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Abstract

Computer modelling and simulation of road networks are a vital tool used to evaluate, design and

manage road network infrastructure. Road network simulations are however computationally

expensive, with simulation runtime imposing limits on the scale and quantity of simulations

performed within a reasonable time frame. This thesis examines the appropriateness of many-

core processing architectures (such as GPUs) for the acceleration of microscopic and macroscopic

road network simulation, and the potential impact on the choice of modelling approach.

Fine-grained agent-based microscopic simulations of individual vehicles are parallelised using

GPUs, achieving high performance through a novel graph-based communication strategy for

data-parallel simulations. A minimal benchmark model and scalable road network are defined

and used experimentally to evaluate performance compared to Aimsun, a commercial simulation

tool for multi-core processors. Performance improvements of up to 67x are demonstrated for

large scale simulations.

High-level macroscopic simulations model network flow rather than individual vehicles. Al-

though less computationally demanding than microscopic models, simulation runtimes can still

be significant, often due to the calculation of many shortest paths. A novel Many-Source Short-

est Path (MSSP) algorithm is proposed to concurrently find multiple shortest paths through

sparse transport networks using GPUs. This is embedded within a commercial multi-core CPU

macroscopic simulation tool, SATURN, and the performance evaluated on large-scale real-world

road networks, demonstrating assignment performance improvements of up to 8.6x when com-

paring multi-processor GPU and CPU implementations.

Finally, the impact of the performance improvements to both modelling techniques are

evaluated using a common benchmark model and the relative improvements demonstrated by

the benchmarking of each approach using different transport networks. These results suggest

that GPUs will allow modellers to shift towards using finer-grained simulations for a broader

range of modelling tasks.
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Chapter 1

Introduction

Demand on transportation systems is increasing around the globe, for instance in the UK the

Department for Transport (DfT) have projected increases of up to 42% in car ownership and

up to 55% growth in UK road traffic demand between 2010 and 2040 [1]. Along with the

increasing demand, existing network infrastructure is often underutilised resulting in reduced

capacity available to transport network users [2].

The effects of increased demand and reduced capacity due to underutilisation can be coun-

tered through improved traffic management systems and improved network design tools [3].

Computer models and simulations allow transport authorities to perform virtual trials of pro-

posed alterations prior to real world changes, removing the risk and cost of real world trials

[4]. They may also be used to study the impacts of road network factors such as public health

or the environment [5], [6]. Low-latency simulators can be integrated into automatic traffic

management systems, reducing the need for human input to manage complex scenarios [7], [8].

Transport system simulators can typically be classified into one of three categories based on

the granularity of the modelling: macroscopic, mesoscopic & microscopic. Macroscopic simu-

lations use a top-down approach to accurately model the flow of transport through a network,

using abstract representation such as modelling traffic as fluids [9], [10]. Mesoscopic simulations

model use an intermediate resolution, often modelling the behaviours of groups (platoons) of

individuals [11]. Microscopic simulations (bottom-up) are fine-grained models concerned with

the behaviors of individuals and their local interactions [12].

Traditionally, macroscopic simulations were predominately used for transport modelling

due to lower computational complexity than the finer-grained methodologies [13]. However, as

computational resources have increased over time, microscopic simulators are becoming more

prominent due to the benefits they provide, although the effectiveness and uptake of microscopic

simulators is still limited by performance [14]. Microsimulations and Agent Based Modelling

(ABM), a technique for naturally describing individual (agent) behaviours in a simulation [15],

provide advantages over the more traditional macroscopic approaches for modelling transport
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systems, such as improved capability for accurately modelling congested systems where the

position of individual vehicles is relevant.

The runtime of road network simulations can be considerable, leading to sacrifices being

made in the number of scenarios being considered and subsequently simulated. A frequently

used solution is to consider only a single “average day” of the year, which may not accurately

reflect any individual day [16]. A suitable approach to improve performance of transport net-

work simulations is to parallelise the simulation, executing instructions concurrently on parallel

hardware to yield higher performance and reduced runtimes. Macroscopic, mesoscopic and

microscopic simulations are all suitable for parallel processing to varying degrees. Although

transport simulations are not embarrassingly parallel, modern many-core processing architec-

tures such as Graphics Processing Units (GPUs) offer the potential for significant enhancements

to simulation performance. GPUs are high-throughput co-processors, which use many relatively

simple processing cores to provide high levels of concurrency for data-parallel applications, com-

pared to modern multi-core Central Processing Unit (CPU) which provide much fewer cores

with higher per-core performance.

Using GPUs for parallelisation offers many advantages, for example, within High Perfor-

mance Computing (HPC) GPU based computers are dominating both the Top 500 [17] and

Green 500 [18] as they are can provide a large amount of computational power with lower elec-

trical power requirements than more traditional CPU based HPC solutions [19]. However, using

GPUs to increase performance brings additional complexity to achieve the desired levels of per-

formance. The programming model requires specialist knowledge which end-user modellers may

not possess and considerations must be made during implementation to achieve high levels of

performance. Ultimately, additional performance made available to simulations through General

Purpose Computing on Graphics Processing Units (GPGPU) may enable larger-scale and more-

complex real-time (or better than real-time) simulations for use in transport system planning,

management and analysis. Additionally, if GPGPU can successfully improve the simulation per-

formance of road network simulations, the relative performance improvements to each modelling

approach may influence the choice of modelling approach used. The high computational costs of

fine-grained microscopic simulations is a significant factor in use of macroscopic approaches for

large-scale simulations. If the performance gap between these opposing approaches is reduced,

there may be a shift away from coarse simulation models towards finer-grained models, which

can present modellers with additional information, potentially leading to more well-informed

decisions.
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1.1 Aims and Research Outline

This thesis aims to investigate and advance the use of many-core GPUs for the acceleration of

road network simulations, considering both fine-grained microscopic models and coarse macro-

scopic modelling approaches. GPUs are highly parallel, high-throughput devices which must

be provided with sufficiently high volumes of work to process concurrently. Microscopic road

network simulations have the potential to be well-suited for parallelisation on GPUs due to a

number of factors in their design. They are computationally demanding simulations, which per-

form fine-grained simulations of individuals within complex systems which may contain millions

of individual vehicles in the case of national-scale simulations. Microscopic simulations can be

implemented using an Agent Based Model (ABM) approach, which has been demonstrated as

suitable for parallelisation [20]–[22]. Agent-based simulations of transport networks can poten-

tially involve huge numbers of agents if large, complex road networks are being simulated. As

such, microsimulation through an ABM approach potentially exposes the high level of paral-

lelism required to take advance of modern many core processing hardware. However, GPGPU

parallelisation is non trivial in a lot of cases, and care must be taken to both ensure that the

adoption of parallel algorithms does not fundamentally change the result of simulation. Road

network microsimulation software used within industry and in literature predominately lever-

ages multi-core CPUs to improve simulation performance compared to serial implementations.

Some research has been published into the application of many-core architectures such as GPUs

for road network simulations [23]–[26], however, the adoption of fine-grained data-parallelism

and GPUs has been limited, with little impact on the transport modelling sector or widespread

adoption within literature thus far.

Macroscopic road network simulations are traditionally used in favour of finer-grained mod-

elling approaches due to the reduced computational cost, provided by the higher level of ab-

straction. However, large scale macroscopic simulations can still have long run-times, even using

state of the art approaches from research adopted by commercial multi-core CPU simulation

packages. Time constraints can reduce the effectiveness of simulations and as a result modelling

practitioners are restricted in the quantity, variety and therefore scale of simulations which can

be completed within a reasonable period of time [14]. The approach to parallelisation within

macroscopic road network simulations is less obvious than in the microsimulation case and will

require the use of significantly different algorithms and data structures to access high levels of

performance from many-core processor architectures, compared to those in use for the current

state of the art macroscopic road network simulations for CPUs.

The choice of modelling approach used by practitioners is a compromise which is heavily

influenced by the performance of simulations. Although GPUs are potentially suitable for par-

allelising both modelling approaches, the different approaches may see different levels of perfor-
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mance improvement compared to the current multi-core CPU implementations used within the

transport modelling industry. This may influence the decision making process when modelling

practitioners must decide which approach is the most suitable for use, providing the desired

level of detail while also completing within a reasonable time-frame.

The research questions asked by this thesis are as follows:

• Can modern GPUs be used to provide efficient and scalable microscopic road network

simulations which offer high levels of performance compared to more traditional CPU-

based approaches?

– What are the essential models required for a road network simulation which can be

used to evaluate the performance of microscopic simulations?

– How can simulator performance be evaluated for a range of simulation scales?

– What algorithms and data structures can be used to enable the desired levels of

performance and scalability?

• Are modern GPUs suitable for the acceleration of macroscopic road network simulations,

to reduce the time required to simulate large-scale road networks?

– Which parts of an Macroscopic model will benefit the most from many-core paral-

lelisation?

– What algorithms and data structures must be used within a macroscopic model to

access the high levels of performance offered by the GPU?

• What is the impact of GPUs on the choice of modelling approach, which currently favours

high level macroscopic modelling approaches rather than fine-grained microscopic models

due to computational cost and long application runtimes?

1.2 Contribution to Knowledge

This thesis makes the following contributions:

• C1 - A minimal subset of agent-based road network simulation behaviours is defined for

a microscopic road network model, with an associated scalable artificial benchmark road

network which supports the evaluation of road network simulation performance at a range

of simulation scales.

• C2 - A general-purpose graph-based communication strategy is presented for high perfor-

mance agent communication for fine-grained data-parallel agent based simulations, which

enables high performance agent based simulations of transport networks on GPUs.

• C3 - A benchmark ABM is proposed and used to evaluate the performance impact of

the general-purpose graph-based communication strategy for GPU accelerated ABMs,

without other complexities of road network simulation.
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• C4 - The proposed microscopic road network simulation model is implemented for ex-

ecution on GPUs, and the performance is evaluated against an equivalent model in a

commercial multi-core CPU software tool, demonstrating improvements to simulation

performance and performance scalability.

• C5 - A novel algorithm (Many Source Shortest Path (MSSP)) is presented for concur-

rently finding the shortest path between multiple origin and destination vertices within a

transport network. The algorithm is able to extend the current state of the art in path

finding within sparse transport networks by solving a number of shortest path calculations

concurrently when using data parallel accelerators such as GPUs.

• C6 - The proposed many-source-shortest-path algorithm (C5) is embedded within a

macroscopic road network simulation tool, SATURN, to evaluate the impact of such an

approach on macroscopic road network assignment and simulation models. Performance

advances are demonstrated compared to the existing multi-core implementation, for large-

scale real-world road networks.

• C7 - The relative impact of GPU acceleration on microscopic and macroscopic road net-

work simulations is compared and evaluated through the shared benchmarking model.

1.3 Publications

The work carried out during the completion of this thesis has resulted in the following publica-

tions:

• P. Heywood, S. Maddock, R. Bradley, D. Swain, I. Wright, M. Mawson, G. Fletcher, R.

Guichard, R. Himlin, and P. Richmond, “A data-parallel many-source shortest-path algo-

rithm to accelerate macroscopic transport network assignment”, Transportation Research

Part C: Emerging Technologies, 2019 [27]. This publication is related to Contributions

C5 and C6.

• P. Heywood, S. Maddock, J. Casas, D. Garcia, M. Brackstone, and P. Richmond, “Data-

parallel agent-based microscopic road network simulation using graphics processing units”,

Simulation Modelling Practice and Theory, 2017 [28]. This provides the basis of Contri-

butions C1, C2, C3 and C4.

• P. Heywood, P. Richmond, and S. Maddock, “Road network simulation using FLAME

GPU”, Euro-Par 2015: Parallel Processing Workshops, Springer, 2015 [29]. This publica-

tion contains early work related to Contributions C1 and C3.
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1.4 Thesis Structure

• Chapter 2 (Related Work) presents general background information related to road net-

work simulation and the use of computer parallelism including GPGPU, with a more

focussed review of microscopic and macroscopic road network simulations.

• Chapter 3 (GPU Accelerated Microscopic Simulation) describes the application of GPUs

to microscopic road network simulations through ABM, by defining a set of models and as-

sociated scalable road network. The method by which the GPU ABM can be implemented

is described, and a performance evaluation made against a state of the art, commercial

microsimulation software tool.

• Chapter 4 (Network-Based Communication for Data-Parallel ABM) extends and improves

the performance of the GPU accelerated ABM described in Chapter 3 through the use of

a specialised communication pattern. The general purpose graph-based communication

pattern for GPU accelerated ABMs improves the communication-efficiency of road net-

work behavioural models within agent based models on many-core processors, leading to

significant performance improvements and scaling behaviour. This is complemented by

an abstract ABM model designed to benchmark the communication patterns presented in

road network behavioural models.

• Chapter 5 (GPU Accelerated Macroscopic Assignment and Simulation) presents the appli-

cation of GPUs to macroscopic transport network simulation and assignment modelling,

focussed on accelerating the performance of the computationally expensive assignment of

traffic routes. This is achieved through the development of a novel shortest path algo-

rithm which caters for graphs characteristic of transport networks. The novel algorithm is

embedded within a commercial simulation tool, and the performance is evaluated against

the serial and multi-core CPU versions of the simulator using a set of real-world models.

• Chapter 6 (Comparison of GPU Accelerated Road Network Simulation Approaches) eval-

uates the relative benefits of GPU acceleration on road network simulations using either

microscopic or macroscopic techniques. This is achieved through the use of the scalable

benchmark network defined in Chapter 3, but applied to the macroscopic assignment and

simulation tool from Chapter 5.

• Chapter 7 (Conclusions) provides conclusions to the work carried out in this thesis, and

provides suggestions for future work in this area.
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Chapter 2

Related Work

This chapter provides context and background for the parallel computer simulations of transport

networks. Section 2.1 introduces transport network modelling and simulation. Section 2.2

provides a discussion of parallel processing approaches with emphasis on data-parallelism for

many-core processing architectures and Graphics Processing Units (GPUs). A more focussed

review of literature and techniques used for microscopic road network simulations are provided

in Section 2.3. Section 2.4 presents a similar review of related work for macroscopic modelling

and simulation of road networks, including shortest path algorithms which are fundamental to

this modelling approach. Finally, Section 2.5 summarises the chapter.

2.1 Transport Network Modelling and Simulation

Complex systems such as transport networks are modelled and simulated on computers in or-

der to provide insight into the properties and characteristics of the target system and predict

the effect of changes without the need for expensive real-world trials. For transport networks,

simulations can be used to support both design and planning of changes to transport networks

[30]–[32]. Transport simulations can also be used to support decision making within manage-

ment of active transportation networks [8], [33], [34] and study the impacts of road networks

on society and the environment [5], [6]. The following subsections discuss the general concepts

and use of complex system simulations and how they related to the domain of transportation

networks.

2.1.1 Complex System Modelling and Simulation

A computer Simulation Model is an abstract representation of a complex system which captures

the behaviour of the target system at a (typically) simplified level, in an attempt to produce a

representation of the system which is easier to understand [35]. The model must be implemented

as a Computer Simulation, which can be executed one or more times in order to gain insight
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about the modeled system. In some cases an individual simulation can provide meaningful

insight into the modelled system, however, most complex system simulations involve a degree of

stochasticity to capture variance within the modelled system. When this is the case, an Ensemble

of many individual simulation runs must be executed, and aggregate operations performed over

the ensemble to gain meaningful and representative results [36].

Models and simulations of complex systems can be categorised in many ways based on var-

ious properties of the model. Models which contain spatial elements can be classified as either

discrete-space or continuous-space models. Discrete space simulations divide the simulation en-

vironment into a set of discrete locations to reduce complexity. Cellular Automata are one such

example of discrete space models [37]. Continuous space simulations represent the environment

as a single continuous space in one or more dimensions, allowing free movement within the envi-

ronment. Models using continuous space for environments are often bound by fixed dimensions,

or they may implement environment wrapping, forming a torus [38].

Similarly, the progression of a simulation can be modeled as discrete events or continuous

time (where simulations progress iteratively at regular intervals). Discrete-event simulations

model the system as a sequence of distinct events, each of which lead to a state of change in the

system and are well-suited for modelling asynchronous systems where events occur at irregular

intervals [39], [40]. In contrast, Continuous time simulations perform periodic iterative updates

to the simulation state, which can use a fixed time-step. Event based simulations are typically

more work-efficient than continuos time simulations, requiring fewer computational resources, as

they only perform updates when required. Systems with frequent changes of state, such as the

position of vehicles within a simulation, are more likely to follow a continuous time approach.

Complex systems can be modelled and simulated at differing levels of detail, which are of-

ten categorised as Macroscopic, Mesoscopic or microscopic models or simulations. Macroscopic

models are the most coarsely grained approach, typically following a top-down equation-based

approach [41]. Within transport system simulations this often involves the modelling of traffic

flow on sections of road [42]–[44]. Mesoscopic models operate at a mid-level of granularity,

covering a the spectrum of modelling resolutions which lie between the macroscopic and mi-

croscopic approaches. For transport networks models this can mean the modelling of groups

or platoons of individuals as a single unit [11]. Microscopic models are fine-grained models

following a bottom-up approach. Often modelling each individual in the system, their local

interactions and the environment [12]. Agent Based Models (ABMs) are a form of microscopic

model, which offer a natural mechanism for describing a system of behavioural entities [45].

The behaviours of individuals are modelled, and through the interaction between one another

and the environment more complex higher-level behaviours can emerge. The specific meaning

of each of the macroscopic, mesoscopic and microscopic terms varies between modelling domain,

but the relationships between level of details are consistent.
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Each modelling resolution has different advantages and disadvantages which influence which

modelling approach is most appropriate for a given task. Fine-grained microscopic models are

less abstract than higher level approaches such as macroscopic models. Through techniques such

as ABM microscopic models can be more intuitive to develop [45] and more interpretable by

non-modelling specialists who may be key stakeholders in any decision making processes than

more abstract purely mathematical approaches. The abstract nature of high-level approaches

can however be advantageous. Macroscopic models are not as data-intensive as mesoscopic or

microscopic road network simulations. This can reduce the volume and complexity of data

required for model calibration and validation, which can be very costly to gather [46]. It also

leads to lower-resolution data being generated through the simulation approach, only providing

information at an aggregate level, rather than being able to view the movements of individual

vehicles and how they may interact with one another. Combined with simulation iterations rep-

resenting longer periods of time this can lead to high-impact short-term events being missed,

as the effects are aggregated over a longer time period [47]. One of the most significant ef-

fects of the choice of modelling approach is on simulation runtime. Macroscopic simulations

typically run in a much shorter duration than finer-grained approaches of the same network,

with greater differences in performance at larger scales of simulation. In addition, microscopic

road network simulations are often highly stochastic, requiring large ensembles of simulations

to produce statistically relevant results [36]. This exacerbates the long simulation runtime of

the computationally expensive microscopic simulations.

Hybrid approaches can be used to combine aspects of the different modelling resolutions

to balance the advantages of each approach. For instance, a higher-level macroscopic or meso-

scopic model can be used to simulate a large transport network, with finer-grained microscopic

modelling used for areas of the simulation where more detail is required due to complex in-

teractions [11], [48]. Alternatively, the sub-components of a model may operate at different

levels of granularity, using macroscopic approaches to assign transport demand, which are then

simulated using a mesoscopic or microscopic approach [49].

2.1.2 Calibration, Validation and Verification of Computer Simulations

To ensure that computer simulations of a model are accurate they must be verified, calibrated

and validated. A computer simulation can be verified, to ensure that the implemented computer

simulation matches the theory, concepts and intent of the underlying mathematical computer

model [50]. For a software implementation to be correct, software engineering best practices

[51]–[53] should be followed to minimise the likelihood of errors [54]. Models of complex systems

typically contain many model parameters which can be used to calibrate the model, where the

parameters are adjusted so that the simulation outputs are comparable to observed or expected

results within an acceptable degree of tolerance [55]. The calibration process requires data to
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calibrate the system against. For the calibration to be successful the data should be broad

in nature, for instance, containing data collected from both major and minor roads, or from

both cities and the countryside such that the relevant parameters can be calibrated to suit the

demands of the components they effect [56]. The collection of data for calibration purposes is

often the most expensive and time consuming part of the calibration process, but the adoption

of Intelligent Transport System (ITS) around the world has greatly increased the amount of

data available [46].

Many methods can be used to calibrate computer models [57]–[59]. For instance, the simplex

method represents the parameter space of the model using a geometric feature of P +1 vertices

where P is the dimensionality of the parameter space [57]. The simulation is executed using

each parameter set in the feature, and the fitness with respect to the calibration data is eval-

uated. The least-fit parameter set is discarded and replaced by a new feature set. Over many

iterations this results in the parameter set moving towards the optimal solution, including when

applied to road network simulation models [46]. An alternative approach for calibration could

be to use machine learning approaches such as Genetic Algorithms (GAs). GAs are a heuristic

search technique inspired by natural selection [60]. Sets of model parameters are represented

by individuals within a population. Simulations are performed using the parameters encoded

by each individual within the population and the fitness of each simulation is evaluated. A

new population of model parameters are then generated, using biologically inspired processes

such as mutation and crossover. The new population is then used to run a batch of simulations

and generate new fitness values. This generational process is repeated many times, producing

new populations which should be collectively fitter than the previous generation, ultimately

converging on a more optimal solution [55], [58], [61].

Once calibrated, the model can be validated, where the validity of a computational model can

be considered as the testability of the model [54], which can be split into six types of validation

as defined by Knepell and Arangno: conceptual, internal, external, cross-model, data, and

security [62]. Validation can also be considered to be the process of determining the degree to

which a model represents the real world [50]. This process requires real world data to compare

the output of the simulation to, and check if the results are within an acceptable range of the

observed data. The data being used in order to validate a model needs to be independent from

the data used to calibrate the model [63] in order for the validation to have any meaning. The

traditional methods of collecting real-world data for calibration and validation came with high

costs and limited information, but with increasing use of automatic techniques for capturing

data (such as Smart Motorways) this availability of data is increasing.
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2.1.3 Road Networks and Users

Within the context of modelling transport systems, the various classes of road users are an

important consideration. Road networks are used by a wide range of users including pedestrians,

cyclists, two-wheeled motor vehicles such as motorbikes, cars, buses, Light Goods Vehicles

(LGVs), Heavy Goods Vehicles (HGVs) and more recently Connected and Autonomous Vehicless

(CAVs). The ratio of different modes of transport varies depending on the type and the location

of a road, depending on who is using the road, why the vehicles is being used, where the vehicle is

heading and laws governing which vehicles are allowed on each type of road (in a given location).

