Comparative Genomic analysis of *Ralstonia solanacearum* species complex

Martina Metodieva Stoycheva

Doctor of Philosophy

University of York

Biology

December 2022

ABSTRACT

Ralstonia solanacearum species complex (RSSC) consist of a group of phytopathogenic bacteria that can infect many economically important crops, including tomatoes, potatoes, and bananas. RSSC are very diverse, capable of surviving up to 200 plant host species and various environmental reservoirs such as soils, river water and secondary wild plant hosts. The diversity of the RSSC is often credited to its large bipartite genome (5-6Mbp), that encodes multiple genes linked to virulence and survival across different niches. In this thesis, I investigated the genetic diversity of RSSC at worldwide (55 countries), country (the UK) and crop field (four tomato fields in China) levels. Worldwide, we found that the open pangenome of RSSC contained 18,080 genes. I estimate that the recombination across the phylogeny occurred five times frequently than mutation. Moreover, I show that insertion sequences linked to virulence and metal resistance genes played an important role in the accessory genome diversification of RSSC. Within the UK, I show that the diversification of the clonal phylotype IIB-1 strain is due to initial loss of accessory genes and movement of IS elements with estimated origin of the population dated between 1958 and 1988. At the field level, we show that two to three clonal lineages co-occur within all sampled fields. Interestingly, cooccurring lineages differ in their virulence traits and gene content, which could be due to due to adaptation to different niches within each field. The work presented here lays the groundwork for a systematic understanding of the ecological and evolutionary genomics of the RSSC species complex, at the local and global scale. It also demonstrates that instead of mutations, recombination and highly mobile transposases are important drivers of RSSC genetic diversity.

TABLE OF CONTENTS

1.	GEN		9
1	.1.	OVERVIEW OF BACTERIAL PLANT INFECTIONS AND EVOLUTION OF AGRICULTURAL PATHOGENS	9
1	.2.	RALSTONIA SOLANACEARUM SPECIES COMPLEX (RSSC)	27
1	.3.	THESIS AIMS AND OBJECTIVES	37
1	.4.	THESIS CHAPTER OUTLINE	38
2.	RAL	STONIA SOLANACEARUM SPECIES COMPLEX PANGENOME	40
2	.1.	ABSTRACT	40
2	.2.	INTRODUCTION	40
2	.3.	METHODS	44
2	.4.	RESULTS	47
2	.5.	DISCUSSION	60
2	.1.	SUPPLEMENTARY	63
3.	THR	REE DECADES OF SURVIVAL IN ENVIRONMENTAL RESERVOIRS WITHIN THE UK LED TO LITTLE	
		DIVERSIFICATION WITHIN RALSTONIA SOLANACEARUM	71
	.1.	ABSTRACT	
-	.2.		
	.3.	METHODS	
	.4.	RESULTS	
_	.5.	DISCUSSION	
3	.6.	SUPPLEMENTARY	103
4.		LTIPLE RALSTONIA SOLANACEARUM LINEAGES COEXIST IN AGRICULTURAL MONOCULTURES	
CHIN	NA		113
4	.1.	ABSTRACT	113
4	.2.	INTRODUCTION	114
4	.3.	METHODS	117
4	.4.	RESULTS	125
4	.5.	DISCUSSION	138
4	.6.	SUPPLEMENTARY	142
5.	GEN	IERAL DISCUSSION	153
6.	APP	PENDIX 1	156
7.	АРР	PENDIX 2	184
8.		PENDIX 3	-

9.	REFERENCES	335
----	------------	-----

TABLE OF FIGURES

Figure 1. Ralstonia solanacearum cells27
Figure 2. Disease symptoms caused by Ralstonia solanacearum infections
Figure 3. Ralstonia solanacearum sensu lato distribution
Figure 4. Schematic of plant infection by Ralstonia solanacearum
Figure 5. Master virulence gene regulators PhcA and HrpG34
Figure 6. Core genome phylogeny of Ralstonia solanacearum species complex
Figure 7. Pangenome diversity and size52
Figure 8. Association (cooccurance) network of associating accessory genes54
Figure 9. Dissociation (avoidance) network of associating accessory genes
Figure 10. Top annotation terms in association coincidence network
Figure 11. Sampling map of <i>Ralstonia solanacearum</i> across the UK
Figure 12. Uneven sampling of the UK Ralstonia solanacearum across time and space 79
Figure 13. Phylogeny highlighting the UK isolates belonging to clonal strain phylotype IIB-1
(race 3 biovar 2)85
Figure 14. Phylogeny of the UK Ralstonia solanacearum population
Figure 14. Phylogeny of the UK <i>Ralstonia solanacearum</i> population
Figure 15. Accessory genome variation within the UK population of Ralstonia solanacearum.
Figure 15. Accessory genome variation within the UK population of Ralstonia solanacearum.
Figure 15. Accessory genome variation within the UK population of Ralstonia solanacearum. 93 Figure 16. Presence of Pop1-3 over time.
Figure 15. Accessory genome variation within the UK population of Ralstonia solanacearum. 93 Figure 16. Presence of Pop1-3 over time. 93 Figure 17. Pangenome graph area of the genome missing in Pop3.
Figure 15. Accessory genome variation within the UK population of Ralstonia solanacearum. 93 Figure 16. Presence of Pop1-3 over time. 93 Figure 17. Pangenome graph area of the genome missing in Pop3. 95 Figure 18. Pangenome graph area of the genome unique to Pop1.
Figure 15. Accessory genome variation within the UK population of Ralstonia solanacearum. 93 Figure 16. Presence of Pop1-3 over time. 93 Figure 17. Pangenome graph area of the genome missing in Pop3. 95 Figure 18. Pangenome graph area of the genome unique to Pop1. 94 Figure 19. Insertion sequences position of insertion in genomes closer together
Figure 15. Accessory genome variation within the UK population of Ralstonia solanacearum. 93 Figure 16. Presence of Pop1-3 over time. 93 Figure 17. Pangenome graph area of the genome missing in Pop3. 95 Figure 18. Pangenome graph area of the genome unique to Pop1. 94 Figure 19. Insertion sequences position of insertion in genomes closer together 97 Figure 20. Plant rhizosphere properties explained by field site 126
Figure 15. Accessory genome variation within the UK population of Ralstonia solanacearum. 93 Figure 16. Presence of Pop1-3 over time. 93 Figure 17. Pangenome graph area of the genome missing in Pop3. 95 Figure 18. Pangenome graph area of the genome unique to Pop1. 94 Figure 19. Insertion sequences position of insertion in genomes closer together
Figure 15. Accessory genome variation within the UK population of Ralstonia solanacearum. 93 Figure 16. Presence of Pop1-3 over time. 93 Figure 17. Pangenome graph area of the genome missing in Pop3. 95 Figure 18. Pangenome graph area of the genome unique to Pop1. 94 Figure 19. Insertion sequences position of insertion in genomes closer together 97 Figure 20. Plant rhizosphere properties explained by field site 126 Figure 21. Geography does not explain Ralstonia solanacearum phenotypic variation in tomato fields in China. 128
Figure 15. Accessory genome variation within the UK population of Ralstonia solanacearum. 93 Figure 16. Presence of Pop1-3 over time. 93 Figure 17. Pangenome graph area of the genome missing in Pop3. 95 Figure 18. Pangenome graph area of the genome unique to Pop1. 94 Figure 19. Insertion sequences position of insertion in genomes closer together 97 Figure 20. Plant rhizosphere properties explained by field site 126 Figure 21. Geography does not explain Ralstonia solanacearum phenotypic variation in tomato fields in China. 128 Figure 22. Genetic divergence of Ralstonia solanacearum phylotype I sampled from 4

TABLE OF TABLES

Table 1. Bactdating MCMC results	89
Table 2. Breakdown of pangenome	90

TABLE OF SUPPLEMENTARY FIGURES

Supplementary Figure 1. Panaroo pangenome gene presence-absence
Supplementary Figure 2. ClonalFrameML default output graph showing recombinant
regions in the genome
Supplementary Figure 3. Coinfinder graphs component size
Supplementary Figure 4. Panaroo pangenome graph for IS1240 and Toxin – antitoxin
associated gene fragment from network graph produced by panaroo
Supplementary Figure 5. Phylogeny used for Coinfinder70
Supplementary Figure 6. YO199 (NCPPB 3854) genome coverage plot against UY031 103
Supplementary Figure 7. Bactdating Quality ControlB104
Supplementary Figure 8. Bactdating Quality Control105
Supplementary Figure 9. Variants per genome against YO199
Supplementary Figure 10. Variants per genome against YO199Error! Bookmark not defined.
Supplementary Figure 11. Correlation between core genome distance and accessory
Supplementary Figure 11. Correlation between core genome distance and accessory genome distance
genome distance

Supplementary Figure 19. Prophage diversity in Chinese isolates	51
Supplementary Figure 20. Phylogeny of field samples from 4 Chinese provinces 15	51
Supplementary Figure 21. Metabolic capacity of the 96 isolates	52

TABLE OF SUPPLEMENTARY TABLES

Supplementary Table 1. Coinfinder graphs example components67
Supplementary Table 2. Transposases found within the association network of coincident
accessory genes
Supplementary Table 3. Bactdating MCMC estimates tested with Coda
Supplementary Table 4. Temporal GWAS 106
Supplementary Table 5. Genes unique to Pop1111
Supplementary Table 6. Genes missing from Pop3112
Supplementary Table 7. Two-way split based on k-means clustering of the 1152 isolates
based on 3 phenotypic traits144
Supplementary Table 8. GWAS results Only significant hits after Bonferroni correction are
shown

Declaration by the Author

I declare that this thesis is a presentation of original work, and I am the sole author. This work has not previously been presented for an award at this, or any other University. All sources are acknowledged as References.

Acknowledgements

All science is a joint effort, and this work is no exception. I cannot express my gratitude to all the people that have helped me complete this work in a few lines, but I will mention the most important figures in my life and science. I want to thank my supervisor Ville Friman for his patience, never dying enthusiasm and empathy without which, this work would not have been possible. I want to thank Evie Farnham for being a top-notch lab buddy and for the cupcakes on my doorstep she made for my pandemic birthday. I want to thank my co-supervisors Dan Jeffares and John Elphinstone for providing useful insight in genomics and plant pathology. I want to thank the technology facility team at the University of York and more specifically John Davey, Sarah Forester, and Sally James for providing invaluable support in my early struggle with genomics software and DNA extractions. Also, I want to thank Andrea Harper for providing useful comments on my annual reports and always checking up if not only the science is looked after but myself as well. In addition, despite being hundreds of miles away my friends and family in Bulgaria provided loads of love and support for which I am forever in depth and hope to repay them with loads of love and devotion in the years to come. Finally, I want to thank Lauri Mikonranta for being next to me through the pandemic and the most stressful parts of the thesis writeup. Overall this work would not have been possible if it was not for a load of kindness and love provided by the many scientists and friends that were around me so thank you all!

Work Contributions

Martina Stoycheva wrote the work presented in this thesis. Data collection for chapters 2 and 3 were done at Fera Ltd., where both Martina Stoycheva and Evie Farnham at the University of York curated a live bacterial culture collection and created a DNA sequence database from the bacterial cells. Following Martina Stoycheva collected the sequence data and created genome assemblies and annotations. Data analysis for chapter 2 was fully performed by

Martina Stoycheva. Data analysis for chapter 3 was performed mainly by Martina Stoycheva, with insertion sequence analysis performed by Samuel Greenrod at the University of York. In chapter 4, all data collection, experimental work, and initial phenotypic analysis were performed by Gaofei Jiang, Xiaofang Wang, Yuling Zhang, Zhong Wei, Yangchun Xu and Qirong Shen at The Agricultural University of Nanjing. Remi Peynard and Stephan Genin provided intellectual feedback on the manuscript. The final data analysis of phenotypic data, analysis of genome data and manuscript write-up was performed by Martina Stoycheva. In all chapters genome assemblies and sequence data quality checking was performed by Martina Stoycheva. Daniel Jeffares, John Elphinstone, and Ville Friman contributed to conceptualising each chapter. Ville Friman proofread and approved the thesis.

Project Funding

This project was funded by a NERC iCASE studentship and partially funded by Fera Ltd. and The UK Department for Environment, Food & Rural Affairs (Defra).

1. General Introduction

1.1. Overview of bacterial plant infections and evolution of agricultural pathogens

1.1.1. The importance of control and monitoring of phytopathogenic bacteria

Agriculture is a vast industry contributing to 4% of the gross domestic product globally. Around a third of the world's habitable land is used for crop and animal feed production (FAO, 2021). However, almost 770 million people were undernourished in 2020 (FAO, 2021). Therefore, producing and distributing food is an issue we must address to guarantee everyone's access to nutritious food in sufficient quantity, a concept known as food security. Moreover, we are at a crucial point in our planet's climate history, as we must slow down human-induced climate change. Therefore, we need to address the nutritional issues of humanity sustainably without further increasing the carbon pressure on our planet and the destruction of valuable habitats. It has been estimated that worldwide food production has to increase by 50% by 2050 using the same amount of land to match the threats that climate change poses to agriculture and avoid the increase of its effect on climate change (Chakraborty and Newton, 2011). Climate change will lead to the expansion of climatic zones that favour plant pathogens and lead to an increase in pathogen-associated crop losses, especially in temperate zones (Chaloner et al., 2021). Thus, increasing the efficiency of food production from agricultural land by reducing disease-driven crop losses is a crucial step in achieving food security.

One of the biggest problems in agriculture is the loss of crops to phytopathogens. Global estimates show that the reduction in staple food crop yields caused by plant diseases can be up to 10% (Savary et al., 2019a). Although fungal plant diseases are far more prevalent than bacterial ones, multiple soil bacteria can also cause devastating diseases in plants. Therefore, they hugely impact horticulture and agriculture, affecting various crops, including economically essential food staples such as potatoes, rice, and wheat (Mansfield et al., 2012).

Plant-pathogenic bacteria are found worldwide but have a greater impact in tropical and subtropical climates where warmth and humidity provide ideal conditions for bacterial growth (Jiang et al., 2021a; Kannan et al., 2015). Pesticide control is one of the major and most common methods to tackle plant diseases; thus, world pesticide use increased by 36% between 2000 and 2019 (FAO, 2021). However, unlike the wide range of fungicides available for suppressing fungal diseases, multiple options are not available for controlling bacterial infections. One of the most popular methods is the use of copper-based pesticides, however, results are at the level of suppression at best and bacterial resistance to copper is not uncommon (Colombi et al., 2017). Alternatively, just like with human bacterial pathogens, antibiotics can be used to control plant pathogenic bacteria. For instance, in the USA, streptomycin and oxytetracycline are two commonly used compounds against Erwinia amylovora, Pseudomonas spp., and Xanthomonas campestris (McManus et al., 2002). However, the evolution of antibiotic resistance is a major concern in both agriculture and human healthcare and similar antibiotics are used in both fields (George W Sundin and Wang, 2018). Antibiotic and pesticide resistance can lead to large outbreaks of pathogenic strains that we do not have the ability to control. Thus, to prevent the spread of resistant strains regulation of antibiotics and pesticides in animal and plant agriculture is getting stricter (FAO and VMD, 2022). The regulation requires more controlled application of chemical control methods in a complex approach along with research-backed crop management practices such as the use of tolerant or resistant plant varieties, crop rotation, clean and verified seed materials, and monitoring and sanitising of known outbreak areas. Developing such combined approaches requires substantial financial investment and a deep understanding of the biology of bacterial plant pathogens.

1.1.2. The importance of pathogen evolution for sustainable agriculture

Agriculture is already threatened by climate change which is predicted to cause severe weather conditions in most of the world and lead to the emergence and establishment of new diseases (Chaloner et al., 2021). Warming up of the planet means expansion of the climatic zones with favourable conditions for plant pathogenic bacteria. Pathogens will be able to expand to previously unaffected areas of the world and cause new epidemics. The research

into plant-infecting bacteria and how they evolve and adapt to new areas and conditions is thus extremely important for agriculture and food security. The evolution of a pathogen to its environment is tightly coupled with the evolution of its host (Pfennig, 2001). Therefore, to avoid the emergence and spread of pathogens, and to control known contaminated areas without increasing the toll on the environment, we need to understand the pathogens' capacity to evolve and adapt to their hosts across different environments and in the context of control methods and climate change. We can only create effective resistant crop varieties and control techniques if we understand how the pathogen may respond to the pressures created by both the natural and human-made environment (Shipton, 1977). For instance, the plant pathogenic bacteria Xylella fastidiosa causes disease on olive trees and has spread around the world with human movement and trade (Morelli et al., 2021). However, it was shown that a 2016 outbreak in Italy was greatly facilitated by the agricultural practice of planting dense plant host monocultures and specifically planting two autochthonous susceptible olive tree cultivars (Luvisi et al., 2017). Dense plant monocultures usually used in agriculture have limited genetic diversity and are unable to evolve defences against pathogens. Thus, achieving control over bacterial plant diseases requires a deep understanding of how bacteria evolve on different scales, from the individual plant to the agricultural field and the wild plant populations surrounding them. Predicting and experimentally testing the possible evolutionary trajectories for pathogens within new locations and climatic conditions can prepare us and help us design evolution-aware control techniques. The importance of understanding the evolutionary capacity of a pathogen and its ability to jump hosts has never been as evident as it is now with the ongoing viral pandemic of the human respiratory disease COVID-19 (Machado et al., 2021). Previous research in vaccine development and related viruses allowed researchers to design a vaccine quickly. Understanding the biology, epidemiology, and bacterial adaptability to human-made agricultural environments will help us prevent outbreaks and epidemics that threaten food security and design control techniques that consider the organism's evolutionary capacity.

1.1.3. How do bacteria cause disease in plants?

An invisible arms race is continuously occurring between plants and phytopathogenic bacteria. The long coevolution of plants and bacterial pathogens has created an array of plant immune defences and bacterial virulence factors to evade them. The virulence factors need to overcome the host's defence mechanisms to establish infections and thus determine the pathogenicity of the bacterial species and can be highly specific to certain plant hosts (Ngou et al., 2022). Plant pathogenic bacteria can produce enzymes to help dissolve plant cell walls, excrete exopolysaccharides that block the vasculature of a plant, evade the immune system of the host by injecting effector molecules in and around its cells, induce tumour growth by manipulating the host DNA, and produce toxins that can lead to necrosis, chlorosis, and gummosis of the host tissue (Alfano and Collmer, 1996). In response, plants have evolved multiple defences to protect their nutrient-rich cells and kill unwanted invaders. One essential defence mechanism, termed the hypersensitive response, is when plants trigger controlled cell death (apoptosis) of infected cells and the surrounding tissue after recognising an infection (Alfano and Collmer, 1996). Plants' innate immunity depends on cell surface receptors and kinases recognising conserved pathogen-associated molecular patterns (PAMPs). PAMPs can refer to fungal or bacterial molecules, but for bacteria, they are usually proteins on the surface of the bacterial cell. For instance, the protein flagellin is the main structural component of bacterial flagella, and plants have cell surface receptors triggering a cascade of molecular defences in response to detecting flagellin. Other bacteria-associated molecules include cell wall and cell membrane proteins such as lipopolysaccharides (LPS), phospholipids and peptidoglycans, elongation factor Tu, bacterial nucleic acids, and many pathogen-host relationship-specific molecules. When the plant detects PAMPs, it triggers downstream immunity, including the activation of protein kinases, the production of reactive oxygen species (ROS), immunity-related gene expression, and the deposition of the complex branched carbohydrate molecule callose creating an additional physical defence to the cell (Jones and Dangl, 2006). This response is known as PAMP-triggered immunity and is usually sufficient to suppress the growth of most microbes (Macho and Zipfel, 2015). To avoid activating the immune response of plants, bacteria have evolved methods such as the secretion of enzymes, effector molecules, extracellular polysaccharides (EPS) and toxins

(Alfano and Collmer, 1996). The plants have a specialised effector-triggered immunity (ETI) to target the effectors produced by bacterial pathogens (Ngou et al., 2022).

Overall, the establishment and propagation of a bacterial infection on a plant can be broken up into four stages: 1. Detect and move to the host; 2. Enter the host and evade its immunity; 3. Grow and multiply inside the host; 4. Transmit to new hosts. The plants respond to each of these stages with different defence molecules and mechanisms, and the bacteria have a set of immunity suppression tricks to help them escape the defence. Understanding the molecular interplay of virulence factors and the plant's immunity during infection is essential for understanding how bacterial populations evolve.

1.1.3.1. How do bacteria find and enter new plant hosts?

To successfully invade a plant, a bacterial cell must first find it, then get to it, and finally, enter it by penetrating the external epidermal barriers of the host. The dispersal of bacteria is made easy, as they are microscopic and motile. Most bacteria have flagella or pili that allow them to move both towards and within a host organism. For instance, soil bacteria can use their flagella for chemotactic motion, with their flagella helping them to detect signal molecules such as host plant root exudates and use this signal to move along a molecular gradient towards the host (Parales and Harwood, 2002). Pilli can also play a vital role in twitching motility which is a motion that requires the attachment of pili to a surface and the movement of the cell in a grappling hook manner. This motion can be used to move across short distance such as inside the inside the plant host. For instance, the plant pathogenic bacterium *Ralstonia solanacearum* uses twitching motility to move around its plant host's vasculature and form biofilms (Corral et al., 2020). Therefore, bacterial motility can provide a means of finding a potential host, getting to it, and moving around it.

Furthermore, due to bacteria's small size, they can be easily transported by other organisms, seeds or even water droplets in the air. In addition, bacteria's involvement in cloud formation has been suggested as a potential mechanism for dispersal over large distances and continents (Joung et al., 2017). In an equally clever way, as plants use insects to help them disperse their tiny seeds, some small pathogenic bacteria use insect vectors to transport whole cells from one host to another and deliver the cells directly inside the plant. For

13

instance, the sap-feeding insect Asian citrus psyllid (Diaphorina citri) feeds on citrus plants. It can transmit bacterial plant pathogens within the Candidatus Liberibacter genera to their desired hosts. The insect injects the bacteria into the phloem, where they can cause Huanglongbing - the most devastating disease of citriculture globally (Bové, 2006). Most pathogenic bacteria, however, do not need a vector to enter their plant host as they can swim through openings in the plant surface, such as leaf stomata and root openings. Plants need these openings to get oxygen, water and nutrients from the environment and have evolved multiple defences against pathogens entering through them. For example, plants can close their stomata to prevent the entry of foreign organisms (Zhang et al., 2008). Stomatal closure is a mechanical defence mechanism employed by plants as a response to detecting pathogenassociated molecular patterns (PAMPs) by surface receptors that provides an effective pathogen entry control and is a good innate immunity for the plant (Bharath et al., 2021; Sawinski et al., 2013). In response to this physical defence, bacteria have evolved to exploit the plant's systems for controlling stomatal closure. One example is the plant pathogenic bacteria *Pseudomonas syringae* and the phytohormone coronatine that it can secrete. Coronatine functions as a structural and functional analogue of jasmonic acid and related signal molecules in the plant (Sakata et al., 2021). The plant hormones salicylic acid and jasmonic acid play critical roles in the plant's pathogen defence response activation and diurnal cycle control system. P. syringae's coronatine acting as jasmonic acid inhibits stomatal closure through guard cell-specific inhibition of NADPH oxidase-dependent reactive oxygen species (ROS) production that is triggered in response to bacterial microbe-associated molecular patterns (MAMP) or darkness (Sakata et al., 2021). Another vulnerable natural opening on the plant surface is the site of secondary root emergence. New secondary roots must emerge for roots to grow and allow the plant to get to new nutrient reserves. This rather aggressive process leaves a susceptible spot in the root cortex as the new root needs to be connected to the inner vascular tissues (Péret et al., 2009). This vulnerability provides a gateway for pathogens that infect the plant's vascular tissues. For instance, the xylem colonising bacterium Ralstonia solanacearum (Vasse et al., 1995) can use sites of secondary root emergence as entrance or swim through root lesions which are common on the root surface due to soil disturbances or parasitic nematodes chewing on the roots (Siddiqui et al., 2012).

Generally, motility and the presence of flagella are essential for bacterial virulence and plant invasion. Thus, it is unsurprising that plants have evolved mechanisms to recognise flagella and trigger an immune response. The non-flagellated forms of many bacterial species have been reported to be less pathogenic or avirulent (Montie et al., 1982). In many cases, the flagella are needed for expressing secondary virulence factors and attachment to the host (He and Jin, 2003). Overall, bacteria have found multiple ways to find and enter their hosts, exploiting animals, using by-products of the plant's metabolism as signals, and using vulnerabilities in their surface to invade them (Meena et al., 2019).

1.1.3.2. How do bacteria evade the plant defence responses inside the plant?

Once a pathogen has entered the plant, it must evade the host's defences inside to get the nutrients it seeks. Plant host invasion by bacteria often requires the secretion of molecules that block plant receptors to hinder the immune response. Plant pathogenic bacteria secrete enzymes such as cellulases, pectinases, ligases, and proteases (Frees et al., 2013; Maculins et al., 2016; Prade et al., 1999; Wilson, 2011). These enzymes penetrate living plant cells as they can degrade cells' building blocks, such as cellulose, pectin, and lignin. The secretion of these enzymes happens in specific pathogen–host combinations shaped by coevolution. Thus, the bacterial secreted molecules vary greatly between species and strains.

Gram-negative bacteria have seven (types I, II, III, IV, V, VI, and IX) secretion systems that aid the transport of molecules inside and outside the bacterial cell. These systems are crucial for virulence and are hugely varied depending on the pathogen-host interaction due to the long co-evolutionary time bacterial pathogens and their hosts have had together (Chang et al., 2014). One of the major systems for plant pathogens is the type III secretion system (T3SS), which delivers type III effector proteins directly inside the plant cell (Meena et al., 2019). The released proteins can be either effectors delivered into the host cell's cytosol, or translocators, which aid the effectors' transport across the eukaryotic cell membrane. These proteins are encoded by the *hrp* (hypersensitive response) genes, which are highly conserved across bacterial pathogens. They acquired their name as the T3SS was first described in phytopathogens in association with plants' hypersensitive response defence mechanism (Alfano and Collmer, 1996). Type III effectors (T3Es) are weapons against the plant's innate and specialised effector-triggered immunity (ETI). T3Es can interact with plant proteins and DNA inside and outside the plant cell in a precise manner driven by the host and pathogen coevolution. They have various activities, such as inhibiting or eliminating the activity of host cell surface proteins, interfering with key modules of the plant's immune signalling, such as signalling kinase cascades and immune receptor complexes, activating host gene transcription for pathogenesis, etc. (Feng and Zhou, 2012).

For instance, the type III effector HopAI1 is widely conserved in bacterial pathogens of plants and animals. In the well-studied plant pathogenic bacterium *Pseudomonas syringae*, HopAl1 inhibits the model plant Arabidopsis thaliana's mitogen-activated protein kinases (MAPKs), usually activated by exposure to pathogen-associated molecular patterns (PAMPs) (Zhang et al., 2007). The inhibition of MAPKs by HopAI1 suppresses two independent downstream events that enable the pathogen to establish an infection: the reinforcement of cell wall defence and transcriptional activation of PAMPs response genes (Zhang et al., 2007). HopAl1 is a widely conserved T3E gene important for many pathogenic bacteria. Still, the specificity of the interplay between type III effectors and plant immunity is the limiting factor for bacterial species infecting different plant strains (Cornelis and Van Gijsegem, 2000). The diversity of effectors in pathogenic bacteria directly correlates with the number of hosts a species can infect because effectors have unique binding or enzymatic activity within the eukaryotic host cell. Pseudomonas syringae can infect multiple plant hosts; thus, it has a vast repertoire of type III effectors that it must maintain, possibly with some cost, to keep its ability to be a broad-host pathogen (Lindeberg et al., 2009). A study of nearly five hundred P. syringae strains isolated from over one hundred hosts worldwide identified 14,613 putative T3Es helping the *P. syringae* strains infect so many hosts (Dillon et al., 2019a). The study also found a strong signal of positive selection on the type III effector genes, demonstrating the importance of these proteins in bacterial infection and the continuous arms race between plant defences and T3Es. The interplay of type III effectors together is understudied but genomics is now paving the way to understanding why some pathogens have a great diversity of effectors. For instance, strains of *Pseudomonas* spp. have around 30–40 core T3Es shared across the genus but the essential genes and epistatic effect of effectors in plant pathogens is an ongoing study (Sanchez-Garrido et al., 2022; Wei et al., 2015a).

While T3Es are involved in the precise immunity suppression of plant immunity, type II secretion systems (T2SS) are often involved in the cell wall degradation enzymes and are specific to Proteobacteria (Cianciotto and White, 2017). For instance, Xanthomonas *campestris* pv. vesicatoria the causal agent of bacterial spot disease in tomatoes and peppers secretes proteases and xylanases via the T2SS (Solé et al., 2015). Many of the important plant pathogens use type II secretion system for secretion of enzymes including Xanthomonas oryzae, Erwinia amylovora, Dickeya dadantii, Ralstonia solanacearum, Pectobacterium carotovorum, and Xylella fastidiosa (Cianciotto and White, 2017). Type IV systems are associated with pili and attachment to eukaryotic cells and are also common in plant pathogens (Meena et al., 2019). Some pathogens use a great diversity of type IV effectors. For example, the human pathogenic *Legionella* species are reported to have over 300 type IV effectors helping them evade human immunity (Gomez-Valero et al., 2019). Overall, Type I-VI secretion systems are essential for bacterial virulence and are involved in many stages of the hide-and-seek game bacteria play with the plant cells. Despite the massive amount of literature available on secretion systems and the knowledge of their crucial role in the infection of both animal and plant cells, we are yet to uncover the function of most of these molecules. Both the large amount of redundancy in these genes within pathogen genomes and the trade-offs encountered with maintaining larger genomes with high redundancy are poorly understood.

1.1.3.3. How do bacteria control the secretion of virulence factors?

Bacteria use secreted molecules for virulence and other vital interactions with their environment. There is, of course, a cost to producing secreted molecules, and bacteria have evolved a clever method to control the secretion tightly. They can recognise molecules secreted by themselves and other genetically similar individuals around them. This way, they can sense their population size and accordingly regulate environmental responses. This density-dependent environment sensing is termed quorum sensing (Von Bodman et al., 2003). Many bacteria use self-generated molecules to activate intracellular processes associated with virulence or defence, such as forming biofilms, cell adhesion, secretion of exopolysaccharides (EPS), siderophores and antibiotics. For example, the maize pathogen *Pantoea stewartii* ssp. *stewartii* produces EPS, necessary for biofilm formation, in a cell density-dependent manner controlled by a quorum sensing system. Two genes, *esal* and *esaR*, encode essential regulatory proteins for quorum sensing. The product of the *esal* gene is the molecule N-acyl homoserine lactone (AHL), which acts as a signal for the *esaR*-encoded cell receptors to ensure the bacterial population produces enough EPS according to the cell density. Mutant strains in the *esaR* gene synthesise EPS constitutively at low cell densities and are significantly less virulent than the wild-type (Koutsoudis et al., 2006). Therefore, controlling and activating virulence by bacteria is an active process that they can regulate depending on the environment to minimise costs.

1.1.3.4. Spread of plant bacterial diseases

Bacteria can often survive and persist for long periods without access to nutrients in anticipation of favourable conditions. However, their success as plant pathogens would not have come if it was not for humans. Human movement and agricultural practices have allowed the dispersal of seeds and plants and their pathogens worldwide, thus providing an unexpected means for a plant disease to spread (Sotiropoulos et al., 2022). For example, the 2010 vertical oozing canker disease pandemic on kiwifruit would not have been able to spread across the world this rapidly if it were not for human agricultural practices (Colombi et al., 2017). In this case, copper pesticides, growing highly susceptible plant monocultures, and spreading pathogens with our movement across the world were responsible for the pandemic (Colombi et al., 2017).

Pathogenic bacteria have a variety of virulence factors to ensure their survival and fitness inside a plant host. Diversity in these factors creates complex interaction networks between the pathogen and its host. The networks are under constant evolutionary pressure that also depends on environmental variability and, thus, should be able to withstand specific ecological conditions. To understand these networks, it is crucial to understand the patterns of molecular evolution in bacteria. On the plant level, we need to know the drivers of selection among all plant life stages, different parts of the infection cycle, and the trade-offs between different hosts. On a macroevolutionary scale, we need to understand the survival of bacterial species across different habitats over time and the impact of human agricultural practices on the spread and success of the pathogen's survival and evolution.

1.1.4. How do bacterial pathogens evolve to new environments and hosts?

Bacterial populations have big effective population sizes (*N*_e), allowing genetic variation to accumulate quickly over time, increasing the available space for natural selection and the efficiency of deleterious mutation purging (Lynch and Conery, 2003). This allows for streamlining of the genomes and also observing adaptation to new selection pressures in real-time both in the lab and the environment at the timescale of just several weeks (Lynch and Conery, 2003). Therefore, bacterial study systems have been hugely influential in the testing of evolutionary theory and have provided a wealth of knowledge that can be applied to improving theoretical models of evolution as well as devising control strategies for pathogens (Buckling et al., 2009).

1.1.4.1. Evolution of host-adapted bacterial lineages

A central aspect in the study of pathogen-host interaction is explaining why certain pathogens are associated with specific hosts. Still, it can be hard to determine the genetic factors contributing to bacteria's ability to infect a particular host. Phylogenies of bacterial species and strains can show signals of population structure linked to niche occupation and host specificity. For instance, the phytopathogen Pseudomonas syringae has host-specific (specialists) and wide-host (generalist) phylogenetic lineages, however, determining the genes associated with this clustering pattern is not technically or theoretically simple (Hwang et al., 2005; Lindeberg et al., 2009). The presence of a host-associated phylogenetic pattern in a phylogeny can be interpreted within two main theoretical frameworks. The first one is that selection drives the evolution of the ability to infect a specific host and has thus resulted in phylogenetic lineages that are defined by that ability. The second is that the presence of a colonisation barrier between different hosts has, over time, led to the accumulation of mutations and, thus, the separation of lineages by host association. These contrasting explanations of molecular evolution patterns focus on either selection for adapted lineages in different environments (ecotypes) or genetic drift (neutral diversification) (Sheppard et al., 2018). In reality host associated phylogenetic clustering is probably a result of both these evolutionary mechanisms, but it is important to understand how they can differentially affect the distribution of species and genes on a phylogeny in order to study them.

The ecotypes hypothesis stems from the idea that in theory large population sizes such as those seen in bacteria over time lead to a streamlined genome without many deleterious mutations and parasitic gene elements and with fewer total number of genes (Lynch and Conery, 2003). Thus, the stable coexistence of host-specialised lineages implies that there is a selective advantage in maintaining this population structure. Therefore, the genes shared by bacteria infecting a specific host should be providing this selective advantage (Sheppard et al., 2018). The ecotype hypothesis is of scientific interest for genetics and pathologists because we can ask what genes lead to a particular host specialist bacterial lineage. These genes could be associated with virulence and immunity within a host species. Therefore, knowledge of these genes can be essential for practical applications in agriculture and medicine. For example, they can be targeted for drug discovery or used to understand how host jumps occur and potentially prevent them and future spread of a high virulence gene (Sonehara and Okada, 2021). However, one caveat to consider when focusing on hostadapted lineages and genes is the limited number of hosts we can sample in any one host range study (Dallas et al., 2017). Host specialists are hard to identify as a sampling of hosts is usually inexhaustive, mainly because we often need to consider wild animal and plant host populations in our studies. Thus, generalists may be more common in nature than we have observed, and it is hard to determine how the host associated genes contribute to virulence in different environments. Most importantly observed correlation between gene phylogenies and same host associated bacterial lineages could be due to chance and not as the ecotype hypothesis suggests a result of balancing selection maintain population structure of the coexistence of different host-associated lineages.

The second explanation focuses on the null model of evolution (Kimura, 1968). Genetic drift is a mechanism in which allele frequencies of a population change over time due to random chance. Through this process even in the absence of selection and physical or spatial barriers, a degree of genetic variability most of which neutral accumulates over time in a population (Sheppard et al., 2018). By studying the distribution of this variation on a phylogenetic tree of a species or a group of species we should be able to trace it back to the most recent common ancestor of the species. This relationship between time and the accumulation of variation has been used to fit a genetic or molecular clock to phylogenies. The fitting of a molecular clock can help us estimate the evolutionary rates and deviations from them that are signs of evolution. Dating bacterial phylogenies and many epidemiological techniques are based on this idea and have proved very useful in tracking outbreaks and outbreak development and origin (Neogi et al., 2012). Moreover, genes that do not follow the expected structure of the species' phylogenies and thus deviate from the null model are of interest as this will be a sign of positive or negative selection that has been acting on them and has made their inheritance pattern different (Kuo et al., 2009). Also, the dissemination of a gene multiple times in a horizontal rather than a vertical manner across the branches of the phylogeny could signify that this gene can provide a substantial selective advantage but will not follow the linear expectation of the vertical transmission of clonally propagated genes. For instance, a pathogen population within an agricultural field and the "wild" population of the vegetation surrounding the field are rarely considered together. Still, gene exchange between these populations is not unlikely. For example, two phytopathogenic *Pseudomonas syringae* strains were more closely related to surrounding environmental isolates than isolates from other agricultural fields, suggesting that transfer between the environment and field could be common (Monteil et al., 2016).

Furthermore, there are technical limitations to identifying genes associated with host adaptation. Due to their clonal reproduction, bacterial populations often display strong signals of population structure. Therefore, the genes responsible for adaptation to an environmental niche or a host can be hard to distinguish from genetically linked blocks of genes have moved together horizontally on a phylogeny. Nevertheless, host-specialised genes have been a central theoretical concept for many comparative genomics studies. Many have identified potential genes responsible for host specialisation (Mak et al., 2013; Nowell et al., 2016). A popular technique that tries to associate genes or genetic variants to hosts by controlling for population structure and studying all the genetic variants in a genome is the genome-wide association study (GWAS). It was initially developed for diploid organisms as it relies on linkage disequilibrium. Linkage disequilibrium is a population genetics term that describes the non-random association of alleles at two or more loci in a population. If two loci are more often than expected found together on a genome than expected, then they are said to be linked (Slatkin, 2008). The lack of randomness in the distribution of genes within clonally reproducing organisms makes linkage virtually genome wide. However, it has recently been applied to bacteria, and host-associated genes have been identified through GWAS sometimes referred to as microbial GWAS (Gori et al., 2020). This approach tries to control for the genetic linkage observed in bacterial populations and associate genes with specific phenotypes or environmental niches. Likely, it will have a considerable impact on research in evolutionary microbiology in the future. GWAS often tries to correct population structure using the signal of the phylogeny (Collins and Didelot, 2018). The phylogeny, however, would be affected by adaptation to specific niches and recombination. Demography inferences based on population structure are based on the neutral evolution model. Still, it has been shown that inferring demographic changes based on genealogies are systematically biased in the bacteria (Lapierre et al., 2016). Therefore, some consider bacterial populations as populations of genes and suggest alternative models where genes rather than clonal lineages inhabit niches (Arnold et al., 2022). Thus, in modern big data biology, both theoretical interpretations are useful and help us focus on different aspects of comparative genomics to understand how pathogens evolve to infect new hosts (Sheppard et al., 2018).

1.1.4.2. Bacterial sex and horizontal gene transfer

Only a minority of prokaryotes are truly clonal, and bacteria often recombine (Bobay and Ochman, 2017). Recombination can be the fastest way to bring beneficial genes together and has been shown to contribute to the evolution of virulence and adaptation to new niches in bacteria, however, it can also disrupt gene combinations. Therefore, there are two interpretations of the presence and maintenance of recombination systems in bacteria. The first one is that damaging selfish genetic entities such as transposons and small parasitic DNA elements are maintaining this system which is not necessarily beneficial for the host but rather a combination of randomness and adaptiveness for the small genetic elements. The second one is an analogy to sex in eukaryotes, where the maintenance of homologous recombination in bacteria is evidence for it playing a role in improving the response time to natural selection. The idea is that recombination can bring together sets of genes that, when combined, provide benefits over and above the benefits that the genes could confer on their own. Simulations show that it is unlikely that gene shuffling evolved in response to selection for increased rates of evolution (Levin and Cornejo, 2009).

Unlike recombination by meiosis in eukaryotes, where two cells exchange DNA, bacterial recombination is single-sided and not linked to reproduction. DNA is taken up by the cells in

three known ways: from the environment through natural transformation, from another cell with the aid of a specialised structure through conjugation or transferred between cells by phage viruses (Vos, 2009). Bacterial recombination can be non-homologous, where foreign genetic material inserts into the chromosome at repetitive regions via mobile genetic elements like bacteriophages or transposable elements (Straub et al., 2021a). Plasmids can also introduce genes into the bacterial genome, but they do not usually integrate directly into the chromosome. Mobile genetic elements include prophages, integrons, integrative conjugative elements, conjugative transposons, integrated plasmids, insertion sequences, and plasmids (Langille et al., 2010). Mobile genetic elements can lead to shared genes in previously unrelated pathogens occupying a similar niche, thus bridging the species barrier. The spread of virulence factors within and between bacterial species is due to the spread of pathogenic regions through horizontal gene transfer (HGT). Entire regions of effector genes can be lost from the bacterial cell if the gene is carried on mobile DNA elements, as they can be lost during cell replication or through rare spontaneous deletions.

Sequences acquired from other organisms often have a different sequence composition or signature. The most common measures of this are the GC content of a sequence and codon bias. Scanning the genome to identify regions of sequence bias is a quick method to identify mobile genetic elements and to estimate a HGT percentage within a genome (Worning et al., 2000). A more accurate method of estimating HGT uses the species' phylogeny (Azad and Lawrence, 2011). Normally, if bacteria are fully clonal, every gene's phylogeny should follow the species' phylogeny. Therefore, identifying genes with alternative phylogeny patterns and whose presence is polyphyletic, points to independent events of gene gain and loss. Sequences within genomic islands, which are areas of the genome associated with mobile genetic elements, have more genes associated with virulence than the rest of the genome. When 631 complete genomes of pathogenic bacteria were compared, on average, 5.1% of the genes in genomic islands were virulence factors, compared to 1.3% of genes outside of the genomic islands (Sui et al., 2009).

The key type III secretion virulence system has been acquired by horizontal transfer in various pathogenic bacteria (Gophna et al., 2003). Comparing the *hrp* gene sequences and rearrangements within them in various plant pathogens shows two independent gene similarity

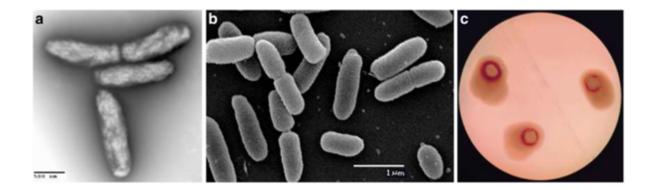
groups (Alfano and Collmer, 1996). The discrepancy between the *hrp* gene similarity groups and the taxonomic relationships of the bacteria within them is consistent with the horizontal acquisition of the system by phytopathogens (Alfano and Collmer, 1996). Prophages have been shown to lead to increased virulence when integrated into genes and to contribute to the spread of virulence between pathogens on different hosts. Virulence on cherry plants in *Pseudomonas syringae* strains is a convergent trait, and thus host-specific genes should be easily identifiable from the phylogeny of the phytopathogenic *Pseudomonas* species. Virulence genes can be identified on three phylogenetically separate lineages and amongst them are *hopAR1*, *hopBB1*, *hopBF1*, and *hopH1*, and one of them, *hopAR1*, is in association with prophage sequences, thus, suggesting that virulence on cherry was spread by prophage movement (Hulin et al., 2018).

Furthermore, gene acquisition by horizontal gene transfer has been shown to lead to outbreaks. In 2010 a strain of Pseudomonas syringae pv. actinidiae caused a pandemic of vertical oozing canker disease on kiwifruit after acquiring copper resistance genes encoded by integrative conjugative elements and plasmids found in related *P. syrinage* strains (Colombi et al., 2017). The presence of mobile plasmids can also be used as a means of hiding genes from the plant's immune system. For instance, strains of the bacterium Pseudomonas syringae can cause halo blight disease in beans, having a clever way to avoid triggering the plant's hypersensitive response. They have a 106-kilobase pair mobile genomic island containing Type III effector-encoding genes needed for the infection of bean plants. The bean plant can specifically recognise this genomic island and trigger the hypersensitive response. To avoid detection, the genomic island can be separated from the main chromosome as a circular plasmid, becoming a separate circular molecule. The molecule is then supercoiled, making the bacteria invisible to the plant's immune system (Neale et al., 2018). Nevertheless, recombination within a bacterial species does not preclude the occasional expansion of clonal lineages, especially when a single gene or mutation leads to a strong selective sweep. Thus, the whole spectrum of population structures is observed in natural populations.

1.1.4.3. Bacterial species and pangenomes

Bacteria's lack of sexual reproduction makes it challenging to define a species, as the reproductive barrier approach used for higher organisms does not apply. Thus, modern

bacteriology often represents bacterial species as ecotypes (Cohan, 2002). To study bacteria in the lab, some practical rules are used to classify them. Traditional microbiology methods include biochemical assays and substrate utilisation to group bacteria into ecotypes based on metabolic capacity. The evolutionary view of a species is an independently evolving entity which is an important construct as we need a unit of evolution and has no strictly defined boundaries in the natural world but rather we use defined boundaries for practical reasons (Stackebrandt et al., 2002). For example, in modern genomics, the ease of sequencing whole genomes has led to the use of average nucleotide identity (ANI) thresholds based on the whole genome similarity or similarity of specific marker genes (Ciufo et al., 2018). A species can be defined as a group of bacterial genomes with more than 95% ANI within the group, including a type strain, and less than 95% ANI to any other known type strain (Konstantinidis et al., 2006).


In the ecotype or the genomic species, a definition of distinct units of overlapping ecological and genotypic similarity is required, which will form if microgeographic separation coupled with ecological trade-offs poses barriers to the gene flow (Shapiro and Polz, 2014). The lack of distinct species boundaries in bacteria has led to the development of the pangenome concept (Tettelin et al., 2005). The pangenome of a species consists of the core genome and accessory genome. The core genome is all the shared orthologous genes between 90%-95% of the bacteria under study, which are present in all strains and members of the species. The accessory genome is the rest of the genes in lower frequency and can be considered transient as they are not present in all strains and members of the species. The accessory genes however are not necessarily non-essential as the essentiality of genes concept stems mainly from the transposon libraries used in traditional genomics and have some laboratory evidence backing the term (Rancati et al., 2018). Pangenome is a fluid term that refers to all the genes in a population, a species, a few species, or a group of closely related strains, depending on the research questions.

Pangenomes are now widely used in the study of bacterial genetic diversity, as biologists have needed help explaining the diversity of genes present in a species, considering the long-term effects of enormous population sizes bacterial species tend to have. Therefore, it is thought that the accessory genes in a population should provide a selective advantage in specific niches to be maintained in the pangenome of the species (McInerney et al., 2017). In general, this is referred to as the niche-specific accessory genome hypothesis. It explains adaptation with gene-specific sweeps where ecologically adaptive mutations or genes can spread within populations independently of their original genomic background in the presence of recombination and moderate selection. This is in contrast to the genome-wide selective sweeps, where a genotype sweeps through the population when selection's effect is stronger than recombination (Shapiro and Polz, 2014). Defining the essential genes in the species is more challenging than representing all the shared genes as it often required for the gene to be necessary for reproductive success (Rancati et al., 2018). Still, the presence of accessory genes and pangenomes suggests bacteria can maintain accessory genes in the population that are likely beneficial in different environments.

Accessory genes are typically acquired by horizontal gene transfer and tend to have a mosaic structure. Horizontal gene transfers can homogenise the genetic diversity between species and bring strains together. For instance, the *Pseudomonas syringae* species complex has been proposed to represent a single species because HGT of virulence genes has been found to occur across the entire complex (Dillon et al., 2019b). HGT and differential gene loss are the main contributors to the formation of pangenomes (Azarian et al., 2020). The maintenance of some accessory genes encoding virulence factors may be subject to positive selection from the plants' immune response. It could be essential for a strain living in a specific condition or host. Depending on the host species, individual host-specific virulence genes within the Xanthomonas campestris genome can influence its growth (Gabriel et al., 1994). Therefore, single genes in the bacterial genome can bring enormous selective advantages. The study of niche-specific accessory genomes could help us identify causal genes and potential gene targets for controlling bacterial disease. We could link variations in virulence factor repertoires such as toxins, phytohormones and secreted substances to disease severity and host resistance. The accessory genome can vary independently of the core genome and can therefore be useful and important in predicting the evolution of a population (Lees et al., 2019).

1.2. Ralstonia Solanacearum Species Complex (RSSC)

Ralstonia solanacearum species complex (RSSC) strains are a group of bacterial plant pathogens commonly referred to as simply *Ralstonia solanacearum*. They are aerobic, motile gram-negative β -proteobacteria with pili, one to four polar flagella, and 0.5-1.5 μ m long rod-shaped cells (Figure 1 a,b) (Corral et al., 2020; Guarischi-Sousa et al., 2016). *R. solanacearum* cells can be found free living in the soil or in association with a plant host (Jiang et al., 2021a). The complete sequence of the whole genome of the *R. solanacearum* type strain GMI1000 shows that it possesses a two replicon genome with a total length of 5.8 Megabases (Mb), organised into two replicons: a Chromosome: 3.7 Mb and a Megaplasmid: 2.1 Mb, the two molecules have nearly identical G+C content (67.04% and 66.86%, respectively) (Salanoubat et al., 2002). The strains within the species complex are very diverse phenotypically and genetically, so the genome length can vary greatly between them, with up to 1 Mb size differences observed (Genin and Boucher, 2004).

Figure 1. Ralstonia solanacearum cells.

Ralstonia solanacearum pictures of the strain UY031. a and b showing electron microscopy photos. c showing the Nile Blue test used to identify R. solanacearum cells - virulent colonies develop pearly cream-white, flat, irregular, and fluidal colonies, often with characteristic whorls in the centre. In contrast, avirulent colony forms are small, round, non-fluidal, and entirely cream-white (Hayward, 1960). Figures are taken from: (Guarischi-Sousa et al., 2016, p. 031).

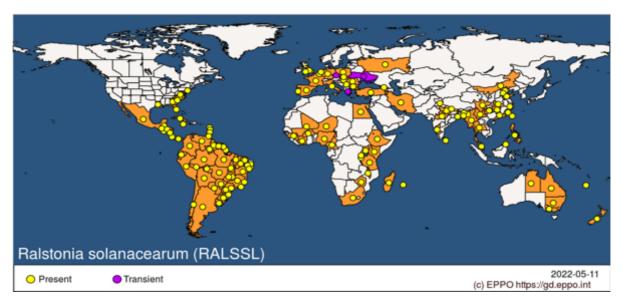


Figure 2. Disease symptoms caused by Ralstonia solanacearum infections.

A) Tomato (*Solanum lycopersicum*) plants infected with *Ralstonia solanacearum* show wilting symptoms and left infected plant right: not-infected (Photography: Lauri Mikonranta at The University of York) B) Potato (*Solanum tuberosum*) showing early symptoms of potato brown rot disease caused by *Ralstonia solanacearum*. Oozing of the milky white bacterial colonies can be seen in the picture—The photograph was taken from the European Plant Protection Organisation (EPPO) website (https://gd.eppo.int/taxon/RALSSL/photos).

1.2.1. Agricultural importance

Ralstonia solanacearum species complex (RSSC) strains are important agricultural pests as they cause devastating plant diseases, often leading to characteristic wilting of the aboveground plant tissue and rotting of underground tubers or fruits (EPPO, 2018, p. 21; Zulperi et al., 2014) (Figure 2). *R. solanacearum* was ranked 2nd in the top 10 most scientifically and economically important bacterial plant pathogens in 2012 (Mansfield et al., 2012). Similar to other plant pathogens, *Ralstonia solanacearum* species complex has the greatest impact on the world's tropical and subtropical climate zones (Peeters et al., 2013b). However, there are recorded cases in multiple countries worldwide, and it is assumed that the bacterium is present in the soils everywhere around the tropical and temperate regions. The European and Mediterranean Plant Protection agency continuously updates information on recorded infections worldwide and the number of confirmed plant hosts. The current number of countries in their database where *R. solanacearum* is considered present is 77 (12/10/2022) (Figure 3). In Southeast Asia, RSSC strains cause wilt on banana plants, leading to substantial economic losses. However, infections, especially in potatoes, are also present in temperate regions in North America and Europe. Therefore all RSSC strains are listed as quarantine pathogens by EPPO within the European Union because of significant potato crop yield losses (Bragard et al., 2019). *Ralstonia solanacearum* is a pathogen without adequate chemical

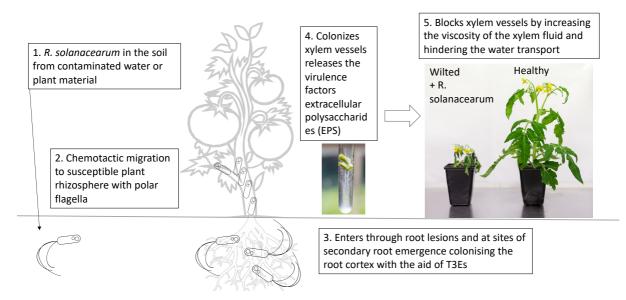
Figure 3. Ralstonia solanacearum sensu lato distribution.

Map of the distribution of *Ralstonia solanacearum* species complex recorded cases according to the European and Mediterranean Plant Protection Organization (EPPO). Present means the pathogen is an immediate risk to agriculture, and transient means it is being controlled effectively.

control, and tremendous efforts are required to control and prevent its spread. This includes controlling and monitoring contaminated fields and water systems and rotations with resistant crops such as strawberries (Yuliar et al., 2015). Unfortunately, there is no accurate and up-to-date account of the worldwide economic losses caused by the RSSC. Still, in the early 2000s, bacterial wilt of potatoes was estimated to affect 3.75 million acres of agricultural land in 80 countries, with global damage costs exceeding \$950 million/year (Yamada, 2016).

1.2.2. Plant hosts

RSSC strains cause disease on a variety of plants, including essential food crops such as potatoes, fruit crops (banana, tomato), oilseed crops (sunflower, groundnut), spices, fodder, forest trees (ironwood and eucalyptus), and many ornamentals such as rose (Genin and Denny, 2012a). The disease is often fatal to the host and can have a devastating effect on the agricultural harvest. The host range of the RSSC strains is vast and not well defined, but it is thought to include over 200 plant species within at least 50 different families (Hayward, 1991a). Moreover, the host range is ever-expanding, with new hosts being added to the list every year. The most hosts are dicotyledons belonging to Solanaceae family, such as potatoes, leading to brown rotting of the tubers, (Cellier et al., 2012). However, there are also a few monocot hosts, such as ginger, or members of the Musa genus like banana, in which RSSC is responsible for the Moko disease (Hayward, 1964). The ability to infect both monocots and dicots is unusual and highlights the diversity within the Ralstonia solanacearum species complex (Genin and Denny, 2012a; Zulperi et al., 2014). Moreover, Ralstonia solanacearum was recently reported to be infectious in the plant pathogenic fungus Fusarium oxysporum (Tsumori et al., 2022). In theory infecting fungi should require a whole array of different genes as the immunity of a fungus is very different from a plant. Therefore, these examples show the tremendous genetic diversity of this pathogen, allowing infections outside the plant kingdom. Overall, the genes responsible for pathogenicity in different hosts are assumed to be highly variable, and in the past, studies with potatoes and bananas have not found genes associated with pathogenicity in these hosts (Cellier et al., 2012; Guidot et al., 2009). Therefore, establishing precise classification within the species complex and experimental validations of infectivity will be of great value for correctly evaluating this pathogen's host diversity.

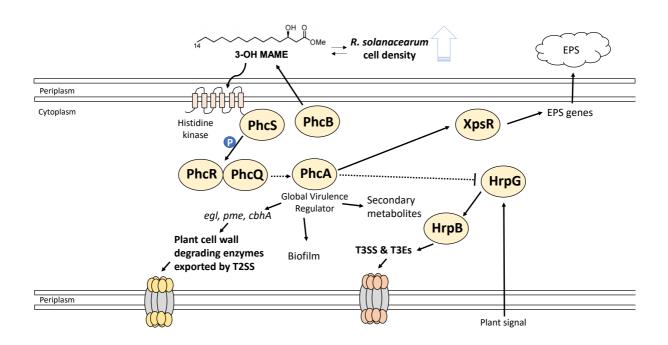

1.2.3. Taxonomy

Ralstonia solanacearum's taxonomy and classification have been through multiple revisions before reaching its status of a species complex, consisting of three phylogenetically distinct species: *Ralstonia solanacearum, Ralstonia pseudosolanacearum* and *Ralstonia syzygii* (Safni et al., 2014a). The pathogen was first described as *Burkholderia solanacearum* in 1896, later renamed *Pseudomonas solanacearum*, until finally being assigned to the *Ralstonia* genus. Multi-locus sequence typing (MLST) and whole genome comparative studies agree with the current separation of the species complex into three species, each composed of divergent and deep-rooted monophyletic phylotypes (Guidot et al., 2009; Remenant et al., 2010). However, the historical RSSC classification splits the species complex into phylotypes based on the phylogeny of the sequences of few genes: internal transcribed spacer (ITS) region, the hypersensitive response and pathogenesis B (hrpB) and endoglucanase (egl), which are still used widely. (Mark Fegan and Prior, 2005). There are four main phylotypes (I-IV), and phylotype II is further subdivided into IIA and IIB. Currently, phylotypes IIA and IIB make up Ralstonia solanacearum species sensu stricto, phylotypes I and III are Ralstonia pseudosolanacearum, and phylotype IV is Ralstonia syzygii which has three sub-species: R. syzygii subs. syzygii, R. syzygii subsp. indonesiensis, R. syzygii. celebesensis. According to phylogenetic coalescence analysis studies, the four phylotypes have distinct geographical origins: Phylotype I - Asia; phylotype II - the Americas; phylotype III - Africa; and phylotype IV - Indonesia (Wicker et al., 2012a). However, the current geographical distribution of the individual species and strains within the complex is not well defined. Phylotypes I-II extend much further than their place of origin, with strains that can be found across six continents. There is also an early phylogeny-based method to divide the strains within each phylotype; strains can be subdivided into multiple sequevars based on the similarity of a 750-bp fragment of a single DNA marker - the endoglucanase (eql) gene, and strains with similar sequences are assigned to the same sequence variant group (sequevar) (Mark Fegan and Prior, 2005). To further complicate the RSSC taxonomy, old nomenclature based on biochemical assays regarding carbon utilisation and a limited number of host infectivity assays where the strains are split into biovars and races, respectively, is still sometimes used; however, this system does not reflect the phylogenetic relationship between the strains and many of the biovars and races are polyphyletic (Mark Fegan and Prior, 2005). The long history of research into Ralstonia solanacearum species complex has led to a complicated taxonomic picture. However, the relevance of the species complex term is still useful for plant pathology as the disease symptoms observed on plants by all strains are highly similar (Sharma et al., 2021a). Moreover, all *R. solanacearum* species complex strains from the four phylotypes can infect tomato plants and cause the same disease symptoms (Remenant et al., 2010). Therefore, the species complex and the separate phylogenetic species within it are both commonly used in literature today.

1.2.4. Disease aetiology

The diverse *Ralstonia solanacearum* species complex strains are unified by their common disease aetiology. All strains cause some form of bacterial wilt disease on plants characterised by colonisation of the plant xylem, where the bacteria reach high cell densities $(10^9 - 10^{10} \text{ CFU/ml} \text{ xylem fluid})$ (Buddenhagen and Kelman, 1964). The exopolysaccharides (EPS) produced by the cells block the water supply of the plant and cause it to wilt and often tubers or fruits to rot (Denny, 2006). Symptoms include stunting, browning of the xylem, chlorosis, wilting, and often rapid death of the plant host. Bacterial cells spread through the soil and enter the plant vasculature through the roots. After reaching the xylem, the cells form biofilms increasing the viscosity of the xylem liquid and leading to the drying out of the plant (Figure 4).

Ralstonia solanacearum spreads through the soil, where water and chemical signals help guide the bacterial cells' movement in the soil towards a susceptible host using chemotactic polar flagella (Corral et al., 2020). Energy taxis contribute to the ability of *R. solanacearum* to locate and interact with its host plants, and the cells need aerotaxis for normal biofilm formation (Yao and Allen, 2007). Impairment in swimming motility leads to decreased virulence which is one of the reasons RSSC strains are thought to be incapable of surviving in arid conditions (Tans-Kersten et al., 2001). After encountering the host, the bacterium uses root hairs and lesions at secondary root emergence or elongation sites to aid infection. It colonises the plant's root cortex, evading the plant host immunity and utilising myriad excreted effectors and, notably, the type III effector family (T3Es) of proteins (Coll and Valls, 2013). Subsequently, the bacteria move to the xylem, quickly spreading through the vasculature to the plant's leaves (Lu et al., 2018). The wilting symptoms arise as the bacteria invade the plant xylem, proliferate, and form biofilms excreting exopolysaccharides (EPS) which increase the viscosity of the xylem fluid leading to blockage of the vasculature (Figure 4).


Figure 4. Schematic of plant infection by Ralstonia solanacearum

1. *Ralstonia solanacearum* bacteria reside in the soil. 2. Cells sense signals from susceptible plants and move to the rhizosphere of the host using chemotaxis. 3. Cells enter the plant through root lesions or sites of secondary root emergence. After successfully evading the plant's immune system defences they colonise the roots. 4. The bacteria migrate to the water-conducting xylem tissue where they settle form biofilms and excrete exopolysaccharides (EPS) that can block the vasculature. The photograph in the middle shows white liquid due to EPS produced by RSSC cells oozing out of an infected plant's xylem and collecting at the bottom of a tube full of water. 5. After RSSC has colonised the whole plant and blocked its water-conductive tissues the plant wilts and dies. The photograph on the right shows a tomato plant infected with Ralstonia solanacearum (left) and a healthy one without bacteria (right).

1.2.5. Pathogenomics and virulence

Many cellular processes and functions that contribute to virulence and pathogenicity in *Ralstonia solanacearum* species complex have been characterised. Like in many other gramnegative pathogens Type III secretion system (T3SS) is a central component of the RSSC

virulence (Coll and Valls, 2013). Also, the quorum-sensing regulatory system controls the expression of the master regulator *Phc* and multiple downstream virulence factors (Ujita et al., 2019) (Figure 5). Overall, swimming, and twitching motility, biofilm formation, extracellular polysaccharides, plant cell wall-degrading enzymes, and Type I-IV secretion systems all play an essential role in the RSSC's master-controlled virulence system.

Figure 5. Master virulence gene regulators PhcA and HrpG

Simplified gene schematic showing the importance of PhcA and hrp genes in the virulence regulatory network of *Ralstonia solanacearum* species complex. The master regulator PhcA is activated by quorum sensing and then leads to activation of an array of virulence pathways including Type II secretion system (T2SS), biofilm formation, exopolysaccharide (EPS) production and the situational suppression of hrp genes that control Type III secretion system. Figure adapted from (Genin and Denny, 2012a; Kai et al., 2015).

The T3SS in *R. solanacearum* is functional throughout the disease development from infection to the end when the cells have colonised the xylem (Meena et al., 2019). The T3SS system enables the secretion of virulence factors and their injections into the host cell. The effectors modify the host cell environment by interacting with the immune system and altering the host's metabolism in favour of the pathogen. This molecular interaction is often highly specific

between a host and a pathogen. The RSSC type strain GMI1000 is known to form 60-80 type III effectors (Genin and Boucher, 2004). Type III effector (T3E) pangenome of RSSC was estimated to be 102 genes and 16 hypothetical genes (Sabbagh et al., 2019). This analysis included all known diversity in the RSSC strains and phenotypes from 155 genomes, but the variability of T3Es across the full pangenome of the species complex is probably greater. The diversity of effectors is correlated with the host range, the extent of which is yet to be fully characterised in RSSC. Due to the importance of the T3Es and their early discovery in RSSC, the effectors are also sometimes called Rips ("Ralstonia injected Proteins"). The gene regulatory cascade controlling T3SS has been well-characterised in RSSC strains. The activation of transcription is controlled by the two-component response regulator *HrpG* and the *hrp* gene cluster, which spans a 23-kb region on the Megaplasmid (Wu et al., 2015). The transcription of T3SS genes is induced in response to the bacterium-plant cell contact and negatively regulated by the *PhcA* master regulator pathway (Aldon et al., 2000; Genin and Denny, 2012a) (Figure 5).

Ralstonia solanacearum has a master regulator system of the virulence gene called *Phc* (phenotype conversion). The name comes from the small colony variants that can be observed in a bacterial culture which lack the production of exopolysaccharides (EPS) and thus appear small and lack milky-white exudates (Figure 2). The master regulator gene *PhcA*, a *LysR*-type transcriptional regulator, is the most important in activating and deactivating the virulence of the bacterial cell (Figure 5). *PhcA* is regulated by a unique volatile 3-OH MAME that acts as a quorum-sensing signal, activating the cascade when 10⁷ CFU/ml cell density is reached (Flavier et al., 1997). Therefore, bacterial cell–cell communication is used to regulate the production of exopolysaccharides (EPS) and degradative enzymes such as endoglucanases (*egl*) and polyglucanases (Roberts et al., 1988). Mutants can spontaneously appear in culture and not produce EPS (Poussier et al., 2003). The mutants, however, have increased motility and siderophore production, which is needed for out-of-host survival of RSSC strains in the soil rhizosphere (Kai et al., 2015; Perrier et al., 2018). Motility, another virulence-associated trait in RSSC, is positively regulated by *PehSR*, which also positively regulates plant cell wall degradation and is ultimately regulated by *PhcA* (Tans-Kersten et al., 2001).

In addition, there is a link between virulence and metabolic capacity in *Ralstonia solanacearum*. The trade-off between growth and virulence is well-known and predicted by the evolutionary dynamics theory (Polz and Cordero, 2016). This negative correlation was experimentally shown in *R. solanacearum* mutants with progressive loss of virulence (mutant *eps*, mutant *xpsR*, and mutant *phcA*), corresponding to additive increases in their growth rates (Peyraud et al., 2016). The production of Type III Effectors is expensive; thus, they need to be tightly regulated so that the trade-off between proliferation and defence against immunity can be managed during infection. The nutrient-rich xylem niche RSSC occupies must sustain this complex behaviour (Baroukh et al., 2022).

1.2.6. Transmission and spread

The initial spread of the *R. solanacearum* species complex worldwide and its differentiation into three species is thought to have happened before the continents' split and Gondwana's fragmentation (Wicker et al., 2012a). *R. solanacearum* species complex is believed to have originated from Indonesia, where currently all strains of *R. syzygii* (phylotype IV) are found (Remenant et al., 2011). It is believed that one sub-group from that region migrated to Madagascar and East Africa and gave rise to *Ralstonia pseudosolanacearum* (phylotypes I and III), and another sub-group to have spread to Brazil and South America and given rise to *Ralstonia solanacearum* (phylotype II) (Wicker et al., 2012a). As more genome data becomes available for the whole genome of RSSC strains, coalescence dating will give more accurate estimates of the spread of the bacteria, the date of the root, and the most recent common ancestor of these Solanaceae infecting pathogens.

Chemotaxis makes it relatively easy for *Ralstonia solanacearum* species complex strains to spread rapidly across an agricultural field. RSSC strains can survive in the soil for years as a saprophytic bacterium waiting for favourable host signals and conditions (Van Elsas et al., 2000). However, the spread of the pathogen across different fields and countries is not currently understood well and is thought to be generally associated with humans and agricultural practices. In the temperate regions, overwintering cold temperature infective phylotypes I and II are believed to rely on infection of perennial reservoir host plants because its persistence in the soil is limited, and detection from the soil in temperate climates is rare.

One known means of transmission for the phylotype IIB-1 (Race 3 Biovar 2) strain known as the "potato race", causing brown rot disease in temperate regions, is infected seed potatoes. They do not show symptoms at colder temperatures, but the bacteria proliferate when potatoes are sown in the Summer when temperatures are higher and favourable for the pathogen. In the United Kingdom specifically, contaminated river water used for irrigation has led to multiple outbreaks (Elphinstone et al., 1998b, 1998a; Tomlinson et al., 2009). Overall, little is known about the role of asymptomatic hosts in the spread of RSSC strains around the world. However, it is thought to be important in the UK, where there is a recognised but not well-understood link between the riparian plant *Solanum dulcamara*, which can sustain an asymptomatic infection, and the persistence of the *Ralstonia solanacearum* phylotype IIB-1 (Race 3 Biovar 2) strain in the river water system (Elphinstone and Matthews-Berry, 2017). *Solanum dulcamara* is a woody plant from the Solanaceae family that lives along riverbanks, and it is thought that it can provide refuge for *R. solanacearum* during the winter in the UK. In summer, the cells can be detected in the river water, and the water used for irrigation of potato fields has led to several outbreaks.

1.3. THESIS AIMS AND OBJECTIVES

The overarching aim of this project was to analyse the genetic diversity in *Ralstonia solanacearum* species complex based on whole genome sequences. In this research, I aimed to answer the following questions:

1. What is the global pangenome diversity in the *Ralstonia solanacearum* species complex, and what is the size of the core genome of the complex?

To study this, I constructed a pangenome of the *Ralstonia solanacearum* species complex based on a worldwide collection of bacteria obtained from the Fera Ltd. collection. I sequenced 384 bacterial isolates representing the whole distribution and all the known species of the complex. I aimed to obtain a comprehensive overview of all the gene diversity in the species complex and construct the pangenome with the latest sequencing technology and software.

2. What is the genomic diversity of *Ralstonia solanacearum* phylotype IIB-1 or the "potato race" in the United Kingdom?

I constructed a pangenome of *Ralstonia solanacearum* from the UK to study this. I studied a subset of 170 isolates from the species complex wide sample set obtained from Fera Ltd collection. The samples originated from a 30-years long annual river water survey performed by Defra in the UK to screen for contamination and prevent the spread to potato crop fields through irrigation. I studied this time-series genome sample by analysing the fine-scale single nucleotide changes that occur through time in the pangenome and the accessory genome variation in this temperate river water environment.

3. What is the diversity of Ralstonia solanacearum within agricultural fields in China?

In this study, I aimed to investigate the spatial distribution of genetic and phenotypic diversity of 96 *Ralstonia pseudosolanacearum* isolates from four tomato fields in four different provinces in China. Specifically, I asked if each tomato field harbours a unique genetic strain or if strain genotypes are mixing between fields for example due to human-mediated transmission. To achieve this, I constructed a phylogeny based on the whole genome sequences of the 96 isolates and compared the presence/absence of important virulenceassociated genes such as type III effectors and prophages. In addition, we looked at missense mutations in genes associated with key virulence pathways such as quorum sensing, motility, exopolysaccharide production., etc.

1.4. THESIS CHAPTER OUTLINE

This thesis includes the following chapters, presented in the form of research papers:

2nd Chapter: *Ralstonia solanacearum* species complex pangenome In this chapter, we compared the genomes of 384 *Ralstonia solanacearum* species complex (RSSC) strains from 55 countries including all four major phylogenetic groupings of the species complex. We found 18,080 gene clusters in the pangenome and estimated a core genome size of 1,704 genes. In the accessory genome network, we found that there are 210 separate components of genes that are cooccurring together. These genes included important virulence and defence genes and in 10% of the components, there were transposases. We also showed that recombination happened five times more often within the diversification of the RSCC phylogeny than mutation.

3rd Chapter: Three decades of survival in environmental reservoirs within the UK

led to little genetic diversification within *Ralstonia solanacearum* Following Chapter II, we investigated the genetic variation in time within a subset of 170 *Ralstonia solanacearum* species complex genomes originating from the United Kingdom. The population was highly clonal and belonged to the strain phylotype IIB-1 with mutation rates as low as one nucleotide change per year. However, the accessory genome of the countrywide sample studied had 55 genes that varied in intermediate frequency. The variation was linked to transposable elements and genes in their proximity in the genome. Using molecular clock dating techniques, we show that the population in the UK originated between 1958 and 1988, just several years before the first recorded outbreak in 1992. In addition, microbial GWAS identified links between a gene associated with antimicrobial resistance in a *Bacillus* spp. to be associated with time. Time was correlated with the increase in frequency of this gene.

4th Chapter. Multiple *Ralstonia solanacearum* lineages coexist in agricultural monocultures in China

In this chapter, we studied the phenotypic and genetic diversity of *R. solanacearum* within and between four tomato fields in China using a combination of genomics, phenotyping and physicochemical metadata collected at the level of individual plants' rhizosphere. We show that the plant rhizosphere between the fields is associated with each field on the biological and physicochemical levels. Furthermore, comparative genomics of 96 isolates (24 x 4 fields) shows that there are two genotypes of *Ralstonia solanacearum* phylotype I cooccurring per field and in total 8 different genotypes across the fields. The cooccurring genotypes differ regarding virulence traits and genes associated with type three effector proteins, quorum sensing, motility and iron-scavenging siderophores. In addition, microbial GWAS identified links between siderophore production and the IS5 family transposase IS1420, between growth and type III effector protein, and between *in planta* virulence and a RidA family protein.

2. Ralstonia solanacearum species complex

pangenome

2.1. ABSTRACT

Ralstonia solanacearum species complex (RSSC) is a group of phylogenetically and phenotypically diverse plant pathogenic bacteria. The strains within RSSC are found in multiple countries around the tropical and climatic zones and cause wilting and rot diseases on several economically important crops. Here we performed a pangenome study using 404 RSSC genomes, including three species from four phylotypes originating from 55 countries. We found 18,080 gene clusters in the open pangenome and estimated that the core genome consists of 1,704 genes. Across the RSSC phylogeny, we show that recombination has happened five times more often compared to mutation, indicative of its importance for RSSC adaptation. Moreover, we found 2,437 associating accessory genes within 210 independent components in the pangenome, which suggests multiple links or epistatic relationships between accessory genes. The genes within these components included type I-IV effectors, heavy metal resistance genes, prophage integrases and transcription factors. Moreover, we found that transposons accounted for 10% of the genes in the associating modules, which suggests that mobile genetic elements play an important role in the dissemination of genes related to virulence and environmental persistence in the RSSC pangenome. Together, these findings suggest that horizontal gene transfer is a major driver of RSSC accessory genome diversity, allowing it to adapt across a variety of ecological niches.

2.2. INTRODUCTION

Recombination, gene gain, and gene loss create variation in the gene content between individuals of the same species. This is the basis for the field of pangenomics studies (Golicz

et al., 2020), an extension of the idea of gene essentiality (Rancati et al., 2018). Bacterial species have a core genome shared by all or almost all the strains in the species and an accessory genome, which is shared by some strains and is beneficial only in certain environments or ecological niches. Pangenomics allow us to identify the frequency of genes of interest in a species, or even frequency of homologous genes in a whole database of gene sequences over wider taxonomy. This allows us to infer the essentiality of genes based on how universal or unique they are within certain environments. The pangenome of a species can be classified as open or closed, based on a gene accumulation curve. In other words, a pangenome is open if the number of new genes constantly increases when new genomes are included in the dataset. In contrast, if the number of genes plateaus after a certain threshold the pangenome is considered closed (Mira et al., 2010). However, this is a concept that can be biased by sampling and classification. Generally, species with larger and open pangenomes are expected to have wider distribution, more migration, and bigger long-term effective population sizes compared to species with closed pangenomes (McInerney et al., 2017). Pangenomics studies on model organisms such as Eschericia coli and Pseudomonas aeruginosa, have been very successful, for example, in identifying horizontal gene transfers, exploring accessory gene variation, and investigating outbreaks (Freschi et al., 2019; Tantoso et al., 2022). Pangenomics approaches have also been utilised with plant pathogenic bacteria. For example, in the cassava blight pathogen *Xanthomonas axonopodis*, sequencing a large number of diverse isolates helped to identify a core set of Type III effectors (Bart et al., 2012). Although pangenomics has become a rapidly expanding field of research, there is still a big gap in our understanding about how the immense gene diversity is maintained in bacterial populations.

Ralstonia solanacearum is an example of a bacterial species complex whose genome has been described as open (Geng et al., 2022). Due to historical reasons, the name *R. solanacearum* is still used to refer to a species complex of bacteria currently classified as three phylogenetic species: *R. solanacearum*, *R. pseudosolanacearum*, and *R. syzygii* (Safni et al., 2014a). In the past, the species complex was divided into phylotypes based on a few marker gene sequences which now roughly represent the species clades in the phylogeny: *R. solanacearum* is phylotype II, *R. pseudosolanacearum* phylotype I and III, and *R. syzygii* phylotype IV (Wicker et al., 2012a). In this *R. solanacearum* species complex (RSSC), all the strains are

phytopathogenic and can infect important crops such as tomatoes, potatoes, and bananas. The RSSC is notoriously diverse genetically and phenotypically with many strains capable of infecting multiple plant host species (Hayward, 1991a). Although RSSC consists of three species, the capability of infecting solanaceous plants is a dominating feature in the group, making the species complex a meaningful unit of bacteria that are a causal agent of wilting disease in plants (G Cellier and Prior, 2010). Thus, this capability is likely to be part of the core genome of RSSC and an ancestral trait that can be traced back to their most recent common ancestor. Alternatively, the presence of the same hosts within all three phylogenetic species clades could be indicative of convergent evolution where RSSC strains have independently evolved to infect tomato plants on three different occasions for the three clade split of the species phylogeny (G Cellier and Prior, 2010). Another interesting feature of RSSC is their ability to infect plants in warm and temperate climates. In general, RSSC strains prefer warmer temperatures and climatic zones, and all known strains can grow at 28 °C (Bocsanczy et al., 2014). However, R. solanacearum and R. pseudosolanacearum can be considered cosmopolitan as they include strains that can grow at 10 °C (Personal communication E. Farnham, (Bocsanczy et al., 2017; Caruso et al., 2005a)). In contrast, R. syzygii and its three subspecies have only been found in Indonesia where it causes diseases on several plants, including economically important banana. The R. syzygii subsp. syzygii causes Sumatra disease on clove and has an insect vector, R. syzygii subsp. indonesiensis is a broad host range pathogen, and R. syzygii subsp. celebesensis affects plants from the monocot genus Musa (Remenant et al., 2011; Safni et al., 2018). Collectively, the broad host range and width of occupied niche space highlights the RSSC ecological diversity, but how this reflects to the pangenome level is still unclear.

To an extent, the capacity of RSSC to thrive in a repertoire of hosts and environments can be accounted to its relatively large genome size (\sim 5–6 Mb), which is made of two replicons: chromosome (\sim 3.7 Mb) and megaplasmid (\sim 2.1 Mb) (Genin and Boucher, 2004). The two replicons share evolutionary history, carry essential genes, and are always inherited via binary fission but are called the Chromosome and the Megaplasmid, rather than two chromosomes, for historical reasons (Genin and Denny, 2012a). Previous studies have shown great diversity within RSSC in virulence-associated genes such as the type 3 effectors (Sabbagh et al., 2019). These effectors play an extremely important role in the bacterial infection mechanisms and in the recognition by the plant immune systems (Straub et al., 2021b). In addition to secretion system effectors, RSSC genomes are notably diverse in prophages (Greenrod et al., 2022a; Souza et al., 2021), phage defence systems (Castillo et al., 2020), insertion sequences (Gonçalves et al., 2020a; Greenrod et al., 2022b), which can also be indirectly linked with virulence. The relative importance of different genes have been studied using transposon insertion libraries, where effects of different genes can be assessed across different environments (Su et al., 2020). In one RSSC gene essentiality study, where a near-saturated transposon insertion library of the type-strain for RSSC GMI1000 was created, researchers identified 465 essential genes, 354 of which were previously identified in other bacteria, and 34 new genes potentially critical only for RSCC bacteria (Su et al., 2020). This number is much smaller than the previously estimated core genome size of the RSSC although to our knowledge no study has performed comprehensive core genome size estimates (Geng et al., 2022; Sharma et al., 2022). There are known differences in horizontal gene transfer rate and accessory gene content between the phylotypes (Sharma et al., 2022; Wicker et al., 2012a), for instance, virulence factors and mobile genetic elements that are specific to strains (Geng et al., 2022). Therefore, movement of genes within each species could be limited and there may be no horizontal gene transfer happening across the species complex due to genetic limitations or simply due to geographic separation.

In this study, we collated an extensive worldwide strain collection of RSSC species complex from Fera Ltd. cryo stock samples. We aimed to acquire isolates from all the sampled countries with a variety of hosts of isolation to get the wealth of diversity of the species complex. This resulted in a collection of 195 isolates from 55 countries and 189 isolates from a time series over 27 years in the United Kingdom for a total of 384 bacterial isolates. The genomes of these isolates were sequenced and after quality checks, 356 high quality genomes were kept for analysis of their pangenome. Moreover, we downloaded 46 complete genomes available in NCBI to represent published genome diversity of the species complex. Based on this extensive genome collection we constructed a pangenome for RSSC that consisted of 18, 080 gene clusters and estimated that the core genome consists of 1,704 genes. Furthermore, we found 210 associating components within an association network constructed based on the accessory genome. Moreover, 10% of these components had transposal elements within them suggesting insertion sequence movement is associated with lineage independent accessory genes in RSSC.

2.3. METHODS

2.3.1. DATA

2.3.1.1. STRAIN COLLECTION

384 isolates belonging to the *Ralstonia solanacearum* species complex (RSSC) were chosen from the cryo collection at Fera Ltd. based on metadata available in archives. The whole set was confirmed to belong to the RSSC complex by real-time PCR protocol designed to identify isolates within any of the four phylotypes of the RSSC (Weller et al., 2000). All strains were preserved at -80 °C in a cryoprotectant system (Protect) at Fera Ltd. Some of the strains are part of the commercially available stocks within the National Collection of Plant Pathogenic Bacteria (NCPPB) and were available as freeze-dried cultures. Working cryo stock libraries of the isolates and genome database of RSSC were created at The University of York, and a YO number from 1-384 was given to the isolates (Appendix 1). The *R. solanacearum* species complex isolates were chosen to represent a UK and a World collection: 176 isolates belonged to the UK *R. solanacearum* population and 208 representing the known worldwide diversity across the RSCC.

2.3.1.2. SEQUENCING

The isolates were grown on SP and agar media overnight (EPPO, 2018; Lelliott and Stead, 1987), and a single colony was chosen for DNA extraction with Qiagen Blood and Tissue kit. The DNA quality was checked with Nanodrop and Quantit. The DNA was sent for Illumina MiSeq sequencing at the Earlham institute in the UK, and we received raw untrimmed paired FASTQ files for all 384 genomes. In addition, 24 of the isolates were re-sequenced with Nanopore MinIon technology at the University of York by the technological facility on site. The data received was base called by the technology facility staff using Guppy and raw FAST5 files, and raw FASTQ files were received. All the raw FASTQ files from the Illumina and Nanopore runs are publicly available at the NCBI SRA and metadata under project number PRJNA823737.

The raw FASTQ short read files were adapter trimmed with TrimGalore, and quality was checked with FASTQC and MultiQC (Ewels et al., 2016). *De-novo* assemblies were made using Unicycler (v 0.4.7) on either short read mode only or combined mode with the long reads for the 24 isolates available (Wick et al., 2017a). Contigs were filtered based on GC content (>=0.66<0.67) and minimum length (5Mb). As a result, 356 draft genome assemblies were deemed good quality out of the initial 384. Mash (v2.3) was used to align contigs against a local RefSeq installation to identify potential contaminants in the assemblies (Katz et al., 2019). In addition, 24 of these genomes were re-made by a hybrid assembly of MinIon and Illumina reads using Unicycler. Furthermore, 48 assemblies for *Ralstonia solanacearum*, *Ralstonia pseudosolanacearum* and *Ralstonia syzygii* were downloaded from NCBI GenBank FTP on 10/06/2020 along with 1 *Ralstonia pickettii* 12J representative genome strain for the species and type strain for the *Ralstonia genus*. The 47 genomes were chosen if they were labelled as *Ralstonia solanacearum* (taxonomy number 490) and had full and complete assemblies in NCBI (See Appendix 2 for accessions). All assemblies were annotated with prokka (v1.14.6) (Seemann, 2014a).

2.3.2. PANGENOME & PHYLOGENY

Panaroo (v1.3.0) (Tonkin-Hill et al., 2020) was used to construct a pangenome for 405 RSSC genomes (48 NCBI genomes + 356 from the University of York). Panaroo was run on default mode with the option "–strict" and without merging the paralogs and with the MUSCLE aligner. The phylogeny was constructed with IQ-tree and GTR+G model with two bootstrap methods, FastBoot and ALrT boot, from the core genome alignment produced by panaroo (Nguyen et al., 2015a). The phylogeny was dated using BactDating (Didelot et al., 2021). Pangenome size was estimated using a helper script with panaroo for The Infinitely Many Genes (IMG) (Collins and Higgs, 2012).

2.3.3. ASSOCIATION OF ACCESSORY GENES NETWORK

Panaroo was run a second time with the same command but a subset of highest quality genomes for further downstream analysis: 166 (47 from NCBI + 119 from the York Collection) high-quality genomes were chosen by removing most of the genomes that belong to phylotype IIB-1 clonal branch and leaving only the nanopore and Illumina hybrid assemblies

for this branch and removing genomes that were less than 4Mbp total length and were producing very short alignments after gap trimming. The core gene alignment was trimmed using trimAL and -gt 1 to remove the gaps from the alignment (Capella-Gutiérrez et al., 2009). The phylogeny was constructed using the same method as above. The output was used to put into Coinfinder (v1.2.0) with Bonferroni correction and a cut-off value for the D statistic of >=- 0.25 (Whelan et al., 2020). Eggnog mapper was used with the DIAMOND algorithm (Buchfink et al., 2021) to annotate the significant accessory genes with KEGG and GO terms (Cantalapiedra et al., 2021; Jensen et al., 2008).

2.3.4. RECOMBINATION ANALYSIS

Recombination in the genome sequences was detected using 100 runs of prokaryotic recombination estimation software ClonalFrameML (Didelot and Wilson, 2015). Recombination calculations were done using the following formula for the ratio of the relative effect of recombination and mutation (r/m) for each simulation run:

$$\frac{r}{m} = \frac{R}{\theta} \times \delta \times \nu$$

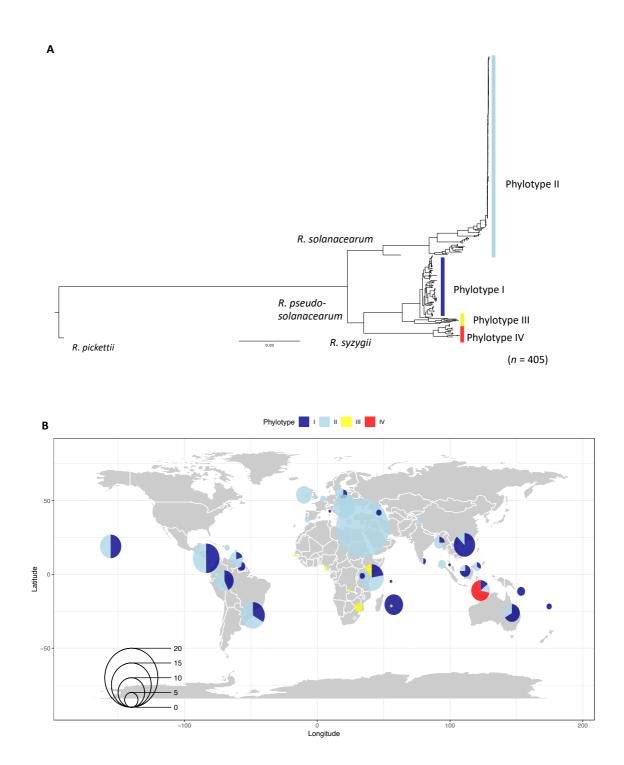
 $\frac{R}{\theta}$ - The ratio of recombination and mutation rates

 δ - the mean length of imports u - the average distance of the imports

2.3.5. VARIANT CALLING

Snippy (v4.6.0) was used on all the 356 short-read genomes against type strain for the species complex GMI1000. Snipy-core accessory script available on the Snippy Github page was used to generate a core genome alignment and the recombination was cleaned from the alignment using Gubbins (v3.2.1) (Croucher et al., 2015). Using the BAMs from Snippy freebayes was run on an alignment of the best 153 genomes against the GMI1000 reference genome with the following command: freebayes --min-alternate-count 5 --min-coverage 20 --use-best-n-alleles

4 -q 30 -m 60 -L bams.list -p 1 . This produced a vcf with 500,118 variable sites which was further filtered for missingness allowing maximum of 40 individuals to have a missing site with vcfkit using the following command: vk filter MISSING --max=40. This left 374,706 core genome variants in the variant calling file.

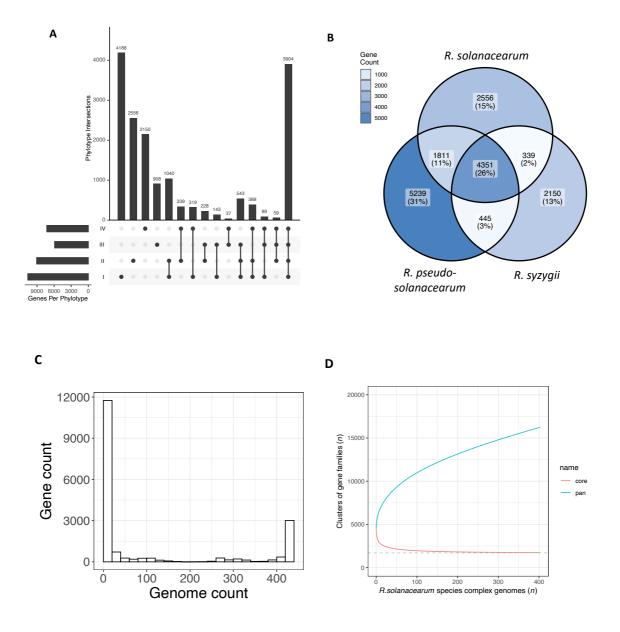

2.3.6. GRAPHICS & DATA ANALYSIS

Additional graph plotting, tree visualisation and data analysis were done in R (R Core Team, 2017) with R studio (R Studio Team, 2020) and the packages ggtree (Yu et al., 2018) and ggplot (Wickham, 2009).

