaches the maxi- 
mum, fnding the optimal d/R ratio is necessary. 

To obtain the optimal radius of the cylinder based on the 
current water depth as d = 1.8m, the integral of the acquisition 

function along the constant d/R ratio is performed to include kA 

effects. The normalised integrated acquisition function is shown 

in Figure 6, where the integrated acquisition function increases 
monotonically towards a local maximum of around R = 0.3m. 
Unfortunately, a cylinder with optimal dimensions is challenging 

in the laboratory and, more importantly, large cylinder sizes also 

raise concerns with the side wall refections, where the side wide 

of the fume is 4.6 m. Taking these extra physical constraints 
into consideration, we selected a cylinder with R = 0.2m as a 

result of the balance between the GP model recommendations 
and mentioned physical constraints. 

The acquisition function from the GP model suggested low 

importance for the cases with kA values greater than 0.23 regard- 
less of the value for kd and kR. This is simply because such 

very steep wave groups are unlikely to happen in the realistic 

water wave system, where wave breaking dissipates the energy 

and limits the maximum height. This constraint primarily comes 
from the conditional statistics of the sea-states input to the GP 

model. Additionally, the GP model also shows very limited im- 
portance for the cases with small kA values below 0.1 regard- 
less of the value for kd and kR. This is expected as for these 

quasi-linear wave groups, the overall behaviour can be well cap- 
tured and the entire system exhibit less nonlinearity. It seems 
that the prior information provided from previous experiments 
is self-consistent based on cross-validation results and can pro- 
vide suffcient data to make accurate predictions. GP model also 

shows increasing importance for the cases with larger kR values 
if the kd value increases. This could be because of the fact that 
for the wind farms in deeper waters, the radius of the monopile 

foundation is usually larger, and hence GP model believes the 

cases with a larger relative radius are more important to explore. 
It is also interesting to fnd out that the effect of kd on the nonlin- 
ear wave loading seems to have an asymptotic behaviour, where 

the importance (i.e. maximum of the acquisition function) shifts 
signifcantly from relatively shallow water to intermediate wa- 
ter depth from Figure 5 (a) to 5 (b) compared to the shift from 

intermediate water depth to relatively deep water ((b) to (c) ). 

The fnal suggested Bayesian sampling points and the tradi- 
tional grid search sampling points are shown in Figure 7. The 

sampling points based on the grid search method are determined 

based on intuition. Due to the fxed cylinder radius constraint, 
both experimental design approach results overlapped on the 
same d/R constant line in Figure 7 (c). We have also presented Other physical constraints need to be considered in the de- 
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FIGURE 5. Visualisation of an example acquisition function for second order coeffcients at different water depths. A moving average smooth 

function is applied herein with a smoothing window size of 4 data points. 

before reaching the cylinder, whereas the wave breaking causes 
less impact on the Bayesian sampled points. 

7 .3 Improvements in nonlinear load predictions 

We now fnally look at the sampling effciency by comparing 

the novel feld data integrated Bayesian sampling strategy against 
the traditional grid search method in this classic nonlinear wave 
loading prediction. 

We frst present the fnal prediction of higher frequency 

components of nonlinear forces from the GP model trained from 

Bayesian sampling and from the traditional grid search design of 
the experiments in Figure 8. In general, both GP models perform 

well in capturing high-frequency nonlinear loads on a vertical 
cylinder. This could be attributed to the fact that the previous 
three experiments already provided a relatively suffcient sam- 
ple. The GP model trained with Bayesian sampling outperforms 
slightly over the one trained with grid search design. The ad- 
vantage of training with Bayesian sampling is more signifcant 
for force components with high frequencies as more noise is ex- 
pected in these signals. 

FIGURE 6. Integrated acquisition function for different values of 
cylinder radius based on the water depth of the fume d = 1.8m. Val- 
ues of acquisition function are normalised by the triple integral along 

kA,kd and kR axis. 

the test matrix of three previous experiments as the prior informa- 
tion. It seems that the current Bayesian sampling model focuses 
on a cluster region with less interest in exploring the short but 
steep wave region. This could be due to fewer short but steep sea 

states being observed in feld data. It is interesting to fnd that 
during the experiments, some of the short but steep wave group 

designs shown in the top right corner of Figure 7 (a) suggested 

by the grid search method are not achievable as the wave breaks 

The results are also consistent for the k-fold cross-validated 

error (see details in Section 5) when predicting the second-order 
force amplitude coeffcients shown in Figure 9. For both the 

Bayesian sampling method and the grid search method, the over- 
all error is reduced when more experimental cases (i.e. new sam- 
ples) are input into the training dataset. The Bayesian sampling 

strategy outperforms the traditional grid search sampling method 

based on purely physics intuition. 
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FIGURE 7. The design of Bayesian sampling points for the new experiment at Kelvin Hydrodynamics Laboratory, the University of Strathclyde. 
Three previous experimental data are obtained from [11–13] respectively. The constant radius-water depths lines are calculated based on the new 

experimental conditions (i.e. d = 1.8m). 

8 . Discussion and conclusions found later in the experiment to be impractical to investigate as 
the wave group will break before reaching the cylinder in the 

middle of the tank. It is worth mentioning that neither previ- 
ous experiments nor feld data are actually aimed at investigating 

wave breaking, but wave breaking occurs occasionally in both 

datasets. 

In this paper, we present a Bayesian sampling-based experi- 
mental design strategy, which also incorporates feld data as con- 
ditional statistics in a classic wave-structure interaction problem. 
Based on three previous experimental data as the prior informa- 
tion, a GP-based surrogate model is trained to predict the higher 
frequency force amplitude coeffcients. An acquisition function 

is used to incorporate the feld data into the experimental de- 
sign. One of the critical experimental parameters – the size of the 
cylinder is optimised based on the proposed acquisition function 

with extra physical constrained considered. New experiments 
are performed with wave group loads on a vertical cylinder at the 

University of Strathclyde. The GP model trained with Bayesian 

sampled experimental data shows a slight edge when compared 

to the traditional experimental design with grid search. 

Incorporating machine learning with feld data is helpful in 

many aspects. Firstly, feld data usually have a large amount of 
data with hidden underlying physics, data-driven methods could 

potentially better utilise this as an external source for experi- 
mental design (e.g. the current model avoids suggesting break- 
ing cases). Secondly, feld data also provides machine learning 

with real engineering conditions, which allows the decision to 

be made in a realistic way. The current model suggests increas- 
ing the monopile size in experiments when performed in deeper 
water, which superfcially agrees with the current trend in the off- 
shore wind industry. As such, we believe the machine learning- 
assisted model could help to some extent with experimental de- 
sign in a systemic manner. 

In this study, the modifed acquisition function suggested by 

the machine learning model also helps us to rank the parame- 
ter space according to its importance. We found that the machine 

learning model can make interesting decisions which are explain- 
able with physical intuition but in a more systematic way. For 
example, the machine learning model suggests less importance 

to quasi-linear cases as these wave groups are exhibits almost 
no nonlinear physics. The current machine learning model also 

suggests less importance for very nonlinear cases, which avoid 

very short but steep wave group profles. These wave groups are 

In this study, we have also observed several challenges of 
implementing machine learning for a complete design of an ex- 
periment. This is primarily because the simplifed acquisition 

function cannot take all the physical constraints into considera- 
tion. For example, the GP model would suggest using 18 dif- 
ferent sizes of cylinders for the optimal sampling strategy with- 
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FIGURE 9. Relative prediction error evolution after new experimen-
tal data points are included in the training dataset.
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