A typical example of the distribution of vehicles on UK motorways is shown in Figure 2.1 which

shows that travel during the observed time of day is predominately Cars with some HGVs &

LGVs, a few buses and Motorcycles but no pedal vehicles (which are not allowed on Motorways

in the UK). The Highways Agency report that the most common mode of traffic in 2013 using

the Strategic Road Network (SRN) based on the number of vehicle miles covered is the LGV;

followed by cars, HGVs, motorcycles and buses [64]. This variance needs to be accounted for

by road network models, to accurately capture the behaviour of the transport network, as the

mix of modes of traffic will have varying degrees of impact on the transport network.
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Figure 2.1: Road network user mode distribution for a section of road in England (M1 North, J31 to
J32) over the 1 hour period between 17:00 and 18:00 on the 6th May 2013 (GB Road Traffic Counts data
set [65]).

The road network on which vehicles travel is physically made up of sections of road connected

by junctions. This naturally leads to the use of graphs to represent road networks within

modelling and simulation. A directed graph (G) is comprised of a set of vertices or nodes (V )
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Figure 2.2: The correlation between edges, vertices and zones for a small section of a one-way road
network.

and a set of one-way directed edges or links (E) connecting a pair of vertices. Edges may also

have additional properties associated with them, typically a weight or cost (C) leading the the

graph being referred to as a weighted graph. Within transport network simulations, edges may

have many properties rather than a single weight, such as the number of lanes, or speed limit

for that section of road. Vertices may also have information associated with them, such as the

position within 3D space. In some road network applications the set of vertices V may contain

multiple types of vertex. In addition to a set of vertices which represent intersections within the

road network connecting links, a set of virtual vertices are often used to allow vehicles to enter

and exit the simulated region, or be associated with origin-destination demand data. These are

often referred to as Zones or Centroids. Figure 2.2 shows an example of how zones, vertices and

edges may be used to represent a small section of a one-way road network.

2.1.4 Properties of Road Network Graphs

Simulation of networks can be achieved using a range of standard network algorithms for traver-

sal and path calculations. Several characteristics of graphs are important when considering

algorithm selection including: (i) degree; (ii) density; (iii) and diameter. The degree of a vertex

is the number of edges directly connected to the vertex. Road network graphs typically have

a very low average degree, due to the physical properties of road networks. The density of a

graph describes the relationship between the number of edges and vertices with the graph, and

is defined as D = |E|
|V |(|V |−1) for directed graphs. It is the ratio of the number of edges in the

graph compared to the number of edges in a fully connected graph [66]. A dense graph contains

a large number of edges per vertex, with an upper bound of |V |(|V |−1)
2 for undirected graphs.

The closer to the upper bound, the denser the graph. Sparse graphs in comparison have a low

number of edges per vertex. Road networks are generally sparse, with low densities. The diam-
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eter of a graph is the greatest distance (number of edges) between any vertex pair in the graph

(considering shortest paths for weighted graphs). The diameter of a transport network graph

is often relatively high. Sparsity, diameter and degree significantly differentiate road network

graphs from other categories of graph, such as social media interaction graphs which tend to

have low diameters with very high density, leading to alternate algorithm selection for similar

tasks.

2.1.5 Sparse Graph Data-structures

Road networks represented as graphs can be stored in many different data structures when used

in computer applications. The differing approaches typically each have their own advantages

and disadvantages with respect to the time complexity (an estimation of how much time a

computer algorithm will require based on the number of elementary operations required) [67]

and performance of certain operations, such as the construction of the graph, addition or removal

of edges or vertices, or the alignment of elements within memory. Properties of the graph also

impact data structure selection, especially the density of the graph.

As road networks are generally represented by very sparse graphs, they are generally repre-

sented using sparse adjacency matrices. An adjacency matrix encodes the connectivity between

vertex i and vertex j in the matrix element aij . For directed graphs the matrices are asymmetric.

Weighted graphs will encode the weight within the matrix, whilst non-weighted graphs would

just store a boolean value. The adjacency matrix of a sparse graph would contain many zero

values, considerable memory can be saved using a sparse data structure, which only encodes

non-zero values. There are many approaches for storing a sparse matrix, which are selected

based on the intended use of the matrix. Some formats are efficient for creating or modifying

the graph, such as the triplet or COO format. Other formats are more well suited to efficient

access, such as Compressed Sparse Row (CSR) and Compressed Sparse Column (CSC).

Figure 2.3 demonstrates how a simple weighted directed graph containing 4 vertices and

6 edges can be represented in the COO, CSR and CSC formats. The triplet or COO format

of graph representation is very efficient for construction, and converting to other data sparse

matrix data structures, but is much less efficient than other formats when just accessing the

data contained within the matrix. The COO format is made up of a list of tuples, containing the

row, column and value of the matrix. For a sparse graph, this is the source vertex, origin vertex

and edge value(s) for each edge. Ideally the edges are stored in order of row and column index

to improve access performance however this is not required. The CSR format on the other hand

has higher construction costs, but reduced access costs, which can be important when the data

structure must be queried many times, but infrequently mutated. The sparse graph is stored

using a set of three one dimensional arrays: the weight of the edge in V, the column index or

destination vertex for each edge in COLUMN_IDX, and ROW_IDX contains the starting position
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within V and COLUMN_IDX for each row or source vertex, with an additional value for the total

number of edges in the graph. For directed graphs this format allows very efficient access when

discovering links which leave a source vertex, for a given source vertex index u, ROW_IDX[u]

provides the index of the first edge to leave the source vertex, and ROW_IDEX[u+1]-1 is the

index of the last edge to leave the source vertex. The CSC format is very similar to the CSR

format, but roles of ROW_IDX and COLUMN_IDX are reversed such that the incoming edges to a

destination vertex can be efficiently discovered and iterated.

Figure 2.3: An simple weighted directed graph and the associated representation of the sparse adjacency
matrix in COO, CSR, and CSC formats. The graph contains 4 vertices and 6 weighted edges. Vertices
are indexed from 0 to 3, with edge weights in the range 4 to 9. Edges weights are uniquely coloured to
aid readability.

2.1.6 Summary

This section has described the general properties and characteristics of computer modelling

and simulation, the properties of road networks and the significance of different road users.

Additionally this section has highlighted the importance of data structures used for road network

representation. The choice of data structure has a significant impact on how data within

the road network graph can be used during simulation. The data structure choice is also

vitally important when considering parallel and distributed simulation. Section 2.2 explores

how parallel and distributed computing can be more generally used to reduce the runtime of

software applications, including computationally demanding simulations. The impact of this

and the importance of data structures is later considered in Sections 2.3 and 2.4.

2.2 Parallel and Distributed Processing

Computationally demanding tasks such as simulation of transportation systems can have sig-

nificant application runtimes. Parallel computing can be used to reduce the duration of time
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required to gather the results of one or more simulations, by executing operations concurrently.

This can be used to improve the performance of a single simulation or application (High Per-

formance Computing (HPC)), or to reduce the total time to execute many instances of an

simulation or application by improving throughput (High Throughput Computing (HTC)).

Historically, the performance of individual processors was improved over time through Fre-

quency Scaling, performing operations at increasingly higher rates. Moore famously observed

that the transistor density of processors was doubling roughly every two years [68]. When

combined with Dennard Scaling [69], a scaling law which states that as transistors reduce in

size their power density stays constant, the increasing transistor density over time enabled the

performance per watt for processors to increase at an even greater rate. However, processor fre-

quency is directly correlated with power usage (Power = Capacitance ×Voltage2 × Frequency)

which combined with current leakage at smaller transistor sizes ultimately led to the end of fre-

quency scaling as the primary method of reducing application runtime. Increased frequency can

not be sustained within reasonable power and cooling constraints. Similarly, pipeline designs

reached a limit on the complexity of transistor usage so instead, chip design moved towards

an approach of utilising transistors to build multi core architectures with more or less fixed

frequency and power requirements [70]. Utilisation of these parallel architectures requires fun-

damentally different approaches to achieve high performance.

When parallelising an application, the potential speedup (relative performance improve-

ment) is influenced by several key factors. Applications cannot always be fully parallelised,

with a portion of the application being executed in serial. Amdahl’s law [71], [72] can be used

to provide an upper limit on the potential speedup of an application based on the proportion

of the application which cannot be parallelised. For instance, if only 90% of an application can

be parallelised then the application latency can only be improved by a factor of 10, regardless

of how many processors are used. Amdahl’s law assumes that the problem size will remain

the same regardless of the number of processors available. Gustafson proposed an alternative

relationship which accounted for the size of the problem changing as number of processors in-

creased, with the serial portion of the application often requiring the same time regardless of

problem size, leading to less pessimistic approximations of potential speedup [73]. In either case

highest performance is always obtained when an entire application is parallelised.

2.2.1 Parallel Processing Approaches and Paradigms

Parallel algorithms can be classified as either task-parallel or data-parallel. Task-parallelism is

the decomposition of a task into independent sub-tasks which are executed concurrently by mul-

tiple processors or threads, on the same or different data. Typically each thread will execute the

same or different operations on the relevant data, and communicate with other threads in order

to complete the overall task [74]. Data-parallelism performs the same task concurrently over
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the different elements of a data set, which can occur at differing levels of granularity depending

on scale of the unit of data being processed concurrently [75]. Additionally, processors can often

perform Instruction Level Parallelism (ILP), where multiple independent processor instructions

can be overlapped within the same thread of execution. ILP is typically implemented at the

hardware level (e.g. via the pipelining of instructions, allowing multiple instructions to be exe-

cutions within a single clock cycle), or in software during compiler optimisation, rather than as

an algorithmic decision [76].

Parallelism can be expressed at several levels within a computer system. Many indepen-

dent processing nodes with local memory may be connected to one another through network

connections, forming a distributed memory. Within a processing node, there may be multi-

ple processors which can operate concurrently with access to shared local memory. Parallel

systems may be of one common architecture (homogeneous systems), or they may contain mul-

tiple processor architectures forming a heterogeneous system. Heterogeneous systems leverage

the advantages of multiple processing architectures such as Central Processing Units (CPUs),

GPUs, Field-Programmable Gate Arrays (FPGAs) or Application-Specific Integrated Circuits

(ASICs) to provide advantages over more traditional homogeneous systems, although they may

not be suitable for all tasks [77].

There are many different parallel computing paradigms for different classes of parallel pro-

cessing hardware. Flynn’s taxonomy of parallelism [78] offers a good categorisation of the

alternate approaches, based on the number of instruction streams and number of data streams

which the instructions operate over. Flynn originally proposed 4 categories, although these have

since been extended:

• Single-Instruction-Single-Data (SISD) are sequential architectures which exhibit no par-

allelism;

• Single-Instruction-Multiple-Data (SIMD) architectures apply the same instructions to

many elements of data in lockstep, exploiting data-parallelism;

• Multiple-Instruction-Single-Data (MISD) architectures are used in fault-tolerant systems;

• and Multiple-Instruction-Multiple-Data (MIMD) includes both shared-memory proces-

sors, where multiple processing units can directly access the same memory, and distributed

memory systems, where it is usually not possible to directly access the memory which be-

longs to another processor.

Single-Instruction-Multiple-Thread (SIMT) architectures combine Flynn’s SIMD classifica-

tion with multi-threading and used within modern GPUs [79]. Rather than every instruction

being applied to all data elements being processed in lockstep, the instruction may only apply

to certain some of the data elements active within the processors.

Single-Program-Multiple-Data (SPMD) and Multiple-Program-Multiple-Data (MPMD) are

subcategories within the MIMD classification, differentiating whether the multiple instructions
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are from the one or many programs. Within SPMD, the multiple processors execute instruc-

tions from the same program [80], MPMD involves the collaboration of multiple programs with

differing behaviour.

Modern CPUs are primarily MIMD architectures, containing multiple complex processor

cores within a shared-memory environment. They are well suited to task-level parallelism and

coarse-grained data parallelism. Over time, multi-core processors are exhibiting higher degrees

of parallelism, both in terms of core count but also the adoption of wide vector units, providing

some SIMD instructions. Many-core processors, such as modern GPU are shared memory pro-

cessors containing large numbers of relatively simple processors cores, often arranged in wide

vector units. GPUs typically follow the SIMT paradigm, offering high levels of performance for

fine-grained data-parallel applications. Although originally designed to accelerate the render-

ing of 2D and 3D computer graphics, they have been widely adopted for non-graphical tasks

through General Purpose Computing on Graphics Processing Units (GPGPU) computing. This

includes use within scientific computing, and large scale HPC systems, in part due to the energy

efficiency offered by the GPU architecture. Heterogeneous architectures containing accelerator

architectures account for 7 of the top 10 most performance supercomputers in the November

2020 top 500 list [81].

GPUs may be integrated within CPUs and share access to the same memory, however,

high performance GPUs are generally implemented as co-processors with independent high-

bandwidth memory, connected through an interconnect such as PCI-e [82] or NVLink [83].

Similar to GPGPU accelerators, Intel offered a range of many-core processors using the

Many Integrated Core (MIC) architecture [84], [85]. These were originally co-processor acceler-

ators much like GPU, but were later released in a more traditional CPU like form factor. Unlike

GPGPU accelerators, the many-core MIC used the x86 instruction set, enabling the execution

of traditional CPU software with fewer changes. Although the MIC processors offered simi-

lar theoretical performance to competing GPUs architectures for many applications [86], the

architecture was discontinued due to limited uptake within the scientific computing and HPC

communities.

2.2.2 Parallel Programming Models

There are many alternate approaches for developing software targeting parallel processing ar-

chitectures, the choice of which depends upon both the parallel system being targeted and the

trade-off between development time and application runtime. For shared-memory parallel archi-

tectures, parallelism can be achieved in several ways: the use of programming libraries (which

may be included with a programming language) to parallelise commonly used algorithms; the

use of user-provided compiler directives to instruct software compilers on sections of code to

parallelise; or explicit parallelism through programming languages.
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Programming languages such as C++, Fortran and Julia among many others [87]–[89] pro-

vide high-level access parallelism, through methods provided by the language or standard li-

brary. For instance, C++17 provides users with the ability to request parallel implementations

of standard library algorithms through execution policies, specifying how the algorithm should

be executed in parallel. For example, reductions over lists of numbers can be requested to be

executed in serial or parallel [90], which may target CPUs or certain compilers provide GPU

support [91]. Alternatively, third party libraries can provide high-level access to parallelism

using similar structures, again capable of targeting multiple processor architectures [92]–[94].

Compiler directives are an alternate approach to provide access to parallelism to software

developers, with OpenMP [95], [96] and OpenACC [97] being the main compiler directive stan-

dards. Directive-based approaches provide a simple technique to parallelise existing serial code.

Compiler directives are embedded within application source code as a specialised type of com-

ment. They instruct the compiler to execute the associated region of code in parallel, allowing

the user to specify the degree of parallelisation which should be used, the scope of variables

within the parallel region, and the application of parallel operations such as reductions of vari-

ables within the region. OpenMP and OpenACC can be used to target multi-core CPUs and

GPUs (as of recent versions), supporting C, C++ and Fortran as programming languages. As

they can target multiple architectures from multiple hardware manufactures, they offer some

degree of performance portability, where the same source code can offer high performance across

a range of hardware, however, there is a trade-off between portability and absolute performance,

with explicit implementations able to extract the maximum performance from a processor.

The third approach for shared memory environments is to use programming languages which

provide low level access to parallel execution. For applications targeting multi-core CPUs via

multi-threading, programming languages such as C and C++ provide access to data structures

and methods which allow new threads to be created, which can execute in parallel with other

threads. These low-level approaches offer very fine-grained control to the programmer, at the

cost of software complexity and typically increased development time and effort. Compilers can

also provide ILP in optimised builds [76].

There are many options for low-level programming of many-core GPUs. As GPUs were

originally used for 2D and 3D computer graphics, APIs such as Direct X [98], OpenGL [99] and

Vulcan [100] provide compute shaders as a method of performing general purpose computing,

however, these are typically only used within applications which already use the corresponding

computer graphics API. Alternatively, explicit standards and languages exist which are either

open, targeting GPUs from several competing manufactures, or closed targeting processors from

a single manufacturer. These allow very fine-grained control for execution on the GPU, which

may outperform directive based applications but require substantially greater development ef-

fort. This investment of effort may however be required for tasks which are not well suited to
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the directive based approach. OpenCL [101] and SYCL [102] are cross-platform programming

standards which target heterogeneous systems, offering performance portability for any hard-

ware architecture with a supported driver. Unlike the directive based OpenMP and OpenAcc

approach to performance portability, the OpenCL and SYCL provide more fine-grained con-

trol. OpenCL provides a C-style dialect for explicitly programming kernels which are executed

concurrently in a data-parallel context. SYCL is a higher level language than OpenCL with a

modern C++17 based dialect. It has many of the same aims as OpenCL, providing performance

portability across a broad range of processing hardware.

The NVIDIA CUDA programming toolkit [103] in comparison is a closed, proprietary ap-

proach to GPGPU which only supports NVIDIA GPUs. The closed nature of the CUDA toolkit

is generally regarded as a negative feature within scientific computing. However, it is one of the

most widely used approaches for low-level GPGPU parallelisation. This is mainly due to a more

comprehensive set of software libraries and more advanced debugging and profiling tools offered

by the toolkit, as well as access to hardware specific features only provided by NVIDIA GPUs.

Only targeting a single GPU architecture also has advantages compared to more performance

portable approaches, with application developers only having to optimise for a single architec-

ture, rather than either provide multiple optimised versions, or accept a loss of performance

through a common code-base.

A number of research domains have considered these different approaches to many-core

acceleration and compared the approaches to one another. It was generally found that the

directive based approaches such as OpenMP and OpenACC required substantially less time and

effort to provide a GPU implementation than more explicit approaches, with OpenCL requiring

more effort than CUDA [104]. Benchmarks also showed that in some cases the directive based

approaches could achieve the same (or at least very similar) levels of performance to the lower

level approaches, although in some cases the directive based methods would only achieve 50%

of the performance of a CUDA implementation [105] or even as low as 5% [106].

In distributed memory environments processors in one node cannot directly access the mem-

ory of processors in another processing node, regardless of whether they are CPUs, GPUs or

a mixture. A method of communication between nodes is therefore required to orchestrate the

work to be performed, and to transmit data between nodes. Message Passing Interface (MPI)

is a portable, distributed communication standard for parallel computing [107], with several

well-known implementations such as OpenMPI [108], MPICH [109] and MVAPICH [110]. The

communication protocol provides methods for direct (point-to-point) and collective communica-

tion between processes, and may be used within a shared memory environment, or a distributed

environment. Most implementations are provided as C/C++ and Fortran APIs, with bindings

used by higher level languages. Within MPI applications, communication over low-bandwidth

high-latency network connections can have a significant impact on application performance is
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generally minimised where possible. As distributed systems with GPUs account for a signifi-

cant number of the top HPC systems in the world. As GPUs are co-processors connected to a

CPU-based machine, transferring data between GPUs in a distributed system can show have a

considerable impact on software performance, as the CPUs and host memory will be involved in

the transfer. To address this, technologies such as GPUDirect RDMA have been implemented

[111]. GPUDirect RDMA allows devices connected to the PCI-e bus other than the CPU to

access device memory. By including the network controller this can significantly reduce the

latency of distributed memory transfers.

2.2.3 NVIDIA GPUs and the CUDA Programming Model

Of the GPGPU programming approaches, NVIDIA CUDA is used heavily within this thesis due

to the availability of key libraries and tools, as well as the fine-grained control offered by explicit

parallel programming methods compared to directive-based approaches. CUDA is the parallel

computing platform and programming model for general purpose computing on NVIDIA GPUs

[112]. It is implemented as extensions to C/C++ and Fortran, with the CUDA C++ being

the main dialect. It was first introduced in November 2006, with support for the Tesla GPU

micro-architecture. As previously discussed, GPUs are many-core accelerators, optimised for

fine-grained data-parallelism and thread-parallelism following a SIMT model.

2.2.3.1 GPU Architecture

NVIDIA GPUs are designed as an array of multiple Streaming Multiprocessors (SMs) with up

to 80GB of high-bandwidth memory (as of 2020). An SM is a multi-threaded processor, each

containing many functional cores, multiple schedulers and multiple caches, which follow the

SIMT execution model. Within an SM threads are managed, scheduled and executed in groups

of 32 concurrent threads (for all current micro-architectures) known as a warp. Each thread

within the warp has it’s own registers and instruction counter, allowing independent execution

and branching. Each warp executes one common instruction at a time, so maximum efficiency

is achieved when all threads within a warp follow the same execution path. Different models of

a GPU micro-architecture have different quantities of SM, different volumes of device memory

and operate at different frequencies.

Each GPU contains gigabytes of high-bandwidth global memory, which can be accessed by

all of the SMs within the GPU. There are also several much smaller memory cache’s available to

the SMs. Memory caches are relatively small regions of fast memory located close to processor

core(s). When memory requests are made from lower-performance areas of memory, the values

can be copied into a cache layer. If the contents of the requested memory address already

resides within a cache (a cache hit) it is accessed with much lower latency than if the requested
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memory was not already stored within the cache (a cache miss). Each SM has a read-only

constant cache, which improves performance for accessing read-only data from a special area

of global memory, and a unified data cache which combines an L1 data cache and an area of

shared memory. Shared memory is fixed-size area of low-latency memory located near to each

processor core, which is often used as a software managed cache [112]. Outside of the SMs there

is a shared L2 cache which is used to cache local and global memory accesses. The exact sizes

of these caches, and the ratio of L1 to shared memory are mircoarchitecture dependent.

Each SM contains many functional cores which operate on different data types. Recent

architectures containing up to 128 FP32 cores, 32 FP64 cores, and 64 cores for integer operations.

There are also specialised cores for mixed precision matrix arithmetic. GPU microarchitectures

designed for primarily graphics purposes (such as those used in the GeForce line of consumer

GPUs) contain many fewer FP64 cores than FP32, as 64-bit precision is not typically required

for computer graphics, at a 1:32 or 1:64 ratio. Microarchitectures intended for processors used in

scientific computing typically have a 1:2 ratio of FP32 to FP64 cores, with additional capability

for reduced precision.