2.4. RESULTS

2.4.1. Phylogenetics of the *Ralstonia solanacearum* species complex

We ran a pangenome analysis with the pangenome software panaroo using 404 Ralstonia solanacearum species complex genomes and 1 Ralstonia pickettii 12J genome as an outgroup. The phylogeny was used to assign the *R. solanacearum* species complex genomes to a species and phylotype according to the phylogenetic clustering of the strains. To achieve this, NCBI genomes with known phylotype assignments were used as a reference for each phylotype and branch assignment as well as type strains present in our dataset from the NCPPB collection (Figure 6 A). The overall clustering of the phylogeny and the placement of the root for the species complex aligned with the previously observed phylotypes I to IV. However, the splitting of phylotype II, also known as R. solanacearum species sensu stricto, into the subphylotype IIA and IIB was not clearly observed, and for this reason we assigned the strains belonging to this branch as simply phylotype II (Figure 6 A). We show the distribution of the assigned phylotypes in our dataset across the world map based on the country they originated from. The map shows the clear bias in our dataset towards phylotype II and the overall very small number of isolates from phylotypes III and IV. Moreover, most of the isolates in the dataset (n=250) were placed within a clonal branch of phylotype II known as the "potato race" or phylotype IIB-1. The isolates within the clonal branch were from South America, Africa and Europe but had hardly any genetic diversity among them. Therefore, our dataset represents a good global distribution of the RSSC strains but fails at representing replication and diversity within locations and especially diversity within different locations in in time.


Figure 6. Core genome phylogeny of Ralstonia solanacearum species complex.

A. Phylogeny highlighting the UK isolates belonging to clonal strain phylotype IIB-1 (race 3 biovar 2). Maximum Likelihood (ML) phylogeny based on 405 RSSC genomes: 332 draft short read data only assemblies + 24 hybrid long read and short read assemblies + 48 *Ralstonia solanacearum* species complex NCBI genomes and *Ralstonia pickettii* 12J used as an outgroup. B. Map showing the country origin of the samples within a known country of isolation and split by phylotype assignment. The isolates originating from the UK were removed for ease of visibility.

2.4.2. Pangenome size of the *Ralstonia solanacearum* species complex

We estimated the size of the pangenome using the output from panaroo and the IMG model implementation provided as an accessory script. The total number of gene clusters found in the pangenome was 18,080. The core genome was defined as gene clusters shared by 90% of the genomes in the sample set and equalled 19% of the total pangenome clusters (n = 3,463). The rest of the gene clusters shared by less than 90% of the genomes made up the accessory genome consisting of 14,617 gene clusters. We observed large numbers of accessory genes unique to each species and phylotype in the complex (Figure 7 **A&B**). Moreover, the majority of the gene clusters were at low frequency as 63% of the total gene clusters were found only in 1-20 genomes (Figure 7 **C**). This result was unsurprising due to the large diversity of strains and location of isolation in the dataset and especially because we lacked replication within the locations studied apart from within the UK (Figure 6 **B**). Moreover, a total of 1,324 gene clusters or seven percent of the RSSC pangenome were annotated as transposons or transposition-related genes, which highlights the potential importance of mobile genetic elements for the evolution of RSSC pangenome.

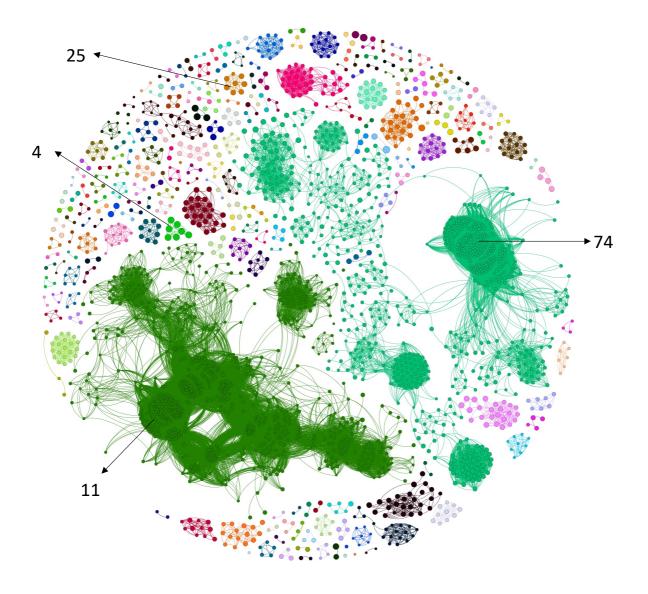
To estimate the size of the pangenome we dated the phylogeny with the Bayesian molecular clock model estimator Bactdating and ran the IMG model provided as a helper script in panaroo. This analysis was performed to correct for an ever-decreasing core genome issue encountered with simple rarefaction curve estimates. The IMG model requites a dated phylogeny. However, the parameters of the Bayesian model used for dating the phylogeny here did not reach sufficient sampling. Therefore, the results of the pangenome size analysis will be affected by the lack of accurate dating but we still deemed the model approach better than the simple rarefaction curve analysis. The result is a core genome size estimate of 1705 gene clusters (Figure 7 **D**). Overall, the core genome size did not change much with the addition of genomes after 100 showing that the core genome size remains fairly constant in the RSSC.

Figure 7. Pangenome diversity and size

The pangenome of the 431 genomes used in the pangenome analysis is broken down in frequency groups. The pangenome (total number of genes) = 18,080. The core genome (genes shared by 90% of the isolates) = 3,463 genes. The accessory genome (genes shared by less than 90% of the genomes) = 14,617. A) Gene clusters per phylotype. Combinations of gene cluster size depending on grouping of phylotypes shown as bar size and number on top of the bar. B) Gene clusters per species; C) The number of genomes that carry each gene cluster in the pangenome. x-axis = Number of genomes with a gene present.; y-axis = Number of occurrences of a certain number of genes present in the genome set (population). The number of bins in the histogram was determined by Sturge's rule. D) Rarefaction curve of the pangenome. The dashed grey line shows the size of the core genome for RSSC based on IMG model = 1705. Solid lines show the increase in gene cluster number as genomes are added and the effect on core size in red and pangenome size in blue.

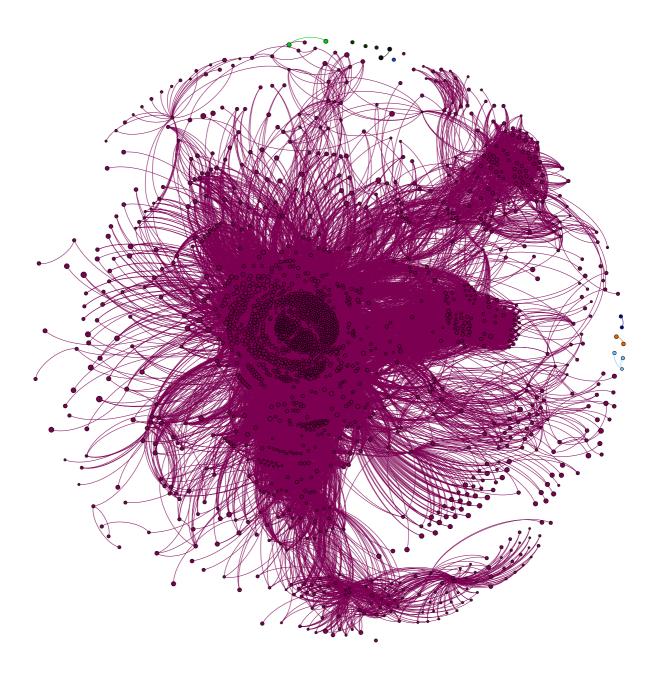
2.4.3. Recombination has happened five times more often than mutation in the *Ralstonia solanacearum* species complex phylogeny

To investigate the source of the sequence diversity within our genome sample set, we estimated the homologous recombination rates relative to mutation rates using the whole genome alignment of the genomes. We used ClonalFrameML software as it can estimate recombination from outside the sample set of genomes studied. We ran the model for the whole species complex phylogeny to get the overall estimate of the relative effect of recombination and mutation for the diversification of the *Ralstonia solanacearum* species complex (Supplementary Figure 2).


We saw a total number of 1,290 predicted recombination events in the alignment. According to the bootstrapped whole phylogeny model the ratio of the relative effect of recombination and mutation was predicted to be r/m = 5.18 [5.07 - 5.32] and the ratio of the frequency of recombination and mutation R/theta = 0.02 [0.02 - 0.02]. The average length of recombined fragments was estimated to be δ = 1,864 [1,832 - 1,894] bp and the average divergence

between donor and recipient was v = 0.12 [0.12-0.12]. This result shows that mutation happened five times more often than recombination in the diversification of the *Ralstonia solanacearum* species complex, however, recombination contributed on average over 200 base pairs ($\delta v = 221$ bp) of sequence which is a lot longer sequence change compared to point mutation. Therefore, recombination could transfer whole or parts of genes and change the evolutionary trajectories faster than mutation.

2.4.4. Coincident gene relationship in the *Ralstonia solanacearum* species complex accessory genome


For the associating and dissociation analysis genes, we excluded genomes shorter than 3.5 Mbp and kept only a few isolates from the phylotype IIB-1 clonal branch as the software used Coinfinder cannot deal with clonal branches in a phylogeny. This left 166 high-quality genomes (118 from York Collection and 48 from NCBI) for the cooccurrence analysis. However, this only reduced the total number of genes present in the pangenome by 192 gene clusters (from 18,080 to 17,888) (Supplementary Figure 1).

In the software Coinfinder, coincident gene relationships are expected within the accessory genome, where the presence or absence of one gene is influenced by the presence or absence of another (Whelan et al., 2020). Using Coinfinder, we identified a gene co-occurrence network that consisted of 2,437 nodes joined by a total of 68,028 (Figure 8) and an avoidance network composed of 1,998 nodes joined by 222,571 edges (Figure 9). Interestingly, the co-occurrence network is more extensive in terms of the number of nodes but smaller in terms of the number of interactions compared to the dissociation network. This could be due to the small number of closely related strains present within each species in the phylogeny, creating very few connections between the genes from different clades that are not in the core genome that will have the required D value. The co-occurrence network has 210 components (clusters of nodes), and the number of components and the avoidance network had very few with most of the nodes (n=1,937) belonging to a single component (Supplementary Figure 3).

Figure 8. Association (cooccurance) network of associating accessory genes

Each gene cluster from the pangenome analysis is shown as an individual node. The edges that connect each node indicates a significant gene relationship between two nodes after Bonferroni correction and D-value filtering. The nodes are coloured by connected component (cluster), defined as a group of genes that form relationships with one another and not with the rest of the network. The size of the nodes indicates the D-value (large means larger D-value or more lineage independence).

Figure 9. Dissociation (avoidance) network of associating accessory genes

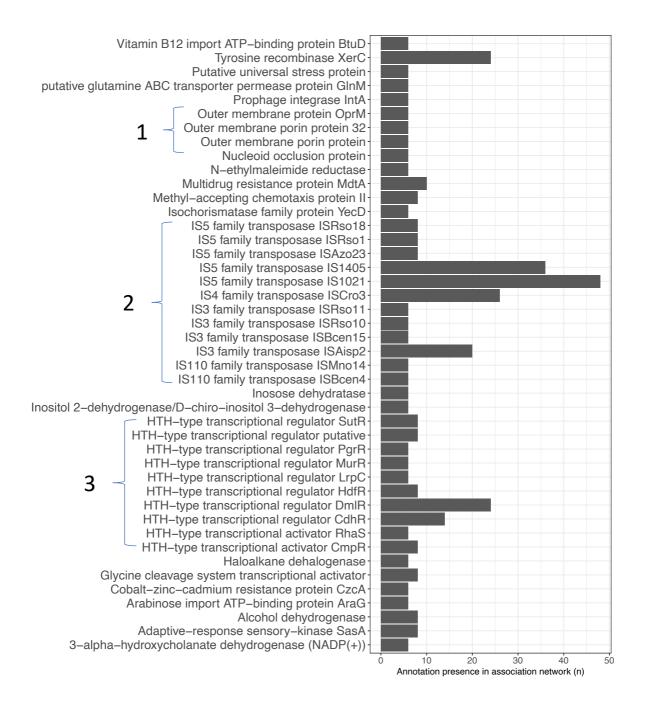
Each gene cluster from the pangenome analysis is shown as an individual node. The edges that connect each node indicate a significant gene relationship between two nodes after Bonferroni correction and D-value filtering. The nodes are coloured by connected components (clusters), defined as a group of genes that form relationships with one another and not with the rest of the network. The size of the nodes indicates the D-value (large means larger D-value or more lineage independence).

2.4.5. Coincident gene relationship in the *Ralstonia solanacearum* species complex accessory genome associated with virulence and mobile genetic elements

The co-occurrence gene network is based on the idea that components of interacting genes share functional interactions and dependencies and therefore we report some known and potentially novel gene interactions within the components we found. Out of the 573 unique annotation terms, we found the most common term was "hypothetical protein" found 3,168 times across the association network. Most other terms were found in low frequency across the network with less than five occurrences per annotation term (See Appendix 3 for all components and gene annotations within them). Apart from unknown function proteins transposases take the lead with 12 transposases present in the most frequent terms (>=5 occurrences across components) in the association network (Figure 10 (2)). Among the most frequent annotations were also porins (Figure 10 (1)) and HTH-type transcriptional regulators (Figure 10 (3)). Other terms found in lower frequencies in the network were drug resistance, type I, II, III, IV system protein, nickel, cobalt and copper resistance, flagellar synthesis associated proteins, prophages, many transcription regulators and DNA-binding proteins.

We found multiple type III and II effector genes within the same components. Component number 86 consisted of ten gene clusters four of them annotated to be within the type II secretion system (*epsF, epsG, epsE* and *xcp*T) and one within the type III secretion system (*sctC*) (Supplementary Table 1). The production of exopolysaccharides (EPS) is a major component of the RSSC strains' virulence and contributes to plant host recognition and defence system activation. Avirulent variants do not produce EPS and have been found to be resistant to some phages (Milling et al., 2011). It has been shown that spontaneous avirulent mutants appear in *Ralstonia solanacearum* cultures that cannot produce EPS. This suggests a cluster of EPS production-related genes can move around the genomes of the *Ralstonia solanacearum* species complex.

Transposable elements are known to contribute to *Ralstonia solanacearum* species' complex genome plasticity (Gonçalves et al., 2020b). We found that transposases were the most frequently found annotation term in the association network, so we investigated how many


components in the network included transposases. A total of 21 of the associating components had genes annotated as transposases or transposition related genes. This suggests that 10% of the total 210 components in the network belong to transposases, highlighting the importance of mobile genetic elements and horizontal gene transfer for the accessory genome size and diversity. The 21 components that included transposases (11, 74, 5, 42, 33, 175, 30, 80, 18, 41, 57, 110, 2, 9, 22, 8, 48, 168, 199, 196, 208) had a total of 38 unique transposases (Supplementary Table 2). Two of these components were the two biggest components found in the association network 11 and 74 (Figure 8). The component 11 had 790 nodes and 72 of the nodes were for transposase genes. The most common one was IS5 family transposase IS1405. The component 74 had 730 nodes and 16 of the nodes were for transposase genes with the two most common being IS5 family transposase IS1021 and IS5 family transposase ISAzo23. However, we also found a lot of gene components that were not associated with transposable elements and have hence used a different means of moving across the phylogeny.

Overall, most of the genes in associating with the transposons were hypothetical. However, component number 33 had a transposal element associated with a molecular transport protein. The component had 15 nodes and thirteen of them were hypothetical genes but one of them group_10388 is annotated as *cycA* a D-serine/D-alanine/glycine transporter (Robbins and Oxender, 1973) (Supplementary Table 1). Five of the transposase-associated components represented multiple genes all encoding the same transposase (5,42, 80, 22, 8). For example, component number 5 is composed of 23 genes all of which encode IS5 family transposase IS1021. Component 42 consists of two genes both encoding IS3 family transposase ISAisp2. Component 80 is two genes both encoding IS3 family transposase IS401. Component 22 is two genes both encoding IS3 family transposase IS401. Component 8 is two genes both encoding IS701 family transposase ISRso17. One component, number 41, had two genes a transposon Tn3 family transposase ISPa43 and a recombinase Tyrosine recombinase XerC associated with it.

We also examined the components that had the highest D-value which meant they were most lineage independent. Some nodes were highly dispersed across the phylogeny and therefore had a high D-value score which indicates high lineage independence as the gene is present in

57

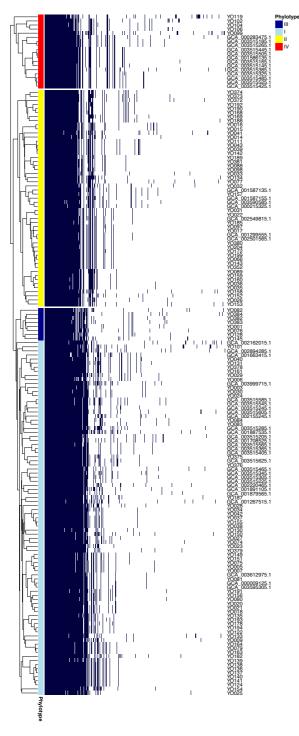
a random not lineage-associated pattern in the phylogeny (Fritz and Purvis, 2010). The components that had the highest average D scores across the nodes they were made of were number 4 and number 25. The top component was number 4, made of seven genes, one of which was the gene *capV* - a gene known to be part of a two-component complex *capV* and dncV in Escherichia coli where it provides 1000-fold protection against phage P1 (Cohen et al., 2019). The second highest D value was in component number 25 which contained eight nodes, seven of the genes were hypothetical and one was associated with flagellin production control (hin_1~~~hin~~~hin_2). The hin gene encodes a DNA-invertase that regulates the synthesis of phase-2 associated with the gene *fljB* in the animal pathogen Salmonella typhimurium (Kutsukake et al., 2006). Flagella swimming motility is a key component of the Ralstonia solanacearum virulence (Corral et al., 2020). This result suggests that phage defence and virulence proteins are highly mobile as they were found within components associated with lineage independence. Moreover, a prophage integrase and a tail sheath protein were found in the association network within seven components (11, 43, 31, 70, 26, 178, 65). The prophage integrase intA was the most common phage-associated gene found and it was in five components but there were also two occurrences of a putative prophage major tail sheath protein *gpFl*. All the rest of the genes in these seven components were annotated as "hypothetical proteins". Prophages are known to provide genomic plasticity in Ralstonia solanacearum species complex (Gonçalves et al., 2021; Greenrod et al., 2022a).

Figure 10. Top annotation terms in association coincidence network

The annotation terms for all components in the association network were pooled and most frequent ones are plotted (>= 5 occurrences across components). The term "hypothetical protein" that occurred 3,168 times is excluded for ease of visualisation. Labels 1-3 added for 3 groups of similar annotations as follows: outer membrane porins, transposases and HTH-type transcriptional regulators.

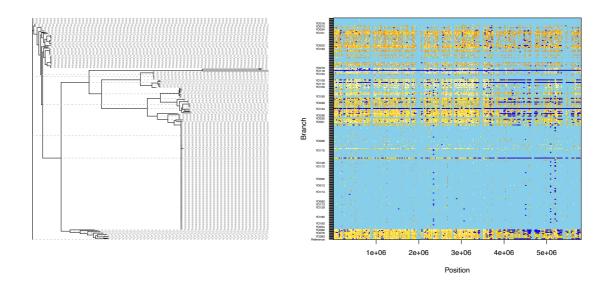
2.5. DISCUSSION

Here we performed a pangenome study of an extensive sample set *of Ralstonia solanacearum* species complex from all four phylotypes and from 55 different countries. We show that the species complex has a large pangenome with multiple unique genes in each phylotype. Moreover, we show that multiple genes associated with virulence, defence, prophages, and transposases are present in association modules within a cooccurrence network we constructed. This indicates transposal elements and prophage integrases are associated with virulence and defence and potentially with the transport of these genes within the species complex. This result aligns with the other finding that recombination occurred five times more often than mutation.

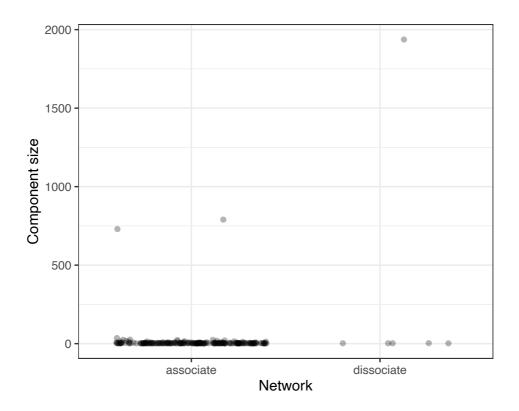

We estimated the size of the core genome of the Ralstonia solanacearum species complex using the IMG model based on a pangenome of 18,080 gene clusters to be 1704 (Collins and Higgs, 2012). However, the input for the IMG model is a dated phylogeny, and we were unable to reach sufficient sampling of the Markov Chain Monte Carlo (MCMC) model for the dating. Therefore, there is some uncertainty in this result as when the dating of the phylogeny is not sufficient problems associated with simple rarefaction estimates of core genome size apply (Collins and Higgs, 2012). Moreover, our pangenome size was smaller than a previous pangenome study on a smaller number of genomes of RSSC (n=131) that found an open pangenome with 32,961 gene families (Geng et al., 2022). This result is probably due to the overrepresentation of phylotype I and II isolates in our sample and the underrepresentation of phylotype III and IV. Moreover, here we constructed a whole genome phylogeny based on the core genome alignment of the core gene clusters. Our phylogeny clustering agreed with species delineation within RSSC, however, we failed to separate phylotype II into the previously estimated IIA and IIB (Safni et al., 2014a). However, problems with the separation of phylotype II into subgroups were observed before in a recent metanalysis that aimed to unify the nomenclature and classification across RSSC studies (Kurm et al., 2021). The researchers suggested a new phylotype IIC in needed to account for diversity based on whole genome studies (Kurm et al., 2021). These discrepancies mainly indicate the change from several gene phylogenies which were used to create the phylotype phylogeny and the new whole genome sequencing era where phylogenies are based on the whole set of core genes of the species. However, overall, the phylotype concept holds well with the whole genome phylogeny performed here.

The presence of cooccurring genes suggests these genes exhibit a positive reinforcement (Whelan et al., 2020). Here we found 210 components of significantly associated genes in the accessory genome and amongst them there were transposal elements, prophage integrases, transcriptional regulators, and genes associated with abiotic defence. We previously reported that prophages are phylotype specific in the *Ralstonia solanacearum* species complex but here we are also reporting prophage integrase genes being sufficiently lineage-independent (Greenrod et al., 2022a). Prophages have been shown to directly influence the virulence of *R*. solanacearum in tomato (Addy et al., 2012). Therefore, the presence of integrase in associating components across the phylogeny suggests their role may be universal and associated with virulence and survival mechanisms in RSSC. Moreover, transcriptional regulators and IS element overrepresentation in the accessory genome association network indicate that diversification in RSSC happens with transposable elements moving around transcriptional regulators. This agrees with the previously proposed model for genetic diversification of RSSC with master regulators controlling virulence traits (Genin and Denny, 2012a). The huge genome of *R. solanacearum* can be regulated by introducing variation through transcriptional regulators. However, the massive number of hypothetical proteins found in the association network suggests there are a lot of highly niche-specific genes that we cannot infer a function of within the accessory genome. In addition, a previous study of gene cooccurrence in *E. coli* also identified transposable elements in the association network (Hall et al., 2021). Moreover, they found that one transposase *tnpA* was a hub gene making connections to around eight hundred other genes (Hall et al., 2021). These results show the importance of transposases in the accessory genome and show that they are not only part of it but a central component. Together the results indicate that transposable elements may be common within lineage independent accessory gene components not only in R. solanacearum but broadly across bacteria.

Here, we found 38 unique transposal elements within the association network, but undersampling probably affects this diversity, and more sampling would have provided a greater diversity of genes. Moreover, transposable elements move frequently therefore if multiple samples from the sample location and time, could provide better detection of transposases and show their dynamic movement across the genomes. For instance, isolate YO119 is the only *Ralstonia syzygii* (phylotype IV) isolate from clove from Indonesia isolated in 1983 we have. We found that an IS5 family transposase IS1420 (group_13645) is in proximity with genes Toxin *HigB-2* and Antitoxin *HigA-2*, DNA-invertase *hin*, modification methylase *DpnIIB*, LexA repressor and Tyrosine recombinase *XerC* in that genome. But in another 3 genomes from *R. syzygii* (YO102, YO104, YO106) all isolated from banana, again in Indonesia, but collected a few years later in 1987, we found the same toxin gene (Toxin HigB-2) on a DNA fragment close to putative HTH-type transcriptional regulator but no IS element. The lack of replication makes it hard to draw conclusions from comparisons like these and understand the dynamics of the accessory genome in RSSC. It is possible that the toxin-antitoxin systems have moved across strains of RSSC with the aid of an insertion sequence, but it is very hard to disentangle.


Overall, the comparative power of the analysis is limited here by the lack of replication for some isolates. Strains were under-sampled if they are from outside Europe, North America, or China. Phylotype IV (*R. syzygii*) strains are particularly badly represented in the dataset as it has only been found in Indonesia. Here, we aimed to include more countries and show the diversity across many countries which limits the analysis if a phylotype is only found within one country. The only country where we have multiple samples is the United Kingdom. Moreover, potato agriculture bias has driven the oversampling of the "potato race. However, the existence of a clonal branch is not exclusive to phylotype II and in phylotype I where more samples are available there are also clonal branches in the phylogeny. The phylotype I isolate which have been sampled from the same place over the space of several years shows clonality. For instance, several Mauritius samples over a few years from different crops seem to show high similarity. Therefore, we believe more clonal lineages will be present across the RSSC phylogenies if sampling is performed over time in different locations.

2.1. SUPPLEMENTARY



Supplementary Figure 1. Panaroo pangenome gene presence-absence

The hierarchical clustering shows the clustering of the bacterial isolates based on their gene presence and absence. Gene names on the x-axis are removed for ease of visualisation. 17,888 gene clusters are shown representing the pangenome.

Supplementary Figure 2. ClonalFrameML default output graph showing recombinant regions in the genome. The dark blue regions represent recombination. Sites that are non-polymorphic for a given branch are shown in light blue. Polymorphic sites are shown in a colour indicating their level of homoplasy: white is no homoplasy and the range from yellow to red is increasing degrees of homoplasy.

Supplementary Figure 3. Coinfinder graphs component size

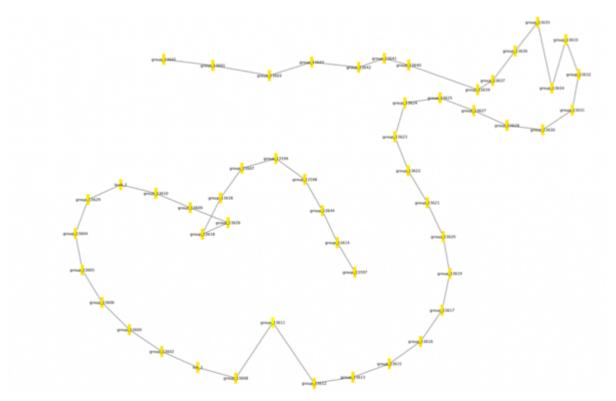
The number of nodes in each component in the network graphs for association and dissociation shown. Points are jittered and slightly transparent for ease of visualisation.

Ν	Gene clusters in component	Gene cluster annotation
86	epsF_5epsF_4epsF_3	Type II secretion system protein F
	group_552	hypothetical protein
	epsEhxcR_2	Type II secretion system protein E
	epsGxcpT_3xcpT_1xcpT_2	Type II secretion system protein G
	group_53	hypothetical protein
	group_508	hypothetical protein
	xcpT_3xcpT_5xcpT_2xcpT_4	Type II secretion system protein G
	group_11633	hypothetical protein
	sctC_6sctC_7sctC_4sctC_5sctC_8sctC	Type III secretion system secretin
	_2sctC_1	

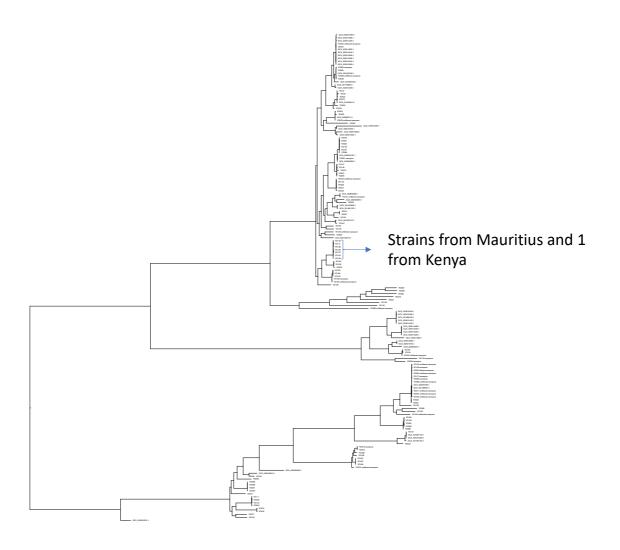
	group_11904	ATP-dependent zinc
		metalloprotease FtsH
4	group_11586	hypothetical protein
	group_5626	hypothetical protein
	group_4325	hypothetical protein
	group_10342	hypothetical protein
	group_11873	hypothetical protein
	group_4197	hypothetical protein
	capV	cGAMP-activated phospholipase
25	hin_1~~~hin~~~hin_2	DNA-invertase hin
	group_11821	hypothetical protein
	group_1447	hypothetical protein
	group_10227	hypothetical protein
	group_9261	hypothetical protein
	group_7173	hypothetical protein
	group_7172	hypothetical protein
	group_2264	hypothetical protein
	group_1243	hypothetical protein
33	group_3230	hypothetical protein
	group_132	hypothetical protein
	group_2387	hypothetical protein
	group_599	IS630 family transposase ISCARN39
	group_11985	hypothetical protein
	group_11756	hypothetical protein
	group_11422	hypothetical protein
	group_407	hypothetical protein
	group_10389	hypothetical protein
	group_4318	hypothetical protein
	group_3457	hypothetical protein

	group_10388	D-serine/D-alanine/glycine transporter
	group_8091	hypothetical protein
	group_6126	hypothetical protein
	group_10313	hypothetical protein

Supplementary Table 1. Coinfinder graphs example components


The gene clusters and their annotation as taken from panroo as presented in the table.

Ν	Transposase Annotations
1	IS21 family transposase ISRso6
2	IS21 family transposase ISRso19
3	IS3 family transposase ISAisp2
4	IS701 family transposase ISRso17
5	IS3 family transposase IS401
6	IS66 family transposase ISPa82
7	IS66 family transposase IS1313
8	IS3 family transposase ISRso11
9	IS3 family transposase ISButh1
10	Tn3 family transposase ISPa43
11	IS66 family transposase ISAeh1
12	IS3 family transposase ISBam2
13	IS30 family transposase ISHar4
14	IS630 family transposase ISCARN39
15	Putative transposase InsK for insertion sequence element IS150
16	IS5 family transposase IS1405
17	IS5 family transposase IS1021
18	IS5 family transposase ISRso18
19	IS5 family transposase IS1421
20	IS5 family transposase ISAzo11


21	IS3 family transposase ISRso10
22	IS5 family transposase ISAzo23
23	IS3 family transposase ISRso20
24	IS3 family transposase ISBcen15
25	IS3 family transposase ISRso14
26	IS3 family transposase IS222
27	IS3 family transposase ISPsy24
28	IS5 family transposase ISRso1
29	IS110 family transposase ISBcen4
30	IS4 family transposase ISCro3
31	IS30 family transposase IS1382
32	IS1182 family transposase ISBusp4
33	IS256 family transposase ISRso7
34	IS3 family transposase ISRso16
35	IS110 family transposase ISBma3
36	IS110 family transposase ISMno14
37	ISNCY family transposase ISBcen27
38	IS110 family transposase ISPye16

Supplementary Table 2. Transposases found within the association network of

coincident accessory genes. 21 components in the association network of coincident accessory genes were found to contain a transposase within them. This table shows the 38 unique transposases identified.

Supplementary Figure 4. Panaroo pangenome graph for IS1240 and Toxin – antitoxin associated gene fragment. Network graph produced by panaroo.

Supplementary Figure 5. Phylogeny used for Coinfinder.

Highlighted in blue is the clonal branch that contains samples from Mauritius sampled over several years and one from Kenya. The clonal branch is within phylotype I showing that phylotype I can also harbour clonal lineages.

3. Three decades of survival in environmental reservoirs within the UK led to little genetic diversification within *Ralstonia solanacearum*

3.1. ABSTRACT

In temperate climates, a cold-infective strain of *Ralstonia solanacearum*, known as phylotype IIB-1 (Race 3 Biovar 2), causes the devastating brown rot disease in potatoes. In the UK, the presence of *R. solanacearum* in the river water and its association with a secondary host, Solanum dulcamara, has been monitored since the first recorded outbreak of the disease in 1992. Here, we present an in-depth analysis of the genetic diversity of the UK Ralstonia solanacearum population using a time series sample spanning 27 years (1992-2018) representing the UK-wide spatial distribution. Our analysis shows that very little genetic variation exists in the UK population of *R. solanacearum*, and strains show no clear differences regarding their isolation source or geographic location. Specifically, we find minimal core genome variation with mutation rates as small as one nucleotide change per year and estimate that the population originated between 1958 and 1988. The accessory genome comprised 55 intermediate-frequency genes with a total pangenome size of 4,725 genes. Temporal accessory genome GWAS identified a gene related to Bacillus brevis antibiotic synthesis whose presence was associated with time of isolation. Interestingly, three distinct populations with unique sets of accessory genes could be identified. Population 1 was only present during the first sampled outbreak and could not be detected ever since. In contrast, populations 2 and 3 were observed until the end of the sampling. The two populations differed regarding a large genetic region containing 20 genes associated with metabolic functioning such as maltose and trehalose assimilation. Our results show that after a reduction in accessory genome size during the first recorded brown rot disease outbreak, there has been only little genetic diversification in the R. solanacearum UK population indicative of punctuated equilibrium theory.

3.2. INTRODUCTION

Ralstonia solanacearum species complex (RSSC) is a group of plant pathogenic Betaproteobacteria causing wilt disease on over 200 plant species (Hayward, 1991a). Currently, the species complex is divided into three bacterial species or four phylogenetic groups called phylotypes (I-IV) making up the R. solanacearum species complex phylogeny: Ralstonia pseudosolanacearum or phylotype I and II; Ralstonia solanacearum sensu stricto or phylotype IIA and IIB; and Ralstonia syzygii or phylotype IV (Safni et al., 2014a). RSSC genome consists of two replicons knowns as the Chromosome and the Megaplasmid (Genin and Boucher, 2004). All RSSC strains grow best at warm temperatures around 28°C and are most prevalent in tropical and sub-tropical regions of the world and unable to survive temperatures below 4°C (Milling et al., 2009). However, a cold-infective strain called the "potato race" can infect potatoes in the temperate climatic zones in Europe and North America, leading to a disease called "brown rot" that causes the rotting of underground tubers (Peeters et al., 2013b). The strain is also known as Phylotype IIB/Sequevar1 (IIB-1) or historically Race 3 Biovar 2 (R3bv2) and can infect tomatoes, eggplant, geranium, weeds, and wild plants (Prior and Fegan, 2005). It is thought that phylotype IIB-1 originated in the cool highland regions of the Andes and spread from there to many potato-growing areas worldwide, presumably with human movement in the trade of infected seed potato tubers (Champoiseau et al., 2009). If seed tubers are infected with *R. solanacearum* and stored at cool temperatures, the infection can remain latent, and symptoms are not observed. In this form, the pathogen can be spread over large distances with national and international trade of seed potatoes. Consequently, if the seed tubers are traded to warmer climates where the pathogen meets favourable conditions, symptoms of brown rot can develop (Elphinstone, 2001). Brown rot disease is a huge issue for the potato industry and expensive monitoring of potato seed and contaminated areas are required after an infection has been detected. Bacterial wilt on potatoes alone has been estimated to affect 3.75 million acres in approximately 80 countries, with global damage costs estimated from the early 2000s exceeding 950 million US dollars per year (Yamada, 2016). Therefore, all of the RSSC strains are listed as recommended quarantine pathogens by the European plant protection organisation and are listed in the EU and UK Plant Health legislation as such (EPPO, 2018).

Phylotype IIB-1 became agriculturally relevant when it was first found in potatoes in Europe in the 1990s. It was accidentally introduced to North America and Europe with infected geranium cuttings, but it has not been established in North America (Janse et al., 2004; Kim et al., 2003). However, Phylotype IIB-1 is a problem not only for European potato farmers but also in many mountainous regions of Africa, South America, Australia, and Asia. Coalescent models estimate that from South America, the strain moved to Africa and Europe and America (Clarke et al., 2015). In the Mediterranean region, Phylotype IIB-1 was first detected in the 1920s in Egypt, Italy, and Spain (Clarke et al., 2015). The strain can currently be found in several countries in Europe and around the world in the temperate climatic zone (EPPO, 2018). Moreover, the pathogen's distribution is not confined to agricultural fields alone, as it has been established in freshwater ecosystems in association with the woody nightshade (*Solanum dulcamara*) in multiple European countries (Parkinson et al., 2013).

Insight from evolutionary genomics can tell us about Ralstonia solanacearum's constraints in the river water environment and its potential to evolve and adapt locally. R. solanacearum phylotype IIB-1 has spread across the old and new worlds and has remained surprisingly clonal (Clarke et al., 2015). Strains isolated 50 years apart show a mutation rate as low as 1.99×10^8 base pairs per year (Clarke et al., 2015), which suggests that mutations are not playing a major role in the evolution and adaptation of this strain. Still, very little is known about the variation in the accessory genome of this strain. The accessory genome is the gene content of a species that can vary across strains and isolates and depending on ecological niche occupation (Brockhurst et al., 2019). The accessory genome is not constant and not shared by all isolates or strains of the species like the core genome. Together the accessory and the core genome make up the pangenome, which can be defined as all the genes in the species or strain of bacteria studied (Tettelin and Medini, 2020). The accessory genome of a species can vary in the absence of core genome variation. For instance, a study of the river water and Solanum dulcamara-associated population of R. solanacearum phylotype IIB-1 over two years in the Netherlands showed no variation in core virulence genes but differentiation at the accessory genome level, represented as insertion sequence differences (Stevens and van Elsas, 2010). By performing PCR-restriction fragment length polymorphism analysis of 7 selected genomic loci, they saw homogeneity across the strains with no single nucleotide polymorphisms (SNPs) identified across the sample. In contrast, pulsed-field gel electrophoresis of restricted genomic DNA revealed the differential distribution ISRSo3 insertion sequence elements across four genetic groups, which differed in ISRSo3 copy number and tandem repeat differences in the gene which is predicted to be a hypothetical protein RRSL_04153 (strain UW551—(Gabriel et al., 2006)) (Stevens and van Elsas, 2010). This study suggests that the movement of insertion sequences play a vital role in the short-term diversification of phylotype IIB-1 isolates and can be observed in as little as two years before changes in the core genome are detectable.

In the UK, contaminated river water used for irrigation of potatoes has led to six out of the seven outbreaks on record since the bacterium was first detected in 1992 (Elphinstone et al., 1998b, 1998a; Tomlinson et al., 2009). Plant health inspections of the UK waterways have been carried out annually since the first outbreak in 1992 (Elphinstone et al., 1998a). Widespread river water and *S. dulcamara* sampling have been conducted during the surveys, which has led to detailed mapping of the distribution of this pathogen in the UK waterways. The six outbreak infections from contaminated irrigation water are linked to sewage runoff upstream of contaminated *S. dulcamara* plants (Elphinstone and Matthews-Berry, 2017). While the genetic diversity of the UK phylotype IIB-1 population has not been studied extensively at the whole genome level, Parkinson et al. (2013) used variable tandem repeat analysis to show that outbreaks are linked to *S. dulcamara* plants upsteam of the infected field site (Parkinson et al., 2013).

The bacteria can be detected in the river water in the summer months as they multiply during warm periods and leak out from the roots of *S. dulcamara*. The river water helps transmit the bacterial cells to new *S. dulcamara* hosts downstream or fields of potatoes and tomatoes if the water is used for irrigation (Elphinstone, 2001). *R. solanacearum* from the river water can be detected using a selective medium during summer if the water sample exceeds 2 million cells per cubic meter. During the winter, there is no detectable amount of *R. solanacearum* cells in the water (Elphinstone, 2001; Elphinstone and Matthews-Berry, 2017). An eradication program of contaminated *S. dulcamara* plants from 1998 to 2001 led to a significant decrease in the mean population size in the river water (Elphinstone, 2001). However, this procedure is difficult and unfeasible to be used for control. Therefore, the ultimate removal of the

bacterial population from the river requires a full understanding of *R. solanacearum's* phylotype IIB-1 genetics and biology. Studies of low genetic diversity pathogens, such as the phylotype IIB-1, can help elucidate fine-scale local adaption and help us detect the early stages of adaptation to the environment (Cellier et al., 2012).

Here, we investigated the genetic diversity of the population of Ralstonia solanacearum phylotype IIB-1 in time and space within an environmental reservoir: the river network. We used a 26-year long time series comprising of 170 Ralstonia solanacearum isolates, covering the full known distribution in the UK waterways. The samples were sourced by Fera ltd from river water surveys since the first recorded potato outbreak in 1992, consisting of either sampled water, host plant S. dulcamara, and samples from potato and tomato outbreaks. We hypothesised that an observable evolution signal could be observed in time (year of isolation) or space (geographic location of isolation), influencing the population structure of R. solanacearum phylotype IIB-1. We also hypothesised that time would be significantly correlated with the genetic distance from the original isolates, indicative of genetic diversification in the rivers, which could further provide a time estimate for the R. solanacearum phylotype IIB-1 origin in the UK. We found that the population has a very small amount of genetic variation based on whole genome analysis of the extensive collection and a well-supported phylogeny was not obtained. However, the regression of time (year of isolation) and root-to-tip distance was sufficient to obtain a time estimate for the UK population origin. Moreover, based on the accessory genome, we see early signs of the development of two pathogen subpopulations co-existing in time and space in the environmental reservoirs in the UK. Our results show that after a reduction in accessory genome size during the first recorded brown rot disease outbreak, there has been little genetic diversification in the R. solanacearum UK population indicative of punctuated equilibrium theory.

3.3. METHODS

3.3.1. Data

3.3.1.1. UK sampling and strain verification

The UK *Ralstonia solanacearum* river dataset spans 27 years of sampling since the first recorded outbreak in 1992 until 2018, covering 24 counties within England and was provided by Fera ltd. However, the sampling across time and space is uneven. This is because the river water surveys and sampling are conducted annually in September, but positive findings are only sometimes found. This can be due to detection limits and fluctuations in population sizes in the river water. Also, the testing happens in areas where they have previously detected *Ralstonia solanacearum*, and randomly in new areas to uncover expansions distribution. This has resulted in uneven distribution of samples across time and space and an overrepresentation of samples from Oxfordshire (where intensive sampling was conducted following the first finding in 1992), with 1/3 of the samples originating from there and from the year 2006 that was heavily sampled (Figure 11 & Figure 12).

The data used here are genome sequences of isolates belonging to the *Ralstonia solanacearum* species complex (RSSC), confirmed to belong to the RSSC complex by real-time PCR using a published protocol (Weller et al., 2000). The PCR protocol was designed to identify isolates within any of the four phylotypes of the RSSC. The isolates are part of a collection assembled at Fera Science Ltd. (York) and maintained within the National Collection of Plant Pathogenic Bacteria (NCPPB) as both research and reference isolates, preserved both at -80 °C in a cryoprotectant system (Protect) and freeze-dried cultures respectively. A large working cryostock library of the isolates and genome database of RSSC was created at The University of York. The metadata available for the isolates is based on records from the culture collections at Fera Science Ltd. 384 *Ralstonia solanacearum* species complex isolates were chosen from the Fera collection to represent the UK and a World collection: 176 isolates representing the UK *Ralstonia solanacearum* population and 208 representing the known worldwide diversity across the RSCC.

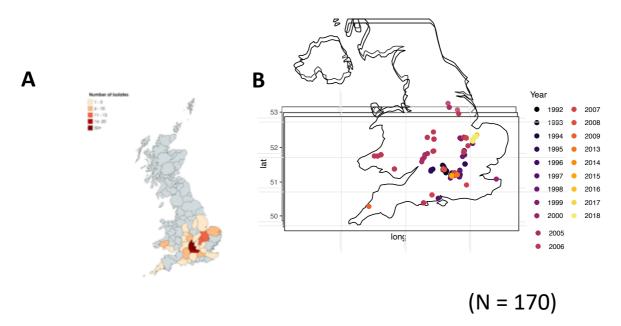
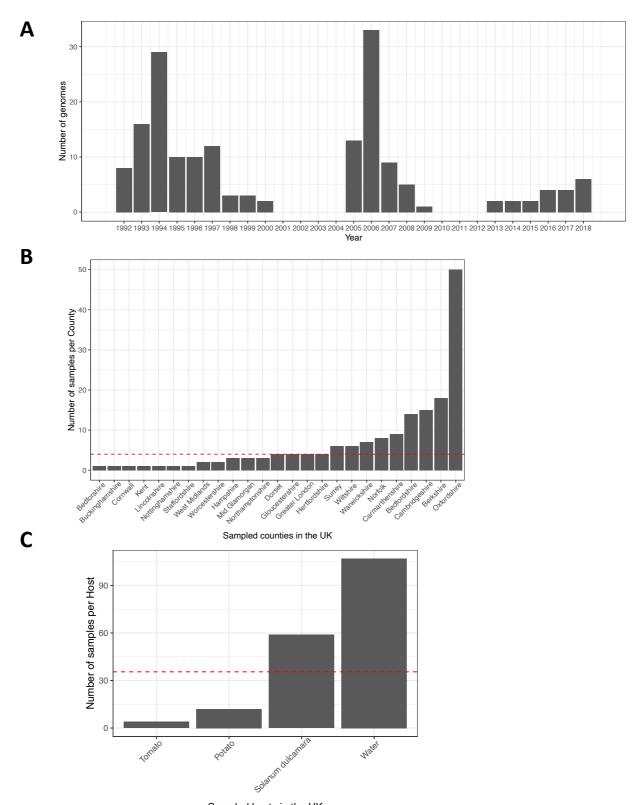



Figure 11. Sampling map of Ralstonia solanacearum across the UK

The maps on show location sampled across the UK: A) number of samples summarised by county; B) samples coloured by year of isolation and plotted based on geographical coordinates in the map.

Sampled hosts in the UK

Figure 12. Uneven sampling of the UK Ralstonia solanacearum across time and space

Figure shows plots of the number of samples: A) per year B) per county C) per host. Most of the samples are from Oxfordshire where the first outbreak in 1992 was detected. Missing years are due to lack of samples in the Fera Ltd. record for these years. The sampled hosts are predominantly associated with water and the riparian host *S. dulcamara* as the control methods of preventing farmers from irrigating crops with contaminated water has been highly effective.

3.3.1.2. Whole genome sequencing

The isolates were sequenced with Illumina MiSeq technology at the Earlham Institute UK. We received raw untrimmed paired FASTQ files for all 384 genomes. In addition, 24 of the isolates were re-sequenced with Nanopore MinIon technology at the University of York. The data received was base-called by the Bioscience Technology Facility at the University of York using Guppy, and raw FAST5 and FASTQ files were received. Following Martina Stoycheva quality checked the data and assembled the genomes. Illumina reads were filtered based on PHRED score with appropriate pairing, and the adapters were trimmed with TrimGalore. Kraken (Wood et al., 2019) was used to identify potential contaminant sequences in the reads. For the UK analysis presented in this study, six genomes from 176 UK genomes sequenced were deemed contaminated or low quality after quality control described below in sections for genome assembly and base calling. As a result, they were excluded from the downstream analysis resulting in 170 genomes in the dataset. All the raw FASTQ files from the Illumina and Nanopore runs are publicly available in the SRA archive and metadata under project number PRJNA823737.

3.3.2. Detecting genetic variants and construction of phylogeny

Single nucleotide polymorphisms (SNPs) and small insertions and deletions (indels) were called against strain YO199 (NCPPB 3854) - a reference genome originating from the first UK outbreak in 1992, which we created- and against an NCBI available high-quality reference genome UY031 (CFBP 8401; GCF_001299555). UY031 is the most complete and highest-

quality assembled genome of phylotype IIB-1 Ralstonia solanacearum from Uruguay (Guarischi-Sousa et al., 2016, p. 031). YO199 (NCPPB 3854) genome assembly is a high-quality hybrid assembly made from Nanopore MinION reads, and Illumina reads using Trycycler and polishes with Pilon. Snippy software (https://github.com/tseemann/snippy) was used to align all UK isolates against the YO199 genome. SNPs and small indels were called using minimum coverage of 10 and a minimum variant calling quality of 100. Core genome alignments were made only from the SNPs using the assistance script provided by snippy called snippy-core. The resulting core genome alignment had 171 sequences with 115 nucleotide sites, of which 42 were parsimony informative and 105 distinct site patterns. Gubbins (Croucher et al., 2015) with default parameters was used to clean the alignment from recombinant sites and construct a phylogeny with RAxML (Stamatakis, 2014). SNPs were also called against UY031, a reference strain from NCBI (GCF_001299555). Snippy with default parameters was used to generate BAM files. However, variant calling was done with the haplotype variant caller Freebayes (Garrison and Marth, 2012) on all isolates at once, as suggested by the developer to generate a whole genome VCF file which was annotated with SnpEff based on the gbff file for UY031. Freebayes (v1.3.2) was run with the following command: freebayes --min-coverage 5 -q 10 -m 60. The VCF generated contained 205, 693 small indels and single nucleotide polymorphisms. The VCF was then filtered for quality 30 based on the QUAL field using VCFtools (v0.1.16). Only reference calls were removed to get the calls for the population studied and not differences to the reference using VcfFilter (v0.2) with flag filterRefCalls. The filtering resulted in 250 SNPs and small indels. These were annotated using SnpEff (v 5.0) (Cingolani et al., 2012) and examined further manually using R, tidyverse and IGV (Integrative Genome Viewer) (Grolemund, 2017; R Core Team, 2017).

3.3.3. Genome assemblies

De-novo assemblies were made using Unicycler (v 0.4.7) (Wick et al., 2017a), and contigs were filtered based on GC content (>=0.66<0.67) and minimum length (5Mb). As a result, 357 draft genome assemblies were acquired. Mash (v2.3) was used to align contigs against a local RefSeq installation to identify potential contaminants in the assemblies (Katz et al., 2019). In addition, 24 of these genomes were re-made by a hybrid assembly of MinIon, and Illumina

reads using Unicycler. Furthermore, 48 assemblies for *Ralstonia solanacearum*, *Ralstonia pseudosolanacearum* and *Ralstonia syzygii* were downloaded from NCBI GenBank FTP on 10/06/2020 along with 1 *Ralstonia pickettii* 12J representative genome strain for the species and type strain for the *Ralstonia* genus. The 47 genomes were chosen if labelled as *Ralstonia solanacearum* (taxonomy number 490) and as complete assemblies in NCBI (See Appendix 2 for accessions). All assemblies were annotated with prokka (v1.14.6) (Seemann, 2014a). Also, the annotation of *R. solanacearum* type III effectors (T3Es) was added using the RalstoT3E pangenomic database (Sabbagh et al., 2019). We obtained a local installation of the T3E database and ran the blast searches against default parameters using the preconfigured Docker/Singularity container from the database publisher. We used default software configurations.

3.3.4. Pangenome

Panaroo (v1.2.9) pipeline (Tonkin-Hill et al., 2020) was used to create pangenome networks for all the genomes, including those sequenced here and those downloaded from NCBI. The coding sequences obtained from prokka were corrected for mis-annotation using a custom script provided in the panaroo accessory script GitHub page. Within the pipeline, the coding sequences were clustered by CD hit and alignments of the core genomes were created with ClustalO using the default setting - 90% of clusters shared by all isolates as a definition of the core genome. Maximum likelihood phylogenies were created from the core genome alignments with IQtree (v2.1.4) (Nguyen et al., 2015b). The GTR+G model was used, and for error correction, the consensus of two bootstrapping methods: 1000 UltraFast bootstrap (Hoang et al., 2018) and 1000 Alrt.

3.3.5. Insertion sequence detection

Insertion sequences were detected in the YO199 reference genome we created with ISEScan (Xie and Tang, 2017) using default parameters. To account for potential false positives, all putative ISs were blasted against the ISFinder database (<u>https://isfinder.biotoul.fr/</u>), with true positives determined if they had an E-value < e-04. ISs identified using ISEscan were used as queries to identify the insertion sites of IS elements in 176 UK isolates using ISMapper (v2.0.2)

81

(Hawkey et al., 2015) with default settings. Briefly, ISMapper identifies IS insertion sites by mapping isolate reads to previously identified reference ISs. It then parses out reads that overlap with the left and right IS flanking regions and maps them against the reference assembly, highlighting the specific positions of ISs in the query isolates. In line with a previous publication using ISMapper (Hawkey et al., 2020), insertion site precision was improved by running ISMapper using an IS-removed YO199 assembly. The genes flanking putative IS sites were determined using an annotated ancestral assembly generated using the stand-alone NCBI prokaryotic genome annotation pipeline (Tatusova et al., 2016).

3.3.6. Statistical analysis and computation

3.3.6.1. Tajima's D

To obtain the classic population genetics statistic for deviations of standard expectations of genetic diversity Tajima's D we used the software Popgenome (v2.7.5) (Pfeifer et al., 2014). The core genome alignments of the UK isolates were used to estimate Tajima's D and Pi with default settings.

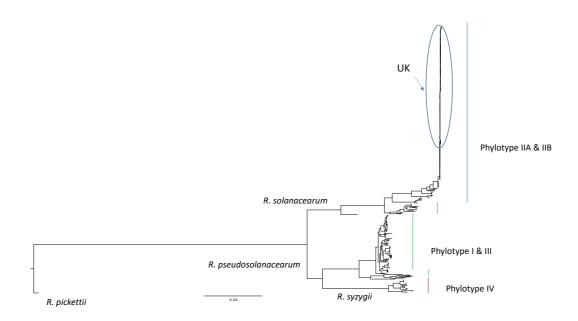
3.3.6.2. Molecular clock fitting

In order to estimate time of origin for the UK *R. solanacearum* population, Bayesian inference of molecular clock using Markov Chain Monte Carlo (MCMC) performed with BactDating (v1.1) (Didelot et al., 2018). BactDating is ran on a core genome phylogeny and dates of isolation of the samples. We used the phylogeny generated from the Freebayes alignment and IQtree described above. We used default model settings. Tests for MCMC convergence were done with the R package coda (v0.19-4). All graphs were generated with R (R Core Team, 2017) in RStudio (R Studio Team, 2020) using tidyverse and ggplot2 (Wickham, 2009). Jaccard distances were calculated using the Vegan package (v2.6-2) (Dixon, 2003).

3.3.6.3. GWAS

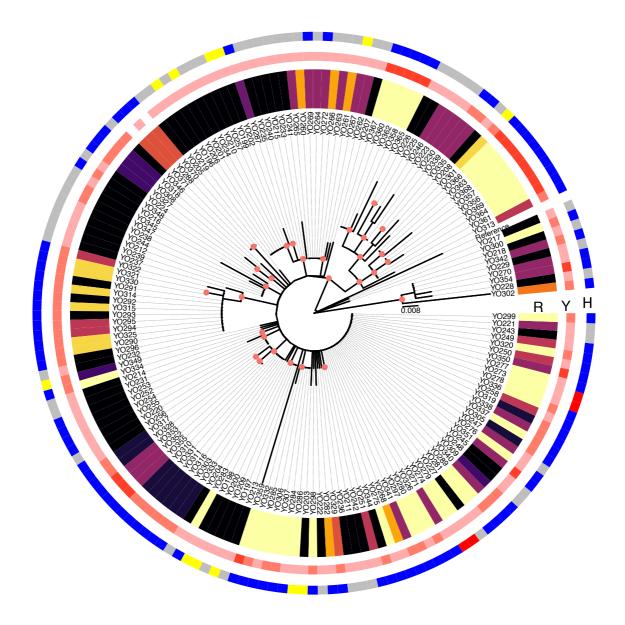
To link phenoptypic traits with genetic differences, genome-wide association study (GWAS) was performed with pyseer (v1.3.10) (Lees et al., 2018) on genetic variants: VCF file from UY031 variant calling with Freebayes against all BAM files from snippy, unitig variation from unitig-counter (v1.1.0) (Jaillard et al., 2018), orthologous gene cluster variation obtained as gene presence/absence file from panaroo. The hclust algorithm was used to determine the hierarchical clustering of the mash pairwise genetic distances. The genetic diversity measures

82


of the genomes (*k*-mers, core mutations and gene presence/absence) were converted to pairwise distance using the mash algorithm for the *k*-mers and Jaccard distance for binary variables. Averages were used to linearise the distances. To turn the geographic distances between the geolocation coordinates available for the places of isolation for each bacterial genome (isolate) into a linear variable, we created a geographic distance measure from the geo-coordinates of each isolate in our collection. We took a mean for each isolate of all pairwise distances. The p-value distribution for the GWAS was checked using a QQ plot and we made sure there were no major shelving visible on the plots which can be a sign of unaccounted for population structure and that at least the smallest points fall on the theoretical distribution. Afterwards p-values were filtered based on a threshold created by the pyseer software automatically using Bonferroni correction. The scripts for filtering based on the p-values are available as an accessory script for pyseer. The University of York's local high-performance cluster "Viking" was used to run intensive computation jobs: assemblies, phylogenies, alignments, and GWAS.

3.4. RESULTS

3.4.1. Based on core-genome phylogeny, the UK *R. solanacearum* population is a highly clonal group belonging to the clonal strain phylotype IIB-1.


We constructed a species complex phylogenetic tree to place the UK *R. solanacearum* population within the *R. solanacearum* species complex taxonomic groupings. The phylogeny was based on the core genome of 357 draft short-read *de novo* assemblies, 24 hybrid long-read and short-read *de novo* assemblies. These assemblies were all from the world and UK RSSC sample set available at York University, plus 48 complete genome assemblies from NCBI representing the known diversity of the *Ralstonia solanacearum* species complex along with *Ralstonia pickettii* strain 12J as an outgroup for the *Ralstonia* genus (Figure 13). We found that all the UK isolates in our collection belong to a clonal branch within the *R. solanacearum* phylotype II, known as phylotype IIB sequevar 1 (phylotype IIB-1), the "potato race" or Race 2 Biovar 3 (R3bv2). There was no distinct clade within the phylotype IIB-1 clonal branch specific to the UK population, as all the phylotype IIB-1 isolates belonged to the same clonal

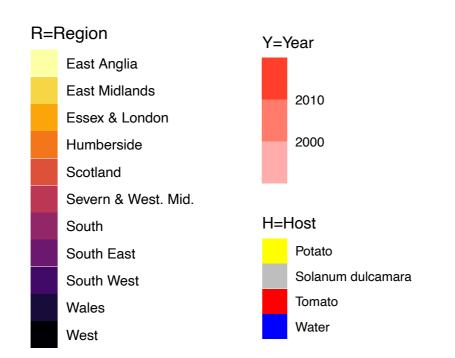

branch regardless of country and year of isolation. A worldwide phylotype IIB-1 clonal branch in the *Ralstonia solanacearum* species complex phylogeny indicates that it has been driven by a relatively recent population expansion that has not yet resulted in patterns of local adaptation between different regions. Thus, due to the small amount of genetic variation within the phylotype IIB-1 and the UK, we were unable to construct a meaningful phylogeny for the UK population with branches in the tree not receiving sufficient bootstrap support to be deemed non-randomly distributed (Figure 14). Therefore, to investigate the genetic variation within the UK phylotype IIB-1 we used classic population genetics allele diversity measures based on the core genome alignment of the 170 UK isolates. There was a total of 115 segregating sites in the core genome alignment. Based on the observed allelic diversity (Pi = 3.8), we calculated the Tajima's D value for the UK population (Taj D = -2.6). Negative Tajima's D values indicate that genetic variation is lower than expected, given the number of variable sites in the alignment. This is the expected signal for a clade with expanding population size, indicating that one dominant haplotype exists, and rare alleles are overrepresented. Therefore, this result is consistent with the hypothesis that Ralstonia solanacearum has recently spread to the UK and has not had enough time to accumulate changes in its core genome.

Figure 13. Phylogeny highlighting the UK isolates belonging to clonal strain phylotype IIB-1 (race 3 biovar 2).

Maximum Likelihood (ML) phylogeny based on 435 RSSC genomes: 357 draft short read data only assemblies + 24 hybrid long read and short read assemblies + 48 *Ralstonia solanacearum* species complex NCBI genomes and *Ralstonia pickettii* 12J used as an outgroup. All the species and phylotypes of the RSSC are labelled on their corresponding branches. The blue circle indicates all the genomes originating from the UK which all fall on the same clonal branch. The tree was generated with IQTree and GT4 model.

Figure 14. Phylogeny of the UK Ralstonia solanacearum population

Maximum likelihood GTR+Gamma phylogeny based on the core SNPs in the UK *Ralstonia solanacearum* population. The colour bars show metadata for isolation of the samples. The hosts the samples were isolated from, the region within the UK and the year of isolation. The coloured dots indicate branches with Bootstrap support from two bootstrap methods higher than 70 for SH-aLRT and higher than 90 for UFboot.

3.4.2. The UK *R. solanacearum* isolates have a large deletion in Megaplasmid compared to a South American isolate

To investigate the divergence of the UK population of *Ralstonia solanacearum* phylotype IIB-1 we wanted to compare it to a reference strain from South America where phylotype IIB-1 is thought to have originated. We ran the variant calling against a high-quality reference genome for phylotype IIB-1 isolated from infected potato tubers in Uruguay in 2003 called UY031. Interestingly, only a single core genome polymorphism in the *wapA* tRNA gene was identified as shared between all UK isolate genomes compared to UY031. In contrast, many genes were found to be missing in the Megaplasmid of the UK strain (Supplementary Figure 6) and all UK R. solanacearum genomes had a large 45 kilobase pair region missing in their Megaplasmid compared to the UY031 reference. This region is between bases 1,865,500 and 1,910,000 on the UY031 Megaplasmid and contained 183 genes (Supplementary Figure 6). Overall, the absence of many genes compared to an Uruguay isolate is striking compared to the large clonality observed in the core genome. This result indicates that variation in the gene content may play a larger role in the adaptation to local environments within phylotype IIB-1 strains compared to core genome polymorphisms. Therefore, the view of a highly clonal strain moving across the world may be biased if gene content is not considered as the lack of nearly two hundred genes is a significant difference between genomes.

3.4.3. *Ralstonia solanacearum* phylotype IIB-1 is a recent arrival in the UK

Due to the presence of a correlation between time and root-to-tip distance of the phylogeny of the UK phylotype IIB-1 *Ralstonia solanacearum,* we wanted further to investigate the time

signal in the core genome alignment. Therefore, we fitted a molecular clock in the phylogeny and used time as an explanatory variable in a genome-wide association study. First, we ran the BactDating software on the maximum likelihood phylogeny estimated constructed based on the core genome alignment of the 170 genomes to estimate the rate of evolution through time. The absence of a well-supported phylogeny meant the molecular clock estimates would not be highly accurate (Figure 14). Nevertheless, the analysis showed a correlation between time (year of isolation) and root-to-tip phylogenetic distance (Supplementary Figure 8). If the sampling of the parameters is correct, then we would expect an accurate dating. Even though we obtained a sufficient sampling of the MCMC parameters (Supplementary Figure 8 & Supplementary Table 3), the root branch placement was difficult for the model, probably due to most isolates having <5 SNPs and seven genomes with 0 SNPs compared to one of the original outbreak isolates from 1992 – isolate YO199, which we used as a reference for the core genome alignment (Supplementary Figure 9). Despite this, the root branch date was estimated to be in 1979 [1958-1988] and the substitutions per site (mu) in the genome were predicted to be 1.01 [0.68-1.51] per year (Table 1). Also, the year 1992, when the first outbreak in the UK was detected, is five years after the upper limit of the root date confidence interval 1987. The first outbreak was associated with contaminated river water, so an introduction into the UK 5 years before the outbreak is plausible (Elphinstone et al., 1998b). Overall, the dating analysis suggests a slowly diversifying population that originated shortly before the first recorded outbreak in the UK.

Mu [Cls]	Sigma [CIs]	Alpha [CIs]	Root Date [CIs]	
1.01e+00	2.41e+00	8.13e+00	1978.66	
[6.75e-	[1.40e+00;4.03e+00]	[6.35e+00;1.03e+01]	[1958.44;1987.59]	
01;1.51e+00]				

Table 1. Bactdating MCMC results.

The MCMC is run for a total of 100,000 iterations, with the first 100 discarded as MCMC burnin and the remainder sampled every 100 iterations.

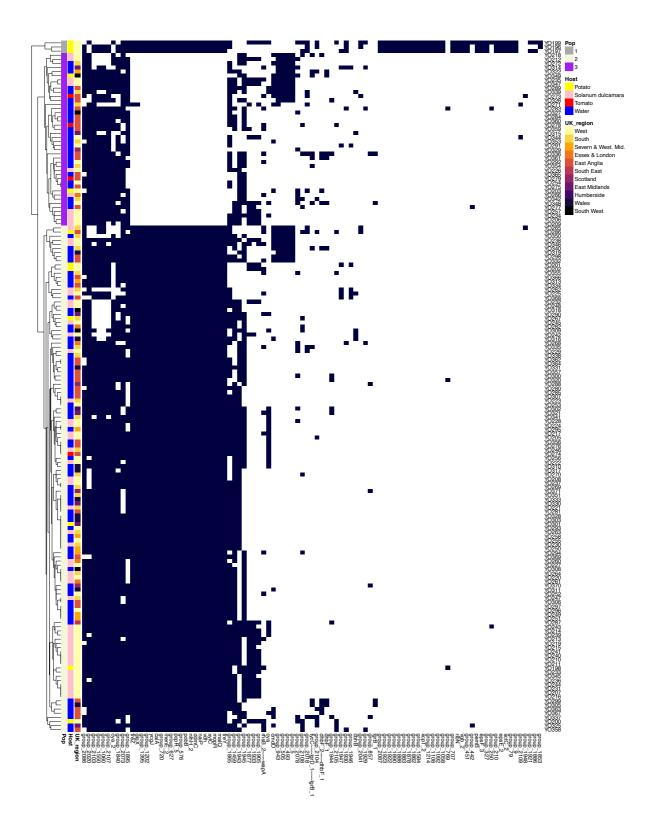
Mu = substitutions per site. Sigma = the average time it takes for two lineages to find a common ancestor. Alpha = coalescent time unit = Ne*g where Ne is the effective population size and g is the duration of a generation.

3.4.4. Pangenome variation in the UK phylotype IIB-1 is greater than the core genome variation

Pangenome analysis compares the presence and absence of all the genes in a set of wholegenome assemblies, which is sensitive to sequence quality errors that can inflate the estimates of absence of genes in some genomes. Therefore, two genomes with smaller total assembly lengths were excluded from the gene content analysis, leaving 168 out of the 170 *de novo* assembled Illumina genomes for this analysis. The pangenome of the UK population was estimated to consist of 4,725 genes, of which 4,569 could be considered as core genes, and 55 accessory genes (Table 2). Moreover, 100 genes were found to be variable at low frequency (<15%). Together, these findings suggest that there is more accessory genome variation between the strains compared to the small number of core genome variants (Supplementary Figure 9). This result indicates that the pangenome of phylotype IIB-1 in the UK is more dynamic than the core genome, with gene variation present at both low and intermediate frequencies.

Gene group	Percentage of genomes sharing an orthologous	Gene orthologous groups (N)	
	group		
Core genome	≥ 95%	4,569	
Accessory genome	15% - 95%	55	
Low-frequency genes	< 15%	100	
Pangenome (all genes discovered)	100%	4,725	

Table 2. Breakdown of pangenome.


The number of orthologous gene clusters (genes) shown in the different pangenome groupings. The proportion of genomes sharing an orthologous group shows criteria for belonging to a different gene group.

3.4.5. Changes in accessory genome content indicates gene loss after the first outbreak in 1992, resulting in two co-existing environmental populations

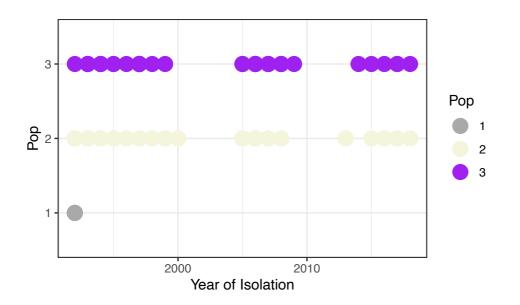
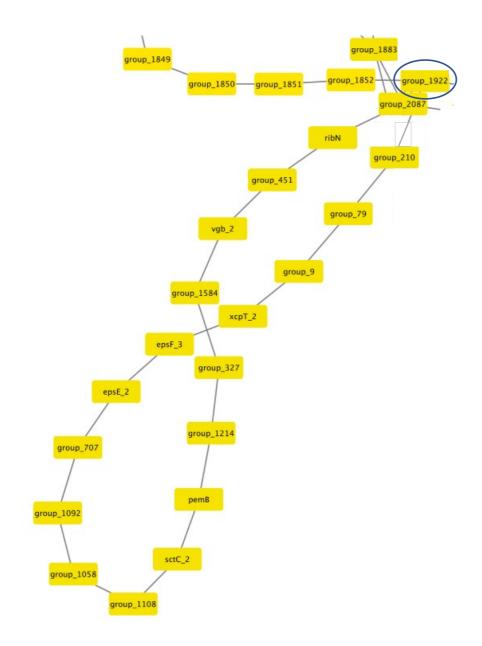
Since we observed much more variation in the *R. solanacearum* accessory than in the core genome we decided to use the accessory and core genome gene cluster variation to cluster the strains and compare the differences in their accessory genome. Therefore, we clustered the 168 genomes using hierarchical clustering based on gene presence-absence matrix from panaroo (Figure 15). By focusing on the seven genomes from the original outbreak in 1992 (YO196 - YO203), we found that the original seven genomes represented all the accessory genome diversity in the UK population (Figure 15). Moreover, isolates from the original outbreak were present in the three clusters formed by the hierarchical clustering (Populations 1-3; abbreviated from here on as Pop1-3; Figure 15). In other words, the observed accessory gene diversity was jointly represented by three original outbreak isolate groups that differed from each other. Interestingly, Pop1 was only present within the original outbreak samples and was not detected in later samples. In contrast, Pop2 and Pop3 persisted in time and could be identified through the whole sampling period (Figure 16).

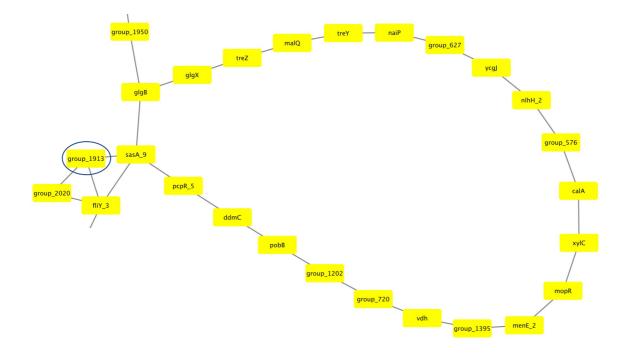
Pop1 (grey) consisted of three genomes (YO196, YO197, YO199) and had the biggest number of accessory genes out of all the groups (Figure 15), which suggests a reduction in accessory genome size and diversity after the first outbreak. Pop1 had 29 unique genes, which were not present in either Pop2 or Pop3 (Supplementary Table 5). Moreover, these unique 29 genes were absent from all other later isolates (Pop2 and Pop3). Of these 29 unique genes, nine encoded the IS5 family transposase IS1021 and 16 other genes were located together on the genome next to a transposal element (group_1922 encoding the IS5 family transposase IS1021 (Figure 17). Moreover, the genes in the 16-gene loop were related to virulence or antibiotic resistance (Supplementary Table 5). For example, the *vgb_2* gene is a homolog of the *vgb* gene (PubMed:<u>11467949</u>) in *S. aureus* and encodes the Virginiamycin B lyase, which inactivates the type B streptogramin antibiotics. Furthermore, two important virulence genes were detected in this cluster: 1) *epsE_2*, which is a Type II secretion system protein E, encoding protein EPS I polysaccharide export inner membrane protein EpsE in *R. solanacearum* and 2) *epsF_3*, a close homolog of EPS I polysaccharide export inner membrane protein EpsF (Q45412). Both proteins are probably involved in the polymerisation and export of exopolysaccharide EPS I, which functions as a virulence factor and plays a role in exporting EPS I or its intermediates across the membrane of RSSC cells. These results suggests that Pop1 strains encoded certain virulence factors, which were quickly lost from the UK *R. solanacearum* population after the initial outbreak.

Pop2 (beige) was represented by four original outbreak strains (YO198, YO200, YO201 and YO202) and comprised 40 isolates in total (Figure 15), while Pop3 (purple) was represented by one of the original outbreak genomes (YO203). Interestingly, Pop3 is missing 20 genes which were present in both Pop1 and Pop2 (Supplementary Table 6). These 20 genes were located together on the genome nearby to a transposase (group_1913 encoding the IS5 family transposase IS1021), suggesting they were lost together as a unit (Figure 18). These genes encoded multiple functions related to metabolism, such as maltose and trehalose metabolic pathways (Supplementary Table 6). This result suggests that the surviving Pop2 could be better at metabolising maltose and trehalose compared to Pop3, suggesting that observed loss of genes could related to metabolic adaptations.

Figure 15. Accessory genome variation within the UK population of *Ralstonia solanacearum*.

The binary matrix (presence and absence) of genes is shown as a heatmap where blue is the presence and white is the absence of genes. On the y-axis are all the bacterial isolates and on the x-axis are all the genes as named by panaroo after annotation correction. A gene here represents an orthologous cluster shared by the bacterial isolates studied and ~ represents the merge of sequence annotations by panaroo annotation correction. To show the true accessory genes in this plot we have also excluded genes shared at high frequency (>90%) and low frequency (<=1). A total of 95 variable genes are shown. Hierarchical clustering of the isolates (genomes) is applied to the heatmap.


Figure 16. Presence of Pop1-3 over time.

The presence of each of the three genotypes Pop1-3 in the sampling across time in the UK. The x-axis represents time, and the y-axis shows each of the three genotypes. Pop 1 is only present in the first year of sampling 1992 and disappears after that.

Figure 17. Pangenome graph area of the genome unique to Pop1.

The image shows the pangenome graph produced by panaroo visualised in Cytoscape. Only the area concerning the 29 genes unique to Pop1 is shown. The looped fragment represents the 16 genes specific to Pop1 including the vital for *Ralstonia solanacearum* exopolysaccharide (eps) genes. Circled in blue is nearby on the pangenome graph is the gene group_1922 encoding the IS5 family transposase IS1021.

Figure 18. Pangenome graph area of the genome missing in Pop3.

The image shows the pangenome graph produced by panaroo visualised in Cytoscape. Only the area concerning the 20 genes missing in Pop3. The looped fragment represents the 20 genes specific to Pop2. Circled in blues is the gene_1913 encoding the IS5 family transposase IS1021.

3.4.6. GWAS identified only a few genetic variants associated with time

The genetic variation in the *Ralstonia solanacearum* phylotype IIB-1 population from the UK was tested for association with time in a genome-wide association study (GWAS). Time (year of isolation) was used as the phenotypic trait in the GWAS that was run using three different presence-absence genetic matrices: 1) shared unitigs (*k*-mers), 2) core genome SNPs called against UY031, and 3) accessory genes. We wanted to estimate whether variation in the sequences significantly increased in time and to be able to use accessory genome variation and core genome variation. The SNPs GWAS identified a variant on the 293,375 positions in the UY031 chromosome (Supplementary Table 4). This variant was detected in 23 genomes (YO246, YO208, YO230, YO335, YO367, YO313, YO361, YO223, YO360, YO339, YO225, YO226, YO365, YO356, YO368, YO363, YO369, YO357, YO301, YO358, YO362, YO364, YO366) with a

higher frequency during the last decade of sampling (post-2010). This locus was annotated as either *rhsC_3* gene homolog of putative deoxyribonuclease RhsC (NCBI-ProteinID: ALF86662) genome or as Betaproteobacteria toxic sRNA - RSUY_01040 - ncRNA T06155. The Unitig GWAS found another gene, which was significantly associated with time. This gene was annotated as a homolog of Tyrocidine synthase tycC (tycC_2 and tycC_3) in *Brevibacillus parabrevis* (Uniprot: TYCC_BREPA) (Supplementary Figure 11). In contrast, the gene presence GWAS identified four genes: group_2086, group_1933, group_1877, and group_1905 (Supplementary Table 4). The genes group_1933, group_1877 and group_1905 all encode an IS5 family transposase IS1021 (genes next to each other on the x-axis in Figure 15). This insertion sequence seems to be present or absent across the phylogeny regardless of where and when the samples were isolated, indicating that this transposase is actively moving across the UK phylotype IIB-1 population. The gene group_2086 encoded *lgrD*, which is the linear gramicidin synthase subunit D. This is a gene part of the four open reading frames, *IgrA*, *IgrB*, *lgrC*, and *lgrD* that all encode the linear gramicidin membrane channel-forming pentadecapeptide (Kessler et al., 2004). Gramicidin is an antibiotic molecule produced by another common soil bacteria Bacillus brevis during its sporulation phase (Hotchkiss and Dubos, 1940). Together, these results suggest the idea that IS elements might be important in generating genetic variation between the UK phylotype IIB-1 strains.

3.4.7. Insertion sequences show movement patterns indicative of locationspecific population structure.

To gain further insight into accessory genome variation within the UK *Ralstonia solanacearum* population, we investigated the presence of insertion sequences (ISs) sites in the genomes, which are known to contribute to gene disruption. We found that ISs' insertion sites were location-specific based on the pairwise geographic distance of the sampled locations. We looked at the ISs' position of insertion within the genomes and compared it to the pairwise geographic distance. Nine out of 16 of ISs' positions in the chromosome and six out of 11 ISs' positions in the Megaplasmid were found predominantly in isolates that are situated within 25km of each other (Figure 19). In the chromosome, the genes disrupted included two hypothetical proteins and a response regulator transcription factor. Bacterial response regulators have been linked to various cellular processes ranging from basic metabolism and

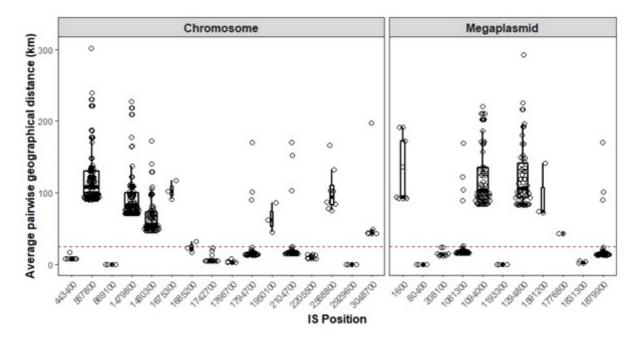


Figure 19. Insertion sequences position of insertion in genomes closer together Isolates with specific IS positions are generally found within the same geographical location. The x-axis shows coordinates in the genome rounded to the closest 100bp. The y-axis shows the average pairwise geographical distance between isolates with each IS position. The dotted line shows 25km.

growth to biofilm formation (Gao et al., 2007). The disrupted genes included a hypothetical protein and an AraC family transcriptional regulator in the Megaplasmid. The major regulator HrpB, which regulates the type III secretion system, is an AraC family transcriptional regulator (Yoshimochi et al., 2009). In addition to disrupting genes, some ISs were intergenic and neighboured an ATP-dependent zinc metalloprotease FtsH and RImE family RNA methyltransferase, phage-associated genes, and a glycoside hydrolase family six protein. Altogether, these results suggest that, on a location basis, the UK phylotype IIB-1 isolates may have undergone local adaptations through IS-mediated gene disruptions and re-activations.

3.5. DISCUSSION

In this report, we investigate a large set of whole genome assemblies based on a collection of 170 bacterial isolates of *Ralstonia solanacearum*. This collection is based on the annual environmental sampling of the river water in the UK performed by Fera Ltd. This sampling has resulted in a dataset covering all the detectable distributions of *Ralstonia solanacearum* in

the UK. There are samples from 24 different counties in the UK isolated across 26 years between 1992 and 2018. Most of the studied bacterial isolates are from river water and are thought to be associated with the asymptomatic secondary riparian host plant Solanum dulcamara (Elphinstone et al., 1998b). We found that all the isolates within our sample belong to the highly clonal phylotype IIB-1 strain of *Ralstonia solanacearum* (Figure 13). Although the investigated sample set is large, temporally, and spatially diverse, we found very little core genome variation. However, on the pangenome level, the population was relatively more diverse with 55 accessory genes present. The small amount of sequence variation in the core genome did not allow for the construction of a well-supported phylogeny. However, the significant temporal signal between time and root-to-tip distance meant the molecular clock fitting on the phylogeny was successful and we obtained an estimate for the origin of the population in the UK somewhere between 1959 and 1987. In addition, the accessory gene variation divided the UK population into three hierarchical clusters here called Pop1-3. Pop1 is only represented by 3 isolates from the first detected outbreak in the UK on potatoes in Oxfordshire whereas Pop2 and Pop3 are present from the first outbreak all the way to 2018. Moreover, Pop1 and Pop2 had lost multiple genes both in proximity to IS5 family transposase IS1021. In addition, the insertion sequence position of insertion was more commonly found to be the same if bacterial isolates were isolated within 25 km of each other indicating population structure could be detected in the movement of insertion sequences.

The link between European freshwater ecosystems and the long-term survival of *Ralstonia solanacearum* in the temperate climate environment needs to be better understood. For instance, whether the phylotype IIB-1 strain can survive in the soil or outside plant hosts for prolonged periods is unclear. Case field studies show that the phylotype IIB-1 strain survives in field soils for one to 4 months in regions where winter temperatures are around 4°C (Shamsuddin et al., 1978; Van Elsas et al., 2000). Interspecies bacterial competition and humidity are known to significantly affect the chance of *R. solanacearum* success in the soil environment. Previous studies have shown that the phylotype IIB-1 population from agricultural drainage water mixed with other microorganisms at 4°C goes extinct in 30 days (Van Elsas et al., 2001). Therefore, the combined stress of competition and low temperature is considered too great for phylotype IIB-1 to survive and thrive in the soil or freshwater for prolonged periods without a host (Granada and Sequeira, 1983; Van Elsas et al., 2000, p. 2).

Nevertheless, there is no systematic analysis of phylotype IIB-1 survival in temperate soils. The evolution of an environmental reservoir population of phylotype IIB-1 from river water in a long time series has yet to be investigated. In addition, the large host range of the species complex suggests that other wild plants apart from *Solanum dulcamara* can sustain infection and provide refuge.

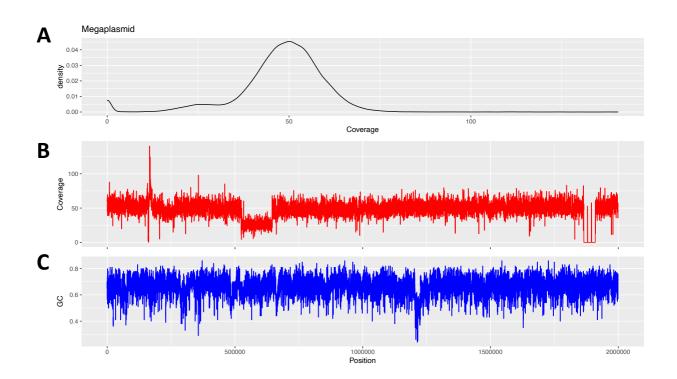
In the UK, the population sizes of *Ralstonia solanacearum* in river water can be very large in the warm summer months, thus increasing the efficiency of selection and purging of deleterious mutations. Therefore, adaptation to new selection pressures could be observable in real time if samples are taken through a long enough period (Duchêne et al., 2016). The presence of *Ralstonia solanacearum* in the river water has been carefully monitored in the UK. This has allowed for outbreak containment. However, further investigation of RSSC strains' adaptation to the local environment and potential transmission routes to susceptible crops is needed.

We found that *Ralstonia solanacearum* phylotype IIB-1 from the UK is part of the highly clonal worldwide strain phylotype IIB-1 (Cellier et al., 2012). We saw an average of 3 SNPs per genome in the sample set studied here and a negative Tajima's D (Supplementary Figure 9). The lack of genetic variation is surprising considering the period of 26 years sampled here and the 24 counties across the UK. Due to the small number of SNPs, we could not construct a highly supported phylogeny as the small number of SNPs means a small number of parsimony informative sites in the core genome alignment (N=45) (Figure 14). However, the fitting of a molecular clock model is suitable when there is a statistically significant correlation between the year of isolation and the genetic distance from the most recent common ancestor also known as the root-to-tip regression (Nübel et al., 2010). Here, we observed significant albeit weak regression and we observed sufficient sampling of the Markov Chain Monte Carlo. Therefore, we believe our estimate of the population origin between 1959 and 1987 is the most accurate up-to-date estimate of the origin of the UK population of phylotype IIB-1 *Ralstonia solanacearum*. Moreover, from the model we estimated the mutation rate per year to be 1 (Table 1). Comparable rates of mutation to those found before worldwide and the small amount of total variation agree with a recent origin of the phylotype IIB-1 strain (Clarke et al., 2015). Clarke et al. (2015) found that 11 closely related phylotype IIB-1 (R3bv2) isolates collected over 50 years did not accumulate more than seven mutations, and isolates collected in similar years were as different from each other as isolates collected 50 years apart. However, we found a 45 kb region missing in our samples compared to the UY031 South American isolate, which reflects the time phylotype IIB-1 isolates have had to evolve and differentiate in the different continents. This is in stark contrast to the single genetic variant difference between UY031 and YO199 identified in the rest of the genome.

Clarke et al. (2015) proposed that *R. solanacearum* bacteria may grow, and thus mutate, very slowly in soil and surface water populations, which often constitute the inoculum sources of outbreaks. Hence, most of the mutations that get fixed during fast pathogen replication during plant infection may constitute a sink rather than a source. The surface water concentrations of *R. solanacearum* must have been high enough to cause infections in the UK river water, as irrigation of plants with contaminated water has led to all five outbreaks of the disease in potatoes and two in tomatoes in the UK since the first recorded outbreak in 1992 (Elphinstone, 2001). It was shown that under optimum quarantine glasshouse conditions with single doses of aqueous suspensions of *R. solanacearum*, infection of potato only occurs when bacterial populations exceed 10⁵ colony forming units (CFU) per plant and that wilting symptoms did not develop at the threshold level. Higher population sizes (> 10⁶ CFU per plant) were required to infect 1-month-old S. dulcamara seedlings (Elphinstone et al., 1998a). Therefore, to be able to infect Solanum dulcamara the bacteria need to be present in high densities in the river. Thus, as suggested by Clarkson et al. (2015), slow growth and small population sizes seem unlikely reasons for the observed low genetic variation in the phylotype IIB-1 isolates.

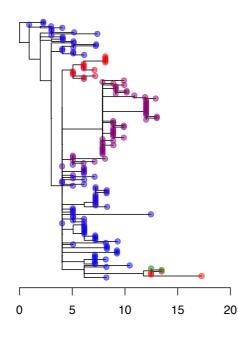
One explanation could be that the bottlenecking of winter die-off in the water and growth limited to summertime with a leftover population as a refuge in the *S. dulcamara* combined with the already significant metabolic effort of surviving at temperate latitude is putting a large amount of pressure on the UK *Ralstonia solanacearum* making it hard for diversity to be generated for natural selection to act upon. It is, however, possible that the relationship is stochastic. Perhaps a very small number of founders is enough to cause an outbreak if it is in a very large volume of water. In this situation, a small number of plants could be initially infected by the water. The infection will spread further through the field through the soil and

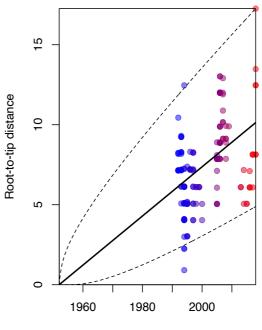
during increasing generations of vegetatively propagated potato crops in a typical manner for *Ralstonia solanacearum*. Perhaps the lack of genetic diversity is due to population bottlenecks related to seasonal and environmental change. If the population is subject to a constantly changing environment and the bacteria experience huge fluctuations in selection and population sizes, perhaps caused by seasonal temperature changes and out-of-host versus inside-host environment. Then it is possible that as the autumn temperatures fall, the relatively high-density bacteria, after summer when they are sampled, seek refuge in the riparian host and therefore undergo fluctuating selection dynamics and bottlenecks.

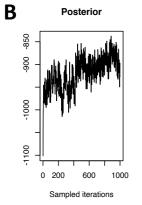

Positive samples have not been detected in the colder months of the year (John Elphinstone personal communication). Similarly, phylotype IIB-1 could not be detected in irrigation water at 4°C in the Netherlands (Van Elsas et al., 2001). However, we note that we cannot conclude the selective pressure occurring in time due to the lack of repeated sampling of each geolocation present in the dataset over time. To the best of our knowledge, this sample set is the most extensive in time and space for the Phylotype IIB-1 strain of *Ralstonia solanacearum*. However, it does not provide enough replication to draw conclusions about the seasonal effects on population dynamics. Moreover, the sampling of the river water performed by Fera Ltd. is always done in September. Therefore, we are seeing only a late summer snapshot of the diversity present in the river water phylotype IIB-1 population. Moreover, the detection limit in the river water sampling is relatively high so presence of bacteria is possible below the detection limit of the protocol used by Fera Ltd.

IS elements are showing movement with specific insertion sites regarding the location of isolation. Neutral genetic changes are expected to reflect some geographical sepration and the signature of geography found in the insertion sequence movement. Therefore, this type of analysis could detect neutral population structure apperin sooner tham traditional methods of detecting sequence variation such as variant calling analysis based on the core gene polymorphisms. Furthermore, this result aligns with the duplications and insertion sequence movement detected in the Netherlands' river water study of phylotype IIB-1 only over two years (Stevens and van Elsas, 2010). ISs disrupting transcriptional regulators may have a major effect on *Ralstonia solanacearum's* biology as the species is known to regulate major virulence pathways and disruptions in single genes can lead to avirulent phenotypes.