Most NVIDIA GPUs are dedicated co-processors, connected to a host CPU-based system

via a PCI-e interconnect, or in the case of Power9 architecture a higher-bandwidth intercon-

nected NVLink [79]. NVLink connections are also available for high-bandwidth connections

between multiple GPUs within a multi-GPU system. These interconnects are of a relatively

low-bandwidth compared to on-device or on-host memory, so care must be taken to minimise

data transfer to and from a GPU.

2.2.3.2 CUDA Programming Model

The CUDA programming model is a Scalable Programming Model, which provides abstractions

for a hierarchy of thread groups, shared memories, and synchronisation [112]. In this program-

ming model, code to be executed on the GPU is specified as a kernel - a function to be executed

on the GPU N times in parallel using N threads, following a thread hierarchy. The thread hi-

erarchy is made up of threads, blocks and grids. Individual threads are grouped into a one, two

or three dimensional block of threads. Each thread block is of a limited size, for most current

micro-architectures this is 1024 threads per block, shared across all dimensions. Many thread

blocks are arranged in one, two or three dimensions to form the grid. Each block of threads

within a grid must have the same dimensions. This block-level distribution of work onto the

SMs of the GPU allows the same applications to be executed on GPUs with varying numbers of

SMs. Figure 2.4 illustrates the CUDA thread hierarchy for an example grid of 6 thread-blocks

arranged as 2 rows of 3 columns, where each 2D block contains 8 threads arranged as 2 rows of

4 columns.

When a kernel is launched, thread blocks are dispatched to the SMs of the GPU with
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Grid

Block (0, 0) Block (1, 0) Block (2, 0)

Block (2, 1)Block (1, 1)Block (0, 1)

Block (0, 1)

Thread (3, 0)

Thread (3, 1)Thread (2, 1)

Thread (2, 0)Thread (1, 0)

Thread (1, 1)Thread (0, 1)

Thread (0, 0)

Figure 2.4: An illustration of the CUDA thread hierarchy, for a 2D grid of 6 blocks, where each 2D
block contains 8 threads. The arrangement of threads within a 2D block is shown for block (0, 1).

remaining capacity. Once a block is assigned to an SM, the threads are considered resident, with

the execution context for the block occupying space within the register file, program counters

and shared memory area of the SM. They remain resident until each thread within the block has

completed. Each SM can support multiple resident thread blocks which come from one or more

grids, subject to the resource requirements of the kernel and the specific micro-architecture of

the GPU. The order in which blocks are assigned and executed is not guaranteed, and may

occur concurrently or in serial. Each block should therefore be independent from one another

in most cases. The thread-hierarchy also allows the same kernel to be executed using different

models of GPU which may have differing numbers of SMs. For instance, a grid of 6 blocks of

threads can be executed by a 2 SM GPU using 3 waves of execution, or in 2 waves using a 4

SM GPU. This is illustrated by Figure 2.5.

Resident threads occupy limited resources of the SM, such as the register file and shared

memory. As these resources are limited, the number of threads which can reside on each SM

at any given time is also limited. There are many factors which impact the number of resident

threads for an SM. For a given kernel, the number of registers used per thread impose a potential

limit, as does the shared memory use. There are also limits on the number of blocks, the number

of threads or the number of warps per multiproccessor. These factors when combined impact

the theoretical occupancy of the multiprocessor which can be achieved by a given kernel. In

general, higher occupancy leads to improved performance as there are more opportunities for

latency to be hidden by the warp schedulers although this is not always the case. The CUDA
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Grid of Blocks

Block 0 Block 1 Block 2

Block 3 Block 4 Block 5

4 SM GPU

SM 0 SM 1 SM 2 SM 3

2 SM GPU

SM 0 SM 1

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5

Figure 2.5: An illustration showing how the CUDA thread hierarchy allows a kernel using a grid of 6
thread-blocks to be executed on GPUs with 2 or 4 SMs.

Occupancy API [112] provides methods to find block sizes for a kernel which will lead to the

highest theoretical occupancy, and usually good levels of performance.

On top of occupancy, the utilisation of the GPU is important to consider when launching

a kernel. In the case of an application which only launches a single kernel, the total number

of threads and the shape of the grid-block hierarchy needs to result in at least one block of

threads being assigned to each multiprocessor to ensure that the full GPU can be occupied.

For example, an NVIDIA V100 GPU contains 80 SMs, each of which can have 2048 resident

threads, resulting in 163, 840 threads being required to fully occupy the GPU (if there are no

resource constraints). As the number of multiprocessors within GPUs is variable, it is common

to oversubscribe GPUs by launching more threads than can be resident within the SMs of the

device. Although this will result in serialisation of blocks, as new models of GPU are released

which can support larger numbers of threads the performance of an application may improve

without having to make any changes to the parallel application.

When an SM is ready to issue instructions each warp scheduler within an SM selects a

warp which is ready to execute the next instruction. The switch between execution contexts of

resident warps has no cost, as the execution context is maintained for the lifetime of the block

of threads. This can be leveraged by the application runtime to hide instruction or memory

latencies. As CUDA follows a multi-threaded SIMT programming model, threads within a block
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or warp may diverge from one another, but as each instruction is executed for all threads within

the warp this can reduce performance. The threads within a warp which are participating in an

instruction are considered the active threads. Threads may be inactive due to branching such

as conditional statements, earlier termination due to return statements, or the final warp(s) of

the block may contain a number of inactive threads when the block size is not a multiple of

the warp size. The impact of inactive threads on performance can be significant, by reducing

the efficiency of the SM. Figure 2.6 illustrates the impact of branching on SIMT programming

model. The Volta GPU architecture introduced a revised SIMT model with independent thread

scheduling [79], which is enabled through the use of the appropriate compiler flags. This changes

how the SM groups active threads from the same warp together for execution, when they may

have diverged from one another, offering sub-warp divergence and reconvergence, which enables

some finer-grained algorithms to be implemented which were difficult to accomplish with the

branching model.

Figure 2.6: An illustration of divergence occurring within an SM following the SIMT GPU architecture.
Threads with odd indices perform separate operations to those with even indices, and therefore must
be executed independently, prior to re-converging for a warp-wide operation. GPU Architectures which
support independent thread scheduling will not necessarily reconverge without explicit synchronisation.

Within GPU kernels, the use of the memory can have significant impact on application

performance. Global memory is the large volume of device memory accessible to all threads. It

is the highest volume memory area available on the GPU, but accesses to it are high latency.

Accesses to global memory from the threads within a warp should be coalesced to maximise

throughput. Memory accesses are considered to be coalesced when consecutive threads access

consecutive elements of memory. If threads do not access consecutive elements of memory, the

accesses are considered non-coalesced or scattered. For example, if four consecutive threads 0, 1,

2 & 3 read memory elements at indices 16, 17, 18 & 19 this would be a coalesced coalesced read.

However, if instead these threads accessed indices 4, 12, 7 & 19 this would be a non-coalesced or

scattered read. Coalesced memory accesses offer improved performance compared to scattered

accesses, by reducing the number of transactions required to complete the necessary memory
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operations. Global memory transactions may be 32, 64 or 128 bytes wide, and may be cached

through the L2 and L1 caches depending on the GPU architecture.

To minimise the use of high-latency global memory, several memory access methods are

provided. Most current devices (with compute capability 3.5 and above) can access data which

does not change over the lifetime of a kernel through the Read-only data cache. The compiler

may be able to automatically detect that certain accesses should be performed through this

cache, but otherwise it may be hinted via memory qualifiers, or directly instructed through

the __ldg intrinsic method. In most architectures, this resides within the unified data cache

along with the L1 cache. Repeated accesses to data stored through this cache can offer reduced

latency and higher bandwidth than through global memory alone.

Memory latency can also be reduced through the use of a relatively small area of on-chip,

per SM, shared memory, which can be accessed by threads within a block. It is located within

the unified data/L1 cache on most current architectures, offering reduced latency and higher

bandwidth than for global memory accesses. The shared memory is divided into equally sized

modules called banks, which may be accessed simultaneously, however, if multiple concurrent

requests are made to the same bank throughput is reduced. As shared memory is accessible to

all threads of the warp, it can play an important role in collaborative work.

The constant memory space is an area of global memory which can be used to store values

which do not change within a kernel, and values must be set from the host prior to kernel launch.

SMs have a read-only constant cache which improves throughput when accessing constant values,

if a cache hit occurs. This dedicated cache is most suitable for broadcast operations, where the

threads within a warp all access the same memory address concurrently. Only 64KB of constant

memory is available.

Registers provide the lowest-latency storage available to threads within an kernel, but each

thread can only be allocated up to 255 registers, although typically fewer are allocated to

support larger block sizes. If a thread requires more registers than available, they will be spilled

to per-thread local memory, which resides in the global memory of the device with much higher

latency and reduced bandwidth. As such, register spilling should be avoided where possible.

In addition to using the most appropriate part of the memory hierarchy for the task at hand,

the data structures stored within memory may need to be revised to maximise performance.

To achieve maximum bandwidth from global memory, memory accesses should be coalesced,

with neighbouring threads accessing neighbouring elements of memory. This can be achieve by

using Structure of Arrays (SoA) data structures rather than an Array of Structures (AoS). In

some cases it may be worth considering interleaving multiple elements of data within the SoA,

to form a Array of Structures of Arrays (AoSoA) [113].

GPUs are often connected to a host CPU with its own memory, the CUDA programming

model provides mechanisms for transferring data to and from the device. This can be performed
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explicitly through synchronous or asynchronous operations, or since CUDA 6.0 through unified

memory. Unified memory is a managed memory space, providing memory coherency between

the host and device memory, with a common address space. This greatly simplifies data man-

agement compared to the explicit memory management approach, but may result in reduced

application performance. More recent CUDA architectures (Pascal and above) have improved

unified memory features, including over-subscription of memory, or on-demand page migration

but these features are only supported with some operating systems.

As with any parallel programming model, synchronisation is important. Within a function

executing on the GPU, the threads within a warp, or threads within a block may be explicitly

synchronised. For example, this may be important when threads within a block are writing

to and reading from shared memory, in which case synchronisation can be used to ensure that

all threads have finished writing prior to any read operations being performed. CUDA also

provides atomic functions to support transactional operations on elements of memory without

interference from other threads.

From CUDA 9 and Pascal architecture GPUs, it is possible synchronise across the entire grid

of threads or even across multiple devices through the cooperative groups API [112], however,

grid-wide and multi-device synchronisation are much more costly than block-wide synchronisa-

tion, with additional limitations.

Outside of kernels, the CUDA programming model provides streams as a method of per-

forming asynchronous operations. Multiple operations such as memory transfers or kernels may

be assigned to a stream. Operations within a given stream will execute in-order, but will be

asynchronous with respect to other streams or the host CPU thread, with explicit synchronisa-

tion of streams required. An alternate directed acyclic graph based approach has been provided

in recent CUDA releases.

2.2.4 Summary

This section has described the many available approaches to the parallelisation of software,

including a more in-depth view of many-core GPUs which can offer performance advantages

over general purpose CPUs. As shown previously Section 2.1, road network simulations can be

computationally demanding, with long software run-times imposing limits on use. The next two

sections, Sections 2.3 and 2.4 provide a more detailed review into microscopic and macroscopic

road network simulation, including the application of parallelisation to improve performance

2.3 Microscopic Road Network Simulation

Microscopic models of transport networks are fine-grained models following a bottom-up ap-

proach of modelling each individual within the simulation. Agent Based Modeling (ABM) is one
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possible approach for microscopic modeling, with the terms often used interchangeably within

the context of road network simulations [114], [115]. Microscopic road network simulations are

traditionally only used for small-scale simulations, due to the computational cost. However,

they are well suited for certain tasks at this scale, such as the optimisation of traffic signal tim-

ing [116], modelling the effects of driver behaviour on vehicle emissions [5], [117] or modelling

new modes of transport such as CAVs [118], [119]. Such modelling could not be achieved using

top down approaches.

2.3.1 Architecture of a Microscopic Road Network Model

Microscopic road network simulations typically model the transport network at the individual

level. When using ABM, agents are used to represent individual vehicles, pedestrians, cyclists

or other modes of transport. Agents can also be used to model complex pieces of transport

network infrastructure such as traffic lights or various sensors found within transport networks.

The transport network itself is often represented as a graph.

For road networks, the individual vehicles within the network are modelled, each with indi-

vidual properties and behaviours. The individual vehicles can interact with one another, and

with the environment to achieve their goals, such as safely reaching their destination. The

environment can be made up of individual agents modelling complex parts of road network in-

frastructure, such as sensors or traffic lights, whilst the road network itself is often represented

as a directed graph, encoding information about the properties of the road such as the physical

location, gradient or speed limit.

Road network microsimulation packages such as SUMO [120], PTV VISSIM [121] and Aim-

sun [122] provide many tools which are used to prepare, execute and analyse transport networks.

They are capable of modelling the wide range of road network infrastructure which is in use

in different locations across the globe, often providing multiple alternate models for aspects of

the transport network simulation. The modelling and simulation components of these applica-

tion suites typically take the transport network, model parameters and demand information as

simulation inputs. Tools may be provided to prepare these inputs for corresponding simulation

engine, or to import them from formats used in other simulation tools. Multiple simulations

of the transport network are then executed using the simulator, the outputs of which can be

fed into analysis tools to aggregate statistical properties of the network to present to decision

makers, or they may be visualised in 2D or 3D computer graphics applications.

Microsimulation packages are often support multiple modes of transport, such as pedestrians,

bicycles, road vehicles and public transport. Each individual or vehicle within the microsim-

ulation will have local properties such as the physical size of a car or bicycle, the maximum

acceleration of the vehicle. They will each have their own model parameter values, subject to

the specific models they implement, such as a vehicles perception of a speed limit. These values
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are often sampled from parameter distributions, which are based on real-world distributions of

those properties or are generated through calibration procedures.

The individual elements of dynamic road network infrastructure are also modelled. For

instance, traffic signals may be modelled individually, or many signals may follow the same

timing cycles as one another, subject to the environment being modelled. Sensors such as

induction loops may also be modelled, which interact with other agents within the simulation.

The modelling of individual junction types and the operational optimisation of these is an active

area of transportation research [123]–[125].

For road network simulations, the network of interconnected roads in which individual vehi-

cles exist must also be represented within the model. Road networks are typically represented

using directed weighted graphs, as discussed in Section 2.1.3. These graphs must be prepared

so that they represent the real world network in a sufficient level of detail for vehicles within

the simulation to interact with in a realistic fashion. Vehicle demand information is often as-

sociated with the underlying transport network. This may be presented in the form of Origin

Destination (OD) demand data, dictating how many vehicles of a given type will travel from

one point in the network to another with the routes taken by individual vehicles being based on

shortest paths through the network, or pre-determined routes input by the modeller. Alterna-

tively, the network may encode route selection through properties such as turning proportions,

where random number generation is used to dictate which vehicles will make a given turn from

one road to another.

2.3.2 Road Network Agent Based Models and Properties

When considering individual vehicles or components of network infrastructure within an ABM,

specific behaviours can be modelled at varying levels of detail. For instance the acceleration of

a vehicle could be modelled as a fixed value, or a more complex process based on the mechanical

properties of the vehicle in question. As such, there are many individual models which can be

incorporated into an ABM of a road network, but some of these behaviours are more prevalent

than others in research literature and commercial tools used within industry.

Individual vehicles within a road network simulation have their own properties such as

the physical dimensions of the vehicle, properties such as the acceleration and deceleration

characteristics of the vehicle or the accuracy of perception of the driver of the vehicle. Different

models will require different properties be available. The following subsections describe research

into microsimulation behaviours for transport simulation.
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2.3.2.1 Car Following and Stopping

On single lane roads, or within an individual lane on sections of road with multiple lanes vehicle

drivers wish to drive at their desired speed without colliding with the vehicle ahead [126]. The

car following theory is that a driver reacts to the behaviour of the car(s) in front. Early models

were mainly concerned with the trailing car’s acceleration being proportional to the relative

speeds of each car at an earlier time, or a ‘history’ of relative speeds [127]. Later models

took into account the reaction time of the vehicle driver [128], as there is a delay between an

individual receiving stimuli and performing the correct action. Performance limits of both the

driver and vehicle also effect car following behaviour, safety conscious drivers will ensure there

is a gap large enough in which to stop between them and the vehicle in front (limited by an

acceptable level of braking). Vehicles also have limits of acceleration performance, and so a

trailing car will accelerate with no more than the vehicles maximum acceleration until it nears

the desired speed (the speed of the vehicle in front) at which point the rate of acceleration will

decrease to zero [128].

More complex models, based on the idea of car following have since been developed, such

as the Intelligent Driver Model proposed by Treiber et al in 2000 [129]. At it’s core this model

bases the acceleration of the trailing vehicle on the ratio between the “desired minimum gap”

and the actual gap to the vehicle in front, with special cases for scenarios such as when traffic

is in equilibrium where drivers will keep a gap to the vehicle in front which is dependant on

velocity.

The literature contains a wide range of car following behavioural models which are imple-

mented within road network simulations used in literature and in industry [130]–[135], with new

additions and extensions continuously being investigated. New models may include additional

vehicle properties, such as the illumination of vehicle brake lights from the lead vehicle during

deceleration [136]. Or they may attempt to capture more advanced behaviours demonstrated

by road network users, such as the asymmetry shown in vehicle following between acceleration

and deceleration [137]. New modes of transport such as CAVs must be accounted for, which will

exhibit different behaviours to non-autonomous vehicles, with several new car following models

being proposed for the new mode of transport [118], [119]. The car following model may also

be the source of vehicle deceleration and stopping at road network infrastructure such as as

stop signs or traffic lights, due to the similarity between the deceleration behaviour and that of

approaching a stationary vehicle.

2.3.2.2 Lane Changing

Road users often have to change lane, in order to head in their desired direction or overtake

slower or stationary vehicles [138]. Lane changing decisions can be more complex than some
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behaviours such as car following, a driver may wish to be in a given lane to make a desired

turn, but be forced to change to a less favorable lane in order to avoid an accident [126]. Gipps

proposed that the decision to change lanes depends on the answer to several questions a driver

must ask: is the lane change possible, is it necessary and is it desirable.

Gipps also suggested three patterns which drivers fit into based on the distance to the desired

turn. While the turn is remote it does not effect lane changing behaviour, which is focussed on

speed. At distances considered “middle distances” by the driver speed gains by changing lane

in the wrong direction will be ignored, and at short distances to the turn the driver will remain

in lanes appropriate for the turn where possible [126]. Kesting et al proposed the “politeness

factor” - as a way of modelling driver aggressiveness when changing lanes within the MOBIL

lane changing model [139]. This factor enabled their model to allow for polite drivers who do not

wish to obstruct others by changing lanes, as well as aggressive drivers being able to induce lane

changing of slower drivers. As with car following models, there are many lane-changing models

defined in the literature. These range in complexity, from intentionally high-level approaches

to reduce the frequency of lane changes occurring [140], models which aim to more accurately

represent behaviour in specific cases, such as overtaking on two-lane rural roads [138] or to limit

the lanes used based on the intent of the driver [141]. Emerging computational techniques such

as deep learning have also been applied to transport modelling in order to improve the quality

of models, for example to improve the accuracy of lane changing behavioural models [142].

2.3.2.3 Junction Modelling

Road networks can contain many different types of junction which must be accurately modelled

for simulations to produce meaningful results. The behaviour at junctions within a road network

are often influenced by the local rules, which can lead to many alternate implementations to

support modelling of different countries. For instance, in some locations there there are no

acceptable reasons to enter a junction while a red light is shown, while in other jurisdictions

vehicles are allowed to make right hand turns during red phases while following other give-way

rules.

A common approach, which is also a factor in many microscopic road network behaviours,

is that of gap acceptance modelling [143], [144], while following the appropriate right of way

rules for the scenario being modelled. From the perspective of a vehicle at turning from a minor

road onto a major road, who has to give way to other vehicles, the gap is the time interval

between two successive cars in the stream of traffic. The vehicle will wait for a sufficiently large

gap between vehicles for it to safely make it’s movement, crossing or joining the flow of traffic.

The size of the required gap depends on several factors, such as the speed of vehicles, the rules

of the intersection in question, the maneuver being executed, road network geometry and the

properties of the vehicle performing the maneuver [145].
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Gap acceptance models often assume that priority is absolute, with minor flows always

conceding to major flows at unsignalised junctions. Instead, some models propose that the

priority of a major flow should be limited allowing minor flows a higher rate of success in

finding acceptable gaps, improving the ability for gap acceptance models to accurately reflect

some real world conditions [146], [147]. As there are many forms of junction, there are many

variations of gap acceptance models which aim to improve accuracy for differing scenarios, such

as motorway merges [148], [149], roundabouts [150] or three-legged intersections [151].

2.3.2.4 Dynamic Road Network Infrastructure

Modern transport networks contain many pieces of dynamic transport network infrastructure.

Traffic signals may follow fixed schedules, may be centrally controlled or may respond to inputs

from sensors embedded within the road network [152]. Intelligent transport systems such as

smart motorways in the UK may have dynamic speed limits to influence the flow of traffic, or

to close lanes as a response to road traffic collisions [153]. For the impact of changes in control

flow for these systems to be evaluated, they must be modelled and simulated accordingly, with

road user behavioural models responding appropriately.

2.3.3 Microscopic Road Network Simulation Software

Some widely used CPU-based micro-simulators such as SUMO [120], [154] only provide sequen-

tial implementations. Current state of the art microscopic simulation tools such as Aimsun [143],

MATsim [155], PARAMICS [156] and PTV Vissim [121] leverage multi-threading on multi-core

CPUs to provide improved simulator performance. SUMO [120], [154] is an open source road

network simulation package, providing microscopic and mesoscopic road networks simulations

with a broad range of available models to choose from. The simulations are executed sequen-

tially using a single CPU processor core resulting in very long application runtimes for larger

scale models, however, it is widely used within literature due to the open source licence and

flexibility of modelling approaches. Aimsun [143] is a commercial road network simulation suite

which provides microscopic and mesoscopic simulations. Task parallel and coarsely-grained

data-parallel algorithms are applied to multi-core CPUs to improve performance of the compu-

tationally demanding fine-grained simulations. PARAMICS [156] is a parallel microscopic road

network simulation package originally developed to evaluate the application of HPC techniques

on microscopic road network simulation. Several parallel implementations have been released,

including a data-parallel SIMD implementation, and an MPI based implementation targeting

distributed systems. VISSIM also leverages multi-core CPU parallelism to improve simulation

performance and reduce application runtimes. Although PARAMICS investigated a SIMD im-

plementation in the 1990s, none of these commercial or open source tools leverage many-core
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processors to increase runtime performance.

GPUs have been used previously in microscopic transport network simulation. They have

been implemented as both cellular automata [23], [26] showing some performance improvements

over CPU based implementations. Agent-based models have also been described within the lit-

erature, [24], [26] offering performance improvements of 11x for a car following model based

implementation. The suitability of GPU-offloading as an approach to achieve performance

portable road network microsimulations were investigated by Xioa et. al [25]. The implemen-

tation suggests only performing part of the simulation on the GPU does not offer significant

performance advantages over just using directive based techniques to implement multi-threading

on the CPU, however, an more complete OpenCL implementation did achieve a 28x performance

improvement. Yedavalli et. al [157] recently published results for region-scale simulations per-

forming much faster than real time. This was achieved by discretizing the road network into

short chunks of a fixed size to provide an efficient mechanism to map the spatial distribution of

vehicles within the road network. Additionally other tasks associated with microscopic simula-

tion have been accelerated using GPUs, such as the generation of demand data using activity

plan generation [158], [159], traffic signal optimisation [160] and dynamic route assignment [161].

Recently, outside of microscopic simulation, GPUs have been utilised within mesoscopic road

network simulation tools and performance improvements have been demonstrated [162]–[165],

further highlighting the demand for reduced software run-times within the transport modelling

sector.

2.3.4 Agent Based Modelling Frameworks

Agent-based frameworks and toolkits can aid the development of ABM for researchers and mod-

elling practitioners who are not specialist software developers. They can provide functionality

to handle the data structures and complex algorithms which can be used to provide performance

in order to offset the high computational complexity of fine-grained simulations. In effect they

provide a separation of model and implementation. Frameworks may offer alternate perspectives

to one another on how agent based models should be structured, either to improve usability of

the modelling approach, or to offer greater levels of simulation performance. The frameworks

may also be well-tested, potentially resulting in higher quality simulations with fewer software

bugs.

There are many agent based modelling frameworks which could be used to implement mi-

croscopic road network simulations such as MASON [166], NetLogo [167], Repast [20], [168],

FLAME [169], [170] etc, often providing multiple implementations which target alternate pro-

cessing architectures. The majority of these ABM frameworks target CPUs, with a mixture

of sequential, multi-threaded and distributed approaches. Most of the MASON [171] and D-

MASON [166], [172] are frameworks implemented in the Java programming language, multi-core
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CPUs and distributed systems. The distributed implementation leverages MPI to distribute the

agents over multiple processor nodes, increasing the potential scale of simulations and reducing

application runtime. Recently a cloud-based variant of D-Mason has been introduced, with

improved algorithms for distributing the agent-based model across many CPU-based processing

nodes [173]. Repast [168], [174] provides a rich interactive agent-based modelling platform,

while Repast HPC [20], [175] provides an MPI-based distributed implementation targeting high

performance when executed on large CPU-based high performance computing clusters. Flexible

Large-scale Agent Modelling Environment (FLAME) [170] and FLAME-II [176] are CPU-based

ABM frameworks which use a formal model, called a communicating X-machine, to model com-

plex systems. X-machines are extended Finite State Machines which include memory, inputs

and outputs [177], [178].

Modelers specify a set of states which agents can exist in, and functions which transition

agents from one state to another, forming the X-machine. FLAME and FLAME II were de-

signed with parallelism in mind. The original version of FLAME uses distributed computing to

support larger models and improve performance, distributing the agents within the simulation

across the processor nodes. Agents communicate through message boards, which allow parallel

communication following the structure of the X-machine. FLAME-II sought to address some

of the limitations of FLAME, by increasing the degree of parallelism exposed through the state

machine, and support for multi-threading on modern CPUs.

There are now several GPU-based general purpose ABM frameworks which enable fine-

grained data-parallel ABMs without the need for the specialist programming knowledge required

to implement a GPU implementation including FLAME GPU [179] and MCMAS [180]. Flexible

Large-scale Agent Modelling Environment for Graphics Processing Unit (FLAME GPU) is an

extension to the FLAME family of general purpose ABM frameworks, providing high levels of

performance through a CUDA implementation targeting NVIDIA GPUs, and a state-based rep-

resentation of agent dynamics which is well-suited to the SIMT architecture. The complexities

of GPU programming are abstracted away from the modeller, removing the need for specialist

knowledge to access the high levels of performance which can be provided by many-core ar-

chitectures [178], [179], [181]. FLAME GPU has successfully been used in several modelling

domains such as pedestrian crowd simulation [182] and cellular simulations [178], [183], [184]

and investigations into emergent population dynamics [185]. A more in depth look into FLAME

GPU is provided by Chapter 3. MCMAS is a toolkit for Multi-Agent Systems (MAS) on many-

core processor architectures, leveraging OpenCL to execute portions of the multi-agent system

on GPUs or CPUs in parallel, improving simulation performance.

In addition to these simulation implementations, there have been collaborative attempts

to define a Domain Specific Language for parallel and distributed Agent Based Simulations

(ABSs), which would improve the portability of a model implementation by allowing a single
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model description to be implemented within any of the supported simulation frameworks [186].

2.3.5 Summary

This section has described the structure of microscopic road network simulations, and covered

some of the key behavioural models which can be implemented within a microscopic simulation.

A summary of road network simulation packages used within industry and literature is pro-

vided, along with a summary of popular ABM frameworks which could potentially be used to

implement a microscopic road network simulation and how they leverage parallelism to improve

performance. This will be further investigated within Chapter 3. Next, in section 2.4 a detailed

view into the higher-resolution macroscopic road network modelling approach is provided, in-

cluding shortest path algorithms which can have a significant impact on the performance of a

macroscopic model.

2.4 Combined Macroscopic Road Network Assignment and Sim-

ulation

Macroscopic road network models and simulations are coarse models which follow a top-down

equation-based approach. Rather than simulate individuals or groups of vehicles, the equation

based models are applied to the sections of road which form the transport network, often based

on the flow of traffic along each section [187]. Vehicle demand is assigned to the transport

network, which is then simulated on a per-road-section basis with relatively large time-steps.

Macroscopic models are traditionally the dominant approach used within road network simula-

tion when evaluating changes to road network infrastructure. This is due to the relatively low

computational cost compared to finer-grained modelling approaches [6]. However, macroscopic

assignment and simulation models can still exhibit prohibitively long application runtimes for

large scale models.

2.4.1 Architecture of a Macroscopic Assignment and Simulation Model

Macroscopic road network modelling is often split into two separate phases. Assignment is

the process of determining how road network demand will distribute over the road network

[188], while the simulation phase models the flow of assigned transport through the network, to

evaluate the impact of the assigned demand on the transport network, such as queue lengths

or the the delays at junctions [189]. These phases may be implemented as separate sequential

processes, or as combined assignment-simulation models which iteratively perform assignment

and simulation as a part of a convergent process. Convergence is based on the principle of

Wardrop’s equilibrium, which states that traffic will settle into an state of equilibrium where
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no driver can reduce their journey time by choosing an alternate route [190]. Equilibrium

can be reached following the iterative Frank-Wolfe optimisation algorithm, which minimises an

objective function through subsequent linear approximations until the convergence criteria are

met [191]. Several modifications of the Frank-Wolfe have been proposed in the literature to

find more precise solutions [192]–[195]. Alternatively, other convergence algorithms have been

proposed [196], [197].

Applications following the combined assignment-simulation macroscopic modelling approach

approach can typically be decomposed into multiple phases: (i) Input; (ii) Pre-Processing;

(iii) Assignment-Simulation Loop; (iv) Post-Processing; (v) Output. The following subsections

explore each of these.

2.4.1.1 Input

The input phase of the application is the loading and validation of input data, such as the

transport network, vehicle demand information and model parameters into the data structures

used by the application. As discussed in Section 2.1.3, road networks are usually represented

by directed weighted graphs, which are usually very sparse, with high diameters due to the low

average degree of vertices, caused by the physical structure of road networks. It is common

within macroscopic modelling approaches for zones or centroids to be used as virtual locations

within the transport network, as locations for the modelled vehicle demand to enter (the origins)

and exit (the destinations) the network. Zones can form a subset of the vertices within the

graph network representation. The demand information is often encoded as a collection of

OD matrices, specifying the number of vehicles which will traverse from an origin vertex to

a destination vertex. The different modes of transport which make use of road networks will

make different numbers of trips between origins and destinations to one another, which can be

represented by a different matrix, or a by performing mathematical operations over existing

demand information. The weights of edges within the road network graph may also need to

be different for alternate vehicle classes, to account for rules imposed on the road network, or

physical properties of the class of vehicle. For example, Figure 2.7 illustrates a small section

of a road network containing 3 sections of road and a single junction. Two of the sections of

road consist of a regular lane usable by any class of vehicle, and a bus lane which is restricted

to only a subset of all vehicle classes. Graphs representing this section of road network for two

different classes of vehicle (“Car” and “Bus”) are shown. Edge weights on these graphs are used

to represent the travel time down the section of road. In this example the travel time for the

“Bus” class of vehicles from vertex A to vertex B is shown as 10 units of travel time, compared

to 20 units of time for the “Car” class of vehicles, due to the presence of fewer vehicles using

the restricted access bus lane. The input phase will also include validation of the input data,

to ensure that it is appropriate for use. For instance, negative edge weights may be discarded
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from the graph if they are used to represent a travel time along a section of road.

Vehicle Class: Bus

A B C

D

10 10

5

Vehicle Class: Car

A B C

D

20 20

5

BUS LANE BUS LANE

A B C

D

Example Road Section

Figure 2.7: An illustration of a section of road network containing 3 sections of one-way road, two of
which have vehicle class restrictions. The road network graphs representing these sections of road are
shown for two vehicle classes, with edge weights representing travel time along the section. Due to the
presence of the bus lanes, the road network graphs have differing values for each vehicle class.

2.4.1.2 Network Pre-Processing

After the simulation inputs have been loaded, a pre-processing phase may perform a range of

tasks prior to the main assignment-simulation loop. This may involve checking for errors in

input files; the mutation of input data; the re-arrangement of data structures to ensure that it

is suitable for the techniques used within the assignment simulation loop; or make modifications

which may improve the performance of the application without altering the simulation output.

For instance, the characteristic properties of road network graphs can restrict the perfor-

mance of graph processing algorithms, which may favour denser graphs or graphs with lower

diameters compared to the original transport network. A series of processes can be applied to

generate a denser representation of a network graph for road network assignment. Edges or

vertices of the graph which will not play an important role within assignment may be removed

[198], for instance, dead-ends which do not terminate in an origin or destination zone may not

be required. A denser representation of a graph can be found by replacing sequences of multiple

edges with a single edge, while maintaining the cumulative weight of the replaced edges, essen-

tially adding shortcuts to the network [198]–[201]. The new graph is known as a contraction

hierarchy or spider web network. This process can be applied iteratively, forming denser and

denser representations of the graph, however, the generation of the contraction hierarchy can

be a time consuming process [201] and there are additional costs with switching between repre-

sentations. There is a trade-off to be made between the cost of the generation process, and the

performance improvements it provides to graph algorithms such as shortest path calculations.
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2.4.1.3 Assignment-Simulation Loop

Provided the pre-processed simulation inputs, the iterative process of assigning vehicle demand

onto the transport network and performing equation-based simulation of that transport network

is applied repetitively until a converged, steady state can be found. This iterative process

accounts for the majority of the runtime for macroscopic assignment and simulation models.

The assignment phase calculates the expected flow of traffic through the transport network

based on the input demand data, and the state of the transport network from the previous

iteration. For each trip between origin-destination pairs in the OD matrix, the route through

the network with the lowest cumulative cost is found (i.e. the shortest paths). The shortest

paths are then used to map the vehicle demand of the trip matrix onto the edges of the road

network, to be used as input into the simulation phase of the iteration. The mapping of the

demand onto the current shortest path can be applied in an all-or-nothing approach, where all

vehicles travelling from point A to point B will take the same route, or fractional approaches

can be taken, which assign a fraction of the demand to the current shortest route, updating

edge-weights and then re-calculating the shortest paths to assign the next fraction of the each

trip. The paths may also be stored for more detailed analyses. This process must be repeated

for each class of vehicle being modelled. In many traffic assignment models, the shortest paths

calculations can account for a significant portion of application runtime [201]. Section 2.4.2

discusses algorithms used for shortest path calculations, and how they related to both road

network assignment and parallel processing.

The simulation phase of each assignment-simulation loop within macroscopic models often

follow equation-based modelling approaches, although finer-grained elements may be incorpo-

rated to ensure certain vehicle behaviours can be captured, such as the blocking of vehicles at

junctions [189]. The simulation phase takes the model parameters and the transport network

with assigned vehicle demand as inputs, and calculates the resulting delays over sections of road,

queue lengths and computed flows over the network. Within the simulation phase of the macro-

scopic model, mathematical equations based on real-world observations are used to simulate the

flow of traffic through the transport network. For instance, the flow of traffic downstream of a

signalised junction is observed to be cyclical, due to the periodic nature of junction signals. This

can be approximated mathematically [152], [202], [203]. Alternatively, finite differential equa-

tions can be used to model the observed behaviours, such as the relationship between vehicle

density and traffic speed [42], [204], [205].

The simulation phase of each assignment-simulation loop may itself involve iterative pro-

cesses. For instance, vehicles will block one another from progressing through the junction

if conflicting turns are being made. Rather than using finer-grained modelling of individual

vehicles at the junction to capture this behaviour, convergent iterative processes can be used

37



instead. Delays, or the absence of delays, at one junction will impact the neighbouring sections

of roads and junction in both upstream and downstream directions. The same time step can

be simulated multiple times, using the junction related delays from the prior iteration. When

subsequent iterations do not result in significant changes, then convergence has been achieved

[202].

Although less computationally demanding than finer-grained simulation approaches the sim-

ulation phase of macroscopic road network models can still consume a significant portion of ap-

plication runtime, especially when models approximate finer-grained models through iterative

processes.

2.4.1.4 Post-Processing and Output

The data from the final iteration of the assignment-simulation process is then processed to

generate the output data of the simulation. These post-processing steps may involve the re-

versal of any pre-processing which were performed, or additional processing using the state of

the network may be carried out for more detailed analysis which is not required during the

assignment-simulation phase, such as Select Link Analysis [206]. The final output data is often

output per section of road, but also aggregate values of key measures may be provided.

2.4.2 Shortest Path Algorithms for Road Network Assignment

The shortest path between a source vertex and a destination vertex in a weighted graph is the

sequence of vertices (or edges) between the source and destination with the lowest cumulative

cost. For a directed weighted graph G containing the set of vertices V and set of directed one-way

edges E connecting two vertices with real-valued weight function w : E → R, a path P of length

n−1 from vertex vi to vn is defined as the sequence of vertices P = (v1, v2, ..., vn) ∈ V ×V ×...×V

where there is a directed edge eij = (vi, vj) between successive vertices in the path [207]. The

shortest path between source vertex v and destination vertex v′ can be defined as the path

P = (v1, v2, ..., vn) where v1 = v and vn = v′ which minimises the sum
∑n−1

i=1 w(ei,i+1) over all

possible n. For undirected graphs, edge weights are uniformly treated as having a value of 1.

Shortest path algorithms can be classified as either (i) Single Source Shortest Path (SSSP)

algorithms, or as (ii) All Pairs Shortest Path (APSP) algorithms. The calculation of these paths

can account for a large portion of macroscopic assignment and simulation model runtime.

2.4.2.1 Single Source Shortest Path Algorithms

SSSP algorithms find the minimal cost paths from a single origin vertex (v ∈ V ) to all destination

vertices (v′ ∈ V ) within the graph. Within the context of an OD-based assignment, this

corresponds to the paths from a single zone (z ∈ Z) to all other zones (and regular vertices).
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These algorithms produce both the route and cumulative cost through the network using two

arrays. The route through the network is provided by the back-edge or back-vertex array, which

for each vertex contains the edge or previous vertex with the lowest cumulative cost back to the

origin vertex. The back-cost array contains the cumulative cost to the vertex from the origin.

If there are multiple routes through the network with equivalent cumulative costs then only a

single route is stored. In this section, SSSP algorithms are presented as pseudocode inline with

how they are commonly presented in research papers [208]–[210]. Equation-based descriptions

of these algorithms can be found in the literature [211]–[214].

There are many SSSP algorithms, which may only be applicable to certain types of graph.

Many SSSP algorithms are relaxation based. The algorithms begin with an approximation

of the cumulative cost to each vertex within the graph, which is gradually refined until the

minimal cost routes are found. Dijkstra’s algorithm [215] is one of the most commonly used

SSSP algorithms. It is asymptotically the fastest serial SSSP algorithm for directed graphs with

non-negative weights when implemented using a Fibonacci heap [216]. Alternate algorithms or

variations to Dijkstra’s algorithm may have lower time complexities in other cases, such as Dial’s

algorithm for graphs with positive integer edge weights [217], or when the graph is guaranteed

to be acyclic, in which case topological sorting provides linear time complexity [218]. Dijkstra’s

algorithm is a work-efficient sequential SSSP algorithm, which uses a priority queue to process

the vertices and edges of the graph in an efficient order, reducing the total amount of work to

be carried out in most cases. Algorithm 1 describes the base case of Dijkstra’s SSSP algorithm.

Figure 2.8 provides a directed weighted graph used to illustrate the algorithm. It begins by

over-estimating the distance to each unvisited vertex within the graph, and a known cost of 0

to the source vertex (vertex a in Figure 2.8). Starting with the source vertex, the unvisited

neighbouring vertices are considered, calculating a new cumulative cost to each connected vertex

(vertices b, c & d). Once all neighbours have been investigated, the current vertex is removed

from the unvisited set, and it will never be visited again. If the unvisited set of vertices is not

empty, the vertex with the lowest cumulative cost is selected and the neighbours investigated

(vertex b with a cumulative cost of 1 once vertex a has been removed). This process is repeated

when the unvisited set is empty, or there are no more vertices in the unvisited set which are

reachable.

An alternative work-efficient SSSP algorithm historically used within macroscopic road net-

work assignment and simulation is the D’Esopo-Pape algorithm [212]. The D’Esopo-pape algo-

rithm uses a double-ended queue of candidate vertices to be be considered, to minimise work

required to find the shortest paths. As edges are relaxed, newly encountered vertices are ap-

pended to the double ended queue, while previously encountered vertices are prepended to

the queue. Although this algorithm has poor worst-case complexity, if often shows good perfor-

mance due to the order in which vertices are processed [198], [219]–[221]. Algorithm 2 illustrates
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Figure 2.8: A small directed weighted graph containing 9 vertices and and 10 weighted edges.

Algorithm 1 Dijkstra’s SSSP Algorithm
Input:

G is Graph with edge costs C,
V is the vertices of graph G,
E is the directed edges of the graph G,
s is the source vertex

Output:
BV is Back-Vertex array of length |V |,
BC is Back-Cost array of length |V |

1: Let Q be the set of all unvisited vertices
{Initialise the result arrays and data structures}

2: for each v ← 1 to V do
3: BC (v)←∞
4: BV (v)← |V |+ 1
5: Q .insert(v)
6: end for
7: BC (s)← 0.0
8: while Q 6= ∅ and min(BC (v)) <∞ do
9: v ← vertex in Q with min BC (v)

10: Q .remove(v)
{Attempt to re-label each edge leaving the vertex v}

11: for each neighbour v′ of v do
12: if v′ in Q then
13: e← v, v′

14: if BC (v) + C(e) < BC(v′) then
15: BC (v′)← BC (v) + C(e)
16: BV (v′)← v
17: end if
18: end if
19: end for
20: end while
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the D’Esopo-pape algorithm in detail. Initially, the cumulative cost values for each vertex from

the origin are initialised to a large value providing an over-estimate, and the per-vertex edges

towards the origin are initialised to an invalid edge value. The cumulative cost for the origin

vertex is set to 0, and the queue of candidate vertices is initialised to contain only the origin

vertex. An array of values is used to track if a vertex has never been in the queue, is currently

in the queue or has previously been in the queue. While the queue of candidate vertices is not

empty, a vertex is selected from the head of the queue. The edges departing that selected vertex

are iterated, and each edge is relaxed, to determine if a shorter path has been found. If so, the

cumulative cost and edge for the destination vertex are updated, and if the destination is not

currently in the queue, it will either be appended to the queue if it has not yet been seen, or if it

has already been in the queue it will be prepended onto the front of the queue. This process is

repeated until the queue is empty. By investigating previously visited vertices before unknown

vertices, the algorithm tends to find shortest paths with reasonable efficiency.

Using Figure 2.8 as an example directed graph, to find the shortest paths from source vertex

a, the queue of candidate vertices is initialised to only contain the origin a. During the first

iteration, the vertex a is selected from the head of the queue, and the departing edges are all

explored. As the cumulative costs to each vertex b, c and d were initialised to an invalid edge

number (≥ 10 if edges are zero-indexed) all three relaxations will result in updated costs (of 1,

2 & 3 respectively) and routes. As these vertices have not been visited before, they are each

appended to the queue of vertices and marked as previously encountered. This iterative process

is repeated while the queue is not empty. For this example, vertex i will first be encountered

via vertex h during the 5th iteration, setting an initial cumulative cost of 4. On the seventh

iteration it would then be re-encountered via vertex f , but the relaxation will not succeed as

the new route has a cost of 6.

Work-efficient priority queue based algorithms such as Dijkstra’s [215], Dial’s [217] and the

D’Esopo-Pape [212] algorithms do not present a high degree of parallelism. The order in which

the vertices are processed provides the work-efficiency and high performance in CPU-based im-

plementations. Other algorithms which do not target work-efficiency can present higher degrees

of parallelism, making them more suitable for many-core parallel processing architectures. The

Bellman-Ford algorithm [213], [222] is a much less efficient SSSP algorithm [223] but it presents

a high degree of potential for parallelisation.