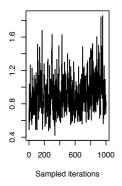
In the Netherlands, the ISRso3 was inserted in the phcA region. The phcA is the master regulator gene in Ralstonia solanacearum virulence and can lead to complete switching-off of the virulence network. Producing virulence factors is extremely costly and it is linked with a trade-off with growth. In *Ralstonia solanacearum* there is an experimentally proven trade-off between metabolic activity and growth (Peynard et al., 2016). Here, we show that the 2 populations existing in time (Pop2 and Pop3) differ in 20 genes associated with metabolic function and have lost genes associated with virulence present in Pop1. Perhaps after the initial outbreak, the strains needed to return to the river water and no longer need the exopolysaccharides for virulence so they can afford to lose them. Two genotypes with differing levels of metabolic capacity (Pop2 and Pop3) persisted in time. Therefore, insertion sequence movement provides the species with the ability to randomly generate fast-growing non-virulent clones that can be more competitive or pathogen resistant. Moreover, the lack of core genetic variation in phylotype IIB-1 is not due to the inability of the strain to evolve as evolution is observed in real-time when the strain is subjected to stress in laboratory conditions. Alderley et al. (2022) showed that phylotype IIB-1 isolate from the UK river water can rapidly evolve tolerance to antimicrobial plant allelochemicals. They showed that the tolerance was linked to the movement of insertion elements movement at into genes associated with stress responses, cell growth and competitiveness (Alderley et al., 2022). Thus, experimentally confirming the idea that the Ralstonia solanacearum phylotype IIB-1 strain evolves rapidly against stress after the stresses mobilise the movement into insertion sequences.

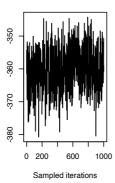

In conclusion, we found remarkably little core genome variation within the UK population of phylotype IIB-1 *Ralstonia solanacearum* with low mutation rate per year. However, variation in the accessory genome splits the population into three clusters related to gene loss associated with insertion sequence movement. We, therefore, conclude that there is an observable stronger effect of accessory genome loss compared to mutation accumulation within our sample *Ralstonia solanacearum* from the UK. The differences in accessory genes and insertion sequences are consistent with rapid accessory gene gain or loss and thus with the idea that the evolution of bacterial genomes is a highly dynamic process that involves extensive gain and loss of genes, with turnover rates comparable to, if not exceeding the rate of nucleotide substitution (Iranzo et al., 2019). Systems genetics approaches, such as genome-


scale transposon mutagenesis, would contribute to our understanding of the pathogenesis of this species. Overall, we have no means of estimating whether the presence or absence of accessory genes is adaptive from this data. However, we are seeing signs of some variation in the genomes in time, whether adaptive or neutral. Overall, the seven outbreaks in the UK show that prevention has failed on multiple occasions and control efforts need to be constantly improved. Genetic monitoring of pathogen populations could provide early warnings of the acquisition of antimicrobial resistance genes or virulence genes, such as Type 3 effectors recognised by plant immune systems (Straub et al., 2021a).

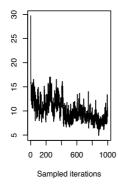

3.6. SUPPLEMENTARY

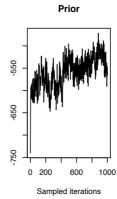
Supplementary Figure 6. **YO199 (NCPPB 3854) genome coverage plot against UY031**. Plot showing the Megaplasmid region missing from the UK isolate YO199 compared to UY031. a) Density plot of coverage across the genome. b) Coverage per 100 bp across the genome. c) GC per 100 bp across the genome (See supplementary for all genomes coverage plots.).



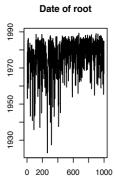


Sampling date



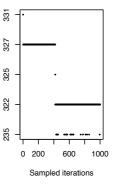


Likelihood


Relaxation parameter

0 200

600


Sampled iterations

1000

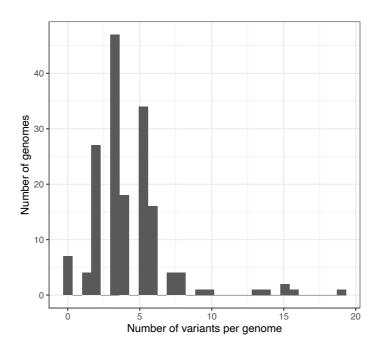
Sampled iterations

Α

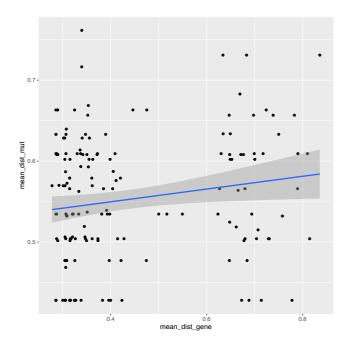
Supplementary Figure 8. Bactdating Quality Control

A. Root-to-tip regression analysis. Simple test to estimate if there is significant correlation between time (year of isolation) and phylogenetic distance (distance from root to branch tip) in the phylogeny. B. Algorithm convergence plots. Root estimates and clock rate estimate convergence plots for the Markov chain Monte Carlo. 1000 iterations shown from the total of 100,000 iteration ran MCMC with BactDating.

Alignment (Sample size)	Mu	Sigma	Alpha
UK (N = 170)	102.3008	108.2189	129.1338

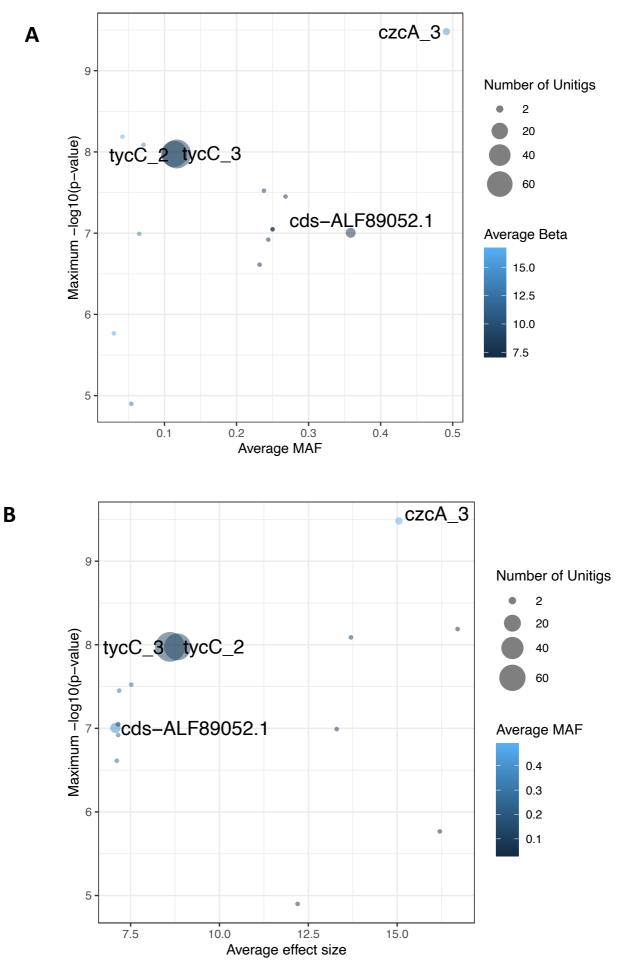

Supplementary Table 3. Bactdating MCMC estimates tested with Coda

Sampling of the parameters for Mu, Sigma and Alpha. Parameters need to reach 100 for the model to be valid.


Variant	Gene	NCBI	Allele	P value	Beta	Beta-std-
	name	Protei	frequenc	(corrected)		err
		n ID	У			
CP012687_2	rhsC_3	ALF86	1.37E-01	2.50E-04	9.28E+00	1.59E+00
93375_A_G		662				
group_2086	lgrD		8.87E-01	7.85E-03	-7.98E+00	1.89E+00
group_1877	IS5 family		2.32E-01	4.50E-07	-6.41E+00	1.32E+00
	transposa					
	se IS1021					
group_1933	IS5 family		2.14E-01	2.16E-10	-7.33E+00	1.34E+00
	transposa					
	se IS1021					
group_1905	IS5 family		1.96E-01	7.76E-09	-7.03E+00	1.40E+00
	transposa					
	se IS1021					

Supplementary Table 4. Temporal GWAS.

The table shows results for VCF and gene presence-absence (panaroo) results. Only results showed that pass p-value significance filtering. The variant column indicates either the location of the variant on the UY031 genome or the name of the gene as identified by panaroo.



Supplementary Figure 9. Variants per genome against YO199 169 UK genomes variants were called against YO199 isolate from 1992 outbreak. The number of variants per genome are shown as a histogram of the count of the genomes that have that many variants.

Supplementary Figure 10. Correlation between core genome distance and accessory genome distance

Jaccard distance based on presence absence used for both estimates. Mean distance for mutations based on core genome SNPs presence/absence and averaged over each pairwise relationship. Mean distance for genes based on the accessory genome (between 90% and 10% shared genes) presence/absence and averaged over each pairwise relationship.

Supplementary Figure 11. Temporal GWAS with Unitigs

Unitigs (k-mers) of variable sequence in the UK *Ralstonia solanacearum* phylotype IIB-1 population against time (year of isolation) GWAS results are shown in the figure A. Average effect size (Beta) (x-axis) against Log transformed corrected p-value for the k-mer. B. Minor allele frequency (MAF) (x-axis) against Log transformed corrected p-value for the k-mer.

Gene	Annotation
group_2087	hypothetical protein
group_1923	IS5 family transposase IS1021
group_1922	IS5 family transposase IS1021
group_1890	IS5 family transposase IS1021
group_1888	IS5 family transposase IS1021
group_1883	IS5 family transposase IS1021
group_1878	IS5 family transposase IS1021
group_1862	IS5 family transposase IS1021
group_1584	hypothetical protein
xcpT_2	Type II secretion system protein G
group_1214	hypothetical protein
group_1108	hypothetical protein
group_1092	hypothetical protein
group_1058	hypothetical protein
group_707	hypothetical protein
ribN	Riboflavin transporter
vgb_2	Virginiamycin B lyase
group_451	hypothetical protein
group_1921	IS5 family transposase IS1021
group_1886	IS5 family transposase IS1021

epsE_2	Type II secretion system protein E
sctC_2	Type 3 secretion system secretin
group_79	hypothetical protein
group_9	hypothetical protein
pemB	Pectinesterase B
epsF_3	Type II secretion system protein F
group_327	NADH oxidase

Supplementary Table 5. Genes unique to Pop1

Gene	Annotation	
group_1913	IS5 family transposase IS1021	
treZ	Malto-oligosyltrehalose trehalohydrolase	
glgX	Glycogen operon protein GlgX	
group_1395	hypothetical protein	
group_1202	putative HTH-type transcriptional regulator	
усдЈ	putative methyltransferase YcgJ	
calA	Coniferyl-alcohol dehydrogenase	
group_720	Hydroxycinnamoyl-CoA hydratase-lyase	
menE_2	2-succinylbenzoate-CoA ligase	
group_627	4-sulfomuconolactone hydrolase	
pcpR_5	PCP degradation transcriptional activation	
	protein	
group_576	hypothetical protein	
ровВ	Phenoxybenzoate dioxygenase subunit beta	
nlhH_2	Carboxylesterase NlhH	
ddmC	Dicamba O-demethylase oxygenase component	
naiP	Putative niacin/nicotinamide transporter NaiP	
vdh	Vanillin dehydrogenase	
xylC	Benzaldehyde dehydrogenase [NAD(+)]	
mopR	Phenol regulator MopR	
malQ	4-alpha-glucanotransferase	
treY	Maltooligosyl trehalose synthase	

Supplementary Table 6. Genes missing from Pop3

4. Multiple *Ralstonia solanacearum* lineages coexist in agricultural monocultures in China

4.1. ABSTRACT

Ralstonia solanacearum bacteria are globally important and highly diverse phytopathogens responsible for brown rot and wilt diseases on several plants. While R. solanacearum diversification can be explained by adaptations to different climates and plant hosts over time, it is poorly understood over shorter evolutionary time scales in agricultural systems. Here, we studied the phenotypic and genetic diversity of *R. solanacearum* within and between four tomato fields in China using a combination of genomics, phenotyping and physicochemical metadata collected at the level of individual plants. By phenotyping 1152 R. solanacearum isolates from the four fields, we show that *R. solanacearum* is highly variable showing a binomial trait distribution within each field, indicative of the presence of two coexisting ecotypes. Based on comparative genomics of a subset of 96 isolates (24 per field), we show that isolates split into two clades, which are further diversified into eight clonal groups that vary regarding their core (SNPs) and accessory genome content. Crucially, isolates from both clades coexist in 3 out of 4 fields, and more detailed analyses revealed that coexisting clonal groups differ regarding virulence traits and genes associated with type three effector proteins, quorum sensing, motility and iron-scavenging siderophores. In addition, microbial GWAS identified links between siderophore production and the IS5 family transposase IS1420, between growth and type III effector protein, and between in planta virulence and a RidA family protein. While physicochemical and biotic (bacterial community composition) properties clearly differed between the fields, they were not associated with the presence of specific clonal groups. Together, our results demonstrate that plant pathogenic R. solanacearum bacterium harbours high levels of diversity in agricultural ecosystems, which could potentially be attributed to character displacement between coexisting clonal groups.

4.2. INTRODUCTION

In agricultural ecosystems, target biocides, genetically homogenous resistant plant cultivars and crop rotations can be strong selection pressures leading to the evolution of virulence and resistance in plant pathogens. The evolution can be rapid if standing genetic diversity is present in the pathogen population. In contrast, the host population lacks the capacity to respond quickly, as agricultural breeding techniques usually lead to a lack of genetic diversity in commercial plant lines. In addition, the plant monocultures are planted densely, increasing the transmission efficiency of a pathogen across a field. In this environment, clones with a competitive advantage, such as high virulence or resistance to a control method, can quickly increase in frequency and sweep through the pathogen population. In theory, after such a clonal expansion event, the pathogen population should be rid of variation until either a new selection pressure leads to another sweep or the population survives for long enough to accumulate standing variation (Bargués-Ribera and Gokhale, 2020). However, in practice, plant pathogens often consist of several genotypes capable of infecting different or the same hosts but in different climatic conditions worldwide (Langner et al., 2021; Morris and Moury, 2019). The diversity observed within the pathogen species results from the differential longterm selection pressures acting on the pathogen. The long-term pressures could be highly heterogeneous, especially for pathogens capable of surviving in environmental reservoirs where conditions are less controlled compared to agricultural settings. In the short term, there will be a strong selection for traits contributing to within-host fitness like virulence, but over the long term, survival in the outside-host environment would select for traits allowing the pathogen to persist and compete within the environment until a susceptible host arrives. For opportunistic pathogens, it is a balance between the evolution of traits needed for hostpathogen interactions and traits required for the survival and competitive ability of the pathogen in the environment.

Different spatial scales with temporal crop rotations and seasonality make agricultural fields and soils heterogeneous or fluctuating environments. Therefore, selecting for local adaptation affects the fitness of pathogens due to differences in the deployment of resistance genes and seasonal temperatures (Croll and McDonald, 2017; Velásquez et al., 2018). Many studies have investigated the global population diversity of different plant pathogens; however, it remains unclear to what extent pathogen variation is present at the local scale, such as within and between agricultural fields in the same country (Dietzgen et al., 2020; Sharma et al., 2021b). Despite the homogeneity of a plant monoculture, the soil within a field remains a heterogeneous environment providing multiple micro niches and pressures from viruses and competitors (Messiha et al., 2009). High-standing variation means that a pathogen population is more stable and can respond to environmental change. Consequently, plant resistance's longevity and antimicrobials' efficacy can become compromised (Lurwanu et al., 2021; Nelson et al., 2018; George W. Sundin and Wang, 2018). This threatens food security by making plant diseases harder to control, which in turn can result in considerable crop losses globally (Savary et al., 2019b). Therefore, identifying the genetic diversity of plant pathogens at the agricultural field scale can provide key insights into the mechanisms of their local adaptation and pave the way to designing effective strategies for controlling plant disease.

Ralstonia solanacearum is a prime example of an opportunistic plant pathogen characterised by high genetic diversity globally. It is able to infect multiple domesticated and wild plants, and can persist in the soil as a saprophyte making it an opportunistic plant pathogens, which has been adapted across different environments (Elphinstone, 2005; Genin, 2010; Genin and Denny, 2012b; Hayward, 1991b). Due to high genetic diversity, *R. solanacearum* is classified as a species complex (RSSC), which can be divided into four phylotypes based on geographical origin (M. Fegan and Prior, 2005), multiple biovars based on host range (Hayward, 1991b) and phenotypic characteristics (Buddenhagen, 1962). Currently, it is classified as three phylogenetic species (Safni et al., 2014b): *Ralstonia solanacearum*, *Ralstonia pseudosolanacearum* and *Ralstonia syzygii*. RSSC strains from phylotype I are widespread in China, present in most crop production regions and capable of infecting nearly a hundred local crop plants (Jiang et al., 2017). *R. solanacearum*-caused wilt in tomatoes can lead to yield loss from 35% to 90% under favourable high temperatures and high moisture conditions, such as in wet and warm tropical regions like the ones in a big part of China (Singh et al., 2015).

The genetic variation within the *R. solanacearum* species complex has been linked to several adaptations that can increase its fitness and survival under stressful and variable environments (Genin, 2010; Messiha et al., 2009; Scherf et al., 2010). For example, *r*esistant

tomato cultivars have been shown to become less resistant over time in the field, suggesting that the pathogen might be able to evolve to become more virulent (Singh et al., 2015). Several environmental conditions have been associated with *R. solanacearum* fitness (Álvarez et al., 2008; Caruso et al., 2005b; Jiang et al., 2021b), including growth (Kadam and Jagtap, 2018), tolerance to cold temperatures, ability to resist metal and salt stress (Um et al., 2013), nutrient availability (Gu et al., 2020a; Li et al., 2021; Yang et al., 2019, 2018), and antagonistic and facilitative bacterial interactions (Hu et al., 2017; Li et al., 2022, 2019; Wei et al., 2019, 2015b). Furthermore, sequevars have been shown to vary in their intraspecific competitiveness in cell cultures, rhizosphere, and within tomato xylem (Huerta et al., 2015). While the genetic and phenotypic diversity of *Ralstonia solanacearum* is recognised at the global (G. Cellier and Prior, 2010; Wicker et al., 2012b), country (Albuquerque et al., 2014; Ramírez et al., 2020; Xue et al., 2011) and regional level (Chesneau et al., 2017; Deberdt et al., 2014; Wicker et al., 2009), it is less well understood at the local scale within plants, fields and crop production areas (Grover et al., 2006). Specifically, while *R. solanacearum* diversity has been observed in natural populations (M. Fegan and Prior, 2005; Genin and Denny, 2012b), it is unclear which environmental factors drive this variation and if it can be associated with certain pathogen ecotypes in agricultural fields. Understanding small-scale geographic variation can help us understand the movement of *Ralstonia solanacearum* genotypes across fields and regions of one country and help us prevent future outbreaks not only in China but potentially within Europe, where *R. solanacearum* strains are guarantined pathogens (EPPO, 2018).

To compare the phenotypic and genetic diversity of *Ralstonia solanacearum* isolates within and between four tomato fields in China, we sampled 12 plants from each field located in four provinces in China (Figure 20 A): Nanjing (NJ) of Jiangsu province, Ningbo (NB) of Zhejiang province, Nanchang (NC) of Jiangxi province and Nanning (NN). We isolated 24 *Ralstonia solanacearum* clones per plant, resulting in a total of 1152 clones, which were all phenotyped regarding biofilm, maximum growth, and competitiveness. To quantify and compare genetic variation, 3 clones from 8 plants per field were sequenced and phenotyped more extensively (total of 96 clones). We also collected physicochemical and biotic (bacterial community composition and diversity) for each of these plants to investigate if genetic variation could be associated with certain local environmental conditions. We then investigated: i) the biodiversity and physicochemical properties of the plants' rhizosphere, ii) the extent of genetic and phenotypic variation in *R. solanacearum* pathogen between the sampled fields, ii) the associations between genetic and phenotypic variation through genome-wide association study, iii) the diversity of virulence-associated genes in the *R. solanacearum* genotypes in the four fields. We found that pathogen diversity varied within and between fields in China. We found coexisting *R. solanacearum* genotypes within the same field that differ genetically and phenotypically, which can be explained by niche differentiation in ecologically important life-history traits and due to the wide resource utilisation spectrum of *R. solanacearum* strains. Together, these results suggest that *R. solanacearum* adapts to the agricultural environment through niche differentiation, leading to the coexistence of genetically and phenotypically distinct 'ecotypes' within individual fields.

4.3. METHODS

4.3.1. Tomato fields sites and collection of plant soil samples

Rhizosphere soils of tomatoes were sampled at four geographically disconnected fields in Nanjing (118°57' E, 32°03' N) of Jiangsu province, Ningbo (121°67' E, 29°91' N) of Zhejiang province, Nanchang (115°51'E, 28°41'N) of Jiangsi province and Nanning (108°21'E, 22°49'N) of Guangxi province between 26th of May and 13th of June in 2015. In each field, 12 tomato plants were randomly collected, resulting in a total of 48 rhizosphere samples (Figure 20 A). The excess soil was gently removed from the roots by shaking and the remaining soil attached to the surface of the roots was considered the rhizosphere soil (Wei et al., 2011). For microbial community composition comparisons, 5 g of rhizosphere soils were cryopreserved at -80 °C in 10 mL Falcon tubes containing 5 mL of 30% glycerol, while the rest of the rhizosphere soil samples were used to determine soil physicochemical (abiotic) properties as described later. From each of the 12 rhizosphere samples collected per field, 24 *R. solanacearum* single colony isolates were randomly selected using an *R. solanacearum*-specific semi-selective medium (SMSA) (Elphinstone et al., 1996) and cryopreserved on 96-well plates at -80 °C in 100 μL of nutrient medium (NB) with 15% glycerol.

4.3.2. Quantification of abiotic rhizosphere soil properties

Abiotic physicochemical properties included pH, soil moisture content (Moisture, %), electric conductivity (EC, us·cm⁻¹), soil organic matter (SOM, g·kg⁻¹), total nitrogen (TN, mg·kg⁻¹), total phosphorus (TP, mg·kg⁻¹), available nitrogen (AN, mg·kg⁻¹), available phosphorus (AP, mg·kg⁻¹) and available potassium (AK, mg·kg⁻¹). Soil physicochemical properties were mainly measured as described previously (Jiang et al., 2021b) following the Chinese standard for soil property determination: Soil pH (HJ 962-2018), EC (HJ 802-2016), SOM (NY/T 1121.6-2006), TN (LY/T 1228-2015), TP (GB/T 9837-1988), AN (LY/T 1229-1999). The difference in fresh and air-dried soil sample weight was used as a proxy for soil moisture for each rhizosphere sample. AP and AK were extracted with hydrochloric acid and ammonium fluoride and measured using the molybdenum blue method (Scrimgeour, 2007). The soil pH (Li et al., 2017) was measured in a soil-to-water 1: 5 suspension using a pH meter (PB-10, Sartorius, Germany). AP was extracted using hydrochloric acid and ammonium fluoride and determined using the molybdenum blue method (Scrimgeour, 2007). The total C and N were measured using a multi C/N analyser 3000 (Analytik Jena AG, Germany) as described previously (Scrimgeour, 2007).

4.3.3. Quantification of biotic rhizosphere soil properties

Bacterial community composition was calculated at the operational taxonomic unit (OTU) level within the 48 sampled plants. The total DNA was extracted from ~0.25 g of cryopreserved rhizosphere soil using PowerSoil DNA Isolation Kit (Mobio Laboratories, Carlsbad, CA, USA) following the manufacturer's protocol. DNA quality and concentration were checked using a NanoDrop 1000 spectrophotometer (Thermo Scientific, Waltham, MA, USA). Soil DNA was then subjected to 16S ribosomal RNA (rRNA) Illumina amplicon sequencing to determine the diversity and composition of bacterial communities at Shanghai Biozeron Biological Technology Co. Ltd. The V4 hypervariable region of the 16S rRNA gene was amplified with the primer pair 563F (5'-AYTGGGYDTAAAGVG-3') and 802R (5'-TACNVGGGTATCTAATCC-3'). All sequences were processed with QIIME (Caporaso et al., 2010). The OTU similarity cut-off was assigned at 97% identity level using USEARCH (Edgar, 2010). OTUs were assigned to corresponding bacterial taxa using the Ribosomal Database Project (RDP) database with the online version of the RDP classifier (Cole et al., 2014).

Microbial community composition was quantified as a dissimilarity index (Bray-Curtis) based on the average Bray-Curtis distance of each sample from each other at the OTU level. Bacterial community composition comparisons were done using the R vegan package (Dixon, 2003).

4.3.4. Phenotypic analysis

For the phenotypic analysis, all the 1152 *Ralstonia solanacearum* isolates collected from the 12 plants were used (4 field sites x 12 plants x 24 bacterial isolates; Figure 21 a). All isolates were characterised phenotypically for the following pathogen life-history traits: maximum growth rate (growth), biofilm formation (biofilm) and intra-species competition (competitiveness - against a type *R. solanacearum* strain isolated from Nanjing (Wei et al., 2011)). Each experiment was replicated three times unless stated otherwise. Furthermore, 96 isolates were further phenotyped for virulence traits siderophore production, exopolysaccharide production (EPS), *in planta* virulence (disease incidence) and swimming motility. Before virulence traits assays, the overnight liquid culture of *R. solanacearum* clones were washed and suspended in 0.85% NaCl (107 CFU/ml).

4.3.4.1. Maximum growth rate

Two µL of overnight *R. solanacearum* cultures of each isolate (revived as described earlier) were inoculated to 96-well microplate wells containing 198 µL of NA medium per well. Bacterial growth was assessed as changes in optical density (OD) at 600 nm measured every two hours for 24 h at 30°C using a SpectraMax M5 Plate reader (Molecular Devices, Sunnyvale, CA, USA). The maximum growth rates (at log phase) and biomasses were determined for each strain using the gcFitModel function to fit growth data in grofit (Kahm et al., 2010) package in R.

4.3.4.2. Biofilm formation

The biofilm formation was quantified using a modified crystal violet method (Yao and Allen, 2007). Briefly, two μ L of overnight *R. solanacearum* cultures were inoculated to 96-well microplate wells containing 90 μ L of NA medium. After incubation for 48 h at 30 °C without shaking, 200 μ L of methanol was used to fix bacteria for 15 min. Microplates were then emptied and left to dry at room temperature before adding 25 μ L of 1.0% crystal violet solution. After 10 min of staining, the unbound crystal violet was gently removed with a

pipette. The wells were then washed with distilled water, 70% ethanol and once more with distilled water. After the plates had been air-dried, the remaining crystal violet bound to adherent cells was re-solubilised with 150 μ L 33% (v/v) glacial acetic acid. The biofilm was quantified as optical density (OD₅₇₀) using SpectraMax M5 spectrophotometer (Molecular Devices, Sunnyvale, CA, USA).

4.3.4.3. Intra-species competition (competitiveness)

The level of intra-species competitiveness of isolated pathogen strains was determined in direct co-culture competition assays with red fluorescent labelled *R. solanacearum* (mCherry-tagged Rs-RFP) type strain (Wei et al., 2011). To quantify differences, the growth of red fluorescent labelled QL-Rs1115-RFP (mCherry, excitation: 587 nm; emission: 610 nm) strain was measured in the absence and presence of *R. solanacearum* field isolates (in 50:50 starting densities, ~10⁶ cells per mL for both strains) in 96-well microplates for 24 h at 30 °C. The intraspecies competitiveness was measured as the difference in the growth of fluorescent QL-Rs1115-RFP strain in the absence (OD_{600a}) and presence (OD_{600p}) of *R. solanacearum* isolates using the following formula:

$$Competitiveness = \frac{OD_{600a} - OD_{600p}}{OD_{600a}} \times 100.$$

4.3.4.4. Siderophore production

Siderophore production was assayed using a modified version of the universal chemical assay developed by Schwyn and Neilands (Gu et al., 2020b; Schwyn and Neilands, 1987). Briefly, we used the liquid version of the CAS assay, where 100 ul cell-free supernatant (three biological replicates for all 2,150 soil isolates) or deionized water as a control reference were added to 100 ul CAS assay solution in a 96-well plate. After 2 h of static incubation at room temperature, the OD630 of the cell-free supernatants (A) and deionized water controls (Ar) was then measured using a plate reader (SpectraMax M5) at room temperature. Siderophores induce a colour change in the CAS medium, which lowers the OD630 measurements, and siderophore production can thus be quantified using the following formula: $1 - A \div Ar$.

4.3.4.5. Disease incidence

The isolate of *R. solanacearum* clones was inoculated into the pot using a soil drenching method resulting in a final concentration of 5.0×10^6 CFU·g-1 of soil (Wei et al., 2011). The disease development was monitored daily and quantified by the proportion of wilted leaves per plant for the 0–4 scales disease index: 0 = no wilted leaf, 1 = <25% wilted leaves, 2 = 25-50% wilted leaves, 3 = 50-75% wilted leaves and 4 > 75% wilted leaves or dead plant (Schandry, 2017). The area under the curve progression of the disease dynamics curve (AUDPC) is used as a measure of the overall severity of wilt disease referred to as disease incidence. The disease dynamics curves were fitted individually for each plant using the gcFitModel function in the R grofit-package (Kahm et al., 2010).

4.3.4.6. Swimming motility and EPS

Swimming motilities were determined on CPG agar plates at 30°C containing 0.3% (w/v) agar, respectively. The zone of migration was measured in four directions after two days for the swimming motility (Raza et al., 2016) and the extracellular polysaccharides (EPS) production assay (Dubois et al., 1951). For the EPS liquid culture samples of *R. solanacearum* were inoculated (20 ul) in fresh CPG medium and after three days of growth at 30°C, extracellular polysaccharides were precipitated using ice-cold ethanol and quantified by the phenol-sulfuric acid method (Dubois et al., 1951).

4.3.5. Genome data processing

The genome sample set sequenced was from a subset of 8 plants. Three bacterial isolates were taken randomly from each plant, making up 24 isolates within each field. This is a total of 96 *Ralstonia solanacearum* genomes from tomatoes from 4 distant field sites in China, each within a different province: Nanjing (NJ), Ningbo (NB), Nanning (NN), Nanchang (NC).

4.3.5.1. Sequencing and assembly

Genomic DNA was exacted from overnight cultures of *R. solanacearum* with the Bacteria DNA extraction Kit (OMEGA) according to the manufacturer's instructions. Quality control was subsequently carried out on the purified DNA samples using TBS-380 fluorometer (Turner BioSystems Inc., Sunnyvale, CA). High qualified DNA samples (OD260/OD280 = $1.8^{2}.0$, > 6

ug) were send to Shanghai Biozeron Biothchnology Co., Ltd. (Shanghai, China.) for genome sequencing with Illumina NovaSeq 6000. For each strain, at least 1 ug genomic DNA was used for sequencing library construction. Paired-end libraries with insert sizes of ~400 bp were prepared following Illumina's standard genomic DNA library preparation procedure. Purified genomic DNA is sheared into smaller fragments with a desired size by Covaris, and blunt ends are generated by using T4 DNA polymerase. After adding an 'A' base to the 3' end of the blunt phosphorylated DNA fragments, adapters are ligated to the ends of the DNA fragments. The desired fragments can be purified through gel-electrophoresis, then selectively enriched, and amplified by PCR. The index tag could be introduced into the adapter at the PCR stage as appropriate and we did a library quality test. After sequencing genomic data quality control and filtering was applied. Following we chose 95 genomes for the further analysis based on the total genome length of the assembly and contaminant sequence presence (1 isolate excluded in NJ field (NJ1823)). Contamination was checked with a k-mer alignment against a local copy of the RefSeq database using Mash provided as an accessory script in Panaroo (v1.2.4)(Tonkin-Hill et al., 2020). The genome assembly was performed using Unicycler (v0.4.9) with known contaminant sequences provided in the software (Wick et al., 2017b). Five of the assemblies still contained contaminants after this processing. As a result, an alternative method was applied to them where all reads were aligned to R. solanacearum GMI1000 [GCA 000009125.1] reference genome and only aligned reads were assembled with Unicycler. Draft annotations were then performed with prokka (v1.14.5) (Seemann, 2014b).

4.3.5.2. Constructing phylogeny and SNP calling analysis

Genetic distance methods were used to estimate the population structure amongst isolates and construct a phylogeny. First, single nucleotide polymorphisms (SNPs) and small indels were called against a high-quality *R. solanacearum* GMI1000 reference genome downloaded from NCBI [GCA 000009125.1] using snippy (v5.0). Then, we generated a core single nucleotide polymorphisms (SNPs) presence-absence matrix and core genome alignment of SNPs with the accessory script "snippy-core" of snippy and the variant calling files (VCFs) produced by snippy. Maximum likelihood phylogeny was then constructed using the IQtree GTR+G4 model and two different bootstrap methods (Alrt and Ultrafastboot) (Nguyen et al., 2015a). Recombination in the genome sequences was detected using 100 runs of prokaryotic recombination estimation software ClonalFrameML (Didelot and Wilson, 2015), and recombination-aware phylogeny was constructed. Recombination calculations were conducted using the following formula for the ratio of the relative effect of recombination and mutation (r/m) for each simulation run:

$$\frac{r}{m} = \frac{R}{\theta} \times \delta \times \nu$$

 $\frac{R}{\theta}$ - The ratio of recombination and mutation rates δ - the mean length of imports ν - the average distance of the imports

4.3.5.3. Pangenome analysis

To assess the overall gene count variation in the sample set, we performed a pangenome analysis on the genome assemblies using the Panaroo pipeline (Tonkin-Hill et al., 2020), which generated: Orthologous gene clusters, core genome alignment with ClustalO from 90% shared gene clusters between the genomes and gene cluster presence/absence matrix. The total size of the pangenome was 6575 genes, of which 2364 were classified as accessory genes (excluding genes >90% and singletons or doubletons) and 4211 as core genes (>90% shared; Supp. Fig. 2). When compared to the reference genome of GMI1000, 303 genes were missing from our pangenome dataset.

4.3.5.4. Type III effectors and prophage analysis

The 95 genomes were further analysed regarding known virulence-associated sequences: prophage elements and Type III effector proteins (T3Es) that are used to evade plant immunity (Peeters et al., 2013a). First, intact prophages were identified using Phaster (Arndt et al., 2016). Then, extracted prophage sequences' genetic distance was estimated using a *k*-mer approach provided with Mash and Mashtree software (Katz et al., 2019), and distances were compared using Euclidean clustering and Neighbour-joining. Identification of prophages was made based on queries against RefSeq Virus. In addition, prophage gene re-annotation was done using Viga (González-Tortuero et al., 2018), and Roary (Page et al., 2015) was used to determine the prophage pangenome. Second, the genomes were searched for Type III

effector (T3Es) sequences using a local installation of the Ralstonia T3E database (Sabbagh et al., 2019) with default stringent blast parameters.

4.3.5.5. GWAS analysis for linking phenotypes with underlying genetic variants Genome-wide association study (GWAS) was performed on the seven phenotypic traits (list them here) to identify potential underlying SNPs and small indels, Unitigs and gene presence/absence from panaroo output using the pyseer microbial GWAS pipeline (Lees et al., 2018). First, all the phenotypes were centred using the base R scale function scale (centre=T, scale=F). Then, the SNPs and small indels were re-called with Freebayes using all the bam files obtained from snippy to obtain a genome-wide VCF. The VCF was filtered for sites with mean coverage between 100 – 300 bp, quality of 30, minor allele frequency (MAF) over 0.1 and below 0.90, only one alternative allele and no missing sites allowed leaving: 41,947 SNPs (~25,000 filtered out). The variants were annotated with SnpEff (Cingolani et al., 2012). The Unitigs were obtained using the unitig-counter software. Finally, the p-value threshold was obtained using a helper script within pyseer for each phenotypic trait analysed based on Bonferrorni correction. In addition, QQ plots of the p-values were made for all the phenotypes tested and visually observed for diviations of the points from the expected distribution and shelving which is a sign of population stricture. Due to the nature of the bacterial data high population structure is expected and not all of it is accounted for by the correction applied by pyseer. Therefore, we chose p-value plots that had small levels of shelving and at least the smallest values of p were falling on the theroretical line.

4.3.5.6. Post-processing and statistics

All post-processing, statistical analysis and graphics were constructed using R (v4.0.2) (R Core Team, 2017) with packages tidyverse, ggtree (Yu et al., 2018), vegan (Dixon, 2003), reshape2, ape, phytools. All plot visualisation was done with ggplot and ggtree packages (Yu et al., 2018). PERMANOVA was used to compare differences between the experimental groupings of principle component analysed data. The function adonis2 in the vegan package in R was used for the test (Dixon, 2003). R libraries factorextra and cluster were used to perform *k*-means clustering visualised in Figure 20 C and optimal cluster number (Supplementary Figure 13).

Estimates of nucleotide diversity (Pi) were done on the core genome alignment using the R library popgenome (Pfeifer et al., 2014).

4.4. RESULTS

4.4.1. Tomato plants' rhizosphere originating from four different fields have physicochemical and biodiversity differences explained by field site origin

First, we investigated the abiotic and biotic differences between the microenvironment of the tomato plants' rhizosphere *Ralstonia solanacearum* resides. We compared the rhizosphere of 12 plants from each of the four field sites studied, totalling 48 rhizosphere samples analysed (Figure 20 A). We compared the measurements for six abiotic factors: pH, AK, AP, total C, AN and Moisture, and biotic diversity using Bray-Curtis's index, including *Ralstonia solanacearum* (pathogen) density and total bacteria density. We see the clustering of the rhizosphere samples from each field site together in the principal component analysis based on the six abiotic soil properties measured (Figure 20 B, PERMANOVA: $F_{3,48} = 66$, $R^2 = 0.82$, p = 0.001). Also, we see field site-specific clustering on the multiple-dimension scaling plot based on the Bray-Curtis dissimilarity index (Figure 20 C). These results indicate that the biotic and abiotic environment is showing field-specific structure. The field sites are a great distance apart in four different provinces (Figure 20 A), so the presence of variable abiotic conditions is expected. However, conditions within each field also varied, and we did not observe tight clustering in either the MDS or PCA analysis. Therefore, the variance is not fully explained by the four-way clustering according to the field site.

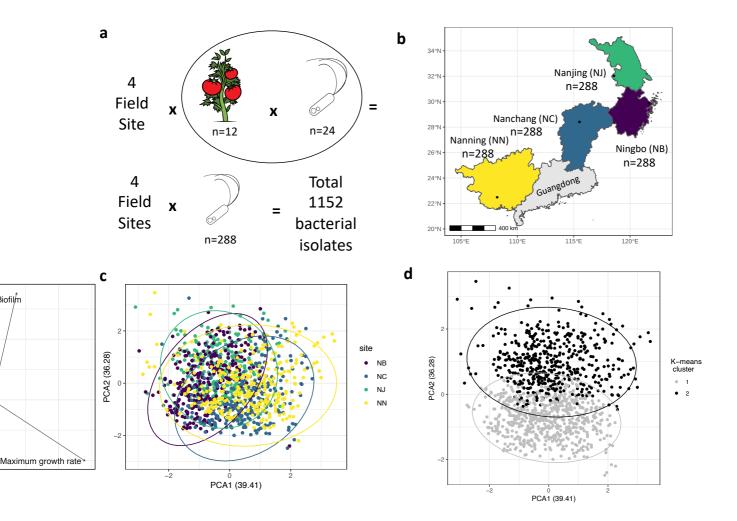


Figure 20. Plant rhizosphere properties explained by field site

Rhizosphere of 12 plants per fields site sampled and tested. A) Plant sampling design and Map showing plants sampled per field site; B) PCA analysis of 6 soil physicochemical properties: pH, AK, AP, total C, AN and Moisture; C) Soil biodiversity measurements with Bray-Curtis index. In all panels data points are coloured by field site.

4.4.2. Two phenotypic groups of *Ralstonia solanacearum* cooccur within each tomato field in China

To understand *R. solanacearum* variation within and between fields at the phenotypic level, we compared 1152 R. solanacearum regarding their growth, biofilm production and competitiveness (Figure 21 a & b). The PC analysis showed that there is large variation within and between the fields, with field identity explaining 21% of the total trait variation (Figure 21 c, PERMANOVA: $F_{3,1151}$ = 100, R^2 = 0.21, p = 0.001; Supplementary Figure 12). To understand this variation in more detail, we used k-means clustering to group our data phenotypically. The gap statistic value showed that the optimal number of clusters in the data is two (Supplementary Figure 13), indicating that our data distribution could be explained by two phenotypic groups (Figure 21 D). Moreover, isolates from both clusters were present in all four field sites (Supplementary Table 7).

Biofilm

Figure 21. Geography does not explain Ralstonia solanacearum phenotypic variation in tomato fields in China.

The figure shows the phenotypic variation of 1152 Ralstonia solanacearum isolates from 4 Chinese fields based on three virulence-associated phenotypic traits: Competitiveness, Maximum growth rate and Biofilm formation. a) schematic of sampling design for the 1152 bacterial isolates; b) map of the field sites sampled c) PCA analysis of the three phenotypic traits coloured by sampling site; d) PCA analysis of the three phenotypic traits coloured by k-means cluster (Supplementary Figure 13 & Supplementary Table 7).

4.4.3. Two different *Ralstonia solanacearum* genotypes cooccur within tomato field sites in China

To examine the genetic diversity of *R. solanacearum* within the sampled fields we sequenced the whole genomes of 96 bacterial isolates (4 field sites x 8 plants x 3 clones; one genome excluded due to poor quality. First, we compared the 95 isolates with the *R. solanacearum* GMI1000 reference genome to compare how genetically distant our strains are from this well annotated reference genome. This showed that all the isolates are part of the *Ralstonia solanacearum* phylotype I, or *Ralstonia pseudosolanacearum* species (Safni et al., 2014b), even though the isolates were all distantly related to the GMI1000 reference, with the number of SNP differences ranging from 15,000-35,000 per isolate. Overall, the large number of SNPs observed within the sample set (48,300 variants) meant that a well-resolved phylogeny could be constructed based on the core genome SNPs. After recombinant sites were removed, a highly supported tree was constructed that split the isolates into 2 clades and a further 8 terminal branches (Supplementary Figure 19). The branches represented eight clonal lineages with little variation within each lineage (median of 1 segregating site and median of 0.2 nucleotide diversity index). Hence, from here on these branches are referred as 8 clonal lineages representative of distinct *R. solanacearum* genotypes.

To investigate the source of the sequence diversity within our genome sample set, we estimated the homologous recombination rates relative to mutation rates using the whole

genome alignment of the genomes. We used ClonalFrameML software as it can estimate recombination from outside the sample set of genomes studied. We saw a total number of 2728 predicted recombination events across the dataset. The ratio of the relative effect of recombination and mutation was predicted to be r/m = 1.87 [1.82-1.92], and the ratio of the frequency of recombination and mutation R/theta = 0.56 [0.54-0.57]. The average length of recombined fragments was estimated to be δ = 182 bp, and the average divergence between donor and recipient was v = 0.019. Together, these results show that mutation happens twice as often as recombination. However, on average recombination contributed to longer sequence changes (δv = 3.4bp), causing almost twice the number of nucleotide substitutions compared to mutations. These results hence confirm the importance of recombination events for the diversification of *R. solanacearum* and show that the observed diversity was not a result of strictly clonal diversification.

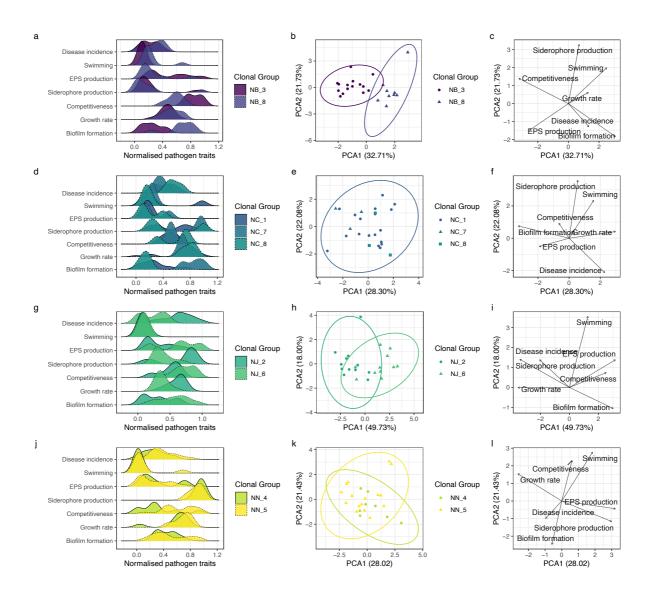
	NN1017	
	- NN0506	
	- NN0512	
	• NN0111	
	r NN1018	
	L NN0524	
	r [.] NN0924	
	·· NN0905	
	·· NN1005	
	·· NN0901	
	^{l.} NN0814	
	r [.] NN0624	
	· NN0615	
	·· NN0810	
	· NN0802	
	L. NN0601	
	r [.] NN0401	
	· NN0118	
	·· NN0419	
	- NN0413	
	·· NN1623	
	r·NN0107	
	L- NN1601	
	······ NB1515	
· · · · · · · · · · · · · · · · · · ·	······ NB1305	
· · · · · · · · · · · · · · · · · · ·	······ NB0109	
	······ NB0515	
[``	·······NB1307	
· · · ·	······· NB1215 NB0124	
· · · · · · · · · · · · · · · · · · ·	1100124	
· · · · · · · · · · · · · · · · · · ·	NB0102	
l	101300	
· · · · · · · · · · · · · · · · · · ·	100303	
	NB 1210	
	······ NB1206 ····· NB1516	
	NB1310 NB0516	
	······································	
	······································	
	······································	
	······ NJ0315	
	······ NJ0112	
	······ NJ0124	
	······ NJ1009	
	······ NJ0210	
···		
	······ NJ0311	
•••	······NJ0224	
1	NJ0323	
	NC1103	
	NC0909	
	NC1319	
	NC0506	
	NC0521	
	NC1323	
	NC0324 NC1206	
	NC1123 NC1209	
	NC1209 NC0412	
	NC0412 NC1705	
	NO1703	
	NO1314	
	NC0322	
	NC0406	
	NC0312	

NB NC NJ NN C 7 65) NC 1

Site

B)

Figure 22. Genetic divergence of *Ralstonia solanacearum* phylotype I sampled from 4 Chinese provinces.


a) Maximum likelihood phylogeny constructed based on core SNPs compared to reference genome for R. solanacearum GMI1000. Clonal groupings are shown in red and metadata colour strips for the site of isolation (inner) and sequevar classification (outer) are added on the right of the isolate names. Recombinant sites were removed from the alignment of 3522 core genes using ClonalFrameML and phylogeny was constructed using IQTree (GTR+G4), midpoint rooted. (See Supplementary Figure 19 for bootstrap; b) The map is showing the geographic location of the four fields within the four Chinese provinces the bacterial samples originate from: Nanjing (NJ), Nanning (NN), Ningbo (NB) and Nanchang (NC)); c) Venn diagram of the 2346 accessory genes (orthologous groups of genes removed if present in <=2 strain and in >= 90% of strains). The name of each bacterial isolate is representative of the sampling. For example, NC0923 means an isolate from the NC field from plant number 9 and clone number 23.

Two clonal lineages co-occurred in each of the four fields apart from NC, where three lineages were observed (Figure 22 b). Each clonal lineage was specific to its location except for lineage eight, which was observed in both NC and NB. The co-occurring lineages originated from the two main clades with three out of four fields (Figure 22 a), and each of the clonal lineages contained accessory genes that were field-specific (Figure 22 c). The presence of the clonal group eight within both NC and NB fields suggests that this strain was potentially recently introduced to both fields potentially along with agricultural practices due to the large geographic distance between the two fields (Figure 22 b). We also compared the genetic variation in terms of nucleotide diversity (Pi) within the plant, field site, and clonal group levels (Supplementary Figure 14). It was estimated that each plant individual harbours low nucleotide diversity with an average of 1 clonal lineage per plant (median Pi per plant = 0.1). In contrast, nucleotide diversity observed per field was much higher due to two lineages co-occurring in each field (median Pi per field site = 4023). Together, these findings suggest that while different R. solanacearum genotypes cooccurred within each tomato field but presence of *R. solanacearum* at the plant level rhizosphere was limited to one genotype.

131

4.4.4. Coexisting lineages differ phenotypically regarding their virulence

The 95 genotyped strains were further investigated for phenotypic diversity by measuring traits indicative of *Ralstonia solanacearum* virulence: biofilm production, disease incidence, growth rate, competitive ability, swimming motility, exopolysaccharides (EPS) and siderophore production. To observe the differences between the coexisting genotypes, we compared the bacterial isolates' phenotypes split by field site and genotype (Figure 23). In the NB field, differences between the cooccurring genotypes 3 and 8 were significant (p<0.001) and the observed difference was especially affected by the biofilm formation trait (Figure 23 a-c). In the NJ field site, there was a significant difference between the coexisting clonal lineages 2 and 6 (p<0.001) (Figure 23 g-i). In addition, to compare the performance of the observed coexisting genotypes and provide an ecotype explanation for the coexistence we observed in each field site, we measured the growth of the 95 Ralstonia solanacearum isolates in 48 different substrate media broadly categorised as sugars, amino and organic acids, and other (Supplementary Figure 21). No significant per-field genotype differences were observed with the permutational multivariate analysis of variance. Therefore, the difference in the metabolic capacity of the strains was not linked to the coexisting genotypes per field (Supplementary Figure 21). We compared the metabolic profiles of the coexisting genotypes by creating a binary matrix of growth vs no growth from the growth rate data (Supplementary Figure 21 b).

PCA analysis of the phenotypic space of the 96 sequenced isolates. Panels a,d,g, j show frequency distribution of the 7 phenotypes measured: Disease incidence, Swimming motility, EPS production, Siderophore production, Competitiveness, Growth rate and Biofilm formation. Panels b,e, h,k show the PCA of the 7 phenotypes and panels c, f, i, I show the loadings for these phenotypes.

4.4.5. Cooccurring lineages have different virulence gene profiles

Substantial variation in the accessory genome was observed from pangenome analysis of the 95 isolates, and many genes were accessory between the genotypes found within each field (Figure 22 c & Supplementary Figure 16). Thus, we wanted to deploy a comparative genomics

approach to investigate the presence of virulence-associated genes and gene elements within the 8 *Ralstonia solanacearum* genotypes found here. We hypothesised that different virulence gene repertoire provides variable infection abilities to different *Ralstonia solanacearum* phylotype I genotypes. This provides an explanation for the coexistence of the different ecotypes within the same location. We investigate the variation in the core virulence genes' non-synonymous mutation profiles and the following genetic elements related to virulence: Type III Effectors (T3Es) from the Ralstonia T3E database & presence of prophages in the genomes. For this comparative analysis, we removed the clonal group 8 strains from the NC site as their genomes were smaller and missing many genes.

The mutation profile of the core virulence genes was investigated. The presence of missense mutations within core virulence pathways between the coexisting genotypes indicates there will be differences in the virulence mechanisms employed by them within the same field. Here we observed multiple missense mutations present within the clonal groups' virulence pathway genes and differing profiles of missense mutation depending on the clonal groups' phylogenetics. The differences are mainly associated with the three-clade ancestral split in the phylogeny before the further differentiation of the observed eight clonal groups. The three groups can be seen as a three-cluster split in a distance plot based on the presence-absence of mutated virulence genes (Figure 24 b). Interestingly when the mutated virulence pathways are compared between the genotypes cooccurring in each field, we can see that three out of the four fields studied have major differences in the mutation profile of cooccurring genotypes (Figure 24 a). These differences indicate a link between virulence gene profile and co-occurrence of *Ralstonia solanacearum* genotypes within an agricultural field.

Furthermore, the Ralstonia T3E database was searched to identify differences in major virulence genes that can contribute to different modes of infection deployed by the eight genotypes. In total, 72 accessory T3E genes were found in our sample set of 95 bacterial isolates along with GMI1000 (Figure 24 C). The whole genome distance data suggests that clonal groups 1-3 and clonal groups 4-8 have a distant common ancestor, and this two-way split is reflected in the presence of 3 effector genes: RipJ, RipAX1, and Hyp6 (Supplementary Figure 17). Multicopy of RipJ were observed in the upper half of the phylogeny and have previously been recorded in strains from phylotype I from China and South Korea, indicating

it could be associated with southeast Asian strains from phylotype I of *Ralstonia pseudosolanacearum* (Pandey et al., 2021). In addition, most of the strains belonging to phylotype I from around the world in the Ralstonia T3E database have a pseudogene for RipAX1; however, the same gene is always present in clonal groups 6-8 and perhaps indicating a very important and under-investigated role of the gene within this lineage. Hyp6 or Hypothetical 6 is a more recently discovered effector and not very well documented, but it appears to be very variable both between the eight clonal groups compared here and compared to GMI1000. Moreover, we detected six hypothetical T3Es (2, 6, 7, 8, 14, 17), all of which are absent from reference genome GMI1000 but have been detected in other strains from phylotype I from around the world and in other phylotypes (Sabbagh et al., 2019). Hypothetical 17 is the only clonal type specific (unique for that clonal type) T3E gene detected here for clonal group 7. Overall, the agreement of phylogeny and T3E effector clustering suggests there is a distinct profile of T3Es associated with each genotype studied, and multiple T3E profiles exist per field (Supplementary Figure 17).

In addition, prophage's presence within the genome sets was investigated. There is a known link between insertion or prophage sequences gene disturbance and virulence in *Ralstonia solanacearum* strains (Gonçalves et al., 2020b). The clonal group-specific pattern was also observed in the prophage analysis, with prophage profiles differing between cooccurring isolates, suggesting that field cooccurrence of genotypes may be due to differential virulence and gene content (Figure 24 D). Notably, we found the prophage RSS1, shown previously to enhance virulence in tomatoes (Addy et al., 2012, p. 1). RSS1 was in clonal group 2 but not in clonal group 6 suggesting the cooccurrence of these two genotypes in the same field may be due to virulence differences.

A				
Transposon-related functions -	NB	NC	NJ	N
3 hydroxypropionate cycle - 1,4–Dichlorobenzene degradation - Transport polyamine substrate -				
Transport macromolecule EPS - Sorbitol biosynthesis -				
Polyamine biosynthesis - Phenolic compound degradation - Cysteine biosynthesis -				
Transport osmoprotectant - TIII Secretion System and associated function regulation -				
Ralfuranone biosynthesis - Motility – Chemotaxis signaling pathway - Mothingen biosynthesis				
Methionine biosynthesis Lipopolysaccharide biosynthesis Assembly and repair of iron-sulfur proteins				
Alanine degradation - Type IV secretion -				
Transport cofactor substrats Thiamin biosynthesis - Suffur metabolism - Suffur metabolism -				
siderophore biosynthesis - Quorum sensing signaling pathway -				
O Quorum sensing - C Pyoverdin biosynthesis - O Phosphate metabolism -				
Macromolecule secretion Type III SS - Macromolecule secretion polysaccharide Biofilm Formation Macromolecule biosynthesis protein -				
Ketogluconate degradation - Isoquinoline degradation - iron metabolism -				
glycolate and glycylate degradation - Glycerophospholipid metabolism				
۲ · · · · · · N	C0923			
	B1020 B1005			
	B0811			
· · · · · · · · · · · · · · · N	B1024			
n n n n n n n n n n n n n n n n n n n	B0809 B0717	NC_1 NC_7	Nj_2 NJ_6 NN_4	NN_5
	B0819			
PN	B0705	Clona	al Group	
11 14	C0911 C0512	RS_T3E_Hyp17 -	75]
	B0701	RipBE -	100	
	C1724	RipF1 - RipAX2 -	100 8.33 75 100 100 100 100 100 100	
	C1117 C1717	RS_T3E_Hyp7 -	94.44 100 100	
	J0606	RS_T3E_Hyp14 -	77.78 100	
	J0601	RipT - RipP1 -	100 100 100 100 75 93.75 100 100 33.33 100 87.5 100	
	J1713 J0105	RipD -	100 100 100 100 100 37.5	
	J1814	RipBO -	22.22 100	
	J1720	RipAH - RipAG -	100 33.33 100 100 100 88.89 100 100 100	
	J1414 J1705	RipAd	100 100 100 100 100 100	T3Es per
	J1405	RS_T3E_Hyp6 -	100 11.11 88.89 100	clonal group
	J1816	RipS8 - RipS4 -	100 94.44 100 100 100 86.67 100 88.89 100 75 72.73 100 87.5	100
	J0619 00000000000000000000000000000000000	Hipst BipS1 - BipR - RipR -	100 88.89 5.56 100 72.73	75
- N	N0506		80 77.78 77.78 100 83.33 63.64 75 50	75
	N0512 N0111	ge per RipP2 -	100 100 <th> 50</th>	50
I-N	N1018	RipG1 -	100 100 100 100 100 100	25
L N	N0524	RipC2 -		
	N0924 N0905	RipC1 - RipBP -	100 100 100 50 45.45 100 100 100 77.78 94.44 100 100 100	
·· N	N1005	RipBM -	100 100 22.22 100 75 100 100 100	l
	N0901	RipAX1 -	100 22.22 100 </th <th></th>	
	N0814 N0624	RipAV - RipAT -	100 100 <th></th>	
· N	N0615	RipAR -	100 100 100 100 100 100 100	
	N0810	RipAO - Site BinAN -	86.67 88.89 77.78 100 66.67 45.45 100 68.75 100 100 100 91.67 90.91 100 100	
	N0802 N0601	NB RipAL -	100 100 100 100 91.67 90.91 100 100 100 77.78 94.44 100 100 100	
r [.] N	N0401	RipAD -	100 100 100 100 100 100 100	1
	N0118 N0419	NO RipA3 -	93.33 77.78 77.78 100 91.67 81.82 87.5 68.75	
	N0419	NN		
· N	N1623		NB 3 NB 8 NC 1 NC 7 NL 6 NN 6 NN 6 NN 5	
	N0107 N1606			
	N1601		Clonal Group	
· · · · · · · · · · · · · · · · · · ·	B1515			
	B1305 B0109			
	B0515			136
· · · · · · · · · · · · · · · · · · ·	B1307			100
	B1215 B0124			
	B0124 B0102			
····· N				

Figure 24. Virulence gene profiles

a) Non-synonymous mutations in virulence pathways Core non-synonymous mutations presence in genes is shown in this plot and mutations are summarised over pathway and clonal group. If a mutation is present in >80% of isolates in a clonal group in each pathway it is shown in black and it is shown in white if that pathway is mutated in <80% of the isolates in a clonal group. Therefore, virulence pathways that are mutated in most of the isolates in a clonal group are represented with black colour.

b) Non-synonymous mutations in virulence genes PCoA shows that mutation profiles align with expected clustering based on phylogenetic relationship between strains.

c) Presence of Type III effector proteins Presence absence matrix for the T3Es was constructed as multicopy or presence was accepted as 1 and pseudogene or absence as 0. The data shown is proportion of isolates per clonal group that have a certain T3E gene on the y-axis.

d) Presence of prophages the y-axis shows clonal groupings (1-8) colour coded by origin of samples within the Chinese province, and the x axis shows the prophage cluster and phage family (top) and the prophage species (bottom) – for prophage cluster determination (

Supplementary Figure 18). Cells are shaded based on the proportion of isolates that contain

4.4.6. GWAS identified a transposase and a type III effector linked to siderophore production and maximum growth phenotypes in *Ralstonia solanacearum*

Microbial genome-wide association study (GWAS) approach was used to link the genetic and virulence-linked phenotypic diversity across the whole dataset of 95 isolates (Supplementary Table 8). We used three different genetic components for the GWAS: 1) shared k-mers (unitigs) of sequence; 2) shared genes from the pangenome and 3) genetic variants from variant calling analysis against GMI1000. The unitig GWAS identified a few genes associated with growth and swimming motility. In case of growth, association with the gene RSp0842, annotated as a putative Type III effector protein, was found. Instead, swimming motility was associated with three genes: Rsc3183 (probable hemagglutinin related protein) and two phage-related proteins (Rsc1924, Rsc1923). The SNP GWAS identified associations also for

swimming motility and competition. For the competition, a missense variant in the RSp1282 gene, which encoded for phosphoenolpyruvate - a protein phosphotransferase involved in binding magnesium. For swimming motility, a synonymous variant in the RSc0102 gene, which was putatively annotated as involved in calcium binding was found. The gene presence-absence GWAS identified the highest number of significant associations with disease incidence (virulence in planta), competition, swimming motility, exopolysaccharide production (EPS) and siderophore production. However, annotations were only present for disease incidence and siderophore production. For disease incidence, the gene group_4779 was found, which encoded for a RidA family protein. For siderophore production, the gene group_5250, which encoded an IS5 family transposase IS1420 was identified. Together, these results highlight potential role of these genes for *R. solanacearum* virulence evolution in tomato fields in China.

4.5. DISCUSSION

Our results show that *R. solanacearum* isolates from four geographically disconnected tomato fields in China form three genetically distinct clades, which are further divided into eight clonal lineages. Interestingly, in three out of four fields, isolates from two clonal lineages coexist, representing diversity from two distinct clades. In one of the four fields, we observe its own clade that split into two clonal groups. Coexisting lineages had unique virulence gene profiles and show phenotypic divergence regarding their virulence traits in two out of four fields. Using GWAS analysis, we further linked phenotypic variation with a transposable element and a type III effector protein, which are both known to contribute to virulence in *R. solanacearum*. Together these results show that *R. solanacearum* infections in China are not clonal but vary considerably within agricultural tomato monocultures. Specifically, the coexisting lineages within fields differed in their virulence, potentially resulting in two ecological strategies with low niche overlap.

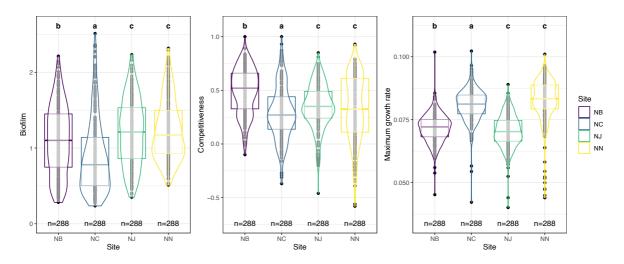
We found that the abiotic and biotic environment of the tomato plants' rhizosphere was strongly associated with the field site the tomato plants originate from (Figure 20 b&c). Structure within biotic and abiotic measurements based on location was expected because the sampled fields were far apart and due to general heterogeneity between sampling

138

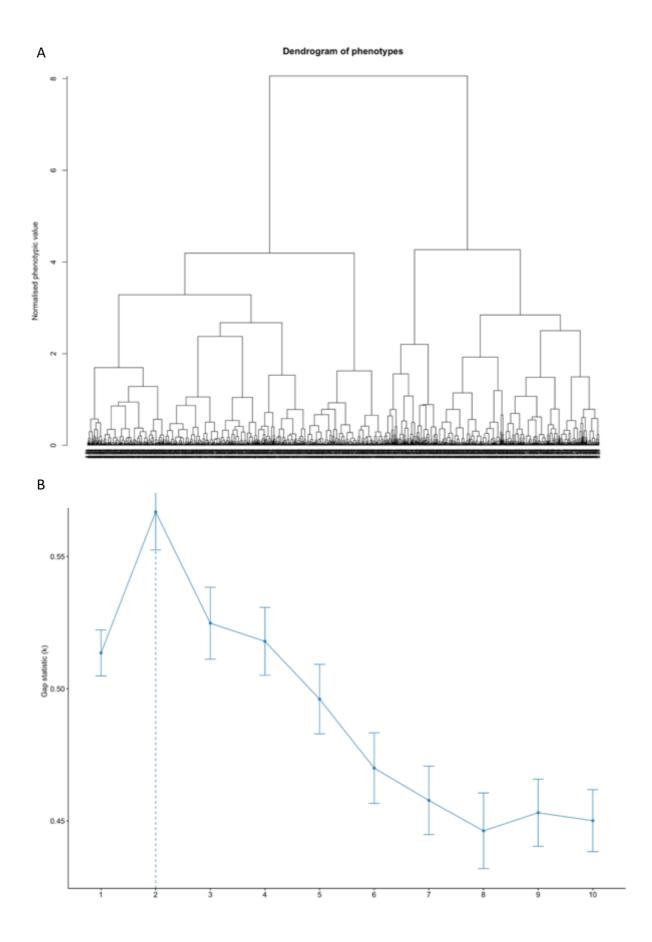
environments. Thus, we also expected to see the field site structure in the phenotypic and genotypic data of the sampled *Ralstonia solanacearum* isolates. However, we saw that the total phenotypic variation (based on 1152 clones) was explained by a two-way split in the phenotypic space with isolates belonging to both clusters present in all fields. Furthermore, the genotypic data showed even more heterogeneity in the dataset with 8 different genotypes present in a subset of 95 sequenced clones. We show that two genotypes in each field site cooccur and the genotypes differ in their core genome and accessory gene content within each field site. Many of the gene differences between the 8 genotypes can be accounted for due to an earlier phylogenetic split splitting the 95 genomes into two major clades: clade I (genotype 1-3) and clade II (4-8). However, this earlier genetic split does not align with the binomial split observed in the phenotypic data. Previously, in a tomato field study in China, it was shown that three pathotypes of *R. solanacearum* coexisted (Zheng et al., 2014).

This study shows that recombination rates were higher than mutation rates based on the phylogenetic recombination inference performed. Therefore, horizontal gene transfer is vital in the diversification process of *R. solanacearum* strains within China and has largely contributed to the variation observed. Typical levels of homologous recombination were observed here, with recombination contributing on average three times more diversity than mutation (Price and Arkin, 2015). However, the presence of recombination means that the clonal clades should be able to merge or get closer together as recombination leads to a purge of genetic variation and brings lineages closer together (Sheppard et al., 2018). On the contrary, we observe clearly separate genotype lineages with large genetic distances between them but virtually no variation within the clonal groups. This phenomenon fits well with the stable ecotype model hypothesis which can explain the existence of clonal groups in the environment (Bobay and Raymann, 2019). In this model, an ecological species or strain adapted to a specific niche can expand when favourable conditions arise and cause a selective sweep. In opportunistic bacterial species such as R. solanacearum, cells can survive in an environmental host reservoir or in the soil and avoid competition with a new expanding strain (Elphinstone et al., 1998b; Schönfeld et al., 2003). Then when conditions change the population surviving in a refuge can expand again leading to coexistence due to differential temporal dynamics. Thus, differential pressures over time can explain the observation of differing dynamics between strains with different virulence strategies. Unfortunately, here we investigate a sample of bacterial genomes in a single point in time which makes it hard to conclude what the long-term evolutionary dynamics of *R. solanacearum* in the Chinese agricultural environment. However, due to the long population history *R. solanacearum* has had in China it can be assumed that there are multiple genotypes that can be found in the natural environment and agriculture (Hanson et al., 2012; Sun et al., 2017; Wicker et al., 2012b). Potentially these genotypes persist due to variable niche preferences and can survive within their own niche which may expand and contract as the environment varies over time.

We show that the eight *Ralstonia solanacearum* clonal lineages studied here have multiple gene differences based on their pangenome. Crucially, these differences included SNP variation and presence-absence of important virulence genes such as the Type III effector proteins and virulence-associated prophages. It is not clear to what extent the pangenome is expendable even within important systems such as the type III effectors where a lot of homology and redundancy can be observed in Ralstonia solanacearum strains (Sabbagh et al., 2019). Overall, the significance of the variability in pangenome is an ongoing discussion and it is not yet known to what extent accessory genes contribute to an individual's fitness (McInerney et al., 2017). However, there is mounting evidence that accessory genes can be associated with microbial growth and survival in different environments (Kent et al., 2016). We know that genes like type III effectors are hugely important for plant pathogens' ability to infect multiple hosts and we see a huge variation in the multi-host bacteria Ralstonia solanacearum so disregarding this variation as simply neutral would not be sensible. Moreover, we know that mobile genetic elements can contribute to virulence and previous studies have identified a link between prophage presence and virulence in Ralstonia solanacearum virulence in tomato (Addy et al., 2012; Yamada, 2013). The differing accessory genes between the two major lineages of the phylogeny could be signs of adaptation of the cooccurring clonal lineages to the local environment.

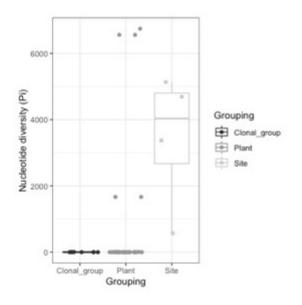

Our GWAS analysis also identified a few links between genetic variants and important virulence phenotypes. Swimming motility is essential for the early stages of the infection cycle in *R. solanacearum* strains but flagella are also a common receptor for the phage adsorption (Abedon, 2009; Corral et al., 2020). Here, we identified two phage-related proteins linked

with swimming motility. Furthermore, we linked disease incidence (virulence in planta) to a RidA family protein. It has been shown that this family of proteins are highly conserved across bacteria, archaea and eukaryotes and can provide protection against metabolic damage by reactive intermediates (Irons et al., 2020). Reactive oxygen species (ROS) are a big part of the defence response in plants against pathogen invasions (Waszczak et al., 2018). Therefore, a protein that aids bacteria to defend themselves against ROS could be beneficial and increase their infection success and fitness. In addition, we identified an association between IS5 family transposase (IS1420) and siderophore production. Transposable elements are known to contribute to R. solanacearum genome plasticity and 'phenotypic conversion' from virulent to avirulent strains (Jeong and Timmis, 2000). In a previous pangenome study, 20 IS families were found to be widespread across the R. solanacearum strains, and among them, IS5 and IS3 were the most abundant. Therefore, our finding on the association between IS5 family transposase IS1420 with siderophore production aligns with previous knowledge of R. solanacearum virulence being affected by the movement of transposable elements, and to our knowledge, IS1420 has not been linked to *R. solanacearum* virulence traits previously. Finally, we also identified a link between *R. solanacearum* maximum growth rate and the of a putative Type III effector protein. Trade-offs between growth and virulence have been experimentally quantified for R. solanacearum phylotype I strain previously (Peynard et al., 2016). Here, we found this further supports our idea of trade-offs and compensatory mutations leading to the evolution of different phenotypes of *Ralstonia solanacearum* cooccurring with each field.

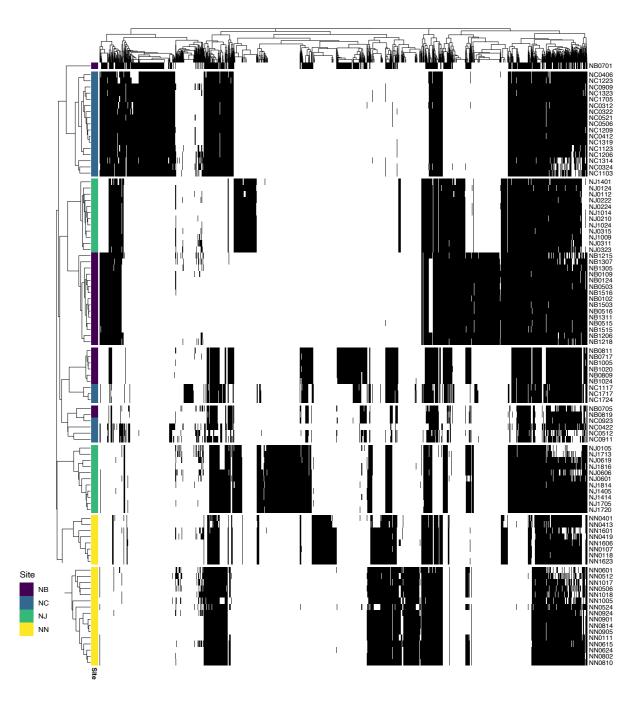

Strikingly, we found that multiple *R. solanacearum* clonal lineages co-occurred in three out of four fields even though the infections remained clonal at the plant level. One crucial genetic and the phenotypic difference between coexisting lineages was found in virulence traits and genes at both core and accessory genome levels. This suggests that selection by the local environment was not strong enough to lead to selective sweeps and dominance of the relatively more virulent clonal lineage despite the relatively homogeneous tomato monocultures. This can potentially be explained by competition between the bacterial genotypes for resources at various stages of the infection, which might result in lower niche overlap or differential plant infection success at different phases of plant growth and development. Alternatively, it is possible that spatial heterogeneity and variation

microenvironmental conditions favoured different coexisting lineages at different locations of the field. However, more data covering a wider spatial sample distribution is required to confirm this hypothesis in the future. Also, competitive selection could be imposed by the plant presenting a barrier which only a single genotype can overcome at a time. Alternatively, the infection may not be the bottleneck but rather competition between the strains at the early stages of infections which was not observed due to the time point in the bacterial lifecycle sampled here. The weight of these components' contribution to the success of infection should be assessed with further field and lab experiments focusing on these questions.

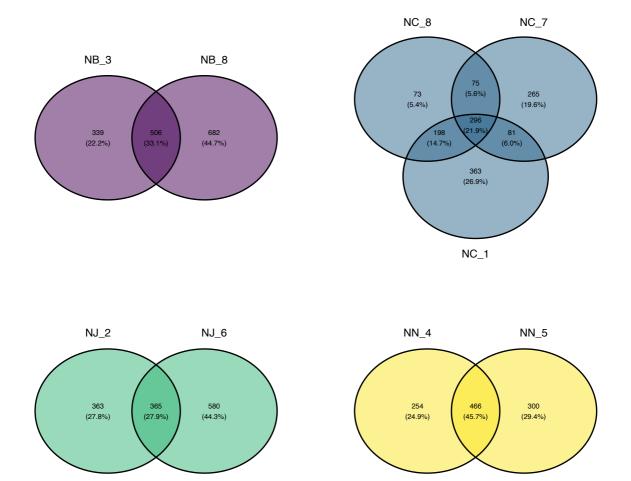
4.6. SUPPLEMENTARY


Supplementary Figure 12. **Phenotypic comparisons of 1152 bacterial isolates per field site** Biofilm, competitiveness, and maximum growth rate were compared using a linear model and sidak correction. Significant groups are shown with different letters.

Supplementary Figure 13. Phenotypic comparisons of 1152 bacterial isolates hierarchical clustering and gap statistic Biofilm, competitiveness, and maximum growth rate measurements were hierarchically clustered (A) and optimal number of clusters was found using a gap statistic (B).


Site	Cluster 1	Cluster 2
NB	152	136
NC	222	66
NJ	130	158
NN	162	126

Supplementary Table 7. Two-way split based on k-means clustering of the 1152 isolates based on 3 phenotypic traits. The table shows how many isolates from each field site fall within each phenotypic cluster.

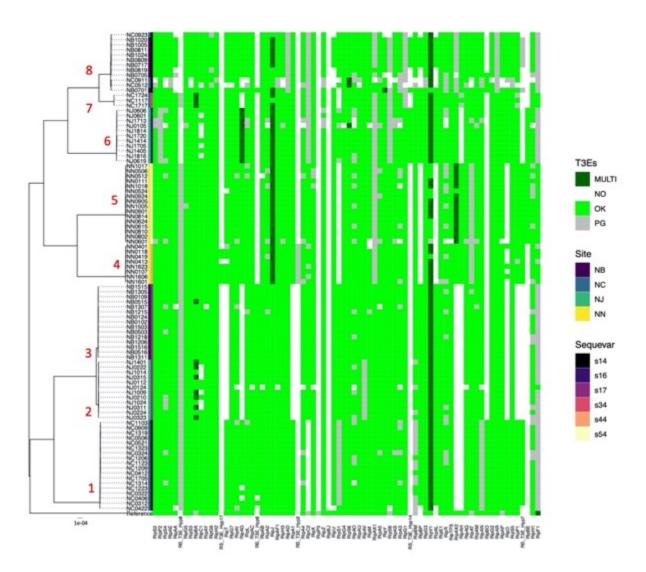

Supplementary Figure 14. Nucleotide

diversity Pi

Supplementary Figure 15. Accessory genes in the 95 Chinese isolates

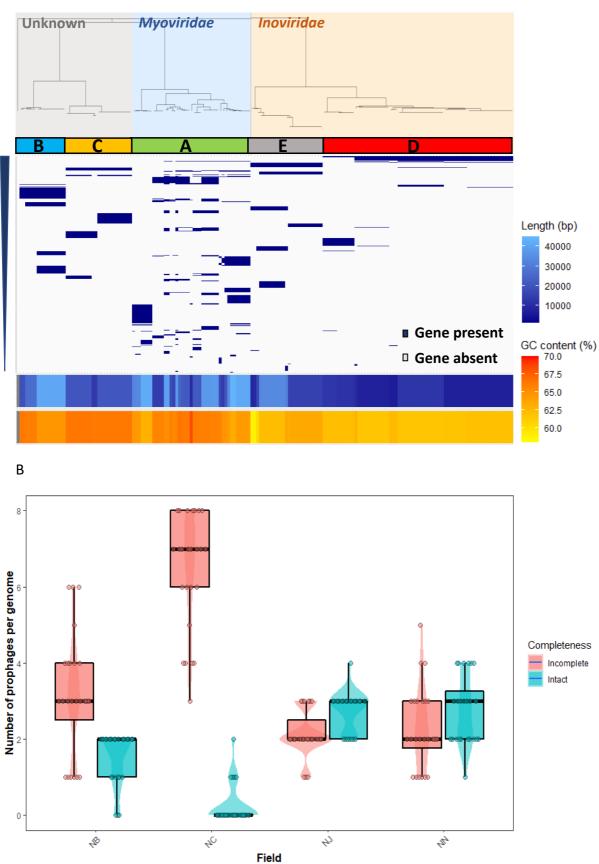
Gene presence/absence matrix **showing** hierarchically clustered genes. The singletons and core (95% of isolates) genes are excluded from the graph before clustering in order to show the accessory genome variation. White is absent and black is presence of a gene cluster within a genome. Colour strip on the left shows field site for the origin of the samples. Hclust dunction from base R used to cluster the matrix.

Supplementary Figure 16. Venn diagram of accessory genes.

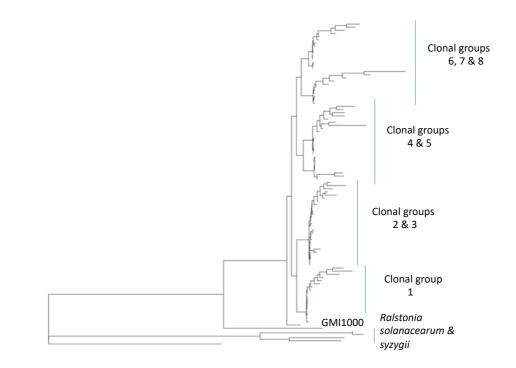

Accessory genes shared between clonal lineages divided by field site are shown.

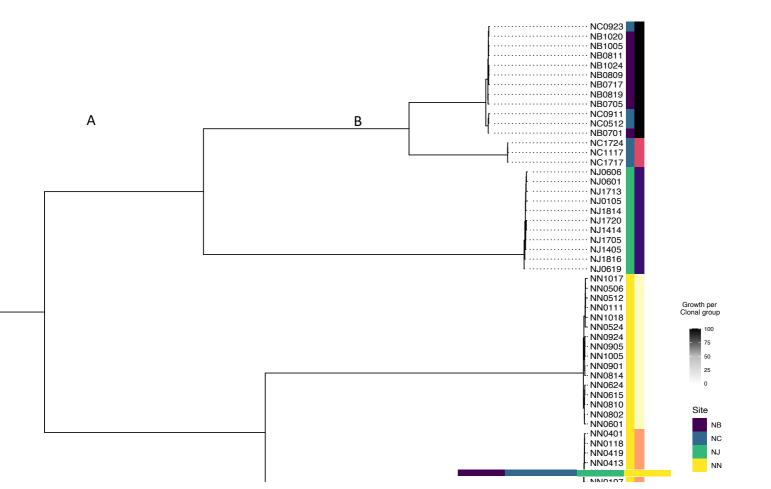
	Phenotype	Significant	York	Function	Uniprot	Heritability
		Gene	name		link	(h2)
Unitig	Growth rate	RSp0842		T3E associated	https://www.un iprot.org/unipr ot/Q8XRI9	0.40
	Swimming	Rsc3183		Probable hemagglutinin related	https://www.un iprot.org/unipr ot/Q8XUK5	0.25

Gene	Disease incidence	Rsc1924, Rsc1923	Group_ 4652, Group_	Phage related Hypothetical, RidA family protein	https://www.un iprot.org/unipr ot/Q8XY39 https://www.un iprot.org/unipr ot/Q8XY40	0.87
	Competition		4779 Group_ 4712, group_ 2873	Hypothetical, Hypothetical		0.71
	Swimming		Group_ 5353	Hypothetical		0.25
	EPS		Group_ 5225	Hypothetical		0.37
	Siderophore		Group_ 5250	IS5 family transposase IS1420		0.66
SNP	Competition	RSp1282	AL6460 53_162 9852_G _A	Missense variant in RSp1282 - Phosphoenolp yruvate- protein phosphotrans- ferase – binding magnesium	https://www.un iprot.org/unipr ot/Q8XQE5	0.71


Swimming	RSc0102	AL6460	Synonymous	https://www.un iprot.org/unipr	0.25
		52_116	variant in	ot/Q8Y378	
		265_G_	RSc0102 –		
		А	putative		
			calcium		
			binding		

Supplementary Table 8. **GWAS results**. Only significant hits of the GWAS results are shown after Bonferroni correction.


Supplementary Figure 17. **Categorical table showing presence-absence of T3Es compared to GMI1000.** The core SNPs compared to reference strain GMI1000 phylogeny is represented on the left and coloured bars for the field site and sequevar of the *Ralstonia solanacearum* isolate. The presence-absence pattern of Type III effector protein genes is aligned to each isolate of the phylogeny. The x-axis shows 76 T3Es and their presence is indicated in 4 categories as defined by Peeters *et al.* (2013): Multiple copies of the gene (MULTI); absence of the gene (NO); the presence of the gene (OK) or pseudo gene (PG). Maximum likelihood core gene phylogeny presented on the left labelled with location of isolation and lineages.


Supplementary Figure 18. Prophage diversity in Chinese isolates

A) Top – Neighbour-joining tree of intact prophages constructed using Mash distances, annotated with prophage clusters, and coloured based on phage family. **Middle** – heatmap showing the presence (blue) and absence (grey) of genes within prophages, with decreasing gene abundance further down the plot. **Bottom** – length and GC content distribution of prophages. **B)** Prophage prevalence per field from four Chinese provinces. Boxplot underlaid with a violin plot of the prevalence of incomplete and intact prophages per genome (y axis) in the four Chinese provinces (x axis). Completeness is labelled on the right.

Supplementary Figure 19. Phylogeny of field samples from 4 Chinese provinces

Maximum likelihood tree showing branches with LOW bootstrap support consensus from two bootstrap methods (alrt <70 & boot <95) with yellow diamonds. Only very few peripheral branches show low support.

Supplementary Figure 20. Metabolic capacity of the 96 isolates

a) PCA analysis of growth in carbons, amino and organic acids substrates plotted. Area under the curve of 24 hour growth curves shown.

b) Growth rate of the isolates in different substrates shown as a binary matrix heatmap. Percentage shows number of isolates per clonal group capable of growing in each substrate. The shade of white to grey also shows this percentage.

	NC1206
	NC1123
	NC1209 NC0412
	NC0412
	NC1705
	NC1314
	NC1223
	NC0322
	NC0406
	NC1223 NC0322 NC0406 NC0312
	l NC0422

-Willing

2

5. General Discussion

In a changing climate, food security is increasingly threatened by plant pathogens. The transfer of agricultural pathogens with human practices and trade has been an ongoing issue in the global economy. Still, the change in the environment provides increasingly favourable conditions for bacterial pathogens creating novel opportunities. Genomic evolution research can help us understand the selection drivers for virulence and pathogen survival within agricultural settings and environmental reservoirs. This can help us design control strategies with evolution in mind. The overall aim of this PhD project was to investigate the genetic heterogeneity of the diverse plant pathogenic bacteria *Ralstonia solanacearum* species complex at three geographical levels: global, one country and a crop field. The research presented used comparative genomics techniques to investigate the variation in mutations and gene content in the pangenome of the species complex at the three levels. This chapter provides an overview and synthesis of the results of this thesis. It discusses them in the context of the three central aims and their significance and contribution to the broader knowledge of pathogen evolution.

A central theoretical concept in this thesis has been that pangenomes vary in bacterial species (Tettelin et al., 2005). It was of research interest that bacterial pathogens with the ability to occupying large number of niches have multiple strains that differ in their accessory gene content (Freschi et al., 2019; Rasko et al., 2008; Xin et al., 2018). Such species often have large genome sizes, multiple strains, and an extremely large number of possible niches that they can occupy. *Ralstonia solanacearum* species complex is a diverse plant pathogen that can survive inside and outside host plants (Hayward, 1964). Therefore, we believed that investigating *Ralstonia solanacearum* species complex isolates from different countries, and from agricultural and environmental settings can reveal interesting patterns about the maintenance of a large pangenome in this species.

In the first results chapter, we attempted to show the significance of the variability in the pangenome *Ralstonia solanacearum* species complex (RSSC). We showed that important virulence genes, transposases and abiotic defence genes can cooccur in the accessory genome. We believe this result highlights and adds additional weight to an important recent finding that transposons contribute to the genome plasticity of RSSC (Gonçalves et al., 2020b).

153

Knowledge that insertion sequences are abundant in bacterial genomes is not novel but the contribution of insertion sequence generated genomic variation and its contribution to evolution and adaptability in certain niches is not clear (Siguier et al., 2006). A recent paper showed that IS-mediated mutations are abundant in the *E. coli* genome evolution. They showed that IS elements accounted for ~35% of the mutations observed over 50,000 generations of *E. coli*. They concluded that variation generated by IS movement can both promote and constrain evolvability as there were both detrimental and beneficial effects observed in the population (Consuegra et al., 2021). We had no means of estimating the size of the effect transposases have on the accessory gene movement in the RSSC pangenome. However, we believe the presence of genes cooccurring with transposases in 10% of the cooccurring components within the accessory genome shows a link between insertion sequences and accessory gene movement across RSSC strains. In other words, part of the gene level variability in *Ralstonia solanacearum* is due to mobile genetic movement.

The link between insertion sequences and accessory gene variation in RSSC was further shown in the second results chapter by the investigation of the genome changes within the UK river water population of *Ralstonia solanacearum* phylotype IIB-1 over 27 years. The phylotype IIB-1 strain is highly clonal around the world but can evolve in response to stress in the lab where mechanistically adaptation was linked to insertion sequence movement (Alderley et al., 2022; Clarke et al., 2015). We showed that the mutation rate in the UK *Ralstonia solanacearum* is as low as 1 nucleotide change per year, but we observed multiple gene differences between the bacterial isolates. The gene differences were mainly transposons or genes in proximity to transposons. Therefore, we believe the genome variation generated by insertion sequences is generating larger size sequence variation compared to genome duplication errors.

In addition, in the third results chapter we showed that genetic heterogeneity in RSSC is present not only worldwide but within individual crop fields. In theory, tomato plantations are homogenous environments, but we believe the ability of RSSC strains to survive in the soil and in the plants provides enough environmental variability and available niches for multiple genotypes to occur in a relatively small area. Our data does not allow for direct estimation of competition for resources within the plant or the soil. However, we show that the cooccurring *R. solanacearum* within three of the four fields studied have multiple gene differences.

Furthermore, the variation in siderophore production phenotype was linked to presence of a transposase in a genome-wide association study. Siderophore production is linked to the master regulator virulence network of RSSC with the PhcA gene on top (Bhatt and Denny, 2004).

Overall, this thesis has shown that accessory gene variation is present in *R. solanacearum* in the field, within the environmental reservoir of the freshwater ecosystem and within the wide global pangenome. The common result in the three levels of variation investigated has been that transposons constitute a part of the accessory genome and are often found in proximity to important virulence and survival genes. Therefore, this thesis provides evidence that genetic diversity in a non-model plant pathogen is present in the pangenome population. We suggest that insertion sequence movement can provide a means of detecting genetic variation at an earlier stage of diversification compared to the traditional approach of core genome variation detection through single nucleotide polymorphism analysis. Therefore, future studies of adaptation to environment and fields in plant pathogens should consider insertion sequence movement as well as mutation to achieve a more holistic picture of the adaptability of a pathogen. Moreover, the evidence of large level of variation of the accessory genome provided here shows that *Ralstonia solanacearum* species complex future research should focus on investigating the role of the accessory genes and their potential for spread across different Ralstonia and other soil microbe species. Overall, the role and function of most of the accessory genes found here was unknown or hypothetical. Thus, the role of these genes especially in virulence and spread of this and other soil borne pathogens should be thoroughly investigated. Ralstonia solanacearum research is growing due to interest in the species both its specific pathology and generally as a model organism for plant bacterial infection. Therefore, studying the accessory genome of *Ralstonia solanacearum* can provide general insight about accessory genome function in plant pathogens.