The Bellman-Ford algorithm is a relaxation-based algorithm, iteratively improving estimates

of the cumulative cost to each vertex in the graph from a single origin vertex. Every edge

within the graph is considered at each iteration of the algorithm, until the longest possible path

containing |V | − 1 edges has been considered. By attempting to relax each edge of the graph

at each iteration, the shortest path is guaranteed to have been found. Algorithm 3 presents the

algorithm. It can be very inefficient for many graphs, as on average the number of edges within
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Algorithm 2 D’Esopo-Pape Sequential SSSP Algorithm
Input:

G is Graph with edge costs C,
V is the vertices of graph G,
E is the directed edges of the graph G,
s is the source vertex

Output:
BE is Back-Edge array of length |V |,
BC is Back-Cost array of length |V |

1: Let Q be the double ended queue of candidate vertices
2: Let F be an array of flags, 0 if vertex is unseen, 1 if present and 2 if previously seen.

{Initialise the result arrays and data structures}
3: for each v ← 1 to V do
4: BC (v)←∞
5: BE (v)← |E|+ 1
6: end for
7: BC (s)← 0.0
8: Q .append(s)
9: P (s)← 1

{While the double ended queue is not empty, pop a vertex}
10: while Q 6= ∅ do
11: v ← Q .pop()
12: P (v)← 2

{Attempt to relax each edge leaving the vertex v}
13: for each neighbour v′ of v do
14: e← v, v′

15: if BC (v) + C(e) < BC(v′) then
16: BC (v′)← BC (v) + C(e)
17: BE (v′)← e

{Append to Q if unseen, Prepend if known.}
18: if P (v′) = 0 then
19: Q .append(v′)
20: P (v′) = 1
21: else if P (v′) = 2 then
22: Q .prepend(v′)
23: P (v′) = 1
24: end if
25: end if
26: end for
27: end while
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a graph which will result in a successful relaxation is relatively low. The advantage however is

that it presents a high level of data-parallelism, as the many edges can be relaxed concurrently

within an iteration. The original Bellman-Ford algorithm has a time complexity of O(|E||V |),

however, the complexity can be improved on average through several techniques, by improving

the work-efficiency of the algorithm. The number of iterations required within the algorithm

can be reduced, from the worst case of |V − 1|. If there are no successful relaxations within

an iteration of the algorithm, then no further relaxations can occur, and the algorithm can be

terminated early [224]. The number of attempted relaxations within an iteration can also be

reduced, using a vertex-frontier [225], [226]. Based on the vertices which had updated cumulative

costs in the previous iteration, the set of edges which may result in updates this iteration can be

found, reducing the total work performed per iteration. However, even with these improvements

when implemented in serial the Bellman-Ford algorithm is generally outperformed by the more

work-efficient algorithms presented.

Using Figure 2.8 as an example directed graph, to find the shortest paths from source vertex

a, the base-case Bellman-Ford algorithm would require eight iterations to ensure the the shortest

paths have been found. Cumulative costs are initialised to ∞, other than the for the source

vertex a. During the first iteration, all ten edges are considered, with only eab, eac & ead leading

to shorter routes. All ten edges are considered again during the second iteration, with ebe, ecf
& edg resulting in updates. The third iteration leads to 2 edges leading to new lower cost routes

via eeh & efi, with the fourth iteration leading to an update via ehi. For the remaining five

iterations no relaxations are successful although the ten edges are once again considered at each

iteration.

Work-efficient SSSP algorithms are difficult to parallelise without reducing the efficiency

which enables their high serial performance. Task-parallelism is often applied in multi-threaded

CPU-based systems, perform the SSSP as independent tasks operating over separate origins.

Alternate SSSP algorithms have been proposed as compromises between work-efficient and

highly-parallel algorithms, such as the delta-stepping algorithm [208] can offer improved per-

formance in some cases, but still only present a limited degree of parallelism.

GPU accelerated graph-processing libraries provide SSSP implementations such as Gunrock

[227], CuSha [228] & NVGraph [229], use algorithms which expose greater levels of parallelism,

such as the Bellman-Ford algorithm to leverage the performance available from the many-core

GPU architecture. These GPU accelerated implementations can show considerable performance

improvements over work-efficient implementations in CPU based libraries, such as the Boost

Graph Library (BGL) [230] and the Parallel Boost Graph Library (PBGL) [231], for large-scale

dense graphs with low-diameters, such as social network interaction graphs [225]. However,

unlike generalised GPU accelerated libraries, macroscopic road network simulation involves

the application of the shortest path against low-density, high-diameter graphs characteristic of
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Algorithm 3 Original Bellman-Ford SSSP Algorithm
Input:

G is Graph with edge costs C,
V is the vertices of graph G,
E is the directed edges of the graph G,
s is the source vertex

Output:
BE is Back-Edge array of length |V |,
BC is Back-Cost array of length |V |
{Initialise the Back-Cost and Back-Edge arrays}

1: for each v ← 1 to V do
2: BC (v)←∞
3: BE (v)← |E|+ 1
4: end for
5: BC (s)← 0.0

{Repeatedly relax all edges in the graph}
6: for i← 1 to |V | − 1 do
7: for each e← E do
8: v, v′ ← e {Source and destination vertices from edge}
9: if BC (v) + C(e) < BC(v′) then

10: BC (v′)← BC (v) + C(e)
11: BE (v′)← e
12: end if
13: end for
14: end for

transport networks. This limits the applicability of existing many-core implementations.

2.4.2.2 All Pairs Shortest Path Algorithms

As an alternate to SSSP algorithms, APSP algorithms compute the shortest paths between all

pairs of vertices in the graph (v, v′ ∈ V ), rather than those for a single origin vertex. Essentially

they are equivalent to performing |V | instances of a SSSP algorithm. APSP algorithms therefore

have much higher memory requirements than SSSP algorithms, as the output shortest paths

edge and cost arrays are |V | times as large, along with potentially a much larger amount of

storage being required to perform the algorithm. This can influence the choice of shortest

path algorithm to be used, especially for large graphs. In the context of macroscopic road

network assignment, APSP algorithms perform more work than is normally needed, and require

a significant amount of additional storage. Only the paths between pairs of zones (a subset of

all vertices) are required, rather than between all pairs of vertices, and are therefore to offer

improved performance compared to the SSSP algorithms in use by current state of the art

macroscopic assignment models.

The Floyd-Warshall algorithm [232], Johnson’s algorithm [233] and the Pettie 2004 algorithm

[214] are APSP algorithms which can be applied to real-weighted graphs which do not contain
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negative-weight cycles. The Floyd-Warshall [232] algorithm is an APSP algorithm for directed

weighted graphs, without negative cycles. It incrementally improves estimates for the shortest

path between any two vertices until the the lowest cumulative cost has been found, for each

pair of vertices in the graph. It achieves this with a time complexity of O(|V |3) . The algorithm

considers paths which only involve internal vertices which come from a restricted set. The

restricted set of vertices begins as the empty set and grows in size by an additional vertex at

each iteration. Initially, only single-edge paths between each origin and vertex are known. For

the example graph in Figure 2.8 ten single-edge paths are known, such as (a, b), (b, e) or (d, g).

After the first iteration paths which traverse the first vertex are considered. This does not result

in any updates using the example graph. At the second iteration, paths which traverse the first

and second vertex are found (i.e. (a, b, e)). This is repeated until the full set of vertices are

considered as intermediate nodes, for each origin-destination pair. For the example graph, this

would find the path (a, c, f) during the third iteration, path (a, d, g) during the fourth iteration,

paths (a, b, e, h) & (a, b, h) in the fifth iteration and so on.

Johnson’s algorithm [233], first published in 1977, uses both the Bellman-Ford and Dijkstra’s

SSSP algorithms to find the shortest paths between all pairs of vertices in the network. The

Bellman-Ford SSSP algorithm is used to ensure that no negative-weight cycles are present in the

network, and re-weight the graph to remove negative cost edges. |V | invocations of Dijkstra’s

algorithm are then applied, to find the shortest paths from each origin. Time complexity

of O(|E||V | + |V |2log |V |) is achieved, based on the time complexities of the Bellman-Ford

algorithm, and that of the Fibbonaci-heap based Dijkstra’s implementation. In sparse cases,

this algorithm performs fewer comparisons than the Floyd-Warshall algorithm.

More recent algorithms such as the algorithm proposed by Pettie in 2004 offer further ad-

vancements over the Floyd-Warshall or Johnson’s algorithm in terms of time complexity to

O(|E||V | + |V |2log log |V |) [214], although in the context of road network assignment between

zones they perform a significant amount of additional work required.

2.4.3 Macroscopic Road Network Simulation Software

There are multiple commercial macroscopic modelling software packages in used within academia

and industry, including PTV Visum [234], SATURN [235] as examples.

PTV Visum [234] is a macroscopic road network simulation tool developed by PTV AG as a

part of their comprehensive suite of modelling tools. Visum follows a bi-conjugate Frank-Wolfe

algorithm [194] for iterative road network assignment, finding shortest paths using a variation

of the algorithm presented by Dibbelt et al. [201], [236]. Parallelism is provided for multi-core

CPUs, but reports negligible performance improvements from beyond 8 processor cores [237].

Simulation and Assignment of Traffic to Urban Road Networks (SATURN) is a macroscopic

application suite used for the analysis and evaluation of traffic management schemes [235].
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Originally developed by the Institute for Transport Studies at the University of Leeds, and

released in 1982, SATURN was originally developed as a combined simulation-assignment model.

It has since been extended to support both “pure junction simulation” and execution as a

“conventional traffic assignment model, with or without simulation” [202]. It contains many

applications, ranging from interactive graphical tools for the processing of input and output files,

as well as multi-core CPU applications for the modelling and simulation of macroscopic road

networks. The multi-core version of the assignment and simulation tool, originally released in

2009, uses task-parallelism to reduce application runtime by computing the shortest paths from

several origin zones concurrently as independent tasks using multiple CPU threads, implemented

using OpenMP [238]. SATURN is heavily used within the UK transport modelling sector for

large scaler regional modelling [239].

2.4.4 Summary

This section has explored macroscopic road network assignment and simulation models. The

structure of a typical combined assignment-simulation model such as those used in SATURN or

Visum, which follow Wardrop’s principle of traffic equilibrium. Additionally, a review of shortest

path algorithms which are used heavily during the iterative assignment process is provided,

within the context of parallelisation using many-core GPUs. Next, Section 2.5 provides a

summary of this chapter.

2.5 Summary

This chapter has explored the forms of transport network simulation focussing on both micro-

scopic road network simulations and macroscopic road network simulations, the use of GPUs for

general purpose computing through CUDA, and how this can be applied to the computationally

expensive task of road network simulation. Based on this review of literature, several ares of

investigation have been identified for investigation within the remainder of this thesis.

It has provided an understanding of how microscopic road network simulations are struc-

tured, and the advantages and disadvantages of the techniques compared to alternate ap-

proaches. The key models which are fundamental to road network microsimulations have been

discussed, such as car following behavioural models and gap acceptance behaviours for junctions.

For each type category of model there are many to choose from, which attempt to produce more

realistic behaviours, or account for factors such as the environment or different modes of trans-

port. The state of the art road network simulation packages were covered, highlighting Aimsun

and PTV Vissim as two simulators which leverage parallelism through multi-core CPUs to at-

tempt to tackle the high computational demand of microscopic modelling. However, none of the

widely used simulation tools attempt to leverage GPUs for high levels of performance. There
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have been several smaller investigations into GPUs for microsimulation, through techniques

such as cellular automata.

Macroscopic road network models were also reviewed. This uncovered the iterative nature

of the convergent assignment and simulation models. It was highlighted that the calculation

of shortest paths through the transport network accounts for a large amount of the total time

spent executing these models. As such, alternate shortest path algorithms were reviewed, and

their suitability for parallelisation within road network assignment modelling considered. As

with micro-scale simulation, there is little work on the application of GPUs to macroscopic

road network simulations in literature. However, GPUs are shown as suitable for shortest path

calculations, which could be embedded within macroscopic assignment modelling.

The remaining chapters of this thesis are as follows.

Chapter 3 investigates the application of GPUs to microscopic road network simulations,

through the specification of a subset of behavioural models and the definition of a scalable

benchmark network which can be used to directly compare the performance of CPU and GPU

based implementations. The implementation of the GPU accelerated model through the use of

the FLAME GPU ABM framework is described, and experimental benchmarks are carried out

to evaluate simulation performance at a range of scales.

Chapter 4 expands on the work of Chapter 3, improving the GPU-accelerated simulation

performance through the use of a specialised communication pattern for many-core ABMs for

network-based communication. This communication strategy significantly improves the effi-

ciency of message-list based communication for agents which exist within an graph-like envi-

ronments. An abstract ABM designed to benchmark the communication patterns exhibited by

road network behavioural models is also presented.

Chapter 5 presents the application of of GPUs to macroscopic road network simulation

and assignment modelling, with a focus on improving the performance of the computationally

expensive assignment process. This is achieved through a novel shortest path algorithm for many

source vertices, for graphs which exhibit high-diameter and low-radius which are characteristic

of road networks. The novel algorithm is embedded within a commercial simulation tool, and

the performance evaluated against the serial and multi-core CPU versions of the simulator using

real-world transport networks.

Chapter 6 evaluates the relative benefits of GPU acceleration on road network simulations

using microscopic or macroscopic techniques. A scalable, artificial benchmark road network

defined in Chapter 3 is applied to the macroscopic road network simulation work of Chapter 5

to allow this comparison to be made.

Finally, Chapter 7 provides a conclusion to this thesis, summarising the work carried out

and suggesting potential avenues for future work.

47



Chapter 3

GPU Accelerated Microscopic
Simulation

3.1 Introduction

Microscopic simulations of transport networks are fine-grained simulations which model the

behaviour of individual vehicles and their interactions with each other and with the environ-

ment. These types of simulation can be modelled using Agent Based Model (ABM), where

simple behaviours are defined which combine with interactions between individuals and the

environment to form the complex emergent behaviours which can be observed in the real world.

Unfortunately, this fine level of detail comes with a high performance cost, being much more

computationally expensive than higher level methodologies used in transport simulation, such

as macroscopic and mesoscopic simulations.

Current tools used in the transport modelling sector which deploy microscopic level simula-

tion, such as Aimsun [122], Vissim [121], MATsim [155] and SUMO [120], can have considerable

execution run-times, especially for large scale simulations with simulations executing slower

than real-time, with individual simulations potentially taking many hours to complete. This

limits the overall effectiveness and uptake of microscopic simulation within the transport sector

[14].

Some of these simulators leverage parallel processing in a shared-memory multi-core environ-

ment to reduce simulation runtime. The exact parallel methodology varies between tools, using

both task-parallel and coarse-grained data-parallel approaches. As discussed in Section 2.2,

task-parallelism involves the distribution of independent processing tasks to separate process-

ing threads, whilst coarse-grained data-parallelism applies the same algorithms to different units

of data, where the individual units of data are relatively large.

Although the above approaches are well-suited to multi-core Central Processing Units (CPUs),

many-core architectures such as Graphics Processing Units (GPUs) can offer much higher levels
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of parallelism, and significantly greater levels of raw compute performance. To access the high

levels of performance, algorithms and data structures must expose high levels of parallelism and

enable good memory-access patterns. Typically fine-grained data-parallelism is used, where the

same algorithms are applied to relatively small individual units of data. GPUs have been used

previously for microscopic transport network simulation, as both cellular automata [23], [26]

and also using multi-agent systems [24]–[26], [240], but general purpose software tools used in

industry are yet to adopt GPUs.

This chapter aims to evaluate the suitability of GPUs for microscopic road network simu-

lations using current techniques found within GPU accelerated ABM frameworks, which have

previously been demonstrated as appropriate in other domains, such as pedestrian simulations.

This is achieved by describing a minimal set of microscopic road network behavioural models

and features to support performance evaluation using an artificial, scalable benchmark road

network, providing contribution C1 of this thesis. The described set of behavioural models and

scalable benchmark network allow the performance of alternate simulation implementations to

be compared at various scales and with different levels of vehicle demand. By not selecting a

subset of behaviours implemented within commercial tools suitable for the simulation of com-

plex real-world networks, the feasibility of implementing and cross-validating such a model is

increased. This builds the foundation on which algorithmic changes and optimisations may be

investigated.

The chapter is structured as follows. First, state-of-the-art CPU-based simulators are de-

scribed in Section 3.2, followed by Section 3.3 providing the definition of a benchmark microsim-

ulation model based on a subset of the models implemented within Aimsun [143], a widely used

commercial tool. A scalable benchmark model is proposed and used to benchmark a CPU

based simulator in two experiments. Subsequently in Section 3.7 a GPU accelerated implemen-

tation of the model is described, using the Flexible Large-scale Agent Modelling Environment

for Graphics Processing Unit (FLAME GPU) framework. This model is cross-validated against

the reference CPU simulator and the performance is assessed using the previously defined bench-

mark model. Finally the chapter is concluded in Section 3.8.

3.2 CPU-based Microsimulation

Leading commercial and open source software packages for transport network microsimulation

such as SUMO, Aimsun and Vissim use single-core CPU architectures and sequential algorithms,

or multi-core CPU architectures with task-parallel and coarse-grained data-parallel algorithms

[144], [241]. Tools which leverage parallelism can offer considerable performance improvements

compared to sequential applications, reducing the time required for simulations to execute.

In these parallel tools, the work-load of the simulation is distributed as individual tasks
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or coarse-grained units of data across the available processing hardware, but, as with many

task-parallel and coarse-grained data-parallel multi-core software applications, the performance

improvement from each additional processing core reduces as the number of cores and threads is

increased. Figure 3.1 shows the application run-time of Aimsun 8.1 for a simulation with a total

vehicle demand of 64000 vehicles, with up to 25000 vehicles in the simulated region at one time,

as the simulation thread count is increased for multi-core CPU systems. The diminishing returns

of additional processor threads are shown, with no significant increases in performance observed

beyond six threads. Due to the closed-source, proprietary, nature of Aimsun the specific reasons

for these diminishing returns is not known and there are many reasons why a multi-core CPU

application may show this type of performance scaling, including cache coherency, parallelisation

overheads, workload imbalance or the effects of Amdahl’s law. This limits the performance

scalability of the application, with large simulations requiring considerable amounts of time

to execute even using CPUs with high numbers of processing threads. Additionally, processor

threads were not pinned to specific cores for these benchmarks, relying on the operating systems

thread scheduler to manage the execution of CPU software threads across the available processor

cores. Improved performance may have been observed if thread pinning were enabled.
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Figure 3.1: The average simulation run-time to complete a one hour simulation a total demand of
64000 vehicles in Aimsun 8.1, for different processor thread counts. The average of three simulations is
shown. Error bars show the first standard deviation of the application runtime, but for some data points
are smaller than the marker size. As processor thread count increases, total simulation time decreases,
but with diminishing returns. Note that the Intel Xeon E5-2643 is a dual-socket system. No performance
improvements were observed when using more processing threads than physical cores (Hyper-threading).
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3.2.1 Aimsun

Aimsun is a high-performance commercial, multi-core CPU, mesoscopic and microscopic trans-

port simulation package developed by Transport Simulation Systems (TSS). Aimsun can be

used to model transport networks of any scale, ranging from a single section of road to a large

geographical region and is used globally by governments, consultancies and academic insti-

tutions [242]. Aimsun implements a vast array of behavioural models and transport network

infrastructure, and is capable of modelling almost any road-network infrastructure and scenario.

These features include, but are not limited to:

• Car following model(s)

• Lane changing behaviour

• Overtaking

• Gap acceptance modelling

• Give way modelling and stop signs

• Dynamic traffic infrastructure

• Multiple vehicle classes

• Per-vehicle properties

• Input flows and turning proportions

• Origin-Destination matrices

• Fuel consumption modelling

• Emissions modelling

• Pedestrian simulation

• etc.

Aimsun has a comprehensive graphical user interface and is capable of 2D and 3D visuali-

sation. Full details of the features available in Aimsun can be found in the Aimsun Dynamic

Simulators Users’ Manual [243].

3.3 Simplified Aimsun Model

To effectively and fairly compare the performance of Aimsun against a GPU implementation

the same models and behaviours should be implemented. Aimsun contains such a vast range

of functionality that it would be infeasible to implement every feature just to evaluate the

performance, so a subset of the models and functionality available in Aimsun 8.1 were selected

for implementation.

The models selected provide core functionality for the simulation of road networks and

produce data which enables cross-validation of the model implementation against the reference

application, but also selected in such a way that other features could be disabled through various
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settings within Aimsun, to minimise the performance impact of models and functionality which

were not implemented. Table 3.1 details models and features which were selected from the

partial list of Aimsun features in Section 3.2.1.

Aimsun Functionality Selected for the Simplified Model

Car following model(s) Selected, based on Gipps’ car following model [128], [143]

Lane changing behaviour

Overtaking

Gap acceptance modelling Selected, used for give-way modelling only

Right of way modelling Selected, including yellow-box modelling

Give way and stop signs Selected,

Dynamic traffic infrastructure Virtual Detectors only, which provide periodic statistics on the
movement of vehicles through the detection range

Multiple vehicle classes 1 Class of vehicles selected
Per-vehicle properties Selected, only properties required for selected models

Input flows and turning proportions Selected, with constant vehicle arrival and virtual queues

Origin-Destination matrices

Fuel Consumption modelling
Emissions modelling
Pedestrian simulation

Table 3.1: Models selected for the Simplified Aimsun Model from the partial list of aimsun models and
features. Aimsun publications and Documentation provide detailed descriptions of these functionalities
([143], [144], [243])

These features and models were selected to produce comparable behaviour for the procedu-

rally generated grid road network described in section 3.4, without the complexities of modelling

the broad range of road network infrastructure present in real world road networks. In general,

the specific model chosen to model an observed behaviour is not too important, but by using

the same model as implemented in the reference CPU simulator evaluation can be more direct.

Further details of the selected behavioural models can be found in section 2.3.2 and within the

Aimsun documentation manual [144], [243].