6. APPENDIX 1

York Num ber	Species York	Phylo type York	NC PPB	Host	Ye ar	Countr y	County	UK_re gion
YO0 01	Ralstonia pseudosolan acearum	111	NC PPB 101 8	Potato	19 61	Angola		
YO0 02	Ralstonia solanacearu m	II	NC PPB 148 3	Potato	19 63	Austral ia		
YO0 03	Ralstonia pseudosolan acearum	I	NC PPB 224 5	Stylosa nthes humulis	19 69	Austral ia		
YO0 04	Ralstonia solanacearu m	11	NC PPB 398 0	Potato	19 97	Austral ia		
YO0 05	Ralstonia pseudosolan acearum	I	NC PPB 399 2	Tobacc o		Austral ia		
YO0 06	Ralstonia pseudosolan acearum	I	NC PPB 400 1	Ginger		Austral ia		
YO0 07	Ralstonia pseudosolan acearum	I		Potato		Austral ia		
YO0 08	Ralstonia solanacearu m	II		Potato	20 12	Bangla desh		
YO0 09	Ralstonia pseudosolan acearum	I		Potato	20 12	Bangla desh		
YO0 10	Ralstonia solanacearu m	II		Potato	20 12	Bangla desh		
YO0 11	Ralstonia solanacearu m	11		Potato	20 14	Bangla desh		
YO0 12	Ralstonia solanacearu m	II		Potato	19 93	Belgiu m		

YO0 13	Ralstonia solanacearu m	II	NC PPB 061 3	Potato	19 58	Brazil	
YO0 14	Ralstonia solanacearu m	11		Tobacc o	19 68	Brazil	
YO0 15	Ralstonia solanacearu m	11	NC PPB 364 9	Banana	19 79	Brazil	
YO0 16	Ralstonia solanacearu m	II	NC PPB 365 0	Banana	19 79	Brazil	
YO0 17	Ralstonia solanacearu m	11	NC PPB 386 8	Potato	19 91	Brazil	
YO0 18	Ralstonia pseudosolan acearum	1	NC PPB 386 4	Chili	19 91	Brazil	
YO0 19	Ralstonia solanacearu m	11	NC PPB 386 2	Chili	19 91	Brazil	
YO0 20	Ralstonia pseudosolan acearum	I	NC PPB 386 3	Tomato	19 91	Brazil	
YO0 21	Ralstonia pseudosolan acearum	I	NC PPB 386 6	Potato	19 93	Brazil	
YO0 22	Ralstonia solanacearu m	II	NC PPB 398 2	Potato		Chile	
YO0 23	Ralstonia pseudosolan acearum	I	NC PPB 400 6	Olive		China	
YO0 24	Ralstonia pseudosolan acearum	I	NC PPB 400 7	Mulberr y		China	
YO0 25	Ralstonia pseudosolan acearum	I	NC PPB	Mulberr y		China	

			401 2				
YO0 26	Ralstonia solanacearu m	II	NC PPB 401 1, NC PPB 385 0	Mulberr y		China	
YO0 27	Ralstonia pseudosolan acearum	1	NC PPB 399 4	Olive		China	
YO0 28	Ralstonia pseudosolan acearum	I	NC PPB 399 8	Ginger		China	
YO0 29	Ralstonia pseudosolan acearum	I	NC PPB 400 3	Ginger		China	
YO0 30	Ralstonia pseudosolan acearum	1	NC PPB 400 8	Peanut		China	
YO0 31	Ralstonia solanacearu m	11	NC PPB 282	Potato	19 50	Colom bia	
YO0 32	Ralstonia solanacearu m	11	NC PPB 359 4	Heliconi a caribae a	19 60	Colom bia	
YO0 33	Ralstonia solanacearu m	11		Tobacc o	19 66	Colom bia	
YO0 34	Ralstonia pseudosolan acearum	1	NC PPB 215 4	Heliconi a sp.	19 58	Costa Rica	
YO0 35	Ralstonia solanacearu m	11	NC PPB 787	Banana	19 59	Costa Rica	
YO0 36	Ralstonia solanacearu m	II	NC PPB 078 8	Banana	19 59	Costa Rica	
YO0 37	Ralstonia pseudosolan acearum	I	NC PPB	Nightsh ade	19 59	Costa Rica	

			079				
			0				
YO0 38	Ralstonia pseudosolan acearum	1	NC PPB 079 1	False daisy	19 59	Costa Rica	
YO0 39	Ralstonia solanacearu m	II		Potato	19 72	Costa Rica	
YO0 40	Ralstonia pseudosolan acearum	I	NC PPB 400 4	Ginger		Costa Rica	
YO0 41	Ralstonia solanacearu m	11	NC PPB 397 7	M. perfoliat um		Costa Rica	
YO0 42	Ralstonia pseudosolan acearum	I	NC PPB 399 3	Pepper		Costa Rica	
YO0 43	Ralstonia solanacearu m	11		Potato		Costa Rica	
YO0 44	Ralstonia solanacearu m	11	NC PPB 643	Potato	19 59	Cyprus	
YO0 45	Ralstonia solanacearu m	II	NC PPB 158 4	Potato	19 63	Cyprus	
YO0 46	Ralstonia solanacearu m	II	NC PPB 909	Potato	19 61	Egypt	
YO0 47	Ralstonia solanacearu m	11	NC PPB 111 5	Potato	19 61	Egypt	
YO0 48	Ralstonia solanacearu m	11	NC PPB 182 4	Potato	19 66	Egypt	
YO0 49				Potato	19 91	Egypt	
YO0 50	Ralstonia solanacearu m	II		Potato	19 91	Egypt	

YO0 51	Ralstonia solanacearu m	II		Potato	19 91	Egypt		
YO0 52	Ralstonia solanacearu m	II		Potato	19 91	Egypt		
YO0 53	Ralstonia solanacearu m	11		Potato	19 94	Egypt		
YO0 54	Ralstonia solanacearu m	II		Potato	19 95	Egypt		
YO0 55				Potato	19 95	Egypt		
YO0 56				Potato	19 95	Egypt		
YO0 57				Potato	19 95	Egypt		
YO0 58				Potato	19 95	Egypt		
YO0 59				Potato	19 95	Egypt		
YO0 60	Ralstonia solanacearu m	11		Potato	19 95	Egypt		
YO0 61				Potato	19 95	Egypt		
YO0 62	Ralstonia solanacearu m	11		Potato	19 96	Egypt		
YO0 63	Ralstonia solanacearu m	II		Potato	19 97	Egypt		
YO0 64	Ralstonia solanacearu m	II		Potato	19 98	Egypt		
YO0 65	Ralstonia solanacearu m	II		Potato	19 98	Egypt		
YO0 66	Ralstonia solanacearu m	II	NC PPB 415 3	Potato	19 98	Egypt		
YO0 67				Potato	19 98	Egypt		
YO0 68	Ralstonia solanacearu m	II		Water	20 02	Egypt		1

YO0 69	Ralstonia solanacearu m	II		Water	20 02	Egypt		
YO0 70	Ralstonia solanacearu m	II		Potato	20 02	Egypt		
YO0 71	Ralstonia solanacearu m	11		Soil	20 02	Egypt		
YO0 72	Ralstonia solanacearu m	11			20 02	Egypt		
YO0 73	Ralstonia solanacearu m	11			20 02	Egypt		
YO0 74	Ralstonia pseudosolan acearum	1	NC PPB 150 0	Potato	19 63	Fiji		
YO0 75	Ralstonia pseudosolan acearum	1	NC PPB 170 2	Potato	19 64	Fiji		
YO0 76	Ralstonia pseudosolan acearum	111	NC PPB 102 9	Pelargo nium capitatu m	19 61	Reunio n		
YO0 77	Ralstonia solanacearu m	11	NC PPB 220 0	Tomato	19 66	Guadel oupe		
YO0 78			NC PPB 415 7	Potato	19 95	France		
YO0 79	Ralstonia pseudosolan acearum	1		Tomato	20 11	France		
YO0 80	Ralstonia pseudosolan acearum	I	NC PPB 220 4	Tomato	19 68	Guyan a		
YO0 81	Ralstonia pseudosolan acearum	1		Tomato		Guyan a	French Guyana	
YO0 82	Ralstonia pseudosolan acearum		NC PPB 318 1	Nightsh ade	19 78	Gambi a		

YO0 83	Ralstonia pseudosolan acearum	1		Tomato	20 11	Georgi a	
YO0 84	Ralstonia pseudosolan acearum	I		Tomato	20 11	Georgi a	
YO0 85	Ralstonia solanacearu m	II	NC PPB 416 1	Potato	19 96	Germa ny	
YO0 86	Ralstonia solanacearu m	II	NC PPB 178 9	Potato	19 65	Greece	
YO0 87	Ralstonia solanacearu m	11	NC PPB 201 5	Potato	19 67	Greece	
YO0 88	Ralstonia solanacearu m	11	NC PPB 320 5	Banana	19 79	Guyan a	
YO0 89	Ralstonia solanacearu m	11	NC PPB 078 9	Banana	19 59	Hondur as	
YO0 90	Ralstonia solanacearu m	11		Potato	20 12	Hungar y	
YO0 91	Ralstonia solanacearu m	11		Potato	20 12	Hungar y	
YO0 92	Ralstonia solanacearu m	11		Potato	20 12	Hungar y	
YO0 93	Ralstonia solanacearu m	11		Potato	20 12	Hungar y	
YO0 94	Ralstonia solanacearu m	II		Potato	20 12	Hungar y	
YO0 95	Ralstonia solanacearu m	11		Potato	20 12	Hungar y	
YO0 96	Ralstonia solanacearu m	11	NC PPB 133 1	Potato	19 62	India	

YO0 97	Ralstonia solanacearu m	II	NC PPB 133 3	Potato	19 62	India	
YO0 98	Ralstonia solanacearu m	II	NC PPB 321 4	Banana	19 80	India	
YO0 99	Ralstonia syzygii	IV	NC PPB 321 9	Clove	19 80	Indone sia	
YO1 00			NC PPB 379 2	Clove	19 85	Indone sia	
YO1 01	Ralstonia pseudosolan acearum	I	NC PPB 379 3	Potato	19 85	Indone sia	
YO1 02	Ralstonia syzygii	IV	NC PPB 372 5	Banana	19 87	Indone sia	
YO1 03				Banana	19 87	Indone sia	
YO1 04	Ralstonia syzygii	IV	NC PPB 372 6	Banana	19 87	Indone sia	
YO1 05				Banana	19 87	Indone sia	
YO1 06	Ralstonia syzygii	IV	NC PPB 372 7	Banana	19 87	Indone sia	
YO1 07			NC PPB 372 8	Banana	19 87	Indone sia	
YO1 08	Ralstonia solanacearu m	II		Clove	19 87	Indone sia	
YO1 09	Ralstonia solanacearu m	II		Clove	19 87	Indone sia	
YO1 10	Ralstonia solanacearu m	II		Syzygiu m agneum	19 87	Indone sia	

YO1 11	Ralstonia solanacearu m	II	NC PPB 379 4	Clove	19 87	Indone sia	
YO1 12	Ralstonia solanacearu m	11		Water	20 07	Ireland	
YO1 13	Ralstonia solanacearu m	11		Water	20 07	Ireland	
YO1 14	Ralstonia solanacearu m	11		Potato	20 07	Ireland	
YO1 15	Ralstonia solanacearu m	II			20 07	Ireland	
YO1 16	Ralstonia solanacearu m	II		Tomato	20 07	Ireland	
YO1 17	Ralstonia solanacearu m	11		Tomato	20 07	Ireland	
YO1 18			NC PPB 092 8	Sugarca ne	19 56	Jamaic a	
YO1 19	Ralstonia syzygii	IV	NC PPB 344 5	Clove	19 83	Indone sia	
YO1 20	Ralstonia solanacearu m	II	NC PPB 173	Potato	19 45	Kenya	
YO1 21	Ralstonia solanacearu m	11	NC PPB 102 8	Potato	19 61	Kenya	
YO1 22	Ralstonia pseudosolan acearum	I	NC PPB 104 5	Eggplan t	19 61	Kenya	
YO1 23	Ralstonia solanacearu m	II	NC PPB 104 9	Tomato	19 61	Kenya	
YO1 24	Ralstonia pseudosolan acearum		NC PPB 421 5	Water	20 01	Kenya	

YO1 25 YO1	Ralstonia solanacearu m Ralstonia		NC PPB 421 1 NC	Pelargo nium hortoru m Pelargo	20 01 20	Kenya Kenya	
26	solanacearu m		PPB 421 2	nium hortoru m	01		
YO1 27	Ralstonia solanacearu m	II	NC PPB 421 3	Water	20 01	Kenya	
YO1 28	Ralstonia pseudosolan acearum	111	NC PPB 421 4	Soil	20 01	Kenya	
YO1 29	Ralstonia solanacearu m	II	NC PPB 148 9	Potato	19 63	Madeir a Islands	
YO1 30	Ralstonia pseudosolan acearum	I	NC PPB 079 2	Teak	19 60	Malays ia	
YO1 31	Ralstonia pseudosolan acearum	I	NC PPB 105 2	Ginger	19 61	Malays ia	
YO1 32	Ralstonia solanacearu m	II	NC PPB 161 4	Potato	19 64	Malays ia	
YO1 33	Ralstonia pseudosolan acearum	I	NC PPB 319 0	Tomato	19 78	Malays ia	
YO1 34	Ralstonia solanacearu m	II	NC PPB 219 9	Eggplan t	19 65	Martini que	
YO1 35	Ralstonia pseudosolan acearum	I	NC PPB 253	Pine tree	19 49	Mauriti us	
YO1 36	Ralstonia pseudosolan acearum	I	NC PPB 050 0	Broad bean	19 56	Mauriti us	
YO1 37	Ralstonia pseudosolan acearum	I	NC PPB	Cabbag e	19 56	Mauriti us	

			050 1					
YO1 38	Ralstonia pseudosolan acearum	1	NC PPB 050 3	Dahlia sp.	19 56	Mauriti us		
YO1 39	Ralstonia pseudosolan acearum	I	NC PPB 162 1	Potato	19 60	Mauriti us		
YO1 40	Ralstonia pseudosolan acearum	I	NC PPB 148 4	Strelitzi a reginae	19 63	Mauriti us		
YO1 41	Ralstonia pseudosolan acearum	I	NC PPB 148 5	Commo n bean	19 63	Mauriti us		
YO1 42	Ralstonia solanacearu m	11	NC PPB 397 4	Tomato		Mexico		
YO1 43	Ralstonia solanacearu m	11	NC PPB 323 8	Potato	19 82	Netherl ands		
YO1 44	Ralstonia solanacearu m	11	NC PPB 415 6	Potato	19 95	Netherl ands		
YO1 45	Ralstonia pseudosolan acearum	111	NC PPB 170 3	Potato	19 65	Nigeria		
YO1 46	Ralstonia solanacearu m	II	NC PPB 208 8	Potato	19 68	Nigeria		
YO1 47	Ralstonia solanacearu m	11		Potato	20 11	Pakista n		
YO1 48	Ralstonia solanacearu m	II		Potato	20 11	Pakista n		
YO1 49	Ralstonia pseudosolan acearum	I	NC PPB 112 3	Tomato	19 61			

YO1 50	Ralstonia pseudosolan acearum	I	NC PPB 114 0	Tomato	19 61			
YO1 51	Ralstonia pseudosolan acearum	I	NC PPB 293 7	Potato	19 75			
YO1 52	Ralstonia solanacearu m	11	NC PPB 398 5	Eggplan t	19 87	Peru		
YO1 53	Ralstonia solanacearu m	II	NC PPB 399 0	Potato	19 89	Peru		
YO1 54	Ralstonia pseudosolan acearum	Ι		Tomato		Peru		
YO1 55	Ralstonia pseudosolan acearum	Ι		Potato		Peru		
YO1 56	Ralstonia pseudosolan acearum	1	NC PPB 399 6	Tomato		Peru		
YO1 57	Ralstonia solanacearu m	11	NC PPB 231 5	Banana		Peru		
YO1 58	Ralstonia solanacearu m	11	NC PPB 398 6	Potato		Peru		
YO1 59	Ralstonia solanacearu m	11	NC PPB 397 0	Banana	19 92	Philippi nes		
YO1 60	Ralstonia solanacearu m	11	NC PPB 397 1	Banana		Philippi nes		
YO1 61	Ralstonia pseudosolan acearum	I	NC PPB 400 5	Ginger		Philippi nes		
YO1 62	Ralstonia solanacearu m				20 14	Poland		

YO1 63	Ralstonia pseudosolan acearum	1		Rose	20 16	Poland	
YO1 64	Ralstonia pseudosolan acearum	1		Rose	20 16	Poland	
YO1 65	Ralstonia solanacearu m	II	NC PPB 101 9	Tomato	19 60	Portug al	
YO1 66	Ralstonia solanacearu m	11		Potato	19 95	Portug al	
YO1 67	Ralstonia solanacearu m	II	NC PPB 415 8	Potato	19 95	Portug al	
YO1 68	Ralstonia solanacearu m	11	NC PPB 122 5	Tomato	19 58	Puerto Rico	
YO1 69	Ralstonia solanacearu m	11	NC PPB 122 6	Tomato	19 58	Puerto Rico	
YO1 70	Ralstonia solanacearu m	11		Potato	20 12	Serbia	
YO1 71	Ralstonia solanacearu m	11		Potato	20 12	Serbia	
YO1 72	Ralstonia solanacearu m	11		Potato	20 12	Serbia	
YO1 73	Ralstonia solanacearu m	11		Potato	20 12	Serbia	
YO1 74	Ralstonia solanacearu m	11			20 13	Serbia	
YO1 75	Ralstonia solanacearu m				20 13	Serbia	
YO1 76	Ralstonia solanacearu m				20 13	Serbia	
YO1 77	Ralstonia solanacearu m	II			20 13	Serbia	

YO1 78	Ralstonia pseudosolan acearum		NC PPB 176 3	Tomato	19 65	Seych elles	
YO1 79				Potato	19 80	Sloveni a	
YO1 80	Ralstonia solanacearu m	II	NC PPB 416 0	Potato	19 96	Spain	
YO1 81	Ralstonia solanacearu m	II	NC PPB 132 3	Potato	19 62	Sri Lanka	
YO1 82	Ralstonia pseudosolan acearum	I	NC PPB 321 7	Tumeric	19 80	Sri Lanka	
YO1 83	Ralstonia solanacearu m	11	NC PPB 250 5	Potato	19 72	Swede n	
YO1 84	Ralstonia solanacearu m	11	NC PPB 279 7	Solanu m dulcam ara	19 74	Swede n	
YO1 85	Ralstonia solanacearu m	11	NC PPB 279 6	Solanu m dulcam ara	19 75	Swede n	
YO1 86	Ralstonia pickettii		NC PPB 169 5	Sugarca ne	19 65	Tanza nia	
YO1 87	Ralstonia pseudosolan acearum	I	NC PPB 400 0	Ginger		Thailan d	
YO1 88	Ralstonia solanacearu m	11		Tomato	19 57	Trinida d	
YO1 89	Ralstonia solanacearu m	11	NC PPB 044 6	Banana	19 57	Trinida d	
YO1 90	Ralstonia solanacearu m	II	NC PPB 061 6	Tomato	19 57	Trinida d	

YO1 91	Ralstonia pseudosolan acearum	I	NC PPB 219 8	Banana	19 68	Trinida d		
YO1 92	Ralstonia solanacearu m	11	NC PPB 220 1	Tomato	19 68	Trinida d		
YO1 93	Ralstonia pseudosolan acearum	I	NC PPB 148 6	Peanut	19 63	Ugand a		
YO1 94	Ralstonia pseudosolan acearum	I	NC PPB 248 4	Peanut	19 69	Ugand a		
YO1 95				Potato	20 15	Ugand a		
YO1 96	Ralstonia solanacearu m	II		Potato	19 92	ŪK	Oxfordshir e	West
YO1 97	Ralstonia solanacearu m	11		Potato	19 92	UK	Oxfordshir e	West
YO1 98	Ralstonia solanacearu m	11		Potato	19 92	UK	Oxfordshir e	West
YO1 99	Ralstonia solanacearu m	II	NC PPB 385 4	Potato	19 92	UK	Oxfordshir e	West
YO2 00	Ralstonia solanacearu m	11	NC PPB 385 5	Potato	19 92	UK	Oxfordshir e	West
YO2 01	Ralstonia solanacearu m	11	NC PPB 385 6	Potato	19 92	UK	Oxfordshir e	West
YO2 02	Ralstonia solanacearu m	11	NC PPB 385 8	Potato	19 92	UK	Oxfordshir e	West
YO2 03	Ralstonia solanacearu m	11	NC PPB 381 5	Potato	19 92	UK	Oxfordshir e	West
YO2 04	Ralstonia solanacearu m	11		Solanu m	19 93	UK	Oxfordshir e	West

			dulcam				
			ara				
YO2	Ralstonia	II	Solanu	19	UK	Oxfordshir	West
05	solanacearu		m	93		е	
	m		dulcam				
			ara				
YO2	Ralstonia	II	Solanu	19	UK	Oxfordshir	West
06	solanacearu		m	93		е	
	m		dulcam				
			ara				
YO2	Ralstonia	II	Solanu	19	UK	Oxfordshir	West
07	solanacearu		m	93		е	
	m		dulcam				
			ara				
YO2	Ralstonia	II	Solanu	19	UK	Oxfordshir	West
08	solanacearu		m	93		е	
	m		dulcam				
			ara				
YO2	Ralstonia	II	Solanu	19	UK	Oxfordshir	West
09	solanacearu		m	93		е	
	m		dulcam				
			ara				
YO2	Ralstonia	II	Solanu	19	UK	Oxfordshir	West
10	solanacearu		m	93		е	
	m		dulcam				
			ara				
YO2	Ralstonia	II	Solanu	19	UK	Oxfordshir	West
11	solanacearu		m	93		е	
	m		dulcam				
			ara				
YO2	Ralstonia	II	Solanu	19	UK	Oxfordshir	West
12	solanacearu		m	93		е	
	m		dulcam				
			ara				
YO2	Ralstonia	II	Solanu	19	UK	Oxfordshir	West
13	solanacearu		m	93		е	
	m		dulcam				
			ara				
YO2	Ralstonia	II	Solanu	19	UK	Oxfordshir	West
14	solanacearu		m	93		е	
	m		dulcam				
			ara				
YO2	Ralstonia		Solanu	19	UK	Oxfordshir	West
15	solanacearu		m	93		е	
	m		dulcam				
			ara				
YO2	Ralstonia	II	Solanu	19	UK	Oxfordshir	West
16	solanacearu		m	93		е	
	m		dulcam				
			ara				

YO2 17	Ralstonia solanacearu m		Solanu m dulcam ara	19 93	UK	Oxfordshir e	West
YO2 18	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 93	UK	Oxfordshir e	West
YO2 19	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 93	UK	Oxfordshir e	West
YO2 20	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 94	UK	Wiltshire	West
YO2 21	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 94	UK	Berkshire	South
YO2 22	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 94	UK	Oxfordshir e	West
YO2 23	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 94	UK	Berkshire	South
YO2 24	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 94	UK	Oxfordshir e	West
YO2 25	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 94	UK	Oxfordshir e	West
YO2 26	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 94	UK	Oxfordshir e	West
YO2 27	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 94	UK	Oxfordshir e	West
YO2 28	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 94	UK	Oxfordshir e	West

YO2 29	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 94	UK	Oxfordshir e	West
YO2 30	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 94	UK	Berkshire	South
YO2 31	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 94	UK	Oxfordshir e	West
YO2 32	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 94	UK	Oxfordshir e	West
YO2 33	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 94	UK	Oxfordshir e	West
YO2 34	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 94	UK	Oxfordshir e	West
YO2 35	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 94	UK	Oxfordshir e	West
YO2 36	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 94	UK	Oxfordshir e	West
YO2 37	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 94	UK	Oxfordshir e	West
YO2 38	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 94	UK	Oxfordshir e	West
YO2 39	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 94	UK	Oxfordshir e	West
YO2 40	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 94	UK	Oxfordshir e	West

YO2 41	Ralstonia solanacearu m	II	Solanu m dulcam	19 94	UK	Oxfordshir e	West
YO2 42	Ralstonia solanacearu m	11	ara Solanu m dulcam ara	19 94	UK	Oxfordshir e	West
YO2 43	Ralstonia solanacearu m	11	Solanu m dulcam ara	19 94	UK	Oxfordshir e	West
YO2 44	Ralstonia solanacearu m	11	Solanu m dulcam ara	19 94	UK	Oxfordshir e	West
YO2 45	Ralstonia solanacearu m	11	Solanu m dulcam ara	19 94	UK	Oxfordshir e	West
YO2 46	Ralstonia solanacearu m	11	Solanu m dulcam ara	19 94	UK	Berkshire	South
YO2 47	Ralstonia solanacearu m	11	Solanu m dulcam ara	19 94	UK	Berkshire	South
YO2 48	Ralstonia solanacearu m	11	Solanu m dulcam ara	19 94	UK	Oxfordshir e	West
YO2 49	Ralstonia solanacearu m	11	Water	19 95	UK	Hertfordshi re	Severn & West. Mid.
YO2 50	Ralstonia solanacearu m	11	Water	19 95	UK	Hertfordshi re	Severn & West. Mid.
YO2 51	Ralstonia solanacearu m	11	Water	19 95	UK	Hertfordshi re	Severn & West. Mid.
YO2 52	Ralstonia solanacearu m	11	Water	19 95	UK	Wiltshire	West
YO2 53	Ralstonia solanacearu m	II	Water	19 95	UK	Wiltshire	West

YO2 54	Ralstonia solanacearu m	11	Water	19 95	UK	Wiltshire	West
YO2 55	Ralstonia solanacearu m	II	Water	19 95	UK	Wiltshire	West
YO2 56	Ralstonia solanacearu m	II	Water	19 95	UK	Wiltshire	West
YO2 57	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 95	UK	Oxfordshir e	West
YO2 58	Ralstonia solanacearu m	11	Water	19 95	UK	Hertfordshi re	Severn & West. Mid.
YO2 59	Ralstonia solanacearu m	II	Water	19 96	UK	Oxfordshir e	West
YO2 60	Ralstonia solanacearu m	11	Solanu m dulcam ara	19 96	UK	Greater London	Essex & Londo n
YO2 61	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 96	UK	Buckingha mshire	Essex & Londo n
YO2 62	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 96	UK	Surrey	South
YO2 63	Ralstonia solanacearu m	11	Solanu m dulcam ara	19 96	UK	Surrey	South
YO2 64	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 96	UK	Surrey	South
YO2 65	Ralstonia solanacearu m	11	Solanu m dulcam ara	19 96	UK	Berkshire	South
YO2 66	Ralstonia solanacearu m	II	Solanu m dulcam ara	19 96	UK	Greater London	Essex & Londo n

YO2 67	Ralstonia solanacearu m	11	Potato	19 96	UK	Berkshire	South
YO2 68	Ralstonia solanacearu m	II	Water	19 96	UK	Greater London	Essex & Londo n
YO2 69	Ralstonia solanacearu m	11	Water	19 97	UK	Surrey	South
YO2 70	Ralstonia solanacearu m	II	Water	19 97	UK	Berkshire	South
YO2 71	Ralstonia solanacearu m	11	Water	19 97	UK	Hampshire	South
YO2 72	Ralstonia solanacearu m	II	Water	19 97	UK	Surrey	South
YO2 73	Ralstonia solanacearu m	II	Tomato	19 97	UK	Bedfordshir e	East Anglia
YO2 74	Ralstonia solanacearu m	II	Tomato	19 97	UK	Bedfordshir e	East Anglia
YO2 75	Ralstonia solanacearu m	11	Water	19 97	UK	Bedfordshir e	East Anglia
YO2 76	Ralstonia solanacearu m	11	Water	19 97	UK	Bedfordshir e	East Anglia
YO2 77	Ralstonia solanacearu m	II	Water	19 97	UK	Bedfordshir e	East Anglia
YO2 78	Ralstonia solanacearu m	II	Tomato	19 97	UK	Bedfordshir e	East Anglia
YO2 79	Ralstonia solanacearu m	11	Tomato	19 97	UK	Bedfordshir e	East Anglia
YO2 80	Ralstonia solanacearu m	11	Water	19 97	UK	Bedfordshir e	East Anglia
YO2 81	Ralstonia solanacearu m	11	Water	19 98	UK	Cambridge shire	East Anglia
YO2 82	Ralstonia solanacearu m	II	Water	19 98	UK	Greater London	Essex &

							Londo n
YO2 83	Ralstonia solanacearu m	11	Water	19 98	UK	Bedfordshir e	East Anglia
YO2 84	Ralstonia solanacearu m	11	Water	19 99	UK	Northampt onshire	East Anglia
YO2 85	Ralstonia solanacearu m	II	Water	19 99	UK	Northampt onshire	East Anglia
YO2 86	Ralstonia solanacearu m	II	Potato	19 99	UK	Northampt onshire	East Anglia
YO2 87	Ralstonia solanacearu m	II	Water	20 00	UK	Kent	South East
YO2 88	Ralstonia solanacearu m	11	Water	20 00	UK	Scotland	Scotla nd
YO2 89	Ralstonia solanacearu m	11	Water	20 05	UK	Bedfordshir e	East Anglia
YO2 90	Ralstonia solanacearu m	11	Water	20 05	UK	Warwickshi re	East Midlan ds
YO2 91	Ralstonia solanacearu m	11	Water	20 05	UK	Gloucester shire	West
YO2 92	Ralstonia solanacearu m	11	Water	20 05	UK	Gloucester shire	West
YO2 93	Ralstonia solanacearu m	11	Water	20 05	UK	Gloucester shire	West
YO2 94	Ralstonia solanacearu m	11	Water	20 05	UK	Worcesters hire	Severn & West. Mid.
YO2 95	Ralstonia solanacearu m	II	Water	20 05	UK	Worcesters hire	Severn & West. Mid.
YO2 96	Ralstonia solanacearu m	11	Water	20 05	UK	Gloucester shire	West
YO2 97	Ralstonia solanacearu m	11	Water	20 05	UK	Bedfordshir e	East Anglia

YO2 98	Ralstonia solanacearu m	11	Water	20 05	UK	Cambridge shire	East Anglia
YO2 99	Ralstonia solanacearu m	II	Water	20 05	UK	Bedfordshir e	East Anglia
YO3 00	Ralstonia solanacearu m	11	Water	20 05	UK	Cambridge shire	East Anglia
YO3 01	Ralstonia solanacearu m	II	Potato	20 05	UK	Nottingham shire	East Midlan ds
YO3 02	Ralstonia solanacearu m		Water	20 06	UK	Lincolnshir e	Humbe rside
YO3 03	Ralstonia solanacearu m	II	Water	20 06	UK	Carmarthe nshire	Wales
YO3 04	Ralstonia solanacearu m	11	Water	20 06	UK	Warwickshi re	East Midlan ds
YO3 05	Ralstonia solanacearu m	II	Water	20 06	UK	Mid Glamorgan	Wales
YO3 06	Ralstonia solanacearu m	II	Water	20 06	UK	Cambridge shire	East Anglia
YO3 07	Ralstonia solanacearu m	II	Water	20 06	UK	Cambridge shire	East Anglia
YO3 08	Ralstonia solanacearu m	II	Water	20 06	UK	Dorset	South West
YO3 09	Ralstonia solanacearu m	II	Water	20 06	UK	Dorset	South West
YO3 10	Ralstonia solanacearu m	II	Water	20 06	UK	Carmarthe nshire	Wales
YO3 11	Ralstonia solanacearu m	II	Water	20 06	UK	Carmarthe nshire	Wales
YO3 12	Ralstonia solanacearu m	11	Water	20 06	UK	West Midlands	Severn & West. Mid.
YO3 13	Ralstonia solanacearu m	11	Water	20 06	UK	West Midlands	Severn &

							West. Mid.
YO3 14	Ralstonia solanacearu m	11	Water	20 06	UK	Warwickshi re	East Midlan ds
YO3 15	Ralstonia solanacearu m	II	Water	20 06	UK	Warwickshi re	East Midlan ds
YO3 16	Ralstonia solanacearu m	II	Water	20 06	UK	Carmarthe nshire	Wales
YO3 17	Ralstonia solanacearu m	II	Water	20 06	UK	Carmarthe nshire	Wales
YO3 18	Ralstonia solanacearu m	II	Water	20 06	UK	Dorset	South West
YO3 19	Ralstonia solanacearu m	II	Water	20 06	UK	Mid Glamorgan	Wales
YO3 20	Ralstonia solanacearu m	11	Water	20 06	UK	Bedfordshir e	East Anglia
YO3 21	Ralstonia solanacearu m	11	Water	20 06	UK	Warwickshi re	East Midlan ds
YO3 22	Ralstonia solanacearu m	11	Water	20 06	UK	Staffordshir e	Severn & West. Mid.
YO3 23	Ralstonia solanacearu m	11	Water	20 06	UK	Carmarthe nshire	Wales
YO3 24	Ralstonia solanacearu m	II	Water	20 06	UK	Bedfordshir e	East Anglia
YO3 25	Ralstonia solanacearu m	II	Water	20 06	UK	Warwickshi re	East Midlan ds
YO3 26	Ralstonia solanacearu m	11	Water	20 06	UK	Bedfordshir e	East Anglia
YO3 27	Ralstonia solanacearu m	11	Water	20 06	UK	Dorset	South West
YO3 28	Ralstonia solanacearu m	11	Water	20 06	UK	Carmarthe nshire	Wales

YO3 29	Ralstonia solanacearu	II	Water	20 06	UK	Mid Glamorgan	Scotla nd
25	m			00		Clamorgan	na
YO3 30	Ralstonia solanacearu m	II	Water	20 06	UK	Warwickshi re	East Midlan ds
YO3 31	Ralstonia solanacearu m	11	Water	20 06	UK	Carmarthe nshire	Wales
YO3 32	Ralstonia solanacearu m	II	Water	20 06	UK	Cambridge shire	East Anglia
YO3 33	Ralstonia solanacearu m	11	Water	20 06	UK	Carmarthe nshire	Wales
YO3 34	Ralstonia solanacearu m	11	Water	20 06	UK	Cambridge shire	East Anglia
YO3 35	Ralstonia solanacearu m	11	Water	20 07	UK	Hampshire	South
YO3 36	Ralstonia solanacearu m	11	Water	20 07	UK	Cambridge shire	East Anglia
YO3 37	Ralstonia solanacearu m	II	Water	20 07	UK	Cambridge shire	East Anglia
YO3 38	Ralstonia solanacearu m	11	Water	20 07	UK	Surrey	South
YO3 39	Ralstonia solanacearu m	11	Water	20 07	UK	Hampshire	South
YO3 40	Ralstonia solanacearu m	11	Water	20 07	UK	Berkshire	South
YO3 41	Ralstonia solanacearu m	II	Water	20 07	UK	Berkshire	South
YO3 42	Ralstonia solanacearu m	11	Water	20 07	UK	Berkshire	South
YO3 43	Ralstonia solanacearu m	11	Water	20 07	UK	Berkshire	South
YO3 44	Ralstonia solanacearu m	11	Water	20 08	UK	Oxfordshir e	West

YO3 45	Ralstonia solanacearu m	11	Solanu m dulcam ara	20 08	UK	Oxfordshir e	West
YO3 46	Ralstonia solanacearu m	11	Solanu m dulcam ara	20 08	UK	Oxfordshir e	West
YO3 47	Ralstonia solanacearu m	11	Solanu m dulcam ara	20 08	UK	Oxfordshir e	West
YO3 48	Ralstonia solanacearu m	II	Water	20 08	UK	Oxfordshir e	West
YO3 49	Ralstonia solanacearu m	II	Potato	20 09	UK	Cornwall	South West
YO3 50	Ralstonia solanacearu m	II	Water	20 13	UK	Berkshire	South
YO3 51	Ralstonia solanacearu m	II	Water	20 13	UK	Berkshire	South
YO3 52	Ralstonia solanacearu m	11	Water	20 14	UK	Berkshire	South
YO3 53	Ralstonia solanacearu m	11	Water	20 14	UK	Berkshire	South
YO3 54	Ralstonia solanacearu m	11	Water	20 15	UK	Berkshire	South
YO3 55	Ralstonia solanacearu m	11	Water	20 15	UK	Berkshire	South
YO3 56	Ralstonia solanacearu m	11	Water	20 16	UK	Cambridge shire	East Anglia
YO3 57	Ralstonia solanacearu m	11	Water	20 16	UK	Cambridge shire	East Anglia
YO3 58	Ralstonia solanacearu m	11	Water	20 16	UK	Norfolk	East Anglia
YO3 59	Ralstonia solanacearu m	11	Water	20 16	UK	Norfolk	East Anglia

YO3 60	Ralstonia solanacearu m	II		Water	20 17	UK	Norfolk	East Anglia
YO3 61	Ralstonia solanacearu m	11		Water	20 17	UK	Norfolk	East Anglia
YO3 62	Ralstonia solanacearu m	11		Water	20 17	UK	Cambridge shire	East Anglia
YO3 63	Ralstonia solanacearu m	11		Water	20 17	UK	Norfolk	East Anglia
YO3 64	Ralstonia solanacearu m	11		Water	20 18	UK	Norfolk	East Anglia
YO3 65	Ralstonia solanacearu m	11		Water	20 18	UK	Cambridge shire	East Anglia
YO3 66	Ralstonia solanacearu m	11		Water	20 18	UK	Norfolk	East Anglia
YO3 67	Ralstonia solanacearu m	11		Water	20 18	UK	Cambridge shire	East Anglia
YO3 68	Ralstonia solanacearu m	11		Water	20 18	UK	Norfolk	East Anglia
YO3 69	Ralstonia solanacearu m	11		Water	20 18	UK	Cambridge shire	East Anglia
YO3 70	Ralstonia solanacearu m	11		Water		UK		Scotla nd
YO3 71	Ralstonia solanacearu m	11		Water		UK		Scotla nd
YO3 72	Ralstonia solanacearu m	11	NC PPB 325, NC PPB 397 3	Tomato	19 53	USA	USA	
YO3 73	Ralstonia solanacearu m	II	NC PPB 033 7	Tobacc o	19 54	USA		

YO3 74	Ralstonia solanacearu m	11	NC PPB 033 8	Tobacc o	19 54	USA	
YO3 75	Ralstonia pseudosolan acearum	I	NC PPB 400 9	Tobacc o	19 55	USA	
YO3 76	Ralstonia pseudosolan acearum	I	NC PPB 158 0	Tomato	19 59	USA	
YO3 77			NC PPB 927	Sugarca ne	19 61	USA	
YO3 78	Ralstonia pseudosolan acearum	I	NC PPB 157 9	Ginger	19 61	USA	
YO3 79	Ralstonia pseudosolan acearum	I	NC PPB 158 1	Strelitzi a reginae	19 61	USA	
YO3 80	Ralstonia solanacearu m	11	NC PPB 436 2	Pelargo nium hortoru m	20 03	USA	
YO3 81	Ralstonia solanacearu m	II	NC PPB 396 9	Banana		Venez uela	
YO3 82	Ralstonia pseudosolan acearum	111	NC PPB 028 3	Solanu m pandura forme	19 50	Zimba bwe	
YO3 83	Ralstonia pseudosolan acearum	111	NC PPB 033 2	Potato	19 54	Zimba bwe	
YO3 84	Ralstonia pseudosolan acearum	111	NC PPB 050 5	Comfre y	19 56	Zimba bwe	
YO3 85				Solanu m dulcam ara	20 19	UK	West
YO3 86				Water	20 19	UK	West

YO3		Solanu	20	UK	West
87		m	19		
		dulcam			
		ara			
YO3		Water	20	UK	West
88			19		
YO3		Solanu	20	UK	West
89		m	19		
		dulcam			
		ara			
YO3		Water	20	UK	West
90			19		

7. APPENDIX 2

ID	nam	Species York	Phylo	11	Assigned
	е		type	В	Phylotype
			York	-	web
				1	
GCA_0	GMI	Ralstonia	1		
000091	1000	pseudosolan			
25.1		acearum			
GCA_0	12J	Ralstonia pick	ettii		
000202					
05.1					
GCA_0	Po8	Ralstonia	П		
002153	2	solanacearu			
25.1		m			
GCA_0	PSI0	Ralstonia	IV		
002834	7	syzygii			
75.1					
GCA_0	YC45	Ralstonia	I		
012675		pseudosolan			
15.1		acearum			
GCA_0	UY0	Ralstonia	П	П	
012995	31	solanacearu		В	
55.1		m		-	
				1	
GCA_0	КАС	Ralstonia	IV		
015861	C	syzygii			
35.1	1072				
	2				

GCA_0	UW1	Ralstonia	11		IIB (https://datamed.org/display-
015871	63	solanacearu			item.php?repository=0008&idName=ID&id=
35.1	05	m			5914e5525152c67771b5b7d8)
GCA 0	IBSB	Ralstonia	11		5514055251520077716567089
015871	F150	solanacearu			
55.1	3	m			
GCA 0	YC40	Ralstonia	1		
016634	-M	pseudosolan	1		
15.1	-101	acearum			
GCA_0	КАС	Ralstonia	1		
017085	C107		1		
25.1	09	pseudosolan			
	09 OE1-	acearum			
GCA_0		Ralstonia			
018795	1	pseudosolan			
65.1	ELAT.	acearum			
GCA_0	FJAT	Ralstonia	I		
018875	-	pseudosolan			
35.1	1458	acearum			
GCA_0	EP1	Ralstonia	I		
018911		pseudosolan			
05.1		acearum			
GCA_0	FJAT	Ralstonia	I		
021552	-91	pseudosolan			
45.1		acearum			
GCA_0	SEPP	Ralstonia	I		
021620	X05	pseudosolan			
15.1		acearum			
GCA_0	CQP	Ralstonia	I		
022204	S-1	pseudosolan			
65.1		acearum			
GCA_0	RS	Ralstonia	П	П	
025015	488	solanacearu		В	
65.1		m		-	
				1	
GCA_0	RS	Ralstonia	П		
025498	489	solanacearu			
15.1		m			
GCA_0	RSC	Ralstonia	I		
028942	М	pseudosolan			
85.1		acearum			
GCA_0	T51	Ralstonia	IV		
035151		syzygii			
45.1					
GCA_0	T11	Ralstonia	IV		
035151		syzygii			
65.1					

	SL31	Dalstania	11/	<u> </u>	
GCA_0		Ralstonia	IV		
035151 85.1	75	syzygii			
-	61.24	Dalatasia			
GCA_0	SL31	Ralstonia	I		
035152	03	pseudosolan			
05.1		acearum			
GCA_0	SL23	Ralstonia	I		
035152	30	pseudosolan			
25.1		acearum			
GCA_0	T117	Ralstonia	I		
035152		pseudosolan			
45.1		acearum			
GCA_0	T98	Ralstonia	IV		
035152		syzygii			
65.1					
GCA_0	T78	Ralstonia	I		
035152		pseudosolan			
85.1		acearum			
GCA_0	T25	Ralstonia	1		
035153		pseudosolan			
05.1		acearum			
GCA_0	T12	Ralstonia	IV		
035153		syzygii			
25.1					
GCA_0	SL37	Ralstonia	I		
035153	55	pseudosolan			
45.1		acearum			
GCA_0	SL37	Ralstonia	1		
035153	30	pseudosolan			
65.1		acearum			
GCA_0	SL30	Ralstonia	IV		
035153	22	syzygii			
85.1					
GCA_0	SL27	Ralstonia	I		
035154	29	pseudosolan			
05.1		acearum			
GCA_0	SL23	Ralstonia	IV	1	
035154	12	syzygii			
25.1					
GCA 0	SL20	Ralstonia	IV	1	
035154	64	syzygii			
45.1		, , , , , , , , , , , , , , , , , , , ,			
GCA 0	T110	Ralstonia	1	1	
035154	_	pseudosolan			
65.1		acearum			
				1	

<u> </u>	T404	Delate 1	N7	
GCA_0	T101	Ralstonia	IV	
035154		syzygii		
85.1				
GCA_0	T95	Ralstonia	IV	
035155		syzygii		
05.1				
GCA_0	T82	Ralstonia	IV	
035155		syzygii		
25.1				
GCA_0	T60	Ralstonia	1	
035155		pseudosolan		
45.1		acearum		
GCA_0	T42	Ralstonia	1	
035155		pseudosolan		
65.1		acearum		
GCA 0	SL38	Ralstonia	1	
035155	82	pseudosolan		
85.1		acearum		
GCA_0	SL38	Ralstonia	1	
035156	22	pseudosolan		
05.1		acearum		
GCA_0	SL33	Ralstonia	1	
035156	00	pseudosolan		
25.1		acearum		
GCA 0	IBSB	Ralstonia	11	
035905	F	solanacearu		
85.1	2570	m		
GCA_0	RS	Ralstonia	1	
035953	476	pseudosolan		
05.1		acearum		
GCA_0	CRM	Ralstonia	1	
036129	Rs21	solanacearu		
75.1	8	m		

8. APPENDIX 3

Comp		
onent	Gene	Annotation
210	group_10907	hypothetical protein
210	group_4078	hypothetical protein
209	group_5148	hypothetical protein
209	group_853	hypothetical protein
208	group_8075	hypothetical protein
208	group_7870	IS110 family transposase ISPye16
208	group_7304	hypothetical protein
208	group_5103	hypothetical protein
207	group_5138	hypothetical protein
207	estP	Esterase EstP;hypothetical protein
206	group_6368	hypothetical protein
206	group_1854	hypothetical protein
		HTH-type transcriptional regulator
205	dmIR_15	DmIR
205	group_8749	hypothetical protein
205	polS_2	Sorbitol dehydrogenase;Galactitol 2-dehydrogenase
203	group 415	hypothetical protein
204	group_413	hypothetical protein
204	8100h ⁻⁴³³	Outer membrane porin
203	group 12047	protein;hypothetical protein
203	yphB~~~yphB_1~~~yphB_2	putative protein YphB
203	group 10422	hypothetical protein
	· · -	Outer membrane porin protein
203	group_3466	32;hypothetical protein
203	group_1431	hypothetical protein
		Arabinose import ATP-binding
203	araG_1	protein AraG
		Phosphinothricin N-
203	pat~~~pat_1	acetyltransferase; hypothetical protein
203		hypothetical protein
203	0 1 =	hypothetical protein
203	rbn_2~~~rbn_3~~~rbn_1	Ribonuclease BN
203	group_1358	hypothetical protein
203	P.045-1990	S-adenosylmethionine-dependent
203	umaA	methyltransferase UmaA
		HTH-type transcriptional regulator
202	group_10028	HdfR

		Protein-methionine-sulfoxide
202	msrP 3	reductase catalytic subunit MsrP
202	 group 8186	, Nitrilase
202	metC 2	Cystathionine beta-lyase MetC
		Phosphoribosyl-dephospho-CoA
202	mdcG	transferase
		Acetyl-S-ACP:malonate ACP
202	madA	transferase
		Malonate decarboxylase acyl carrier
202	mdcC	protein
202	group_1698	hypothetical protein
202	group_950	hypothetical protein
201	group_955	hypothetical protein
201	group_771	hypothetical protein
200	group_4211	hypothetical protein
200	group_4210	hypothetical protein
200	group_2888	hypothetical protein
		Transposon Tn7 transposition
199	group_3738	protein TnsB;hypothetical protein
199	group_3736	hypothetical protein
		Methyl-accepting chemotaxis
		protein I;hypothetical
		protein;Methyl-accepting
198	tsr_3~~~tsr_1~~~tar_1~~~tar_2	chemotaxis protein II
198	pgl_4~~~pgl_3	6-phosphogluconolactonase
		putative protein;hypothetical
107	group 2411	
197	group_2411	protein
	- · -	protein hypothetical protein;HTH-type
197	acrR	protein hypothetical protein;HTH-type transcriptional regulator AcrR
197 196	acrR group_10659	protein hypothetical protein;HTH-type transcriptional regulator AcrR hypothetical protein
197 196 196	acrR group_10659 group_10655	protein hypothetical protein;HTH-type transcriptional regulator AcrR hypothetical protein IS21 family transposase ISRso6
197 196 196 195	acrR group_10659 group_10655 group_2051	protein hypothetical protein;HTH-type transcriptional regulator AcrR hypothetical protein IS21 family transposase ISRso6 hypothetical protein
197 196 196	acrR group_10659 group_10655	protein hypothetical protein;HTH-type transcriptional regulator AcrR hypothetical protein IS21 family transposase ISRso6 hypothetical protein hypothetical protein
197 196 196 195 195	acrR group_10659 group_10655 group_2051 group_2050	protein hypothetical protein;HTH-type transcriptional regulator AcrR hypothetical protein IS21 family transposase ISRso6 hypothetical protein hypothetical protein hypothetical protein;Outer
197 196 196 195 195	acrR group_10659 group_10655 group_2051 group_2050 yraJ	protein hypothetical protein;HTH-type transcriptional regulator AcrR hypothetical protein IS21 family transposase ISRso6 hypothetical protein hypothetical protein hypothetical protein;Outer membrane usher protein YraJ
197 196 195 195 195 195	acrR group_10659 group_2051 group_2050 yraJ group_1959	protein hypothetical protein;HTH-type transcriptional regulator AcrR hypothetical protein IS21 family transposase ISRso6 hypothetical protein hypothetical protein hypothetical protein;Outer membrane usher protein YraJ hypothetical protein
197 196 195 195 195 195 195	acrR group_10659 group_2051 group_2050 yraJ group_1959 group_1887	protein hypothetical protein;HTH-type transcriptional regulator AcrR hypothetical protein IS21 family transposase ISRso6 hypothetical protein hypothetical protein hypothetical protein;Outer membrane usher protein YraJ hypothetical protein hypothetical protein
197 196 195 195 195 195 195 195	acrR group_10659 group_2051 group_2050 yraJ group_1959 group_1887 group_1843	protein hypothetical protein;HTH-type transcriptional regulator AcrR hypothetical protein IS21 family transposase ISRso6 hypothetical protein hypothetical protein hypothetical protein;Outer membrane usher protein YraJ hypothetical protein hypothetical protein hypothetical protein
197 196 195 195 195 195 195 195 195	acrR group_10659 group_2051 group_2050 yraJ group_1959 group_1887 group_1843 group_9124	protein hypothetical protein;HTH-type transcriptional regulator AcrR hypothetical protein IS21 family transposase ISRso6 hypothetical protein hypothetical protein hypothetical protein;Outer membrane usher protein YraJ hypothetical protein hypothetical protein hypothetical protein Cystathionine beta-lyase PatB
197 196 195 195 195 195 195 195	acrR group_10659 group_2051 group_2050 yraJ group_1959 group_1887 group_1843	protein hypothetical protein;HTH-type transcriptional regulator AcrR hypothetical protein IS21 family transposase ISRso6 hypothetical protein hypothetical protein hypothetical protein;Outer membrane usher protein YraJ hypothetical protein hypothetical protein hypothetical protein
197 196 195 195 195 195 195 195 195	acrR group_10659 group_2051 group_2050 yraJ group_1959 group_1887 group_1843 group_9124	protein hypothetical protein;HTH-type transcriptional regulator AcrR hypothetical protein IS21 family transposase ISRso6 hypothetical protein hypothetical protein hypothetical protein;Outer membrane usher protein YraJ hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein
197 196 195 195 195 195 195 195 194 194	acrR group_10659 group_2051 group_2050 yraJ group_1959 group_1887 group_1843 group_9124 group_7630	protein hypothetical protein;HTH-type transcriptional regulator AcrR hypothetical protein IS21 family transposase ISRso6 hypothetical protein hypothetical protein hypothetical protein;Outer membrane usher protein YraJ hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein Cystathionine beta-lyase PatB hypothetical protein hypothetical protein
197 196 195 195 195 195 195 195 194 194	acrR group_10659 group_2051 group_2050 yraJ group_1959 group_1887 group_1843 group_9124 group_7630	protein hypothetical protein;HTH-type transcriptional regulator AcrR hypothetical protein IS21 family transposase ISRso6 hypothetical protein hypothetical protein hypothetical protein;Outer membrane usher protein YraJ hypothetical protein hypothetical protein hypothetical protein hypothetical protein Cystathionine beta-lyase PatB hypothetical protein hypothetical protein hypothetical protein;Sulfide- quinone reductase
197 196 195 195 195 195 195 195 194 194	acrR group_10659 group_2051 group_2050 yraJ group_1959 group_1887 group_1843 group_9124 group_7630	protein hypothetical protein;HTH-type transcriptional regulator AcrR hypothetical protein IS21 family transposase ISRso6 hypothetical protein hypothetical protein hypothetical protein;Outer membrane usher protein YraJ hypothetical protein hypothetical protein hypothetical protein Cystathionine beta-lyase PatB hypothetical protein hypothetical protein;Sulfide- quinone reductase Copper resistance protein B

		Transcriptional regulatory protein
193	cusR_1~~~cusR_2~~~rcsC_7~~~cusR	CusR;Sensor histidine kinase RcsC
		Adaptive-response sensory-kinase
	sasA_12~~~cusS~~~sasA_8~~~cusS_2~~~c	SasA;Sensor histidine kinase
193	usS_1	CusS;hypothetical protein
192	group_8066	hypothetical protein
		hypothetical protein;Vitamin B12
192	group_6981	import ATP-binding protein BtuD
192	group_5464	hypothetical protein
192	group_1473	hypothetical protein
192	group_901	hypothetical protein
101		hypothetical protein;HTH-type
191	cmpR_2	transcriptional activator CmpR
191	group_2062	hypothetical protein
191	group 1984	putative HTH-type transcriptional regulator
191	8100b_1904	Putative niacin/nicotinamide
		transporter NaiP;Putative
		metabolite transport protein
191	naiP_1~~~yjhB~~~naiP_2~~~naiP	YjhB;hypothetical protein
190	group_10934	hypothetical protein
190	group_4385	hypothetical protein
189	group_11788	hypothetical protein
189	group_7113	hypothetical protein
189	group_5015	hypothetical protein
		putative RNA polymerase sigma
189	fecl_2	factor Fecl
		L(+)-tartrate dehydratase subunit
189	ttdB_2	beta
189	group_3783	hypothetical protein
189	pgIA_2	Polygalacturonase
188	copD	Copper resistance protein D
188	copC_1~~~copC_2~~~copC	Copper resistance protein C
187	dctA2_3~~~dctA2_2	C4-dicarboxylate transport protein 2
107		3-carboxy-ciscis-muconate
187	pcaB_1~~~pcaB_2	cycloisomerase
187	dasR	HTH-type transcriptional repressor DasR
186	group_11553	hypothetical protein
186	group_11097	hypothetical protein
186	group 10337	hypothetical protein
186	group_10337 group_9442	hypothetical protein
185	group 6703	hypothetical protein
185	group 4022	hypothetical protein
185		ATP-dependent DNA helicase Rep
102	rep_3	Arr-dependent DNA helicase kep

184 184	group_9260 group_9259 group_7171 group_1132
183	sutR_2~~~sutR_3~~~sutR_1~~~sutR_4
183	ttr
182	group_10911
182	group_4024
181	ompR_3
181	hopD2
181	group_4152
	group_7631
	nemA_3
180	group_4700
180	acuR
	group_6094
	group_8221
178	
	group_94
	group_10997
177	0 1
	group_4839
177	group_3054
176	xerC_4~~~xerC_1
176	group_747
175	group_8175
175	group_4611
174	group_3211
174	virS
174	actIII~~~hcaB_2
	group_3182
1,2	P. 045-2105
173	fprA_2~~~fprA_1~~~fprB~~~fprA

hypothetical protein hypothetical protein hypothetical protein 3'-5' exoribonuclease hypothetical protein;HTH-type transcriptional regulator SutR Acetyltransferase hypothetical protein hypothetical protein hypothetical protein;Transcriptional regulatory protein OmpR Effector protein hopD2 hypothetical protein hypothetical protein N-ethylmaleimide reductase hypothetical protein Transcriptional regulator AcuR; hypothetical protein hypothetical protein hypothetical protein Prophage integrase IntA hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein Tyrosine recombinase XerC; hypothetical protein hypothetical protein IS30 family transposase ISHar4; hypothetical protein; IS30 family transposase ISHar5 hypothetical protein hypothetical protein hypothetical protein;HTH-type transcriptional regulator VirS Putative ketoacyl reductase; hypothetical protein; 3phenylpropionatedihydrodiol/cinnamic aciddihydrodiol dehydrogenase hypothetical protein NADPH-ferredoxin reductase FprA;putative

173ynfFromynfEronapA_2nitrate reductase intrate reductase173fdxAFerredoxin-1173rhaR_1~~rhaR_2RhaR172group_3731Hypothetical protein173group_3731Hypothetical protein174group_1146hypothetical protein175group_1040hypothetical protein176group_1040hypothetical protein177group_3731hypothetical protein178group_1040hypothetical protein179group_3093hypothetical protein170group_8993hypothetical protein170group_8076hypothetical protein170group_6727hypothetical protein170group_5865hypothetical protein170group_3024partition protein Smc169group_1268IS21 family transposase ISRs019167group_11945hypothetical protein168group_11945hypothetical protein169group_2876hypothetical protein166phnZdioxygenase (glycine-forming)167group_7876hypothetical protein168group_7067hypothetical protein169group_2944artity transposase ISRs019165group_2944artity transposase (glycine-forming)165hypothetical proteinhypothetical protein165hypothetical proteinartity transcriptional165hypothetical proteinartity transcriptional165group_2944	173	moaA_2~~~moaA_3~~~moaA_1	ferredoxin/ferredoxinNADP reductase GTP 3'8-cyclase putative dimethyl sulfoxide reductase chain YnfF;hypothetical protein;Putative dimethyl sulfoxide
173fdxAFerredoxin-1 HTH-type transcriptional activator173rhaR_1~~~rhaR_2RhaR172group_3731hypothetical protein Heme/hemopexin transporter172hxuBprotein HuxB171group_1146hypothetical protein173rdxBprotein HuxB171group_631hypothetical protein170group_10040hypothetical protein170group_8993hypothetical protein170group_8076hypothetical protein170group_6725hypothetical protein170group_6725hypothetical protein170group_3024partition protein Smc169group_1268IS21 family transposae ISRs019167group_7876hypothetical protein168group_11945hypothetical protein167group_7067hypothetical protein168group_1268IS21 family transposae ISRs019167group_27067hypothetical protein168group_27067hypothetical protein165group_2944regulator3-phenylpropionate- dihydrodioldihydrodiol165group_2944regulator	173	vnfF~~~vnfF~~~napA_2	reductase chain YnfE;Periplasmic nitrate reductase
173rhaR_1~~~rhaR_2RhaR172group_3731hypothetical protein Heme/hemopexin transporter protein Hux8171group_1146hypothetical protein hypothetical protein171group_631hypothetical protein hypothetical protein170group_10040hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein in hypothetical protein 			
172group_3731hypothetical protein Heme/hemopexin transporter protein HuxB171group_1146hypothetical protein171group_631hypothetical protein170group_10040hypothetical protein170group_8993hypothetical protein170group_8076hypothetical protein170group_6727hypothetical protein170group_6725hypothetical protein170group_5865hypothetical protein170group_1156hypothetical protein171group_1268IS21 family transposaes ISRs019168group_1268IS21 family transposaes ISRs019167group_7067hypothetical protein168group_7067hypothetical protein169group_2944regulator165group_2944regulator166phnZdioxygenase (glycine-forming)166phnZdioxygenase (glycine-forming)166group_7067hypothetical protein165group_2944regulator3-phenylpropionate- dihydrodioldiohydrogenase; hypothetical165group_2944regulator			
Heme/hemopexin transporter172hxuB171group_1146171group_631170group_10040170group_10040170group_8993170yothetical protein170group_8076170group_6727170group_6725170group_5865170group_5865170group_1566171group_1566172group_1566173group_1566174group_1566175group_1566176group_1566177group_1566178group_156179group_156170group_156171Yurshi arcs172group_156173group_1268174group_1156175group_11945176group_7876177group_7876178hypothetical protein179group_2944179group_2944179group_2944179group_2944179group_2944179group_2944179group_2944179group_2944179group_2944179group_2944179group_2944179group_2944179group_2944179group_2944179group_2944179group_2944179group_2944179group_2944179gro			
172hxuBprotein HuxB171group_1146hypothetical protein171group_631hypothetical protein170group_10040hypothetical protein170group_8093hypothetical protein170group_8076hypothetical protein virB1170group_6727hypothetical protein170group_6725hypothetical protein170group_5865hypothetical protein170group_1024partition protein Smc170group_3024partition protein169group_1268IS21 family transposae ISRso19167group_11945hypothetical protein168group_11945hypothetical protein165group_2067hypothetical protein166phnZdioxygenase (glycine-forming)166group_2044regulator3-phenylpropionate-dioxygenase (glycine-forming)166phnZregulator167group_2044regulator168group_1067hypothetical protein169protein/2-amino-1-160phnZdioxygenase (glycine-forming)161group_2044regulator162group_2044regulator163group_2044hypothetical protein164phnZdioxygenase (glycine-forming)165group_2044regulator166phnZdioxygenase (glycine-forming)166phnZregulator165group_2044regulator	172	group_3731	
171group_1146hypothetical protein171group_631hypothetical protein170group_10040hypothetical protein170group_8993hypothetical protein170group_8976hypothetical protein virB1170group_6727hypothetical protein170group_6725hypothetical protein170group_5865hypothetical protein170group_1024partition protein Smc169xerD_3~~~xerC_5~~~xerC_11XerD;Tyrosine recombinase168group_1156hypothetical protein167group_1268IS21 family transposase ISRs019167group_7876hypothetical protein168group_11945hypothetical protein169group_2067hypothetical protein161group_2168IS21 family transposase ISRs019162group_2168IS21 family transposase ISRs019163group_2067hypothetical protein164phnZdioxygenase (glycine-forming)165group_2044regulator165group_2044regulator166phnZdioxygenase (glycine-forming)166phnZdioxygenase (glycine-forming)166phnZregulator167group_2044regulator168group_2044regulator169group_7067hypothetical protein160phnZdioxygenase (glycine-forming)161group_2044regulator165group_2044<	172	hxuB	
171group_631hypothetical protein170group_10040hypothetical protein170group_8993hypothetical protein170group_8076hypothetical protein virB1170group_6727hypothetical protein170group_6725hypothetical protein170group_5865hypothetical protein170group_3024partition protein Smc168group_1156hypothetical protein168group_1268lS21 family transposase ISRs019167group_7876hypothetical protein168group_11945hypothetical protein167group_23044group-11945168group_1268lS21 family transposase ISRs019167group_2876hypothetical protein168group_11945hypothetical protein165group_2067hypothetical protein166phnZdioxygenase (glycine-forming)165group_2944regulator3-phenylpropionate-dihydrodiol/cinnamic acid-165group_2044protein	171	group 1146	•
170group_10040hypothetical protein170group_8993hypothetical protein170yirB1secretion system protein virB1170group_8076hypothetical protein170group_6727hypothetical protein170group_6725hypothetical protein170group_5865hypothetical protein170group_3024partition protein Smc169group_1156hypothetical protein168group_1268IS21 family transposase ISRs019167group_11945hypothetical protein168group_11945hypothetical protein167group_2876hypothetical protein168group_1268IS21 family transposase ISRs019167group_11945hypothetical protein168group_2876hypothetical protein169group_2876hypothetical protein165group_11945hypothetical protein166phnZdioxygenase (glycine-forming)165group_2944regulator3-phenylpropionate-dihydrodiol/cinnamic acid-165group_2044group-2944			<i>,</i> , , ,
hypothetical protein;Type IV170virB1170group_8076170group_6727170group_6725170group_5865170group_5865170group_3024171XerD;Tyrosine recombinase XerC172group_1156173group_7876174group_7876175group_11945176group_7067177group_2944178group_7067179group_2944170group_2944171group_reprime172group_2944173group_2944174group/group175group_2944175group/group175group_2944175group/group175group_2944175group/group175group_2944175group/group175group_2944175group/group175group/group175group_2944175group/group175group/group175group_2944175group/group175group/group175group/group175group175group175group175group176group177group177group177group177group177group177group177	170	group_10040	
170virB1secretion system protein virB1170group_8076hypothetical protein170group_6727hypothetical protein170group_6725hypothetical protein170group_5865hypothetical protein170group_5865hypothetical protein170group_3024partition protein Smc169group_1268IS21 family transposase ISRso19167group_7876hypothetical protein167group_7067hypothetical protein166phnZdioxygenase (glycine-forming)165group_2944regulator165group_2944group_antive HTH-type transcriptional165group_7067hypothetical protein166phnZdioxygenase (glycine-forming)166phnZdioxygenase (glycine-forming)165group_2944regulator3-phenylpropionate-dihydrodiol/cinnamic acid-dihydrodioldehydrogenase;hypotheticalprotein;NADP-dependent 3-hydroxyhypothetical	170	group_8993	hypothetical protein
170group_8076hypothetical protein170group_6727hypothetical protein170group_6725hypothetical protein170group_5865hypothetical protein170group_5865hypothetical protein169xerD_3~~xerC_5~~xerC_11XerD;Tyrosine recombinase169group_3024partition protein Smc169group_1156hypothetical protein168group_1268IS21 family transposase ISRso19167group_7876hypothetical protein168group_7067hypothetical protein166phnZdioxygenase (glycine-forming)165group_2944regulator165group_2944regulator165group_2044protein165group_2044protein			hypothetical protein;Type IV
170group_6727hypothetical protein170group_6725hypothetical protein170group_5865hypothetical protein170group_5865hypothetical protein169xerD_3~~xerC_5~~xerC_11XerD;Tyrosine recombinase XerC169group_3024partition protein Smc168group_1156hypothetical protein168group_1268IS21 family transposase ISRso19167group_7876hypothetical protein167group_11945hypothetical protein166phnZdioxygenase (glycine-forming)165group_2944regulator165group_2944argulator3-phenylpropionate- dihydrodiol/cinnamic acid- dihydrodiolargulator3-phenylpropionate- dihydrodioldihydrodioldehydrogenase;hypothetical protein;NADP-dependent 3-hydroxy	170	virB1	secretion system protein virB1
170group_6725hypothetical protein170group_5865hypothetical protein170group_5865hypothetical protein169xerD_3~~~xerC_5~~~xerC_11XerD;Tyrosine recombinase XerC169group_3024partition protein Smc168group_1156hypothetical protein168group_1268IS21 family transposase ISRso19167group_7876hypothetical protein167group_11945hypothetical protein166phnZdioxygenase (glycine-forming)166group_2944regulator165group_2944s-phenylpropionate- dihydrodiol/cinnamic acid- dihydrodiol165group_2944s-phenylpropionate- dihydrodiol	170	group_8076	hypothetical protein
170group_5865hypothetical protein Tyrosine recombinase169xerD_3~~xerC_5~~xerC_11XerD;Tyrosine recombinase XerC hypothetical protein;Chromosome169group_3024partition protein Smc168group_1156hypothetical protein168group_1268IS21 family transposase ISRso19167group_7876hypothetical protein167group_11945hypothetical protein166phnZdioxygenase (glycine-forming)166group_7067hypothetical protein putative HTH-type transcriptional165group_2944regulator 3-phenylpropionate- dihydrodiol dehydrogenase;hypothetical protein 3-hydroxy	170	group_6727	hypothetical protein
169xerD_3~~xerC_5~~xerC_11Tyrosine recombinase169group_3024partition protein;Chromosome169group_1156hypothetical protein168group_1268IS21 family transposase ISRso19167group_7876hypothetical protein167group_11945hypothetical protein166phnZdioxygenase (glycine-forming)165group_2944regulator165group_2944regulator166phnZdioxygenase (glycine-forming)165group_2044regulator3-phenylpropionate- dihydrodiol/cinnamic acid- dihydrodioldioxygenase;hypothetical protein;NADP-dependent 3-hydroxy	170	group_6725	hypothetical protein
169xerD_3~~~xerC_5~~~xerC_11XerD;Tyrosine recombinase XerC hypothetical protein;Chromosome169group_3024partition protein Smc168group_1156hypothetical protein168group_1268IS21 family transposase ISRso19167group_7876hypothetical protein167group_11945hypothetical protein166phnZdioxygenase (glycine-forming)166group_7067hypothetical protein putative HTH-type transcriptional165group_2944regulator 3-phenylpropionate- dihydrodiol/cinnamic acid- dihydrodiol dehydrogenase;hypothetical protein;NADP-dependent 3-hydroxy	170	group_5865	hypothetical protein
 hypothetical protein;Chromosome group_3024 partition protein Smc group_1156 hypothetical protein group_1268 IS21 family transposase ISRso19 group_7876 hypothetical protein for group_11945 hypothetical protein;2-amino-1- hydroxyethylphosphonate group_7067 hypothetical protein group_2944 regulator 3-phenylpropionate- dihydrodiol/cinnamic acid- dihydrodiol dehydrogenase;hypothetical protein;NADP-dependent 3-hydroxy 			-
 169 group_3024 partition protein Smc 168 group_1156 hypothetical protein 168 group_1268 IS21 family transposase ISRso19 167 group_7876 hypothetical protein 167 group_11945 hypothetical protein 168 phnZ dioxygenase (glycine-forming) 166 group_7067 hypothetical protein 165 group_2944 regulator 3-phenylpropionate- dihydrodiol/cinnamic acid- dihydrodiol dehydrogenase;hypothetical protein;NADP-dependent 3-hydroxy 	169	xerD_3~~~xerC_5~~~xerC_11	
168group_1156hypothetical protein168group_1268IS21 family transposase ISRso19167group_7876hypothetical protein167group_11945hypothetical protein;2-amino-1-167phnZdioxygenase (glycine-forming)166group_7067hypothetical protein165group_2944regulator3-phenylpropionate-dihydrodiol/cinnamic acid-dihydrodioldehydrogenase;hypotheticalprotein;NADP-dependent 3-hydroxy	100		
168group_1268IS21 family transposase ISRso19167group_7876hypothetical protein167group_11945hypothetical protein167group_11945hypothetical protein;2-amino-1-166phnZdioxygenase (glycine-forming)166group_7067hypothetical protein165group_2944regulator3-phenylpropionate-dihydrodiol/cinnamic acid-dihydrodioldehydrogenase;hypotheticalprotein;NADP-dependent 3-hydroxy			
167group_7876hypothetical protein167group_11945hypothetical protein167group_11945hypothetical protein;2-amino-1-hydroxyethylphosphonatehydroxyethylphosphonate166phnZdioxygenase (glycine-forming)166group_7067hypothetical protein165group_2944regulator3-phenylpropionate-dihydrodiol/cinnamic acid-dihydrodioldehydrogenase;hypotheticalprotein;NADP-dependent 3-hydroxy		• • =	
 167 group_11945 hypothetical protein hypothetical protein;2-amino-1- hydroxyethylphosphonate 166 phnZ 166 group_7067 hypothetical protein putative HTH-type transcriptional 165 group_2944 regulator 3-phenylpropionate- dihydrodiol/cinnamic acid- dihydrodiol dehydrogenase;hypothetical protein;NADP-dependent 3-hydroxy 			
hypothetical protein;2-amino-1- hydroxyethylphosphonate dioxygenase (glycine-forming) hypothetical protein putative HTH-type transcriptional regulator 3-phenylpropionate- dihydrodiol/cinnamic acid- dihydrodiol dehydrogenase;hypothetical protein;NADP-dependent 3-hydroxy			
 hydroxyethylphosphonate phnZ group_7067 hypothetical protein putative HTH-type transcriptional group_2944 regulator 3-phenylpropionate- dihydrodiol/cinnamic acid- dihydrodiol dehydrogenase;hypothetical protein;NADP-dependent 3-hydroxy 	167	group_11945	
166phnZdioxygenase (glycine-forming)166group_7067hypothetical protein putative HTH-type transcriptional165group_2944regulator1653-phenylpropionate- dihydrodiol/cinnamic acid- dihydrodiol dehydrogenase;hypothetical protein;NADP-dependent 3-hydroxy			
166group_7067hypothetical protein putative HTH-type transcriptional165group_2944regulator3-phenylpropionate- dihydrodiol/cinnamic acid- dihydrodiol dehydrogenase;hypothetical protein;NADP-dependent 3-hydroxy	166	nhn7	
165 group_2944 putative HTH-type transcriptional 165 group_2944 regulator 3-phenylpropionate- dihydrodiol/cinnamic acid- dihydrodiol dehydrogenase;hypothetical protein;NADP-dependent 3-hydroxy Potative HTH-type transcriptional			
165 group_2944 regulator 3-phenylpropionate- dihydrodiol/cinnamic acid- dihydrodiol dehydrogenase;hypothetical protein;NADP-dependent 3-hydroxy	100	Bloch-1001	
dihydrodiol/cinnamic acid- dihydrodiol dehydrogenase;hypothetical protein;NADP-dependent 3-hydroxy	165	group_2944	. ,
dihydrodiol dehydrogenase;hypothetical protein;NADP-dependent 3-hydroxy			3-phenylpropionate-
protein;NADP-dependent 3-hydroxy			•
			dehydrogenase;hypothetical
165 hcaB_2~~~hcaB_1~~~ydfG_3 acid dehydrogenase YdfG			
	165	hcaB_2~~~hcaB_1~~~ydfG_3	acid dehydrogenase YdfG

		Chaling trimathy domina
		Choline trimethylamine-
164	aut Casa afl D	lyase;hypothetical protein;Trans-4-
	cutC~~~pfID	hydroxy-L-proline dehydratase
164	group_1683	hypothetical protein
163	group_1532	hypothetical protein
163	group_1476	hypothetical protein
162	group_2243	hypothetical protein
162	group_2208	hypothetical protein
162	group_2197	hypothetical protein
		2-succinyl-6-hydroxy-24-
		cyclohexadiene-1-carboxylate
162	menH_3~~~menH_2~~~menH_4	synthase;hypothetical protein
162	group_2181	hypothetical protein
		hypothetical
		protein;DecarbamoyInovobiocin
162	novN_1	carbamoyltransferase
		hypothetical protein;4-
		hydroxyphenylalkanoate
162	group_2163	adenylyltransferase
162	group_2162	hypothetical protein
162	group 2141	hypothetical protein
162	group 2139	hypothetical protein
	5 1_	ValinetRNA ligase;hypothetical
162	valS 2	protein
	-	O-succinylhomoserine
162	metZ~~~metZ_1	sulfhydrylase;hypothetical protein
	_	Acyl-homoserine-lactone
162	anol_2~~~anol_1	synthase;hypothetical protein
		hypothetical protein;putative
162	ycaC_2	hydrolase YcaC
		Transcriptional activator protein
162	anoR_2~~~anoR_1	AnoR
		hypothetical protein;HTH-type
162	dmlR_13~~~dmlR_19~~~dmlR_12	transcriptional regulator DmlR
		2-oxoglutarate dehydrogenase E1
162	sucA_2~~~sucA_3	component
		hypothetical protein;Methyl-
162	tar_7	accepting chemotaxis protein II
		HTH-type transcriptional regulator
	dmlR_18~~~dmlR_5~~~dmlR_10~~~cynR_	DmlR;HTH-type transcriptional
161	2~~~dmlR_6~~~dmlR_2	regulator CynR;hypothetical protein
		hypothetical protein;2-succinyl-6-
		hydroxy-24-cyclohexadiene-1-
161	menH_2	carboxylate synthase
160	group_9896	hypothetical protein
160	group_8426	hypothetical protein

159	group_7300	hypothetical protein
159	group_6277	hypothetical protein
158	hchA~~~hchA_1	Protein/nucleic acid deglycase HchA
		hypothetical protein;2-keto-4-
158	ligJ	carboxy-3-hexenedioate hydratase
157	group_3228	hypothetical protein
157	group_3253	hypothetical protein
157	group_3252	hypothetical protein
157	group_3233	hypothetical protein
157	group_3229	hypothetical protein
157	group_3218	hypothetical protein
156	group_3222	hypothetical protein
156	group_3570	hypothetical protein
		Multidrug resistance protein
		Stp;putative multidrug resistance
		protein EmrY;Multidrug export
	stp~~~emrY_4~~~emrB_3~~~bmr3~~~stp	protein EmrB;Multidrug resistance
155	_2~~~stp_1~~~emrB_4	protein 3;hypothetical protein
		Haloalkane
		dehalogenase;Arylesterase;Putative aminoacrylate hydrolase
155	dhaA~~~dhaA_2~~~rutD_2	RutD;hypothetical protein
155		Polyketide synthase PksJ;2-
		succinylbenzoateCoA
155	pksJ~~~menE_3~~~menE_4~~~menE_2	, ligase;hypothetical protein
154	group 8974	hypothetical protein
	0 1 -	Type IV secretion system protein
154	virB9	virB9
154	group_8316	hypothetical protein
		Type IV secretion system protein
154	group_8137	VirB11
		Type IV secretion system protein
154	virB4_2~~~virB4	virB4
154	group_8077	hypothetical protein
154	group_7530	hypothetical protein
154	group_6687	hypothetical protein
4 - 4	.:-D0	Type IV secretion system protein
154	virB8	virB8;hypothetical protein
154	group_6194	hypothetical protein
154	group_5958	hypothetical protein
154	group_5957	hypothetical protein
154	virB5	Type IV secretion system protein virB5
154 154	group_4321	hypothetical protein
154	group_3953	hypothetical protein

154 154 154 154 153	group_3435 group_3434 group_3431 group_3134 group_2512 group_6121
153	hipA_2
152	group_10318
152	cuyA
152	sotB_2
151	xerC_1
151	group_7894
150	group_995
150	group_1572
149	group_1677
149	group_1197
148	group_1299
148	group_1299
147	group_10641
147	group_7554
147	group_2858
147	group_7555
146	group_10752
146	group_10258
146	group_9300
146	group_9254
146	group_9254
146	group_7258
146	group_7163
145	rhsC_3~~~rhsD
145	group_11777
145	group_6009
145	sasA_15
145	rssB_4
145	group_4680
144	flil_2~~~flil_1
144	group_3643

hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein Serine/threonine-protein kinase toxin HipA HTH-type transcriptional regulator GltC L-cysteate sulfo-lyase sugar efflux transporter hypothetical protein;Tyrosine recombinase XerC hypothetical protein Putative deoxyribonuclease RhsC;Protein RhsD;hypothetical protein hypothetical protein hypothetical protein Adaptive-response sensory-kinase SasA **Regulator of RpoS** hypothetical protein Flagellum-specific ATP synthase hypothetical protein

144	fliE_2~~~fliE_1	Flagellar hook-basal body complex protein FliE Flagellar basal-body rod protein
144	flgC_2~~~flgC_1	FlgC
144	group_3626	hypothetical protein
144	flgl_2~~~flgl_1	Flagellar P-ring protein
144	flgH_2~~~flgH_1	Flagellar L-ring protein
144	group_3569	hypothetical protein
144	flgF_2~~~flgF_1	Flagellar basal-body rod protein FlgF Flagellar basal-body rod protein
144	flgG_2~~~flgG_3~~~flgG_1	FlgG
144	flhA 1~~~flhA 2	Flagellar biosynthesis protein FlhA
144	flhB 1	Flagellar biosynthetic protein FlhB
	_	hypothetical protein;Flagellar
144	fliR_1	biosynthetic protein FliR
144	group_3096	hypothetical protein
		4-hydroxyphenylalkanoate
		adenylyltransferase;Putative fatty-
		acidCoA ligase FadD21;Long-chain-
143	group_582	fatty-acidCoA ligase FadD23;Long- chain-fatty-acidAMP ligase FadD30
143	group_551	hypothetical protein
143	Bloch-221	hypothetical protein;Phthiocerol
		synthesis polyketide synthase type I
143	ppsA_2	PpsA , , , , , , , , , , , , , , , , , , ,
		hypothetical
		protein;Phthiocerol/phenolphthioce
		rol synthesis polyketide synthase
143	ppsB	type I PpsB
143	group_347	hypothetical protein
		Linear gramicidin synthase subunit
		B;hypothetical protein;Phthiocerol synthesis polyketide synthase type I
143	lgrB~~~ppsE	PpsE
143	pikAV~~~pikAV_2	Thioesterase PikA5
142	group 5844	hypothetical protein
142	group_286	hypothetical protein
141	group 2103	hypothetical protein
141	group 7675	hypothetical protein
140	group_10366	hypothetical protein
140	group 9473	hypothetical protein
139	group_2516	hypothetical protein
139	group_2364	hypothetical protein
138	group_11617	hypothetical protein
138	group_11895	hypothetical protein

```
137 group 2104
137 group_2069
136 mshA 2~~~mshA 3~~~mshA 4
136 cya~~~cya 2~~~cya 1
135 group_1811
135 group 1521
135 group 1029
134 group_11638
134 group 10515
133 group 9987
133 group 9672
133 group 8880
133 group_6566
133 ttdB~~~ttdB_1~~~ttdB_2
132 mmgC 5
132 group_3051
132 vofA
131 group_2310
131 group 3410
130 group 7491
130 group_1844
129 sutR 3~~~sutR 4
129 rhtB 2~~~rhtB 3
128 group 4825
128 group 1932
128 group 7495
127 group 9159
127 group 8998
127 group 6994
127 group_6733
126 group 3385
126 group 11901
126 group 285
126 group 58
125 group 11976
```

hypothetical protein hypothetical protein D-inositol-3-phosphate glycosyltransferase;hypothetical protein hypothetical protein;Bifunctional hemolysin/adenylate cyclase hypothetical protein L(+)-tartrate dehydratase subunit beta hypothetical protein;Acyl-CoA dehydrogenase fadE12;Acyl-CoA dehydrogenase hypothetical protein HTH-type transcriptional regulator YofA; hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein;HTH-type transcriptional regulator SutR Homoserine/homoserine lactone efflux protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein Protein kinase Yegl hypothetical protein Serine/threonine-protein phosphatase 3 hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein

125	group_11735
125	group_11397
125	,,
	group_10851
	group_11975
	group_11736
	group_122
	group_746
	group_2810
	group_2809
	group_1750
	group_1445
	group_1475
	yqcF
	group_9151
124	group_5443
123	cnrA_2~~~cnrA_1~~~cnrA
123	cnrB
123	cnrC
123	cnrH~~~cnrH_1
123	cnrR
123	cnrY
	group 5040
122	group_7201
122	group_2735
121	group_2338
121	group_2989
121	group_2504
120	group_371
120	group_302
119	group_8127
119	group_3913
118	group_10292
118	group_9375
117	group_7697
117	group_4008
116	group_3337
116	group_3053

hypothetical protein hypothetical protein Chromosome-partitioning ATPase Soj hypothetical protein Antitoxin YqcF hypothetical protein hypothetical protein Nickel and cobalt resistance protein CnrA Nickel and cobalt resistance protein CnrB Nickel and cobalt resistance protein CnrC RNA polymerase sigma factor CnrH Nickel and cobalt resistance protein CnrR Nickel and cobalt resistance protein CnrY hypothetical protein hypothetical protein

hypothetical protein

Multidrug resistance protein mdtA 9~~~mdtA 4~~~mdtA 7~~~mdtA 3 MdtA;Cation efflux system protein 116 ~~~cusB~~~mdtA 2 CusB 116 cusA~~~cusA 1~~~cusA 2 Cation efflux system protein CusA hypothetical protein 116 group 2790 Transcriptional regulatory protein 115 creB CreB 115 creC Sensor protein CreC Inner membrane protein 115 creD CreD; hypothetical protein hypothetical protein;Multidrug export protein EmrB;Multidrug emrB 1~~~stp~~~stp 1~~~emrB 3~~~md resistance protein Stp;Putative 114 tD 1~~~mdtD 2~~~mdtD~~~emrB 5 multidrug resistance protein MdtD 114 group 3265 hypothetical protein 113 group 2884 hypothetical protein 113 group_2829 hypothetical protein 112 group 11001 hypothetical protein Methyl-accepting chemotaxis 112 tar 2~~~tar 1 protein II 112 group_929 hypothetical protein Outer membrane protein OprJ;Outer membrane protein 111 oprJ~~~oprM_7 OprM 3-phenylpropionatedihydrodiol/cinnamic acid-111 hcaB_3~~~hcaB_1~~~hcaB dihydrodiol dehydrogenase 110 group 3036 hypothetical protein 110 group 3746 IS3 family transposase ISButh1 109 xerC 5~~~xerC 10 Tyrosine recombinase XerC 109 group 6604 hypothetical protein 109 group_8992 hypothetical protein 109 group 8918 hypothetical protein 109 group_10003 hypothetical protein 109 ttuB 1~~~ttuB 2 Putative tartrate transporter 109 group 8214 hypothetical protein 109 group 6154 hypothetical protein hypothetical protein;RutC family 108 group_2946 protein YjgH hypothetical protein;HTH-type 108 lrpC~~~lrpC_3~~~lrpC_2 transcriptional regulator LrpC 4-hydroxyphenylpyruvate 108 hpd 2~~~lly~~~hpd 1 dioxygenase;hypothetical protein HTH-type transcriptional regulator 107 pgrR 5~~~pgrR 1 PgrR

107	group 3364	hypothetical protein
107	group 3342	hypothetical protein
107	group_3342	putative protein YcjY;hypothetical
107	ycjY 1~~~ycjY	protein
107		putative
		oxidoreductase/MSMEI 2346;hypot
107	yvgN	hetical protein;Glyoxal reductase
	, .	putative MFS-type transporter
107	efpA	EfpA;hypothetical protein
106	group_1558	hypothetical protein
106	group_1559	hypothetical protein
105	group_821	hypothetical protein
105	group_532	hypothetical protein
105	group_10664	hypothetical protein
105	group 9516	hypothetical protein
105	group_7666	hypothetical protein
105	group_4996	hypothetical protein
105	group 3326	hypothetical protein
104	group_5833	hypothetical protein
104	group_1158	hypothetical protein
103	group 1464	hypothetical protein
103	group_1429	hypothetical protein
102	group_3505	hypothetical protein
102	group 3291	hypothetical protein
102	group_835	hypothetical protein
101	group 9433	hypothetical protein
101	group 6578	hypothetical protein
100	group 3289	hypothetical protein
100	group_2567	hypothetical protein
100	group 2573	hypothetical protein
99	group_89	hypothetical protein
99	group_1168	hypothetical protein
98	group 7890	hypothetical protein
98	group_2161	hypothetical protein
98	group 2160	hypothetical protein
98	group 2144	hypothetical protein
	0	ATP-dependent Clp protease
98	clpP_1~~~clpP_2	proteolytic subunit
98	group_2109	hypothetical protein
98	group_2077	hypothetical protein
97	group_3733	hypothetical protein
		Tyrosine recombinase
97	xerC_1~~~xerC_4	XerC;hypothetical protein
96	group_8220	hypothetical protein

96	group_3204
96	gltI_6~~~gltI_7
95	group_1180
95	group_1133
94	group_9545
94	group_6870
93	group_727
93	group_10458
92	group_10414
92	higB~~~higB_2
92	group_7682
92	0 1 -
	group_1712
	group_1631
92	group_1161
92	group_1274
91	ccr~~~pikAll
91	group_4783
	0 1 -
	fabG_4~~~fabG_2
91	group_9456
	group_14014
90	group_14012
89	group_2362
89	group_890
89	group_10120
89	group_10268
89	group_8771
89	group_3809
89	group_7246
88	group_2824
88	group_1170
87	group_9938
87	group_838
86	group_508
86	group_552
00	5.00p_332

86 group 11904

hypothetical protein Glutamate/aspartate import solutebinding protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein;Type I restriction enzyme EcoKI M protein hypothetical protein Endoribonuclease HigB hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein Crotonyl-CoA reductase;Narbonolide/10deoxymethynolide synthase PikA2 modules 3 and 4 hypothetical protein hypothetical protein;3-oxoacyl-[acyl-carrier-protein] reductase FabG hypothetical protein ATP-dependent zinc metalloprotease FtsH hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein

hypothetical protein hypothetical protein

hypothetical protein

```
86 group_11633
86 epsE~~~hxcR 2
                                        HxcR
86 epsG~~~xcpT_3~~~xcpT_1~~~xcpT_2
86 group 53
   sctC 6~~~sctC 7~~~sctC 4~~~sctC 5~~~s
86 ctC 8~~~sctC_2~~~sctC_1
86 xcpT 3~~~xcpT 5~~~xcpT 2~~~xcpT 4
86 epsF 5~~~epsF 4~~~epsF 3
85 dnaK_2~~~dnaK_1~~~dnaK_3~~~dnaK_4
85 group 2615
85 group 10361
85 groS
85 groL_2~~~groL_3
85 cynT
85 group_4330
85
   group_2678
85 phrA 2~~~phrA
85 group 10900
85 group 10362
85 group 3335
85 group 3306
84 group 1833
84
   group 1593
83 group 2105
83 group 2147
82 casD
82 group 11499
82 casC
                                        CasC
82 ygbT~~~ygbF~~~cas1
82 group 10999
82 casA
82 ygcB
81 group_9073
```

hypothetical protein hypothetical protein;Type II secretion system protein E; putative type II secretion system protein Type II secretion system protein G;hypothetical protein hypothetical protein Type 3 secretion system secretin; hypothetical protein Type II secretion system protein G;hypothetical protein Type II secretion system protein F Chaperone protein DnaK hypothetical protein hypothetical protein 10 kDa chaperonin 60 kDa chaperonin Carbonic anhydrase 1 hypothetical protein hypothetical protein Deoxyribodipyrimidine photo-lyase hypothetical protein **CRISPR** system Cascade subunit CasD; hypothetical protein hypothetical protein CRISPR system Cascade subunit **CRISPR-associated endonuclease** Cas1;CRISPR-associated endoribonuclease Cas2 hypothetical protein hypothetical protein;CRISPR system Cascade subunit CasA **CRISPR-associated** endonuclease/helicase Cas3; hypothetical protein hypothetical protein

01	group 6904	hypothetical protein
81	group_6894	hypothetical protein IS3 family transposase IS1416;IS3
80	group 2629	family transposase IS401
00	8.04 <u>p</u> _2023	IS3 family transposace ISBt3;IS3
80	group_2620	family transposase IS401
79	group_7003	hypothetical protein
79	group_9162	hypothetical protein
78	group 9644	hypothetical protein
78	group_10520	hypothetical protein
77	group_1839	hypothetical protein
77	group_2837	DNA-binding protein Bv3F
76	group_1836	hypothetical protein
76	group_3729	hypothetical protein
76	group_7310	hypothetical protein
75	group_2855	hypothetical protein
75	group_1076	hypothetical protein
74	group_10035	hypothetical protein
74	group_10498	hypothetical protein
		Enoyl-[acyl-carrier-protein]
74	fabl_1~~~fabl_2	reductase [NADH] Fabl
74	ackA	Acetate kinase
74	pta	Phosphate acetyltransferase
74	group_3756	hypothetical protein
74	group_3156	hypothetical protein
74	group_9584	hypothetical protein
74	group_2115	hypothetical protein
74	group_11506	hypothetical protein
74	group_10199	hypothetical protein
74	group_9022	hypothetical protein
74	yecD~~~yecD_2~~~yecD_1	Isochorismatase family protein YecD
		hypothetical protein;Nodulation
74	nopX	outer protein X
74	group_1766	hypothetical protein
		putative transporter
74	yycB~~~nimT	YycB;hypothetical protein;2- nitroimidazole transporter
74	group_9765	hypothetical protein
74	group_7240	hypothetical protein
74	group_7239	hypothetical protein
74	group 2706	hypothetical protein
/ 7	P.oah_2100	HTH-type transcriptional activator
		CmpR;hypothetical protein;HTH-
74	cmpR_1~~~cmpR_3~~~cmpR_2~~~hdfR_1	type transcriptional regulator HdfR
74	group_7567	Outer membrane protein TolC
		·

```
74 group 691
                                             hypothetical protein
74 group 290
                                             hypothetical protein
74 group 262
                                             hypothetical protein
74 group 81
                                             putative glycosyltransferase
74 group 11917
                                             hypothetical protein
                                             putative FMNH2-dependent
                                             monooxygenase SfnC;hypothetical
74 sfnC
                                             protein
74 group 11049
                                             hypothetical protein
74 group 11005
                                             hypothetical protein
74 argE 2~~~argE 3
                                             Acetylornithine deacetylase
74 group_10386
                                             queuosine precursor transporter
                                             Transcriptional regulatory protein
74 qseB 2~~~qseB 3
                                             QseB
74 phaB 1~~~phaB 2
                                             Acetoacetyl-CoA reductase
74 group_9923
                                             hypothetical protein
                                             Glutarate-semialdehyde
74 davD 2~~~davD 1
                                             dehydrogenase
                                             Adaptive-response sensory-kinase
74 sasA_3~~~sasA_16~~~sasA_5~~~sasA 12
                                             SasA
74 group 9301
                                             hypothetical protein
                                             scyllo-inositol 2-dehydrogenase
74 iolX
                                             (NAD(+))
                                             5-methylphenazine-1-carboxylate 1-
74 phzS
                                             monooxygenase
                                             Alpha-D-ribose 1-
                                             methylphosphonate 5-triphosphate
74 phnM
                                             diphosphatase
74 group 5101
                                             hypothetical protein
                                             Hydrogen peroxide-inducible genes
74 oxyR 2
                                             activator; hypothetical protein
74 group 2196
                                             hypothetical protein
74 group 2100
                                             hypothetical protein
                                             Negative regulator of SacY
74 sacX 2~~~sacX 1~~~sacX
                                             activity; hypothetical protein
                                             hypothetical protein;Sucrose-6-
74 scrB
                                             phosphate hydrolase
74 lamB
                                             Maltoporin; hypothetical protein
74 group_1051
                                             hypothetical protein
74 scrK
                                             Fructokinase
                                             Benzoate 12-dioxygenase electron
                                             transfer component; hypothetical
74 benC
                                             protein
    baiA~~~fabG2~~~ucpA 2~~~ucpA 1~~~ba
                                             hypothetical protein;3-alpha-
                                             hydroxycholanate dehydrogenase
74 cC 1
```