3.4 Benchmark Network

To evaluate the performance of implementations of the simplified Aimsun model described in

section 3.3 at various scales, an artificial network is described which unlike real-world transport

networks can be scaled to larger and larger sizes.

The benchmark transport network is a 2D grid of single-lane one-way roads, with adjacent

rows and columns of the grid network traversing in opposite directions. This is inspired by

the grid road networks of the world such as the famous Manhattan street grid. Junctions are

controlled through the use of stop-signs at each junction-entry, and each junction is defined as

a yellow box junction to reduce the risk of grid-lock. Figure 3.2 shows the arrangement of road
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sections and junctions which form the grid road network. The arrangement of turns from one

section of road to another within a junction is also shown.

To allow high level comparisons between alternate implementations of the microscopic model,

and collect information on the movement of vehicles within the simulated network, three virtual

transport network detectors are placed on each section of the road. The detectors are placed

offset from the start, in the centre, and offset from the end of each section of road.

The network grid size can be used to control the scale of the generated grid-based network,

and it can be used to calculate the numbers of sections, junctions and turns in the network. A

network with grid size (G) contains G2 junctions, 2G(G+1) road sections, 4G2 turning sections,

2G entrances and 6G(G+1) detectors. Table 3.2 describes the parameters involved in network

generation.

Grid Size=5

Junction
Road Section

Turning Section

Figure 3.2: A 5× 5 example of the procedurally-generated artificial grid network, showing the overall
structure of the network and the arrangement of turning sections within a junction. The network can
be scaled to any size, with networks of up to 576× 576 used during benchmarking.

Parameter Name Description

Grid size (G) The number of junctions for each row and column of the grid

Section length The length of each road section between junctions in metres

Junction length The length or diameter of junctions within the network

Exit turn proportion
For junctions with 1 exit destination edge, the proportion of vehicles turning onto
the exit is reduced to maintain higher vehicle populations within the simulated road
network.

Table 3.2: Parameters for generation of the procedurally generated Manhattan-style grid road network
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3.5 Benchmark Experiments

Two sets of benchmark experiments are used to evaluate the impact of scaling the size and

density of the transport network on simulation runtimes, using the model described in section 3.3

and the artificial network described in section 3.4: the Grid-scale experiment; and Input-flow

experiment.

3.5.1 Grid-Scale Experiment

To evaluate the performance impact of total problem scale, the Grid Size of the procedurally

generated network is varied from 2 to 576. This results in larger populations of vehicles, a greater

number of vehicle detectors and a larger transport network. As vehicles are only inserted from

the edges of the network, the ratio of vehicle input roads to the number of roads is 2G : 2G(G+1).

This experiment shows how the performance of the simulator and hardware copes with

larger and larger transport networks, i.e. is the simulator capable of city-scale, region-scale

of even national-scale simulations. The model and network parameters used for the grid-scale

experiment are described in Table 3.3.

Parameter name Value Units
Simulation Time 3600 seconds
Time step 0.8 seconds
Reaction time 0.8 seconds
Stop reaction time 1.2 seconds
Detector period 600 seconds
Input flow scale factor 1.0 %
Seed Random value Long integer
Section length 1000 m
Junction length 10 m
Exit turn proportion 5 %
Grid size 2 - 576
Input flow 600
Detectors per section 3

Table 3.3: Network and Model parameters used for the Grid-Scale microscopic experiments. Parameters
such as the time step, reaction time and detector period were selected as values commonly used within
microscopic modelling in the UK as informed by the Aimsun developers.

3.5.2 Input-Flow Experiment

Demand on transportation networks is increasing globally [1]. To evaluate the impact of this

on microscopic transport network simulation, the demand on the transport network was varied

for several fixed sizes of network. This shows how the simulators performance characteristics

scale with higher and higher density of vehicles, which corresponds to the increasing demand

on existing transport networks observed in the real world. The model and network parameters

used for the input-flow experiments are described in Table 3.4.
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Parameter name Value Units
Simulation Time 3600 seconds
Time step 0.8 seconds
Reaction time 0.8 seconds
Stop reaction time 1.2 seconds
Detector period 600 seconds
Input flow scale factor 1.0 %
Seed Random value Long integer
Section length 1000 m
Junction length 10 m
Exit turn proportion 5 %
Grid size 64, 128 & 256
Input flow 100 - 1000
Detectors per section 3

Table 3.4: Network and Model parameters used for the Input-Flow microscopic experiments. Param-
eters such as the time step, reaction time and detector period were selected as values commonly used
within microscopic modelling in the UK as informed by the Aimsun developers. Multiple grid sizes were
used to assess the performance impact of the input flow parameter at multiple network scales.

3.6 CPU Benchmark Results

The experiments described in Section 3.5 were executed using Aimsun 8.1 executed on an Intel

Core i7-4770k (4 cores, 8 thread) with 16GB of memory available using Windows 10.. This

provides a baseline for GPU implementations to be compared against. Each simulation was

repeated 3 times to provide average simulation runtimes. To ensure fair comparisons, working

in conjunction with the Aimsun developers, a modified version of Aimsun 8.1 was produced

which records the runtime per-simulation iteration, to enable more fine-grained performance

information.

Figure 3.3 shows the average simulation runtime for 3 repetitions of each simulation within

the Grid-Scale set of benchmark experiments. For small scale benchmarks, Aimsun 8.1 shows

short simulation runtimes, with a real-time-ratio (RTR) (the ratio of simulated time against the

duration required for the simulation to execute) of 192 for the grid size 8 network containing up

to 8, 000 vehicles and 432 detectors. As the scale of the network is increased, the performance

degrades with a non-linear relationship to the grid size parameter. The largest simulation which

completed faster than real-time contained up to 384, 000 vehicles and 295, 680 km of road, with

a grid size of 384. The largest simulation which would complete in Aimsun 8.1 had a grid-size of

512, containing up to 512, 000 vehicles and 1, 575, 936 road network detectors. This simulation

completed in an average time of 5447.7 seconds, at a RTR of 0.66.

Figure 3.4 shows the average simulation time for Aimsun 8.1 from for 3 repetitions of each

simulation at the various scales. At each grid scale (shown by the different series) the multi-

core CPU simulation results show relatively linear performance as the input flow is scaled for

each fixed size network. As the input flow is increased, the average vehicle density will also

increase in conjunction with the total number of vehicles. The benchmark network contains

2G entrances, so the total vehicle count will scale linearly with input flow for a fixed network

size, however, vehicle density increases near the entrance sections as it takes time for agents
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Figure 3.3: Total simulation time for Aimsun 8.1 as the total scale of the simulation is increased. Values
shown are the average from 3 repetitions. The model and network parameters used for this benchmark
are shown in Table 3.3.

to disperse throughout the network leading to local areas of higher density. The mainly linear

relationship between input flow and simulation runtime suggests the Aimsun multi-core CPU

implementation is not significantly effected by local density hot-spots.

Further insight into the performance of the simulator can be gained from the per-iteration

run-time. Figure 3.5 shows the per-iteration performance of the Aimsun 8.1 simulation for a

grid-size of 128. As the simulation progresses the population of vehicles in the simulated region

increases. This leads to increasing time required to compute each time step of the simulation,

with a linear relationship between iterations due to the linear increase in population size of the

periodic vehicle input used by the benchmark network.

Every 750 iterations a small cluster of iterations have increased step times. This periodic

effect is correlated with the behaviour of the detectors in the benchmark network, which perform

aggregate operations every 10 minutes of simulated time (750 iterations with a time-step of 0.8

seconds). The aggregate operations involved will require additional processing time, and the

Aimsun implementation may also write data to disk at this time, leading to the short-term

increase in run-time. Even if the output of data to disk is performed asynchronously, it can still

have a minor impact the performance of the simulation.
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Figure 3.4: Total simulation time for Aimsun 8.1 against input flow for procedurally generated road
networks of grid size 64, 128 and 256. Run times shown are the average from 3 repetitions. The model
and network parameters used for this benchmark are shown in Table 3.4. Transport for London guidance
suggests maximum design capacities of between 900 and 1600 vehicles per hour per lane for urban, single
carriageway, one-way roads with speed limits of 30mph (∼ 50kmph) [244]. Benchmarks with input flows
greater than 1000 vehicles per hour were not performed due to stop-sign induced queues preventing
vehicles from entering the simulated region of the artificial benchmark road network which occurred
more frequently as input flows were increased.

3.7 GPU Microsimulation

As discussed in Section 2.1, ABM can be used to model microscopic simulations of transport

systems. Many software frameworks for ABM exist which abstract the complexities of parallel

processing away from the modeller. D-Mason [166], Repast HPC [20] and FLAME II [169] use

distributed or CPU-based task-parallelism or coarse-grained data-parallelism to offer improved

performance compared to single threaded applications. Yet few provide support for performing

high performance simulations using many-core processors such as GPUs. One framework which

does provide GPU accelerated ABM is FLAME GPU [179].

3.7.1 FLAME GPU

FLAME GPU is a GPU accelerated ABM framework, which uses the CUDA (Compute Uni-

fied Device Architecture) API for NVIDIA GPUs and a state-based representation of agent

dynamics to leverage the high levels of performance from the GPU. The complexities of the

CUDA programming model are abstracted away from the end-user, enabling high performance

simulations without explicit knowledge of the parallel processing model [178], [179], [181].
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Figure 3.5: Per-Iteration simulation time for a model with grid size 128 and input flow 500 vehicles
per hour.

FLAME GPU has been used in multiple modelling domains including but not limited to

pedestrian crowd simulation [182], cellular simulations [178], [183], Cellular Automata (such as

the Game of Life) and flocking models [22], [245]. However, the use of FLAME GPU for road

network simulation has been limited.

FLAME GPU simulations make use of a state-based representation of agent dynamics to

simplify development and enable key performance optimisations on behalf of the modeller.

Communication is achieved through message-lists, the output and input of which also describe

dependencies within the state-based representation of the model. By using explicit message

lists for communication rather than allowing direct access to agent memory, race conditions

(a common pitfall within parallel processing) are prevented during agent communication, by

ensuring that agents may update their local properties without altering the contents of a message

being accessed by another agent.

At each step of a FLAME GPU simulation, the model is formed of many agent functions

split into execution layers, which are executed sequentially. Within an execution layer agent

functions should be independent and therefore able to operate concurrently.

In large scale FLAME GPU models, the communication between individuals often has a

significant impact on the performance of the simulation [29]. Message lists can therefore be

accessed using specialised message partitioning techniques to reduce the scale of message lists

each agent must iterate, increasing performance where appropriate. Within FLAME GPU 1.4,

there are 3 methods of communication: all-to-all communication; discrete partitioned messaging;
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and spatially partitioned messaging for agents in continuous space.

All-to-all communication involves each agent parsing messages from all other agents. Dis-

crete Partitioned Messaging is a specialisation for agents which exist in discrete space and

communicate with local neighbours, such as Cellular Automata. Spatially Partitioned mes-

saging allows communication with all agents within a fixed radius of the individual, with the

partitioning scheme requiring a radius and environment bounds. The continuous 2D or 3D

environment is divided into a grid of cells, where individuals receive messages from their cell

and the moore-neighbourhood of cells [179].

Of these partitioning schemes all-to-all communication and spatially partitioned messaging

are of interest for road network microsimulation, with performance implications. Non par-

titioned messaging is computationally expensive (O(n2) message iteration loop when reading

messages) but has little overhead cost. Spatially partitioned messaging generally provides a

performance improvement, as each agent processes fewer messages. However, there can be

significant overhead cost for the construction of data structures used to efficiently access the

appropriate messages. Care must also be taken to ensure that the communication radius is

sufficiently large to not influence the models implemented.

3.7.2 FLAME GPU Implementation of the Gipps’ Car Following model

Early during the development of the simplified Aimsun model, a further simplified version

of the model was implemented which only contained the Gipps’ Car Following model, with

random route decisions at junctions and no collision avoidance models implemented. This very

simple model was used to evaluate the suitability of this model for the GPU and the impact of

communication on the car following model, and benchmarked on a very simple grid network,

not too dissimilar from that described in Section 3.4.

This model only contained vehicle agents, and accessed a transport network stored in CUDA

constant memory (via FLAME GPU’s Simulation Constants). This does limit the scale of the

network able to be simulated due to the limit of 64kB of constant memory being available in

CUDA devices. This was changed for later implementations.

In the naive model, at each simulation step vehicles output their observable properties to a

message list. A subsequent agent function iterates each message from the message list to find the

information about the preceding vehicle, required for Gipps’ car following model. Agents which

have reached the end of their current segment of road randomly select a new segment from the

roads connected at their current junction. The performance of these simulations were evaluated

using all-to-all communication and spatially partitioned messaging using several partitioning

radii, for simulations where the population is varied for a fixed size network.

These benchmarks were implemented using FLAME GPU 1.4 for CUDA 7.0, and executed

on an Intel Core i7 4770K workstation using a NVIDIA TESLA K20c GPU. A fixed grid network
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containing N = 16 sections of road, each 10000m in length is used, and the number of agents in

the simulation is varied from 28 up to 218. The benchmark simulations are repeated using both

all-to-all and spatially partitioned communication. Figure 3.6 shows the per-iteration simulation

performance against the number of agents, where performance has been measured by averaging

the simulation time over 100 iterations. This shows that at very small populations brute force

communication offers higher performance, but as the population size grows spatially partitioned

offers improved levels of performance. Lower partitioning radii show higher performance.

Figure 3.7 shows the average agent iteration performance (calculated as average iteration

time / population size). This shows that for smaller populations of individuals, as the population

is increased the per-agent performance improves, as hardware utilisation increases. Once the

population, and therefore number of processing threads, is sufficiently large to fully utilise

the device, the per-agent population decreases as population grows. This can be attributed to

agents having to parse larger and larger message lists which must be parsed by each agent. Non-

partitioned messaging shows significantly lower per-agent performance as the scale of message

lists grows at a higher rate than spatially partitioned messaging within this type of network,

with relatively uniformly distributed agents.

Although this shows that spatially partitioned messaging does improve performance, it high-

lights the need for an appropriate messaging partitioning strategy.

3.7.3 FLAME GPU Implementation of the Simplified Aimsun Model

The model described in Section 3.3 has been implemented using FLAME GPU. The models

contains two agents types, for Vehicles and Detector Agents. Vehicle agents use several states

to distinguish between agents which must perform different behaviours. Detectors only use a

single state.

Figure 3.8 shows the state machine for the vehicle and detector agents implemented in

this model. The state machine represents the process followed by each agent at each step of

the simulation, highlighting the relationship between agent states, functions and message-lists.

Agents begin the iteration in one of the possible states for the agent type. Agent functions

allow agents to switch from one state to another (or remain in the same state). The order in

which these functions are executed are controlled by the execution layers. Message lists used for

communication highlight dependencies between agent functions. A message list must be written

to in an earlier layer than it is accessed, and are reset between subsequent iterations. Vehicle

agents which exit the simulation are determined to be dead and are excluded from further steps

of the simulation.

Agents representing vehicles can be in one of three states: Queued, Road or Junction. The

virtual queue of vehicles waiting to enter the simulated region are represented by the Queued

state of car agents. Newly created Car agents generated from a method executed every iteration
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in serial on the host are initially placed in to the Queued state. Within each simulation iteration,

the series of agent functions which occur for Queued state agents implement the constant or

exponential vehicle arrival algorithm in the benchmark microsimulation model. The arrival

algorithm is implemented to match the behaviour of the reference simulator Aimsun [144],

ensuring that vehicles arrive in the order that they joined the queue, and that there is sufficient

headway on the simulated road section for the vehicle to enter the network, with an appropriate

arrival velocity.

The Road and Junction states are used to separate the behaviours of agents which are

traversing a section of road, and those approaching or traversing a junction. This is to reduce

branching and divergence within the agent function, and the use of the two graphs which

describe the road network data structure. Vehicles in the Road state exhibiting primarily the

car following behavioural model, and interaction with stop signs as they approach junctions.

Agents in the Junction state execute the gap acceptance give-way model and yellow-box model

used for this study, and subsequently if movement is allowed the vehicle will use the car following

model to traverse the junction.

Detector agents are used to represent real-world vehicle detection systems such as induction

loops placed within road network infrastructure. The agents follow a much simpler, linear

state machine than car agents. These are used to measure traffic conditions, the output of

which can be used for interactive behaviour with transport network infrastructure, simulation

calibration or simulation validation. The state diagram for detectors is linear, containing three

agent functions, each in separate layers. Each function takes input from a message lists output

to by vehicle agents during earlier layers within the iteration (the Junction message list, Road

message list and Exit message list) to collect and aggregate statistics about individual vehicles

which are within or traverse the detector region of effect. Periodically at the end of the iteration

a FLAME GPU step function executes, to store the aggregate information from detector agents

and reset counters for the next time period.

The transport network is represented using a pair of graphs, represented using the Com-

pressed Sparse Row (CSR) data structure previously described in Section 2.1.5. The first graph

represents the roads of the transport network as edges, and the junctions as vertices. The

second graph models the connections between roads within each junction , with the each turn

represented as an edge, and vertices mapping to the edges connected to the junction. Separate

graphs are used to simplify the specification of the road network, and allow the use of FLAME

GPU states to minimise the cost of divergence within the agent functions.

3.7.4 Cross Validation

For the performance evaluation of the two simulators to be comparable it is important that

software produces comparable results. These simulations are stochastic, so multiple runs using
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different random number seeds must be used to collect meaningful values for validation. A set

of validation networks were produced targeting specific features and behavioural models, which

are described in Table 3.5.

These models were then executed multiple times using both Aimsun 8.1 and FLAME GPU.

The same model parameters were used for both implementations, to ensure comparable results,

and the relevant output data compared. Stochastic behaviour was minimised where possible

to simplify the validation procedure. For instance, vehicle properties which are designed to be

sampled from a distribution were applied uniformly across the population when possible. The

same parameters were used with both simulation tools. The parameters used for non-stochastic

simulations are shown in Table 3.6, and stochastic parameters shown in Table 3.7.

Feature Purpose Description

Constant
Vehicle Input

Ensure that vehicles arrive in
the simulation correctly, for
constant input flows

A single 100m edge, with input flows of 100, 200, 400 and
800 vehicles per hour, using deterministic parameters

Car Following
Behaviour

Ensure that deceleration and
acceleration of vehicles is
applied correctly

Two 100m or 500m edges, with a single 10m junction
including a stop-sign. Vehicle input flow set to 500
vehicles per hour, using deterministic parameters

Junction
Behaviour

Ensure vehicles follow the
same junction behaviour for
a single junction from the
Manhattan style grid

Two 100m input sections, two 100m exit sections, two
straight ahead turns of 10m, two 90° turns of 7.85m.
Turning proportions of 100% ahead, 100% 90° turn and
50%− 50%, using deterministic parameters

Deterministic
Grid Model

Compare behaviour of the
Manhattan grid network,
where stochasticity is
removed

Grid Sizes 2, 4, 8 & 16, simulated for 1 hour with
deterministic parameters and 100% ahead turns, using
deterministic parameters

Stochastic
Grid Model

Compare behaviour of the
Manhattan grid network,
with stochasticity

Grid Sizes 2, 4, 8 & 16, simulated for 1 hour with
stochastic parameters and 50%50% turns, using stochastic
parameters

Table 3.5: Details of the networks used for cross-validation.

Parameter Name Value Units
Length 4.0 m
Clearance 1.0 m
Speed Acceptance 1.0
Sensitivity Factor 1.0
Maximum Desired Velocity 22.2222 ms−1

Maximum Acceleration 3.0 ms−2

Normal Deceleration 4.0 ms−2

Maximum Deceleration 6.0 ms−2

Table 3.6: Vehicle model parameters used for the deterministic cross-validation of the FLAME GPU
and Aimsun models.

The results of each validation model show:

• Constant vehicle arrival is correct, with matching input counts and flow across the network

for the Constant Vehicle Input validation model (Table 3.8).

• Free-flow car following behaviour is shown to be correct by the average speed of vehicles in
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Parameter Name Mean Deviation Minimum Maximum Units
Length 4.0 0.5 3.5 4.5 m
Clearance 1.0 0.3 0.5 1.5 m
Speed Acceptance 1.1 0.1 0.9 1.3
Sensitivity Factor 1.0 0.0 1.0 1.0
Maximum Desired Velocity 30.5556 2.7778 22.2222 41.6667 ms−1

Maximum Acceleration 3.0 0.2 2.6 3.4 ms−2

Normal Deceleration 4.0 0.25 3.5 4.5 ms−2

Maximum Deceleration 6.0 0.5 5.0 7.0 ms−2

Table 3.7: Truncated normal distributions for vehicle parameters used for the stochastic cross-validation
of the FLAME GPU and Aimsun models.

the Constant vehicle arrival models (Table 3.8). The Car Following Behaviour validation

network highlights a discrepancy in the number total flow through the network, of 0.2%,

with one extra vehicle still in the simulated region (Table 3.9). Further investigation

revealed that the velocity of a vehicle approaching a stop sign is correct, as shown by

Figure 3.9 and table 3.10, and that the reduced average speed within the simulation is

related to interaction with stop signs within a queue, or with the not-implemented gap

acceptance model.

• Turning proportions are correctly demonstrated for the three test sets of 100:0, 0:100

and 50:50, within acceptable limits imposed by the use of a random number generator,

however, the flow is once again not an exact match (Table 3.11).

• The deterministic and stochastic models show comparable input flow for each network,

but the output flow and final population of the simulation vary by increasing amounts

(Tables 3.12 and 3.13). This is accounted for by the increase in the number of junctions

as the grid size is increased, which exacerbates the differing behaviour for junctions.

Target Aimsun FLAME GPU
Input
Flow Flow Input

Count
Input
Flow

Average
Speed Flow Input

Count
Input
Flow

Average
Speed

100 98.000 100.000 100.000 13.889 98.000 100.000 100.000 13.889
200 196.000 200.000 200.000 13.889 196.000 200.000 200.000 13.889
400 392.000 400.000 400.000 13.889 392.000 400.000 400.000 13.889
800 784.000 800.000 800.000 13.889 784.000 800.000 800.000 13.889

Table 3.8: Key data for the Constant Entrance Flow validation models

Aimsun FLAME GPU
Section
Length Flow Vehicles

Inside
Vehicles
Outside

Average
Speed Flow Vehicles

Inside
Vehicles
Outside

Average
Speed

100 497.0 3 497 11.812 496.0 4 496 11.397
500 489.0 11 489 11.879 488.0 12 500 11.506

Table 3.9: Key data for the Car Following Behaviour validation models
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Iteration
Aimsun

Speed
FLAME

GPU Speed
1 50.000 50.000
2 50.000 50.000
3 50.000 50.000
4 50.000 50.000
5 50.000 50.000
6 50.000 50.000
7 50.000 50.000
8 42.415 42.415
9 32.432 32.432

10 22.897 22.897
11 14.112 14.112
12 6.697 6.697
13 1.805 1.805
14 0.141 0.141
15 0.000 0.000

Iteration
Aimsun

Speed
FLAME

GPU Speed
16 0.000 0.000
17 3.415 3.415
18 9.563 9.563
19 17.686 17.686
20 26.277 26.277
21 33.881 33.881
22 39.718 39.718
23 43.729 43.739
24 46.304 46.304
25 47.861 47.861
26 48.777 48.777
27 49.306 49.306
28 49.607 49.607
29 49.778 49.778

Table 3.10: Velocity for the first vehicle in the 100m, 2250 vehicles per hour input flow, Car Following
Behaviour validation model.

Turning Proportion Aimsun FLAME GPU

% Ahead % 90°
Turn Flow Vehicles

Inside
Vehicles
Outside Flow Vehicles

Inside
Vehicles
Outside

100 0 993.0 7 993 990.0 10 990
0 100 994.0 6 994 992.0 8 992

50 50 993.0 7 993 990.0 10 990

Table 3.11: Key data for the Turing Proportion validation model.

Aimsun FLAME GPU
Grid
Size

Input
Flow Flow Vehicles

Inside
Vehicles
Outside

Input
Flow Flow Vehicles

Inside
Vehicles
Outside

2 2000.0 1868.0 132 1868 2000.0 1910.0 90 1910
4 4000.0 3466.0 534 3466 4000.0 3718.0 282 3718
8 8000.0 6417.0 1583 6417 8000.0 7012.0 988 7012

16 16000.0 11397.0 4603 11397 16000.0 12210.0 3790 12210

Table 3.12: Statistical summary data for the Deterministic Grid validation simulations.

Aimsun FLAME GPU
Grid
Size

Input
Flow Flow Vehicles

Inside
Vehicles
Outside

Input
Flow Flow Vehicles

Inside
Vehicles
Outside

2 2000.0 1786.0 214 1786 2000.0 1903.0 97 1903
4 4000.0 3421.0 579 3421 4000.0 3606.0 394 3606
8 8000.0 6304.0 1696 6304 8000.0 6801.0 1199 6801

16 16000.0 11360.0 4640 11360 16000.0 12447.0 3553 12447

Table 3.13: Statistical summary data for the Stochastic Grid validation simulations.

3.7.5 GPU Benchmark Results

The experiments described in Section 3.5 were executed using the FLAME GPU 1.4 based

implementation of the model described in Section 3.3. FLAME GPU simulations were executed

using NVIDIA Titan V GPU (5120 core, 12GB memory), and using a single thread on an Intel

Core i7-6850K for CPU-based aspects of the GPU-accelerated simulation. Each simulation was

repeated 3 times to provide average simulation runtimes. The time taken for each simulation is

logged using FLAME GPU’s instrumentation functionality. The GPU-based benchmark results
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are compared against the Aimsun multi-core CPU results presented in Section 3.6 which were

generated using 4 cores and 8 threads on an Intel i7-4770k CPU.

Figure 3.10 shows the average simulation runtime for 3 repetitions of each simulation within

the Grid-Scale set of benchmark experiments, using the alternate communication strategies

available in FLAME GPU.

For small scale benchmarks FLAME GPU 1.4 on a modern GPU shows lower levels of per-

formance than that of the Aimsun 8.1 CPU results, using either of the existing communication

strategies. At these scales the GPU is not provided with enough work and is underutilised,

resulting in the overhead costs outweighing any benefits from executing on the GPU. As the

scale of the network is increased, brute force communication becomes more and more compu-

tationally expensive, as each agent is processing larger and larger message lists. This quickly

becomes slower than the efficient CPU simulator and slower than real time. Simulations which

use spatially partitioned messaging shows better scaling, as message lists do not grow as quickly.

This yields better performance than the CPU simulator once the total problem size, and there-

fore agent population is sufficiently large. However, as the problem continues to scale to larger

populations, the quantity of messages processed by each agent increases on average as the aver-

age density increases. This leads to a loss of performance and ultimately slower than real-time

simulations which are also slower than the reference CPU simulations.

Using the brute-force approach of all-to-all communication, the GPU does not offer improved

performance over the CPU. This communication approach is highly inefficient for the transport

network behaviours where only information from neighbouring vehicles are required. As each

individual is processing each message, at multiple stages in each iteration the overall performance

impact of communication is significant, outweighing the benefits from using the GPU. Spatially

partitioned communication is better, performing faster than the CPU simulator at mid-range

scales, where the parallelism outweighs the inefficient communication.

Figures 3.11 to 3.13 show the average simulation time for 3 repetitions of each simulation at

three scales of fixed size network, with varying input flows per entrance edge of the simulation.

This allows the effect of vehicle density to be evaluated. The individual series in each figure

compare the average simulation runtime for each implementation, comparing Aimsun 8.1 on

the CPU with FLAME GPU on an NVIDIA Titan V, using both all-to-all and spatially par-

titioned communication. For the smallest of the three grid sizes, 64, the GPU implementation

demonstrates performance advantages compared to the CPU implementation at low input flows

values, using using both communication strategies. As the vehicle density increases within the

simulation, due to the increased input flow per entrance for a fixed size network, the GPU

runtimes increase at a faster rate than the CPU implementations, ultimately taking more time

to complete the one hour simulations. The spatial communication pattern shows reduced per-

formance compared to the all-to-all communication strategy at this scale. For the grid size
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of 64, the GPU is underutilised as there are not enough vehicles within the simulation. This

highlights the additional costs of the more complex spatial communication pattern.

For the medium of the three grid sizes, 128, a similar pattern is observed. However, the

GPU implementations outperform the CPU implementations until input flows of 700 or greater.

Additionally, the spatial communication pattern outperforms the all-to-all communication until

larger input flow values are reached. For the largest of the three grid sizes, 256, the brute force

communication pattern outperforms the spatial messaging at almost all scales, and outperforms

reference CPU results at all scales.

The performance of the GPU implementations does not scale as well with input flow and

therefore vehicle density as well as the reference CPU simulator. This is mainly due to the

increase in the size of message lists, which are used to avoid race conditions in the parallel

implementation. For global, all-to-all communication, the total message list size has a direct

impact on performance. As more vehicles are entering the simulations for larger input-flows, the

number of messages that each agent must read, and the number of agents increase, contributing

towards the increased runtimes. When using spatially partitioned messaging, as vehicle density

increases the average number of messages each agent must iterate increases. Although the

spatial partitioning reduces the size of message lists, the runtime increases as the simulations

become denser, becoming slower than the all-to-all communication. In part this is due to the

large communication radii which must be used to ensure the correct information is found at all

vehicle speeds, but also due to the increased cost of building the data structure used to access

messages based on spatial location and increased costs of accessing messages through this data

structure. For the simulations using the largest size grid (256), the GPU-based simulation using

all-to-all communication shows improved performance compared to the reference simulator at

all input flow values. At this larger grid scale, the population of vehicles being simulated is

large enough that the highly parallel GPU can be fully utilised, overcoming the overhead costs

of using the GPU. Meanwhile the multi-core CPU implementation is struggling compared to

lower grid scales where the vehicle demand is much lower, even at the lowest of input flows.

3.7.5.1 Per-Iteration Runtime

The per-iteration run-time of the simulations can provide further insight into the relative perfor-

mance difference between simulation implementations. Figure 3.14 shows this for simulations

with a grid-size of 128. CPU results are repeated from Figure 3.5, while GPU results were

generated using the spatially partitioned messaging variant of the FLAME GPU implementa-

tion, executed on a NVIDIA Titan V GPU. The CPU results from Aimsun show a broadly

linear relationship between iteration number and iteration execution time as the simulation

progresses, and the population of simulated vehicles increases. The GPU implementation using

local communication shows a per-step simulation time initially, while message lists are relatively
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small due to the low vehicle density. This may be influenced by additional features within the

commercial simulation package which could not be disabled. As the simulation progresses, the

per-iteration runtime begins to grow non-linearly for the GPU implementation, transitioning to

being slower per iteration than the CPU-based implementation. This is due to the increase in

the number of messages being parsed by each agent within the simulation.

3.8 Summary

The work in this chapter provides Contribution C1 of this thesis. A set of models required to

evaluate and compare the performance of alternate microscopic road network simulations are

defined. The simplified model allows the evaluation of alternate algorithms, data structures

and techniques in novel implementations without the burden of implementing the vast set of

behaviours and interactions are available within the state of the art commercial simulation

packages. Secondly, also as part of Contribution C1, a procedurally generated artificial road

network is defined. This scalable network allows the performance of alternate implementations

of the simplified model to be evaluated at a range of problem sizes, but also with varying vehicle

density by varying other model parameters.

A GPU accelerated implementation of this model is described, using the FLAME GPU

framework. The GPU implementation was cross-validated against the reference multi-core CPU

simulator, Aimsun 8.1, to ensure that fair comparisons can be made.

Two sets of benchmark experiments were carried out to evaluate the performance of the

CPU and GPU simulation implementations as various network properties were scaled. These

benchmark results show that the FLAME GPU based simulations can demonstrate comparable

performance to the reference CPU simulator, but do not show the significant improvements.

The performance impact of communication between individuals within GPU accelerated ABM

models is highlighted by these results.

Chapter 4, builds on the work presented in this chapter, by proposing a new communication

strategy for use with road network simulations in GPU-based ABMs, and embedded within

FLAME GPU.

67



29 211 213 215 217

Number of Agents

100

101

102

103

104

S
im

ul
at

io
n

ti
m

e
(m

s)
p

er
it

er
at

io
n

Non Partitioned Messaging

Spatially Partitioned (radius = 5000m)

Spatially Partitioned (radius = 2500m)

Figure 3.6: Average iteration execution time for fixed grid of size N = 16 against agent population
size, averaged over 100 iterations. Results generated using an NVIDIA Tesla K20c GPU.
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Figure 3.7: Average iteration execution time per agent for fixed grid of size N = 16 against agent
population size, averaged over 100 iterations. Results generated using an NVIDIA Tesla K20c GPU.
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Figure 3.11: Total simulation time against input flow for a procedurally generated road network of
grid size 64. Run times shown are the average from 3 repetitions, using a logarithmic scale. The
CPU simulation results from Aimsun 8.1 executed on a 4-core, 8-thread Intel i7 4770k are shown in
purple. These are compared to results from the GPU simulations using all-to-all and spatially partitioned
communication, shown by the orange and green series respectively, executed on an NVIDIA Titan V
GPU.
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Figure 3.12: Total simulation time against input flow for a procedurally generated road network of
grid size 128. Run times shown are the average from 3 repetitions, using a logarithmic scale. The
CPU simulation results from Aimsun 8.1 executed on a 4-core, 8-thread Intel i7 4770k are shown in
purple. These are compared to results from the GPU simulations using all-to-all and spatially partitioned
communication, shown by the orange and green series respectively, executed on an NVIDIA Titan V
GPU.
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Figure 3.13: Total simulation time against input flow for a procedurally generated road network of
grid size 256. Run times shown are the average from 3 repetitions, using a logarithmic scale. The
CPU simulation results from Aimsun 8.1 executed on a 4-core, 8-thread Intel i7 4770k are shown in
purple. These are compared to results from the GPU simulations using all-to-all and spatially partitioned
communication, shown by the orange and green series respectively, executed on an NVIDIA Titan V
GPU.
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Chapter 4

Network-Based Communication for
Data-Parallel ABM

4.1 Introduction

This chapter builds on the work presented in Chapter 3, which presented a GPU accelerated

microscopic road network simulation, and several benchmark experiments which evaluated the

performance of the GPU-based implementation against a commercial CPU-based application.

The benchmark results highlighted the importance of efficient communication within large-scale

parallel microscopic road network simulations.

In this chapter, it is proposed that by coupling the communication data structure and access

method to the graph representing the transport network the efficiency of communication can

be improved, by reducing the number of candidate messages which must be considered by each

agent to gather the necessary information to update the agent state. It is anticipated that this

will lead to increased simulation performance. The general purpose graph-based communication

pattern, and the implementation of this for many-core processor architectures is described,

forming contribution C3 of this thesis.

In order to evaluate the impact of the proposed graph-based communication strategy on

Agent Based Models (ABMs) which exhibit similar patterns of communication to road network

simulations, an abstract benchmark ABM is proposed. The abstract model is benchmarked at

a range of population scales, using three Flexible Large-scale Agent Modelling Environment for

Graphics Processing Unit (FLAME GPU) based implementations, using two existing commu-

nication strategies and the newly proposed graph-based communication strategy. This model

and the associated benchmarking provide Contribution C3.

Finally, the proposed graph-based communication is embedded within the GPU accelerated

microscopic road network simulation from chapter 3. This implementation is benchmarked

using the same experiments as described in chapter 3, and the performance compared against
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the reference CPU results, and previous GPU simulation results. This performance evaluation

provides Contribution C4.

The remainder of this chapter is structured as follows. Section 4.2 provides information on

message-list based communication within FLAME GPU. Section 4.3 proposes the graph-based

communication pattern which will improve the efficiency of communication for road network

simulations. An abstract benchmark model is defined in Section 4.4 and used to evaluate the

performance impact of the communication strategy. Section 4.5 describes the application of

this communication strategy to the simplified Aimsun model from Chapter 3, and evaluates the

performance impact through benchmarking. Section 4.6 concludes the chapter.

4.2 Agent Communication in FLAME GPU

Within FLAME GPU, agents use message-lists to communicate with one another, using spe-

cialised access patterns to improve the efficiency of communication where appropriate. This

employs alternate data structures and message-list traversal algorithms to reduce the size of

message lists based on the desired interaction pattern. This specialisation of communication

can have significant impact on simulation performance, especially for large-scale models where

global communication can account for the majority of runtime.

Existing techniques for message-based communication available within FLAME GPU 1.4

allow for global communication (all-to-all) or local communication based on spatial locality

(discrete partitioning and spatial partitioning) [179].

All-to-all messaging provides indirect global communication between agents. Discrete mes-

saging restricts communication to local neighbourhoods in 2D discrete space, while spatially

partitioned messaging restricts the communication to the local region surrounding the agent in

2D or 3D space. These communication patterns are not ideal for some of the important mod-

els used in road network microsimulation, resulting in inefficient communication, as previously

shown in section 3.7.5. In road network models, typically communication between agents is

restricted by the road network itself. Road network models such as car following or lane chang-

ing models require information from neighbouring vehicles on the same or directly connected

road section. Other models such as gap acceptance or give-way modelling at junctions will

typically require information from sections of road related approaching or leaving the junction

in question.

In these cases, neither all-to-all communication or fixed-radius spatial partitioning are op-

timal for large-scale simulations. Global communication is unsuitable as it is highly inefficient,

while fixed-radius spatial approaches do not consider the complex topology and speeds of the

road network. Both approaches result in large message lists to ensure that all required infor-

mation would be captured, and therefore a large portion of runtime is spent iterating these
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messages.

Limiting the communication to spatial partitioning does improve performance compared to

global communication (as shown in Section 3.7.2 and [29]), but still yields overly-large message

lists considering urban environments which are densely packed with disconnected sections of

road, and also when high speed sections of road are included, resulting in larger-communication

radii being required.

4.3 Graph Based Communication

Ideally communication should only need to occur within the constraints of the network, which

is typically represented using a graph or series of graphs. For the purposes of the benchmark

road network simulation model described in chapter 3, which consists of single lane sections of

roads and stop-sign-based, yellow-box junctions, communication is limited to the current road

network edge, the next road network edge, or the current junction (graph vertex). Existing

techniques for graph-based communication exist within parallel and distributed agent based

frameworks such as D-Mason and Repast HPC, however, these strategies use individual agents

as the vertices of the graph with the graph edges representing the relationships between agents

[20], [21].

The proposed graph based communication method works as follows. Individual agents are

coupled with the graph, maintaining their location within the graph at all times. For a network-

based communication strategy, the messages are also coupled to the underlying graph. When

an agent outputs a message, it must include the edge or vertex for which the message is coupled.

The message list of all messages can then be sorted by the edge or vertex to align memory and a

sparse data structure is constructed to enable access to relevant messages of the data structure.

The data-structure construction is similar to that used for fixed radius communication [181]

commonly applied to many particle-based GPU simulations [246], which identifies the position

within the message list of the first message for each edge or vertex in the network, and the

number of messages for each edge or vertex. The sorting of the message list and construction of

the message delimiting data structure can be performed efficiently using a counting sort. High

performance implementation of counting sort is reliant upon GPU fundamentals like cache-

aware atomic operations. As the number of edges or vertices within the network are known,

the atomic counting sort constructs a histogram containing the number of messages for each

edge or vertex within the network. The previous value of the per-element counter is stored for

each message. An exclusive scan can then be performed over the histogram of message counts

to find the starting index for each bin of messages once sorted. Once the starting position

within the global list is known, combined with the position of each message within the local

bin, message data can be sorted within global device memory in parallel. The histogram of
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message counts and the starting position of messages for each graph element are then used to

access messages within the data structure, given a graph element index to access. If an alternate

sort algorithm were used, such as a radix sort, then the number of messages stored in each bin,

and the offset to the start of each bin would also need to be calculated, leading to additional

costs. The network-based communication strategy is general enough to be applied to any GPU

multi-agent simulation, where communication along a graph-based data structure is required,

such as social network modelling. Figure 4.1 visually demonstrates an example, showing the

overall process.

When messages are requested by agent functions, the partition boundary matrix is queried

to find the index of the first sorted message for the requested graph element. Individual threads

then load the relevant data into local memory within the Streaming Multiprocessor (SM) to

provide access to the data as if it were stored within a struct, rather than the Structure of

Arrays (SoA) data structure used to store data within global device memory.

Figure 4.1: An example visually representing the data structure construction for the message processing
algorithm. A simple directed graph is shown, containing 4 edges and 4 vertices, coupled with the
equivalent CSR representation of the graph. 8 example agents represented by coloured triangles are
shown on the road network represented by this figure, and the order of messages as output by these
agents. The sorted order is then shown, coupled with the histogram, which provides access to the
appropriate set of messages for a given target edge.

The graph-based communication strategy was embedded within FLAME GPU as a part of
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the 1.5.0 release1, by commit 550f0422. To make use of the new communication strategy,

several key changes must be made to the FLAME GPU implementation. The XML Model File

must include a definition of the graph, so that properties can be accessed on the GPU. This

includes the data types for vertex and edge indices, plus additional properties which can be asso-

ciated with vertices or edges, such as the position of a vertex in space, or the weight of an edge.

Message lists which wish to be accessed through the graph-based communication strategy must

be defined within the model file as using the gpu:partitioningGraphEdge message partition-

ing strategy. This definition includes declaring which message variable which must contain the

index of the graph element the message is associated with. Graphs are loaded from disk at the

start of a simulation, the CSR representation is constructed and moved onto the GPU. Message

output from within an agent function behaves the same as any other partitioning scheme within

FLAME GPU. When accessing messages from the message list, the modeller must provide the

graph element index for which they wish to access messages from as an additional parameter to

the get_first_x_message method. The message list can be queried by multiple times within

an agent function, to access messages for separate graph elements if required. A selection of

methods to access the graph data structure are provided to support this.

4.4 Abstract Graph Communication Benchmark Model

To evaluate the communication strategy independently of a complex road network model imple-

mentation, and aid implementation within the FLAME GPU framework, a simple test model

was designed. By designing a very simple model with light-weight agents with low memory

requirements, the effects of message list specialisation can be emphasised and more clearly mea-

sured and identified with profiling tools. This is especially beneficial when considering memory

bandwidth, which is often the limiting factor in FLAME GPU agent functions which iterate

message lists.

The abstract model is inspired by the flow of fluid through a series of connected of pipes.

Agents represent individual units of fluid, and the network of pipes which makes up the en-

vironment is represented by a graph, where each edge can be thought of as a section of pipe

with a fixed upper limit on capacity. Individual agents traverse these pipes according to simple

properties and rules, but do not block each other within a pipe section. The only source of

conflict to be resolved is when traversing to the next section of pipe.

The network of pipes consists of vertices with id, x, y and z variables, encoding the location

of the vertex in space for visualisation purposes. Edges in the network have an id, source

and destination which encode how the edge is connected to vertices, along with length and
1https://github.com/FLAMEGPU/FLAMEGPU/releases/tag/v1.5.0
2https://github.com/FLAMEGPU/FLAMEGPU/commit/550f04209b8ad6c8eb91e57c8e2acebd171a81b8
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capacity defining how long the edge is and the number of agents which can exist within the

edge at a given point in time.

A single agent type is used in this model. The agent has a unique id, a position within the

network (the currentEdge and position along the edge) and the edge which it is currently

travelling towards nextEdge. Additional agent variables are used for visualisation (x, y, z &

colour), aggregate statistics (distanceTravelled & blockedIterationCount) and memory

values which persist between agent functions (nextEdgeRemainingCapacity & hasIntent).

The model has four parameters: the seed for random number generation (SEED), the initial

population of agents (INIT_POPULATION) and parameters controlling the minimum and maxi-

mum speeds which agents will be initialised with (MIN_SPEED & MAX_SPEED).

Agents are initialised in a FLAME GPU initialisation function, executed in serial on the

host. Agents are distributed uniformly on the edges of the graph, subject to any capacity

constraints. The position of the agent along the edge is randomly sampled from a uniform

distribution. The nextEdge is selected randomly from the connected edges. Agent speeds are

randomly sampled from a uniform distribution, and between the parameterised minimum and

maximum speeds. Other variables are initialised to sensible default values (i.e. 0), or calculated

based on the network (x, y, z).

output_location

read_locations

location messages

resolve_intent

move

intent messages

<reached exit>

Key

Function

Message List

State/Function Transition
Message Input/Output

Agent State

<Function Condition>

<if hasIntent>

Death

Figure 4.2: The FLAME GPU state diagram for the restricted flow graph model. It shows control
flow within a single iteration of the simulation for the agents which only have a single state. Agent
functions are represented by black rectangles, with green parallelograms representing message lists. The
state diagram shows the 4 agent functions, arranged in layers which are executed sequentially.