		(NADP(+));putative oxidoreductase;Oxidoreductase UcpA;Dihydroanticapsin 7- dehydrogenase 3-alpha-hydroxycholanate dehydrogenase (NADP(+));3- oxoacyl-[acyl-carrier-protein] reductase FabG;1-deoxy-11-beta- hydroxypentalenate dehydrogenase;hypothetical protein;3-phenylpropionate-
74	baiA~~~fabG_5~~~ptlF~~~hcaB_1~~~baiA _2	dihydrodiol/cinnamic acid- dihydrodiol dehydrogenase hypothetical protein;Arabinose
74	araG_2~~~araG	import ATP-binding protein AraG
74		Cation efflux system protein CusB Tyrosine recombinase
74	xerC_4~~~xerC_7~~~xerC_1~~~xerC_5	XerC;hypothetical protein
74	group_2201	hypothetical protein
		hypothetical protein;IS5 family
		transposase IS1421;Catabolite
74	ccpA_3~~~purR_1~~~ccpA_1	control protein A;HTH-type transcriptional repressor PurR
74	group_1412	hypothetical protein
74	group_576	hypothetical protein
	group_533	hypothetical protein
	group 487	hypothetical protein
74	group 435	hypothetical protein
	5 1_	Cobalt-zinc-cadmium resistance
74	czcA_6~~~czcA_4	protein CzcA
74	group_219	hypothetical protein
		hypothetical protein;Outer
		membrane protein assembly factor
74	bamA_2~~~bamA_1	BamA
74	group_65	hypothetical protein Ribose import ATP-binding protein
74	group_11979	RbsA
74	iolE	Inosose dehydratase
74	thpA	D-threitol-binding protein
74	iolB	5-deoxy-glucuronate isomerase
74	group_11405	hypothetical protein
74	group_11253	hypothetical protein
74	group_10866	hypothetical protein
		Inositol 2-dehydrogenase;Myo-
74	idhA~~~iolG_2	inositol 2-dehydrogenase

74	doxA	Naphthalene 12-dioxygenase system ferredoxin component
74 74		hypothetical protein
/4	group_9984	2-halobenzoate 12-dioxygenase
74	cbdA	large subunit
/ 4	Court	HTH-type transcriptional regulator
74	murR 2~~~murR 1	MurR
74	group 8864	hypothetical protein
74	catA	Catechol 12-dioxygenase
/ -		2-halobenzoate 12-dioxygenase
74	cbdB	small subunit
		Anthranilate 12-dioxygenase system
		ferredoxinNAD(+) reductase
74	andAa	component
74	catB	Muconate cycloisomerase 1
74	catC	Muconolactone Delta-isomerase
		HTH-type transcriptional regulator
74	benM~~~benM_1	BenM
		N-acetyl-gamma-glutamyl-
74	argC_3~~~argC_2~~~argC_1	phosphate reductase
74	group_1972	hypothetical protein
74	group_934	hypothetical protein
74	iolC	5-dehydro-2-deoxygluconokinase
		hypothetical protein;Ribose import
74	rbsC_1~~~rbsC_2	permease protein RbsC
		3D-(35/4)-trihydroxycyclohexane-
74	iolD	12-dione hydrolase
74	group_8239	hypothetical protein
74	group_2619	hypothetical protein
74	group_2583	hypothetical protein
74	group_2082	hypothetical protein
		ABC transporter glutamine-binding
		protein GlnH;Membrane-bound
		lytic murein transglycosylase
74	glnH_2~~~mltF_2~~~glnH_3	F;hypothetical protein
		hypothetical protein; putative
71		glutamine ABC transporter
74	glnM_2	permease protein GlnM Octopine transport system
74	occM	permease protein OccM
/ 4	OCCIVI	Vitamin B12 import ATP-binding
		protein BtuD;Glutamine transport
		ATP-binding protein
		GlnQ;hypothetical protein;L-cystine
74	btuD_9~~~glnQ_5~~~tcyC_2~~~tcyC_1	import ATP-binding protein TcyC
	—	-

		CRP-like cAMP-activated global
		transcriptional regulator;7-carboxy-
74	crp~~~queE_2~~~queE_1	7-deazaguanine synthase
74	group_3624	hypothetical protein
		hypothetical protein;Anaerobic
		ribonucleoside-triphosphate
74	nrdD	reductase
		hypothetical protein;putative
74		nitrate transporter NarT;Nitrate
74	narT~~~nasA_2~~~nasA_1	transporter
74	narG	hypothetical protein;Respiratory nitrate reductase 1 alpha chain
/4		Transcriptional regulatory protein
74	degU	DegU
74	yihG	putative acyltransferase YihG
74	group 3126	hypothetical protein
	0.0.120	HTH-type transcriptional regulator
	argP_2~~~pgrR_3~~~pgrR_4~~~pgrR_2~~~	ArgP;HTH-type transcriptional
74	pgrR_1~~~pgrR_5	regulator PgrR
74	group_11160	hypothetical protein
74	yhbU	putative protease YhbU
74	group_3650	hypothetical protein
74	group_3642	hypothetical protein
74	group_3640	hypothetical protein
74	narK	Nitrate/nitrite transporter NarK
		hypothetical protein;putative
74	group_3325	oxidoreductase
74	group_3119	hypothetical protein
74	group 520	putative protein; hypothetical
74	group_529	protein putative protein;hypothetical
74	group 503	protein
74	group 467	hypothetical protein
		NADP/NAD-dependent aldehyde
		dehydrogenase PuuC;hypothetical
74	puuC~~~puuC_1~~~puuC_2	protein
74	group_10101	hypothetical protein
		4-methylaminobutanoate oxidase
74	abo_1~~~abo_2	(formaldehyde-forming)
		Hydrogen cyanide synthase subunit
74	hcnB_2~~~hcnB	HcnB
7 4	abut Doorabut 1	Glyoxylate/hydroxypyruvate
74 74	ghrA_2~~~ghrA_1	reductase A
74	group_6891	hypothetical protein
74	spuC_2~~~spuC_1~~~spuC	Putrescinepyruvate aminotransferase
/ 4	spac_z spac_z spac	

74	lrp_5
74	narH
	group_3544
	0
74	narl
74	mobB_2
74	narX
74	group_953
74	group_623
74	hipO_3~~~hipO_1
74	
	group_228
74	group_10541
	glpE_3~~~glpE_2~~~glpE_1
	metC_2~~~metC_3~~~metC_1
74	 group_3028
	sgrR
74	puuB_2~~~puuB_3
74	
74	
74	group_1961
74	gsiA_2
	group_251
74	gsiC_3~~~gsiC_2
74	infA_2~~~infA_3
74	aspC_3~~~aspC_2
74	bacC_2~~~gdh
74	cefD_2~~~cefD
	 group_3328
	TDO2_1~~~TDO2_2~~~TDO2
74	group_3105

Leucine-responsive regulatory protein Respiratory nitrate reductase 1 beta chain hypothetical protein Respiratory nitrate reductase 1 gamma chain Molybdopterin-guanine dinucleotide biosynthesis adapter protein Nitrate/nitrite sensor protein NarX hypothetical protein hypothetical protein hypothetical protein;Hippurate hydrolase hypothetical protein hypothetical protein hypothetical protein Thiosulfate sulfurtransferase GIpE Cystathionine beta-lyase hypothetical protein hypothetical protein;HTH-type transcriptional regulator SgrR Gamma-glutamylputrescine oxidoreductase hypothetical protein Proline/betaine transporter; hypothetical protein hypothetical protein Glutathione import ATP-binding protein GsiA hypothetical protein Glutathione transport system permease protein GsiC Translation initiation factor IF-1 Aspartate aminotransferase;hypothetical protein Dihydroanticapsin 7dehydrogenase;Galactitol 2dehydrogenase Isopenicillin N epimerase hypothetical protein Tryptophan 23-dioxygenase hypothetical protein

74	group_183	hypothetical protein	
74	group_2701	hypothetical protein	
	9.04p701	Glycerol-3-phosphate regulon	
		repressor; hypothetical protein; HTH-	
74	glpR_1~~~glcR	type transcriptional repressor GlcR	
		3-oxoacyl-[acyl-carrier-protein]	
		reductase FabG1;3-oxoacyl-[acyl-	
74	fabG1~~~fabG_8	carrier-protein] reductase FabG	
		Phosphatidylserine decarboxylase	
74	psd_2~~~psd_1	proenzyme	
74	group_602	hypothetical protein	
74	cdhR~~~cdhR_2	HTH-type transcriptional regulator CdhR	
74	group_11852	hypothetical protein	
74	group 3159	hypothetical protein	
74 74	group 10883	hypothetical protein	
74	dmlR_17~~~dmlR_4~~~dmlR_6~~~dmlR_3	HTH-type transcriptional regulator	
74	~~~dmlR 9	DmlR	
		Drug efflux pump JefA;Multidrug	
74	jefA_2~~~stp~~~jefA	resistance protein Stp	
74	group_9649	hypothetical protein	
74	group_7045	hypothetical protein	
74	group_1446	hypothetical protein	
74	group_597	hypothetical protein	
74	group_2157	hypothetical protein	
74	group_3535	hypothetical protein	
74	tam_1~~~tam_2	Trans-aconitate 2-methyltransferase	
74	group_3421	hypothetical protein	
74	group_1624	hypothetical protein	
74	group_1080	hypothetical protein	
74	group_2780	hypothetical protein	
74	group_1711	hypothetical protein	
74	group_1668	hypothetical protein	
74	group_1343	hypothetical protein	
74	group_10522	hypothetical protein	
		N-acetylmuramoyl-L-alanine	
74	amiD	amidase AmiD;hypothetical protein	
74	group_2848	hypothetical protein	
74	1	D-serine/D-alanine/glycine	
74	cycA	transporter; hypothetical protein	
74	group_2690	hypothetical protein	
74 74	group_1399	hypothetical protein	
74	group_10725	hypothetical protein Glycine cleavage system	
74	gcvA_2~~~gcvA_1~~~gcvA_4~~~gcvA_3	transcriptional activator	
/ -1	2011,75 2011,71 2014_1 2014_3		

74	group_9148
74	argO_2~~~argO_1
74	group_8039
74	group_7417
74	yafQ
74	dapA_1~~~dapA_5
74	adh1~~~adhB
74	pdxA_2~~~pdxA_1
74	putP_2~~~putP_1
74	
74	kimA
74	group_2175
74	group_12038
74	group_11460

- 74 tsaR~~~argP_2~~~cynR_4
 74 group_10661
 74 group_10185
 74 group_10039
 74 dapA 2~~~dapA 4~~~dapA 1
- 74 group_8327
- 74 cmpR_3~~~cmpR_2
- 74 nox~~~drgA~~~rutE_2
- 74 ilvE_2
- 74 dmlR_12~~~dmlR_11
 74 group_7070
 74 group_6217
 74 kynB 1~~~kynB 2
- 74 sasA_14~~~sasA_13~~~sasA_12 74 group 9931

hypothetical protein Arginine exporter protein ArgO Inner membrane protein YbiR hypothetical protein hypothetical protein;mRNA interferase toxin YafQ 4-hydroxy-tetrahydrodipicolinate synthase Long-chain-alcohol dehydrogenase 1;Alcohol dehydrogenase 2 4-hydroxythreonine-4-phosphate dehydrogenase High-affinity proline transporter PutP;hypothetical protein hypothetical protein hypothetical protein; Potassium transporter KimA hypothetical protein hypothetical protein hypothetical protein HTH-type transcriptional regulator TsaR;HTH-type transcriptional regulator ArgP;hypothetical protein;HTH-type transcriptional regulator CynR hypothetical protein hypothetical protein hypothetical protein 4-hydroxy-tetrahydrodipicolinate synthase hypothetical protein hypothetical protein;HTH-type transcriptional activator CmpR NADH dehydrogenase;Protein DrgA; hypothetical protein; malonic semialdehyde reductase RutE Branched-chain-amino-acid aminotransferase HTH-type transcriptional regulator DmIR; hypothetical protein hypothetical protein hypothetical protein Kynurenine formamidase Adaptive-response sensory-kinase SasA; hypothetical protein hypothetical protein

74	group_9273	hypothetical protein
74	group_9195	hypothetical protein
74	group_9025	hypothetical protein
74	group_7204	hypothetical protein
74	group_7199	hypothetical protein
74	group_7083	hypothetical protein
74	group_6779	hypothetical protein
74	group_6296	hypothetical protein
74	group_5907	hypothetical protein
74	group_3324	hypothetical protein
74	group_2146	hypothetical protein
74	group_2133	hypothetical protein
		Putative FAD-dependent
74	lodB	oxidoreductase LodB
		putative deoxyribonuclease
	rhsB_1~~~rhsA_2~~~rhsB_2~~~rhsA_1~~~	RhsB;putative deoxyribonuclease
74	rhsB~~~rhsA	RhsA;hypothetical protein
74	group_6334	hypothetical protein
74	group_1577	hypothetical protein
74	group_11656	hypothetical protein
74	group_8865	hypothetical protein
		Methyl-accepting chemotaxis
74	tar_2	protein II;hypothetical protein
74	group_6558	hypothetical protein
74		Aconitate/2-methylaconitate
74	citB	hydratase
74	mdtC_4~~~mdtC_5~~~mdtC_2	Multidrug resistance protein MdtC
		Multidrug resistance protein MdtA;Toluene efflux pump
74	mdtA 7~~~mdtA 3~~~ttgA	periplasmic linker protein TtgA
74	ddl 2	D-alanineD-alanine ligase
74	group_1772	hypothetical protein
74	group_1263	hypothetical protein
74	group 12041	hypothetical protein
74	group 12000	hypothetical protein
/4	group_12000	Hemin import ATP-binding protein
		HmuV;hypothetical protein;Vitamin
		B12 import ATP-binding protein
74	hmuV~~~btuD 5	BtuD
74	_ prpC_2~~~prpC_1	2-methylcitrate synthase
74	group_9849	hypothetical protein
74	group 9196	hypothetical protein
74	group 7167	hypothetical protein
		2-amino-3-ketobutyrate coenzyme
74	group_6709	A ligase

```
74 group_6068
                                             putative epimerase/dehydratase
                                             HTH-type transcriptional regulator
74 sutR 2
                                             SutR
                                             Cobalt-zinc-cadmium resistance
74 czcA 1~~~czcA 2~~~czcA 3
                                             protein CzcA
                                             Multidrug resistance protein
                                             MdtA;Cation efflux system protein
74 mdtA 4~~~mdtA 3~~~cusB 1
                                             CusB
74 oprM_3~~~oprM_2
                                             Outer membrane protein OprM
74 group 1290
                                             hypothetical protein
74 group 1137
                                             hypothetical protein
74 group 753
                                             hypothetical protein
74 group 11849
                                             hypothetical protein
                                             Alcohol
74 adh 1~~~adhT~~~adh 3
                                             dehydrogenase; hypothetical protein
74 group 10671
                                             hypothetical protein
                                             HTH-type transcriptional regulator
74 dmlR 2~~~dmlR 4~~~dmlR 9~~~dmlR 8
                                             DmIR; hypothetical protein
                                             3-alpha-hydroxycholanate
74 baiA~~~baiA 1~~~baiA 3
                                             dehydrogenase (NADP(+))
74 group 8119
                                             hypothetical protein
74 group 8093
                                             hypothetical protein
74 group 7608
                                             hypothetical protein
74 group 5963
                                             hypothetical protein
74 group 5926
                                             hypothetical protein
                                             hypothetical protein;NADP-
                                             dependent alcohol dehydrogenase
74 adhC2
                                             C 2
                                             putative
                                             adenylyltransferase/sulfurtransferas
74 moeZ
                                             e MoeZ
74 mec
                                             CysO-cysteine peptidase
74 cysO 1~~~cysO
                                             Sulfur carrier protein CysO
74 frc 2
                                             Formyl-CoA:oxalate CoA-transferase
74 trsA
                                             Triostin synthetase I
                                             (R)-benzylsuccinyl-CoA
74 bbsG
                                             dehydrogenase
74 group 3587
                                             hypothetical protein
74 group_3586
                                             hypothetical protein
74 group 3513
                                             hypothetical protein
74 btuB 4~~~btuB 2
                                             Vitamin B12 transporter BtuB
74 group 2729
                                             hypothetical protein
                                             Transcriptional regulatory protein
74 creB~~~rssB 2
                                             CreB;Regulator of RpoS
74 group 1148
                                             hypothetical protein
```

```
74 group 873
74 group 11995
74 mdtA 2~~~mdtA 7
74 group 11610
74 group 11448
74 group_9467
74 cpdA 3~~~cpdA 2~~~cpdA 4~~~cpdA 1
                                        CpdA
74 group 1746
74 group 1472
   dmlR 9~~~dmlR 19~~~dmlR 14~~~dmlR
74 4
                                        DmIR
74 yhcG 1~~~yhcG~~~yhcG 2
                                        protein
74 ttuD 2~~~ttuD 1
74 nemA_2~~~nemA_1
74 group 8082
74 group 7545
74 group 7535
74 group_7161
74 azoR
74 group 6287
74 group 6030
74 group 5401
74 group 3648
74 ycgJ
74 group 11955
74 group 10271
74 group 6525
74 group 11080
74 group 9925
74 group_9511
74 dhmA~~~oleB
74 yjiB
74 ptll
```

hypothetical protein hypothetical protein hypothetical protein; Multidrug resistance protein MdtA hypothetical protein Cobalt-zinc-cadmium resistance protein CzcA hypothetical protein 3'5'-cyclic adenosine monophosphate phosphodiesterase hypothetical protein hypothetical protein HTH-type transcriptional regulator Putative nuclease YhcG;hypothetical Putative hydroxypyruvate reductase N-ethylmaleimide reductase hypothetical protein hypothetical protein hypothetical protein hypothetical protein FMN-dependent NADHazoreductase hypothetical protein hypothetical protein hypothetical protein hypothetical protein putative methyltransferase YcgJ;hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein Haloalkane dehalogenase;Cis-3alkyl-4-alkyloxetan-2-one decarboxylase;hypothetical protein Putative cytochrome P450 YjiB;hypothetical protein Putative cytochrome P450 120;Pentalenene oxygenase; hypothetical protein

		Vitamin B12 import system
		permease protein BtuC;Hemin
		transport system permease protein
74	btuC~~~hmuU~~~btuC_2	HmuU
74	group_9763	hypothetical protein
		PCP degradation transcriptional
74	pcpR_6~~~pcpR_5~~~pcpR_7	activation protein
		HTH-type transcriptional regulator
74	gltR_2	GltR
74	group_6206	hypothetical protein
		hypothetical protein;Polyketide
		synthase PksR;Polyketide synthase
	pksR~~~pksM~~~pksM 3~~~pksN~~~pksL	PksM;Polyketide synthase PksN;Polyketide synthase PksL;3-
74	_1~~~fadA_2~~~pksL~~~fadA_3	ketoacyl-CoA thiolase
, -	acpP 4~~~acpP 3~~~acpP 1~~~pksL 1~~	Acyl carrier protein;hypothetical
74	~acpP_2	protein;Polyketide synthase PksL
74	group_513	hypothetical protein
74	group_222	hypothetical protein
	0 1-	3-ketoacyl-CoA thiolase FadI;3-
74	fadl	ketoacyl-CoA thiolase
		hypothetical protein;Non-
74	ku	homologous end joining protein Ku
		Polyketide synthase PksL;Polyketide
		synthase PksN;Polyketide synthase
74	pksL~~~pksL_2~~~pksN~~~pksJ~~~pksR	PksJ;Polyketide synthase PksR
74		hypothetical protein;Polyketide
74	baeD	biosynthesis acyltransferase BaeD
74	group_12009	hypothetical protein
74	higB	hypothetical protein;mRNA interferase HigB
74	Tiigb	Chromate transport
74	chrA1 2~~~chrA1 1	protein;hypothetical protein
74	group_6819	hypothetical protein
74	group 5797	hypothetical protein
<i>.</i> 74	group 1823	hypothetical protein
74	group_10270	hypothetical protein
74	group 8166	hypothetical protein
74	group_7990	hypothetical protein
<i>.</i> 74	group 7925	hypothetical protein
	8. ouh ⁻ , and	Multifunctional non-homologous
74	ligD_2~~~ligD_1~~~ligD	end joining protein LigD
74	group_3739	hypothetical protein
74	group_2178	hypothetical protein
74	group_1479	hypothetical protein
74	group_11857	hypothetical protein

74	group_10446	hypotheti
74	rtcD 1	hypotheti
/4	rtcB_1	ligase Rtcl Cardiolipiı
74	group_8397	protein;Ca
	0.004-0001	Intermem
74	pqiB_2~~~pqiB_3	PqiB
74	group_7824	hypotheti
74	group_7561	hypotheti
74	group_5796	hypotheti
74	group_4421	hypotheti
74	group_3873	hypotheti
		tRNA 5-ca
		methyltra
74	cmoM~~~cmoM_1	protein
		2-methox
		benzoquir
74	COQ5_3~~~COQ5_2~~~COQ5_1	mitochon
74	group_2937	hypotheti
74	group_2348	hypotheti
74	fliY_1~~~fliY_3	L-cystine-l
		putative g
74	glnM_1~~~glnM_3~~~glnM_2	permease
74	metXA_2~~~metXA_1	Homoseri
74	group_9914	hypotheti
74	group_9468	hypotheti
74	group_9444	hypotheti
74	group_8991	hypotheti
74	group_8028	hypotheti
		NAD(P) tra
74	pntB_2	beta
		hypotheti transcript
74	metR 2~~~argP 2	type trans
74	group_5951	hypotheti
74	group 401	hypotheti
74	group_47	hypotheti
74	group_9244	hypotheti
74 74	group_6309	hypotheti
74 74	group_5891	hypotheti
74 74	group_1628	hypotheti
74 74		
74 74	group_663	hypotheti hypotheti
74 74	group_9858 group_9101	hypotheti
74 74		
/4	group_6587	hypotheti

cal protein cal protein;RNA-splicing В n synthase;hypothetical ardiolipin synthase B brane transport protein cal protein cal protein cal protein cal protein cal protein irboxymethoxyuridine nsferase;hypothetical y-6-polyprenyl-14nol methylase drial cal protein cal protein binding protein FliY lutamine ABC transporter protein GlnM ne O-acetyltransferase cal protein cal protein cal protein cal protein cal protein anshydrogenase subunit cal protein;HTH-type ional regulator MetR;HTHscriptional regulator ArgP cal protein cal protein

- rhaS_3~~~rhaS_2~~~rhaS_4
 group_9878
 group_9528
 group_8100
 group_7789
 group_6902
 group_4957
 group_2557
 licC
 group_10697
 group_3282
 group_3003
- 74 sadH~~~hcaB 2 74 group 9830 74 group 8343 74 group 2835 74 sigJ 74 group 10972 74 group 10847 74 group 9416 74 group 9393 74 group 9387 74 group 8730 74 group 8167 74 group 7689 74 group_7268 74 group 7262 74 decR 4~~~lrp 4 74 dhaA~~~dhaA 1 74 group 6423 74 group 6293 74 phnX
- 74 group_5814

HTH-type transcriptional activator RhaS; hypothetical protein hypothetical protein; IS5 family transposase ISAzo11 hypothetical protein;Lichenan permease IIC component hypothetical protein hypothetical protein hypothetical protein hypothetical protein; Putative oxidoreductase SadH;3phenylpropionatedihydrodiol/cinnamic aciddihydrodiol dehydrogenase; Baeyer-Villiger monooxygenase hypothetical protein hypothetical protein hypothetical protein ECF RNA polymerase sigma factor SigJ hypothetical protein DNA-binding transcriptional activator DecR;Leucine-responsive regulatory protein Haloalkane dehalogenase hypothetical protein hypothetical protein;Leucine efflux protein Phosphonoacetaldehyde hydrolase hypothetical protein

		HTH-type transcriptional regulator
74	hdfR 3~~~hdfR 4	HdfR
74	group_4494	hypothetical protein
74	group 4115	hypothetical protein
74	group 1727	hypothetical protein
74	group 10341	hypothetical protein
74	group_10299	hypothetical protein
74	group 8420	hypothetical protein
74	group 8189	hypothetical protein
	0	hypothetical protein;Putative
74	group_7278	thymidine phosphorylase
74	group_6271	hypothetical protein
74	group_5920	hypothetical protein
74	maoA~~~tynA	Primary amine oxidase
		6-hydroxy-3-succinoylpyridine 3-
		monooxygenase HspA;hypothetical
74	nicB	protein
74	group_4465	hypothetical protein
74	group_858	hypothetical protein
74	group_12043	hypothetical protein
74	group_12042	hypothetical protein
		2-keto-4-carboxy-3-hexenedioate
74	ligJ_2~~~ligJ_1~~~ligJ	hydratase
		4-hydroxy-4-methyl-2-oxoglutarate
74	proA 2	aldolase/4-carboxy-4-hydroxy-2- oxoadipate aldolase
74 74	group 11387	hypothetical protein
74	group_11387 group_10327	hypothetical protein
/4	group_10327	hypothetical protein;2-
	yabJ 2~~~yabJ 4~~~yabJ 5~~~yabJ 1~~~	iminobutanoate/2-iminopropanoate
74	yabJ 3	deaminase
		RNA polymerase-binding
74	dksA_2~~~dksA_1	transcription factor DksA
74	group_8048	hypothetical protein
74	group_6377	hypothetical protein
74	group_6215	hypothetical protein
74	group_5799	hypothetical protein
74	group_5328	hypothetical protein
74	group_3534	hypothetical protein
74	group_1859	hypothetical protein
74	group_619	hypothetical protein
		HTH-type transcriptional regulator
74	hdfR_4~~~hdfR_3	HdfR
	1	(4E)-oxalomesaconate Delta-
74	ligU	isomerase

```
74 group 11449
74 aqpZ 2~~~aqpZ~~~aqpZ 1
74 group 3121
74 group 2659
74 group 2604
74 group 1640
74 mhpB
74 group 10524
74 group 10409
74 nodD2 2
74 group 8745
74 group 8354
74 group 8353
74 group 8277
74 group 7680
74 group 6968
74 group 6478
74 group 6477
74 group 6248
74 arsC 3~~~arsC 2~~~arsC
74 cadl~~~cadl 1
74 group 3677
74 group 3125
74
   group 2738
74 group 7
74 group_11876
74 uppP 2
74 group 2853
74 group_905
74 group 9720
74 group 8094
74 group_7902
74
   group 5986
74 group 5909
74 group 4273
74 group_3649
74 mdtA 1
74 group_1301
74 group 1010
74 group 465
74 group 425
```

hypothetical protein Aquaporin Z hypothetical protein hypothetical protein hypothetical protein hypothetical protein 23-dihydroxyphenylpropionate/23dihydroxicinnamic acid 12dioxygenase hypothetical protein hypothetical protein Nodulation protein D 2 hypothetical protein Arsenate reductase Cadmium-induced protein Cadl hypothetical protein hypothetical protein hypothetical protein hypothetical protein; Putative antitoxin VapB45 hypothetical protein Undecaprenyl-diphosphatase hypothetical protein Multidrug resistance protein MdtA hypothetical protein hypothetical protein hypothetical protein hypothetical protein

74	dadA_1~~~dadA_4~~~dadA_3	D-amino acid dehydrogenase
74	group_10834	hypothetical protein
		HTH-type transcriptional activator
74	group_10462	CmpR
74	group_10370	hypothetical protein
		Phospholipase C 2; hypothetical
74	plcB~~~plcC	protein;Phospholipase C 3
74	group_9847	hypothetical protein
74	group_9567	hypothetical protein
74	group_9392	hypothetical protein
74	group_8812	hypothetical protein
		dTDP-3-amino-346-trideoxy-alpha-
74	desVI	D-glucopyranose
74	group_7781	hypothetical protein
74	group_7528	hypothetical protein
74	group_7480	hypothetical protein
74	group_7364	hypothetical protein
74	group_7269	hypothetical protein
74	group_7236	hypothetical protein
74	group_7234	hypothetical protein
74	group_7214	hypothetical protein
74	group_6882	hypothetical protein
		hypothetical protein;IS5 family
74	group_6562	transposase IS1421
74	group_6507	hypothetical protein
74	group_6506	hypothetical protein
74	group_5989	hypothetical protein
74	group_4707	hypothetical protein
74	group_4077	hypothetical protein
74	group_3894	hypothetical protein
74	group_3479	hypothetical protein
74	cdiA	hypothetical protein;Toxin CdiA
		IS3 family transposase ISRso10;IS3
74	group_2640	family transposase ISButh1
74	group_2636	hypothetical protein
74	group_2035	hypothetical protein
74	inhA_2	Isonitrile hydratase
74	group_937	hypothetical protein
		D-amino acid dehydrogenase 1;D-
		amino acid dehydrogenase;Glycine
74	dadA1_2~~~dadA_3~~~thiO	oxidase
		2-iminobutanoate/2-
74	ucht Freezencht 4	iminopropanoate
74	yabJ_5~~~yabJ_4	deaminase;hypothetical protein

74 aam Acylamidase Proline/betaine transporter; Glycine betaine/proline/ectoine/pipecolic 74 proP 4~~~ousA~~~proP 5 acid transporter OusA hypothetical protein 74 group_562 74 group_470 hypothetical protein 74 group 6853 hypothetical protein 74 group 6135 hypothetical protein 74 arsC 2~~~arsC 1 Arsenate reductase 74 group 3498 hypothetical protein 74 group 3483 hypothetical protein 74 group_3072 hypothetical protein 74 group 1962 hypothetical protein 74 group 1888 hypothetical protein hypothetical protein 74 group 1723 74 group 1387 hypothetical protein 74 group_1103 hypothetical protein 74 group 255 hypothetical protein 74 group 11323 hypothetical protein 74 group 10832 hypothetical protein 74 group 10194 hypothetical protein 74 group 10093 hypothetical protein 74 group 9831 hypothetical protein 74 group 9429 hypothetical protein Putative universal stress protein 74 group 9183 74 group 7991 hypothetical protein D-malate dehydrogenase 74 dmlA~~~dmlA 1~~~dmlA 3 [decarboxylating] 74 group_6825 hypothetical protein 74 group 6824 hypothetical protein 74 group 6802 hypothetical protein 74 group_5935 hypothetical protein 74 group 4444 hypothetical protein 74 group 4344 hypothetical protein 74 aioA Arsenite oxidase subunit AioA 74 aioB Arsenite oxidase subunit AioB Tyrosine recombinase XerC;Tyrosine 74 xerC 7~~~xerC 1~~~xerD 2~~~xerC 5 recombinase XerD 74 group_2176 hypothetical protein 74 group_2137 hypothetical protein 74 group 10971 hypothetical protein 74 group 10585 hypothetical protein hypothetical protein 74 group 10340 74 group 10005 hypothetical protein

74	group_7746
74	group_6399
74	group_5956
74	group_3371
74	group_2821
74	group_2032
74	group_1509
74	group_10902
74	group_10159
74	group_9775
74	group_9730
74	group_9307
74	group_7683
74	group_7672
74	group_7408
74	group_7267
74	group_7228
74	group_7227
74	group_6781
74	group_5127
74	group_4948
74	group_3855
74	group_3647
74	group_3300
74	group_3292
74	group_3234
74	group_2746
74	group_1994
74	group_1481
74	group_235
74	group_67
74	group_45
74	group_11261
74	group_10726
74	group_10090
74	sbnD_1
74	group_9313
74	group_8935
74	group_7595
74	group_7560
74	group_7231
74	group_7151
74	group_7054

hypothetical protein Putative phosphoribosyl transferase hypothetical protein hypothetical protein Staphyloferrin B transporter hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein

74	oprM 7~~~oprM 1	Outer membrane protein OprM
74	group_6164	hypothetical protein
74	group_5850	hypothetical protein
	0.000	ABC transporter ATP-binding
74	ytrE 1	protein YtrE
		hypothetical protein;Malonyl CoA-
74	fabD_2	acyl carrier protein transacylase
		Malonyl-S-ACP:biotin-protein
		carboxyltransferase
74	madD	MADD;hypothetical protein
		hypothetical protein;Acetyl-
		coenzyme A carboxylase carboxyl transferase subunit beta
74	accD 2	chloroplastic
74 74	group_2924	hypothetical protein
74 74	group 2906	hypothetical protein
/4	group_2300	2-(5"-triphosphoribosyl)-3'-
74	mdcB~~~citG	dephosphocoenzyme-A synthase
		hypothetical protein;Universal
74	group_2693	stress protein
74	group_2566	hypothetical protein
74	group_1650	hypothetical protein
74	group_11272	hypothetical protein
74	group_8150	hypothetical protein
74	group_8145	hypothetical protein
74	group_6196	hypothetical protein
74	group_5019	hypothetical protein
		Purine ribonucleoside efflux pump
74	nepl~~~nepl_2	Nepl
74	group_3514	hypothetical protein
74	group_3216	hypothetical protein
74	kdpB_1	Potassium-transporting ATPase ATP- binding subunit
74 74	group_2915	hypothetical protein
74	group_2774	hypothetical protein
74	group_2774	hypothetical protein
74	fatA 1	Ferric-anguibactin receptor FatA
74	group_2312	hypothetical protein
74	group_2173	hypothetical protein
74	group 1971	hypothetical protein
74	group_603	hypothetical protein
74	group_10956	hypothetical protein
74	group 10307	hypothetical protein
	<u>-</u>	Membrane-bound lytic murein
74	mltF_2~~~mltF_1	transglycosylase F

Replication-associated recombination protein A hypothetical protein;HTH-type transcriptional repressor RspR hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein Isochorismatase family protein YecD Mycocerosic acid synthase-like polyketide synthase; hypothetical protein Serine recombinase PinR hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein DNA-binding protein HU-beta; DNAbinding protein HU hypothetical protein IS5 family transposase ISAzo23 hypothetical protein

74	group_9105
74	group_7690
74	group_7309
74	group_7308
74	group_6904
74	group_6903
74	group_6832
74	group_6004
74	cynR_4~~~cynR_3
74	group_5835
74	group_4624
74	group_4232
74	group_3486
74	group_3334
74	group_3333
74	group_2955
74	group_2777
74	group_2092
74	group_2052
74	group_2044
74	group_1965
74	group_1908
74	group_1661
74	group_1660
74	group_1618
74	group_1587
74	group_1234
74	group_1159
74	group_1122
74	cbbZC_1~~~gph_1~~~cbbZC_2
74	group_755
74	group_11478
74	group_10109
74	group_9729
74	group_7614
74	group_904
74	group_10091
74	group_10080
74	group_10079
74	group_9844

hypothetical protein HTH-type transcriptional regulator CynR; hypothetical protein Phosphoglycolate phosphatase chromosomal;Phosphoglycolate phosphatase; hypothetical protein hypothetical protein IS3 family transposase ISRso20 IS5 family transposase ISAzo23 hypothetical protein IS5 family transposase ISAzo23 hypothetical protein IS5 family transposase IS1021 IS5 family transposase IS1021 IS5 family transposase IS1021 hypothetical protein

		hypothetical protein;IS3 family
74	group_6748	transposase ISRso20
74	group 6198	hypothetical protein
74	group 5453	hypothetical protein
74	group 3174	hypothetical protein
74	group 1533	IS5 family transposase IS1021
74	mbtH~~~mbtH 1	Protein MbtH
74		Multidrug resistance protein MdtK
74	group 10108	IS5 family transposase ISAzo23
74	group_10076	IS5 family transposase IS1021
74	group_9310	hypothetical protein
74	egl_2~~~egl	Endoglucanase
74	group_4301	hypothetical protein
74	group_2925	IS3 family transposase ISRso10
73	group_1607	hypothetical protein
73	group_1096	hypothetical protein
72	group_617	hypothetical protein
72	group_606	hypothetical protein
71	group_3474	hypothetical protein
71	group_2849	hypothetical protein
71	group_2700	hypothetical protein
71	group_2598	hypothetical protein
		hypothetical protein;Type IV
71	group_2597	secretion system protein virB10
71	group_2517	hypothetical protein
71	group_12031	hypothetical protein
71	group_12028	hypothetical protein
74		Conjugal transfer protein
71 71	traG	TraG;hypothetical protein
71	group_3601	hypothetical protein
71	group_3600	hypothetical protein
71	virB4~~~virB4 2~~~virB4 1	Type IV secretion system protein virB4
, 1		Hca operon transcriptional activator
		HcaR;HTH-type transcriptional
	hcaR~~~hdfR_3~~~hdfR_2~~~benM_1~~~	regulator HdfR;HTH-type
71	hdfR_1~~~benM_3	transcriptional regulator BenM
71	group_2331	hypothetical protein
70	group_1656	hypothetical protein
70	group_1654	hypothetical protein
70	intA_2	Prophage integrase IntA
70	group_2382	hypothetical protein
70	group_1416	hypothetical protein

```
hypothetical protein; Actin cross-
70 group 7362
                                             linking toxin VgrG1
70 group 7004
                                             hypothetical protein
70 group 7248
                                             hypothetical protein
70 group 1345
                                             hypothetical protein
70 group 1673
                                             hypothetical protein
70 group_7709
                                             hypothetical protein
70 group 2916
                                             hypothetical protein
70 group 7249
                                             hypothetical protein
70 group_7197
                                             hypothetical protein
70 group 6854
                                             hypothetical protein
70 group 4314
                                             hypothetical protein
70 group 4117
                                             hypothetical protein
70
   group 342
                                             hypothetical protein
69 group_9325
                                             hypothetical protein
69 group 7294
                                             hypothetical protein
68 group 7628
                                             hypothetical protein
68 group 7457
                                             Cvanate hydratase
68 triA 1
                                             Melamine deaminase
68 group_3819
                                             hypothetical protein
                                             Histidinol-phosphate
                                             aminotransferase
68 hisC 4
67 group_5967
                                             hypothetical protein
67
   group 10768
                                             hypothetical protein
67 group 7849
                                             Tyrosine recombinase XerC
66 group 1560
                                             hypothetical protein
66 group_1134
                                             hypothetical protein
65 group 11259
                                             hypothetical protein
                                             Prophage integrase IntS; Prophage
65 intS~~~intS 2~~~intS 1~~~intA 3~~~intA
                                             integrase IntA
65 group 10591
                                             hypothetical protein
65 group 1629
                                             hypothetical protein
64 group 1281
                                             hypothetical protein
                                             Hemolysin transporter protein
64 shlB_1~~~shlB_7~~~shlB_3
                                             ShlB;hypothetical protein
                                             HTH-type transcriptional regulator
63 group 9875
                                             DmIR
63 novR_1~~~novR_2
                                             Decarboxylase NovR
                                             Putative metabolite transport
63 nicT 2
                                             protein NicT
62 group 1883
                                             hypothetical protein
62 group 1881
                                             hypothetical protein
62 group 1719
                                             hypothetical protein
62 group_1389
                                             hypothetical protein
```

62	group_1360
62	group_10417
62	group_2089
62	group_2060
62	group_2023
62	group_2022
62	group_1979
62	group_1977
62	group_10864
62	group_1970
62	group_1969
62	group_1866
62	group_1694
62	group_1323
62	group_9879
62	group_9802
62	group_9353
62	group_9176
62	group_9038
62	group_9033
62	group_8345
62	group_7850
62	group_7387
62	group_7257
62	group_7028
62	group_6803
62	group_6789
62	group_6241
62	group_5440
62	group_3981
62	group_2572
62	group_9298
61	group_12049
61	group_7610
61	group_3670
60	group_1769
60	group_1635
59	group_2283
59	group_2355
58	group_3476
58	group_1293
58	group_801
58	group_2451

hypothetical protein hypothetical protein

58	group_2851	hypothetical protein
58	group_806	hypothetical protein
50	8.04 <u>7</u> _000	hypothetical protein;IS3 family
57	group_3015	transposase ISAisp2
57	group_1615	IS3 family transposase ISAisp2
56	group 11761	hypothetical protein
56	group_11431	hypothetical protein
56	group 11426	hypothetical protein
56	group 10904	hypothetical protein
	0 F	putative parvulin-type peptidyl-
		prolyl cis-trans
		isomerase; hypothetical
55	prsA_2	protein;Foldase protein PrsA
55	group_1315	hypothetical protein
54	group_2857	hypothetical protein
54	group_1151	hypothetical protein
54	group_7463	hypothetical protein
53	group_2291	hypothetical protein
53	group_2958	hypothetical protein
53	group_2957	hypothetical protein
53	group_2304	hypothetical protein
52	group_3426	hypothetical protein
52	group_3422	hypothetical protein
51	group_2895	hypothetical protein
51	group_10066	hypothetical protein
		hypothetical protein;All-trans-zeta-
50	group_10001	carotene desaturase
50	group_9630	hypothetical protein
- 0	0000	Isatin hydrolase;hypothetical
50	group_8922	protein Sturano monocurranos
50	styA	Styrene monooxygenase StyA;hypothetical protein
50	StyA	hypothetical protein;HTH-type
		transcriptional activator
		RhaS;Regulatory protein
50	rhaS 1~~~pchR~~~feaR	PchR;Transcriptional activator FeaR
50	ntaB	FMN reductase (NADH) NtaB
50	group_9629	hypothetical protein
50	group 8088	hypothetical protein
50	yisK	putative protein YisK
50	maiA_1~~~maiA_2~~~maiA	Maleate isomerase
	—	Salicyloyl-CoA 5-hydroxylase;NADPH
50	sdgC~~~namA_1~~~namA_2	dehydrogenase
50	group_6637	hypothetical protein
50	group_6636	hypothetical protein

50	nitA	Aliphatic nitrilase;hypothetical protein
		14-dihydroxy-2-naphthoyl-CoA
50	group_5880	hydrolase
50	sdgD_2~~~sdgD_1	Gentisate 12-dioxygenase
49	group_10861	hypothetical protein
49	group_2839	hypothetical protein
48	group_10420	hypothetical protein
48	group_10400	IS3 family transposase ISAisp2
47	group_3445	hypothetical protein
47	group_1287	hypothetical protein
46	group_2979	hypothetical protein
46	group_9524	Putative defective protein IntQ
45	group_9243	hypothetical protein
45	group_9242	hypothetical protein
45	group_8917	hypothetical protein
45	group_9999	hypothetical protein
44	group_1691	hypothetical protein
		hypothetical protein;Secretory
		immunoglobulin A-binding protein
44	esiB	EsiB
43	group_11495	hypothetical protein
		Putative prophage major tail sheath
43	gpFI~~~gpFI_2~~~gpFI_1~~~gpFI_3	protein
43	group_1487	hypothetical protein
43	group_123	hypothetical protein
		Putative transposase InsK for
40	anoun 2427	insertion sequence element
42	group_2437	IS150;IS3 family transposase ISAisp2
42	group_2392	hypothetical protein;IS3 family transposase ISAisp2
42	group_2392	hypothetical protein;Tyrosine
41	xerC_5~~~xerC_3~~~xerC_7	recombinase XerC
		Tn3 family transposase
41	group_5769	ISPa43;hypothetical protein
40	group_3764	hypothetical protein
40	group_3767	hypothetical protein
		hypothetical protein;D-alanineD-
39	dltA_2~~~dltA_1~~~dltA_3	alanyl carrier protein ligase
39	group_2425	hypothetical protein
		HTH-type transcriptional activator
39	rhaR_1~~~rhaR_3	RhaR
		Acyl carrier protein;hypothetical
20		protein;Phthiocerol synthesis
39	acpP_1~~~acpP_2~~~ppsE~~~ppsE_1	polyketide synthase type I PpsE

		putative ABC transporter ATP-
		binding protein;Iron import ATP-
39	irtA	binding/permease protein IrtA
		Vitamin B12 import ATP-binding
39	btuD_3~~~btuD_1~~~btuD_5	protein BtuD
20		Pesticin receptor;hypothetical
39	fyuA	protein
		Acetyl-coenzyme A synthetase;4- hydroxyphenylalkanoate
		adenylyltransferase;6-
		deoxyerythronolide-B synthase
		EryA2 modules 3 and 4;D-alanine
		D-alanyl carrier protein
		ligase;Phenolphthiocerol synthesis
		polyketide synthase type I
	acs~~~eryA~~~dltA_1~~~dltA_2~~~dltA_4	Pks15/1;hypothetical protein;2-
39	<pre>~~~menE_1~~~acs_2~~~menE_3</pre>	succinylbenzoateCoA ligase
39	group_3012	hypothetical protein
		hypothetical protein;2-methoxy-6-
		polyprenyl-14-benzoquinol
		methylase mitochondrial;4'- phosphopantetheinyl transferase
39	COQ5 2~~~sfp~~~COQ5 1	Sfp
55		N-acetylmuramoyl-L-alanine
39	group 11370	amidase AmiD; hypothetical protein
	0 12	hypothetical protein;Nucleoid
38	noc_1~~~noc_4~~~noc_2	occlusion protein
38	group_3742	hypothetical protein
37	group_3734	hypothetical protein
37	group_2704	hypothetical protein
37	group_2650	hypothetical protein
37	group_2761	hypothetical protein
37	group_1626	hypothetical protein
36	group_11402	hypothetical protein
36	group_1818	hypothetical protein
36	group_11741	hypothetical protein
35	group_55	hypothetical protein
35	group_22	hypothetical protein
34	group_2827	hypothetical protein
34	group_2830	hypothetical protein
34	group_4835	hypothetical protein
33	group_3230	hypothetical protein
33	group_132	hypothetical protein
33	group_2387	hypothetical protein
33	group_599	IS630 family transposase ISCARN39

33	group_11985	hypothetical protein
33	group_11756	hypothetical protein
33	group_11422	hypothetical protein
33	group_407	hypothetical protein
33	group_10389	hypothetical protein
33	group_4318	hypothetical protein
33	group_3457	hypothetical protein
		D-serine/D-alanine/g
33	group_10388	transporter
33	group_8091	hypothetical protein
33	group_6126	hypothetical protein
33	group_10313	hypothetical protein
32	group_3086	hypothetical protein
32	group_4630	hypothetical protein
32	group_1520	hypothetical protein
32	group_1518	hypothetical protein
32	group_4196	hypothetical protein
31	group_2930	hypothetical protein
31	group_12015	hypothetical protein
31	group_11813	hypothetical protein
31	group_11493	hypothetical protein
31	group_10992	hypothetical protein
31	group_10153	hypothetical protein
31	group_10993	hypothetical protein
31	group_10155	hypothetical protein
31	group_405	hypothetical protein
31	group_2568	hypothetical protein
		Putative prophage ma
31	gpFI_1~~~gpFI~~~gpFI_2	protein
		IS3 family transposas
20	2674	family transposase
30	group_2671	ISRso14;hypothetical
30	group_7602	IS3 family transposase family transposase IS4
29	group_1255	hypothetical protein
29	group_12233 group_10213	hypothetical protein
29	group_10215 group_10892	hypothetical protein
28	group_10092 group_10006	hypothetical protein
28	group_10000 group_1829	hypothetical protein
28		hypothetical protein
28 28	group_9342 group_6627	hypothetical protein
28 28		hypothetical protein
28 27	group_1350	hypothetical protein
27	group_152	
21	group_313	hypothetical protein

al protein alanine/glycine al protein ophage major tail sheath ransposase ISAtu5;IS3 posase pothetical protein ransposase ISBam2;IS3 posase IS407 al protein al protein

```
26 intA 1~~~intA~~~intA 2
26 group 2653
26 group_1647
26 group_1645
25 hin 1~~~hin~~~hin 2
25 group_11821
25 group 1447
25 group 10227
25 group_9261
25 group 7173
25 group 7172
25 group 2264
25 group 1243
24 group 296
24 group 11637
23 group 9544
23 group 10428
22 group 3409
22 group 2398
21 group 3215
21 noc_2~~~noc_4~~~noc_3
21 noc 1~~~noc 2~~~noc 3
20 group 10995
20 group 1271
20 group 2964
20 group 1086
20 group 2963
19 group 5966
19 group 3397
19 group 2480
18 group 1009
18 group 1054
18 group_800
17 group_1762
17 group 1526
17 group 852
```

Prophage integrase IntA hypothetical protein hypothetical protein hypothetical protein DNA-invertase hin; hypothetical protein IS3 family transposase IS401; hypothetical protein IS3 family transposase IS401; Putative transposase InsK for insertion sequence element IS150 hypothetical protein Nucleoid occlusion protein; hypothetical protein Nucleoid occlusion protein; hypothetical protein IS66 family transposase IS1313 IS66 family transposase ISAeh1;IS66 family transposase ISPa82; hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein

		Cardializin aunthors D. Cardializin
17	clsB 3	Cardiolipin synthase B;Cardiolipin synthase;hypothetical protein
17	group_845	hypothetical protein
17	group_2862	hypothetical protein
17	group 1672	hypothetical protein
17	group_1643	hypothetical protein
17	group_1525	hypothetical protein
17	group_1270	hypothetical protein
17	group_9198	hypothetical protein
17	group_10795	hypothetical protein
17	group_10190	hypothetical protein
17	group_10131	hypothetical protein
17	group_9905	hypothetical protein
17	group_9904	hypothetical protein
17	group_9130	hypothetical protein
17	group_8475	hypothetical protein
17	group_3280	hypothetical protein
47		hypothetical protein;putative BsuMI
17	ydiP_2~~~ydiP	modification methylase subunit YdiP
17	group_10985	hypothetical protein
17	group_9199	hypothetical protein
17	group_11797	hypothetical protein
17	group_7072	hypothetical protein
16	group_11070	hypothetical protein
16	group_3166	hypothetical protein
15	group_11812	hypothetical protein
15	group_11826	hypothetical protein
15	group_1418	hypothetical protein
		Modification methylase
15	group_11550	DpnIIB;hypothetical protein
15	group_7175	hypothetical protein
15	group_1279	hypothetical protein
45	xerC_1~~~xerC_2~~~xerC_5~~~xerC_10~~	
15	~xerC_3	Tyrosine recombinase XerC
15	group_787	hypothetical protein
15	group_10880	hypothetical protein
15	group_172	hypothetical protein
15	group_2677	hypothetical protein
15	group_500	hypothetical protein
15	group_460	hypothetical protein
15	group_375	hypothetical protein
15	group_315	hypothetical protein
15	group_155	hypothetical protein
15	group_11530	hypothetical protein

15	group_11055
15	group_7174
15	group_870
15	group_266
15	group_9263
15	group_9274
15	group_10332
15	group_8787
15	group_7922
14	smc_2~~~smc_1
14	group_10693
14	group_9792
14	group_8210
14	group_1203
14	group_923
14	group_11314
14	group_8232
13	group_8279
13	group_3461
13	group_6106
13	group_11340
13	group_7413
13	group_7116
13	group_5897
13	group_3398
13	group_174
13	group_7187
13	group_5729
13	group_5710
13	group_10100
13	group_8916
13	group_7406
13	group_6548
13	group_6522
13	group_6071
13	group_4356
13	group_3307
13	group_2167
13	group_11837
13	group_10246
13	group 6127

hypothetical protein Chromosome partition protein Smc putative protein/MSMEI_1241 hypothetical protein Glycine cleavage system transcriptional activator Glycine betaine/proline/ectoine/pipecolic acid transporter OusA

12	group_1741	hypothetical protein
12	group_1743	hypothetical protein
12	group_1444	hypothetical protein
12	group_7723	hypothetical protein
11	group_2694	hypothetical protein
		Putative universal stress
		protein;TRAP-T-associated universal
11	teaD	stress protein TeaD
11	group_2763	hypothetical protein
11	group_1929	hypothetical protein
11	group_8230	hypothetical protein
		Catabolite control protein A;HTH-
		type transcriptional regulator
11	ccpA_2~~~ccpA_3~~~treR~~~ccpA_1	TreR;hypothetical protein
11	sacX	Negative regulator of SacY activity
11	group_11352	Sucrose-6-phosphate hydrolase
11	group_11165	hypothetical protein
11	nemA_2~~~nemA_1~~~nemA_3	N-ethylmaleimide reductase
11	group_10746	Maltoporin
		Aconitate/2-methylaconitate
11	citB~~~citB_1~~~acn	hydratase;Aconitate hydratase A
11	group_10472	hypothetical protein
11	hicd	Homoisocitrate dehydrogenase
		Arabinose import ATP-binding
		protein AraG;Galactose/methyl
		galactoside import ATP-binding
11	araG_1~~~mglA_3~~~araG~~~araG_2	protein MgIA;hypothetical protein
11	group_10058	hypothetical protein
		hypothetical
		protein;Phosphoenolpyruvate-
11	ptsl_3~~~ptsl_2	protein phosphotransferase
11	group_9715	hypothetical protein
11	group_9664	hypothetical protein
11	group_9615	hypothetical protein
11	group_9071	hypothetical protein
11	group_9027	hypothetical protein
11	group_9026	hypothetical protein
11	group_8315	hypothetical protein
11	resA_2~~~resA_3~~~resA_4	Thiol-disulfide oxidoreductase ResA
11	group_8215	hypothetical protein
		Aconitate hydratase B;3-
	acnB~~~leuC_2~~~acnB_2~~~acnB_3~~~a	isopropylmalate dehydratase large
11	cnB_1	subunit

		HTH-type transcriptional repressor
		NanR;HTH-type transcriptional
11	nanR~~~lutR_2~~~lutR_1	regulator LutR
		Multidrug export protein EmrB;hypothetical protein;putative
11	emrB 2~~~emrB 3~~~emrY 2	multidrug resistance protein EmrY
11	scrK~~~RBKS	Fructokinase; Ribokinase
		Glutamine transport system
		permease protein GlnP;hypothetical
	glnP_1~~~glnP_2	protein
11	group_6780	hypothetical protein
11	group_6762	hypothetical protein
		Putative 3-oxopropanoate dehydrogenase;Malonate-
11	bauC_1~~~iolA_1	semialdehyde dehydrogenase
11	group_6133	hypothetical protein
11	group 6052	hypothetical protein
	0	HTH-type transcriptional regulator
11	dmlR_11~~~dmlR_12	DmlR
		ABC transporter glutamine-binding
11	glnH_1	protein GlnH
11	folE	GTP cyclohydrolase 1
		putative glutamine ABC transporter permease protein GlnM;L-cystine
		transport system permease protein
11	glnM_1~~~yecS_2	YecS
		Glutamine transport ATP-binding
11	group_2519	protein GlnQ
11	group_2342	hypothetical protein
11	group_1213	hypothetical protein
11	group_11924	hypothetical protein
11	group_11885	hypothetical protein
11	group_11670	hypothetical protein
11	group_11299	hypothetical protein
		Respiratory nitrate reductase 1 beta chain;Respiratory nitrate reductase
11	narH_1~~~narH_2~~~narY~~~narH	2 beta chain
		3D-(35/4)-trihydroxycyclohexane-
11	ioID~~~ioID_1~~~ioID_2	12-dione hydrolase
11	group_11039	hypothetical protein
11	group_11007	hypothetical protein
		Inositol 2-dehydrogenase/D-chiro-
11	iolG_1	inositol 3-dehydrogenase
11	group_10685	hypothetical protein
11	iolE_2~~~iolE_1	Inosose dehydratase;hypothetical protein
- -		p. otom

11	group_10330	hypothetical protein
		2-amino-3-ketobutyrate coenzyme
11	group_10037	A ligase; hypothetical protein
11	group_10036	hypothetical protein
11	group_9970	hypothetical protein
11	group_9954	hypothetical protein
		D-threitol-binding
11	thpA~~~thpA_1	protein;hypothetical protein
		hypothetical protein;Inositol 2-
		dehydrogenase/D-chiro-inositol 3-
11	iolG_2~~~iolG_1	dehydrogenase
		hypothetical protein;Nitrate
		reductase molybdenum cofactor
11	narJ	assembly chaperone NarJ
4.4		HTH-type transcriptional regulator
11	sutR_2~~~sutR_3	SutR;hypothetical protein
		HTH-type transcriptional regulator Cmr;Cyclic AMP receptor
11	cmr	protein;hypothetical protein
11	chii	putative
		epimerase/dehydratase;hypothetica
11	group_8988	l protein
	group_0000	Iron-sulfur cluster repair protein
11	ytfE	YtfE
	,	Transcriptional regulatory protein
		DegU;Protein-glutamate
		methylesterase/protein-glutamine
11	degU_2~~~cheB_2~~~degU_1	glutaminase
		Molybdopterin-guanine
		dinucleotide biosynthesis adapter
11	mobB_2~~~mobB_1	protein;hypothetical protein
	dmlR_4~~~dmlR_14~~~dmlR_12~~~dmlR_	HTH-type transcriptional regulator
11	17	DmlR;hypothetical protein
11	group_8742	hypothetical protein
		Galactose/methyl galactoside
		import ATP-binding protein
		MgIA;Vitamin B12 import ATP-
11	mglA_1~~~btuD_4~~~mglA_2	binding protein BtuD
	- /	HTH-type transcriptional regulator
11	murR_1~~~murR_2	MurR
		Respiratory nitrate reductase 1
11	narl~~~narl_1~~~narl_2	gamma chain;hypothetical protein
11	iolC~~~iolC_1	5-dehydro-2-deoxygluconokinase
11	iolE_1~~~iolE_2	Inosose dehydratase
		7-carboxy-7-deazaguanine
11	queE_2~~~queE_1	synthase;hypothetical protein

11	group 7386	Anaerobic ribonucleoside- triphosphate reductase;hypothetical protein
	Progh ⁻ , 200	hypothetical protein;Anaerobic nitric oxide reductase transcription regulator NorR;Nitric oxide
		reductase transcription regulator
11	norR_5~~~norR2	NorR2
11	group_6652	hypothetical protein Ribose import permease protein
11	rbsC_2~~~rbsC_3	RbsC hypothetical protein;Outer
11	tolC	membrane protein TolC hypothetical protein;Nitrate
11	nasA_1~~~nasA_2	transporter hypothetical protein;Nitrate/nitrite
11	narK_1~~~narK_2~~~narK	transporter NarK
11	 group_2727	hypothetical protein
11	drgA	Protein DrgA
		Respiratory nitrate reductase 2
	narZ_1~~~narG_2~~~narZ_2~~~narG_3~~	alpha chain;Respiratory nitrate
11	~narG_1~~~narG	reductase 1 alpha chain
11	group_1385	hypothetical protein
11	group_1000	hypothetical protein
11	group_291	hypothetical protein
11	group_202	hypothetical protein
11	group_83	hypothetical protein
		HTH-type transcriptional regulator
11	hdfR~~~hdfR_1~~~hdfR_2	HdfR;hypothetical protein
11	yihG~~~yihG_1~~~yihG_2	putative acyltransferase YihG
11	group_11403	hypothetical protein
11	group_11177	hypothetical protein
		FAD:protein FMN
11	apbE_2~~~apbE_1	transferase; hypothetical protein hypothetical protein; HTH-type
11	group_10534	transcriptional regulator CdhR;HTH- type transcriptional regulator hypothetical protein;Cytochrome c-
11	group_10358	555
11	group_10352	hypothetical protein
11	group_10134	hypothetical protein
11	mmgF	putative protein;2-methylisocitrate lyase
11	group_9481	hypothetical protein
11	nosZ	Nitrous-oxide reductase
11	group_9388	hypothetical protein
T T	Prove_2000	

11	yhbU_1~~~yhbU_2~~~yhbU	putative protease YhbU
11	group_9133	hypothetical protein
11	nosL	Copper-binding lipoprotein NosL
		Aldehyde reductase
		YahK;hypothetical protein;NADP-
		dependent alcohol dehydrogenase
		C 2;NADP-dependent alcohol
11	yahK_2~~~adhC2~~~adhC	dehydrogenase C
		putative ABC transporter binding
11	nosD~~~nosD_1~~~nosD_2	protein NosD
11	group_7486	hypothetical protein
11	group_6966	hypothetical protein
		hypothetical protein;putative ABC
11	nosY	transporter permease protein NosY
		Nitrate/nitrite sensor protein
11	group_6712	NarX;hypothetical protein
11	group_6341	hypothetical protein
11		HTH-type transcriptional regulator
11	pgrR_3~~~pgrR_4	PgrR
11	nosF	putative ABC transporter ATP- binding protein NosF
11	group_5621	hypothetical protein
11	group 5504	hypothetical protein
11	group_3304	N-acyl homoserine
11	aiiA	lactonase;hypothetical protein
11	group_2819	hypothetical protein
	8.04 <u>2</u> _2223	Aspartate
		aminotransferase; hypothetical
		protein;Histidinol-phosphate
11	aspC_2~~~aspC_1~~~hisC_6	aminotransferase
		Oxidoreductase UcpA;Galactitol 2-
11	ucpA_2~~~gdh_1	dehydrogenase
11	group_11599	hypothetical protein
11	TDO2	Tryptophan 23-dioxygenase
		Isopenicillin N
		epimerase;hercynylcysteine
11	cefD~~~egtE	sulfoxide lyase
11	group_10963	hypothetical protein
11	group_10737	hypothetical protein
11	group_9299	hypothetical protein
11	group_7900	hypothetical protein
11	group_7256	hypothetical protein
11	group_7254	hypothetical protein
11	group_5024	hypothetical protein

		Cytochrome bo(3) ubiquinol oxidase
11	cyoD_1~~~cyoD_2	subunit 4;hypothetical protein
		Methyl-accepting chemotaxis
11	tar_1	protein II; hypothetical protein
11	group_9418	hypothetical protein
		Outer membrane porin protein
11	group_7884	32;hypothetical protein
		Cytochrome bo(3) ubiquinol oxidase
11	cyoC_2~~~cyoC_1	subunit 3;hypothetical protein
		hypothetical protein;Cytochrome
11	cyoA~~~cyoA_2~~~cyoA_1	bo(3) ubiquinol oxidase subunit 2
		Cytochrome bo(3) ubiquinol oxidase
11	cyoB_2~~~cyoB_3~~~cyoB_4	subunit 1
11	group_3283	hypothetical protein
11	group_9	hypothetical protein
11	group_11194	hypothetical protein
11	group_11157	hypothetical protein
		Outer membrane porin protein
		32;Outer membrane porin
11	group_10947	protein;hypothetical protein
		Melamine deaminase;Atrazine
	triA~~~atzA~~~dadD_1~~~dadD~~~dadD_	chlorohydrolase;5'-deoxyadenosine
11	2	deaminase;hypothetical protein
11	iolB~~~iolB_1	5-deoxy-glucuronate isomerase
		Vitamin B6 salvage pathway
		transcriptional repressor
		PtsJ;hypothetical protein;2-
11	ptsJ~~~lysN_2	aminoadipate transaminase
		Formyltetrahydrofolate
11	purU_2	deformylase;hypothetical protein
		Bicyclomycin resistance
		protein;Multidrug resistance
11	bcr_3~~~bcr_2~~~mdtL~~~bcr_1	protein MdtL;hypothetical protein
11	group_8096	hypothetical protein
11	group_7987	hypothetical protein
		Sarcosine oxidase subunit
11	soxG	gamma;hypothetical protein
11	soxD	Sarcosine oxidase subunit delta
		HTH-type transcriptional regulator
11	cdhR_1~~~cdhR_2~~~cdhR_3	CdhR;hypothetical protein
11	group_6526	hypothetical protein
11	group_6208	Aldo-keto reductase IolS
		Sarcosine oxidase subunit
11	soxA_1~~~soxA_2~~~soxA_3	alpha;hypothetical protein
11	soxB_1~~~soxB_2~~~soxB	Sarcosine oxidase subunit beta

11	sdaA_1~~~sdaA_2~~~sdaB
11	group_10663
11	group_10662
11	sir_2~~~sir_1
11	group_9618
11	group_9265
11	group_9264
11	group_9042
11	group_3374
11	group_3173
11	group_3078
11	group_2940
11	group_2911
11	group_11774
11	group_11703
11	group_11441
11	group_11353
11	group_10748
11	group_9864
11	group_9852
11	group_9652
11	group_8318
11	group_7957
11	group_6597
11	group_6210
11	dkgA
	0
ΤT	group_2171
11	cdhR_2~~~cdhR_1
	group 9504
	0
11	aatA_1~~~aatB
	murR_3
	group_8125
	group_6607
	group_6401
11	group_5955

L-serine dehydratase;L-serine dehydratase 2 hypothetical protein hypothetical protein Sulfite reductase [ferredoxin]; hypothetical protein Ribonuclease hypothetical protein hypothetical protein HTH-type transcriptional regulator TsaR; hypothetical protein putative oxidoreductase/MSMEI 2347;25diketo-D-gluconic acid reductase A hypothetical protein HTH-type transcriptional regulator CdhR;hypothetical protein hypothetical protein Aspartate/prephenate aminotransferase;Aspartate aminotransferase HTH-type transcriptional regulator MurR hypothetical protein hypothetical protein hypothetical protein hypothetical protein

11	
	group_4818
11	group_4757
11	group_4236
11	group_2733
11	group_2610
11	group_640
11	group_11802
11	group_11534
11	group_11094
11	group_10249
11	group_9469
11	group 9401
11	group_8683
11	group_8064
11	group 7466
ΤT	group_7400
11	group_7464
11	group_7431
11	group_7193
11	group_7179
11	group 6549
	• • • =
11	group_6312
11	group_6113
11	lifO
11	mtlK
11	sadA~~~sadA 2
11	group_3984
	group 5964
11	group_2996
11	group_2996
11 11	group_2996 pdp
11 11 11	group_2996 pdp group_2872
11 11 11 11	group_2996 pdp group_2872 group_1206
11 11 11 11 11	group_2996 pdp group_2872 group_1206 group_945
11 11 11 11 11 11	group_2996 pdp group_2872 group_1206 group_945 group_628
11 11 11 11 11	group_2996 pdp group_2872 group_1206 group_945
11 11 11 11 11 11	group_2996 pdp group_2872 group_1206 group_945 group_628 xylB
11 11 11 11 11 11 11	group_2996 pdp group_2872 group_1206 group_945 group_628 xylB eryD
11 11 11 11 11 11 11 11	group_2996 pdp group_2872 group_1206 group_945 group_628 xylB eryD group_9610
11 11 11 11 11 11 11 11 11	group_2996 pdp group_2872 group_1206 group_945 group_628 xylB eryD group_9610 group_9533
11 11 11 11 11 11 11 11	group_2996 pdp group_2872 group_1206 group_945 group_628 xylB eryD group_9610

hypothetical protein hypothetical protein;Outer membrane porin protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein Lipase chaperone Mannitol 2-dehydrogenase hypothetical protein;Autotransporter adhesin SadA hypothetical protein hypothetical protein Putative thymidine phosphorylase;Pyrimidinenucleoside phosphorylase hypothetical protein hypothetical protein hypothetical protein hypothetical protein Xylulose kinase Erythritol catabolism regulatory protein EryD hypothetical protein hypothetical protein;Catalase hypothetical protein hypothetical protein

11	group_7864	hypothetical protein
11	group_7804	hypothetical protein
11	group_7787	hypothetical protein
		Phosphoglycolate phosphatase;6-
11	gph_1~~~gph_2~~~yieH_2	phosphogluconate phosphatase
11	group_7642	hypothetical protein
11	group_6980	hypothetical protein
11	group_6820	hypothetical protein
11	group_6056	hypothetical protein
		D-tagatose-16-bisphosphate
11	kbaZ	aldolase subunit KbaZ
		L-aspartate/glutamate-specific
11	group_4931	racemase;hypothetical protein
		hypothetical protein;Trehalose
	5	transport system permease protein
11	5	SugB
11	0 1 =	hypothetical protein
11	group_4782	hypothetical protein 6-
		phosphogluconolactonase;hypothet
11	pgl_4~~~pgl_1	ical protein
		Maltose/maltodextrin import ATP-
		binding protein MalK;hypothetical
11	malK	protein
11	0 1 =	hypothetical protein
11	group_2854	hypothetical protein
		Melibiose/raffinose/stachyose
11	malD	import permease protein
11	melD	MelD;hypothetical protein
	group_2121	hypothetical protein
11	polS	Sorbitol dehydrogenase
11	0 1 =	Tagatose kinase
11	0 1 -	hypothetical protein
11	0 1 -	hypothetical protein
11	0 1 -	hypothetical protein
11	group_8153	hypothetical protein
		hypothetical protein;HTH-type
4.4		transcriptional regulator PgrR;HTH-
11	pgrR_7~~~argP~~~argP_1~~~pgrR_2	type transcriptional regulator ArgP
11	group_7770	hypothetical protein
		2345-tetrahydropyridine-26- dicarboxylate N-
		acetyltransferase;Serine
		acetyltransferase; Serine acetyltransferase; hypothetical
11	dapH_3~~~cysE	protein
÷ ÷		protein

11	group_7423
11	group_6717
11	group_6716
11	group_6413
11	ppsB~~~entF
11	group_5113
11	group_5026
11	gltR_2~~~gltR_1
11	group_4800
11	ectB_1~~~ectB~~~ectB_2
11	pvdA
11	group_4648
11	nepl
11	group_2555
11	soxA_3~~~soxA_4
11	group_387
11	group_11178
11	group_9757
11	pgi_2~~~pgi_1
11	group_6599
11	group_5681
11	yodB
11	group_595
11	group_9853
11	group_8154
11	group_7717
11	group_7544
11	group_2737
11	group_743
11	group_9527
11	group_2289
11	group_1963
11	group_7866
11	group_3723
11	group_2591
11	group_11161

hypothetical protein putative HTH-type transcriptional regulator hypothetical protein hypothetical protein Plipastatin synthase subunit B;Enterobactin synthase component F hypothetical protein hypothetical protein; putative protein HTH-type transcriptional regulator GltR hypothetical protein Diaminobutyrate--2-oxoglutarate transaminase hypothetical protein;L-ornithine N(5)-monooxygenase hypothetical protein Purine ribonucleoside efflux pump Nepl hypothetical protein Monomeric sarcosine oxidase hypothetical protein hypothetical protein hypothetical protein Glucose-6-phosphate isomerase hypothetical protein hypothetical protein Cytochrome b561 hypothetical protein IS3 family transposase ISBcen15; hypothetical protein hypothetical protein

11 group 10763

11 group 10531

hypothetical protein Inositol 2-dehydrogenase/D-chiroinositol 3dehydrogenase;hypothetical protein Glycine cleavage system transcriptional activator hypothetical protein Alkanesulfonate monooxygenase hypothetical protein;26dihydroxypyridine 3monooxygenase HTH-type transcriptional regulator DmIR hypothetical protein Cystathionine beta-lyase PatB Cytochrome c-552;hypothetical protein hypothetical protein Cytochrome c-552 hypothetical protein hypothetical protein hypothetical protein hypothetical protein; Drug efflux pump JefA; Multidrug resistance protein Stp;Putative multidrug resistance protein MdtD hypothetical protein hypothetical protein IS3 family transposase ISRso14;IS3 family transposase ISAtu5; hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein;HTH-type transcriptional regulator LrpC hypothetical protein

11	group_2275	hypothetical protein
11	group_7863	hypothetical protein
11	group 3808	hypothetical protein
11	group_1614	hypothetical protein
		NADP-dependent alcohol dehydrogenase C 2;Aldehyde
		reductase YahK;L-threonine 3-
		dehydrogenase;hypothetical
	adhC2~~~yahK 1~~~tdh 2~~~adhA 2~~~	protein;putative formaldehyde
11	adhA 3	dehydrogenase AdhA
11	group_2617	hypothetical protein
11	group_7956	hypothetical protein
11	group 7737	hypothetical protein
11	group 7563	hypothetical protein
11	group_4127	hypothetical protein
		Putative universal stress
		protein;Universal stress
11	group_2973	protein/MSMEI_3859
		hypothetical protein;IS3 family
11	group_2751	transposase IS222
		Vitamin B12-dependent
		ribonucleoside-diphosphate
11	group_10714	reductase;hypothetical protein
11	group_8236	hypothetical protein
11	group_7050	hypothetical protein
11	group_6923	hypothetical protein
11	group_5856	Alcohol dehydrogenase hypothetical protein;putative
		multidrug resistance protein
	emrY_2~~~emrY_1~~~emrB_4~~~emrB_2	EmrY;Multidrug export protein
11	~~~emrB 1	EmrB
	_	Isoquinoline 1-oxidoreductase
11	iorA_1~~~iorA_3~~~iorA_2	subunit alpha
		Isoquinoline 1-oxidoreductase
11	group_3751	subunit beta;hypothetical protein
		Molybdenum cofactor insertion
		chaperone PaoD;putative xanthine
11	paoD_2~~~pucA_2~~~paoD~~~pucA	dehydrogenase subunit A
11	group_3630	hypothetical protein
4.4		RNA polymerase-binding
11	dksA_3~~~dksA_2~~~dksA_1	transcription factor DksA
11	group_1852	hypothetical protein
11	group_1162	hypothetical protein
		Ribose-phosphate pyrophosphokinase;Putative ribose-
11	prs_2~~~prs_1	phosphate pyrophosphokinase
	P.5_2 P.5_1	prospriate pyropriospriokiliase

11	adh_2~~~adh_1
11	group_7775
11	group_5199
11	group_5013
	0
11	mas~~~tdh
	group_4049
11	group_10479 farA
11	IdfA
11	oprM_7~~~oprM_1~~~oprM_9
11	group_4410
11	group_2424
11	group_2383
11	group_2136
11	group_2122
11	group_2101
11	group_2057
11	group_1978
11	group_10310
11	group_7917
11	group_7915
11	group_7892
11	mrpX
	group_3219
	group_2894
	0 1 -
11	group_2779
11	group_2215
11	group_2166
11	group_2145
11	group_1892
11	yedY1
	group_9578
	group_9384
	- · -
11	rhaS_2~~~rhaS_3~~~rhaS_4
11	group_3753

Alcohol dehydrogenase hypothetical protein hypothetical protein IS3 family transposase ISBmu5;IS3 family transposase ISRme12; hypothetical protein hypothetical protein;Mycocerosic acid synthase;L-threonine 3dehydrogenase hypothetical protein hypothetical protein Fatty acid resistance protein FarA Outer membrane protein OprM; hypothetical protein IS3 family transposase ISRso11 hypothetical protein hypothetical protein hypothetical protein Methionine-rich peptide X;hypothetical protein hypothetical protein hypothetical protein putative multidrug-efflux transporter hypothetical protein hypothetical protein hypothetical protein hypothetical protein Putative protein-methioninesulfoxide reductase subunit YedZ1 hypothetical protein hypothetical protein HTH-type transcriptional activator RhaS putative zinc-binding alcohol dehydrogenase; hypothetical protein

		hypothetical protein;IS3 family
11	group_3247	transposase ISPsy24
11	group 3150	hypothetical protein
	0	Isochorismatase family protein
		YecD;Staphyloferrin B
		transporter; hypothetical protein; N-
		carbamoylsarcosine
	<pre>yecD_1~~~yecD_2~~~yecD~~~sbnD_2~~~s</pre>	amidase;Multidrug resistance
11	bnD_1~~~mdtG	protein MdtG
	D. 20000 D. 4	hypothetical protein;HTH-type
11	rspR_3~~~rspR_1	transcriptional repressor RspR
11	yedZ1	Putative protein-methionine- sulfoxide reductase subunit YedZ1
11	group_2005	hypothetical protein
11	group_2005 group_1922	hypothetical protein
11	group_1921	hypothetical protein
11	group 1862	hypothetical protein
11	group 1803	hypothetical protein
	8.00P_1003	hypothetical protein;Bifunctional
11	birA 1	ligase/repressor BirA
11	 group_1773	hypothetical protein
11	group_1740	hypothetical protein
		hypothetical protein;HTH-type
11	lrpC_2	transcriptional regulator LrpC
11	group_1251	hypothetical protein
11	group_3592	hypothetical protein
11	group_3148	hypothetical protein
11	group_2841	hypothetical protein
11	group_2531	hypothetical protein
11	group_1664	hypothetical protein
		Flavin-dependent monooxygenase
11	group_7766	oxygenase subunit HsaA
11	group_11862	hypothetical protein
11	group_7658	hypothetical protein
11	group_2058	hypothetical protein
11	group_9494	hypothetical protein
11	group 8007	hypothetical protein;ATP- dependent RecD-like DNA helicase
11	group_8007 group_7869	hypothetical protein
11	group 3144	hypothetical protein
11	group 1454	hypothetical protein
11	yqcF~~~yqcF_2	Antitoxin YqcF;hypothetical protein
11	group 11565	hypothetical protein
11	group 10188	hypothetical protein
	9.04P_10100	

		NADH-quinone oxidoreductase
11	nuoF_1~~~nuoF_3~~~nuoF_2	subunit F
		Aspartate/alanine
11	aspT	antiporter;hypothetical protein
		Succinate dehydrogenase
11	adh A 1999 adh A D	flavoprotein subunit;hypothetical
11	sdhA_1~~~sdhA_2	protein Sensor histidine kinase RcsC;L-
		lactate dehydrogenase;C4-
		dicarboxylate transport sensor
11	rcsC_11~~~rcsC_5~~~lldD~~~dctB_1	protein DctB
11	group_4961	hypothetical protein
11		hypothetical protein
	8.00 <u>9</u> _2223	NAD-dependent malic
		enzyme;putative NAD-dependent
11	maeA~~~maeA_2~~~maeA_1~~~mleS	malic enzyme 2;Malolactic enzyme
		HTH-type transcriptional regulator
11	dmlR_19	DmlR
11	group_7809	hypothetical protein
		hypothetical protein;HTH-type
		transcriptional regulator YidZ;PCP
		degradation transcriptional
11	yidZ~~~pcpR_7	activation protein
11	• • • =	hypothetical protein
11	group_4831	hypothetical protein
	0500	Transcriptional regulator
11	0 1 =	SlyA;hypothetical protein
11	group_9256	hypothetical protein
		C4-dicarboxylate transport transcriptional regulatory protein
11	dctD 1~~~dctD 2	DctD
11	group 7266	hypothetical protein
11	group_4833	hypothetical protein
11	group 1976	hypothetical protein
11	group 1089	hypothetical protein
11	group 11541	hypothetical protein
11	group 7326	hypothetical protein
	group_7320	hypothetical protein;IS5 family
11	group_6657	transposase ISRso1
11	group 5408	hypothetical protein
11	group_5314	hypothetical protein
11	group 2656	hypothetical protein
11	group 11922	hypothetical protein
11	group 2575	IS5 family transposase ISRso1
11	group_12046	hypothetical protein
		•••

		2-keto-4-pentenoate
11	mhpD	hydratase;hypothetic
		Thiol:disulfide interch
11	dsbA_2~~~dsbA_1	DsbA;hypothetical pr
11	amnE	4-oxalocrotonate dec
11	dmpl	2-hydroxymuconate t
11	group_9817	hypothetical protein
11	group_9169	RNA 2'3'-cyclic phosp
11	amnF	2-oxopent-4-enoate
		3-hydroxy-2-methylp
		dicarboxylate 4-
11	group_8702	decarboxylase;hypotl
11	mhpF~~~dmpF	Acetaldehyde dehydr
		3-hydroxybenzoate tr
11	mhbT_2~~~mhbT_1	MhbT
		2-hydroxymuconic se
		dehydrogenase;NAD/ dependent betaine al
11	xylG_2~~~xylG_1~~~betB_5	dehydrogenase
		Iron-dependent extra
11	hsaC	dioxygenase
11	mhpE_2~~~mhpE_1~~~mhpE	4-hydroxy-2-oxovaler
11	group 2535	hypothetical protein
	0 · P	Prophage integrase
11	intS 1~~~intS~~~intS 2	IntS;hypothetical pro
11	 group_2008	hypothetical protein
11	group_531	hypothetical protein
11	group_507	hypothetical protein
11	group_356	hypothetical protein
11	group_274	hypothetical protein
11	group_198	hypothetical protein
11	group_12045	hypothetical protein
	0 1	Transcriptional regula
11	rstA_2	RstA;hypothetical pro
11	group_7921	hypothetical protein
11	group_7885	hypothetical protein
11	group_7883	hypothetical protein
11	group_7662	hypothetical protein
11	group_3482	hypothetical protein
		2-aminomuconate de
		family protein;Putativ
		aminoacrylate peraci
11	amnD~~~rutC_2	RutC
11	group_2190	hypothetical protein
11	group_2150	hypothetical protein

othetical protein interchange protein tical protein ate decarboxylase onate tautomerase rotein phosphodiesterase noate hydratase ethylpyridine-45-4-;hypothetical protein dehydrogenase oate transporter onic semialdehyde e;NAD/NADPtaine aldehyde e nt extradiol xovalerate aldolase rotein grase cal protein rotein rotein rotein rotein rotein rotein rotein I regulatory protein ical protein rotein rotein rotein rotein rotein nate deaminase;RutC ;Putative peracid reductase rotein rotein

	0.000
11	group_9341
11	group_9329
11	group_7740
11	kgtP_5~~~nanT_2
11	group_2952
11	cya_1
11	slyA_1~~~slyA_3
11	group_6396
11	group_3781
11	livQ
11	group_3775
11	group_3023
11	group_785
11	group_78
11	group_10316
11	group_7207
11	group_1254
11	group_1069
11	group_575
11	group_9396
11	group_2075
11	group_4096
11	group_9150
11	group_7633
11	group_3697
11	group_3447
11	group_2551
11	group_426
11	group_7895
11	group_2249
11	group_607
11	group_11748
11	group_9438
11	group_9064
11	group_7911
11	group_6858
11	group 2621

11 group_2149

11 group 2108

11 group_2078

hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein; IS5 family transposase ISRso1;Alphaketoglutarate permease;Sialic acid transporter NanT hypothetical protein hypothetical protein;Bifunctional hemolysin/adenylate cyclase Transcriptional regulator SlyA hypothetical protein hypothetical protein 6^{'''}-hydroxyparomomycin C oxidase hypothetical protein IS3 family transposase ISAisp2

11 group 2510 11 group 11923 11 gcvA 6 11 group 8043 11 group 7051 11 group_6429 11 rfnT 2~~~rfnT 11 glnQ 4~~~glnQ 5 11 group 4453 11 group 2860 11 group 925 11 group 776 11 xerC 2~~~xerC 3~~~xerC 4~~~xerC 1 11 group 8187 11 group 7910 11 group 5039 11 IIdD 1~~~IIdD 2~~~IIdD 11 group 4006 11 group_3765 11 group 11800 11 group_10427 11 group 10273 11 group 9328 11 group_7927 11 group 3712 11 group 2635 11 group 2223 11 group 954 11 group 9541 11 speE 2~~~speE 3 11 group_1351 11 group 10626 11 group 9248 11 group 7320 11 group 6965 11 group 1840 11 group 1731

IS110 family transposase ISBcen4 hypothetical protein Glycine cleavage system transcriptional activator Alcohol dehydrogenase hypothetical protein hypothetical protein **Riboflavin transporter RfnT** Glutamine transport ATP-binding protein GlnQ hypothetical protein hypothetical protein; IS5 family transposase ISRso18;IS5 family transposase IS1405 hypothetical protein hypothetical protein Tyrosine recombinase XerC; hypothetical protein Competence protein ComM hypothetical protein hypothetical protein L-lactate dehydrogenase hypothetical protein hypothetical protein hypothetical protein Carboxymethylenebutenolidase hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein IS3 family transposase ISBcen15;IS3 family transposase ISRso12 hypothetical protein hypothetical protein Polyamine aminopropyltransferase hypothetical protein hypothetical protein hypothetical protein; IS4 family transposase ISCro3 hypothetical protein hypothetical protein hypothetical protein hypothetical protein

11	group_898
11	group_2905
11	group_2838
11	group_2401
11	group_2396
11	group_2293
11	group_3754
11	group_2113
11	group_11234
11	group_10557
11	group_3770
11	group_2440
11	group 2320
11	group_2330
11	group_10279
11	0 1 =
11 11	group_8323
	group_7721
11 11	group_2397
	group_2274
11	group_1248
11	0 1 =
	group_765
11	0 1
11	0 1
11	group_7120
11	group_2987
11	group_2549
11	group_11000
11	group_10223
11	group_10163
11	group_7703
11	group_2832
11	group_2804
11	group_2391
тт	8.00h_2331

hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein IS3 family transposase ISBcen15; hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein; IS4 family transposase ISCro3 IS30 family transposase IS1382;IS30 family transposase IST3091;IS30 family transposase ISRme10 hypothetical protein IS66 family transposase ISPpu19;hypothetical protein;IS66 family transposase ISBcen19 hypothetical protein hypothetical protein IS4 family transposase ISCro3 hypothetical protein IS5 family transposase IS1405; hypothetical protein IS4 family transposase ISCro3; hypothetical protein hypothetical protein IS3 family transposase ISAisp2;Putative transposase InsK for insertion sequence element IS150

11	group_1328	hypothetical protein
11	group_1098	IS3 family transposase ISRso11
11	group_1050	hypothetical protein
11	group_9437	hypothetical protein
11	group_8921	IS3 family transposase ISAisp2
11	group_7727	hypothetical protein
		hypothetical protein;IS3 family
11	group_6609	transposase ISAisp2
		hypothetical protein;IS4 family
11	group_5344	transposase ISCro3
11	<pre>xerC_6~~~xerC_5~~~xerD_1~~~xerD_2~~~ xerC_4</pre>	Tyrosine recombinase XerC;Tyrosine recombinase XerD
11	—	
11	group_3217	hypothetical protein
	group_2896	hypothetical protein
11	group_2624	hypothetical protein
11	group_2587	hypothetical protein
11	group_2586	hypothetical protein
11	group_1437	hypothetical protein
11	group_697	hypothetical protein
11	group_10218	IS4 family transposase ISCro3
11	group_9141	hypothetical protein
11	group_7265	hypothetical protein
11	group_4864	IS5 family transposase IS1405
11	group_1663	hypothetical protein
11	group_11447	hypothetical protein
11	group_9949	hypothetical protein
11	group_8824	hypothetical protein
11	group_7140	hypothetical protein
11	group_7073	hypothetical protein
11	group_4583	hypothetical protein
11	group_4047	hypothetical protein
11	group_3686	hypothetical protein
11	group_2699	hypothetical protein
11	group_2388	hypothetical protein
11	group_1380	hypothetical protein
11	group_730	hypothetical protein
11	group_497	hypothetical protein
11	group_62	hypothetical protein
11	group_11226	hypothetical protein
11	group_11149	hypothetical protein
11	group_10222	IS4 family transposase ISCro3
		IS4 family transposase ISPhsp1;hypothetical protein;IS4
11	group 8180	family transposase ISCro3
	0 P_0100	

11	group_7415	hypothetical protein
11	group_1870	hypothetical protein
		IS3 family transposase
11	group_1634	ISBmu5;hypothetical protein
11	group_1621	hypothetical protein
11	group_1066	hypothetical protein
		Divalent metal cation transporter
11	mntH_1	MntH
11	group_11166	hypothetical protein
11	group_10822	hypothetical protein
11	group_10431	hypothetical protein
11	group_9546	hypothetical protein
11	group_8005	hypothetical protein
		IS5 family transposase ISRso18;IS5
11	group_7865	family transposase IS1405
11	group_7729	hypothetical protein
11	group_7728	hypothetical protein
11	group_7330	hypothetical protein
11	group_5659	hypothetical protein
11	group_5545	hypothetical protein
		hypothetical protein;IS110 family
11	group_4874	transposase ISBcen4
11	group_4375	hypothetical protein
11	group_4374	hypothetical protein
		IS5 family transposase
	0050	ISRso18;hypothetical protein;IS5
11	group_2358	family transposase IS1405
		IS1182 family transposase ISBusp4;IS1182 family transposase
11	group_1184	ISPpu16;hypothetical protein
11	g100p_1184	IS256 family transposase
11	group_767	ISRso7;hypothetical protein
11	group 224	hypothetical protein
11	group_11540	hypothetical protein
11	group 11067	hypothetical protein
11	group 10825	hypothetical protein
11	group_10809	hypothetical protein
11	group_10284	hypothetical protein
11	group 10231	IS4 family transposase ISCro3
11		· ·
11	group_9359 group_9121	hypothetical protein hypothetical protein
11		
ΤŢ	group_7329	hypothetical protein IS3 family transposase
11	group 7322	ISRso16;hypothetical protein
	0.04k ⁻ ,055	is the second protein

11 group_4355

hypothetical protein; Putative deoxyribonuclease RhsC IS110 family transposase ISBma3; hypothetical protein hypothetical protein; IS4 family transposase ISCro3 hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein Branched-chain-amino-acid aminotransferase **Riboflavin transporter RibZ** hypothetical protein hypothetical protein hypothetical protein hypothetical protein HTH-type transcriptional regulator BenM hypothetical protein hypothetical protein hypothetical protein IS4 family transposase ISCro3; hypothetical protein IS110 family transposase ISBcen4;IS110 family transposase ISPa49; hypothetical protein IS1182 family transposase ISBusp4 IS5 family transposase IS1405 hypothetical protein IS5 family transposase IS1405

11	group_7961
11	group_7186
11	group_4208
11	group_3720
11	group_3716
11	group_2552
11	group_728
11	group_11389
11	group_10747
11	group_10627
11	group_10376
11	group_10242
11	group_10240
11	group_9865
11	soxA_2~~~soxA_4
	group_7708
11	group_6747
11	soxB
11	sdaB
11	group_6193
11	group_4781
11	group_4369
11	group_2553
	0
11	cdhR_1~~~cdhR_4
	ydeP_1~~~ydeP_2
11	group_11004
11	group_10940
11	group_10639
11	group_10633
11	group_10629
	0 11 1
11	opuAB
11	group_10077
11	group 9003
	0
11	cdhR_6
11	cdhR_4
11	group_7512

hypothetical protein; IS4 family transposase ISCro3 IS5 family transposase ISRso1 hypothetical protein hypothetical protein IS5 family transposase IS1405 IS3 family transposase ISAisp2;hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein IS110 family transposase ISMno14 IS3 family transposase ISBam2 IS3 family transposase ISRso14 Sarcosine oxidase subunit gamma; hypothetical protein Sarcosine oxidase subunit alpha hypothetical protein hypothetical protein Sarcosine oxidase subunit beta L-serine dehydratase 2 hypothetical protein hypothetical protein hypothetical protein IS3 family transposase ISAisp2 HTH-type transcriptional regulator CdhR Protein YdeP hypothetical protein hypothetical protein IS5 family transposase IS1405 IS5 family transposase IS1405 hypothetical protein Glycine betaine transport system permease protein OpuAB hypothetical protein hypothetical protein HTH-type transcriptional regulator CdhR HTH-type transcriptional regulator CdhR hypothetical protein;IS5 family transposase IS1405

	flhA_3 group_7106 group_7105
	group_7023 fixB
11	fdhA
11	group_6440
11	group_6288
11	group_6148
11	naiP_3
11	group_4365
11	group_4313
11	group_4010
11	stcD
11	group_3446
11	group_2919
11	purU_3
11	group_1207
11	group_1094
11	group_1093
11	group_1018
11	moaA_2
11	group_667
11	group_11726
11	group_10645
11	group_10634
11	group_10622
11	group_10220
11	group_9152
11	group_7726
11	group_5393
11	group_4366
11	group_3603
11	group_3594
11	group_3527
11	group_3522

S-(hydroxymethyl)glutathione dehydrogenase NADPH oxidoreductase Outer membrane porin protein Glycine betaine/proline betaine transport system ATP-binding protein ProV Protein FixB Glutathione-independent formaldehyde dehydrogenase Carnitine monooxygenase oxygenase subunit Serine hydroxymethyltransferase 2 hypothetical protein Putative niacin/nicotinamide transporter NaiP hypothetical protein hypothetical protein hypothetical protein putative N-methylproline demethylase IS110 family transposase ISMno14 hypothetical protein Formyltetrahydrofolate deformylase hypothetical protein IS5 family transposase IS1405 hypothetical protein hypothetical protein GTP 3'8-cyclase;hypothetical protein hypothetical protein IS5 family transposase IS1405 IS5 family transposase IS1405 IS5 family transposase IS1405 hypothetical protein IS4 family transposase ISCro3 hypothetical protein;IS5 family transposase IS1405 hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein

11 11 11 11	group_3365 group_3235 group_1895 group_899
11 11 11	group_10640 group_10617 group_10379
11	group_883 group_10692 group_10656 amnD group_8011
11 11	group_7321 group_4361
11	group_1788
11 11 11 11 11 10 10	group_5082 group_9625
10	cpdA_5~~~cpdA_4~~~cpdA_3
10 10	group_1713 group_1900
10	group_1484
9	group_2543
9	group_2464
9	group_10466
8	group_12012
8	group_5593
7	group_3715
7	group_11742
6	group_2238
~	2227

6 group_2237

hypothetical protein ISNCY family transposase ISBcen27 TAL effector protein Rip19 hypothetical protein IS5 family transposase IS1405 hypothetical protein IS110 family transposase ISMno14 hypothetical protein; IS5 family transposase IS1405 hypothetical protein IS21 family transposase ISRso6 2-aminomuconate deaminase hypothetical protein hypothetical protein;IS5 family transposase IS1405 hypothetical protein IS5 family transposase IS1405;IS5 family transposase ISRso18 Homoserine/homoserine lactone efflux protein IS4 family transposase ISCro3 IS3 family transposase ISRso10 hypothetical protein hypothetical protein hypothetical protein hypothetical protein 3'5'-cyclic adenosine monophosphate phosphodiesterase CpdA queuosine precursor transporter; hypothetical protein hypothetical protein hypothetical protein; putative HTHtype transcriptional regulator hypothetical protein;IS66 family transposase ISPa82;IS66 family transposase ISAeh1 IS66 family transposase IS1313 hypothetical protein IS701 family transposase ISRso17 IS701 family transposase ISRso17 hypothetical protein hypothetical protein hypothetical protein Lysozyme RrrD

6	group_2236	hypothetical protein
6	xerC_3~~~xerC_5~~~xerC_2~~~xerC_4	Tyrosine recombinase XerC
		IS5 family transposase ISBmu20;IS5
		family transposase IS1021;IS5 family
		transposase ISRso18;IS5 family
		transposase IS1405; hypothetical
5	group_2515	protein
		IS5 family transposase
		IS1405;hypothetical protein;IS5
		family transposase ISRso18;IS5
5	group_2724	family transposase IS1021
		hypothetical protein;IS5 family
5	group_1046	transposase IS1021
		IS5 family transposase ISRso18;IS5
		family transposase IS1405;IS5 family
		transposase IS1021; hypothetical
5	group_3127	protein
		hypothetical protein;IS5 family
		transposase ISBmu2;IS5 family
5	group_1202	transposase IS1021
		IS5 family transposase
5	group_2889	IS1021;hypothetical protein
		hypothetical protein;IS5 family
5	group_1195	transposase IS1021
		IS5 family transposase
5	group_977	IS1021;hypothetical protein
5	group_3187	IS5 family transposase IS1021
		IS5 family transposase
5	group_828	IS1021;hypothetical protein
		IS5 family transposase
5	group_1457	IS1021;hypothetical protein
		IS5 family transposase
5	group_1322	IS1021;hypothetical protein
		IS5 family transposase
5	group_3768	IS1021;hypothetical protein
5	group_3099	IS5 family transposase IS1021
		IS5 family transposase
5	group_2320	IS1021;hypothetical protein
5	group_1030	IS5 family transposase IS1021
		IS5 family transposase
5	group_796	IS1021;hypothetical protein
		IS5 family transposase
5	group_1527	IS1021;hypothetical protein
5	group_1142	IS5 family transposase IS1021
		IS5 family transposase
5	group_3709	IS1021;hypothetical protein

		IS5 family transposase
5	group_2325	IS1021;hypothetical protein
5	group 1128	IS5 family transposase IS1021
	0 1	IS5 family transposase
5	group_2698	IS1021;hypothetical protein
4	group_11873	hypothetical protein
4	group_11586	hypothetical protein
4	group_10342	hypothetical protein
4	group_5626	hypothetical protein
		cGAMP-activated
4	capV	phospholipase;hypothetical protein
4	group_4325	hypothetical protein
4	group_4197	hypothetical protein
3	group_11485	hypothetical protein
3	group_10978	hypothetical protein
3	group_10130	hypothetical protein
2	group_3722	IS3 family transposase ISRso11
		IS3 family transposase
2	group_7616	ISBcen10;hypothetical protein
1	group_1670	hypothetical protein
1	group_1319	hypothetical protein
210	group_10907	hypothetical protein
210	group_4078	hypothetical protein
209	group_5148	hypothetical protein
209	group_853	hypothetical protein
208	group_8075	hypothetical protein
208	group_7870	IS110 family transposase ISPye16
208	group_7304	hypothetical protein
208	group_5103	hypothetical protein
207	group_5138	hypothetical protein
207	estP	Esterase EstP;hypothetical protein
206	group_6368	hypothetical protein
206	group_1854	hypothetical protein
		HTH-type transcriptional regulator
205	dmlR_15	DmlR
205	group_8749	hypothetical protein
		Sorbitol dehydrogenase;Galactitol
205	polS_2	2-dehydrogenase
204	group_415	hypothetical protein
204	group_433	hypothetical protein
202	aroup 12047	Outer membrane porin
203	group_12047	protein;hypothetical protein
203	yphB~~~yphB_1~~~yphB_2	putative protein YphB
203	group_10422	hypothetical protein

```
203 group 3466
203 group_1431
203 araG 1
                                          protein AraG
203 pat~~~pat 1
                                          protein
203 group_11865
203 group_11717
203 rbn 2~~~rbn 3~~~rbn 1
203 group_1358
203 umaA
202 group_10028
                                          HdfR
202 msrP 3
202 group_8186
                                          Nitrilase
202 metC 2
202 mdcG
                                          transferase
202 madA
                                          transferase
202 mdcC
                                          protein
202 group_1698
202 group 950
201 group 955
201 group 771
200 group 4211
200 group_4210
200 group_2888
199 group 3738
199 group_3736
198 tsr_3~~~tsr_1~~~tar_1~~~tar_2
198 pgl_4~~~pgl_3
197 group 2411
                                          protein
197 acrR
196 group 10659
```

Outer membrane porin protein 32; hypothetical protein hypothetical protein Arabinose import ATP-binding Phosphinothricin Nacetyltransferase;hypothetical hypothetical protein hypothetical protein **Ribonuclease BN** hypothetical protein S-adenosylmethionine-dependent methyltransferase UmaA HTH-type transcriptional regulator Protein-methionine-sulfoxide reductase catalytic subunit MsrP Cvstathionine beta-lvase MetC Phosphoribosyl-dephospho-CoA Acetvl-S-ACP:malonate ACP Malonate decarboxylase acyl carrier hypothetical protein Transposon Tn7 transposition protein TnsB;hypothetical protein hypothetical protein Methyl-accepting chemotaxis protein I; hypothetical protein;Methyl-accepting chemotaxis protein II 6-phosphogluconolactonase putative protein; hypothetical hypothetical protein;HTH-type transcriptional regulator AcrR hypothetical protein

196	group_10655
195	group_2051
	group_2050
195	yraJ
195	group_1959
195	group_1887
195	group_1843
194	group_9124
194	group_7630
194	sqr
193	сорВ
193	copA_3~~~copA_2~~~copA_4~~~copA_5
102	
193	cusR_1~~~cusR_2~~~rcsC_7~~~cusR
	sasA_12~~~cusS~~~sasA_8~~~cusS_2~~~c
193	usS_1
	group_8066
192	P.odb_0000
192	group_6981
192	group_5464
192	group_1473
	group_901
191	cmpR_2
191	group_2062
191	group_1984
191	naiP 1~~~yjhB~~~naiP 2~~~naiP
	group_10934
	group_4385
	group_11788
	group_7113
	group_5015
_00	0
189	fecl_2
189	ttdB_2
189	group_3783

IS21 family transposase ISRso6 hypothetical protein hypothetical protein hypothetical protein;Outer membrane usher protein YraJ hypothetical protein hypothetical protein hypothetical protein Cystathionine beta-lyase PatB hypothetical protein hypothetical protein;Sulfidequinone reductase Copper resistance protein B Copper resistance protein A; hypothetical protein Transcriptional regulatory protein CusR;Sensor histidine kinase RcsC Adaptive-response sensory-kinase SasA;Sensor histidine kinase CusS; hypothetical protein hypothetical protein hypothetical protein; Vitamin B12 import ATP-binding protein BtuD hypothetical protein hypothetical protein hypothetical protein hypothetical protein;HTH-type transcriptional activator CmpR hypothetical protein putative HTH-type transcriptional regulator Putative niacin/nicotinamide transporter NaiP;Putative metabolite transport protein YjhB;hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein putative RNA polymerase sigma factor Fecl L(+)-tartrate dehydratase subunit beta hypothetical protein

```
189 pglA 2
188 copD
188 copC 1~~~copC 2~~~copC
187 dctA2_3~~~dctA2_2
187 pcaB 1~~~pcaB 2
187 dasR
186 group_11553
186 group 11097
186 group 10337
186 group 9442
185 group 6703
185 group_4022
185 rep 3
184 group 9260
184 group_9259
184 group 7171
184 group 1132
183 sutR 2~~~sutR 3~~~sutR 1~~~sutR 4
183 ttr
182 group_10911
182 group_4024
181 ompR 3
181 hopD2
181 group 4152
180 group_7631
180 nemA 3
180 group 4700
180 acuR
179 group_6094
179 group 8221
178 intA 1~~~intA 2
178 group 94
177 group_10997
177 group 6262
177 group 4839
177 group 3054
176 xerC 4~~~xerC 1
176 group_747
```

Polygalacturonase Copper resistance protein D Copper resistance protein C C4-dicarboxylate transport protein 2 3-carboxy-ciscis-muconate cycloisomerase HTH-type transcriptional repressor DasR hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein ATP-dependent DNA helicase Rep hypothetical protein hypothetical protein hypothetical protein 3'-5' exoribonuclease hypothetical protein;HTH-type transcriptional regulator SutR Acetyltransferase hypothetical protein hypothetical protein hypothetical protein;Transcriptional regulatory protein OmpR Effector protein hopD2 hypothetical protein hypothetical protein N-ethylmaleimide reductase hypothetical protein Transcriptional regulator AcuR; hypothetical protein hypothetical protein hypothetical protein Prophage integrase IntA hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein Tyrosine recombinase XerC; hypothetical protein hypothetical protein

		IS30 family transposase
		ISHar4; hypothetical protein; IS30
175	group_8175	family transposase ISHar5
175	group_4611	hypothetical protein
174	group_3211	hypothetical protein
		hypothetical protein;HTH-type
174	virS	transcriptional regulator VirS
		Putative ketoacyl
		reductase;hypothetical protein;3-
		phenylpropionate-
		dihydrodiol/cinnamic acid-
174	actIII~~~hcaB_2	dihydrodiol dehydrogenase
173	group_3182	hypothetical protein
		NADPH-ferredoxin reductase
		FprA;putative
		ferredoxin/ferredoxinNADP
173	fprA_2~~~fprA_1~~~fprB~~~fprA	reductase
173	moaA_2~~~moaA_3~~~moaA_1	GTP 3'8-cyclase
		putative dimethyl sulfoxide
		reductase chain YnfF;hypothetical
		protein;Putative dimethyl sulfoxide
170	1 mf = 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	reductase chain YnfE;Periplasmic nitrate reductase
173	ynfF~~~ynfE~~~napA_2	
173	fdxA	Ferredoxin-1
173	rhaR 1~~~rhaR 2	HTH-type transcriptional activator RhaR
		-
172	group_3731	hypothetical protein Heme/hemopexin transporter
172	hxuB	protein HuxB
171	group 1146	hypothetical protein
171	group_631	hypothetical protein
170		
	group_10040	hypothetical protein
170	group_8993	hypothetical protein hypothetical protein;Type IV
170	virB1	secretion system protein virB1
170	group_8076	hypothetical protein
170	group_6727	hypothetical protein
170	group_6725	hypothetical protein
170	group_5865	hypothetical protein
169	xerD 3~~~xerC 5~~~xerC 11	Tyrosine recombinase XerD;Tyrosine recombinase XerC
109	XelD_5 XelC_5 XelC_11	hypothetical protein;Chromosome
169	group_3024	partition protein Smc
168	group_3024 group_1156	hypothetical protein
168	group_1268	IS21 family transposase ISRso19
167	group_7876	hypothetical protein

167	group_11945	hypothetical protein hypothetical protein;2-amino-1-
		hydroxyethylphosphonate
166	phnZ	dioxygenase (glycine-forming)
166	group_7067	hypothetical protein
		putative HTH-type transcriptional
165	group 2944	regulator
		3-phenylpropionate-
		dihydrodiol/cinnamic acid-
		dihydrodiol
		dehydrogenase;hypothetical
		protein;NADP-dependent 3-hydroxy
165	hcaB_2~~~hcaB_1~~~ydfG_3	acid dehydrogenase YdfG
		Choline trimethylamine-
_		lyase;hypothetical protein;Trans-4-
164	cutC~~~pfID	hydroxy-L-proline dehydratase
164	group_1683	hypothetical protein
163	group_1532	hypothetical protein
163	group_1476	hypothetical protein
162	group_2243	hypothetical protein
162	group_2208	hypothetical protein
162	group_2197	hypothetical protein
		2-succinyl-6-hydroxy-24-
		cyclohexadiene-1-carboxylate
162	menH_3~~~menH_2~~~menH_4	synthase;hypothetical protein
162	group_2181	hypothetical protein
		hypothetical
		protein;DecarbamoyInovobiocin
162	novN_1	carbamoyltransferase
		hypothetical protein;4-
162	group 2163	hydroxyphenylalkanoate adenylyltransferase
162	group_2162	hypothetical protein
162	group_2141	hypothetical protein
162	group_2139	hypothetical protein ValinetRNA ligase;hypothetical
162	valS 2	protein
102	Val3_2	O-succinylhomoserine
162	metZ~~~metZ 1	sulfhydrylase;hypothetical protein
102	mete mete_r	Acyl-homoserine-lactone
162	anol_2~~~anol_1	synthase;hypothetical protein
		hypothetical protein; putative
162	ycaC_2	hydrolase YcaC
		Transcriptional activator protein
162	anoR_2~~~anoR_1	AnoR

162	dmlR_13~~~dmlR_19~~~dmlR_12	hypothetical protein;HTH-type transcriptional regulator DmlR 2-oxoglutarate dehydrogenase E1
162	sucA_2~~~sucA_3	component hypothetical protein;Methyl-
162	tar_7	accepting chemotaxis protein II
161	dmlR_18~~~dmlR_5~~~dmlR_10~~~cynR_ 2~~~dmlR_6~~~dmlR_2	HTH-type transcriptional regulator DmlR;HTH-type transcriptional regulator CynR;hypothetical protein hypothetical protein;2-succinyl-6- hydroxy-24-cyclohexadiene-1-
161	menH 2	carboxylate synthase
160	group_9896	hypothetical protein
160		hypothetical protein
159		hypothetical protein
159	group 6277	hypothetical protein
158	hchA~~~hchA 1	Protein/nucleic acid deglycase HchA
		hypothetical protein;2-keto-4-
158	ligJ	carboxy-3-hexenedioate hydratase
157	group_3228	hypothetical protein
157		hypothetical protein
157	group_3252	hypothetical protein
157	group_3233	hypothetical protein
157	group_3229	hypothetical protein
157	group_3218	hypothetical protein
156	group_3222	hypothetical protein
156	group_3570	hypothetical protein
		Multidrug resistance protein
		Stp;putative multidrug resistance
		protein EmrY;Multidrug export
455	stp~~~emrY_4~~~emrB_3~~~bmr3~~~stp	protein EmrB;Multidrug resistance
155	_2~~~stp_1~~~emrB_4	protein 3;hypothetical protein Haloalkane
		dehalogenase;Arylesterase;Putative
		aminoacrylate hydrolase
155	dhaA~~~dhaA_2~~~rutD_2	RutD;hypothetical protein
		Polyketide synthase PksJ;2-
		succinylbenzoateCoA
155	pksJ~~~menE_3~~~menE_4~~~menE_2	ligase;hypothetical protein
154	group_8974	hypothetical protein
		Type IV secretion system protein
154	virB9	virB9
154	group_8316	hypothetical protein
154	group_8137	Type IV secretion system protein VirB11

154	virB4_2~~~virB4
154	group_8077
154	group_7530
154	group_6687
154	virB8
	group_6194
154	group_5958
154	group_5957
1 - 1	vieDE
154	virB5
154	group_4321
154	group_3953
154	group_3435
	group_3434
	group_3431
154	group_3134
154	group_2512
153	group_6121
153	hipA_2
152	group_10318
152	cuyA
152	sotB_2
151	xerC_1
151 151	group_7894
151 151 151	group_7894 group_995
151 151 151 150	group_7894 group_995 group_1572
151 151 151	group_7894 group_995 group_1572 group_1677
151 151 151 150	group_7894 group_995 group_1572 group_1677 group_1197
151 151 151 150 150	group_7894 group_995 group_1572 group_1677
151 151 151 150 150 149	group_7894 group_995 group_1572 group_1677 group_1197
151 151 151 150 150 149 149	group_7894 group_995 group_1572 group_1677 group_1197 group_1299
151 151 150 150 149 149 148	group_7894 group_995 group_1572 group_1677 group_1197 group_1299 group_11290
151 151 150 150 149 149 148 148	group_7894 group_995 group_1572 group_1677 group_1197 group_1299 group_11290 group_10641
151 151 150 150 149 149 148 148 147	group_7894 group_995 group_1572 group_1677 group_1197 group_1299 group_11290 group_10641 group_7554
151 151 150 150 149 149 148 148 147 147	group_7894 group_995 group_1572 group_1677 group_1197 group_1299 group_1290 group_10641 group_7554 group_2858 group_7555
151 151 150 150 149 149 148 148 147 147 147	group_7894 group_995 group_1572 group_1677 group_1197 group_1299 group_11290 group_10641 group_7554 group_2858
151 151 150 150 149 149 148 148 147 147 147 146	group_7894 group_995 group_1572 group_1677 group_1197 group_1299 group_1290 group_10641 group_7554 group_2858 group_2858 group_10752 group_10258
151 151 150 150 149 149 148 148 147 147 147 146 146	group_7894 group_995 group_1572 group_1677 group_1197 group_1299 group_10641 group_7554 group_2858 group_7555 group_10752 group_10258 group_9300
151 151 150 150 149 149 148 148 147 147 147 146 146 146	group_7894 group_995 group_1572 group_1677 group_1197 group_1299 group_1290 group_10641 group_7554 group_2858 group_2858 group_10752 group_10258

Type IV secretion system protein virB4 hypothetical protein hypothetical protein hypothetical protein Type IV secretion system protein virB8; hypothetical protein hypothetical protein hypothetical protein hypothetical protein Type IV secretion system protein virB5 hypothetical protein Serine/threonine-protein kinase toxin HipA HTH-type transcriptional regulator GltC L-cysteate sulfo-lyase sugar efflux transporter hypothetical protein; Tyrosine recombinase XerC hypothetical protein hypothetical protein

	7050	
	group_7258	hypothetical protein
146	group_7163	hypothetical protein
		Putative deoxyribonuclease
145	rhsC 3~~~rhsD	RhsC;Protein RhsD;hypothetical protein
	_	
145	group_11777	hypothetical protein
145	group_6009	hypothetical protein
145	cacA 15	Adaptive-response sensory-kinase SasA
145	sasA_15 rssB 4	Regulator of RpoS
	—	
145	· · · ·	hypothetical protein
144		Flagellum-specific ATP synthase
144	group_3643	hypothetical protein
1 1 1	fliE 2~~~fliE 1	Flagellar hook-basal body complex
144	fliE_2~~~fliE_1	protein FliE Flagellar basal-body rod protein
144	flgC 2~~~flgC 1	FigC
	group_3626	hypothetical protein
	flgl_2~~~flgl_1	Flagellar P-ring protein
144		Flagellar L-ring protein
	group 3569	hypothetical protein
144		Flagellar basal-body rod protein FlgF
		Flagellar basal-body rod protein
144	flgG 2~~~flgG 3~~~flgG 1	FigG
144	flhA 1~~~flhA 2	Flagellar biosynthesis protein FlhA
144	flhB 1	Flagellar biosynthetic protein FlhB
	_	hypothetical protein;Flagellar
144	fliR_1	biosynthetic protein FliR
144	group_3096	hypothetical protein
		4-hydroxyphenylalkanoate
		adenylyltransferase;Putative fatty-
		acidCoA ligase FadD21;Long-chain-
		fatty-acidCoA ligase FadD23;Long-
143	group_582	chain-fatty-acidAMP ligase FadD30
143	group_551	hypothetical protein
		hypothetical protein;Phthiocerol
_		synthesis polyketide synthase type I
143	ppsA_2	PpsA
		hypothetical
		protein;Phthiocerol/phenolphthioce
143	nnsB	rol synthesis polyketide synthase type I PpsB
143	ppsB group 347	hypothetical protein
143	group_347	Linear gramicidin synthase subunit
143	lgrB~~~ppsE	B;hypothetical protein;Phthiocerol
1- 1 -5	1915 Ph2F	

```
143 pikAV~~~pikAV 2
142 group 5844
142 group 286
141 group 2103
141 group_7675
140 group 10366
140 group 9473
139 group_2516
139 group 2364
138 group_11617
138 group 11895
137 group 2104
137 group 2069
136 mshA 2~~~mshA 3~~~mshA 4
136 cya~~~cya 2~~~cya 1
135 group 1811
135 group_1521
135 group_1029
134 group_11638
134 group 10515
133 group 9987
133 group 9672
133 group 8880
133 group 6566
133 ttdB~~~ttdB_1~~~ttdB 2
132 mmgC 5
132 group 3051
132 yofA
131 group 2310
131 group 3410
130 group 7491
130 group_1844
129 sutR 3~~~sutR 4
129 rhtB 2~~~rhtB 3
```

synthesis polyketide synthase type I **PpsE Thioesterase PikA5** hypothetical protein D-inositol-3-phosphate glycosyltransferase; hypothetical protein hypothetical protein;Bifunctional hemolysin/adenylate cyclase hypothetical protein L(+)-tartrate dehydratase subunit beta hypothetical protein;Acyl-CoA dehydrogenase fadE12;Acyl-CoA dehydrogenase hypothetical protein HTH-type transcriptional regulator YofA; hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein;HTH-type transcriptional regulator SutR Homoserine/homoserine lactone efflux protein

128	group_4825
128	group_1932
128	group_7495
127	group_9159
127	group_8998
127	group_6994
127	group_6733
126	group_3385
126	group_11901
126	group_285
126	group_58
	group_11976
125	group_11735
125	group_11397
	0 1 -
125	soj_2~~~soj_1
125	group_10851
125	group_11975
125	group_11736
125	group_122
125	group_746
125	group_2810
125	
125	group_1750
	group_1445
	group_1475
	yqcF
	group_9151
	group_5443
124	group_3443
123	cnrA_2~~~cnrA_1~~~cnrA
123	cnrB
123	cnrC
	cnrH~~~cnrH_1
123	cnrR
123	cnrY
	group_5040
	group_7201
	group_2735
***	0.04P_2,00

hypothetical protein hypothetical protein hypothetical protein hypothetical protein Protein kinase Yegl hypothetical protein Serine/threonine-protein phosphatase 3 hypothetical protein Chromosome-partitioning ATPase Soj hypothetical protein Antitoxin YqcF hypothetical protein hypothetical protein Nickel and cobalt resistance protein CnrA Nickel and cobalt resistance protein CnrB Nickel and cobalt resistance protein CnrC RNA polymerase sigma factor CnrH Nickel and cobalt resistance protein CnrR Nickel and cobalt resistance protein CnrY hypothetical protein hypothetical protein hypothetical protein

121	group_2338	hypothetical protein
121	group_2989	hypothetical protein
121		hypothetical protein
120	group_371	hypothetical protein
120	group_302	hypothetical protein
119	group_8127	hypothetical protein
119	group_3913	hypothetical protein
118	group_10292	hypothetical protein
118	o 1 <u>–</u>	hypothetical protein
117	0 1 =	hypothetical protein
117	o 1 <u>–</u>	hypothetical protein
116	o 1 <u>–</u>	hypothetical protein
116	group_3053	hypothetical protein
		Multidrug resistance protein
446	mdtA_9~~~mdtA_4~~~mdtA_7~~~mdtA_3	MdtA;Cation efflux system protein
116	~~~cusB~~~mdtA_2	CusB
116	cusA~~~cusA_1~~~cusA_2	Cation efflux system protein CusA
116	group_2790	hypothetical protein
445		Transcriptional regulatory protein
115	creB	CreB
115	creC	Sensor protein CreC
115	are D	Inner membrane protein
115	creD	CreD; hypothetical protein
		hypothetical protein;Multidrug export protein EmrB;Multidrug
	emrB_1~~~stp~~~stp_1~~~emrB_3~~~md	resistance protein Stp;Putative
114	tD 1~~~mdtD 2~~~mdtD~~~emrB 5	multidrug resistance protein MdtD
114	group 3265	hypothetical protein
113	group_2884	hypothetical protein
	group_2829	hypothetical protein
		hypothetical protein
112	group_11001	Methyl-accepting chemotaxis
117	tar_2~~~tar_1	protein II
112	group 929	hypothetical protein
112	group_929	Outer membrane protein
		OprJ;Outer membrane protein
111	oprJ~~~oprM 7	OprM
	opis opim_/	3-phenylpropionate-
		dihydrodiol/cinnamic acid-
111	hcaB 3~~~hcaB 1~~~hcaB	dihydrodiol dehydrogenase
110		hypothetical protein
110		IS3 family transposase ISButh1
109	xerC 5~~~xerC 10	Tyrosine recombinase XerC
109		hypothetical protein
109	group_8992	hypothetical protein
103	group_0332	

109	group_8918
109	group_10003
109	ttuB_1~~~ttuB_2
109	group_8214
109	group_6154
108	group_2946
108	lrpC~~~lrpC_3~~~lrpC_2
108	hpd_2~~~lly~~~hpd_1
107	pgrR_5~~~pgrR_1
107	group_3364
107	group_3342
107	ycjY_1~~~ycjY
107	yvgN
	,
107	•
106	group_1558
106	group_1559
105	group_821
105	group_532
105	group_10664
	group_9516
105	group_7666
105	group_4996
105	group_3326
104	group_5833
104	group_1158
103	group_1464
103	group_1429
102	group_3505
102	group_3291
102	group_835
101	group_9433
101	group_6578
100	group_3289
100	group_2567
100	group_2573
99	group_89

hypothetical protein hypothetical protein Putative tartrate transporter hypothetical protein hypothetical protein hypothetical protein;RutC family protein YjgH hypothetical protein;HTH-type transcriptional regulator LrpC 4-hydroxyphenylpyruvate dioxygenase;hypothetical protein HTH-type transcriptional regulator PgrR hypothetical protein hypothetical protein putative protein YcjY;hypothetical protein putative oxidoreductase/MSMEI 2346;hypot hetical protein; Glyoxal reductase putative MFS-type transporter EfpA; hypothetical protein hypothetical protein

99	group_1168
98	group_7890
98	group_2161
98	group_2160
98	group_2144
98	clpP_1~~~clpP_2
98	group_2109
98	group_2077
97	group_3733
97	xerC_1~~~xerC_4
96	group_8220
96	group_3204
96	gltI_6~~~gltI_7
95	group_1180
95	group_1133
94	group_9545
94	group_6870
93	group_727
93	group_10458
92	group_10414
92	higB~~~higB_2
92	group_7682
92	group_2799
92	group_1712
92	group_1631
92	group_1161
92	group_1274
91	ccr~~~pikAll
91	group_4783
91	fabG_4~~~fabG_2
91	group_9456
90	group_14014
90	group_14012
89	group_2362
89	group_890

hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein ATP-dependent Clp protease proteolytic subunit hypothetical protein hypothetical protein hypothetical protein Tyrosine recombinase XerC; hypothetical protein hypothetical protein hypothetical protein Glutamate/aspartate import solutebinding protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein;Type I restriction enzyme EcoKI M protein hypothetical protein Endoribonuclease HigB hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein Crotonyl-CoA reductase;Narbonolide/10deoxymethynolide synthase PikA2 modules 3 and 4 hypothetical protein hypothetical protein;3-oxoacyl-[acyl-carrier-protein] reductase FabG hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein

89	group_10120
89	group_10268
89	group_8771
89	group_3809
89	group_7246
88	group_2824
88	group_1170
87	group_9938
87	group_838
86	group_508
86	group_552
86	group_11904
86	group_11633

```
86 epsE~~~hxcR 2
```

- 86 epsG~~~xcpT_3~~~xcpT_1~~~xcpT_2
 86 group 53
- sctC_6~~~sctC_7~~~sctC_4~~~sctC_5~~~s 86 ctC 8~~~sctC 2~~~sctC 1
- 86 xcpT_3~~~xcpT_5~~~xcpT_2~~~xcpT_4

```
86 epsF_5~~~epsF_4~~~epsF_3
```

- 85 dnaK_2~~~dnaK_1~~~dnaK_3~~~dnaK_4
- 85 group_2615
- 85 group_10361
- 85 groS
- 85 groL_2~~~groL_3
- 85 cynT
- 85 group_4330
- 85 group_2678
- 85 phrA_2~~~phrA
- 85 group_10900
- 85 group 10362
- 85 group 3335
- 85 group 3306
- 84 group 1833
- 84 group 1593
- 83 group 2105
- 83 group 2147

hypothetical protein hypothetical protein ATP-dependent zinc metalloprotease FtsH hypothetical protein hypothetical protein;Type II secretion system protein E; putative type II secretion system protein HxcR Type II secretion system protein G;hypothetical protein hypothetical protein Type 3 secretion system secretin; hypothetical protein Type II secretion system protein G;hypothetical protein Type II secretion system protein F Chaperone protein DnaK hypothetical protein hypothetical protein 10 kDa chaperonin 60 kDa chaperonin Carbonic anhydrase 1 hypothetical protein hypothetical protein Deoxyribodipyrimidine photo-lyase hypothetical protein hypothetical protein hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

275

		CRISPR system Cascade subunit
82	casD	CasD;hypothetical protein
82	group_11499	hypothetical protein
		CRISPR system Cascade subunit
82	casC	CasC
		CRISPR-associated endonuclease
		Cas1;CRISPR-associated
82	ygbT~~~ygbF~~~cas1	endoribonuclease Cas2
82	group_10999	hypothetical protein
00		hypothetical protein;CRISPR system
82	casA	Cascade subunit CasA
		CRISPR-associated endonuclease/helicase
82	удсВ	Cas3;hypothetical protein
81	group_9073	hypothetical protein
81	group 6894	hypothetical protein
01	B100b_0004	IS3 family transposase IS1416;IS3
80	group 2629	family transposase IS401
	0	IS3 family transposase ISBt3;IS3
80	group_2620	family transposase IS401
79	group_7003	hypothetical protein
79	group_9162	hypothetical protein
78	group_9644	hypothetical protein
78	group_10520	hypothetical protein
77	group_1839	hypothetical protein
77	group_2837	DNA-binding protein Bv3F
76	group_1836	hypothetical protein
76	group_3729	hypothetical protein
76	group_7310	hypothetical protein
75	group_2855	hypothetical protein
75	group_1076	hypothetical protein
74	group_10035	hypothetical protein
74	group_10498	hypothetical protein
		Enoyl-[acyl-carrier-protein]
74	fabl_1~~~fabl_2	reductase [NADH] Fabl
74	ackA	Acetate kinase
74	pta	Phosphate acetyltransferase
74	group_3756	hypothetical protein
74	group_3156	hypothetical protein
74	group_9584	hypothetical protein
74	group_2115	hypothetical protein
74	group_11506	hypothetical protein
74	group_10199	hypothetical protein
74	group_9022	hypothetical protein
74	yecD~~~yecD_2~~~yecD_1	Isochorismatase family protein YecD

		hypothetical protein;Nodulation
74	nopX	outer protein X
74	group_1766	hypothetical protein
		putative transporter
		YycB;hypothetical protein;2-
74	yycB~~~nimT	nitroimidazole transporter
74	group_9765	hypothetical protein
74	group_7240	hypothetical protein
74	group_7239	hypothetical protein
74	group_2706	hypothetical protein
		HTH-type transcriptional activator
		CmpR;hypothetical protein;HTH-
74	cmpR_1~~~cmpR_3~~~cmpR_2~~~hdfR_1	type transcriptional regulator HdfR
74	group_7567	Outer membrane protein TolC
74	group_691	hypothetical protein
74	group_290	hypothetical protein
74	group_262	hypothetical protein
74	group_81	putative glycosyltransferase
74	group_11917	hypothetical protein
		putative FMNH2-dependent
74		monooxygenase SfnC;hypothetical
74	sfnC	protein
74	group_11049	hypothetical protein
74	group_11005	hypothetical protein
74	argE_2~~~argE_3	Acetylornithine deacetylase
74	group_10386	queuosine precursor transporter
71		Transcriptional regulatory protein
74 74	qseB_2~~~qseB_3	QseB
	phaB_1~~~phaB_2	Acetoacetyl-CoA reductase
74	group_9923	hypothetical protein Glutarate-semialdehyde
74	davD_2~~~davD_1	dehydrogenase
/ 4		Adaptive-response sensory-kinase
74	sasA 3~~~sasA 16~~~sasA 5~~~sasA 12	SasA
74	group 9301	hypothetical protein
	0h	scyllo-inositol 2-dehydrogenase
74	iolX	(NAD(+))
		5-methylphenazine-1-carboxylate 1-
74	phzS	monooxygenase
		Alpha-D-ribose 1-
		methylphosphonate 5-triphosphate
74	phnM	diphosphatase
74	group_5101	hypothetical protein
		Hydrogen peroxide-inducible genes
74	oxyR_2	activator;hypothetical protein

74	group 2106	hypothetical protein
	group_2196	hypothetical protein
74	group_2100	hypothetical protein Negative regulator of SacY
74	sacX_2~~~sacX_1~~~sacX	activity;hypothetical protein
74	Sack_2 Sack_1 Sack	
74	corP	hypothetical protein;Sucrose-6-
	scrB	phosphate hydrolase
74	lamB	Maltoporin; hypothetical protein
74	group_1051	hypothetical protein
74	scrK	Fructokinase
		Benzoate 12-dioxygenase electron
		transfer component; hypothetical
74	benC	protein
		hypothetical protein;3-alpha-
		hydroxycholanate dehydrogenase
		(NADP(+));putative
		oxidoreductase;Oxidoreductase
	baiA~~~fabG2~~~ucpA_2~~~ucpA_1~~~ba	UcpA;Dihydroanticapsin 7-
74	cC_1	dehydrogenase
		3-alpha-hydroxycholanate
		dehydrogenase (NADP(+));3-
		oxoacyl-[acyl-carrier-protein]
		reductase FabG;1-deoxy-11-beta-
		hydroxypentalenate
		dehydrogenase;hypothetical protein;3-phenylpropionate-
	baiA~~~fabG 5~~~ptlF~~~hcaB 1~~~baiA	dihydrodiol/cinnamic acid-
74		dihydrodiol dehydrogenase
74		hypothetical protein;Arabinose
74	araG_2~~~araG	import ATP-binding protein AraG
	cusB_3~~~cusB~~~cusB_2	Cation efflux system protein CusB
		Tyrosine recombinase
74	xerC 4~~~xerC 7~~~xerC 1~~~xerC 5	XerC;hypothetical protein
74	group_2201	hypothetical protein
		hypothetical protein;IS5 family
		transposase IS1421;Catabolite
		control protein A;HTH-type
74	ccpA_3~~~purR_1~~~ccpA_1	transcriptional repressor PurR
74	group_1412	hypothetical protein
74	group_576	hypothetical protein
74		hypothetical protein
74	group_487	hypothetical protein
74	group 435	hypothetical protein
-		Cobalt-zinc-cadmium resistance
74	czcA_6~~~czcA_4	protein CzcA
74	group 219	hypothetical protein
		,, , , , , , , , , , , , , , , , , , ,

74 bamA 2~~~bamA 1 74 group_65 74 group 11979 74 iolE 74 thpA 74 iolB 74 group 11405 74 group_11253 74 group 10866 74 idhA~~~iolG 2 74 doxA 74 group 9984 74 cbdA 74 murR 2~~~murR 1 74 group 8864 74 catA 74 cbdB 74 and Aa 74 catB 74 catC 74 benM~~~benM_1 74 argC 3~~~argC 2~~~argC 1 74 group 1972 74 group 934 74 iolC 74 rbsC 1~~~rbsC 2 74 iolD 74 group_8239 74 group 2619 74 group 2583 74 group 2082

hypothetical protein;Outer membrane protein assembly factor BamA hypothetical protein **Ribose import ATP-binding protein** RbsA Inosose dehydratase D-threitol-binding protein 5-deoxy-glucuronate isomerase hypothetical protein hypothetical protein hypothetical protein Inositol 2-dehydrogenase; Myoinositol 2-dehydrogenase Naphthalene 12-dioxygenase system ferredoxin component hypothetical protein 2-halobenzoate 12-dioxygenase large subunit HTH-type transcriptional regulator MurR hypothetical protein Catechol 12-dioxygenase 2-halobenzoate 12-dioxygenase small subunit Anthranilate 12-dioxygenase system ferredoxin--NAD(+) reductase component Muconate cycloisomerase 1 Muconolactone Delta-isomerase HTH-type transcriptional regulator BenM N-acetyl-gamma-glutamylphosphate reductase hypothetical protein hypothetical protein 5-dehydro-2-deoxygluconokinase hypothetical protein; Ribose import permease protein RbsC 3D-(35/4)-trihydroxycyclohexane-12-dione hydrolase hypothetical protein hypothetical protein hypothetical protein hypothetical protein

		ADC there are a star a last and in a last
		ABC transporter glutamine-binding protein GlnH;Membrane-bound
		lytic murein transglycosylase
74	glnH_2~~~mltF_2~~~glnH_3	F;hypothetical protein
, ,	8	hypothetical protein; putative
		glutamine ABC transporter
74	glnM_2	permease protein GlnM
		Octopine transport system
74	occM	permease protein OccM
		Vitamin B12 import ATP-binding
		protein BtuD;Glutamine transport
		ATP-binding protein
- 4		GlnQ;hypothetical protein;L-cystine
74	btuD_9~~~glnQ_5~~~tcyC_2~~~tcyC_1	import ATP-binding protein TcyC
		CRP-like cAMP-activated global transcriptional regulator;7-carboxy-
74	crp~~~queE_2~~~queE_1	7-deazaguanine synthase
74	group 3624	hypothetical protein
, ,	8.04 <u>2</u> -002.1	hypothetical protein;Anaerobic
		ribonucleoside-triphosphate
74	nrdD	reductase
		hypothetical protein;putative
		nitrate transporter NarT;Nitrate
74	narT~~~nasA_2~~~nasA_1	transporter
- 4	<u>_</u>	hypothetical protein;Respiratory
74	narG	nitrate reductase 1 alpha chain
74	degU	Transcriptional regulatory protein DegU
74	yihG	putative acyltransferase YihG
74	group_3126	hypothetical protein
74	Bloch-2150	HTH-type transcriptional regulator
	argP_2~~~pgrR_3~~~pgrR_4~~~pgrR_2~~~	ArgP;HTH-type transcriptional
74	pgrR_1~~~pgrR_5	regulator PgrR
74	group_11160	hypothetical protein
74	yhbU	putative protease YhbU
74	group_3650	hypothetical protein
74	group_3642	hypothetical protein
74	group_3640	hypothetical protein
74	narK	Nitrate/nitrite transporter NarK
		hypothetical protein;putative
74	group_3325	oxidoreductase
74	group_3119	hypothetical protein
74	group E20	putative protein;hypothetical
74	group_529	protein putative protein;hypothetical
74	group_503	protein
77	0.0%P_000	protein

74	group_467	hypothetical protein
		NADP/NAD-dependent aldehyde
		dehydrogenase PuuC;hypothetical
74	puuC~~~puuC_1~~~puuC_2	protein
74	group_10101	hypothetical protein
		4-methylaminobutanoate oxidase
74	abo_1~~~abo_2	(formaldehyde-forming)
		Hydrogen cyanide synthase subunit
74	hcnB_2~~~hcnB	HcnB
		Glyoxylate/hydroxypyruvate
74	ghrA_2~~~ghrA_1	reductase A
74	group_6891	hypothetical protein
		Putrescinepyruvate
74	spuC_2~~~spuC_1~~~spuC	aminotransferase
		Leucine-responsive regulatory
74	lrp_5	protein
		Respiratory nitrate reductase 1 beta
74	narH	chain
74	group_3544	hypothetical protein
		Respiratory nitrate reductase 1
74	narl	gamma chain
		Molybdopterin-guanine
74	mah D 2	dinucleotide biosynthesis adapter
74	mobB_2	protein
74	narX	Nitrate/nitrite sensor protein NarX
74	group_953	hypothetical protein
74	group_623	hypothetical protein
		hypothetical protein;Hippurate
74	hipO_3~~~hipO_1	hydrolase
74	group_565	hypothetical protein
74	group_228	hypothetical protein
74	group_10541	hypothetical protein
74	glpE_3~~~glpE_2~~~glpE_1	Thiosulfate sulfurtransferase GlpE
74	metC_2~~~metC_3~~~metC_1	Cystathionine beta-lyase
74	group_3028	hypothetical protein
		hypothetical protein;HTH-type
74	sgrR	transcriptional regulator SgrR
		Gamma-glutamylputrescine
74	puuB_2~~~puuB_3	oxidoreductase
74	group_11465	hypothetical protein
		Proline/betaine
74	proP_3~~~proP_1	transporter; hypothetical protein
74	group_1961	hypothetical protein
		Glutathione import ATP-binding
74	gsiA_2	protein GsiA
74	group_251	hypothetical protein

		Glutathione transport system
74	gsiC_3~~~gsiC_2	permease protein GsiC
74	infA_2~~~infA_3	Translation initiation factor IF-1
		Aspartate
		aminotransferase; hypothetical
74	aspC_3~~~aspC_2	protein
		Dihydroanticapsin 7-
		dehydrogenase;Galactitol 2-
74	bacC_2~~~gdh	dehydrogenase
74	cefD_2~~~cefD	Isopenicillin N epimerase
74	group_3328	hypothetical protein
74	TDO2_1~~~TDO2_2~~~TDO2	Tryptophan 23-dioxygenase
74	group_3105	hypothetical protein
74	group_183	hypothetical protein
74	group_2701	hypothetical protein
		Glycerol-3-phosphate regulon
		repressor; hypothetical protein; HTH-
74	glpR_1~~~glcR	type transcriptional repressor GlcR
		3-oxoacyl-[acyl-carrier-protein]
		reductase FabG1;3-oxoacyl-[acyl-
74	fabG1~~~fabG_8	carrier-protein] reductase FabG
-		Phosphatidylserine decarboxylase
74	psd_2~~~psd_1	proenzyme
74	group_602	hypothetical protein
74	adh Davaadh D. D	HTH-type transcriptional regulator CdhR
74 74	cdhR~~~cdhR_2	
74	group_11852	hypothetical protein
74	group_3159	hypothetical protein
74	group_10883	hypothetical protein
74	dmlR_17~~~dmlR_4~~~dmlR_6~~~dmlR_3 ~~~dmlR_9	HTH-type transcriptional regulator DmIR
		Drug efflux pump JefA;Multidrug
74	jefA_2~~~stp~~~jefA	resistance protein Stp
74	group_9649	hypothetical protein
74	group_7045	hypothetical protein
74	group_1446	hypothetical protein
74	group_597	hypothetical protein
74	group_2157	hypothetical protein
74	group_3535	hypothetical protein
74	tam_1~~~tam_2	Trans-aconitate 2-methyltransferase
74	group_3421	hypothetical protein
74	group_1624	hypothetical protein
74	group_1080	hypothetical protein
74	group_2780	hypothetical protein
74	group_1711	hypothetical protein

```
74 group 1668
74 group 1343
74 group_10522
74 amiD
74 group_2848
74 cycA
74 group 2690
74 group 1399
74 group 10725
74 gcvA_2~~~gcvA_1~~~gcvA_4~~~gcvA_3
74 group_9148
74 argO 2~~~argO 1
74 group 8039
74 group 7417
74 yafQ
74 dapA 1~~~dapA 5
74 adh1~~~adhB
74 pdxA 2~~~pdxA 1
74 putP 2~~~putP 1
74 group_2713
74 kimA
74 group 2175
74 group 12038
74 group 11460
74 tsaR~~~argP 2~~~cynR 4
74 group 10661
74 group 10185
74 group 10039
74 dapA 2~~~dapA 4~~~dapA 1
```

```
74 group 8327
```

hypothetical protein hypothetical protein hypothetical protein N-acetylmuramoyl-L-alanine amidase AmiD; hypothetical protein hypothetical protein D-serine/D-alanine/glycine transporter; hypothetical protein hypothetical protein hypothetical protein hypothetical protein Glycine cleavage system transcriptional activator hypothetical protein Arginine exporter protein ArgO Inner membrane protein YbiR hypothetical protein hypothetical protein;mRNA interferase toxin YafQ 4-hydroxy-tetrahydrodipicolinate synthase Long-chain-alcohol dehydrogenase 1;Alcohol dehydrogenase 2 4-hydroxythreonine-4-phosphate dehydrogenase High-affinity proline transporter PutP;hypothetical protein hypothetical protein hypothetical protein;Potassium transporter KimA hypothetical protein hypothetical protein hypothetical protein HTH-type transcriptional regulator TsaR;HTH-type transcriptional regulator ArgP;hypothetical protein;HTH-type transcriptional regulator CynR hypothetical protein hypothetical protein hypothetical protein 4-hydroxy-tetrahydrodipicolinate synthase hypothetical protein

		hypothetical protein;HTH-type
74	cmpR_3~~~cmpR_2	transcriptional activator CmpR
		NADH dehydrogenase;Protein
		DrgA;hypothetical protein;malonic
74	nox~~~drgA~~~rutE_2	semialdehyde reductase RutE
		Branched-chain-amino-acid
74	ilvE_2	aminotransferase
		HTH-type transcriptional regulator
74	dmlR_12~~~dmlR_11	DmlR;hypothetical protein
74	group_7070	hypothetical protein
74	group_6217	hypothetical protein
74	kynB_1~~~kynB_2	Kynurenine formamidase
		Adaptive-response sensory-kinase
74	sasA_14~~~sasA_13~~~sasA_12	SasA;hypothetical protein
74	group_9931	hypothetical protein
74	group_9273	hypothetical protein
74	group_9195	hypothetical protein
74	group_9025	hypothetical protein
74	group_7204	hypothetical protein
74	group_7199	hypothetical protein
74	group_7083	hypothetical protein
74	group_6779	hypothetical protein
74	group_6296	hypothetical protein
74	group_5907	hypothetical protein
74	group_3324	hypothetical protein
74	group_2146	hypothetical protein
74	group_2133	hypothetical protein
		Putative FAD-dependent
74	lodB	oxidoreductase LodB
		putative deoxyribonuclease
	rhsB_1~~~rhsA_2~~~rhsB_2~~~rhsA_1~~~	RhsB;putative deoxyribonuclease
74	rhsB~~~rhsA	RhsA;hypothetical protein
74	group_6334	hypothetical protein
74	group_1577	hypothetical protein
74	group_11656	hypothetical protein
74	group_8865	hypothetical protein
		Methyl-accepting chemotaxis
74	tar_2	protein II;hypothetical protein
74	group_6558	hypothetical protein
		Aconitate/2-methylaconitate
74	citB	hydratase
74	mdtC_4~~~mdtC_5~~~mdtC_2	Multidrug resistance protein MdtC
		Multidrug resistance protein
		MdtA;Toluene efflux pump
74	mdtA_7~~~mdtA_3~~~ttgA	periplasmic linker protein TtgA

```
74 ddl_2
74 group_1772
74 group_1263
74 group_12041
74 group_12000
```

```
74 hmuV~~~btuD_5
74 prpC_2~~~prpC_1
74 group_9849
74 group_9196
74 group_7167
```

- 74 group_6709 74 group 6068
- 74 sutR 2
- 74 czcA_1~~~czcA_2~~~czcA_3
- 74 mdtA_4~~~mdtA_3~~cusB_1
 74 oprM_3~~oprM_2
 74 group_1290
 74 group_1137
 74 group_753
 74 group_11849
 74 adh_1~~~adhT~~~adh_3
 74 group_10671
 74 dmlR_2~~~dmlR_4~~~dmlR_9~~~dmlR_8
 74 baiA~~~baiA_1~~~baiA_3
 74 group_8119
 74 group_8093
 74 group_7608
 74 group_5963
 74 group_5926

74 adhC2

D-alanine--D-alanine ligase hypothetical protein hypothetical protein hypothetical protein hypothetical protein Hemin import ATP-binding protein HmuV; hypothetical protein; Vitamin B12 import ATP-binding protein BtuD 2-methylcitrate synthase hypothetical protein hypothetical protein hypothetical protein 2-amino-3-ketobutyrate coenzyme A ligase putative epimerase/dehydratase HTH-type transcriptional regulator SutR Cobalt-zinc-cadmium resistance protein CzcA Multidrug resistance protein MdtA;Cation efflux system protein CusB Outer membrane protein OprM hypothetical protein hypothetical protein hypothetical protein hypothetical protein Alcohol dehydrogenase; hypothetical protein hypothetical protein HTH-type transcriptional regulator DmIR; hypothetical protein 3-alpha-hydroxycholanate dehydrogenase (NADP(+)) hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein;NADPdependent alcohol dehydrogenase C 2

```
74 moeZ
74 mec
74 cysO 1~~~cysO
74 frc 2
74 trsA
74 bbsG
74 group 3587
74 group_3586
74 group 3513
74 btuB 4~~~btuB 2
74 group 2729
74 creB~~~rssB 2
74 group 1148
74 group_873
74 group_11995
74 mdtA 2~~~mdtA 7
74 group_11610
74 group 11448
74 group_9467
74 cpdA_3~~~cpdA_2~~~cpdA_4~~~cpdA_1
74 group_1746
74 group 1472
   dmlR 9~~~dmlR 19~~~dmlR 14~~~dmlR
74 4
74 yhcG 1~~~yhcG~~~yhcG 2
74 ttuD_2~~~ttuD_1
74 nemA 2~~~nemA 1
74 group 8082
74 group_7545
74 group 7535
74 group 7161
74 azoR
74 group 6287
74 group 6030
74 group 5401
```

putative adenylyltransferase/sulfurtransferas e MoeZ CysO-cysteine peptidase Sulfur carrier protein CysO Formyl-CoA:oxalate CoA-transferase Triostin synthetase I (R)-benzylsuccinyl-CoA dehydrogenase hypothetical protein hypothetical protein hypothetical protein Vitamin B12 transporter BtuB hypothetical protein Transcriptional regulatory protein CreB;Regulator of RpoS hypothetical protein hypothetical protein hypothetical protein hypothetical protein;Multidrug resistance protein MdtA hypothetical protein Cobalt-zinc-cadmium resistance protein CzcA hypothetical protein 3'5'-cyclic adenosine monophosphate phosphodiesterase CpdA hypothetical protein hypothetical protein HTH-type transcriptional regulator DmlR Putative nuclease YhcG;hypothetical protein Putative hydroxypyruvate reductase N-ethylmaleimide reductase hypothetical protein hypothetical protein hypothetical protein hypothetical protein FMN-dependent NADHazoreductase hypothetical protein hypothetical protein hypothetical protein

74	group_3648	hypothetical protein
	0 1	putative methyltransferase
74	ycgJ	YcgJ;hypothetical protein
74	group_11955	hypothetical protein
74	group_10271	hypothetical protein
74	group 6525	hypothetical protein
74	group_11080	hypothetical protein
74	group 9925	hypothetical protein
74	group 9511	hypothetical protein
, ,	8.000_0011	Haloalkane dehalogenase;Cis-3-
		alkyl-4-alkyloxetan-2-one
74	dhmA~~~oleB	decarboxylase;hypothetical protein
		Putative cytochrome P450
74	ујіВ	YjiB;hypothetical protein
		Putative cytochrome P450
		120;Pentalenene
74	ptll	oxygenase;hypothetical protein
		Vitamin B12 import system
		permease protein BtuC;Hemin
		transport system permease protein
74	btuC~~~hmuU~~~btuC_2	HmuU
74	group_9763	hypothetical protein
		PCP degradation transcriptional
74	pcpR_6~~~pcpR_5~~~pcpR_7	activation protein
74		HTH-type transcriptional regulator
74	gltR_2	GltR
74	group_6206	hypothetical protein
		hypothetical protein;Polyketide
		synthase PksR;Polyketide synthase PksM;Polyketide synthase
	pksR~~~pksM~~~pksM_3~~~pksN~~~pksL	PksN;Polyketide synthase PksL;3-
74	_1~~~fadA_2~~~pksL~~~fadA_3	ketoacyl-CoA thiolase
, -	acpP_4~~~acpP_3~~~acpP_1~~~pksL_1~~	Acyl carrier protein;hypothetical
74	~acpP 2	protein;Polyketide synthase PksL
74	group_513	hypothetical protein
74	group 222	hypothetical protein
	0	3-ketoacyl-CoA thiolase Fadl;3-
74	fadl	ketoacyl-CoA thiolase
		hypothetical protein;Non-
74	ku	homologous end joining protein Ku
		Polyketide synthase PksL;Polyketide
		synthase PksN;Polyketide synthase
74	pksL~~~pksL_2~~~pksN~~~pksJ~~~pksR	PksJ;Polyketide synthase PksR
		hypothetical protein;Polyketide
74	baeD	biosynthesis acyltransferase BaeD
74	group_12009	hypothetical protein

```
74 higB
74 chrA1 2~~~chrA1 1
74 group 6819
74 group_5797
74 group 1823
74 group 10270
74 group 8166
74 group 7990
74 group 7925
74 ligD 2~~~ligD 1~~~ligD
74 group 3739
74 group 2178
74 group 1479
74 group 11857
74 group 10446
74 rtcB 1
74 group 8397
74 pqiB 2~~~pqiB 3
74 group_7824
74 group 7561
74 group 5796
74 group 4421
74 group 3873
74 cmoM~~~cmoM 1
74 COQ5 3~~~COQ5 2~~~COQ5 1
74 group 2937
74 group 2348
74 fliY 1~~~fliY 3
74 glnM 1~~~glnM 3~~~glnM 2
74 metXA 2~~~metXA 1
74 group 9914
74 group 9468
74 group 9444
74 group 8991
```

hypothetical protein;mRNA interferase HigB Chromate transport protein; hypothetical protein Multifunctional non-homologous end joining protein LigD hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein; RNA-splicing ligase RtcB Cardiolipin synthase; hypothetical protein;Cardiolipin synthase B Intermembrane transport protein PaiB hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein tRNA 5-carboxymethoxyuridine methyltransferase;hypothetical protein 2-methoxy-6-polyprenyl-14benzoquinol methylase mitochondrial hypothetical protein hypothetical protein L-cystine-binding protein FliY putative glutamine ABC transporter permease protein GlnM Homoserine O-acetyltransferase hypothetical protein hypothetical protein hypothetical protein hypothetical protein

74	group 8028	hypothetical protein
/ 4	group_0020	NAD(P) transhydrogenase subunit
74	pntB 2	beta
		hypothetical protein;HTH-type
		transcriptional regulator MetR;HTH-
74	metR_2~~~argP_2	type transcriptional regulator ArgP
74	group_5951	hypothetical protein
74	group_401	hypothetical protein
74	group_47	hypothetical protein
74	group_9244	hypothetical protein
74	group_6309	hypothetical protein
74	group_5891	hypothetical protein
74	group_1628	hypothetical protein
74	group_663	hypothetical protein
74	group_9858	hypothetical protein
74	group_9101	hypothetical protein
74	group_6587	hypothetical protein
		HTH-type transcriptional activator
74	rhaS_3~~~rhaS_2~~~rhaS_4	RhaS;hypothetical protein
74	group_9878	hypothetical protein
74	group_9528	hypothetical protein
74	group_8100	hypothetical protein
74	group_7789	hypothetical protein
74	group_6902	hypothetical protein
74	group_4957	hypothetical protein
		hypothetical protein;IS5 family
74	group_2557	transposase ISAzo11
74	licC	hypothetical protein;Lichenan
74 74		permease IIC component hypothetical protein
	group_10697	,, ,
74 74	group_3282	hypothetical protein
74	group_3003	hypothetical protein hypothetical protein;Putative
		oxidoreductase SadH;3-
		phenylpropionate-
		dihydrodiol/cinnamic acid-
		dihydrodiol dehydrogenase;Baeyer-
74	sadH~~~hcaB_2	Villiger monooxygenase
74	group_9830	hypothetical protein
74	group_8343	hypothetical protein
74	group_2835	hypothetical protein
		ECF RNA polymerase sigma factor
74	sigJ	SigJ
74	group_10972	hypothetical protein
74	group_10847	hypothetical protein

74 74 74 74 74 74 74 74	group_9416 group_9393 group_9387 group_8730 group_8167 group_7689 group_7268 group_7262
74	decR_4~~~lrp_4
74	dhaA~~~dhaA_1
74	group_6423
74	group_6293
74	phnX
74	group_5814
74	hdfR_3~~~hdfR_4
74	group_4494
74	group_4115
74	group_1727
74	group_10341
74	group_10299
74	group_8420
74	group_8189
74	group_7278
74	group_6271
74	group_5920
74	maoA~~~tynA
74	
74 74	nicB group 4465
74 74	group_4465
	group_858
74	group_12043 group_12042
/4	group_12042
74	ligJ_2~~~ligJ_1~~~ligJ
74	proA_2
74	group_11387
74	group_11307 group_10327
<i>,</i> r	0.00P_1002,

hypothetical protein **DNA-binding transcriptional** activator DecR;Leucine-responsive regulatory protein Haloalkane dehalogenase hypothetical protein hypothetical protein;Leucine efflux protein Phosphonoacetaldehyde hydrolase hypothetical protein HTH-type transcriptional regulator HdfR hypothetical protein hypothetical protein;Putative thymidine phosphorylase hypothetical protein hypothetical protein Primary amine oxidase 6-hydroxy-3-succinoylpyridine 3monooxygenase HspA;hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein 2-keto-4-carboxy-3-hexenedioate hydratase 4-hydroxy-4-methyl-2-oxoglutarate aldolase/4-carboxy-4-hydroxy-2oxoadipate aldolase hypothetical protein hypothetical protein

		hypothetical protein;2-
	yabJ_2~~~yabJ_4~~~yabJ_5~~~yabJ_1~~~	iminobutanoate/2-iminopropanoate
74	yabJ 3	deaminase
	, _	RNA polymerase-binding
74	dksA_2~~~dksA_1	transcription factor DksA
74	group_8048	hypothetical protein
74	group_6377	hypothetical protein
74	group_6215	hypothetical protein
74	group_5799	hypothetical protein
74	group_5328	hypothetical protein
74	group_3534	hypothetical protein
74	group_1859	hypothetical protein
74	group_619	hypothetical protein
		HTH-type transcriptional regulator
74	hdfR_4~~~hdfR_3	HdfR
		(4E)-oxalomesaconate Delta-
74	ligU	isomerase
74	group_11449	hypothetical protein
74	aqpZ_2~~~aqpZ~~~aqpZ_1	Aquaporin Z
74	group_3121	hypothetical protein
74	group_2659	hypothetical protein
74	group_2604	hypothetical protein
74	group_1640	hypothetical protein
		23-dihydroxyphenylpropionate/23-
74		dihydroxicinnamic acid 12-
74	mhpB	dioxygenase
74	group_10524	hypothetical protein
74	group_10409	hypothetical protein
	nodD2_2	Nodulation protein D 2
74	group_8745	hypothetical protein
74	group_8354	hypothetical protein
74	group_8353	hypothetical protein
74	group_8277	hypothetical protein
74	group_7680	hypothetical protein
74	group_6968	hypothetical protein
74	group_6478	hypothetical protein
74	group_6477	hypothetical protein
74	group_6248	hypothetical protein
74	arsC_3~~~arsC_2~~~arsC	Arsenate reductase
74	cadl~~~cadl_1	Cadmium-induced protein Cadl
74	group_3677	hypothetical protein
74	group_3125	hypothetical protein
74	group_2738	hypothetical protein

74	group_7
74	group_11876
74	uppP_2
74	group_2853
74	group_905
74	group_9720
74	group_8094
74	group_7902
74	group_5986
74	group_5909
74	group_4273
74	group_3649
74	mdtA_1
74	group_1301
74	group_1010
74	group_465
74	group_425
74	dadA_1~~~dadA_4~~~dadA_3
74	group_10834
74	group_10462
74	group_10370
74	plcB~~~plcC
74	group_9847
74	group_9567
	group_9392
74	group_8812
, ,	8.00p_0012
74	desVI
74	group_7781
74	group_7528
74	group_7480
74	group_7364
74	group_7269
74	group_7236
74	group_7234
74	group_7214
74	group_6882
74	group_6562
74	group_6507
74	group_6506
•	U - F

hypothetical protein; Putative antitoxin VapB45 hypothetical protein Undecaprenyl-diphosphatase hypothetical protein Multidrug resistance protein MdtA hypothetical protein hypothetical protein hypothetical protein hypothetical protein D-amino acid dehydrogenase hypothetical protein HTH-type transcriptional activator CmpR hypothetical protein Phospholipase C 2; hypothetical protein; Phospholipase C 3 hypothetical protein hypothetical protein hypothetical protein hypothetical protein dTDP-3-amino-346-trideoxy-alpha-D-glucopyranose hypothetical protein hypothetical protein; IS5 family transposase IS1421 hypothetical protein hypothetical protein

74 74 74 74 74 74	group_4077 group_3894
74 74	group_2640
74 74	• • •
	group_2035 inhA_2
74 74	_
/4	group_337
74	dadA1_2~~~dadA_3~~~thiO
74	yabJ_5~~~yabJ_4
74	aam
74	
74 74	proP_4~~~ousA~~~proP_5
74 74	group_562
74 74	• • • =
74 74	group_6853
74 74	• · · =
74 74	
74 74	group_3498 group_3483
74 74	group_3072
74	group_1962
74	group_1888
74	group_1723
74	group_1387
74	group_1103
74	group_255
74	group_11323
74	group_10832
74	group_10194
74	group_10093
74	group_9831
74	group_9429
74	group_9183
74	group_7991

hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein; Toxin CdiA IS3 family transposase ISRso10;IS3 family transposase ISButh1 hypothetical protein hypothetical protein Isonitrile hydratase hypothetical protein D-amino acid dehydrogenase 1;Damino acid dehydrogenase;Glycine oxidase 2-iminobutanoate/2iminopropanoate deaminase; hypothetical protein Acylamidase Proline/betaine transporter;Glycine betaine/proline/ectoine/pipecolic acid transporter OusA hypothetical protein hypothetical protein hypothetical protein hypothetical protein Arsenate reductase hypothetical protein Putative universal stress protein hypothetical protein

74 group_6825 74 group_6824 74 group_5935 74 group_4444 74 group_4344 74 aioA 74 aioB 74 aioA 74 aioA 74 aioA 74 aioA 74 aioB 74 aioB 74 aioA 74 aioB 74 aioA 74 aioB 74 aioB 74 aioA 74 aioB 74 group_2176 74 group_10971 74 group_1005 74 group_10005 74 group_5956 74 group_2321 74 group_2032 74 group_10902 74 group_10902 74 group_9705 74 group_9730 74 group_7672 74 group_7408 74 grou	74	dmlA~~~dmlA 1~~~dmlA 3
74 group_6824 74 group_5935 74 group_4444 74 group_4344 74 aioA 74 aioB 74 aioB 74 group_2176 74 group_10971 74 group_10971 74 group_10585 74 group_10340 74 group_10340 74 group_10340 74 group_10340 74 group_10340 74 group_10055 74 group_10340 74 group_10340 74 group_10340 74 group_10340 74 group_10340 74 group_10005 74 group_101059 74 group_2032 74 group_10509 74 group_9775 74 group_9730 74 group_7683 74 group_7267 74 group_7228 74 group_5127 <td< td=""><td></td><td></td></td<>		
74 group_6802 74 group_4444 74 group_4344 74 aioA 74 aioB 74 aioB 74 group_2176 74 group_10971 74 group_10971 74 group_10340 74 group_10340 74 group_1005 74 group_10340 74 group_10340 74 group_1005 74 group_10005 74 group_10005 74 group_10005 74 group_10005 74 group_10005 74 group_2821 74 group_10902 74 group_10092 74 group_10159 74 group_9307 74 group_7672 74 group_7672 74 group_728 74 group_728 74 group_727 74 group_728 74 group_72767 74 <td></td> <td></td>		
74 group_5935 74 group_4344 74 aioA 74 aioB 74 aioB 74 aioB 74 xerC_7~~xerC_1~~xerD_2~~xerC_5 74 group_2137 74 group_10971 74 group_100971 74 group_100585 74 group_10005 74 group_10005 74 group_5956 74 group_2032 74 group_2032 74 group_10005 74 group_10005 74 group_2821 74 group_2032 74 group_10002 74 group_10159 74 group_9730 74 group_9307 74 group_7672 74 group_7267 74 group_728 74 group_728 74 group_727 74 group_6781 74 group_5127 74 group_6781		
74 group_4444 74 group_4344 74 aioA 74 aioB 74 aioB 74 group_2176 74 group_2137 74 group_10971 74 group_10971 74 group_10585 74 group_10340 74 group_10005 74 group_5956 74 group_2032 74 group_2032 74 group_10595 74 group_10902 74 group_10159 74 group_9775 74 group_9307 74 group_7672 74 group_7267 75 group_7408 74 group_7227 74 group_7227 74 group_6781 74 group_6784 74 group_3647 74 group_3647		
74 group_4344 74 aioA 74 aioB 74 aioB 74 xerC_7~~xerC_1~~xerD_2~~xerC_5 74 group_2137 74 group_10971 74 group_100585 74 group_10340 74 group_10005 74 group_5956 74 group_2032 74 group_10902 74 group_10595 74 group_10902 74 group_10902 74 group_9775 74 group_7633 74 group_7267 74 group_7228 74 group_7227 74 group_6781 74 group_6781 74 group_6781 74 group_3647 74 group_3647		
74 aioA 74 aioB 74 xerC_7~~xerC_1~~xerD_2~~xerC_5 74 group_2176 74 group_2137 74 group_10971 74 group_10971 74 group_10585 74 group_10340 74 group_10005 74 group_6399 74 group_5956 74 group_2032 74 group_10902 74 group_10595 74 group_10902 74 group_1059 74 group_9775 74 group_9307 74 group_7683 74 group_7267 74 group_727 74 group_727 74 group_727 74 group_6781 74 group_3855 74 group_3647 74 group_3300		
74 aioB 74 xerC_7~~xerC_1~~xerD_2~~xerC_5 74 group_2137 74 group_10971 74 group_10971 74 group_10585 74 group_10340 74 group_10005 74 group_5956 74 group_2032 74 group_1509 74 group_10902 74 group_1059 74 group_9775 74 group_9730 75 group_7408 74 group_7227 74 group_7227 74 group_6781 74 group_3855 74 group_3300		
74 xerC_7~~xerC_1~~xerD_2~~xerC_5 74 group_2137 74 group_10971 74 group_10971 74 group_10340 74 group_10005 74 group_399 74 group_6399 74 group_2032 74 group_10902 74 group_10902 74 group_9775 74 group_7683 74 group_7228 74 group_7227 74 group_6781 74 group_3855 74 group_3855		
74 group_2176	74	
74 group_10971 74 group_10585 74 group_10340 74 group_10005 74 group_7746 74 group_6399 74 group_5956 74 group_2032 74 group_10902 74 group_10902 74 group_9775 74 group_9730 74 group_7408 74 group_7227 74 group_7227 74 group_4948 74 group_3300	74	xerC_7~~~xerC_1~~~xerD_2~~~xerC_5
74 group_10971 74 group_10585 74 group_10005 74 group_7746 74 group_6399 74 group_5956 74 group_2921 74 group_2032 74 group_10902 74 group_10902 74 group_9775 74 group_9730 74 group_7672 74 group_7267 74 group_7228 74 group_6781 74 group_3855 74 group_3647 74 group_300	74	group_2176
74 group_10585 74 group_10005 74 group_7746 74 group_6399 74 group_5956 74 group_2921 74 group_2032 74 group_10902 74 group_10902 74 group_9775 74 group_9775 74 group_7683 74 group_7267 74 group_7227 74 group_6781 74 group_3647 74 group_300	74	group_2137
74 group_10585 74 group_10005 74 group_7746 74 group_6399 74 group_5956 74 group_2921 74 group_2032 74 group_10902 74 group_10902 74 group_9775 74 group_9775 74 group_7683 74 group_7267 74 group_7227 74 group_6781 74 group_3647 74 group_300	74	group_10971
74 group_10340 74 group_10005 74 group_6399 74 group_6399 74 group_5956 74 group_2821 74 group_2032 74 group_10902 74 group_10902 74 group_9775 74 group_9730 74 group_7683 74 group_7267 74 group_7228 74 group_5127 74 group_3855 74 group_300		
74 group_7746 74 group_6399 74 group_3956 74 group_3371 74 group_2821 74 group_2032 74 group_1509 74 group_10902 74 group_9775 74 group_9730 74 group_7683 74 group_7672 74 group_7267 74 group_7228 74 group_6781 74 group_6781 74 group_3855 74 group_3300		
74 group_6399 74 group_3371 74 group_2821 74 group_2032 74 group_10902 74 group_10902 74 group_9775 74 group_9730 74 group_7683 74 group_7672 74 group_7267 74 group_7228 74 group_6781 74 group_4948 74 group_3855 74 group_3300	74	group_10005
74 group_5956 74 group_3371 74 group_2821 74 group_2032 74 group_1509 74 group_10902 74 group_10159 74 group_9775 74 group_9730 74 group_9307 74 group_7683 74 group_7672 74 group_7267 74 group_7228 74 group_6781 74 group_5127 74 group_3855 74 group_3647 74 group_3300	74	group_7746
74 group_3371 74 group_2821 74 group_2032 74 group_1509 74 group_10902 74 group_10159 74 group_9775 74 group_9730 74 group_9307 74 group_7683 74 group_7672 74 group_7267 74 group_7228 74 group_6781 74 group_5127 74 group_3855 74 group_3647 74 group_3300	74	group_6399
74 group_2821 74 group_1032 74 group_10902 74 group_10159 74 group_9775 74 group_9730 74 group_9307 74 group_7683 74 group_7672 74 group_7267 74 group_7228 74 group_6781 74 group_3855 74 group_3647 74 group_3300	74	group_5956
74 group_2032 74 group_1509 74 group_10902 74 group_10159 74 group_9775 74 group_9730 74 group_9307 74 group_7683 74 group_7672 74 group_7408 74 group_7267 74 group_7228 74 group_6781 74 group_4948 74 group_3855 74 group_3300	74	group_3371
74 group_1509 74 group_10902 74 group_10159 74 group_9775 74 group_9730 74 group_9307 74 group_7683 74 group_7672 74 group_7408 74 group_7267 74 group_7228 74 group_6781 74 group_5127 74 group_3855 74 group_3647 74 group_3300	74	group_2821
74group_1090274group_1015974group_977574group_973074group_930774group_768374group_767274group_726774group_722874group_678174group_494874group_385574group_364774group_3300	74	group_2032
74 group_10159 74 group_9775 74 group_9730 74 group_9307 74 group_9307 74 group_7683 74 group_7672 74 group_7408 74 group_7267 74 group_7228 74 group_6781 74 group_5127 74 group_3855 74 group_3647 74 group_3300	74	group_1509
74group_977574group_973074group_930774group_768374group_767274group_740874group_726774group_722874group_678174group_512774group_385574group_364774group_3300	74	group_10902
74 group_9730 74 group_9307 74 group_7683 74 group_7672 74 group_7408 74 group_7267 74 group_7228 74 group_6781 74 group_5127 74 group_3855 74 group_3647 74 group_3300	74	group_10159
74 group_9307 74 group_7683 74 group_7672 74 group_7408 74 group_7267 74 group_7228 74 group_7227 74 group_6781 74 group_4948 74 group_3855 74 group_3647 74 group_3300	74	group_9775
74 group_7683 74 group_7672 74 group_7408 74 group_7267 74 group_7228 74 group_7227 74 group_6781 74 group_5127 74 group_3855 74 group_3647 74 group_3300	74	group_9730
74 group_7672 74 group_7408 74 group_7267 74 group_7228 74 group_7227 74 group_6781 74 group_5127 74 group_3855 74 group_3647 74 group_3300	74	group_9307
74 group_7408 74 group_7267 74 group_7228 74 group_7227 74 group_6781 74 group_5127 74 group_3855 74 group_3647 74 group_3300	74	group_7683
74 group_7267 74 group_7228 74 group_7227 74 group_6781 74 group_5127 74 group_4948 74 group_3855 74 group_3647 74 group_3300	74	group_7672
74 group_7228 74 group_7227 74 group_6781 74 group_5127 74 group_4948 74 group_3855 74 group_3647 74 group_3300	74	group_7408
74 group_7227 74 group_6781 74 group_5127 74 group_4948 74 group_3855 74 group_3647 74 group_3300	74	group_7267
74 group_6781 74 group_5127 74 group_4948 74 group_3855 74 group_3647 74 group_3300	74	group_7228
 74 group_5127 74 group_4948 74 group_3855 74 group_3647 74 group_3300 	74	group_7227
74 group_4948 74 group_3855 74 group_3647 74 group_3300	74	group_6781
74 group_3855 74 group_3647 74 group_3300	74	group_5127
74 group_3647 74 group_3300	74	group_4948
74 group_3300	74	group_3855
	74	group_3647
74 group_3292	74	group_3300
	74	group_3292

D-malate dehydrogenase [decarboxylating] hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein Arsenite oxidase subunit AioA Arsenite oxidase subunit AioB Tyrosine recombinase XerC;Tyrosine recombinase XerD hypothetical protein hypothetical protein

74	group_3234	hypothetical protein
74	group_2746	hypothetical protein
74	group_1994	hypothetical protein
74	group_1481	hypothetical protein
74	group_235	hypothetical protein
74	group_67	hypothetical protein
74	group_45	hypothetical protein
74	group_11261	Putative phosphoribosyl transferase
74	group_10726	hypothetical protein
74	group_10090	hypothetical protein
74	sbnD_1	Staphyloferrin B transporter
74	group_9313	hypothetical protein
74	group_8935	hypothetical protein
74	group_7595	hypothetical protein
74	group_7560	hypothetical protein
74	group_7231	hypothetical protein
74	group_7151	hypothetical protein
74	group_7054	hypothetical protein
74	oprM_7~~~oprM_1	Outer membrane protein OprM
74	group_6164	hypothetical protein
74	group_5850	hypothetical protein
		ABC transporter ATP-binding
74	ytrE_1	protein YtrE
		hypothetical protein;Malonyl CoA-
74	fabD_2	acyl carrier protein transacylase
		Malonyl-S-ACP:biotin-protein carboxyltransferase
74	madD	MADD;hypothetical protein
, -	indub	hypothetical protein;Acetyl-
		coenzyme A carboxylase carboxyl
		transferase subunit beta
74	accD_2	chloroplastic
74	group_2924	hypothetical protein
74	group_2906	hypothetical protein
		2-(5"-triphosphoribosyl)-3'-
74	mdcB~~~citG	dephosphocoenzyme-A synthase
		hypothetical protein;Universal
74	group_2693	stress protein
74	group_2566	hypothetical protein
74	group_1650	hypothetical protein
74	group_11272	hypothetical protein
74	group_8150	hypothetical protein
74	group_8145	hypothetical protein
74	group_6196	hypothetical protein

```
74 group_5019
74 nepl~~~nepl_2
74 group 3514
74 group 3216
74 kdpB 1
74 group 2915
74 group 2774
74 group 2488
74 fatA 1
74 group 2312
74 group 2173
74 group 1971
74 group 603
74 group 10956
74 group_10307
74 mltF 2~~~mltF 1
74 rarA 2
74 rspR 1
74 group 9391
74 group 9156
74 group 9087
74 group 9086
74 group 8644
74 yecD_2~~~yecD_1
74 pks5
74 group 6887
74 group 6886
74 group 6718
74 group_6535
74 group 6499
74 group 6411
74 group_5703
74 group 3290
74 group 1657
```

74 group_1229

- 74 group_1225
- 74 group_8362

hypothetical protein Purine ribonucleoside efflux pump Nepl hypothetical protein hypothetical protein Potassium-transporting ATPase ATPbinding subunit hypothetical protein hypothetical protein hypothetical protein Ferric-anguibactin receptor FatA hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein Membrane-bound lytic murein transglycosylase F **Replication-associated** recombination protein A hypothetical protein;HTH-type transcriptional repressor RspR hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein Isochorismatase family protein YecD Mycocerosic acid synthase-like polyketide synthase;hypothetical protein hypothetical protein

74	group_7673
74	group_7107
74	group_6828
74	group_6070
74	group_5877
74	group_5469
74	group_5071
74	group_4945
74	pinR_2~~~pinR
74	group_3115
74	group_2528
74	group_1334
74	group_11427
74	group_11424
- 4	
74	hupB_3~~~hup
74	group_11307
74	group_10106
74	group_9311
74	group_9105
74	group_7690
74	group_7309
74	group_7308
74	group_6904
74	group_6903
74	group_6832
74	group_6004
74	cynR_4~~~cynR_3
74	group_5835
74	group_4624
74	group_4232
74	group_3486
74	group_3334
74	group_3333
74	group_2955
74	group_2777
74	group_2092
74	group_2052
74	group_2044
74	group_1965
74	group_1908
74	group_1661

hypothetical protein Serine recombinase PinR hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein DNA-binding protein HU-beta; DNAbinding protein HU hypothetical protein IS5 family transposase ISAzo23 hypothetical protein HTH-type transcriptional regulator CynR; hypothetical protein hypothetical protein

74	group_1660
74	group_1618
74	group_1587
74	group_1234
74	group_1159
74	group_1122
	0 1 -
- 4	
74	cbbZC_1~~~gph_1~~~cbbZC_2
74	group_755
74	group_11478
74	group_10109
74	group_9729
74	group_7614
74	group_904
74	group_10091
	group_10080
74	group_10079
74	group_9844
74	group_6748
74	group_6198
74	group_5453
74	group_3174
74	group_1533
74	mbtH~~~mbtH_1
74	mdtK 1~~~mdtK 2
74	 group_10108
74	group_10076
74	group_9310
74	egl_2~~egl
74	group_4301
74	group_2925
73	group_1607
73	group_1096
72	group_617
72	group_606
71	group_3474
71	group_2849
71	group_2700
71	group_2598
71	group_2597
71	group_2517

hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein Phosphoglycolate phosphatase chromosomal;Phosphoglycolate phosphatase; hypothetical protein hypothetical protein IS3 family transposase ISRso20 IS5 family transposase ISAzo23 hypothetical protein IS5 family transposase ISAzo23 hypothetical protein IS5 family transposase IS1021 IS5 family transposase IS1021 IS5 family transposase IS1021 hypothetical protein hypothetical protein; IS3 family transposase ISRso20 hypothetical protein hypothetical protein hypothetical protein IS5 family transposase IS1021 Protein MbtH Multidrug resistance protein MdtK IS5 family transposase ISAzo23 IS5 family transposase IS1021 hypothetical protein Endoglucanase hypothetical protein IS3 family transposase ISRso10 hypothetical protein hypothetical protein;Type IV secretion system protein virB10 hypothetical protein

71	group_12031	hypothetical protein
71	group_12028	hypothetical protein
/1	group_12020	Conjugal transfer protein
71	traG	TraG;hypothetical protein
71	group_3601	hypothetical protein
71	group_3600	hypothetical protein
/ -	8.04 <u>2</u> -0000	Type IV secretion system protein
71	virB4~~~virB4 2~~~virB4 1	virB4
		Hca operon transcriptional activator
		HcaR;HTH-type transcriptional
	hcaR~~~hdfR_3~~~hdfR_2~~~benM_1~~~	regulator HdfR;HTH-type
71	hdfR_1~~~benM_3	transcriptional regulator BenM
71	group_2331	hypothetical protein
70	group_1656	hypothetical protein
70	group_1654	hypothetical protein
70	intA_2	Prophage integrase IntA
70	group_2382	hypothetical protein
70	group_1416	hypothetical protein
		hypothetical protein;Actin cross-
70	group_7362	linking toxin VgrG1
70	group_7004	hypothetical protein
70	group_7248	hypothetical protein
70	group_1345	hypothetical protein
70	group_1673	hypothetical protein
70	group_7709	hypothetical protein
70	group_2916	hypothetical protein
70	group_7249	hypothetical protein
70	group_7197	hypothetical protein
70	group_6854	hypothetical protein
70	group_4314	hypothetical protein
70	group_4117	hypothetical protein
70	group_342	hypothetical protein
69	group_9325	hypothetical protein
69	group_7294	hypothetical protein
68	group_7628	hypothetical protein
68	group_7457	Cyanate hydratase
68	triA_1	Melamine deaminase
68	group_3819	hypothetical protein
		Histidinol-phosphate
68	hisC_4	aminotransferase
67	group_5967	hypothetical protein
67	group_10768	hypothetical protein
67	group_7849	Tyrosine recombinase XerC
66	group_1560	hypothetical protein

hypothetical protein hypothetical protein Prophage integrase IntS; Prophage integrase IntA hypothetical protein hypothetical protein hypothetical protein Hemolysin transporter protein ShIB; hypothetical protein HTH-type transcriptional regulator DmlR Decarboxylase NovR Putative metabolite transport protein NicT hypothetical protein hypothetical protein

62	group_6789
62	group_6241
62	group_5440
62	group_3981
62	group_2572
62	group_9298
61	group_12049
61	group_7610
61	group_3670
60	group_1769
60	group_1635
59	group_2283
59	group_2355
58	group_3476
58	group_1293
58	group_801
58	group_2451
58	group_2851
58	group_806
57	group_3015
57	group_1615
56	group_11761
56	group_11431
56	group_11426
56	group_10904

55	prsA_2
55	group_1315
54	group_2857
54	group_1151
54	group_7463
53	group_2291
53	group_2958
53	group_2957
53	group_2304
52	group_3426
52	group_3422
51	group_2895
51	group_10066
50	group_10001

hypothetical protein hypothetical protein;IS3 family transposase ISAisp2 IS3 family transposase ISAisp2 hypothetical protein hypothetical protein hypothetical protein hypothetical protein putative parvulin-type peptidylprolyl cis-trans isomerase;hypothetical protein;Foldase protein PrsA hypothetical protein hypothetical protein;All-trans-zetacarotene desaturase

Isatin hydrolase;hypothetical protein Styrene monooxygenase StyA;hypothetical protein hypothetical protein hypothetical protein hypothetical protein as_1~~~pchR~~~feaR B B oup_9629 bypothetical protein as_1~~~maiA_2~~~maiA FMN reductase (NADH) NtaB bypothetical protein bypothetical protein siK protein siK aiA_1~~~maiA_2~~~maiA Maleate isomerase Salicyloyl-CoA 5-hydroxylase;NADPH gC~~~namA_1~~~namA_2 dehydrogenase boup_6637 bypothetical protein Aliphatic nitrilase;hypothetical protein 14-dihydroxy-2-naphthoyl-CoA hypothetical protein bisses gD_2~~~sdgD_1 Gentisate 12-dioxygenase boup_10861 bypothetical protein bypothetical protein boup_2839 bypothetical protein boup_3445 bypothetical protein boup_3524 bypothetical protein boup_3917 bypothetical protein bypothetical protein byp	SolutionIsatin hydrolase;hypothetical protein50group_8922protein51styAStyrene monooxygenase StyA,hypothetical protein,HTH-type transcriptional activator RhaS;Regulatory protein50rhAs_1************************************	F.0	aroun 0020	
oup_8922proteinc/AStyrene monooxygenasesty/AStyrene monooxygenasesty/A;hypothetical proteinhypothetical protein, HTH-typeafs_1~~~pchR~~~feaRPchR;Transcriptional activatoraBFMN reductase (NADH) NtaBoup_9629hypothetical proteinoup_8088hypothetical proteinaik_1~~~maiA_2~~~maiAMaleate isomerasesalicyloyl-CoA 5-hydroxylase;NADPHgC~~~namA_1~~~namA_2dehydrogenaseoup_6637hypothetical proteinoup_6636Aliphatic nitrilase;hypotheticaloup_10861hypothetical proteinoup_10861hypothetical proteinoup_10400IS3 family transposase ISAisp2oup_1445hypothetical proteinoup_92779hypothetical proteinoup_9283hypothetical proteinoup_9299hypothetical proteinoup_1287hypothetical proteinoup_9243hypothetical proteinoup_9299hypothetical proteinoup_9299hypothetical proteinoup_9299hypothetical proteinoup_9299hypothetical proteinoup_9299hypothetical proteinoup_9299hypothetical proteinoup_9999hypothetical proteinoup_9999hypothetical proteinoup_9999hypothetical proteinoup_9999hypothetical proteinoup_914495hypothetical protein	50 group_8922 protein 50 styA Styrene monooxygenase 50 styA StyA;hypothetical protein 50 styA StyA;hypothetical protein 50 rhaS_1^~~pchR~~feaR PchR;Transcriptional activator FeaF 50 ntaB FMN reductase (NADH) NtaB 50 group_9629 hypothetical protein 50 group_8088 hypothetical protein 50 group_8088 hypothetical protein 50 group_8088 hypothetical protein 50 group_6637 putative protein YisK 50 group_6637 hypothetical protein 50 group_6636 hypothetical protein 50 group_5880 hydrolase 50 group_10861 hypothetical protein 49 group_10400 IS3 family transposase ISAisp2 47 group_10400 IS3 family transposase ISAisp2 48 group_10400 IS3 family transposase ISAisp2 47 group_9243 hypothetical protein 48 group_9243 hypothetical protein 45	50	group_9630	
AAStyrene monooxygenase StyA;hypothetical protein hypothetical protein hypothetical protein hypothetical protein has;Regulatory proteinaS_1~~~pchR~~~feaRPchR;Transcriptional activator FeaR aBaBFMN reductase (NADH) NtaB oup_9629oup_8088hypothetical proteinaiA_1~~maiA_2~~maiAMaleate isomerase Salicyloyl-CoA 5-hydroxylase;NADPH gC~~namA_1~~namA_2gc~~namA_1~~maiA_2dehydrogenase hypothetical proteinoup_6637hypothetical protein Aliphatic nitrilase;hypothetical protein 14-dihydroxy-2-naphthoyl-CoAoup_5880hypothetical protein Aliphatic nitrilase;hypothetical protein 14-dihydroxy-2-naphthoyl-CoAoup_10861hypothetical protein hypothetical protein oup_10420oup_10400IS3 family transposae ISAisp2 oup_3445oup_9524Putative defective protein IntQ oup_9524oup_9524hypothetical protein hypothetical	Styrene monooxygenase50styA50styA50styA50styA50rhas_1************************************	50	group 8922	
YAStyA;hypothetical protein hypothetical protein;HTH-type transcriptional activator Rha5;Regulatory protein as_1^~~pchR~~~feaRStyA;hypothetical protein Rha5;Regulatory protein as PchR;Transcriptional activator FeaR aBaBFMN reductase (NADH) NtaB oup_9629 oup_8088 siK aiA_1~~~maiA_2~~~maiAMaleate isomerase Salicyloyl-CoA 5-hydroxylase;NADPH gc~~~namA_1~~~namA_2gC~~~namA_1~~~namA_2dehydrogenase hypothetical protein Aliphatic nitrilase;hypothetical protein 14-dihydroxy-2-naphthoyl-CoA oup_6636 aliphatic nitrilase;hypothetical protein 14-dihydroxy-2-naphthoyl-CoA hypothetical protein oup_10861 hypothetical protein hypothetical protein oup_10420 oup_3445 hypothetical protein hypothetical protein hypot	50 styA StyA;hypothetical protein;HTH-type transcriptional activator 50 rhaS_1~~~pchR~~~feaR PchR;Transcriptional activator FeaF 50 ntaB FMN reductase (NADH) NtaB 50 group_9629 hypothetical protein 50 group_8088 hypothetical protein 50 group_8088 hypothetical protein 50 group_8088 hypothetical protein 50 maiA_1~~~maiA_2~~maiA Maleate isomerase 50 group_6637 hypothetical protein 50 group_6636 hypothetical protein 50 group_6636 hypothetical protein 50 group_6636 hypothetical protein 50 group_10861 hypothetical protein 50 group_10861 hypothetical protein 48 group_10420 hypothetical protein 48 group_10400 IS3 family transposase ISAisp2 47 group_9243 hypothetical protein 46 group_9243 hypothetical protein 45 group_9243 hypothetical protein 46 group_9242 hypothetic	50	<u>5.005</u>	•
hypothetical protein;HTH-type transcriptional activator Rha5;Regulatory proteinaS_1~~~pchR~~~feaRPchR;Transcriptional activator FeaRaBPMN reductase (NADH) NtaBoup_9629hypothetical proteinoup_0808hypothetical proteinsiKputative protein YisKaiA_1~~maiA_2~~maiAMaleate isomerasesalicyloyl-CoA 5-hydroxylase;NADPHgC~~namA_1~~maiA_2dehydrogenaseoup_6637hypothetical proteinoup_6636hypothetical proteinaiA_1aliphatic nitrilase;hypotheticaloup_6637hypothetical proteinau14-dihydroxy-2-naphthoyl-CoAoup_5880hydrolasegD_2~~sdgD_1Gentisate 12-dioxygenaseoup_10861hypothetical proteinoup_10420hypothetical proteinoup_10420hypothetical proteinoup_9279hypothetical proteinoup_9283hypothetical proteinoup_9242hypothetical proteinoup_9243hypothetical proteinoup_9242hypothetical proteinoup_9299hypothetical proteinoup_9999hypothetical proteinoup_9999hypothetical proteinoup_11495hypothetical protein	hypothetical protein;HTH-type transcriptional activator RhaS;Regulatory protein50rhaS_1************************************	50	styA	, ,,,
RhaS;Regulatory proteinaS_1~~~pchR~~~feaRPchR;Transcriptional activator FeaRaBFMN reductase (NADH) NtaBoup_9629hypothetical proteinoup_8088hypothetical proteinsKputative protein YisKaiA_1~~maiA_2~~~maiAMaleate isomeraseoup_6637hypothetical proteinoup_6636hypothetical proteinoup_6636hypothetical proteinAliphatic nitrilase;hypotheticalprotein14-dihydroxy-2-naphthoyl-CoAoup_10861hypothetical proteinoup_10861hypothetical proteinoup_10420Koup_10420hypothetical proteinoup_1287hypothetical proteinoup_2979hypothetical proteinoup_2979hypothetical proteinoup_2924hypothetical proteinoup_9243hypothetical proteinoup_9242hypothetical proteinoup_9999hypothetical proteinoup_9999hypothetical proteinoup_1495hypothetical protein	S0RhaS, Regulatory protein50rhaS_1~~pchR~~feaRPchR; Transcriptional activator FeaF50ntaBFMN reductase (NADH) NtaB50group_9629hypothetical protein50group_8088hypothetical protein50group_8088hypothetical protein50yisKputative protein YisK50maiA_1~~maiA_2~~maiAMaleate isomerase50group_6637hypothetical protein50group_6636hypothetical protein50group_6636hypothetical protein50group_5880hydrolase50group_10861hypothetical protein49group_10861hypothetical protein48group_10400IS3 family transposae ISAisp247group_1287hypothetical protein48group_9243hypothetical protein45group_9243hypothetical protein45group_9243hypothetical protein44esiBEsiB43gpFI~~gpFI_2~~gpFI_1~~gpFI_3protein			
as_1pchRfeaRPchR;Transcriptional activator FeaRaBFMN reductase (NADH) NtaBoup_9629hypothetical proteinoup_8088hypothetical proteinsKputative protein YisKaiA_1maiA_2maiAMaleate isomeraseSalicyloyl-CoA 5-hydroxylase;NADPHgCnamA_1namA_2dehydrogenaseoup_6637hypothetical proteinoup_6636hypothetical proteinaliphatic nitrilase;hypotheticalprotein14-dihydroxy-2-naphthoyl-CoAhypothetical protein44-dihydroxy-2-naphthoyl-CoAoup_5880hypothetical proteinoup_10861hypothetical proteinoup_10400IS3 family transposase ISAisp2oup_10400IS3 family transposase ISAisp2oup_2339hypothetical proteinoup_9524Putative defective protein IntQoup_9243hypothetical proteinoup_9242hypothetical proteinoup_9999hypothetical proteinoup_9999hypothetical proteinisBEsiBoup_11495hypothetical protein	50rhaS_1~~~pchR~~~feaRPchR;Transcriptional activator FeaF50ntaBFMN reductase (NADH) NtaB50group_9629hypothetical protein50group_8088hypothetical protein50yisKputative protein YisK50maiA_1~~maiA_2~~maiAMaleate isomerase50group_6637hypothetical protein50group_6636hypothetical protein50group_6636hypothetical protein50group_5880hydrolase50group_10861hypothetical protein49group_10861hypothetical protein48group_10400IS3 family transposase ISAisp247group_3445hypothetical protein48group_2979hypothetical protein45group_9524Putative defective protein IntQ45group_9433hypothetical protein44esiBEsiB43group_11495hypothetical protein			transcriptional activator
aBFMN reductase (NADH) NtaBoup_9629hypothetical proteinoup_8088hypothetical proteinsiKputative protein YisKaiA_1~~~maiA_2~~~maiAMaleate isomeraseSalicyloyl-CoA 5-hydroxylase;NADPHgC~~rnamA_1~~~namA_2dehydrogenaseoup_6637hypothetical proteinoup_6636hypothetical proteinaliphatic nitrilase;hypotheticalproteinAliphatic nitrilase;hypotheticalproteinalionup_5880gD_2~~rsdgD_1oup_10861oup_10420oup_10420oup_10400JS family transposase ISAisp2oup_2379oup_2379oup_2423oup_9524oup_9242oup_9999hypothetical proteinhypothetical proteinhypothetical proteinoup_9999hypothetical proteinoup_9999hypothetical proteinhypothetical proteinhypo	50ntaBFMN reductase (NADH) NtaB50group_9629hypothetical protein50group_8088hypothetical protein50yiskputative protein Yisk50maiA_1~~~maiA_2~~~maiAMaleate isomerase Salicyloyl-CoA 5-hydroxylase;NADP50sdgC~~~namA_1~~namA_2dehydrogenase50group_6637hypothetical protein50group_6636hypothetical protein50group_6636hypothetical protein50group_5880hydrolase50sdgD_2~~~sdgD_1Gentisate 12-dioxygenase50group_10861hypothetical protein49group_10420hypothetical protein48group_10400IS3 family transposase ISAisp247group_1287hypothetical protein46group_9524hypothetical protein45group_9243hypothetical protein45group_9999hypothetical protein44esiBEsiB43gpFI~~cgpFI_2~~cgpFI_1~~cgpFI_3protein			RhaS;Regulatory protein
oup_9629hypothetical proteinoup_8088hypothetical proteinsikputative protein YiskaiA_1~~~maiA_2~~maiAMaleate isomeraseSalicyloyl-CoA 5-hydroxylase;NADPHgC~~~namA_1~~mamA_2dehydrogenaseoup_6637hypothetical proteinoup_6636hypothetical proteinAliphatic nitrilase;hypotheticalprotein14-dihydroxy-2-naphthoyl-CoAoup_5880hypothetical proteingD_2~~rsdgD_1Gentisate 12-dioxygenaseoup_10861hypothetical proteinoup_10420hypothetical proteinoup_10420hypothetical proteinoup_1287hypothetical proteinoup_9524Putative defective protein IntQoup_9243hypothetical proteinoup_999hypothetical proteinoup_999hypothetical proteinoup_1691hypothetical proteiniBEsiBoup_11495hypothetical protein	50group_9629hypothetical protein50group_8088hypothetical protein50yiskputative protein Yisk50maiA_1~~~maiA_2~~maiAMaleate isomerase Salicyloyl-CoA 5-hydroxylase;NADP50sdgC~~~namA_1~~mamA_2dehydrogenase50group_6637hypothetical protein50group_6636hypothetical protein50nitAprotein50aliphatic nitrilase;hypothetical50group_5880hydrolase50sdgD_2~~sdgD_1Gentisate 12-dioxygenase50group_10861hypothetical protein49group_10420hypothetical protein48group_10400IS3 family transposae ISAisp247group_3445hypothetical protein48group_9524Putative defective protein IntQ45group_9243hypothetical protein45group_9999hypothetical protein44esiBEsiB43group_11495hypothetical protein43gpFI~~gpFI_2~~gpFI_1~~gpFI_3protein	50	rhaS_1~~~pchR~~~feaR	PchR;Transcriptional activator FeaR
oup_8088hypothetical proteinsKputative protein YisKaiA_1~~~maiA_2~~maiAMaleate isomeraseSalicyloyl-CoA 5-hydroxylase;NADPHgC~~mamA_1~~mamA_2dehydrogenaseoup_6637hypothetical proteinoup_6636hypothetical proteinAliphatic nitrilase;hypotheticalgD_2~~sdgD_1Gentisate 12-dioxygenaseoup_10861hypothetical proteinoup_10420hypothetical proteinoup_10420hypothetical proteinoup_1287hypothetical proteinoup_9524Putative defective protein IntQoup_9243hypothetical proteinoup_9999hypothetical proteinoup_9999hypothetical proteinoup_1691hypothetical protein	50group_8088hypothetical protein50yiskputative protein Yisk50maiA_1~~~maiA_2~~maiAMaleate isomerase Salicyloyl-CoA 5-hydroxylase;NADP50sdgC~~~namA_1~~mamA_2dehydrogenase50group_6637hypothetical protein50group_6636hypothetical protein50nitAprotein50nitAprotein50group_5880hydrolase50sdgD_2~~sdgD_1Gentisate 12-dioxygenase50group_10861hypothetical protein49group_10420hypothetical protein48group_10400IS3 family transposase ISAisp247group_287hypothetical protein48group_9524Putative defective protein IntQ45group_9243hypothetical protein45group_9999hypothetical protein44esiBEsiB43group_11495hypothetical protein	50	ntaB	FMN reductase (NADH) NtaB
skputative protein YiskaiA_1~~~maiA_2~~~maiAMaleate isomerase Salicyloyl-CoA 5-hydroxylase;NADPHgC~~~namA_1~~~namA_2dehydrogenaseoup_6637hypothetical protein Aliphatic nitrilase;hypotheticaloup_6636hypothetical protein Aliphatic nitrilase;hypotheticaltAprotein 14-dihydroxy-2-naphthoyl-CoAoup_5880hydrolasegD_2~~~sdgD_1Gentisate 12-dioxygenaseoup_10861hypothetical protein hypothetical proteinoup_10420hypothetical proteinoup_10420hypothetical proteinoup_1287hypothetical proteinoup_2979hypothetical proteinoup_9524Putative defective proteinoup_9243hypothetical proteinoup_9999hypothetical proteinoup_9999hypothetical proteinoup_1691hypothetical proteinhypothetical proteinhypothetical proteinhypothetical proteinhypothetical proteinoup_1287hypothetical proteinoup_9929hypothetical proteinoup_9924hypothetical proteinoup_9141495hypothetical protein	50yisKputative protein YisK50maiA_1~~~maiA_2~~maiAMaleate isomerase Salicyloyl-CoA 5-hydroxylase;NADP50sdgC~~mamA_1~~mamA_2dehydrogenase50group_6637hypothetical protein Aliphatic nitrilase;hypothetical protein 14-dihydroxy-2-naphthoyl-CoA50nitAprotein 14-dihydroxy-2-naphthoyl-CoA50group_5880hydrolase50sdgD_2~~~sdgD_1Gentisate 12-dioxygenase49group_10861hypothetical protein48group_10400IS3 family transposase ISAisp247group_1287hypothetical protein48group_2979hypothetical protein40group_9524Putative defective protein IntQ45group_9243hypothetical protein44group_1691hypothetical protein44esiBEsiB43group_11495hypothetical protein43gpFI~~mgpFI_2~~mgpFI_1~~mgpFI_3protein	50	group_9629	hypothetical protein
aiA_1~~~maiA_2~~~maiAMaleate isomerase Salicyloyl-CoA 5-hydroxylase;NADPHgC~~~namA_1~~~namA_2dehydrogenaseoup_6637hypothetical protein Aliphatic nitrilase;hypotheticaloup_6636hypothetical protein Aliphatic nitrilase;hypotheticaltAprotein 14-dihydroxy-2-naphthoyl-CoAoup_5880hydrolasegD_2~~~sdgD_1Gentisate 12-dioxygenase hypothetical proteinoup_10861hypothetical protein hypothetical proteinoup_10420hypothetical proteinoup_10420hypothetical proteinoup_1287hypothetical proteinoup_9524Putative defective protein IntQoup_9243hypothetical proteinoup_9242hypothetical proteinoup_9999hypothetical proteinoup_1691hypothetical protein	50maiA_1~~~maiA_2~~maiAMaleate isomerase Salicyloyl-CoA 5-hydroxylase;NADP50sdgC~~namA_1~~namA_2dehydrogenase50group_6637hypothetical protein Aliphatic nitrilase;hypothetical50group_6636hypothetical protein Aliphatic nitrilase;hypothetical50nitAprotein 14-dihydroxy-2-naphthoyl-CoA50group_5880hydrolase50sdgD_2~~rsdgD_1Gentisate 12-dioxygenase49group_10861hypothetical protein48group_10420hypothetical protein48group_10400IS3 family transposase ISAisp247group_1287hypothetical protein46group_9524Putative defective protein IntQ45group_9243hypothetical protein45group_9999hypothetical protein44esiBEsiB43gpFI~~rgpFI_2~~rgpFI_1~~rgpFI_3protein	50	group_8088	hypothetical protein
Salicyloyl-CoA 5-hydroxylase;NADPHgC~~~namA_1~~~namA_2dehydrogenaseoup_6637hypothetical proteinoup_6636hypothetical proteinAliphatic nitrilase;hypotheticalprotein14-dihydroxy-2-naphthoyl-CoAoup_5880hydrolasegD_2~~~sdgD_1Gentisate 12-dioxygenaseoup_10861hypothetical proteinoup_10420hypothetical proteinoup_10420lypothetical proteinoup_1287hypothetical proteinoup_9524Putative defective protein IntQoup_9243hypothetical proteinoup_9242hypothetical proteinoup_9999hypothetical proteinoup_1691hypothetical proteinoup_1691hypothetical proteinoup_17495hypothetical protein	Salicyloyl-CoA 5-hydroxylase;NADP50sdgC~~~namA_1~~~namA_250group_663750group_663661hypothetical protein50group_663671hypothetical protein50nitA50group_588050sdgD_2~~sdgD_150group_1086149group_1086149group_1042048group_1042057group_283958hypothetical protein59group_1042050group_202750group_20250group_20250group_20250hypothetical protein50group_1086141hypothetical protein50group_20251hypothetical protein52group_1042053hypothetical protein54group_1042055hypothetical protein56group_2128757hypothetical protein58group_929359hypothetical protein59group_924350hypothetical protein50group_169150hypothetical protein51group_169153group_169154esiB55sig56group_97957hypothetical protein58group_99959hypothetical protein59group_99950hypothetical protein<	50	yisK	putative protein YisK
gC~~~namA_1~~~namA_2dehydrogenaseoup_6637hypothetical proteinoup_6636hypothetical proteinAliphatic nitrilase;hypotheticalprotein14-dihydroxy-2-naphthoyl-CoAoup_5880hydrolasegD_2~~~sdgD_1Gentisate 12-dioxygenaseoup_10861hypothetical proteinoup_10420hypothetical proteinoup_10420lis3 family transposase ISAisp2oup_1287hypothetical proteinoup_9524Putative defective proteinoup_9243hypothetical proteinoup_9242hypothetical proteinoup_9999hypothetical proteinoup_1691hypothetical proteinbypothetical proteinhypothetical proteinoup_11495hypothetical protein	50sdgC~~~namA_1~~~namA_2dehydrogenase50group_6637hypothetical protein50group_6636hypothetical protein50nitAprotein50nitAprotein50group_5880hydrolase50sdgD_2~~~sdgD_1Gentisate 12-dioxygenase49group_10861hypothetical protein48group_10420hypothetical protein48group_10420hypothetical protein47group_2839hypothetical protein48group_10420lypothetical protein47group_3445hypothetical protein46group_9279hypothetical protein47group_9243hypothetical protein45group_9999hypothetical protein45group_1691hypothetical protein44esiBEsiB43gpFI~~~gpFI_2~~~gpFI_1~~~gpFI_3protein	50	maiA_1~~~maiA_2~~~maiA	Maleate isomerase
oup_6637hypothetical protein hypothetical protein Aliphatic nitrilase;hypothetical protein 14-dihydroxy-2-naphthoyl-CoA hydrolase gD_2~~~sdgD_1Gentisate 12-dioxygenase oup_10861 oup_2839 oup_10420 oup_10400oup_10400IS3 family transposase ISAisp2 oup_3445 oup_2979 oup_9524hypothetical protein nup oup_9243 oup_9242oup_9242 oup_1691hypothetical protein hypothetical proteinoup_9999 oup_1691hypothetical protein hypothetical proteiniB oup_11495EsiB oup_11495	50group_6637hypothetical protein50group_6636hypothetical protein50group_6636hypothetical protein50nitAprotein50group_5880hydrolase50sdgD_2~~~sdgD_1Gentisate 12-dioxygenase49group_10861hypothetical protein49group_10861hypothetical protein48group_10420hypothetical protein48group_10400IS3 family transposase ISAisp247group_287hypothetical protein48group_9243hypothetical protein49group_9524Putative defective protein IntQ45group_9242hypothetical protein45group_9999hypothetical protein46group_1691hypothetical protein47group_1691hypothetical protein43gpFI~~~gpFI_2~~~gpFI_1~~~gpFI_3protein			Salicyloyl-CoA 5-hydroxylase;NADPH
oup_6636hypothetical protein Aliphatic nitrilase;hypothetical protein 14-dihydroxy-2-naphthoyl-CoA hydrolaseoup_5880hydrolasegD_2~~~sdgD_1Gentisate 12-dioxygenase oup_10861oup_10861hypothetical proteinoup_10420hypothetical proteinoup_10400IS3 family transposase ISAisp2 oup_3445oup_2277hypothetical proteinoup_2279hypothetical proteinoup_9524Putative defective protein IntQoup_9243hypothetical proteinoup_9242hypothetical proteinoup_9999hypothetical proteinoup_1691hypothetical proteiniBEsiBoup_11495hypothetical protein	50group_6636hypothetical protein Aliphatic nitrilase;hypothetical protein50nitAprotein 14-dihydroxy-2-naphthoyl-CoA50group_5880hydrolase50sdgD_2~~sdgD_1Gentisate 12-dioxygenase49group_10861hypothetical protein49group_10861hypothetical protein48group_10400IS3 family transposase ISAisp247group_1287hypothetical protein48group_2779hypothetical protein46group_9524Putative defective protein IntQ45group_9243hypothetical protein45group_9999hypothetical protein46group_1691hypothetical protein47group_9242hypothetical protein44esiBEsiB43gpFI~~~gpFI_2~~~gpFI_1~~~gpFI_3protein	50	sdgC~~~namA_1~~~namA_2	dehydrogenase
Aliphatic nitrilase;hypotheticalAliphatic nitrilase;hypotheticalprotein14-dihydroxy-2-naphthoyl-CoAoup_5880gD_2~~~sdgD_1oup_10861oup_2839oup_10420oup_10400oup_1287oup_2979oup_9524oup_9243oup_9242oup_9242oup_9999hypothetical proteinoup_9999hypothetical proteinbup_9999hypothetical proteinbup_1691hypothetical proteinhypothetical proteinbup_91691hypothetical proteinhypothetical proteinbup_91691hypothetical proteinhypothetical	Aliphatic nitrilase;hypothetical50nitA50nitA50group_588050sdgD_2~~~sdgD_150group_1086149group_1086149group_1042048group_1040048group_1040047group_344547group_287947group_287947group_297948group_952449group_952440ypothetical protein41group_924241hypothetical protein42group_999943hypothetical protein44group_169144group_1149543gpFI~~~gpFI_2~~~gpFI_1~~~gpFI_344group_1245group_1149546group_1149547group_1149548group_1149549group_1149540group_1141group_1142gpFI~~~gpFI_2~~~gpFI_343gpFI~~~gpFI_2~~~gpFI_1~~~gpFI_3	50	group_6637	hypothetical protein
tAprotein 14-dihydroxy-2-naphthoyl-CoA hydrolaseoup_5880hydrolasegD_2~~~sdgD_1Gentisate 12-dioxygenaseoup_10861hypothetical proteinoup_2839hypothetical proteinoup_10420hypothetical proteinoup_10400IS3 family transposase ISAisp2oup_3445hypothetical proteinoup_2979hypothetical proteinoup_9524Putative defective protein IntQoup_9242hypothetical proteinoup_9999hypothetical proteinoup_9999hypothetical proteiniBEsiBoup_11495hypothetical protein	50nitAprotein 14-dihydroxy-2-naphthoyl-CoA50group_5880hydrolase50sdgD_2~~~sdgD_1Gentisate 12-dioxygenase49group_10861hypothetical protein49group_10400hypothetical protein48group_10400IS3 family transposase ISAisp247group_1287hypothetical protein46group_9524Putative defective protein IntQ45group_9243hypothetical protein45group_9242hypothetical protein46group_9399hypothetical protein47group_9243hypothetical protein48group_1691hypothetical protein44esiBEsiB43group_11495hypothetical protein43gpFl~~gpFl_2~~gpFl_1~~gpFl_3protein	50	group_6636	hypothetical protein
oup_588014-dihydroxy-2-naphthoyl-CoAoup_5880hydrolasegD_2~~~sdgD_1Gentisate 12-dioxygenaseoup_10861hypothetical proteinoup_2839hypothetical proteinoup_10420hypothetical proteinoup_10400IS3 family transposase ISAisp2oup_3445hypothetical proteinoup_2979hypothetical proteinoup_9524Putative defective protein IntQoup_9243hypothetical proteinoup_9242hypothetical proteinoup_9999hypothetical proteinoup_1691hypothetical proteiniBEsiBoup_11495hypothetical protein	14-dihydroxy-2-naphthoyl-CoA50group_5880hydrolase50sdgD_2~~sdgD_1Gentisate 12-dioxygenase49group_10861hypothetical protein49group_2839hypothetical protein48group_10420hypothetical protein48group_10400IS3 family transposase ISAisp247group_3445hypothetical protein46group_2979hypothetical protein46group_9524Putative defective protein IntQ45group_9243hypothetical protein45group_9999hypothetical protein44group_1691hypothetical protein44esiBEsiB43gpFI~~gpFI_2~~gpFI_1~~gpFI_3protein			Aliphatic nitrilase;hypothetical
oup_5880hydrolasegD_2~~~sdgD_1Gentisate 12-dioxygenaseoup_10861hypothetical proteinoup_2839hypothetical proteinoup_10420hypothetical proteinoup_10400IS3 family transposase ISAisp2oup_3445hypothetical proteinoup_2979hypothetical proteinoup_9524Putative defective protein IntQoup_9243hypothetical proteinoup_9999hypothetical proteinoup_1691hypothetical proteiniBEsiBoup_11495hypothetical protein	50group_5880hydrolase50sdgD_2~~~sdgD_1Gentisate 12-dioxygenase49group_10861hypothetical protein49group_2839hypothetical protein48group_10420hypothetical protein48group_10400IS3 family transposase ISAisp247group_3445hypothetical protein46group_2979hypothetical protein46group_9524Putative defective protein IntQ45group_9242hypothetical protein45group_9999hypothetical protein44group_1691hypothetical protein44esiBEsiB43gpFI~~~gpFI_2~~~gpFI_1~~~gpFI_3protein	50	nitA	•
gD_2~~~sdgD_1Gentisate 12-dioxygenaseoup_10861hypothetical proteinoup_2839hypothetical proteinoup_10420hypothetical proteinoup_10400IS3 family transposase ISAisp2oup_3445hypothetical proteinoup_2979hypothetical proteinoup_9524Putative defective protein IntQoup_9243hypothetical proteinoup_9999hypothetical proteinoup_1691hypothetical proteiniBEsiBoup_11495hypothetical protein	50sdgD_2~~~sdgD_1Gentisate 12-dioxygenase49group_10861hypothetical protein49group_2839hypothetical protein48group_10420hypothetical protein48group_10400IS3 family transposase ISAisp247group_3445hypothetical protein46group_2979hypothetical protein46group_9524Putative defective protein IntQ45group_9243hypothetical protein45group_9242hypothetical protein46group_9999hypothetical protein47group_1691hypothetical protein44esiBEsiB43gpFI~~~gpFI_2~~~gpFI_1~~~gpFI_3protein			
oup_10861hypothetical proteinoup_2839hypothetical proteinoup_10420hypothetical proteinoup_10400IS3 family transposase ISAisp2oup_3445hypothetical proteinoup_2979hypothetical proteinoup_9524Putative defective protein IntQoup_9243hypothetical proteinoup_9999hypothetical proteinoup_9999hypothetical proteinoup_1691hypothetical proteiniBEsiBoup_11495hypothetical protein	49group_10861hypothetical protein49group_2839hypothetical protein48group_10420hypothetical protein48group_10400IS3 family transposase ISAisp247group_3445hypothetical protein46group_2979hypothetical protein46group_9524Putative defective protein IntQ45group_9243hypothetical protein45group_9242hypothetical protein45group_9999hypothetical protein44group_1691hypothetical protein44esiBEsiB43gpFI~~~gpFI_2~~~gpFI_1~~~gpFI_3protein			•
oup_2839hypothetical proteinoup_10420hypothetical proteinoup_10400IS3 family transposase ISAisp2oup_3445hypothetical proteinoup_1287hypothetical proteinoup_2979hypothetical proteinoup_9524Putative defective protein IntQoup_9243hypothetical proteinoup_9999hypothetical proteinoup_9999hypothetical proteinoup_1691hypothetical proteiniBEsiBoup_11495hypothetical protein	49group_2839hypothetical protein48group_10420hypothetical protein48group_10400IS3 family transposase ISAisp247group_3445hypothetical protein47group_1287hypothetical protein46group_9524Putative defective protein IntQ45group_9243hypothetical protein45group_9242hypothetical protein45group_9999hypothetical protein46group_1691hypothetical protein47group_1691hypothetical protein48group_11495hypothetical protein49group_11495hypothetical protein43gpFl~~~gpFl_2~~~gpFl_1~~~gpFl_3protein			
oup_10420hypothetical proteinoup_10400IS3 family transposase ISAisp2oup_3445hypothetical proteinoup_1287hypothetical proteinoup_2979hypothetical proteinoup_9524Putative defective protein IntQoup_9243hypothetical proteinoup_9242hypothetical proteinoup_9999hypothetical proteinoup_1691hypothetical proteiniBEsiBoup_11495hypothetical protein	48group_10420hypothetical protein48group_10400IS3 family transposase ISAisp247group_3445hypothetical protein47group_1287hypothetical protein46group_9524Putative defective protein IntQ45group_9243hypothetical protein45group_9242hypothetical protein45group_9999hypothetical protein45group_1691hypothetical protein44esiBEsiB43group_11495protein43gpFl~~~gpFl_2~~~gpFl_1~~~gpFl_3protein			
oup_10400IS3 family transposase ISAisp2oup_3445hypothetical proteinoup_1287hypothetical proteinoup_2979hypothetical proteinoup_9524Putative defective protein IntQoup_9243hypothetical proteinoup_9242hypothetical proteinoup_9999hypothetical proteinoup_1691hypothetical proteiniBEsiBoup_11495hypothetical protein	48group_10400IS3 family transposase ISAisp247group_3445hypothetical protein47group_1287hypothetical protein46group_2979hypothetical protein46group_9524Putative defective protein IntQ45group_9243hypothetical protein45group_9242hypothetical protein45group_9999hypothetical protein44group_1691hypothetical protein44esiBEsiB43group_11495protein43gpFI~~~gpFI_2~~~gpFI_3protein			
oup_3445hypothetical proteinoup_1287hypothetical proteinoup_2979hypothetical proteinoup_9524Putative defective protein IntQoup_9243hypothetical proteinoup_9242hypothetical proteinoup_8917hypothetical proteinoup_9999hypothetical proteinoup_1691hypothetical proteiniBEsiBoup_11495hypothetical protein	 47 group_3445 hypothetical protein 47 group_1287 hypothetical protein 46 group_2979 hypothetical protein 46 group_9524 Putative defective protein IntQ 45 group_9243 hypothetical protein 45 group_9242 hypothetical protein 45 group_8917 hypothetical protein 45 group_9999 hypothetical protein 44 group_1691 hypothetical protein 44 esiB 43 group_11495 hypothetical protein 43 gpFI~~~gpFI_2~~~gpFI_1~~gpFI_3 	48		
oup_1287hypothetical proteinoup_2979hypothetical proteinoup_9524Putative defective protein IntQoup_9243hypothetical proteinoup_9242hypothetical proteinoup_8917hypothetical proteinoup_1691hypothetical proteiniBEsiBoup_11495hypothetical protein	 47 group_1287 48 group_2979 49 hypothetical protein 46 group_9524 47 group_9524 48 group_9243 49 hypothetical protein 45 group_9242 40 hypothetical protein 41 group_1691 44 esiB 45 group_11495 45 group_11495 46 hypothetical protein 47 hypothetical protein 48 hypothetical protein 49 hypothetical protein 40 hypothetical protein 41 hypothetical protein 42 hypothetical protein 43 gpFl~~~gpFl_2~~~gpFl_1~~~gpFl_3 	48	group_10400	IS3 family transposase ISAisp2
oup_2979hypothetical proteinoup_9524Putative defective protein IntQoup_9243hypothetical proteinoup_9242hypothetical proteinoup_8917hypothetical proteinoup_9999hypothetical proteinoup_1691hypothetical proteiniBEsiBoup_11495hypothetical protein	 46 group_2979 47 hypothetical protein 48 group_9524 49 Putative defective protein IntQ 45 group_9243 45 group_9242 45 group_8917 45 group_9999 44 group_1691 44 esiB 45 group_11495 43 gpFl~~~gpFl_2~~~gpFl_1~~~gpFl_3 44 protein 	47	group_3445	hypothetical protein
oup_9524Putative defective protein IntQoup_9243hypothetical proteinoup_9242hypothetical proteinoup_8917hypothetical proteinoup_9999hypothetical proteinoup_1691hypothetical protein;SecretoryiBEsiBoup_11495hypothetical protein	 46 group_9524 45 group_9243 45 group_9242 45 group_8917 45 group_9999 44 group_1691 44 esiB 45 group_11495 43 gpFI~~~gpFI_2~~~gpFI_1~~~gpFI_3 	47	group_1287	hypothetical protein
oup_9243hypothetical proteinoup_9242hypothetical proteinoup_8917hypothetical proteinoup_9999hypothetical proteinoup_1691hypothetical protein;SecretoryiBEsiBoup_11495hypothetical protein	 45 group_9243 45 group_9242 45 group_8917 45 group_9999 46 group_1691 47 esiB 48 group_11495 49 group_11495 40 group_11495 41 gpFl~~gpFl_2~~gpFl_1~~gpFl_3 	46	group_2979	hypothetical protein
oup_9242hypothetical proteinoup_8917hypothetical proteinoup_9999hypothetical proteinoup_1691hypothetical proteiniBEsiBoup_11495hypothetical protein	 45 group_9242 45 group_8917 46 group_9999 47 hypothetical protein 48 group_1691 49 hypothetical protein 49 hypothetical protein 40 hypothetical protein 41 hypothetical protein 42 hypothetical protein 44 esiB 43 group_11495 43 gpFl~~gpFl_2~~gpFl_1~~gpFl_3 	46	group_9524	Putative defective protein IntQ
oup_8917hypothetical proteinoup_9999hypothetical proteinoup_1691hypothetical proteinhypothetical protein;Secretoryimmunoglobulin A-binding proteiniBEsiBoup_11495hypothetical protein	 45 group_8917 45 group_9999 44 group_1691 44 esiB 45 group_11495 43 gpFl~~~gpFl_2~~~gpFl_1~~~gpFl_3 	45	group_9243	hypothetical protein
oup_9999hypothetical proteinoup_1691hypothetical proteinhypothetical protein;Secretoryimmunoglobulin A-binding proteiniBEsiBoup_11495hypothetical protein	 45 group_9999 44 group_1691 44 esiB 45 group_11495 43 gpFl~~gpFl_2~~gpFl_1~~gpFl_3 	45	group_9242	hypothetical protein
oup_1691hypothetical protein hypothetical protein;Secretory immunoglobulin A-binding proteiniBEsiBoup_11495hypothetical protein	 44 group_1691 44 group_1691 44 esiB 43 group_11495 43 gpFl~~~gpFl_2~~~gpFl_1~~~gpFl_3 44 protection 45 protection 46 protection 47 protection 48 protection 49 protection 40 protection 41 protection 42 protection 43 protection 44 protection 45 protection 46 protection 47 protection 48 protection 49 protection 49 protection 40 protection 41 protection 42 protection 43 protection 44 protection 45 protection 46 protection 47 protection 48 protection 49 protection 40 protection 41 protection 42 protection 43 protection 44 protection 45 protection 46 protection 47 protection 48 protection 49 protection 40 protection 41 protection 42 protection 43 protection 44 protection 45 protection 46 protection 47 protection 48 protection 49 protection 49 protection 40 protection 41 protection 42 protection 43 protection 44 protection 44 protection 44 protection 45 protection 46 protection 47 protection 48 protection 49 protection 49 protection 49 protection 49 protection 49 protection 40 protection 41 protection 42 protection 43 protection 44 protection <	45	group_8917	hypothetical protein
iB EsiB oup_11495 hypothetical protein and the second seco	 44 esiB 43 group_11495 43 gpFl~~~gpFl_2~~~gpFl_1~~~gpFl_3 	45	group_9999	hypothetical protein
immunoglobulin A-binding protein iB EsiB oup_11495 hypothetical protein	 44 esiB 43 group_11495 43 gpFl~~~gpFl_2~~~gpFl_1~~~gpFl_3 44 immunoglobulin A-binding protein 45 protein 	44	group_1691	hypothetical protein
iB EsiB oup_11495 hypothetical protein	44esiBEsiB43group_11495hypothetical protein Putative prophage major tail sheat43gpFI~~~gpFI_2~~~gpFI_1~~~gpFI_3protein			hypothetical protein;Secretory
oup_11495 hypothetical protein	43 group_11495hypothetical protein Putative prophage major tail sheat43 gpFl~~~gpFl_2~~~gpFl_1~~~gpFl_3protein			
	43gpFl~~~gpFl_2~~~gpFl_1~~~gpFl_3Putative prophage major tail sheat	44	esiB	EsiB
Putative nronhage major tail sheath	43 gpFI~~~gpFI_2~~~gpFI_1~~~gpFI_3 protein	43	group_11495	
		40		Putative prophage major tail sheath
	43 group 1487 hypothetical protein			•
	43 group_123 hypothetical protein	43	group_123	nypothetical protein
FI~~~gpFI_2~~~gpFI_1~~~gpFI_3 protein	43 group 1487 hypothetical protein	44 43 43	esiB group_11495 gpFI~~~gpFI_2~~~gpFI_1~~~gpFI_3	hypothetical protein;Secretor immunoglobulin A-binding pr EsiB hypothetical protein Putative prophage major tail protein
	is Prosh_table uthousing housing	43	group_1487	hypothetical protein

		Putative transposase InsK for
		insertion sequence element
42	group_2437	IS150;IS3 family transposase ISAisp2
		hypothetical protein;IS3 family
42	group_2392	transposase ISAisp2
		hypothetical protein;Tyrosine
41	xerC_5~~~xerC_3~~~xerC_7	recombinase XerC
		Tn3 family transposase
41	group_5769	ISPa43; hypothetical protein
40	group 3764	hypothetical protein
40	group 3767	hypothetical protein
-		hypothetical protein;D-alanineD-
39	dltA 2~~~dltA 1~~~dltA 3	alanyl carrier protein ligase
39	group_2425	hypothetical protein
00	8.049_2.20	HTH-type transcriptional activator
39	rhaR 1~~~rhaR 3	RhaR
55	man_i man_s	Acyl carrier protein;hypothetical
		protein;Phthiocerol synthesis
39	acpP_1~~~acpP_2~~~ppsE~~~ppsE_1	polyketide synthase type I PpsE
55		putative ABC transporter ATP-
		binding protein;Iron import ATP-
39	irtA	binding/permease protein IrtA
55		Vitamin B12 import ATP-binding
39	btuD_3~~~btuD_1~~~btuD_5	protein BtuD
55		Pesticin receptor;hypothetical
39	fyuA	protein
39	IyuA	Acetyl-coenzyme A synthetase;4-
		hydroxyphenylalkanoate
		adenylyltransferase;6-
		deoxyerythronolide-B synthase
		EryA2 modules 3 and 4;D-alanine
		D-alanyl carrier protein
		ligase;Phenolphthiocerol synthesis
		polyketide synthase type I
	acs~~~eryA~~~dltA 1~~~dltA 2~~~dltA 4	Pks15/1;hypothetical protein;2-
39	~~~menE 1~~~acs 2~~~menE 3	succinylbenzoateCoA ligase
39		hypothetical protein
22	group_3012	hypothetical protein;2-methoxy-6-
		polyprenyl-14-benzoquinol
		methylase mitochondrial;4'-
		phosphopantetheinyl transferase
39	COO5 2~~~cfp~~~COO5 1	
22	COQ5_2~~~sfp~~~COQ5_1	Sfp N-acetylmuramoyl-L-alanine
39	group 11370	amidase AmiD;hypothetical protein
22	Proch_11210	hypothetical protein;Nucleoid
38	noc_1~~~noc_4~~~noc_2	occlusion protein
		-
38	group_3742	hypothetical protein

37	group_3734
37	group_2704
37	group_2650
37	group_2761
37	group_1626
36	group_11402
36	group_1818
36	group_11741
35	group_55
35	group_22
34	group_2827
34	group_2830
34	group_4835
33	group_3230
33	group_132
33	group_2387
33	group_599
33	group_11985
33	group_11756
33	group_11422
33	group_407
33	group_10389
33	group_4318
33	group_3457
33	group_10388
33	group_8091
33	group_6126
33	group_10313
32	group_3086
32	group_4630
32	group_1520
32	group_1518
32	group_4196
31	group_2930
31	group_12015
31	group_11813
31	group_11493
31	group_10992
31	group_10153
31	group_10993
31	group_10155
31	group_405

hypothetical protein IS630 family transposase ISCARN39 hypothetical protein D-serine/D-alanine/glycine transporter hypothetical protein hypothetical protein

31	group_2568	hypothetical protein Putative prophage major tail sheath
31	gpFI_1~~~gpFI~~~gpFI_2	protein
51	8411-+ 8411 8411-2	IS3 family transposase ISAtu5;IS3
		family transposase
30	group_2671	ISRso14;hypothetical protein
		IS3 family transposase ISBam2;IS3
30	group_7602	family transposase IS407
29	group_1255	hypothetical protein
29	group_10213	hypothetical protein
28	group_10892	hypothetical protein
28	group_10006	hypothetical protein
28	group_1829	hypothetical protein
28	group_9342	hypothetical protein
28	group_6627	hypothetical protein
28	group_1350	hypothetical protein
27	group_152	hypothetical protein
27	group_313	hypothetical protein
26	intA_1~~~intA~~~intA_2	Prophage integrase IntA
26	group_2653	hypothetical protein
26	group_1647	hypothetical protein
26	group_1645	hypothetical protein
		DNA-invertase hin; hypothetical
25	hin_1~~~hin~~~hin_2	protein
25	group_11821	hypothetical protein
25	group_1447	hypothetical protein
25	group_10227	hypothetical protein
25	group_9261	hypothetical protein
25	group_7173	hypothetical protein
25	group_7172	hypothetical protein
25	group_2264	hypothetical protein
25	group_1243	hypothetical protein
24	group_296	hypothetical protein
24	group_11637	hypothetical protein
23	group_9544	hypothetical protein
23	group_10428	hypothetical protein
		IS3 family transposase
22	group_3409	IS401;hypothetical protein
		IS3 family transposase
~ ~		IS401;Putative transposase InsK for
22	group_2398	insertion sequence element IS150
21		
	group_3215	hypothetical protein
21	group_3215 noc_2~~~noc_4~~~noc_3	hypothetical protein Nucleoid occlusion protein;hypothetical protein

		Nucleoid occlusion
21	noc 1~~~noc 2~~~noc 3	protein;hypothetical protein
20	group 10995	hypothetical protein
20	group_1271	hypothetical protein
20	group 2964	hypothetical protein
20	group 1086	hypothetical protein
20	group_2963	hypothetical protein
19	group 5966	hypothetical protein
19	group 3397	hypothetical protein
19	group 2480	hypothetical protein
18	group 1009	IS66 family transposase IS1313
	0 12	IS66 family transposase ISAeh1;IS66
		family transposase
18	group_1054	ISPa82;hypothetical protein
18	group_800	hypothetical protein
17	group_1762	hypothetical protein
17	group_1526	hypothetical protein
17	group_852	hypothetical protein
		Cardiolipin synthase B;Cardiolipin
17	clsB_3	synthase;hypothetical protein
17	group_845	hypothetical protein
17	group_2862	hypothetical protein
17	group_1672	hypothetical protein
17	group_1643	hypothetical protein
17	group_1525	hypothetical protein
17	group_1270	hypothetical protein
17	group_9198	hypothetical protein
17	group_10795	hypothetical protein
17	group_10190	hypothetical protein
17	group_10131	hypothetical protein
17	group_9905	hypothetical protein
17	group_9904	hypothetical protein
17	group_9130	hypothetical protein
17	group_8475	hypothetical protein
17	group_3280	hypothetical protein
		hypothetical protein;putative BsuMI
17	ydiP_2~~~ydiP	modification methylase subunit YdiP
17	group_10985	hypothetical protein
17	group_9199	hypothetical protein
17	group_11797	hypothetical protein
17	group_7072	hypothetical protein
16	group_11070	hypothetical protein
16	group_3166	hypothetical protein
15	group_11812	hypothetical protein

15	group 11826	hypothetical protein
15	group_11820 group_1418	hypothetical protein
15	B100b_1410	Modification methylase
15	group_11550	DpnIIB;hypothetical protein
15	group_7175	hypothetical protein
15	group 1279	hypothetical protein
10	xerC 1~~~xerC 2~~~xerC 5~~~xerC 10~~	
15	~xerC_3	Tyrosine recombinase XerC
15	group_787	hypothetical protein
15	group_10880	hypothetical protein
15	group_172	hypothetical protein
15	group_2677	hypothetical protein
15	group_500	hypothetical protein
15	group_460	hypothetical protein
15	group_375	hypothetical protein
15	group_315	hypothetical protein
15	group_155	hypothetical protein
15	group_11530	hypothetical protein
15	group_11055	hypothetical protein
15	group_7174	hypothetical protein
15	group_870	hypothetical protein
15	group_266	hypothetical protein
15	group_9263	hypothetical protein
15	group_9274	hypothetical protein
15	group_10332	hypothetical protein
15	group_8787	hypothetical protein
15	group_7922	hypothetical protein
14	smc_2~~~smc_1	Chromosome partition protein Smc
14	group_10693	putative protein/MSMEI_1241
14	group_9792	hypothetical protein
14	group_8210	hypothetical protein
14	group_1203	hypothetical protein
14	group_923	hypothetical protein
14	group_11314	hypothetical protein
14	group_8232	hypothetical protein
13	group_8279	hypothetical protein
13	group_3461	hypothetical protein
13	group_6106	hypothetical protein
13	group_11340	hypothetical protein
13	group_7413	hypothetical protein
13	group_7116	hypothetical protein
13	group_5897	hypothetical protein
13	group_3398	hypothetical protein

13	group_174	hypothetical protein
13	group_7187	hypothetical protein
13	group_5729	hypothetical protein
13	group_5710	hypothetical protein
13	group_10100	hypothetical protein
13	group_8916	hypothetical protein
13	group_7406	hypothetical protein
13	group_6548	hypothetical protein
13	group_6522	hypothetical protein
13	group_6071	hypothetical protein
13	group_4356	hypothetical protein
13	group_3307	hypothetical protein
13	group_2167	hypothetical protein
13	group_11837	hypothetical protein
		Glycine cleavage system
13	group_10246	transcriptional activator
		Glycine
		betaine/proline/ectoine/pipecolic
13	group_6127	acid transporter OusA
12	group_1741	hypothetical protein
12	group_1743	hypothetical protein
12	group_1444	hypothetical protein
12	group_7723	hypothetical protein
11	group_2694	hypothetical protein
		Putative universal stress
4.4	to D	protein;TRAP-T-associated universal
11	teaD	stress protein TeaD
11	group_2763	hypothetical protein
11	group_1929	hypothetical protein
11	group_8230	hypothetical protein
		Catabolite control protein A;HTH- type transcriptional regulator
11	ccpA_2~~~ccpA_3~~~treR~~~ccpA_1	TreR;hypothetical protein
11	sacX	Negative regulator of SacY activity
11	group_11352	Sucrose-6-phosphate hydrolase
11	group 11165	hypothetical protein
11	nemA 2~~~nemA 1~~~nemA 3	N-ethylmaleimide reductase
11	group 10746	Maltoporin
ΤŢ	Progh_70140	Aconitate/2-methylaconitate
11	citB~~~citB_1~~~acn	hydratase;Aconitate hydratase A
11	group 10472	hypothetical protein
11	hicd	Homoisocitrate dehydrogenase
		Arabinose import ATP-binding
11	araG_1~~~mglA_3~~~araG~~~araG_2	protein AraG;Galactose/methyl

11	group_10058	galactoside import ATP-binding protein MgIA;hypothetical protein hypothetical protein hypothetical
		protein;Phosphoenolpyruvate-
11	ptsl_3~~~ptsl_2	protein phosphotransferase
11	group_9715	hypothetical protein
11	group_9664	hypothetical protein
11	group_9615	hypothetical protein
11	group_9071	hypothetical protein
11	group_9027	hypothetical protein
11	group_9026	hypothetical protein
11	group_8315	hypothetical protein
11	resA_2~~~resA_3~~~resA_4	Thiol-disulfide oxidoreductase ResA
11	group_8215	hypothetical protein
		Aconitate hydratase B;3-
	acnB~~~leuC_2~~~acnB_2~~~acnB_3~~~a	isopropylmalate dehydratase large
11	cnB_1	subunit
		HTH-type transcriptional repressor
11	nonDevelute Develute 1	NanR;HTH-type transcriptional
ΤT	nanR~~~lutR_2~~~lutR_1	regulator LutR Multidrug export protein
		EmrB;hypothetical protein;putative
11	emrB_2~~~emrB_3~~~emrY_2	multidrug resistance protein EmrY
11	scrK~~~RBKS	Fructokinase;Ribokinase
		Glutamine transport system
		permease protein GlnP;hypothetical
11	glnP_1~~~glnP_2	protein
11	group_6780	hypothetical protein
11	group_6762	hypothetical protein
		Putative 3-oxopropanoate
		dehydrogenase;Malonate-
11	bauC_1~~~ioIA_1	semialdehyde dehydrogenase
11	group_6133	hypothetical protein
11	group_6052	hypothetical protein
		HTH-type transcriptional regulator
11	dmlR_11~~~dmlR_12	DmlR
11		ABC transporter glutamine-binding
11 11	glnH_1 folE	protein GlnH GTP cyclohydrolase 1
ΤT	IOIE	putative glutamine ABC transporter
		permease protein GlnM;L-cystine
		transport system permease protein
11	glnM_1~~~yecS_2	YecS
		Glutamine transport ATP-binding
11	group_2519	protein GlnQ

11	group_2342	hypothetical protein
11	group_1213	hypothetical protein
11	group_11924	hypothetical protein
11	group_11885	hypothetical protein
11	group_11670	hypothetical protein
11	group 11299	hypothetical protein
		Respiratory nitrate reductase 1 beta
		chain;Respiratory nitrate reductase
11	narH_1~~~narH_2~~~narY~~~narH	2 beta chain
		3D-(35/4)-trihydroxycyclohexane-
11	iolD~~~iolD_1~~~iolD_2	12-dione hydrolase
11	group_11039	hypothetical protein
11	group_11007	hypothetical protein
		Inositol 2-dehydrogenase/D-chiro-
11	iolG_1	inositol 3-dehydrogenase
11	group_10685	hypothetical protein
		Inosose dehydratase;hypothetical
11	iolE_2~~~iolE_1	protein
11	group_10330	hypothetical protein
		2-amino-3-ketobutyrate coenzyme
11	group_10037	A ligase; hypothetical protein
11	group_10036	hypothetical protein
11	group_9970	hypothetical protein
11	group_9954	hypothetical protein
		D-threitol-binding
11	thpA~~~thpA_1	protein;hypothetical protein
		hypothetical protein;Inositol 2-
		dehydrogenase/D-chiro-inositol 3-
11	iolG_2~~~iolG_1	dehydrogenase
		hypothetical protein;Nitrate
		reductase molybdenum cofactor
11	narJ	assembly chaperone NarJ
		HTH-type transcriptional regulator
11	sutR_2~~~sutR_3	SutR;hypothetical protein
		HTH-type transcriptional regulator
11	cmr	Cmr;Cyclic AMP receptor
11	cmr	protein;hypothetical protein
		putative epimerase/dehydratase;hypothetica
11	group_8988	l protein
	group_0000	Iron-sulfur cluster repair protein
11	ytfE	YtfE
	,	Transcriptional regulatory protein
		DegU;Protein-glutamate
		methylesterase/protein-glutamine
11	degU_2~~~cheB_2~~~degU_1	glutaminase

		Molybdopterin-guanine
		dinucleotide biosynthesis adapter
11	mobB_2~~~mobB_1	protein;hypothetical protein
	dmlR_4~~~dmlR_14~~~dmlR_12~~~dmlR_	HTH-type transcriptional regulator
11	17	DmlR;hypothetical protein
11	group_8742	hypothetical protein
		Galactose/methyl galactoside
		import ATP-binding protein
11	mala 1~~~htuD 4~~~mala 2	MglA;Vitamin B12 import ATP- binding protein BtuD
11	mglA_1~~~btuD_4~~~mglA_2	HTH-type transcriptional regulator
11	murR 1~~~murR 2	MurR
		Respiratory nitrate reductase 1
11	narl~~~narl_1~~~narl_2	gamma chain;hypothetical protein
11	iolC~~~iolC_1	5-dehydro-2-deoxygluconokinase
11	iolE_1~~~iolE_2	Inosose dehydratase
		7-carboxy-7-deazaguanine
11	queE_2~~~queE_1	synthase; hypothetical protein
		Anaerobic ribonucleoside-
		triphosphate reductase;hypothetical
11	group_7386	protein
		hypothetical protein;Anaerobic
		nitric oxide reductase transcription
		regulator NorR;Nitric oxide
11		reductase transcription regulator NorR2
	norR_5~~~norR2	
11	group_6652	hypothetical protein Ribose import permease protein
11	rbsC_2~~~rbsC_3	RbsC
	1030_2 1030_3	hypothetical protein;Outer
11	tolC	membrane protein TolC
		hypothetical protein;Nitrate
11	nasA_1~~~nasA_2	transporter
		hypothetical protein;Nitrate/nitrite
11	narK_1~~~narK_2~~~narK	transporter NarK
11	group_2727	hypothetical protein
11	drgA	Protein DrgA
		Respiratory nitrate reductase 2
11	narZ_1~~~narG_2~~~narZ_2~~~narG_3~~	alpha chain;Respiratory nitrate
11	~narG_1~~~narG	reductase 1 alpha chain
11	group_1385	hypothetical protein
11	group_1000	hypothetical protein
11	group_291	hypothetical protein
11	group_202	hypothetical protein
11	group_83	hypothetical protein

11 nosZ 11 group_9388 11 yhbU_1~~~yhbU_2~~~yhbU 11 group 9133 11 nosL 11 yahK 2~~~adhC2~~~adhC 11 nosD~~~nosD_1~~~nosD_2 11 group 7486 11 group 6966 11 nosY 11 group 6712 11 group 6341 11 pgrR_3~~~pgrR_4 11 nosF 11 group 5621 11 group_5504 11 aiiA 11 group_2819

11 hdfR~~~hdfR 1~~~hdfR 2

11 yihG~~~yihG 1~~~yihG 2

11 group_11403 11 group 11177

11 group 10534

11 group_10358

11 group 10352

11 group 10134

11 group_9481

11 mmgF

11 apbE 2~~~apbE 1

HTH-type transcriptional regulator HdfR;hypothetical protein putative acyltransferase YihG hypothetical protein hypothetical protein FAD:protein FMN transferase; hypothetical protein hypothetical protein;HTH-type transcriptional regulator CdhR;HTHtype transcriptional regulator hypothetical protein;Cytochrome c-555 hypothetical protein hypothetical protein putative protein;2-methylisocitrate lyase hypothetical protein Nitrous-oxide reductase hypothetical protein putative protease YhbU hypothetical protein Copper-binding lipoprotein NosL Aldehyde reductase YahK;hypothetical protein;NADPdependent alcohol dehydrogenase C 2;NADP-dependent alcohol dehydrogenase C putative ABC transporter binding protein NosD hypothetical protein hypothetical protein hypothetical protein; putative ABC transporter permease protein NosY Nitrate/nitrite sensor protein NarX; hypothetical protein hypothetical protein HTH-type transcriptional regulator PgrR putative ABC transporter ATPbinding protein NosF hypothetical protein hypothetical protein N-acyl homoserine lactonase; hypothetical protein hypothetical protein

11 aspC_2~~~aspC_1~~~hisC_6 aminotransferase 11 ucpA_2~~~gdh_1 dehydrogenase 11 group_11599 11 TDO2 Isopenicillin N 11 cefD~~~egtE sulfoxide lyase 11 group_10963 11 group 10737 11 group 9299 11 group 7900 11 group 7256 11 group 7254 11 group 5024 11 cyoD_1~~~cyoD_2 11 tar 1 11 group_9418 11 group 7884 11 cyoC 2~~~cyoC 1 11 cyoA~~~cyoA_2~~~cyoA_1 11 cyoB 2~~~cyoB 3~~~cyoB 4 subunit 1 11 group 3283 11 group 9 11 group_11194 11 group 11157 11 group 10947 triA~~~atzA~~~dadD 1~~~dadD~~~dadD 11 2 11 iolB~~~iolB 1 11 ptsJ~~~lysN_2

aminotransferase;hypothetical protein;Histidinol-phosphate Oxidoreductase UcpA;Galactitol 2hypothetical protein Tryptophan 23-dioxygenase epimerase;hercynylcysteine hypothetical protein Cytochrome bo(3) ubiquinol oxidase subunit 4; hypothetical protein Methyl-accepting chemotaxis protein II; hypothetical protein hypothetical protein Outer membrane porin protein 32; hypothetical protein Cytochrome bo(3) ubiquinol oxidase subunit 3; hypothetical protein hypothetical protein;Cytochrome bo(3) ubiquinol oxidase subunit 2 Cytochrome bo(3) ubiquinol oxidase hypothetical protein hypothetical protein hypothetical protein hypothetical protein Outer membrane porin protein 32;Outer membrane porin protein; hypothetical protein Melamine deaminase; Atrazine chlorohydrolase;5'-deoxyadenosine deaminase; hypothetical protein 5-deoxy-glucuronate isomerase Vitamin B6 salvage pathway transcriptional repressor PtsJ;hypothetical protein;2aminoadipate transaminase

Aspartate

```
11 purU 2
11 bcr 3~~~bcr 2~~~mdtL~~~bcr 1
11 group 8096
11 group 7987
11 soxG
11 soxD
11 cdhR 1~~~cdhR 2~~~cdhR 3
11 group 6526
11 group 6208
11 soxA_1~~~soxA_2~~~soxA_3
11 soxB 1~~~soxB 2~~~soxB
11 sdaA 1~~~sdaA 2~~~sdaB
11 group 10663
11 group 10662
11 sir 2~~~sir 1
11 group 9618
11 group 9265
11 group_9264
11 group 9042
11 group 3374
11 group 3173
11 group 3078
11 group 2940
11 group_2911
11 group 11774
11 group 11703
11 group 11441
11 group 11353
11 group 10748
11 group 9864
11 group_9852
11 group 9652
11 group_8318
11 group 7957
11 group 6597
11 group 6210
```

Formyltetrahydrofolate deformylase; hypothetical protein **Bicyclomycin resistance** protein; Multidrug resistance protein MdtL;hypothetical protein hypothetical protein hypothetical protein Sarcosine oxidase subunit gamma; hypothetical protein Sarcosine oxidase subunit delta HTH-type transcriptional regulator CdhR; hypothetical protein hypothetical protein Aldo-keto reductase IoIS Sarcosine oxidase subunit alpha; hypothetical protein Sarcosine oxidase subunit beta L-serine dehydratase;L-serine dehydratase 2 hypothetical protein hypothetical protein Sulfite reductase [ferredoxin];hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein Ribonuclease hypothetical protein hypothetical protein HTH-type transcriptional regulator TsaR; hypothetical protein hypothetical protein

11	dkgA
11	group_2171
11	cdhR_2~~~cdhR_1
11	group_9504
11	aat 1 aaaat D
ΤT	aatA_1~~~aatB
11	murR_3
11	group_8125
11	group_6607
11	group_6401
11	group_5955
11	group_4818
11	group_4757
11	group_4236
11	group_2733
11	group_2610
11	group_640
11	group_11802
11	group_11534
11	group_11094
11	group_10249
11	group_9469
11	group_9401
11	group_8683
11	group_8064
11	group_7466
11	group_7464
11	group_7431
11	group_7193
11	group_7179
11	group_6549
11	group_6312
11	group_6113
11	lifO
11	mtlK

putative oxidoreductase/MSMEI 2347;25diketo-D-gluconic acid reductase A hypothetical protein HTH-type transcriptional regulator CdhR;hypothetical protein hypothetical protein Aspartate/prephenate aminotransferase;Aspartate aminotransferase HTH-type transcriptional regulator MurR hypothetical protein hypothetical protein;Outer membrane porin protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein Lipase chaperone Mannitol 2-dehydrogenase hypothetical

protein;Autotransporter adhesin

SadA

11 sadA~~~sadA_2

11	group_3984	hypothetical protein
11	group_2996	hypothetical protein
		Putative thymidine
		phosphorylase;Pyrimidine-
11	pdp	nucleoside phosphorylase
11	group_2872	hypothetical protein
11	group_1206	hypothetical protein
11	group_945	hypothetical protein
11	group_628	hypothetical protein
11	xyIB	Xylulose kinase
		Erythritol catabolism regulatory
11	eryD	protein EryD
11	group_9610	hypothetical protein
11	group_9533	hypothetical protein;Catalase
11	group_9443	hypothetical protein
11	group_9373	hypothetical protein
11	group_7864	hypothetical protein
11	group_7804	hypothetical protein
11	group_7787	hypothetical protein
		Phosphoglycolate phosphatase;6-
11	gph_1~~~gph_2~~~yieH_2	phosphogluconate phosphatase
11	group_7642	hypothetical protein
11	group_6980	hypothetical protein
11	group_6820	hypothetical protein
11	group_6056	hypothetical protein
		D-tagatose-16-bisphosphate
11	kbaZ	aldolase subunit KbaZ
		L-aspartate/glutamate-specific
11	group_4931	racemase;hypothetical protein
		hypothetical protein;Trehalose
4.4	aug D	transport system permease protein
11	sugB	SugB
11	group_4810	hypothetical protein
11	group_4782	hypothetical protein
		6-
11	ng 4~~~ng 1	phosphogluconolactonase;hypothet ical protein
11	pgl_4~~~pgl_1	Maltose/maltodextrin import ATP-
		binding protein MalK;hypothetical
11	malK	protein
11	group_3889	hypothetical protein
11	group 2854	hypothetical protein
<u> </u>	0.00P_2001	Melibiose/raffinose/stachyose
		import permease protein
11	melD	MelD;hypothetical protein

11	group_2121	hypothetical protein
11	polS	Sorbitol dehydrogenase
11	group_339	Tagatose kinase
11	group_11892	hypothetical protein
11	group_10484	hypothetical protein
11	group_9348	hypothetical protein
11	group 8153	hypothetical protein
		hypothetical protein;HTH-type
		transcriptional regulator PgrR;HTH-
11	pgrR_7~~~argP~~~argP_1~~~pgrR_2	type transcriptional regulator ArgP
11	group_7770	hypothetical protein
		2345-tetrahydropyridine-26-
		dicarboxylate N-
		acetyltransferase;Serine acetyltransferase;hypothetical
11	dapH_3~~~cysE	protein
11	group_7423	hypothetical protein
	9.00P_, .=0	putative HTH-type transcriptional
11	group_6717	regulator
11	group_6716	hypothetical protein
11	group_6413	hypothetical protein
		Plipastatin synthase subunit
		B;Enterobactin synthase component
11	ppsB~~~entF	F
11	group_5113	hypothetical protein
11	group 5026	hypothetical protein;putative protein
ΤT	group_3020	HTH-type transcriptional regulator
11	gltR 2~~~gltR 1	GltR
11	group_4800	hypothetical protein
	5 I_	Diaminobutyrate2-oxoglutarate
11	ectB_1~~~ectB~~~ectB_2	transaminase
		hypothetical protein;L-ornithine
11	pvdA	N(5)-monooxygenase
11	group_4648	hypothetical protein
11	nonl	Purine ribonucleoside efflux pump
11	nepl	Nepl
11 11	group_2555	hypothetical protein Monomeric sarcosine oxidase
11	soxA_3~~~soxA_4 group_387	hypothetical protein
11		hypothetical protein
11	group_11178 group_9757	hypothetical protein
11	pgi_2~~~pgi_1	Glucose-6-phosphate isomerase
11	group_6599	hypothetical protein
11	group 5681	hypothetical protein
	9.04h-2001	

11	yodB	Cytochrome b561
11	group_595	hypothetical protein
11	group_9853	hypothetical protein
11	group_8154	hypothetical protein
11	group_7717	hypothetical protein
11	group_7544	hypothetical protein
11	group_2737	hypothetical protein
11	group_743	hypothetical protein
11	group_9527	hypothetical protein
11	group_2289	hypothetical protein
11	group_1963	hypothetical protein
11	group_7866	hypothetical protein
11	group_3723	hypothetical protein
		IS3 family transposase
11	group_2591	ISBcen15;hypothetical protein
11	group_11161	hypothetical protein
11	group_10763	hypothetical protein
11	group_10531	hypothetical protein
11	group_5046	hypothetical protein
11	group_8961	hypothetical protein
11	group_8375	hypothetical protein
11	group_7951	hypothetical protein
11	group_7946	hypothetical protein
11	group_352	hypothetical protein
		Inositol 2-dehydrogenase/D-chiro-
		inositol 3-
11	iolG_1~~~iolG_3~~~iolG_4	dehydrogenase;hypothetical protein
11	gcvA_7~~~gcvA_5	Glycine cleavage system transcriptional activator
11		hypothetical protein
11	group_7446 ssuD 2	Alkanesulfonate monooxygenase
11	SSUD_Z	hypothetical protein;26-
		dihydroxypyridine 3-
11	dhpH	monooxygenase
		HTH-type transcriptional regulator
11	dmlR_16	DmlR
11	group_10487	hypothetical protein
11	group 7345	Cystathionine beta-lyase PatB
		Cytochrome c-552;hypothetical
11	cyt	protein
11	group_3128	hypothetical protein
11	group_3102	Cytochrome c-552
11	group_2960	hypothetical protein
11	group_10429	hypothetical protein

11	group_5516	hypothetical protein
		hypothetical protein;Drug efflux
		pump JefA;Multidrug resistance
		protein Stp;Putative multidrug
11	jefA~~~stp~~~mdtD_1	resistance protein MdtD
11	group_11168	hypothetical protein
11	group_3868	hypothetical protein
		IS3 family transposase ISRso14;IS3
		family transposase
11	group_2769	ISAtu5;hypothetical protein
11	group_265	hypothetical protein
11	group_9197	hypothetical protein
11	group_7412	hypothetical protein
11	group_7071	hypothetical protein
		hypothetical protein;HTH-type
11	lrpC_3~~~lrpC_4	transcriptional regulator LrpC
11	group_2447	hypothetical protein
11	group_2275	hypothetical protein
11	group_7863	hypothetical protein
11	group_3808	hypothetical protein
11	group_1614	hypothetical protein
		NADP-dependent alcohol
		dehydrogenase C 2;Aldehyde
		reductase YahK;L-threonine 3-
		dehydrogenase;hypothetical
	adhC2~~~yahK_1~~~tdh_2~~~adhA_2~~~	protein;putative formaldehyde
11	adhA_3	dehydrogenase AdhA
11	group_2617	hypothetical protein
11	group_7956	hypothetical protein
11	group_7737	hypothetical protein
11	group_7563	hypothetical protein
11	group_4127	hypothetical protein
		Putative universal stress
		protein;Universal stress
11	group_2973	protein/MSMEI_3859
		hypothetical protein;IS3 family
11	group_2751	transposase IS222
		Vitamin B12-dependent
		ribonucleoside-diphosphate
11	group_10714	reductase;hypothetical protein
11	group_8236	hypothetical protein
11	group_7050	hypothetical protein
11	group_6923	hypothetical protein
11	group_5856	Alcohol dehydrogenase

	emrY_2~~~emrY_1~~~emrB_4~~~emrB_2
11	~~~emrB 1
	_
11	iorA_1~~~iorA_3~~~iorA_2
	2754
11	group_3751
11	paoD_2~~~pucA_2~~~paoD~~~pucA
11	group_3630
	dksA_3~~~dksA_2~~~dksA_1
	group_1852
11	group_1162
11	prs_2~~~prs_1
	adh_2~~~adh_1
11	group_7775
11	group_5199
	5042
11	group_5013
11	mas~~~tdh
11	group_4049
11	group_10479
11	farA
11	oprM_7~~~oprM_1~~~oprM_9
11	group_4410
11	group_2424
11 11	group_2383
11	group_2136 group_2122
11	group_2101
11	group_2057
11	group_2037 group_1978
11	group_10310
11	group_7917
	group_7915
4.4	

11 group_7892

hypothetical protein; putative multidrug resistance protein EmrY;Multidrug export protein EmrB Isoquinoline 1-oxidoreductase subunit alpha Isoquinoline 1-oxidoreductase subunit beta; hypothetical protein Molybdenum cofactor insertion chaperone PaoD; putative xanthine dehydrogenase subunit A hypothetical protein **RNA** polymerase-binding transcription factor DksA hypothetical protein hypothetical protein **Ribose-phosphate** pyrophosphokinase;Putative ribosephosphate pyrophosphokinase Alcohol dehydrogenase hypothetical protein hypothetical protein IS3 family transposase ISBmu5;IS3 family transposase ISRme12; hypothetical protein hypothetical protein;Mycocerosic acid synthase;L-threonine 3dehydrogenase hypothetical protein hypothetical protein Fatty acid resistance protein FarA Outer membrane protein OprM; hypothetical protein IS3 family transposase ISRso11 hypothetical protein hypothetical protein

hypothetical protein

		Methionine-rich peptide
11	mrpX	X;hypothetical protein
11	group_3219	hypothetical protein
11	group_2894	hypothetical protein
		putative multidrug-efflux
11	group_2779	transporter
11	group_2215	hypothetical protein
11	group_2166	hypothetical protein
11	group_2145	hypothetical protein
11	group_1892	hypothetical protein
		Putative protein-methionine-
11	yedY1	sulfoxide reductase subunit YedZ1
11	group_9578	hypothetical protein
11	group_9384	hypothetical protein
		HTH-type transcriptional activator
11	rhaS_2~~~rhaS_3~~~rhaS_4	RhaS
		putative zinc-binding alcohol
11	group_3753	dehydrogenase;hypothetical protein
4.4		hypothetical protein;IS3 family
11	group_3247	transposase ISPsy24
11	group_3150	hypothetical protein
		Isochorismatase family protein
		YecD;Staphyloferrin B transporter;hypothetical protein;N-
		carbamovisarcosino
	vecD 1~~~vecD 2~~~vecD~~~shnD 2~~~s	carbamoylsarcosine amidase:Multidrug resistance
11	yecD_1~~~yecD_2~~~yecD~~~sbnD_2~~~s bnD_1~~~mdtG	amidase; Multidrug resistance
11	yecD_1~~~yecD_2~~~yecD~~~sbnD_2~~~s bnD_1~~~mdtG	amidase;Multidrug resistance protein MdtG
	bnD_1~~~mdtG	amidase;Multidrug resistance protein MdtG hypothetical protein;HTH-type
11 11		amidase;Multidrug resistance protein MdtG hypothetical protein;HTH-type transcriptional repressor RspR
	bnD_1~~~mdtG	amidase;Multidrug resistance protein MdtG hypothetical protein;HTH-type
11	bnD_1~~~mdtG rspR_3~~~rspR_1	amidase;Multidrug resistance protein MdtG hypothetical protein;HTH-type transcriptional repressor RspR Putative protein-methionine-
11 11	bnD_1~~~mdtG rspR_3~~~rspR_1 yedZ1 group_2005	amidase;Multidrug resistance protein MdtG hypothetical protein;HTH-type transcriptional repressor RspR Putative protein-methionine- sulfoxide reductase subunit YedZ1 hypothetical protein
11 11 11	bnD_1~~~mdtG rspR_3~~~rspR_1 yedZ1 group_2005 group_1922	amidase;Multidrug resistance protein MdtG hypothetical protein;HTH-type transcriptional repressor RspR Putative protein-methionine- sulfoxide reductase subunit YedZ1 hypothetical protein hypothetical protein
11 11 11 11 11	bnD_1~~~mdtG rspR_3~~~rspR_1 yedZ1 group_2005 group_1922 group_1921	amidase;Multidrug resistance protein MdtG hypothetical protein;HTH-type transcriptional repressor RspR Putative protein-methionine- sulfoxide reductase subunit YedZ1 hypothetical protein hypothetical protein hypothetical protein
11 11 11 11 11 11	bnD_1~~~mdtG rspR_3~~~rspR_1 yedZ1 group_2005 group_1922 group_1921 group_1862	amidase;Multidrug resistance protein MdtG hypothetical protein;HTH-type transcriptional repressor RspR Putative protein-methionine- sulfoxide reductase subunit YedZ1 hypothetical protein hypothetical protein hypothetical protein hypothetical protein
11 11 11 11 11	bnD_1~~~mdtG rspR_3~~~rspR_1 yedZ1 group_2005 group_1922 group_1921	amidase;Multidrug resistance protein MdtG hypothetical protein;HTH-type transcriptional repressor RspR Putative protein-methionine- sulfoxide reductase subunit YedZ1 hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein
11 11 11 11 11 11	bnD_1~~~mdtG rspR_3~~~rspR_1 yedZ1 group_2005 group_1922 group_1921 group_1862	amidase;Multidrug resistance protein MdtG hypothetical protein;HTH-type transcriptional repressor RspR Putative protein-methionine- sulfoxide reductase subunit YedZ1 hypothetical protein hypothetical protein hypothetical protein hypothetical protein
11 11 11 11 11 11 11	bnD_1~~~mdtG rspR_3~~~rspR_1 yedZ1 group_2005 group_1922 group_1921 group_1862 group_1803 birA_1	amidase;Multidrug resistance protein MdtG hypothetical protein;HTH-type transcriptional repressor RspR Putative protein-methionine- sulfoxide reductase subunit YedZ1 hypothetical protein hypothetical protein
11 11 11 11 11 11 11 11	bnD_1~~~mdtG rspR_3~~~rspR_1 yedZ1 group_2005 group_1922 group_1921 group_1862 group_1803 birA_1 group_1773	amidase; Multidrug resistance protein MdtG hypothetical protein; HTH-type transcriptional repressor RspR Putative protein-methionine- sulfoxide reductase subunit YedZ1 hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein; Bifunctional ligase/repressor BirA hypothetical protein
11 11 11 11 11 11 11	bnD_1~~~mdtG rspR_3~~~rspR_1 yedZ1 group_2005 group_1922 group_1921 group_1862 group_1803 birA_1	amidase;Multidrug resistance protein MdtG hypothetical protein;HTH-type transcriptional repressor RspR Putative protein-methionine- sulfoxide reductase subunit YedZ1 hypothetical protein hypothetical protein
11 11 11 11 11 11 11 11	bnD_1~~~mdtG rspR_3~~~rspR_1 yedZ1 group_2005 group_1922 group_1921 group_1862 group_1803 birA_1 group_1773	amidase;Multidrug resistance protein MdtG hypothetical protein;HTH-type transcriptional repressor RspR Putative protein-methionine- sulfoxide reductase subunit YedZ1 hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein;Bifunctional ligase/repressor BirA hypothetical protein hypothetical protein
11 11 11 11 11 11 11 11 11	bnD_1~~~mdtG rspR_3~~~rspR_1 yedZ1 group_2005 group_1922 group_1921 group_1862 group_1803 birA_1 group_1773 group_1740	amidase;Multidrug resistance protein MdtG hypothetical protein;HTH-type transcriptional repressor RspR Putative protein-methionine- sulfoxide reductase subunit YedZ1 hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein;Bifunctional ligase/repressor BirA hypothetical protein hypothetical protein hypothetical protein
11 11 11 11 11 11 11 11 11	bnD_1~~~mdtG rspR_3~~~rspR_1 yedZ1 group_2005 group_1922 group_1921 group_1862 group_1803 birA_1 group_1773 group_1740 lrpC_2 group_1251	amidase;Multidrug resistance protein MdtG hypothetical protein;HTH-type transcriptional repressor RspR Putative protein-methionine- sulfoxide reductase subunit YedZ1 hypothetical protein hypothetical protein
11 11 11 11 11 11 11 11 11 11 11	bnD_1~~~mdtG rspR_3~~~rspR_1 yedZ1 group_2005 group_1922 group_1921 group_1862 group_1803 birA_1 group_1773 group_1740 lrpC_2	amidase; Multidrug resistance protein MdtG hypothetical protein; HTH-type transcriptional repressor RspR Putative protein-methionine- sulfoxide reductase subunit YedZ1 hypothetical protein hypothetical protein

11		hungth stigs matein
11	group_2841	hypothetical protein
11	group_2531	hypothetical protein
11	group_1664	hypothetical protein
11	group 7766	Flavin-dependent monooxygenase
	group_7766	oxygenase subunit HsaA
11	group_11862	hypothetical protein
11	group_7658	hypothetical protein
11	group_2058	hypothetical protein
11	group_9494	hypothetical protein
		hypothetical protein;ATP-
11	group_8007	dependent RecD-like DNA helicase
11	group_7869	hypothetical protein
11	group_3144	hypothetical protein
11	group_1454	hypothetical protein
11	yqcF~~~yqcF_2	Antitoxin YqcF;hypothetical protein
11	group_11565	hypothetical protein
11	group_10188	hypothetical protein
		NADH-quinone oxidoreductase
11	nuoF_1~~~nuoF_3~~~nuoF_2	subunit F
		Aspartate/alanine
11	aspT	antiporter;hypothetical protein
		Succinate dehydrogenase
11	cdbA 1~~~cdbA 2	flavoprotein subunit; hypothetical
ΤT	sdhA_1~~~sdhA_2	protein Sensor histidine kinase RcsC;L-
		lactate dehydrogenase;C4-
		dicarboxylate transport sensor
11	rcsC 11~~~rcsC 5~~~lldD~~~dctB 1	protein DctB
11	group 4961	hypothetical protein
11	group_3223	hypothetical protein
	group_3223	NAD-dependent malic
		enzyme;putative NAD-dependent
11	maeA~~~maeA_2~~~maeA_1~~~mleS	malic enzyme 2;Malolactic enzyme
		HTH-type transcriptional regulator
11	dmlR 19	DmlR
11	group 7809	hypothetical protein
		hypothetical protein;HTH-type
		transcriptional regulator YidZ;PCP
		degradation transcriptional
11	yidZ~~~pcpR_7	activation protein
11	group_6202	hypothetical protein
11	group_4831	hypothetical protein
		Transcriptional regulator
11	group_9592	SlyA;hypothetical protein
11	group_9256	hypothetical protein

11 dctD 1~~~dctD 2 11 group 7266 11 group 4833 11 group_1976 11 group 1089 11 group 11541 11 group 7326 11 group_6657 11 group 5408 11 group 5314 11 group 2656 11 group 11922 11 group_2575 11 group 12046 11 mhpD 11 dsbA 2~~~dsbA 1 11 amnE 11 dmpl 11 group 9817 11 group 9169 11 amnF 11 group 8702 11 mhpF~~~dmpF 11 mhbT 2~~~mhbT 1 11 xylG 2~~~xylG 1~~~betB 5 11 hsaC 11 mhpE 2~~~mhpE 1~~~mhpE 11 group 2535 11 intS 1~~~intS~~~intS 2 11 group 2008 11 group 531 11 group_507

C4-dicarboxylate transport transcriptional regulatory protein DctD hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein;IS5 family transposase ISRso1 hypothetical protein hypothetical protein hypothetical protein hypothetical protein IS5 family transposase ISRso1 hypothetical protein 2-keto-4-pentenoate hydratase; hypothetical protein Thiol:disulfide interchange protein DsbA;hypothetical protein 4-oxalocrotonate decarboxylase 2-hydroxymuconate tautomerase hypothetical protein RNA 2'3'-cyclic phosphodiesterase 2-oxopent-4-enoate hydratase 3-hydroxy-2-methylpyridine-45dicarboxylate 4decarboxylase;hypothetical protein Acetaldehyde dehydrogenase 3-hydroxybenzoate transporter MhbT 2-hydroxymuconic semialdehyde dehydrogenase;NAD/NADPdependent betaine aldehyde dehydrogenase Iron-dependent extradiol dioxygenase 4-hydroxy-2-oxovalerate aldolase hypothetical protein Prophage integrase IntS;hypothetical protein hypothetical protein hypothetical protein hypothetical protein

- group_356
 group_274
 group_198
 group_12045
 rstA_2
 group_7921
 group_7885
 group_7883
 group_7662
- 11 group 3482
- 11 amnD~~~rutC_2
 11 group_2190
 11 group_2150
 11 group_2149
 11 group_2108
 11 group_2078
 11 group_9341
 11 group_9329
 11 group_7740

11 kgtP_5~~~nanT_2 11 group 2952

- 11 cya_1 11 slyA_1~~~slyA_3
- 11 group 6396
- 11 group 3781
- 11 livQ
- 11 group_3775
- 11 group_3023
- 11 group 785
- 11 group 78
- 11 group 10316
- 11 group 7207
- 11 group 1254
- 11 group 1069
- 11 group_575
- 11 group_9396

hypothetical protein hypothetical protein hypothetical protein hypothetical protein Transcriptional regulatory protein RstA; hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein 2-aminomuconate deaminase;RutC family protein; Putative aminoacrylate peracid reductase RutC hypothetical protein hypothetical protein; IS5 family transposase ISRso1;Alphaketoglutarate permease;Sialic acid transporter NanT hypothetical protein hypothetical protein;Bifunctional hemolysin/adenylate cyclase Transcriptional regulator SlyA hypothetical protein hypothetical protein 6^{'''}-hydroxyparomomycin C oxidase hypothetical protein hypothetical protein

11	group_2075
11	group_4096
11	group_9150
11	group_7633
11	group_3697
11	group_3447
11	group_2551
11	group_426
11	group_7895
11	group_2249
11	group_607
11	group_11748
11	group_9438
11	group_9064
11	group_7911
11	group_6858
11	group_2621
11	group_2510
11	group_11923
11	5 <u> </u>
11	group_8043
	group_7051
	group_6429
11	rfnT_2~~~rfnT
11	
11	group_4453
11	group_2860
11	group_925
11	group_776
11	<pre>xerC_2~~~xerC_3~~~xerC_4~~~xerC_1</pre>
11	group_8187
11	group_7910
11	group_5039
11	lldD_1~~~lldD_2~~~lldD
11	group_4006
11	group_3765
11	group_11800
11	group_10427
11	group_10273

hypothetical protein IS3 family transposase ISAisp2 IS110 family transposase ISBcen4 hypothetical protein Glycine cleavage system transcriptional activator Alcohol dehydrogenase hypothetical protein hypothetical protein **Riboflavin transporter RfnT** Glutamine transport ATP-binding protein GlnQ hypothetical protein hypothetical protein; IS5 family transposase ISRso18;IS5 family transposase IS1405 hypothetical protein hypothetical protein Tyrosine recombinase XerC; hypothetical protein Competence protein ComM hypothetical protein hypothetical protein L-lactate dehydrogenase hypothetical protein hypothetical protein hypothetical protein Carboxymethylenebutenolidase hypothetical protein

11 11 11 11 11 11 11 11 11 11	<pre>group_9328 group_7927 group_3712 group_2635 group_2223 group_954 group_9541 speE_2~~~speE_3 group_1351 group_10626</pre>
± ±	group_10626
11 11 11 11 11 11 11 11 11 11 11 11	group_9248 group_7320 group_6965 group_1840 group_1731 group_898 group_2905 group_2838 group_2401 group_2396 group_2293 group_3754
11	group_2113
11	group_11234
11	group_10557
11	group_3770
11	group_2440
11 11 11 11 11	group_2330 group_10279 group_9326 group_8323 group_7721
11	group_2397
11 11	group_2274
11 11	group_1248
11 11	group_1044
	group_765
11	group_10334

hypothetical protein hypothetical protein hypothetical protein hypothetical protein IS3 family transposase ISBcen15;IS3 family transposase ISRso12 hypothetical protein hypothetical protein Polyamine aminopropyltransferase hypothetical protein hypothetical protein hypothetical protein; IS4 family transposase ISCro3 hypothetical protein IS3 family transposase ISBcen15; hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein; IS4 family transposase ISCro3 IS30 family transposase IS1382;IS30 family transposase IST3091;IS30 family transposase ISRme10 hypothetical protein hypothetical protein

11	group 0210	hypothetical protein
11	group_9319 group_7120	hypothetical protein
11	group_7120	hypothetical protein IS66 family transposase
		ISPpu19;hypothetical protein;IS66
11	group_2987	family transposase ISBcen19
11	group_2549	hypothetical protein
11		
	group_11000	hypothetical protein
11	group_10223	IS4 family transposase ISCro3
11	group_10163	hypothetical protein
11	group 7702	IS5 family transposase
11	group_7703	IS1405;hypothetical protein IS4 family transposase
11	group_2832	ISCro3;hypothetical protein
11	group 2804	hypothetical protein
11	group_2804	IS3 family transposase
		ISAisp2;Putative transposase InsK
		for insertion sequence element
11	group_2391	IS150
11	group_1328	hypothetical protein
11	group_1098	IS3 family transposase ISRso11
11	group_1050	hypothetical protein
11	group_9437	hypothetical protein
11	group 8921	IS3 family transposase ISAisp2
11	group 7727	hypothetical protein
		hypothetical protein;IS3 family
11	group_6609	transposase ISAisp2
		hypothetical protein;IS4 family
11	group_5344	transposase ISCro3
	xerC_6~~~xerC_5~~~xerD_1~~~xerD_2~~~	Tyrosine recombinase XerC;Tyrosine
11	xerC_4	recombinase XerD
11	group_3217	hypothetical protein
11	group_2896	hypothetical protein
11	group_2624	hypothetical protein
11	group_2587	hypothetical protein
11	group_2586	hypothetical protein
11	group_1437	hypothetical protein
11	group_697	hypothetical protein
11	group_10218	IS4 family transposase ISCro3
11	group_9141	hypothetical protein
11	group_7265	hypothetical protein
11	group_4864	IS5 family transposase IS1405
11	group_1663	hypothetical protein
11	group_11447	hypothetical protein
11	group_9949	hypothetical protein
11	group_8824	hypothetical protein

11	group_7140
11	group_7073
11	group_4583
11	group_4047
11	group_3686
11	group_2699
11	group_2388
11	group_1380
11	group_730
11	group_497
11	group_62
11	group_11226
11	group_11149
11	group_10222
11	group_8180
11	group_7415
11	group_1870
11	group_1634
11	group_1621
11	group_1066
11	mntH 1
11	group_11166
	group_10822
	group_10431
11	group_9546
11	group_8005
	group_0000
11	group_7865
11	group_7729
11	group_7728
11	group_7330
11	group_5659
11	group_5545
11	group_4874
11	group_4375
11	group_4374
11	group_2358

hypothetical protein IS4 family transposase ISCro3 IS4 family transposase ISPhsp1;hypothetical protein;IS4 family transposase ISCro3 hypothetical protein hypothetical protein IS3 family transposase ISBmu5; hypothetical protein hypothetical protein hypothetical protein Divalent metal cation transporter MntH hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein IS5 family transposase ISRso18;IS5 family transposase IS1405 hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein;IS110 family transposase ISBcen4 hypothetical protein hypothetical protein IS5 family transposase ISRso18; hypothetical protein; IS5 family transposase IS1405

11	group_1184
11	group_767
11	group_224
11	group_11540
11	group_11067
11	group_10825
11	group_10809
11	group_10284
11	group_10231
11	group_9359
11	group_9121
11	group_7329
11	group_7322
11	rhsC_3~~~rhsC_1
11	group_2977
11	group_2527
	group_2452
	group_1688
11	group_989
	group_454
11	group_10807
11	group_10614
11	group_10491
11	ribZ
	group_5820
	group_5776
	group_4372
11	group_3308
11	benM_4~~~benM_2
11	group_1564
11	group_1492
11	group_10767
11	group_5573
11	group_4854
11	group_4837

IS1182 family transposase ISBusp4;IS1182 family transposase ISPpu16; hypothetical protein IS256 family transposase ISRso7; hypothetical protein IS4 family transposase ISCro3 hypothetical protein hypothetical protein hypothetical protein IS3 family transposase ISRso16; hypothetical protein hypothetical protein; Putative deoxyribonuclease RhsC IS110 family transposase ISBma3; hypothetical protein hypothetical protein; IS4 family transposase ISCro3 hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein Branched-chain-amino-acid aminotransferase **Riboflavin transporter RibZ** hypothetical protein hypothetical protein hypothetical protein hypothetical protein HTH-type transcriptional regulator BenM hypothetical protein hypothetical protein hypothetical protein IS4 family transposase ISCro3; hypothetical protein hypothetical protein hypothetical protein

11	group_4588
11	group_4526
11	group_4241
11	group_4074
11	group_3973
11	group_334
11	group_11390
11	group_10267
11	group_7964
	8 <u>P_</u>
11	group_7017
11	group_3064
11	group_2453
11	group_6571
11	group_4355
11	group_4333
11	group_7961
11	group_7186
11	group_4208
11	group_3720
11	group_3716
11	group_3710
11	group_2552
11	group_728
11	group_11389
11	group_10747
11	group_10627
11	group_10376
	group_10242
11	group_10240
	8.00p_102.10
11	group_9865
	soxA 2~~~soxA 4
11	
11	group_6747
11	soxB
	sdaB
	group_6193
	group 4781
	group_4369
11	group_4309 group_2553
ΤŢ	810uh_2333
11	cdhR_1~~~cdhR_4

hypothetical protein IS110 family transposase ISBcen4;IS110 family transposase ISPa49; hypothetical protein IS1182 family transposase ISBusp4 IS5 family transposase IS1405 hypothetical protein IS5 family transposase IS1405 hypothetical protein;IS4 family transposase ISCro3 IS5 family transposase ISRso1 hypothetical protein hypothetical protein IS5 family transposase IS1405 IS3 family transposase ISAisp2;hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein IS110 family transposase ISMno14 IS3 family transposase ISBam2 IS3 family transposase ISRso14 Sarcosine oxidase subunit gamma; hypothetical protein Sarcosine oxidase subunit alpha hypothetical protein hypothetical protein Sarcosine oxidase subunit beta L-serine dehydratase 2 hypothetical protein hypothetical protein hypothetical protein IS3 family transposase ISAisp2 HTH-type transcriptional regulator CdhR

11	ydeP 1~~~ydeP 2	Protein YdeP
11	group_11004	hypothetical protein
11	group 10940	hypothetical protein
11	group 10639	IS5 family transposase IS1405
11	group_10633	IS5 family transposase IS1405
11	group 10629	hypothetical protein
	0h ⁻	Glycine betaine transport system
11	ориАВ	permease protein OpuAB
11	group_10077	hypothetical protein
11	group_9003	hypothetical protein
		HTH-type transcriptional regulator
11	cdhR_6	CdhR
		HTH-type transcriptional regulator
11	cdhR_4	CdhR
	7540	hypothetical protein;IS5 family
11	group_7512	transposase IS1405
11	flhA 3	S-(hydroxymethyl)glutathione dehydrogenase
11	group_7106	NADPH oxidoreductase
11	group 7105	Outer membrane porin protein
ТТ	group_/105	Glycine betaine/proline betaine
		transport system ATP-binding
11	group 7023	protein ProV
11	fixB	Protein FixB
		Glutathione-independent
11	fdhA	formaldehyde dehydrogenase
		Carnitine monooxygenase
11	group_6440	oxygenase subunit
11	group_6288	Serine hydroxymethyltransferase 2
11	group_6148	hypothetical protein
		Putative niacin/nicotinamide
11	naiP_3	transporter NaiP
11	group_4365	hypothetical protein
11	group_4313	hypothetical protein
11	group_4010	hypothetical protein
		putative N-methylproline
11	stcD	demethylase
11	group_3446	IS110 family transposase ISMno14
11	group_2919	hypothetical protein
11	purU_3	Formyltetrahydrofolate deformylase
11	group_1207	hypothetical protein
11	group_1094	IS5 family transposase IS1405
11	group_1093	hypothetical protein
11	group_1018	hypothetical protein

11	moaA_2
11	group_667
11	group_11726
11	group_10645
11	group_10634
11	group_10622
11	group_10220
11	group_9152
11	group_7726
11	group_5393
11	group_4366
11	group_3603
11	group_3594
11	group_3527
11	group_3522
11	group_3365
11	group_3235
11	group_1895
11	group_899
11	group_10640
11	group_10617
11	group_10379
11	group_883
11	group_10692
11	group_10656
11	amnD
11	group_8011
11	group_7321
11	group_4361
	1700
11	group_1788
11	rhtB 3
11	group_10224
11	group_10224 group_7183
11	group_7183 group_5082
11	group_9625
10	group_3323
10	group_3120

GTP 3'8-cyclase; hypothetical protein hypothetical protein IS5 family transposase IS1405 IS5 family transposase IS1405 IS5 family transposase IS1405 hypothetical protein IS4 family transposase ISCro3 hypothetical protein; IS5 family transposase IS1405 hypothetical protein ISNCY family transposase ISBcen27 TAL effector protein Rip19 hypothetical protein IS5 family transposase IS1405 hypothetical protein IS110 family transposase ISMno14 hypothetical protein;IS5 family transposase IS1405 hypothetical protein IS21 family transposase ISRso6 2-aminomuconate deaminase hypothetical protein hypothetical protein;IS5 family transposase IS1405 hypothetical protein IS5 family transposase IS1405;IS5 family transposase ISRso18 Homoserine/homoserine lactone efflux protein IS4 family transposase ISCro3 IS3 family transposase ISRso10 hypothetical protein hypothetical protein hypothetical protein hypothetical protein

		3'5'-cyclic adenosine
		monophosphate phosphodiesterase
10	cpdA_5~~~cpdA_4~~~cpdA_3	CpdA
		queuosine precursor
10	group_1713	transporter; hypothetical protein
10	group_1900	hypothetical protein
		hypothetical protein;putative HTH-
10	group_1484	type transcriptional regulator
		hypothetical protein;IS66 family
		transposase ISPa82;IS66 family
9	group_2543	transposase ISAeh1
9	group_2464	IS66 family transposase IS1313
9	group_10466	hypothetical protein
8	group_12012	IS701 family transposase ISRso17
8	group_5593	IS701 family transposase ISRso17
7	group_3715	hypothetical protein
7	group 11742	hypothetical protein
6	group_2238	hypothetical protein
6	group_2237	Lysozyme RrrD
6	group 2236	hypothetical protein
6	xerC_3~~~xerC_5~~~xerC_2~~~xerC_4	Tyrosine recombinase XerC
•		IS5 family transposase ISBmu20;IS5
		family transposase IS1021;IS5 family
		transposase ISRso18;IS5 family
		transposase IS1405; hypothetical
5	group_2515	protein
		IS5 family transposase
		IS1405;hypothetical protein;IS5
		family transposase ISRso18;IS5
5	group_2724	family transposase IS1021
		hypothetical protein;IS5 family
5	group_1046	transposase IS1021
		IS5 family transposase ISRso18;IS5
		family transposase IS1405;IS5 family
-	2427	transposase IS1021;hypothetical
5	group_3127	protein
		hypothetical protein;IS5 family
F	group 1202	transposase ISBmu2;IS5 family transposase IS1021
5	group_1202	IS5 family transposase
5	group_2889	IS1021;hypothetical protein
J	group_2009	hypothetical protein;IS5 family
5	group_1195	transposase IS1021
2	0.004-1100	IS5 family transposase
5	group 977	IS1021;hypothetical protein
5	group_3187	IS5 family transposase IS1021
5	0	

		IS5 family transposase
5	group_828	IS1021;hypothetical protein
J	group_626	IS5 family transposase
5	group 1457	IS1021;hypothetical protein
•	0.000-00	IS5 family transposase
5	group_1322	IS1021;hypothetical protein
	· · -	IS5 family transposase
5	group_3768	IS1021; hypothetical protein
5	group_3099	IS5 family transposase IS1021
		IS5 family transposase
5	group_2320	IS1021;hypothetical protein
5	group_1030	IS5 family transposase IS1021
		IS5 family transposase
5	group_796	IS1021;hypothetical protein
		IS5 family transposase
5	group_1527	IS1021;hypothetical protein
5	group_1142	IS5 family transposase IS1021
		IS5 family transposase
5	group_3709	IS1021;hypothetical protein
		IS5 family transposase
5	group_2325	IS1021;hypothetical protein
5	group_1128	IS5 family transposase IS1021
_		IS5 family transposase
5	group_2698	IS1021;hypothetical protein
4	group_11873	hypothetical protein
4	group_11586	hypothetical protein
4	group_10342	hypothetical protein
4	group_5626	hypothetical protein
		cGAMP-activated
4	capV	phospholipase;hypothetical protein
4	group_4325	hypothetical protein
4	group_4197	hypothetical protein
3	group_11485	hypothetical protein
3	group_10978	hypothetical protein
3	group_10130	hypothetical protein
2	group_3722	IS3 family transposase ISRso11
		IS3 family transposase
2	group_7616	ISBcen10;hypothetical protein
1	group_1670	hypothetical protein
1	group_1319	hypothetical protein

9. REFERENCES

- Abedon, S.T., 2009. Chapter 1 Phage Evolution and Ecology, in: Advances in Applied Microbiology. Academic Press, pp. 1–45. https://doi.org/10.1016/S0065-2164(08)01001-0
- Addy, H.S., Askora, A., Kawasaki, T., Fujie, M., Yamada, T., 2012. The filamentous phage φrSS1
 enhances virulence of phytopathogenic Ralstonia solanacearum on tomato.
 Phytopathology 102, 244–251. https://doi.org/10.1094/PHYTO-10-11-0277
- Albuquerque, G.M.R., Santos, L.A., Felix, K.C.S., Rollemberg, C.L., Silva, A.M.F., Souza, E.B., Cellier, G., Prior, P., Mariano, R.L.R., 2014. Moko disease-causing strains of Ralstonia solanacearum from Brazil extend known diversity in paraphyletic phylotype II. Phytopathology 104, 1175–1182. https://doi.org/10.1094/PHYTO-12-13-0334-R
- Alderley, C.L., Greenrod, S.T.E., Friman, V.-P., 2022. Plant pathogenic bacterium can rapidly evolve tolerance to an antimicrobial plant allelochemical. Evol. Appl. 15, 735–750. https://doi.org/10.1111/eva.13363
- Aldon, D., Brito, B., Boucher, C., Genin, S., 2000. A bacterial sensor of plant cell contact controls the transcriptional induction of Ralstonia solanacearum pathogenicity genes. EMBO J. 19, 2304–2314. https://doi.org/10.1093/emboj/19.10.2304
- Alfano, J.R., Collmer, A., 1996. Bacterial Pathogens in Plants: Life up against the Wall. Plant Cell 8, 1683–1698. https://doi.org/10.1105/tpc.8.10.1683
- Álvarez, B., López, M.M., Biosca, E.G., 2008. Survival strategies and pathogenicity of Ralstonia solanacearum phylotype II subjected to prolonged starvation in environmental water microcosms. Microbiology 154, 3590–3598. https://doi.org/10.1099/mic.0.2008/019448-0
- Arndt, D., Grant, J.R., Marcu, A., Sajed, T., Pon, A., Liang, Y., Wishart, D.S., 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21. https://doi.org/10.1093/nar/gkw387
- Arnold, B.J., Huang, I.-T., Hanage, W.P., 2022. Horizontal gene transfer and adaptive evolution in bacteria. Nat. Rev. Microbiol. 20, 206–218. https://doi.org/10.1038/s41579-021-00650-4
- Azad, R.K., Lawrence, J.G., 2011. Towards more robust methods of alien gene detection. Nucleic Acids Res. 39, e56. https://doi.org/10.1093/nar/gkr059

- Azarian, T., Huang, I.-T., Hanage, W.P., 2020. Structure and Dynamics of Bacterial Populations: Pangenome Ecology, in: Tettelin, H., Medini, D. (Eds.), The Pangenome: Diversity, Dynamics and Evolution of Genomes. Springer, Cham (CH).
- Bargués-Ribera, M., Gokhale, C.S., 2020. Eco-evolutionary agriculture: Host-pathogen dynamics in crop rotations. PLOS Comput. Biol. 16, e1007546. https://doi.org/10.1371/journal.pcbi.1007546
- Baroukh, C., Zemouri, M., Genin, S., 2022. Trophic preferences of the pathogen Ralstonia solanacearum and consequences on its growth in xylem sap. MicrobiologyOpen 11, e1240. https://doi.org/10.1002/mbo3.1240
- Bart, R.S., Cohn, M., Kassen, A., McCallum, E., Shybut, M., Petriello, A., Krasileva, K., Dahlbeck,
 D., Medina, C., Alicai, T., Kumar, L., Moreira, L., Neto, J., Verdier, V., Santana, M.,
 Bernal, A., Staskawicz, B.J., 2012. High-throughput genomic sequencing of cassava
 bacterial blight strains identifies conserved effectors to target for durable resistance.
 PNAS. https://doi.org/10.1073/pnas.1208003109
- Bharath, P., Gahir, S., Raghavendra, A.S., 2021. Abscisic Acid-Induced Stomatal Closure: An Important Component of Plant Defense Against Abiotic and Biotic Stress. Front. Plant Sci. 12.
- Bhatt, G., Denny, T.P., 2004. Ralstonia solanacearum iron scavenging by the siderophore staphyloferrin B is controlled by PhcA, the global virulence regulator. J. Bacteriol. 186, 7896–7904. https://doi.org/10.1128/JB.186.23.7896-7904.2004
- Bobay, L.-M., Ochman, H., 2017. Biological Species Are Universal across Life's Domains. Genome Biol. Evol. 9, 491–501. https://doi.org/10.1093/gbe/evx026
- Bobay, L.-M., Raymann, K., 2019. Population Genetics of Host-Associated Microbiomes. Curr. Mol. Biol. Rep. 5, 128–139. https://doi.org/10.1007/s40610-019-00122-y
- Bocsanczy, A.M., Achenbach, U.C.M., Mangravita-Novo, A., Chow, M., Norman, D.J., 2014.
 Proteomic comparison of Ralstonia solanacearum strains reveals temperature dependent virulence factors. BMC Genomics 15, 280. https://doi.org/10.1186/1471-2164-15-280
- Bocsanczy, A.M., Huguettapia, J.C., Norman, D.J., 2017. Comparative genomics of Ralstonia solanacearum identifies candidate genes associated with cool Virulence. Front. Plant Sci. 8, 1565.

- Bové, J.M., 2006. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 88, 7–37.
- Bragard, C., Dehnen-Schmutz, K., Di Serio, F., Gonthier, P., Jaques Miret, J.A., Justesen, A.F.,
 MacLeod, A., Magnusson, C.S., Milonas, P., Navas-Cortes, J.A., Parnell, S., Potting, R.,
 Reignault, P.L., Thulke, H., Van der Werf, W., Vicent Civera, A., Yuen, J., Zappalà, L.,
 Van der Wolf, J., Kaluski, T., Pautasso, M., Jacques, M., 2019. Pest categorisation of
 the Ralstonia solanacearum species complex. EFSA J. 17.
 https://doi.org/10.2903/j.efsa.2019.5618
- Brockhurst, M.A., Harrison, E., Hall, J.P.J., Richards, T., Mcnally, A., Maclean, C., 2019. The Ecology and Evolution of Pangenomes. https://doi.org/10.1016/j.cub.2019.08.012
- Buchfink, B., Reuter, K., Drost, H.-G., 2021. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368. https://doi.org/10.1038/s41592-021-01101-x
- Buckling, A., Craig Maclean, R., Brockhurst, M.A., Colegrave, N., 2009. The Beagle in a bottle. Nature 457, 824–829. https://doi.org/10.1038/nature07892
- Buddenhagen, I., 1962. Designation of races in Pseudomonas solanacearum. Phytopathology 52, 726.
- Buddenhagen, I., Kelman, A., 1964. Biological and Physiological Aspects of Bacterial Wilt Caused by Pseudomonas Solanacearum. Annu. Rev. Phytopathol. 2, 203–230. https://doi.org/10.1146/annurev.py.02.090164.001223
- Cantalapiedra, C.P., Hernández-Plaza, A., Letunic, I., Bork, P., Huerta-Cepas, J., 2021. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. 38, 5825–5829. https://doi.org/10.1093/molbev/msab293
- Capella-Gutiérrez, S., Silla-Martínez, J.M., Gabaldón, T., 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinforma. Oxf. Engl. 25, 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
- Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer,
 N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D.,
 Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M.,
 Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T.,

Zaneveld, J., Knight, R., 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303

- Caruso, P., Palomo, J.L., Bertolini, E., Álvarez, B., López, M.M., Biosca, E.G., 2005a. Seasonal Variation of Ralstonia solanacearum Biovar 2 Populations in a Spanish River: Recovery of Stressed Cells at Low Temperatures. Appl. Environ. Microbiol. 71, 140–148. https://doi.org/10.1128/AEM.71.1.140-148.2005
- Caruso, P., Palomo, J.L., Bertolini, E., Álvarez, B., López, M.M., Biosca, E.G., 2005b. Seasonal Variation of Ralstonia solanacearum Biovar 2 Populations in a Spanish River: Recovery of Stressed Cells at Low Temperatures. Appl. Environ. Microbiol. 71, 140–148. https://doi.org/10.1128/AEM.71.1.140-148.2005
- Castillo, J.A., Secaira-Morocho, H., Maldonado, S., Sarmiento, K.N., 2020. Diversity and Evolutionary Dynamics of Antiphage Defense Systems in Ralstonia solanacearum Species Complex. Front. Microbiol. 11. https://doi.org/10.3389/fmicb.2020.00961
- Cellier, G, Prior, P., 2010. Deciphering Phenotypic Diversity of Ralstonia solanacearum Strains Pathogenic to Potato. https://doi.org/10.1094/PHYTO-02-10-0059
- Cellier, G., Prior, P., 2010. Deciphering phenotypic diversity of Ralstonia solanacearum strains pathogenic to potato. Phytopathology 100, 1250–1261. https://doi.org/10.1094/PHYTO-02-10-0059
- Cellier, G., Remenant, B., Chiroleu, F., Lefeuvre, P., Prior, P., 2012. Phylogeny and population structure of brown rot- and Moko disease-causing strains of Ralstonia solanacearum phylotype II. Appl. Environ. Microbiol. 78, 2367–2375. https://doi.org/10.1128/AEM.06123-11
- Chakraborty, S., Newton, A.C., 2011. Climate change, plant diseases and food security: an overview. Plant Pathol. 60, 2–14. https://doi.org/10.1111/j.1365-3059.2010.02411.x
- Chaloner, T.M., Gurr, S.J., Bebber, D.P., 2021. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Change 11, 710–715. https://doi.org/10.1038/s41558-021-01104-8
- Champoiseau, P.G., Jones, J.B., Allen, C., 2009. Ralstonia solanacearum Race 3 Biovar 2 Causes Tropical Losses and Temperate Anxieties. Plant Health Prog. 10, 35. https://doi.org/10.1094/php-2009-0313-01-rv

- Chang, J.H., Desveaux, D., Creason, A.L., 2014. The ABCs and 123s of Bacterial Secretion Systems in Plant Pathogenesis. Annu. Rev. Phytopathol. 52, 317–345. https://doi.org/10.1146/annurev-phyto-011014-015624
- Chesneau, T., Maignien, G., Boyer, C., Chéron, J.-J., Roux-Cuvelier, M., Vanhuffel, L., Poussier,
 S., Prior, P., 2017. Sequevar diversity and virulence of Ralstonia solanacearum
 Phylotype I on Mayotte island (Indian Ocean). Front. Plant Sci. 8, 2209.
 https://doi.org/10.3389/fpls.2017.02209
- Cianciotto, N.P., White, R.C., 2017. Expanding Role of Type II Secretion in Bacterial Pathogenesis and Beyond. Infect. Immun. 85, e00014-17. https://doi.org/10.1128/IAI.00014-17
- Cingolani, P., Platts, A., Wang, L.L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X., Ruden, D.M., 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92. https://doi.org/10.4161/fly.19695
- Ciufo, S., Kannan, S., Sharma, S., Badretdin, A., Clark, K., Turner, S., Brover, S., Schoch, C.L., Kimchi, A., DiCuccio, M., 2018. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int. J. Syst. Evol. Microbiol. 68, 2386–2392. https://doi.org/10.1099/ijsem.0.002809
- Clarke, C.R., Studholme, D.J., Hayes, B., Runde, B., Weisberg, A., Cai, R., Wroblewski, T., Daunay, M.-C., Wicker, E., Castillo, J.A., Vinatzer, B.A., 2015. Genome-Enabled Phylogeographic Investigation of the Quarantine Pathogen Ralstonia solanacearum Race 3 Biovar 2 and Screening for Sources of Resistance Against Its Core Effectors. https://doi.org/10.1094/PHYTO-12-14-0373-R
- Cohan, F.M., 2002. What are Bacterial Species? Annu. Rev. Microbiol. 56, 457–487. https://doi.org/10.1146/annurev.micro.56.012302.160634
- Cohen, D., Melamed, S., Millman, A., Shulman, G., Oppenheimer-Shaanan, Y., Kacen, A., Doron, S., Amitai, G., Sorek, R., 2019. Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature 574, 691–695. https://doi.org/10.1038/s41586-019-1605-5
- Cole, J.R., Wang, Q., Fish, J.A., Chai, B., McGarrell, D.M., Sun, Y., Brown, C.T., Porras-Alfaro, A., Kuske, C.R., Tiedje, J.M., 2014. Ribosomal Database Project: data and tools for high

throughput rRNA analysis. Nucleic Acids Res. 42, D633-642. https://doi.org/10.1093/nar/gkt1244

- Coll, N.S., Valls, M., 2013. Current knowledge on the Ralstonia solanacearum type III secretion system. Microb. Biotechnol. 6, 614–620. https://doi.org/10.1111/1751-7915.12056
- Collins, C., Didelot, X., 2018. A phylogenetic method to perform genome-wide association studies in microbes that accounts for population structure and recombination. PLoS Comput. Biol. 14, e1005958. https://doi.org/10.1371/journal.pcbi.1005958
- Collins, R.E., Higgs, P.G., 2012. Testing the Infinitely Many Genes Model for the Evolution of the Bacterial Core Genome and Pangenome. Mol Biol Evol 29, 3413–3425. https://doi.org/10.1093/molbev/mss163
- Colombi, E., Straub, C., Künzel, Sven, Templeton, Mathew D., McCann, Honour C., Rainey, Paul B., 2017. Evolution of copper resistance in the kiwifruit pathogen Pseudomonas syringae pv. actinidiae through acquisition of integrative conjugative elements and plasmids. Environ. Microbiol. 19, 819–832. https://doi.org/10.1111/1462-2920.13662
- Consuegra, J., Gaffé, J., Lenski, R.E., Hindré, T., Barrick, J.E., Tenaillon, O., Schneider, D., 2021. Insertion-sequence-mediated mutations both promote and constrain evolvability during a long-term experiment with bacteria. Nat. Commun. 12. https://doi.org/10.1038/s41467-021-21210-7
- Cornelis, G.R., Van Gijsegem, F., 2000. Assembly and Function of Type III Secretory Systems. Annu. Rev. Microbiol. 54, 735–774. https://doi.org/10.1146/annurev.micro.54.1.735
- Corral, J., Sebastià, P., Coll, N.S., Barbé, J., Aranda, J., Valls, M., 2020. Twitching and Swimming Motility Play a Role in Ralstonia solanacearum Pathogenicity. mSphere 5. https://doi.org/10.1128/msphere.00740-19
- Croll, D., McDonald, B.A., 2017. The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems. Mol. Ecol. 26, 2027–2040. https://doi.org/10.1111/mec.13870
- Croucher, N.J., Page, A.J., Connor, T.R., Delaney, A.J., Keane, J.A., Bentley, S.D., Parkhill, J., Harris, S.R., 2015. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 43, e15–e15. https://doi.org/10.1093/nar/gku1196
- Dallas, T., Huang, S., Nunn, C., Park, A.W., Drake, J.M., 2017. Estimating parasite host range. Proc. R. Soc. B Biol. Sci. 284, 20171250. https://doi.org/10.1098/rspb.2017.1250

- Deberdt, P., Guyot, J., Coranson-Beaudu, R., Launay, J., Noreskal, M., Rivière, P., Vigné, F., Laplace, D., Lebreton, L., Wicker, E., 2014. Diversity of Ralstonia solanacearum in French Guiana expands knowledge of the "emerging ecotype." Phytopathology 104, 586–596. https://doi.org/10.1094/PHYTO-09-13-0264-R
- Denny, T., 2006. Plant pathogenic Ralstonia species, in: Plant-Associated Bacteria. Springer Netherlands, pp. 573–644. https://doi.org/10.1007/978-1-4020-4538-7_16
- Didelot, X., Croucher, N.J., Bentley, S.D., Harris, S.R., Wilson, D.J., 2018. Bayesian inference of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res. 46, e134. https://doi.org/10.1093/nar/gky783
- Didelot, X., Siveroni, I., Volz, E.M., 2021. Additive Uncorrelated Relaxed Clock Models for the Dating of Genomic Epidemiology Phylogenies. Mol. Biol. Evol. 38, 307–317. https://doi.org/10.1093/molbev/msaa193
- Didelot, X., Wilson, D.J., 2015. ClonalFrameML: Efficient Inference of Recombination in Whole Bacterial Genomes. PLoS Comput. Biol. 11, e1004041. https://doi.org/10.1371/journal.pcbi.1004041
- Dietzgen, R.G., Bejerman, N.E., Goodin, M.M., Higgins, C.M., Huot, O.B., Kondo, H., Martin,
 K.M., Whitfield, A.E., 2020. Diversity and epidemiology of plant rhabdoviruses. Virus
 Res. 281, 197942. https://doi.org/10.1016/j.virusres.2020.197942
- Dillon, M.M., Almeida, R.N.D., Laflamme, B., Martel, A., Weir, B.S., Desveaux, D., Guttman,
 D.S., 2019a. Molecular Evolution of Pseudomonas syringae Type III Secreted Effector
 Proteins. Front. Plant Sci. 10, 418. https://doi.org/10.3389/fpls.2019.00418
- Dillon, M.M., Thakur, S., Almeida, R.N.D., Wang, P.W., Weir, B.S., Guttman, D.S., 2019b. Recombination of ecologically and evolutionarily significant loci maintains genetic cohesion in the Pseudomonas syringae species complex. Genome Biol. 20, 3. https://doi.org/10.1186/s13059-018-1606-y
- Dixon, P., 2003. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927– 930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
- Dubois, M., Gilles, K., Hamilton, J.K., Rebers, P.A., Smith, F., 1951. A colorimetric method for the determination of sugars. Nature 168, 167. https://doi.org/10.1038/168167a0
- Duchêne, S., Holt, K.E., Weill, F.X., Hello, S.L., Hawkey, J., Edwards, D.J., Fourment, M., Holmes, E.C., 2016. Genome-scale rates of evolutionary change in bacteria. Microb. Genomics 2, e000094. https://doi.org/10.1099/mgen.0.000094

- Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinforma. Oxf. Engl. 26, 2460–2461. https://doi.org/10.1093/bioinformatics/btq461
- Elphinstone, J.G., 2001. Monitoring and control of the potato brown rot bacterium (Ralstonia solanacearum) in the UK: a case study. https://doi.org/10.3929/ETHZ-A-004282945
- Elphinstone, J.G. (Fera), Matthews-Berry, S. (Defra), 2017. Plant Pest Factsheet. Monitoring and control of the potato brown rot bacterium in irrigation water (Defra). 1–6.
- Elphinstone, J.G., Hennessy, J., Wilson, J.K., Stead, D.E., 1996. Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts. EPPO Bull. 26, 663–678. https://doi.org/10.1111/j.1365-2338.1996.tb01511.x
- Elphinstone, J.G., Stanford, H., Stead, D.E., 1998a. Survival and transmission of Ralstonia solanacearum in aquatic plants of Solatium dulcamara and associated surface water in England1. EPPO Bull. 28, 93–94. https://doi.org/10.1111/j.1365-2338.1998.tb00709.x
- Elphinstone, J.G., Stanford, H.M., Stead, D.E., 1998b. Detection of Ralstonia solanacearum in Potato Tubers, Solanum dulcamara and Associated Irrigation Water, in: Bacterial Wilt Disease. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 133–139. https://doi.org/10.1007/978-3-662-03592-4_19
- Elphinstone, M., 2005. The current bacterial wilt situation: A global overview, in: Allen, C., Prior, P., Hayward, A.C. (Eds.), Bacterial Wilt Disease and the Ralstonia Solanacearum Species Complex, APS Press. APS Press, Saint Paul, Minnesota, pp. 9–28.
- EPPO, 7/21 (2), 2018. Ralstonia solanacearum, R. pseudosolanacearum and R. syzygii (Ralstonia solanacearum species complex). EPPO Bull. 48, 32–63. https://doi.org/10.1111/epp.12454
- Ewels, P., Magnusson, M., Lundin, S., Käller, M., 2016. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinforma. Oxf. Engl. 32, 3047–3048. https://doi.org/10.1093/bioinformatics/btw354
- FAO, 2021. World Food and Agriculture Statistical Yearbook 2021. FAO, Rome. https://doi.org/10.4060/cb4477en
- FAO, VMD, 2022. Tackling antimicrobial use and resistance in food-producing animals. FAO; Veterinary Medicines Directorate ;
- Fegan, M., Prior, P., 2005. How complex is the Ralstonia solanacearum species complex, in: Allen, C., Prior, Philippe, Hayward, A.C. (Eds.), Bacterial Wilt Disease and the Ralstonia

Solanacearum Species Complex, APS Press. APS Press, Saint Paul, Minnesota, pp. 449–461.

- Fegan, Mark, Prior, Ph. (Philippe), 2005. How complex is the Ralstonia solanacearum species complex, in: Allen, C., Prior, P., Hayward, C. (Eds.), Bacterial Wilt Disease and the Ralstonia Solanacearum Species Complex, APS Press. APS Press, Saint Paul, Minnesota, pp. 449–461.
- Feng, F., Zhou, J.-M., 2012. Plant–bacterial pathogen interactions mediated by type III effectors. Curr. Opin. Plant Biol., Biotic interactions 15, 469–476. https://doi.org/10.1016/j.pbi.2012.03.004
- Flavier, A.B., Clough, S.J., Schell, M.A., Denny, T.P., 1997. Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol. Microbiol. 26, 251–259. https://doi.org/10.1046/j.1365-2958.1997.5661945.x
- Frees, D., Brøndsted, L., Ingmer, H., 2013. Bacterial proteases and virulence. Subcell. Biochem. 66, 161–192. https://doi.org/10.1007/978-94-007-5940-4_7
- Freschi, L., Vincent, A.T., Jeukens, J., Emond-Rheault, J.-G., Kukavica-Ibrulj, I., Dupont, M.-J., Charette, S.J., Boyle, B., Levesque, R.C., 2019. The *Pseudomonas aeruginosa* Pan-Genome Provides New Insights on Its Population Structure, Horizontal Gene Transfer, and Pathogenicity. Genome Biol. Evol. 11, 109–120. https://doi.org/10.1093/gbe/evy259
- Fritz, S.A., Purvis, A., 2010. Selectivity in Mammalian Extinction Risk and Threat Types: a New Measure of Phylogenetic Signal Strength in Binary Traits. Conserv. Biol. 24, 1042– 1051. https://doi.org/10.1111/j.1523-1739.2010.01455.x
- Gabriel, D.W., Allen, C., Schell, M., Denny, T.P., Greenberg, J.T., Duan, Y.P., Flores-Cruz, Z., Huang, Q., Clifford, J.M., Presting, G., González, E.T., Reddy, J., Elphinstone, J., Swanson, J., Yao, J., Mulholland, V., Liu, L., Farmerie, W., Patnaikuni, M., Balogh, B., Norman, D., Alvarez, A., Castillo, J.A., Jones, J., Saddler, G., Walunas, T., Zhukov, A., Mikhailova, N., 2006. Identification of Open Reading Frames Unique to a Select Agent: Ralstonia solanacearum Race 3 Biovar 2. Mol. Plant-Microbe Interactions[®] 19, 69–79. https://doi.org/10.1094/MPMI-19-0069
- Gabriel, D.W., Kingsley, M.T., Yang, Y., Chen, J., Roberts, P., 1994. Host-specific virulence genes of Xanthomonas, in: Kado, C.I., Crosa, J.H. (Eds.), Molecular Mechanisms of

Bacterial Virulence, Developments in Plant Pathology. Springer Netherlands, Dordrecht, pp. 141–158. https://doi.org/10.1007/978-94-011-0746-4 10

Gao, R., Mack, T.R., Stock, A.M., 2007. Bacterial Response Regulators: Versatile Regulatory Strategies from Common Domains. Trends Biochem. Sci. 32, 225–234. https://doi.org/10.1016/j.tibs.2007.03.002

Garrison, E., Marth, G., 2012. Haplotype-based variant detection from short-read sequencing.

- Geng, R., Cheng, L., Cao, C., Liu, Z., Liu, D., Xiao, Z., Wu, X., Huang, Z., Feng, Q., Luo, C., Chen,
 Z., Zhang, Z., Jiang, C., Ren, M., Yang, A., 2022. Comprehensive Analysis Reveals the
 Genetic and Pathogenic Diversity of Ralstonia solanacearum Species Complex and
 Benefits Its Taxonomic Classification. Front. Microbiol. 13.
- Genin, S., 2010. Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytol. 187, 920–928. https://doi.org/10.1111/j.1469-8137.2010.03397.x
- Genin, S., Boucher, C., 2004. Lessons learned from the genome analysis of Ralstonia solanacearum. Annu Rev Phytopathol 42, 107–141. https://doi.org/10.1146/annurev.phyto.42.011204.104301
- Genin, S., Denny, T.P., 2012a. Pathogenomics of the Ralstonia solanacearum Species Complex. https://doi.org/10.1146/annurev-phyto-081211-173000
- Genin, S., Denny, T.P., 2012b. Pathogenomics of the Ralstonia solanacearum species complex.
 Annu. Rev. Phytopathol. 50, 67–89. https://doi.org/10.1146/annurev-phyto-081211-173000
- Golicz, A.A., Bayer, P.E., Bhalla, P.L., Batley, J., Edwards, D., 2020. Pangenomics Comes of Age: From Bacteria to Plant and Animal Applications. Trends Genet. TIG 36, 132–145. https://doi.org/10.1016/j.tig.2019.11.006
- Gomez-Valero, L., Rusniok, C., Carson, D., Mondino, S., Pérez-Cobas, A.E., Rolando, M., Pasricha, S., Reuter, S., Demirtas, J., Crumbach, J., Descorps-Declere, S., Hartland, E.L., Jarraud, S., Dougan, G., Schroeder, G.N., Frankel, G., Buchrieser, C., 2019. More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells. Proc. Natl. Acad. Sci. 116, 2265–2273. https://doi.org/10.1073/pnas.1808016116
- Gonçalves, O.S., de Queiroz, M.V., Santana, M.F., 2020a. Potential evolutionary impact of integrative and conjugative elements (ICEs) and genomic islands in the Ralstonia

solanacearum species complex. Sci. Rep. 10, 12498. https://doi.org/10.1038/s41598-020-69490-1

- Gonçalves, O.S., Francisco, C.S., Catarine Silva de Assis, J., Suellen Fernandes, A., Santos Souza,
 T., Guilherme do Carmo Rodrigues, L., Vieira de Queiroz, M., Ferreira Santana, M.,
 2020b. Transposable elements contribute to the genome plasticity of Ralstonia
 solanacearum species complex. Microb. Genomics 6.
 https://doi.org/10.1099/mgen.0.000374
- Gonçalves, O.S., Souza, F. de O., Bruckner, F.P., Santana, M.F., Alfenas-Zerbini, P., 2021. Widespread distribution of prophages signaling the potential for adaptability and pathogenicity evolution of Ralstonia solanacearum species complex. Genomics 113, 992–1000. https://doi.org/10.1016/j.ygeno.2021.02.011
- González-Tortuero, E., David Sean Sutton, T., Velayudhan, V., Nikolaevich Shkoporov, A., Anne Draper, L., Robert Stockdale, S., Ross, P., Hill, C., 2018. Title: VIGA: a sensitive, precise and automatic de novo VIral Genome Annotator. 1. https://doi.org/10.1101/277509
- Gophna, U., Ron, E.Z., Graur, D., 2003. Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312, 151–163. https://doi.org/10.1016/S0378-1119(03)00612-7
- Gori, A., Harrison, O.B., Mlia, E., Nishihara, Y., Chan, J.M., Msefula, J., Mallewa, M., Dube, Q.,
 Swarthout, T.D., Nobbs, A.H., Maiden, M.C.J., French, N., Heyderman, R.S., 2020. PanGWAS of Streptococcus agalactiae Highlights Lineage-Specific Genes Associated with
 Virulence and Niche Adaptation. mBio 11, e00728-20.
 https://doi.org/10.1128/mBio.00728-20
- Granada, G.A., Sequeira, L., 1983. Survival of Pseudomonas solanacearum in soil, rhizosphere, and plant roots. Can. J. Microbiol. 29, 433–440. https://doi.org/10.1139/m83-070
- Greenrod, S.T.E., Stoycheva, M., Elphinstone, J., Friman, V.-P., 2022a. Global diversity and distribution of prophages are lineage-specific within the Ralstonia solanacearum species complex. BMC Genomics 23, 689. https://doi.org/10.1186/s12864-022-08909-7
- Greenrod, S.T.E., Stoycheva, M., Elphinstone, J., Friman, V.-P., 2022b. Influence of insertion sequences on population structure of phytopathogenic bacteria in the Ralstonia solanacearum species complex. undefined.

Grolemund, H.W. and G., 2017. R for Data Science.

- Grover, A., Azmi, W., Gadewar, A.V., Pattanayak, D., Naik, P.S., Shekhawat, G.S., Chakrabarti, S.K., 2006. Genotypic diversity in a localized population of Ralstonia solanacearum as revealed by random amplified polymorphic DNA markers. J. Appl. Microbiol. 101, 798– 806. https://doi.org/10.1111/j.1365-2672.2006.02974.x
- Gu, S., Wei, Z., Shao, Z., Friman, V.P., Cao, K., Yang, T., Kramer, J., Wang, X., Li, M., Mei, X., Xu,
 Y., Shen, Q., Kümmerli, R., Jousset, A., 2020a. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat. Microbiol. 5, 1002–1010. https://doi.org/10.1038/s41564-020-0719-8
- Gu, S., Wei, Z., Shao, Z., Friman, V.P., Cao, K., Yang, T., Kramer, J., Wang, X., Li, M., Mei, X., Xu,
 Y., Shen, Q., Kümmerli, R., Jousset, A., 2020b. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat. Microbiol. 5, 1002–1010. https://doi.org/10.1038/s41564-020-0719-8
- Guarischi-Sousa, R., Puigvert, M., Coll, N.S., Siri, M.I., Pianzzola, M.J., Valls, M., Setubal, J.C., 2016. Complete genome sequence of the potato pathogen Ralstonia solanacearum UY031. Stand. Genomic Sci. 11, 7. https://doi.org/10.1186/s40793-016-0131-4
- Guidot, A., Coupat, B., Fall, S., Prior, P., Bertolla, F., 2009. Horizontal gene transfer between ralstonia solanacearum strains detected by comparative genomic hybridization on microarrays. ISME J. 3, 549–562. https://doi.org/10.1038/ismej.2009.14
- Hall, R.J., Whelan, F.J., Cummins, E.A., Connor, C., McNally, A., McInerney, J.O.Y. 2021, 2021.
 Gene-gene relationships in an Escherichia coli accessory genome are linked to function and mobility. Microb. Genomics 7, 000650. https://doi.org/10.1099/mgen.0.000650
- Hanson, C.A., Fuhrman, J.A., Claire Horner-Devine, M., H Martiny, J.B., 2012. Beyond biogeographic patterns: processes shaping the microbial landscape. https://doi.org/10.1038/nrmicro2795
- Hawkey, J., Hamidian, M., Wick, R.R., Edwards, D.J., Billman-Jacobe, H., Hall, R.M., Holt, K.E.,
 2015. ISMapper: identifying transposase insertion sites in bacterial genomes from short read sequence data. BMC Genomics 16, 667. https://doi.org/10.1186/s12864-015-1860-2
- Hawkey, J., Monk, J.M., Billman-Jacobe, H., Palsson, B., Holt, K.E., 2020. Impact of insertion sequences on convergent evolution of Shigella species. PLOS Genet. 16, e1008931. https://doi.org/10.1371/journal.pgen.1008931

- Hayward, A.C., 1991a. BIOLOGY AND EPIDEMIOLOGY OF BACTERIAL WILT CAUSED BY PSEUDOMONAS SOLANACEARUM. Annu Rev PhYlOpathol 29, 65–87. https://doi.org/10.1146/annurev.py.29.090191.000433
- Hayward, A.C., 1991b. Biology and epidemiology of bacterial wilt caused by pseudomonas solanacearum. Annu. Rev. Phytopathol. 29, 65–87. https://doi.org/10.1146/annurev.py.29.090191.000433
- Hayward, A.C., 1964. Characteristics of Pseudomonas solanacearum. J. Appl. Bacteriol. 27, 265–277. https://doi.org/10.1111/j.1365-2672.1964.tb04912.x
- Hayward, A.C., 1960. A Method for Characterizing Pseudomonas solanacearum. Nature 186, 405–406. https://doi.org/10.1038/186405a0
- He, S.Y., Jin, Q., 2003. The Hrp pilus: learning from flagella. Curr. Opin. Microbiol. 6, 15–19. https://doi.org/10.1016/s1369-5274(02)00007-3
- Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q., Vinh, L.S., 2018. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 35, 518–522. https://doi.org/10.1093/molbev/msx281
- Hotchkiss, R.D., Dubos, R.J., 1940. FRACTIONATION OF THE BACTERICIDAL AGENT FROM CULTURES OF A SOIL BACILLUS. J. Biol. Chem. 132, 791–792. https://doi.org/10.1016/S0021-9258(19)56231-7
- Hu, J., Wei, Z., Weidner, S., Friman, V.-P., Xu, Y.-C., Shen, Q.-R., Jousset, A., 2017. Probiotic Pseudomonas communities enhance plant growth and nutrient assimilation via diversity-mediated ecosystem functioning. Soil Biol. Biochem. 113, 122–129. https://doi.org/10.1016/j.soilbio.2017.05.029
- Huerta, A.I., Milling, A., Allen, C., 2015. Tropical strains of Ralstonia solanacearum outcompete race 3 biovar 2 strains at lowland tropical temperatures. Appl. Environ. Microbiol. 81, 3542–3551. https://doi.org/10.1128/AEM.04123-14
- Hulin, M.T., Armitage, A.D., Vicente, J.G., Holub, E.B., Baxter, L., Bates, H.J., Mansfield, J.W., Jackson, R.W., Harrison, R.J., 2018. Comparative genomics of Pseudomonas syringae reveals convergent gene gain and loss associated with specialization onto cherry (Prunus avium). New Phytol. 219, 672–696. https://doi.org/10.1111/nph.15182
- Hwang, M.S.H., Morgan, R.L., Sarkar, S.F., Wang, P.W., Guttman, D.S., 2005. Phylogenetic Characterization of Virulence and Resistance Phenotypes of Pseudomonas syringae.

Appl. Environ. Microbiol. 71, 5182–5191. https://doi.org/10.1128/AEM.71.9.5182-5191.2005

- Iranzo, J., Wolf, Y.I., Koonin, E.V., Sela, I., 2019. Gene gain and loss push prokaryotes beyond the homologous recombination barrier and accelerate genome sequence divergence. Nat. Commun. 10. https://doi.org/10.1038/s41467-019-13429-2
- Irons, J.L., Hodge-Hanson, K., Downs, D.M., 2020. RidA Proteins Protect against Metabolic Damage by Reactive Intermediates. Microbiol. Mol. Biol. Rev. MMBR 84, e00024-20. https://doi.org/10.1128/MMBR.00024-20
- Jaillard, M., Lima, L., Tournoud, M., Mahé, P., Belkum, A. van, Lacroix, V., Jacob, L., 2018. A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap between k-mers and genetic events. PLOS Genet. 14, e1007758. https://doi.org/10.1371/journal.pgen.1007758
- Janse, J.D., van den Beld, H.E., Elphinstone, J., Simpkins, S., Tjou-Tam-Sin, N.N.A., van Vaerenbergh, J., 2004. Introduction to Europe of Ralstonia Solanacearum Biovar 2, Race 3 in Pelargonium Zonale Cuttings. J. Plant Pathol. 86, 147–155.
- Jensen, L.J., Julien, P., Kuhn, M., von Mering, C., Muller, J., Doerks, T., Bork, P., 2008. eggNOG: Automated construction and annotation of orthologous groups of genes. Nucleic Acids Res. 36, 250–254. https://doi.org/10.1093/nar/gkm796
- Jeong, E.L., Timmis, J.N., 2000. Novel insertion sequence elements associated with genetic heterogeneity and phenotype conversion in Ralstonia solanacearum. J. Bacteriol. 182, 4673–4676. https://doi.org/10.1128/JB.182.16.4673-4676.2000
- Jiang, G., Wang, N., Zhang, Yaoyu, Zhang, Yuling, Yu, J., Zhang, Yong, Wei, Z., Xu, Y., Geisen, S., Friman, V.-P., Shen, Q., 2021a. The relative importance of soil moisture in predicting bacterial wilt disease occurrence. Soil Ecol. Lett. 3, 356–366. https://doi.org/10.1007/s42832-021-0086-2
- Jiang, G., Wang, N., Zhang, Yaoyu, Zhang, Yuling, Yu, J., Zhang, Yong, Wei, Z., Xu, Y., Geisen, S., Friman, V.-P., Shen, Q., 2021b. The relative importance of soil moisture in predicting bacterial wilt disease occurrence. Soil Ecol. Lett. 3, 356–366. https://doi.org/10.1007/s42832-021-0086-2
- Jiang, G., Wei, Z., Xu, J., Chen, H., Zhang, Y., She, X., Macho, A.P., Ding, W., Liao, B., 2017. Bacterial wilt in China: history, current status, and future perspectives. Front. Plant Sci. 8, 1549. https://doi.org/10.3389/fpls.2017.01549

- Jones, J.D.G., Dangl, J.L., 2006. The plant immune system. Nature 444, 323–329. https://doi.org/10.1038/nature05286
- Joung, Y.S., Ge, Z., Buie, C.R., 2017. Bioaerosol generation by raindrops on soil. Nat. Commun. 8, 14668. https://doi.org/10.1038/ncomms14668
- Kadam, R.V., Jagtap, G.P., 2018. Effect of different soil types on the growth of R. solanacearum. Int. J. Curr. Microbiol. Appl. Sci. 7, 583–586. https://doi.org/10.20546/ijcmas.2018.711.070
- Kahm, M., Hasenbrink, G., Lichtenberg-Fraté, H., Ludwig, J., Kschischo, M., 2010. grofit: Fitting
 Biological Growth Curves with R. J. Stat. Softw. 33, 1–21.
 https://doi.org/10.18637/jss.v033.i07
- Kai, K., Ohnishi, H., Shimatani, M., Ishikawa, S., Mori, Y., Kiba, A., Ohnishi, K., Tabuchi, M., Hikichi, Y., 2015. Methyl 3-Hydroxymyristate, a Diffusible Signal Mediating phc Quorum Sensing in Ralstonia solanacearum. ChemBioChem 16, 2309–2318. https://doi.org/10.1002/cbic.201500456
- Kannan, V., Bastas, K., Antony, R., 2015. Plant Pathogenic Bacteria: An Overview, in: Kannan,
 V, Bastas, K. (Eds.), Sustainable Approaches to Controlling Plant Pathogenic Bacteria.
 CRC Press, pp. 1–16. https://doi.org/10.1201/b18892-2
- Katz, L., Griswold, T., Morrison, S., Caravas, J., Zhang, S., Bakker, H., Deng, X., Carleton, H., 2019. Mashtree: a rapid comparison of whole genome sequence files. J. Open Source Softw. 4, 1762. https://doi.org/10.21105/joss.01762
- Kent, A.G., Dupont, C.L., Yooseph, S., Martiny, A.C., 2016. Global biogeography of Prochlorococcus genome diversity in the surface ocean. ISME J. 10, 1856–1865. https://doi.org/10.1038/ismej.2015.265
- Kessler, N., Schuhmann, H., Morneweg, S., Linne, U., Marahiel, M.A., 2004. The Linear Pentadecapeptide Gramicidin Is Assembled by Four Multimodular Nonribosomal Peptide Synthetases That Comprise 16 Modules with 56 Catalytic Domains*. J. Biol. Chem. 279, 7413–7419. https://doi.org/10.1074/jbc.M309658200
- Kim, S.H., Olson, T.N., Schaad, N.W., Moorman, G.W., 2003. Ralstonia solanacearum Race 3, Biovar 2, the Causal Agent of Brown Rot of Potato, Identified in Geraniums in Pennsylvania, Delaware, and Connecticut. Plant Dis. 87, 450–450. https://doi.org/10.1094/PDIS.2003.87.4.450C

- Kimura, M., 1968. Evolutionary rate at the molecular level. Nature 217, 624–626. https://doi.org/10.1038/217624a0
- Konstantinidis, K.T., Ramette, A., Tiedje, J.M., 2006. The bacterial species definition in the genomic era. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 361, 1929–1940. https://doi.org/10.1098/rstb.2006.1920
- Koutsoudis, M.D., Tsaltas, D., Minogue, T.D., von Bodman, S.B., 2006. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proc. Natl. Acad. Sci. U. S. A. 103, 5983–5988. https://doi.org/10.1073/pnas.0509860103
- Kuo, C.-H., Moran, N.A., Ochman, H., 2009. The consequences of genetic drift for bacterial genome complexity. Genome Res. 19, 1450–1454. https://doi.org/10.1101/gr.091785.109
- Kurm, V., Houwers, I., Coipan, C.E., Bonants, P., Waalwijk, C., van der Lee, T., Brankovics, B., van der Wolf, J., 2021. Whole genome characterization of strains belonging to the Ralstonia solanacearum species complex and in silico analysis of TaqMan assays for detection in this heterogenous species complex. Eur. J. Plant Pathol. 159, 593–613. https://doi.org/10.1007/s10658-020-02190-8
- Kutsukake, K., Nakashima, H., Tominaga, A., Abo, T., 2006. Two DNA Invertases Contribute to Flagellar Phase Variation in Salmonella enterica Serovar Typhimurium Strain LT2. J.
 Bacteriol. 188, 950–957. https://doi.org/10.1128/JB.188.3.950-957.2006
- Langille, M.G.I., Hsiao, W.W.L., Brinkman, F.S.L., 2010. Detecting genomic islands using bioinformatics approaches. Nat. Rev. Microbiol. 8, 373–382. https://doi.org/10.1038/nrmicro2350
- Langner, T., Harant, A., Gomez-Luciano, L.B., Shrestha, R.K., Malmgren, A., Latorre, S.M., Burbano, H.A., Win, J., Kamoun, S., 2021. Genomic rearrangements generate hypervariable mini-chromosomes in host-specific isolates of the blast fungus. PLoS Genet. 17, e1009386. https://doi.org/10.1371/journal.pgen.1009386
- Lapierre, M., Blin, C., Lambert, A., Achaz, G., Rocha, E.P.C., 2016. The Impact of Selection, Gene Conversion, and Biased Sampling on the Assessment of Microbial Demography.
 Mol. Biol. Evol. 33, 1711–1725. https://doi.org/10.1093/molbev/msw048

- Lees, J.A., Galardini, M., Bentley, S.D., Weiser, J.N., Corander, J., 2018. pyseer: A comprehensive tool for microbial pangenome-wide association studies.
 Bioinformatics 34, 4310–4312. https://doi.org/10.1093/bioinformatics/bty539
- Lees, J.A., Tien Mai, T., Galardini, M., Wheeler, N.E., Corander, J., 2019. Improved inference and prediction of bacterial genotype-phenotype associations using pangenomespanning regressions. bioRxiv. https://doi.org/10.1101/852426
- Lelliott, R.A., Stead, D.E., 1987. Methods for the diagnosis of bacterial diseases of plants. Methods Diagn. Bact. Dis. Plants.
- Levin, B.R., Cornejo, O.E., 2009. The Population and Evolutionary Dynamics of Homologous Gene Recombination in Bacteria. PLOS Genet. 5, e1000601. https://doi.org/10.1371/journal.pgen.1000601
- Li, M., Pommier, T., Yin, Y., Wang, J., Gu, S., Jousset, A., Keuskamp, J., Wang, H., Wei, Z., Xu, Y., Shen, Q., Kowalchuk, G.A., 2022. Indirect reduction of Ralstonia solanacearum via pathogen helper inhibition. ISME J. 16, 868–875. https://doi.org/10.1038/s41396-021-01126-2
- Li, M., Wei, Z., Wang, J., Jousset, A., Friman, V.-P., Xu, Y., Shen, Q., Pommier, T., 2019.
 Facilitation promotes invasions in plant-associated microbial communities. Ecol. Lett. 22, 149–158. https://doi.org/10.1111/ele.13177
- Li, P., Liu, M., Li, G., Liu, K., Liu, T., Wu, M., Saleem, M., Li, Z., 2021. Phosphorus availability increases pathobiome abundance and invasion of rhizosphere microbial networks by Ralstonia. Environ. Microbiol. 23, 5992–6003. https://doi.org/10.1111/1462-2920.15696
- Li, S., Liu, Y., Wang, J., Yang, L., Zhang, S., Xu, C., Ding, W., 2017. Soil Acidification Aggravates the Occurrence of Bacterial Wilt in South China. Front. Microbiol. 8.
- Lindeberg, M., Cunnac, S., Collmer, A., 2009. The evolution of Pseudomonas syringae host specificity and type III effector repertoires. Mol. Plant Pathol. 10, 767–775. https://doi.org/10.1111/j.1364-3703.2009.00587.x
- Lu, H., Lema, S.A., Planas-Marquès, M., Alonso-Díaz, A., Valls, M., Coll, N.S., 2018. Type III secretion-dependent and-independent phenotypes caused by Ralstonia solanacearum in Arabidopsis roots. Mol. Plant. Microbe Interact. 31, 175–184. https://doi.org/10.1094/MPMI-05-17-0109-FI

- Lurwanu, Y., Wang, Y.-P., Wu, E.-J., He, D.-C., Waheed, A., Nkurikiyimfura, O., Wang, Z., Shang, L.-P., Yang, L.-N., Zhan, J., 2021. Increasing temperature elevates the variation and spatial differentiation of pesticide tolerance in a plant pathogen. Evol. Appl. 14, 1274– 1285. https://doi.org/10.1111/eva.13197
- Luvisi, A., Aprile, A., Sabella, E., Vergine, M., Nicolì, F., Nutricati, E., Miceli, A., Negro, C., De BELLIS, L., 2017. Xylella fastidiosa subsp. pauca (CoDiRO strain) infection in four olive (Olea europaea L.) cultivars: profile of phenolic compounds in leaves and progression of leaf scorch symptoms. Phytopathol. Mediterr. 56, 259–273.
- Lynch, M., Conery, J.S., 2003. The Origins of Genome Complexity. Science 302, 1401–1404. https://doi.org/10.1126/science.1089370
- Machado, D.J., White, R.A., Kofsky, J., Janies, D.A., 2021. Fundamentals of genomic epidemiology, lessons learned from the coronavirus disease 2019 (COVID-19) pandemic, and new directions. Antimicrob. Steward. Healthc. Epidemiol. 1, e60. https://doi.org/10.1017/ash.2021.222
- Macho, A.P., Zipfel, C., 2015. Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Curr. Opin. Microbiol. 23, 14–22. https://doi.org/10.1016/j.mib.2014.10.009
- Maculins, T., Fiskin, E., Bhogaraju, S., Dikic, I., 2016. Bacteria-host relationship: ubiquitin ligases as weapons of invasion. Cell Res. 26, 499–510. https://doi.org/10.1038/cr.2016.30
- Mak, T.N., Schmid, M., Brzuszkiewicz, E., Zeng, G., Meyer, R., Sfanos, K.S., Brinkmann, V., Meyer, T.F., Brüggemann, H., 2013. Comparative genomics reveals distinct hostinteracting traits of three major human-associated propionibacteria. BMC Genomics 14, 640. https://doi.org/10.1186/1471-2164-14-640
- Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier,
 V., Beer, S.V., Machado, M.A., Toth, I., Salmond, G., Foster, G.D., 2012. Top 10 plant
 pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13, 614–629.
 https://doi.org/10.1111/j.1364-3703.2012.00804.x
- McInerney, J.O., McNally, A., O'Connell, M.J., 2017. Why prokaryotes have pangenomes. Nat. Microbiol. 2, 1–5. https://doi.org/10.1038/nmicrobiol.2017.40

- McManus, P.S., Stockwell, V.O., Sundin, G.W., Jones, A.L., 2002. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 40, 443–465. https://doi.org/10.1146/annurev.phyto.40.120301.093927
- Meena, M., Swapnil, P., Zehra, A., Aamir, M., Dubey, M.K., Patel, C.B., Upadhyay, R.S., 2019.
 Virulence Factors and Their Associated Genes in Microbes, in: New and Future
 Developments in Microbial Biotechnology and Bioengineering. Elsevier, pp. 181–208.
 https://doi.org/10.1016/B978-0-444-63503-7.00011-5
- Messiha, N.A.S., van Bruggen, A.H.C., Franz, E., Janse, J.D., Schoeman-Weerdesteijn, M.E., Termorshuizen, A.J., van Diepeningen, A.D., 2009. Effects of soil type, management type and soil amendments on the survival of the potato brown rot bacterium Ralstonia solanacearum. Appl. Soil Ecol. 43, 206–215. https://doi.org/10.1016/j.apsoil.2009.07.008
- Milling, A., Babujee, L., Allen, C., 2011. Ralstonia solanacearum Extracellular Polysaccharide Is a Specific Elicitor of Defense Responses in Wilt-Resistant Tomato Plants. PLOS ONE 6, e15853. https://doi.org/10.1371/journal.pone.0015853
- Milling, A., Meng, F., Denny, T.P., Allen, C., 2009. Interactions with hosts at cool temperatures, not cold tolerance, explain the unique epidemiology of Ralstonia solanacearum race 3 biovar 2. Phytopathology 99, 1127–1134. https://doi.org/10.1094/PHYTO-99-10-1127
- Mira, A., Martín-Cuadrado, A.B., D'Auria, G., Rodríguez-Valera, F., 2010. The bacterial pangenome:a new paradigm in microbiology. Int. Microbiol. Off. J. Span. Soc. Microbiol. 13, 45–57. https://doi.org/10.2436/20.1501.01.110
- Monteil, C.L., Yahara, K., Studholme, D.J., Mageiros, L., Méric, G., Swingle, B., Morris, C.E.,
 Vinatzer, B.A., Sheppard, S.K.Y. 2016, 2016. Population-genomic insights into
 emergence, crop adaptation and dissemination of Pseudomonas syringae pathogens.
 Microb. Genomics 2, e000089. https://doi.org/10.1099/mgen.0.000089
- Montie, T.C., Doyle-Huntzinger, D., Craven, R.C., Holder, I.A., 1982. Loss of virulence associated with absence of flagellum in an isogenic mutant of Pseudomonas aeruginosa in the burned-mouse model. Infect. Immun. 38, 1296–1298. https://doi.org/10.1128/iai.38.3.1296-1298.1982
- Morelli, M., García-Madero, J.M., Jos, Á., Saldarelli, P., Dongiovanni, C., Kovacova, M., Saponari, M., Baños Arjona, A., Hackl, E., Webb, S., Compant, S., 2021. Xylella

fastidiosa in Olive: A Review of Control Attempts and Current Management. Microorganisms 9, 1771. https://doi.org/10.3390/microorganisms9081771

- Morris, C.E., Moury, B., 2019. Revisiting the concept of host range of plant pathogens. Annu. Rev. Phytopathol. 57, 63–90. https://doi.org/10.1146/annurev-phyto-082718-100034
- Neale, H.C., Jackson, R.W., Preston, G.M., Arnold, D.L., 2018. Supercoiling of an excised genomic island represses effector gene expression to prevent activation of host resistance. Mol. Microbiol. 110, 444–454. https://doi.org/10.1111/mmi.14111
- Nelson, R., Wiesner-Hanks, T., Wisser, R., Balint-Kurti, P., 2018. Navigating complexity to breed disease-resistant crops. Nat. Rev. Genet. 19, 21–33. https://doi.org/10.1038/nrg.2017.82
- Neogi, U., Bontell, I., Shet, A., Costa, A.D., Gupta, S., Diwan, V., Laishram, R.S., Wanchu, A., Ranga, U., Banerjea, A.C., Sönnerborg, A., 2012. Molecular Epidemiology of HIV-1 Subtypes in India: Origin and Evolutionary History of the Predominant Subtype C. PLOS ONE 7, e39819. https://doi.org/10.1371/journal.pone.0039819
- Ngou, B.P.M., Ding, P., Jones, J.D.G., 2022. Thirty years of resistance: Zig-zag through the plant immune system. Plant Cell 34, 1447–1478. https://doi.org/10.1093/plcell/koac041
- Nguyen, L.T., Schmidt, H.A., Von Haeseler, A., Minh, B.Q., 2015a. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. https://doi.org/10.1093/molbev/msu300
- Nguyen, L.T., Schmidt, H.A., Von Haeseler, A., Minh, B.Q., 2015b. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. https://doi.org/10.1093/molbev/msu300
- Nowell, R.W., Laue, B.E., Sharp, P.M., Green, S., 2016. Comparative genomics reveals genes significantly associated with woody hosts in the plant pathogen Pseudomonas syringae. Mol. Plant Pathol. 17, 1409–1424. https://doi.org/10.1111/mpp.12423
- Nübel, U., Dordel, J., Kurt, K., Strommenger, B., Westh, H., Shukla, S.K., Žemličková, H., Leblois,
 R., Wirth, T., Jombart, T., Balloux, F., Witte, W., 2010. A Timescale for Evolution,
 Population Expansion, and Spatial Spread of an Emerging Clone of MethicillinResistant Staphylococcus aureus. PLoS Pathog. 6, e1000855.
 https://doi.org/10.1371/journal.ppat.1000855
- Page, A.J., Cummins, C.A., Hunt, M., Wong, V.K., Reuter, S., Holden, M.T.G., Fookes, M., Falush, D., Keane, J.A., Parkhill, J., 2015. Roary: Rapid large-scale prokaryote pan

genome analysis. Bioinformatics 31, 3691–3693. https://doi.org/10.1093/bioinformatics/btv421

- Pandey, A., Moon, H., Choi, S., Yoon, H., Prokchorchik, M., Jayaraman, J., Sujeevan, R., Kang,
 Y.M., McCann, H.C., Segonzac, C., Kim, C.M., Park, S.J., Sohn, K.H., 2021. Ralstonia
 solanacearum type III effector RipJ triggers bacterial wilt resistance in Solanum
 pimpinellifolium. Mol. Plant. Microbe Interact. 34. https://doi.org/10.1094/MPMI-0920-0256-R
- Parales, R.E., Harwood, C.S., 2002. Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr. Opin. Microbiol. 5, 266–273. https://doi.org/10.1016/S1369-5274(02)00320-X
- Parkinson, N., Bryant, R., Bew, J., Conyers, C., Stones, R., Alcock, M., Elphinstone, J., 2013. Application of variable-number tandem-repeat typing to discriminate Ralstonia solanacearum strains associated with english watercourses and disease outbreaks. Appl. Environ. Microbiol. 79, 6016–6022. https://doi.org/10.1128/AEM.01219-13
- Peeters, N., Carrère, S., Anisimova, M., Plener, L., Cazalé, A.-C., Genin, S., 2013a. Repertoire, unified nomenclature and evolution of the Type III effector gene set in the Ralstonia solanacearum species complex. BMC Genomics 14, 859. https://doi.org/10.1186/1471-2164-14-859
- Peeters, N., Guidot, A., Vailleau, F., Valls, M., 2013b. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol. Plant Pathol. 14, 651–662. https://doi.org/10.1111/mpp.12038
- Péret, B., Larrieu, A., Bennett, M.J., 2009. Lateral root emergence: a difficult birth. J. Exp. Bot.60, 3637–3643. https://doi.org/10.1093/jxb/erp232
- Perrier, A., Barlet, X., Peyraud, R., Rengel, D., Guidot, A., Genin, S., 2018. Comparative transcriptomic studies identify specific expression patterns of virulence factors under the control of the master regulator PhcA in the Ralstonia solanacearum species complex. Microb. Pathog. 116, 273–278. https://doi.org/10.1016/j.micpath.2018.01.028
- Peynard, R., Cottret, L., Marmiesse, L., Gouzy, J., Genin, S., 2016. A Resource Allocation Trade-Off between Virulence and Proliferation Drives Metabolic Versatility in the Plant Pathogen Ralstonia solanacearum - file. PLOS Pathog. 12.

- Peyraud, R., Cottret, L., Marmiesse, L., Gouzy, J., Genin, S., 2016. A Resource Allocation Trade-Off between Virulence and Proliferation Drives Metabolic Versatility in the Plant
 Pathogen Ralstonia solanacearum. PLoS Pathog. 12, 1–25. https://doi.org/10.1371/journal.ppat.1005939
- Pfeifer, B., Wittelsbürger, U., Ramos-Onsins, S.E., Lercher, M.J., 2014. PopGenome: An efficient swiss army knife for population genomic analyses in R. Mol. Biol. Evol. 31, 1929–1936. https://doi.org/10.1093/molbev/msu136
- Pfennig, K.S., 2001. Evolution of pathogen virulence: the role of variation in host phenotype. Proc. Biol. Sci. 268, 755–760. https://doi.org/10.1098/rspb.2000.1582
- Polz, M.F., Cordero, O.X., 2016. Bacterial evolution: Genomics of metabolic trade-offs. Nat. Microbiol. 1. https://doi.org/10.1038/nmicrobiol.2016.181
- Poussier, S., Thoquet, P., Trigalet-Demery, D., Barthet, S., Meyer, D., Arlat, M., Trigalet, A., 2003. Host plant-dependent phenotypic reversion of Ralstonia solanacearum from non-pathogenic to pathogenic forms via alterations in the phcA gene. Mol. Microbiol. 49, 991–1003. https://doi.org/10.1046/j.1365-2958.2003.03605.x
- Prade, R.A., Zhan, D., Ayoubi, P., Mort, A.J., 1999. Pectins, pectinases and plant-microbe interactions. Biotechnol. Genet. Eng. Rev. 16, 361–391. https://doi.org/10.1080/02648725.1999.10647984
- Price, M.N., Arkin, A.P., 2015. Weakly Deleterious Mutations and Low Rates of Recombination Limit the Impact of Natural Selection on Bacterial Genomes. mBio 6, e01302-01315. https://doi.org/10.1128/mBio.01302-15
- Prior, Ph. (Philippe), Fegan, M., 2005. Bacterial wilt disease and the Ralstonia solanacearum species complex. American Phytopathological Society.

R Core Team, 2017. R: A language and environment for statistical computing.

R Studio Team, 2020. RStudio: Integrated Development for R.

- Ramírez, M., Moncada, R.N., Villegas-Escobar, V., Jackson, R.W., Ramírez, C.A., 2020.
 Phylogenetic and pathogenic variability of strains of Ralstonia solanacearum causing moko disease in Colombia. Plant Pathol. 69, 360–369.
 https://doi.org/10.1111/ppa.13121
- Rancati, G., Moffat, J., Typas, A., Pavelka, N., 2018. Emerging and evolving concepts in gene essentiality. Nat. Rev. Genet. 19, 34–49. https://doi.org/10.1038/nrg.2017.74

- Rasko, D.A., Rosovitz, M.J., Myers, G.S.A., Mongodin, E.F., Fricke, W.F., Gajer, P., Crabtree, J., Sebaihia, M., Thomson, N.R., Chaudhuri, R., Henderson, I.R., Sperandio, V., Ravel, J., 2008. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J. Bacteriol. 190, 6881–6893. https://doi.org/10.1128/JB.00619-08
- Raza, W., Ling, N., Liu, D., Wei, Z., Huang, Q., Shen, Q., 2016. Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum. Microbiol. Res. 192, 103–113. https://doi.org/10.1016/j.micres.2016.05.014
- Remenant, B., Coupat-Goutaland, B., Guidot, A., Cellier, G., Wicker, E., Allen, C., Fegan, M., Pruvost, O., Elbaz, M., Calteau, A., Salvignol, G., Mornico, D., Mangenot, S., Barbe, V., Médigue, C., Prior, P., 2010. Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence. BMC Genomics 11. https://doi.org/10.1186/1471-2164-11-379
- Remenant, B., de Cambiaire, J.-C., Cellier, G., Jacobs, J.M., Mangenot, S., Barbe, V., Lajus, A.,
 Vallenet, D., Medigue, C., Fegan, M., Allen, C., Prior, P., 2011. Ralstonia syzygii, the
 Blood Disease Bacterium and Some Asian R. solanacearum Strains Form a Single
 Genomic Species Despite Divergent Lifestyles. PLoS ONE 6, e24356.
 https://doi.org/10.1371/journal.pone.0024356
- Robbins, J.C., Oxender, D.L., 1973. Transport Systems for Alanine, Serine, and Glycine in Escherichia coli K-12. J. Bacteriol. 116, 12–18.
- Roberts, D.P., Denny, T.P., Schell, M.A., 1988. Cloning of the egl gene of Pseudomonas solanacearum and analysis of its role in phytopathogenicity. J. Bacteriol. 170, 1445– 1451. https://doi.org/10.1128/jb.170.4.1445-1451.1988
- Sabbagh, R.C.R., Carrere, S., Lonjon, F., Vailleau, F., Macho, A.P., Genin, S., Peeters, N., 2019. Pangenomic type III effector database of the plant pathogenic Ralstonia spp. PeerJ. https://doi.org/10.7717/peerj.7346
- Safni, I., Cleenwerck, I., De Vos, P., Fegan, M., Sly, L., Kappler, U., 2014a. Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana

blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. Int. J. Syst. Evol. Microbiol. 64, 3087–3103. https://doi.org/10.1099/ijs.0.066712-0

- Safni, I., Cleenwerck, I., De Vos, P., Fegan, M., Sly, L., Kappler, U., 2014b. Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. Int. J. Syst. Evol. Microbiol. 64, 3087–3103. https://doi.org/10.1099/ijs.0.066712-0
- Safni, I., Subandiyah, S., Fegan, M., 2018. Ecology, Epidemiology and Disease Management of Ralstonia syzygii in Indonesia. Front. Microbiol. 9, 419. https://doi.org/10.3389/fmicb.2018.00419
- Sakata, N., Ishiga, T., Masuo, S., Hashimoto, Y., Ishiga, Y., 2021. Coronatine Contributes to *Pseudomonas cannabina* pv. *alisalensis* Virulence by Overcoming Both Stomatal and Apoplastic Defenses in Dicot and Monocot Plants. Mol. Plant-Microbe Interactions[®] 34, 746–757. https://doi.org/10.1094/MPMI-09-20-0261-R
- Salanoubat, M., Genin, S., Artiguenave, F., Gouzy, J., Mangenot, S., Arlat, M., Billault, A., Brottier, P., Camus, J.C., Cattolico, L., Chandler, M., Choisne, N., Claudel-Renard, C., Cunnac, S., Demange, N., Gaspin, C., Lavie, M., Moisan, A., Robert, C., Saurin, W., Schiex, T., Siguier, P., Thébault, P., Whalen, M., Wincker, P., Levy, M., Weissenbach, J., Boucher, C.A., 2002. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415, 497–502. https://doi.org/10.1038/415497a
- Sanchez-Garrido, J., Ruano-Gallego, D., Choudhary, J.S., Frankel, G., 2022. The type III secretion system effector network hypothesis. Trends Microbiol. 30, 524–533. https://doi.org/10.1016/j.tim.2021.10.007
- Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N., Nelson, A., 2019a. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439. https://doi.org/10.1038/s41559-018-0793-y

- Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N., Nelson, A., 2019b. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439. https://doi.org/10.1038/s41559-018-0793-y
- Sawinski, K., Mersmann, S., Robatzek, S., Böhmer, M., 2013. Guarding the Green: Pathways to Stomatal Immunity. Mol. Plant-Microbe Interactions[®] 26, 626–632. https://doi.org/10.1094/MPMI-12-12-0288-CR
- Schandry, N., 2017. A Practical Guide to Visualization and Statistical Analysis of R. solanacearum Infection Data Using R. Front. Plant Sci. 8, 623. https://doi.org/10.3389/fpls.2017.00623
- Scherf, J.M., Milling, A., Allen, C., 2010. Moderate temperature fluctuations rapidly reduce the viability of Ralstonia solanacearum race 3, biovar 2, in infected geranium, tomato, and potato plants. Appl. Environ. Microbiol. 76, 7061–7067. https://doi.org/10.1128/AEM.01580-10
- Schönfeld, J., Heuer, H., Van Elsas, J.D., Smalla, K., 2003. Specific and sensitive detection of Ralstonia solanacearum in soil on the basis of PCR amplification of fliC fragments. Appl. Environ. Microbiol. 69, 7248–7256. https://doi.org/10.1128/AEM.69.12.7248-7256.2003
- Schwyn, B., Neilands, J.B., 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47–56. https://doi.org/10.1016/0003-2697(87)90612-9
- Scrimgeour, C., 2007. Handbook of Soil Analysis. Mineralogical, Organic and Inorganic Methods. By M. Pansu and J. Gautheyrou. Berlin, Heidelberg, New York: Springer (2006), pp. 993, £191.50. ISBN 978-3-540-31210-9. Exp. Agric. 43, 401–401. https://doi.org/10.1017/S0014479707005042
- Seemann, T., 2014a. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068– 2069. https://doi.org/10.1093/bioinformatics/btu153
- Seemann, T., 2014b. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068– 2069. https://doi.org/10.1093/bioinformatics/btu153
- Shamsuddin, N., Lloyd, A., Graham, J., 1978. Survival of the potato strain of Pseudomonas solanacearum in soil. ET J. 44, 212–215.

- Shapiro, B.J., Polz, M.F., 2014. Ordering microbial diversity into ecologically and genetically cohesive units. Trends Microbiol., Special Issue: Omics: Fulfilling the Promise 22, 235– 247. https://doi.org/10.1016/j.tim.2014.02.006
- Sharma, P., Johnson, M.A., Mazloom, R., Allen, C., Heath, L.S., Lowe-Power, T.M., Vinatzer, B.A., 2022. Meta-analysis of the Ralstonia solanacearum species complex (RSSC) based on comparative evolutionary genomics and reverse ecology. Microb. Genomics 8, 000791. https://doi.org/10.1099/mgen.0.000791
- Sharma, P., Johnson, M.A., Mazloom, R., Allen, C., Heath, L.S., Lowe-Power, T.M., Vinatzer,
 B.A., 2021a. Meta Analysis of the Ralstonia solanacearum species complex (RSSC)
 based on comparative evolutionary genomics and reverse ecology. biorxiv
 12.05.471342.
- Sharma, P., Johnson, M.A., Mazloom, R., Allen, C., Heath, L.S., Lowe-Power, T.M., Vinatzer,
 B.A., 2021b. Meta Analysis of the Ralstonia solanacearum species complex (RSSC)
 based on comparative evolutionary genomics and reverse ecology. biorxiv
 12.05.471342. https://doi.org/10.1101/2021.12.05.471342
- Sheppard, S.K., Guttman, D.S., Fitzgerald, J.R., 2018. Population genomics of bacterial host adaptation. Nat. Rev. Genet. 19, 549–565. https://doi.org/10.1038/s41576-018-0032z
- Shipton, P.J., 1977. Monoculture and Soilborne Plant Pathogens. Annu. Rev. Phytopathol. 15, 387–407. https://doi.org/10.1146/annurev.py.15.090177.002131
- Siddiqui, Z.A., Nesha, R., Singh, N., Alam, S., 2012. Interactions of Plant-Parasitic Nematodes and Plant-Pathogenic Bacteria, in: Maheshwari, D.K. (Ed.), Bacteria in Agrobiology: Plant Probiotics. Springer, Berlin, Heidelberg, pp. 251–267. https://doi.org/10.1007/978-3-642-27515-9_14
- Siguier, P., Filee, J., Chandler, M., 2006. Insertion sequences in prokaryotic genomes. Current Opinion in Microbiology 9, 526–531. https://doi.org/10.1016/j.mib.2006.08.005
- Singh, S., Gautam, R.K., Singh, D.R., Sharma, T.V.R.S., Sakthivel, K., Roy, S.D., 2015. Genetic approaches for mitigating losses caused by bacterial wilt of tomato in tropical islands. Eur. J. Plant Pathol. 143, 205–221. https://doi.org/10.1007/s10658-015-0690-z
- Slatkin, M., 2008. Linkage disequilibrium understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 9, 477–485. https://doi.org/10.1038/nrg2361

- Solé, M., Scheibner, F., Hoffmeister, A.-K., Hartmann, N., Hause, G., Rother, A., Jordan, M., Lautier, M., Arlat, M., Büttner, D., 2015. Xanthomonas campestris pv. vesicatoria Secretes Proteases and Xylanases via the Xps Type II Secretion System and Outer Membrane Vesicles. J. Bacteriol. 197, 2879–2893. https://doi.org/10.1128/JB.00322-15
- Sonehara, K., Okada, Y., 2021. Genomics-driven drug discovery based on diseasesusceptibility genes. Inflamm. Regen. 41, 1–5. https://doi.org/10.1186/s41232-021-00158-7
- Sotiropoulos, A.G., Arango-Isaza, E., Ban, T., Barbieri, C., Bourras, S., Cowger, C., Czembor,
 P.C., Ben-David, R., Dinoor, A., Ellwood, S.R., Graf, J., Hatta, K., Helguera, M., Sánchez-Martín, J., McDonald, B.A., Morgounov, A.I., Müller, M.C., Shamanin, V., Shimizu, K.K.,
 Yoshihira, T., Zbinden, H., Keller, B., Wicker, T., 2022. Global genomic analyses of
 wheat powdery mildew reveal association of pathogen spread with historical human
 migration and trade. Nat. Commun. 13, 4315. https://doi.org/10.1038/s41467-022-31975-0
- Souza, D.O., Bruckner, F.P., Gonçalves, O.S., Santana, F., Alfenas-zerbini, P., 2021. Genomics Widespread distribution of prophages signaling the potential for adaptability and pathogenicity evolution of Ralstonia solanacearum species complex 113, 992–1000. https://doi.org/10.1016/j.ygeno.2021.02.011
- Stackebrandt, E., Frederiksen, W., Garrity, G.M., Grimont, P.A.D., Kämpfer, P., Maiden, M.C.J., Nesme, X., Rosselló-Mora, R., Swings, J., Trüper, H.G., Vauterin, L., Ward, A.C., Whitman, W.B., 2002. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 52, 1043–1047. https://doi.org/10.1099/00207713-52-3-1043
- Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
- Stevens, P., van Elsas, J.D., 2010. Genetic and phenotypic diversity of Ralstonia solanacearum biovar 2 strains obtained from Dutch waterways. Antonie Van Leeuwenhoek 97, 171– 188. https://doi.org/10.1007/s10482-009-9400-1

- Straub, C., Colombi, E., McCann, H.C., 2021a. Population genomics of bacterial plant pathogens. Phytopathology 111, 23–31. https://doi.org/10.1094/PHYTO-09-20-0412-RVW
- Straub, C., Colombi, E., McCann, H.C., 2021b. Population Genomics of Bacterial Plant Pathogens. Phytopathology[®] 111, 23–31. https://doi.org/10.1094/PHYTO-09-20-0412-RVW
- Su, Y., Xu, Y., Li, Q., Yuan, G., Zheng, D., 2020. The essential genome of Ralstonia solanacearum. Microbiol. Res. 238, 126500. https://doi.org/10.1016/j.micres.2020.126500
- Sui, S.J.H., Fedynak, A., Hsiao, W.W.L., Langille, M.G.I., Brinkman, F.S.L., 2009. The Association of Virulence Factors with Genomic Islands. PLOS ONE 4, e8094. https://doi.org/10.1371/journal.pone.0008094
- Sun, Y., Wang, K., Caceres-Moreno, C., Jia, W., Chen, A., Zhang, H., Liu, R., Macho, A.P., 2017.
 Genome sequencing and analysis of Ralstonia solanacearum phylotype I strains FJAT91, FJAT-452 and FJAT-462 isolated from tomato, eggplant, and chili pepper in China.
 Stand. Genomic Sci. 12. https://doi.org/10.1186/s40793-017-0241-7
- Sundin, George W, Wang, N., 2018. Antibiotic resistance in plant-pathogenic bacteria. Annu.
 Rev. Phytopathol. 56, 161–180. https://doi.org/10.1146/annurev-phyto-080417-045946
- Sundin, George W., Wang, N., 2018. Antibiotic resistance in plant-pathogenic bacteria. Annu.
 Rev. Phytopathol. 56, 161–180. https://doi.org/10.1146/annurev-phyto-080417-045946
- Tans-Kersten, J., Huang, H., Allen, C., 2001. Ralstonia solanacearum Needs Motility for Invasive Virulence on Tomato. J. Bacteriol. 183, 3597–3605. https://doi.org/10.1128/JB.183.12.3597-3605.2001
- Tantoso, E., Eisenhaber, B., Kirsch, M., Shitov, V., Zhao, Z., Eisenhaber, F., 2022. To kill or to be killed: pangenome analysis of Escherichia coli strains reveals a tailocin specific for pandemic ST131. BMC Biol. 20, 146. https://doi.org/10.1186/s12915-022-01347-7
- Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E.P., Zaslavsky, L., Lomsadze, A., Pruitt, K.D., Borodovsky, M., Ostell, J., 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614–6624. https://doi.org/10.1093/nar/gkw569

362

- Tettelin, H., Masignani, V., Cieslewicz, M.J., Donati, C., Medini, D., Ward, N.L., Angiuoli, S.V., Crabtree, J., Jones, A.L., Durkin, A.S., DeBoy, R.T., Davidsen, T.M., Mora, M., Scarselli, M., Margarit y Ros, I., Peterson, J.D., Hauser, C.R., Sundaram, J.P., Nelson, W.C., Madupu, R., Brinkac, L.M., Dodson, R.J., Rosovitz, M.J., Sullivan, S.A., Daugherty, S.C., Haft, D.H., Selengut, J., Gwinn, M.L., Zhou, L., Zafar, N., Khouri, H., Radune, D., Dimitrov, G., Watkins, K., O'Connor, K.J.B., Smith, S., Utterback, T.R., White, O., Rubens, C.E., Grandi, G., Madoff, L.C., Kasper, D.L., Telford, J.L., Wessels, M.R., Rappuoli, R., Fraser, C.M., 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial "pan-genome." Proc. Natl. Acad. Sci. 102, 13950–13955. https://doi.org/10.1073/pnas.0506758102
- Tettelin, H., Medini, D. (Eds.), 2020. The Pangenome. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-38281-0
- Tomlinson, D.L., Elphinstone, J.G., Soliman, M.Y., Hanafy, M.S., Shoala, T.M., El-Fatah, H.A., Agag, S.H., Kamal, M., El-Aliem, M.M.A., Fawzi, F.G., Stead, D.E., Janse, J.D., 2009.
 Recovery of Ralstonia solanacearum from canal water in traditional potato-growing areas of Egypt but not from designated Pest-Free Areas (PFAs). Eur. J. Plant Pathol. 125, 589–601. https://doi.org/10.1007/s10658-009-9508-1
- Tonkin-Hill, G., MacAlasdair, N., Ruis, C., Weimann, A., Horesh, G., Lees, J.A., Gladstone, R.A.,
 Lo, S., Beaudoin, C., Floto, R.A., Frost, S.D.W., Corander, J., Bentley, S.D., Parkhill, J.,
 2020. Producing polished prokaryotic pangenomes with the Panaroo pipeline.
 Genome Biol. 21, 180. https://doi.org/10.1186/s13059-020-02090-4
- Tsumori, C., Matsuo, S., Murai, Y., Kai, K., 2022. Quorum sensing-dependent invasion of *Ralstonia solanacearum* into *Fusarium oxysporum* chlamydospores (preprint). Microbiology. https://doi.org/10.1101/2022.11.03.515128
- Ujita, Y., Sakata, M., Yoshihara, A., Hikichi, Y., Kai, K., 2019. Signal Production and Response Specificity in the phc Quorum Sensing Systems of Ralstonia solanacearum Species Complex. ACS Chem. Biol. 14, 2243–2251. https://doi.org/10.1021/acschembio.9b00553
- Um, H.Y., Kong, H.G., Lee, H.J., Choi, H.K., Park, E.J., Kim, S.T., Murugiyan, S., Chung, E., Kang, K.Y., Lee, S.-W., 2013. Altered gene expression and intracellular changes of the viable but nonculturable state in Ralstonia solanacearum by copper treatment. Plant Pathol. J. 29, 374–385. https://doi.org/10.5423/PPJ.OA.07.2013.0067

- Van Elsas, J.D., Kastelein, P., De Vries, P.M., Van Overbeek, L.S., 2001. Effects of ecological factors on the survival and physiology of Ralstonia solanacearum bv. 2 in irrigation water. Can. J. Microbiol. 47, 842–854. https://doi.org/10.1139/w01-084
- Van Elsas, J.D., Kastelein, P., Van Bekkum, P., Van der Wolf, J.M., De Vries, P.M., Overbeek,
 L.S. van, 2000. Survival of Ralstonia solanacearum biovar 2, the causative agent of
 potato brown rot, in field and microcosm soils in temperate climates. Phytopathology
 90, 1358–1366. https://doi.org/10.1094/phyto.2000.90.12.1358
- Vasse, J., Frey, P., Trigalet, A., 1995. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. https://doi.org/10.1094/MPMI-8-0241
- Velásquez, A.C., Castroverde, C.D.M., He, S.Y., 2018. Plant-pathogen warfare under changing climate conditions. Curr. Biol. CB 28, R619–R634. https://doi.org/10.1016/j.cub.2018.03.054
- Von Bodman, S.B., Bauer, W.D., Coplin, D.L., 2003. Quorum sensing in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 41, 455–482. https://doi.org/10.1146/annurev.phyto.41.052002.095652
- Vos, M., 2009. Why do bacteria engage in homologous recombination? Trends Microbiol. 17, 226–232. https://doi.org/10.1016/j.tim.2009.03.001
- Waszczak, C., Carmody, M., Kangasjärvi, J., 2018. Reactive Oxygen Species in Plant Signaling. Annu. Rev. Plant Biol. 69, 209–236. https://doi.org/10.1146/annurev-arplant-042817-040322
- Wei, Z., Gu, Y., Friman, V.-P., Kowalchuk, G.A., Xu, Y., Shen, Q., Jousset, A., 2019. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, eaaw0759. https://doi.org/10.1126/sciadv.aaw0759
- Wei, Z., Yang, T., Friman, V.-P., Xu, Y., Shen, Q., Jousset, A., 2015a. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6, 8413. https://doi.org/10.1038/ncomms9413
- Wei, Z., Yang, T., Friman, V.-P., Xu, Y., Shen, Q., Jousset, A., 2015b. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6, 8413. https://doi.org/10.1038/ncomms9413

- Wei, Z., Yang, X., Yin, S., Shen, Q., Ran, W., Xu, Y., 2011. Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Appl. Soil Ecol. 48, 152–159. https://doi.org/10.1016/j.apsoil.2011.03.013
- Weller, S.A., Elphinstone, J.G., Smith, N.C., Boonham, N., Stead, D.E., 2000. Detection of Ralstonia solanacearum Strains with a Quantitative, Multiplex, Real-Time, Fluorogenic
 PCR (TaqMan) Assay, APPLIED AND ENVIRONMENTAL MICROBIOLOGY.
- Whelan, F.J., Rusilowicz, M., McInerney, J.O., 2020. Coinfinder: detecting significant associations and dissociations in pangenomes. Microb. Genomics 6. https://doi.org/10.1099/mgen.0.000338
- Wick, R.R., Judd, L.M., Gorrie, C.L., Holt, K.E., 2017a. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, 1–22. https://doi.org/10.1371/journal.pcbi.1005595
- Wick, R.R., Judd, L.M., Gorrie, C.L., Holt, K.E., 2017b. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, 1–22. https://doi.org/10.1371/journal.pcbi.1005595
- Wicker, E., Grassart, L., Coranson-Beaudu, R., Mian, D., Guilbaud, C., Fegan, M., Prior, P., 2009.
 Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential. Appl. Environ. Microbiol. 75, 558.
 https://doi.org/10.1128/AEM.02635-08
- Wicker, E., Lefeuvre, P., de Cambiaire, J.-C., Lemaire, C., Poussier, S., Prior, P., 2012a.
 Contrasting recombination patterns and demographic histories of the plant pathogen
 Ralstonia solanacearum inferred from MLSA. ISME J. 6, 961–974.
 https://doi.org/10.1038/ismej.2011.160
- Wicker, E., Lefeuvre, P., de Cambiaire, J.-C., Lemaire, C., Poussier, S., Prior, P., 2012b.
 Contrasting recombination patterns and demographic histories of the plant pathogen
 Ralstonia solanacearum inferred from MLSA. ISME J. 6, 961–974.
 https://doi.org/10.1038/ismej.2011.160
- Wickham, R., 2009. ggplot2: Elegant Graphics for Data Analysis.
- Wilson, D.B., 2011. Microbial diversity of cellulose hydrolysis. Curr. Opin. Microbiol., Ecology and industrial microbiology / Special section: Archaea 14, 259–263. https://doi.org/10.1016/j.mib.2011.04.004

- Wood, D.E., Lu, J., Langmead, B., 2019. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257. https://doi.org/10.1186/s13059-019-1891-0
- Worning, P., Jensen, L.J., Nelson, K.E., Brunak, S., Ussery, D.W., 2000. Structural analysis of DNA sequence: evidence for lateral gene transfer in Thermotoga maritima. Nucleic Acids Res. 28, 706–709.
- Wu, D., Ding, W., Zhang, Y., Liu, X., Yang, L., 2015. Oleanolic Acid Induces the Type III Secretion System of Ralstonia solanacearum. Front. Microbiol. 6.
- Xie, Z., Tang, H., 2017. ISEScan: automated identification of insertion sequence elements in prokaryotic genomes. Bioinformatics 33, 3340–3347.
 https://doi.org/10.1093/bioinformatics/btx433
- Xin, X.-F., Kvitko, B., He, S.Y., 2018. Pseudomonas syringae: what it takes to be a pathogen. Nat. Rev. Microbiol. 16, 316–328. https://doi.org/10.1038/nrmicro.2018.17
- Xue, Q.Y., Yin, Y.N., Yang, W., Heuer, H., Prior, P., Guo, J.H., Smalla, K., 2011. Genetic diversity of Ralstonia solanacearum strains from China assessed by PCR-based fingerprints to unravel host plant- and site-dependent distribution patterns. FEMS Microbiol. Ecol. 75, 507–519. https://doi.org/10.1111/j.1574-6941.2010.01026.x
- Yamada, T., 2016. Bacteriophages of Ralstonia solanacearum: Their Diversity and Utilization as Biocontrol Agents in Agriculture 13.
- Yamada, T., 2013. Filamentous phages of Ralstonia solanacearum: double-edged swords for pathogenic bacteria. Front. Microbiol. 4.
- Yang, C., Dong, Y., Friman, V.P., Jousset, A., Wei, Z., Xu, Y., Shen, Q., 2019. Carbon resource richness shapes bacterial competitive interactions by alleviating growth-antibiosis trade-off. Funct. Ecol. 33, 868–875. https://doi.org/10.1111/1365-2435.13292
- Yang, T., Han, G., Yang, Q., Friman, V.P., Gu, S., Wei, Z., Kowalchuk, G.A., Xu, Y., Shen, Q., Jousset, A., 2018. Resource stoichiometry shapes community invasion resistance via productivity-mediated species identity effects. Proc. Biol. Sci. 285, 20182035. https://doi.org/10.1098/rspb.2018.2035
- Yao, J., Allen, C., 2007. The plant pathogen Ralstonia solanacearum needs aerotaxis for normal biofilm formation and interactions with its tomato host. J. Bacteriol. 189, 6415–6424. https://doi.org/10.1128/JB.00398-07
- Yoshimochi, T., Hikichi, Y., Kiba, A., Ohnishi, K., 2009. The Global Virulence Regulator PhcA Negatively Controls the Ralstonia solanacearum hrp Regulatory Cascade by Repressing

Expression of the PrhIR Signaling Proteins. J. Bacteriol. 191, 3424–3428. https://doi.org/10.1128/JB.01113-08

- Yu, G., Lam, T.T.Y., Zhu, H., Guan, Y., 2018. Two methods for mapping and visualizing associated data on phylogeny using GGTree. Mol. Biol. Evol. 35, 3041–3043. https://doi.org/10.1093/molbev/msy194
- Yuliar, Nion, Y.A., Toyota, K., 2015. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environ. 30, 1–11. https://doi.org/10.1264/jsme2.ME14144
- Zhang, J., Shao, F., Li, Y., Cui, H., Chen, L., Li, H., Zou, Y., Long, C., Lan, L., Chai, J., Chen, S., Tang, X., Zhou, J.-M., 2007. A Pseudomonas syringae Effector Inactivates MAPKs to Suppress PAMP-Induced Immunity in Plants. Cell Host Microbe 1, 175–185. https://doi.org/10.1016/j.chom.2007.03.006
- Zhang, W., He, S.Y., Assmann, S.M., 2008. The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. Plant J. Cell Mol. Biol. 56, 984–996. https://doi.org/10.1111/j.1365-313X.2008.03657.x
- Zheng, X., Zhu, Y., Liu, B., Zhou, Y., Che, J., Lin, N., 2014. Relationship Between Ralstonia solanacearum Diversity and Severity of Bacterial Wilt Disease in Tomato Fields in China. J. Phytopathol. 162, 607–616. https://doi.org/10.1111/jph.12234
- Zulperi, D., Sijam, K., Mior Ahmad, Z.A., Awang, Y., Sulaiman Rashid, T., 2014. Occurrence of Ralstonia solanacearum Race 2 Biovar 1 Associated with Moko Disease of Banana (Musa paradisiaca cv. Nipah) in Malaysia. J. Phytopathol. 162, 697–702. https://doi.org/10.1111/jph.12233