Figure 4.2 shows the FLAME GPU agent state diagram for each iteration of the simulation

using circles to show agent states, rectangles for agent functions with solid arrows for transitions
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between to show the flow of agent functions and states. Message lists are represented by green

parallelograms with dotted arrows used to indicate the output and input of message lists by

agent functions. In the first iteration layer, agents execute their output_location behavioural

function, where the publicly visible information is broadcast into the location message list,

and reset variables used on a per-iteration basis. Agents then execute the read_locations

function in the second layer. In this function agents iterate the location messages to find the

number of individuals on their target nextEdge to determine if there is capacity to make the

transition or not, if the agent is close enough to the end of their current edge and moving with

sufficient speed to make the transition. If there is sufficient capacity, and the edge transition is

required the agent broadcasts an optional message to the intent message list, declaring that

they wish to move to the target edge.

If the agent does need to transition to the next edge, it executes the resolve_intent

function in the third layer. In this function Agents iterate the intent messages to find how

many agents wish to move to the next edge, and the position within the queue to move to the

next edge, based on the unique id of the agent. Combining this with number of agents on the

next edge (from the previous agent function) the agent determines if it can move to the next

edge or not. If the agent can move to the next edge, it makes the transition and randomly

selects a new edge from the connected edges at the destination vertex. The agents position is

set to a negative value, indicating its location at the start of the iteration. If the agent has

reached a terminating edge, where there are no connected edges at the next vertex, it will leave

the simulation (death).

Finally, in the fourth function layer agents execute the move function. Agents simply move

according to their speed and position within the current edge. If they are blocked from traversing

to the next edge, i.e. they were unable to move to the next edge due to a capacity constraint, this

is recorded by the agent to be aggregated once the simulation is completed. Once the expected

number of simulation steps has completed, a FLAME GPU exit function is executed, which

performs reductions of per-agent properties into aggregate values which are used as simulation

outputs.

This model does have several limitations worth noting. As agents all execute concurrently,

some agents may not transition to the next edge even if new capacity becomes available due

to agents exiting the edge at the same time. This could be resolved with a much more com-

plex conflict resolution method and lookahead, but this would greatly increase complexity and

serialisation within the model. Instead, by using a sufficiently short time-step (or low speed

values) this effect is minimised. It is also possible to select parameters and networks which

when combined result in a non-viable simulation, although this can typically be detected at

initialisation time and the simulation can be gracefully aborted.
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4.4.1 Benchmark Results

This proposed model allows the performance impact of the communication strategy to be bench-

marked independently of the more complex agents and agent behaviours than in a road network

microsimulation model. This benchmark experiment evaluates the impact of the communica-

tion strategy as the density of agents is increased for a fixed size environment, for behavioural

models which require a similar communication strategy to a road network simulation.

The network of “pipes” used for this set of benchmarks is a very simple 2D grid. Figure 4.3

shows this layout with 4 rows and 4 columns. Graph vertices are arranged in a 2D grid, with

edges connecting to each immediate neighbour in the four cardinal directions. The graph used is

directed, containing 2 edges between a given pair of vertices in opposite directions. For example,

the edges A -> B and B -> A.

Figure 4.3: A 4 row, 4 column example of the 2D grid of “pipes” used for the abstract graph commu-
nication benchmark model. Each vertex (grey circle) is connected to the neighbouring vertices in each
cardinal direction, with a separate edge (arrow) in each direction, as properties such as capacity could
be different in each direction. The benchmark experiments used a 32 by 32 grid.

Benchmarks were carried out on a fixed size network, containing 1024 vertices arranged in

a 32 by 32 grid and 3966 edges, each with a capacity of 256 and a length of 50. The agent

population is scaled from 210 to 219 (1024 to 524288). Each simulation completed 1000 iterations

and was repeated 3 times to find the mean runtime. Figure 4.4 shows the average runtime for

this benchmark using each communication strategy executed on an NVIDIA Titan V GPU. For

graph partitioning the smallest simulation completed in 0.408s and largest in 9.062s on average.

Spatial partitioning completed the smallest simulation in 0.640s and largest in 1243.376s. All

to all communication took 0.650s for the smallest simulation, and 1179.514s for the largest

simulations.

These results clearly demonstrate a significant reduction in simulation runtime based on a

change in communication pattern, showing performance improvements of up to 137x compared
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Figure 4.4: Benchmark results for the Restricted Flow Graph model, for the two existing FLAME
GPU communication strategies (Brute-force and Spatially Partitioned) and the proposed graph-based
communication strategies, on a fixed size graph with varied populations. Results were collected using a
NVIDIA Titan V GPU. The average of 3 runs is presented in seconds. This benchmark model has only
been implemented for Graphics Processing Units (GPUs).

to spatially partitioned messaging, and up to 130x compared to all to all communication. Im-

provements are observed across all population scales, with the most significant improvements for

larger scale simulations, where the scale of message lists is much larger for spatially partitioned

or non-partitioned messaging, due to the greater number of agents and increased agent density

on the fixed size network.

At the smallest scale of simulation, all-to-all and spatially partitioned communication show

very similar runtimes, although already slower than graph based communication. As the pop-

ulation increases, all-to-all communications results in steadily increasing run times as message

lists grow directly with population. Spatially partitioned messaging initially shows a much

slower rate of runtime increase with population increase, however, as agent density increases

the message lists grow more significantly. Once populations are very large and density is very

high, although message lists are smaller than for all-to-all communication, the overhead costs

(such as data movement, context creation and kernel launch overheads) of this approach out-

weigh the benefits, with spatially partitioned messaging and all-to-all communication once again

taking approximately the same length of time to complete. Graph partitioning on the other

hand shows almost no change in runtime initially as the population grows, as message lists are

still very small. Once density is sufficiently high, and the average number of agents on an edge

becomes larger the message list size once again results in a degradation of performance, but
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with a slower rate than the alternate approaches.

4.5 Application to Simplified Aimsun Model

Once the proposed graph communication strategy was implemented and shown to improve com-

munication efficiency and reduce simulation runtime in the communication benchmark model

defined in Section 4.4, it was applied to the microscopic road network model described in

section 3.3 in order to understand the impact of this message list specialisation on transport

network simulation.

Figure 4.5 illustrates how the change in communication strategy can have a significant

impact on the size of message lists in vehicle modelling, using a relatively small example for

simplicity. The figure shows a portion of the grid-based transport network, with grey rectangles

representing sections of road and coloured triangles representing individual agents. The colour

of the triangle shows the messages processed by a single agent, shown in white in cell 5, for each

message partitioning technique. The communication radius for spatially partitioned messaging

must be at least as large as the longest road section to ensure all appropriate messages are

found. Using the new graph-based partitioning the agent only processes 5 messages (indicated by

orange borders), compared to 18 messages for spatially partitioned communication (highlighted

in blue), and 42 messages using all-to-all messaging. This reduction in the size of message lists

iterated by each agent leads to considerable performance improvements for this type of model.

The scale of reduction in message list size is even more significant in larger models, with larger,

denser populations of agents.

As the communication strategy was integrated into FLAME GPU, changes to the model im-

plementation were minimal. XMLModelFile.xml was modified to specify <partitioningOngraph>

rather than <partitoningNone/>, with the appropriate parameters for each message list. The

message iteration loops within functions.c were modified to use the appropriate, dynamically

generated FLAME GPU API functions, and if statements used to check the edge of the message

matched the target edge were removed, as this is now handled by the communication strategy.

The set of benchmarks previously described in section 3.5, the grid-scale experiment (sec-

tion 3.5.1) and input-flow experiment (section 3.5.2), were repeated using the modified imple-

mentation using the new communication strategy, and performance compared to previous results

for both Aimsun 8.1 on the CPU, and the FLAME GPU simulations using GPUs sections 3.6

and 3.7.5.

4.5.1 Grid-Scale Experiment Results

As in Section 3.5.1, the performance impact of the total problem scale is evaluated by vary-

ing the grid-scale of the procedurally generated network, using the same parameters previously
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Figure 4.5: The effects of alternate FLAME GPU communication strategies on car following models
is shown for a section of a grid-based road network, for a single agent represented in white. All-to-all
communication results in 42 messages being parsed by the single agent. Spatially partitioned messaging
results in the 18 messages from the agents in the blue shaded region, while the graph-based communica-
tion strategy results in only 5 messages from the orange bordered agents being processed. The spatially
partitioned radius used for this illustration would be insufficient for accurate modelling, and is only used
for illustrative purposes.

described in table 3.3. Figure 4.6 show the average simulation time for 3 repetitions of the

simulation for the CPU simulations and for three communication strategies using a NVIDIA

Titan V GPU. Additional benchmarks were performed using NVIDIA Titan Xp and NVIDIA

Titan RTX GPUs to provide insight into the performance difference between different genera-

tions of GPU. The figure shows that the graph-based communication strategy outperforms the

CPU-based simulator at all but the smallest scale, where the overhead costs associated with

using GPUs outweighs any reduction in runtime due to a lack of parallelism and utilisation of

the hardware.

At small scales, the CPU simulator outperforms all GPU implementations, regardless of

the communication pattern used. The all-to-all GPU simulator shows a minor performance

improvement to the CPU simulator for grid sizes between 64 and 160, and the spatially parti-

tioning simulator shows slightly improved performance between 128 and 448, as shown in the
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previous chapter. Graph communication shows much greater improvements in performance,

compared to both the CPU and other GPU simulators. For grid sizes of 32 and larger at-least

a factor of 2 performance improvement is shown, growing to 59.5x for a grid size of 512. This

corresponds to a real-time-ratio (RTR) of 36 for a simulation containing over 500,000 vehicles.

The graph communication technique exhibits considerable performance improvements com-

pared to both all-to-all and spatially partitioned messaging. Compared to brute-force messaging,

improvements of between 1.04x and 104.6x are shown, while improvements of between 3.2x and

62.0x are demonstrated compared to spatially partitioned messaging with a sufficiently large

communication radius to ensure correct results.
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Figure 4.6: Total simulation performance as the total scale of the simulation is increased, showing the
performance of the CPU simulations, and the alternate GPU simulations using a single GPU. Values
shown are the average from 3 repetitions. A logarithmic scale is used to improve visibility of similar
total simulation times.

The Grid-size experiments were executed on multiple generations of NVIDIA GPU to see

how the generation and scale of the GPU effects performance compared to one another, and

the reference CPU results. Figure 4.7 shows the results for the grid-scale experiments using

the CPU and using the graph-based communication strategy on three generations of NVIDIA

GPU: Pascal (Titan Xp), Volta (Titan V) and Turing (Titan RTX). Once again, this shows that

regardless of the GPU the CPU simulator offers the best performance for small-scale simulations,

but GPUs are much more suitable for larger-scale simulations, offering significant performance

improvements, of up to 67x, corresponding to a RTR of 44.7 for a simulation containing over

500, 000 vehicles. The different GPUs show similar performance curves. The Pascal (Titan Xp)
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and Volta (Titan V) architecture GPUs show very similar initial performance, but as the scale of

simulation grows the performance difference increases, up to a factor of 1.8 in favour of the Titan

V GPU. This can mainly be attributed to the larger number of processor cores, and significant

increase in memory bandwidth. The Turing architecture GPU, the Titan RTX, initially shows

much higher levels of performance, of over a factor of 2 compared to the Titan V and Titan Xp

GPUs. However, the Titan RTX does not scale as well with simulation scale compared to the

Volta GPU, resulting in similar performance for the largest simulations. This scaling behaviour

is most likely due to the higher number of streaming multiprocessors present and therefore a

larger number of resident threads in the Titan V compared to the Titan RTX, resulting in

reduced serialisation once the device is over-subscribed. Memory bandwidth is comparable

between both devices. The Volta-architecture Titan V also contains a much greater number of

FP64 cores compared to the Pascal and Turing GPUs, however, the GPU implementation uses

FP32 floating point values so this will not impact performance.
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Figure 4.7: Total simulation performance as the total scale of the simulation is increased, for each
simulator. Values shown are the average from 3 repetitions, for the CPU simulator and for the graph-
based messaging GPU simulator using multiple GPUs. A logarithmic scale is used to improve visibility
of similar total simulation times.

4.5.2 Input-Flow Experiment Results

The input-flow experiments from Section 3.5.2, which are used to evaluate the performance

characteristics as the agent-density is increased for fixed size environments, were repeated using

the new communication strategy. The parameters from table 3.4 were used once again, executed
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using an NVIDIA Titan V GPU (5120 core), and using a single thread on an Intel Core i7-6850K

for Central Processing Unit (CPU)-based aspects of the simulation.

Figures 4.8 to 4.10 show the average simulation time for 3 repetitions of each simulation.

These figures expand upon the input flow experiment results for the CPU, all-to-all GPU and

spatially partitioned GPU results from Section 3.5.2, with the addition of the graph-based

communication simulation times shown by the dashed pink series. All three figures show that

the graph-based messaging strategy shows a significant reduction in simulation time compared to

the reference CPU results, and to the alternate communication patterns used. The relationship

between the input flow per edge and total simulation time is also improved, with a shallower

gradient maintaining the performance advantage of the GPU implementation as the density

of the problem increases. The fixed-size network simulations with a grid size of 64, the GPU

accelerated simulations using graph based communication shows average speed-ups of between

2.2x and 6.7x compared to Aimsun 8.1. Graph communication speed-ups of between 8.0x and

13.9x are shown for a grid size of 128, and between 25.0x and 31.6x for a grid size of 256.

Comparing the communication strategies, graph-based communication shows speed-ups of

between 1.5x and 12.7x compared to all-to-all partitioned across the three grid-scales, and

between 1.5x and 65.3x compared to all-to-all partitioning across all 3 selected grid sizes on an

NVIDIA Titan V GPU. This demonstrates that the communication strategy has a significant

impact on the overall performance of the simulations, especially for larger-scale simulations.

4.5.2.1 Per-Iteration Runtime

The per-iteration run-time of the simulations can provide further insight into the relative perfor-

mance difference between simulation implementations, as previously examined in Section 4.5.2.1.

Figure 4.11 shows this for simulations with a grid-size of 128. CPU and spatially partitioned

GPU results are repeated from figure figure 3.14, with additional results using the graph-based

communication strategy executed using an NVIDIA Titan V GPU. The new graph-based GPU

results (pink) show the greatly reduced per-iteration runtime compared to both the Aimsun 8.1

and FLAME GPU results, with a slow rate of increase in per iteration runtime as the simulation

progresses and vehicle population increases. The per-iteration runtime is initially comparable to

the other GPU results. As the simulation progresses and the population within the simulation

grows, the previously dominant cost of message iteration is reduced due to the more efficient

access to the potentially relevant messages. The upper bound of population for this grid-scale

and input-flow combination is 128, 000 agents, as such the effects of over-subscription of the

GPU are not seen in this figure, as the Titan V GPU supports up to 168,000 resident threads.

If the device were over-subscribed there would be a change in gradient once over-subscription

is achieved.
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Figure 4.8: Total simulation time against input flow for a procedurally generated road network of grid
size 64. Run times shown are the average from 3 repetitions. A logarithmic scale is used for the y axis.
The results shown include the reference CPU simulator, Aimsun 8.1, executed on an i7-4770k (purple);
and the results from FLAME GPU executed on an NVIDIA Titan V GPU using all-to-all (orange),
spatial (green) and graph-based (pink) communication strategies.

4.5.2.2 Kernel-Level Benchmarking

Further insight into the effectiveness of this communication pattern can be gained by viewing

the performance of kernels executed on the GPU which make up an individual agent behaviour.

By looking at the individual steps, rather than the total time of the simulation or the time

of a specific behaviour, the relative effects on message output and input can be evaluated for

each communication technique. In this case, the agent functions involved in the agent following

model for vehicles on sections of road were profiled to capture performance of the relevant

kernels.

The average time taken by the agent function which involves message output is shown in

Figure 4.12a, including the time required to construct the message list data structures. This

demonstrates that all-to-all communication has the lowest overhead cost for message output,

whilst the new graph-based communication strategy has the highest overhead cost. The higher

overhead costs of the graph-based communication strategy is expected, as the data structure

required to efficiently access graph-based messages is finer-grained than required for the spatially

partitioned approach using an appropriate radius. This leads to a longer running scan operation

due to the greater the number of elements.

Figure 4.12b shows the average runtime of the GPU kernel which implements Gipps’ car
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Figure 4.9: Total simulation time against input flow for a procedurally generated road network of grid
size 128. Run times shown are the average from 3 repetitions. A logarithmic scale is used for the y axis.
The results shown include the reference CPU simulator, Aimsun 8.1, executed on an i7-4770k (purple);
and the results from FLAME GPU executed on an NVIDIA Titan V GPU using all-to-all (orange),
spatial (green) and graph-based (pink) communication strategies.

following model. This shows the significant reduction in runtime from the graph-based com-

munication strategy compared to the alternate approaches. The magnitude of the runtime is

important, as the time taken by this kernel, iterating the message lists, is significantly greater

than required to output messages. The improvement for graph-based communication vastly

overcomes the additional overhead cost of message output, resulting in a significant overall

improvement of performance. The larger reduction in message iteration time is expected, due

to the increased granularity of the message lists, and therefore improved work-efficiency when

finding the required information.

4.6 Summary

This chapter has expanded on the work Chapter 3 to improve the performance of GPU accel-

erated road network microsimulations through improvements to the work-efficiency of commu-

nication between parallel agents when using message-list based communication, as in FLAME

GPU. A method of specialising the communication pattern such that the messages of a message

list are associated with an element of the graph is proposed, forming Contribution C2. By

associating messages with elements of the graph, less messages must be iterated to find the

required information for road network behavioural models such as car following, lane changing
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Figure 4.10: Total simulation time against input flow for a procedurally generated road network of grid
size 256. Run times shown are the average from 3 repetitions. A logarithmic scale is used for the y axis.
The results shown include the reference CPU simulator, Aimsun 8.1, executed on an i7-4770k (purple);
and the results from FLAME GPU executed on an NVIDIA Titan V GPU using all-to-all (orange),
spatial (green) and graph-based (pink) communication strategies.

or gap avoidance. This method has higher overhead costs in constructing the fine-grained data

structure required to access the appropriate messages, but this cost is negligible compared to the

potential improvements during message iteration. This proposed strategy is embedded within

the FLAME GPU simulation environment, as of version 1.5.0.

An benchmark ABM is proposed within Section 4.4, to support the evaluation of this com-

munication strategy isolated from the complex behaviours of road network simulations. This

model is then used to benchmark and evaluate the performance of the communication pattern,

demonstrating significant improvements in work-efficiency and performance, and providing Con-

tribution C3 of this thesis.

Subsequently, Contribution C4 is achieved by applying this new communication strategy to

the road network microsimulation model from Chapter 3, and demonstrated by the reapplication

of the benchmark experiments shown previously. The largest simulation executed using both the

CPU simulator (Aimsun 8.1) and the FLAME GPU based simulations, a one-hour simulation

containing up to 512, 000 vehicles and 1, 575, 936 detectors, shows a maximum speed-up of

67.7x for the GPU accelerated simulation using graph-based communication, with a RTR of

44.7 compared to 0.67 on the CPU. The communication strategy was significant in achieving

this level of performance, with the graph-based communication strategy out-performing the
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Figure 4.11: Per-Iteration simulation time for a model with grid size 128 and input flow 500 vehicles
per hour. Executed using Aimsun 8.1 (purple) on an i7 4770k and using the FLAME GPU implementa-
tions with Spatially Partitioned communication (green) and Graph-based communication (pink) on an
NVIDIA Titan V GPU.

spatially-partitioned messaging implementation by up to 62x. The scaling behaviour of the

graph-based communication is also greatly improved, compared to both CPU and alternate

GPU implementations. The largest simulation of 576, 000 vehicles and 1, 994, 112 detectors

completing in 68% of the time of a much smaller (up to 32, 000 vehicles and 6, 336 detectors)

simulation in Aimsun 8.1.

The impact of GPU accelerated simulation has been shown to provide significant perfor-

mance improvements to microsimulation of transportation systems. In order to understand the

broader implications of how this may effect a modellers choice of simulation approach, the im-

pact of GPUs on other modelling and simulation approaches, such as macroscopic simulation,

must also be considered. This is the topic of the next chapter.
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(a) Message output for each communication strategy,
including data structure construction costs.
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(b) Performance of message input and execution of the
car following model behaviour.

Figure 4.12: The impact of FLAME GPU communication specialisation on the performance of the Car
Following Model implementation can be separated into the cost of the message output and the message
iteration within the car following agent function.
FLAME GPU was modified to accurately record the cost of each process, and the average of three
repetitions at each scale is shown. The simulations were executed on an NVIDIA TITAN X (Pascal)
GPU.
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Chapter 5

GPU Accelerated Macroscopic
Assignment and Simulation

5.1 Introduction

Macroscopic transport network simulations are typically used for the design of transport systems

or changes to infrastructure, rather than active management. The insight gained from the

simulations inform the decision making process regarding improvements to facilitate the ever-

increasing demand on our transport networks, including the optimisation of dynamic control

systems [247], [248].

From a simulation perspective, macroscopic simulations are top-down, used to accurately

model the flow of transport through a network with a high level of abstraction. This high

level of abstraction results in lower computational and data demands compared to alternate,

higher resolution techniques. Although computational demands may be lower than alternate

approaches, large-scale simulations still take considerable lengths of time to run per simula-

tion. Multiple simulations are often required, for example when evaluating different transport

network configurations, evaluating schemes at multiple levels of demand or for scenarios with

different weather conditions. The effectiveness of these simulations can be reduced by these

computational constraints, as practitioners are restricted in the quantity, variety and scale of

simulations which can be completed within the duration of a design cycle [14].

To reduce the run-time of these macroscopic simulations, and enable a greater number of

simulations to be completed within a design cycle, greater levels of parallelism must be achieved

both within individual simulations and across multiple simulations. Current state of the art

for macroscopic modelling and simulation leverage multi-core Central Processing Units (CPUs)

to improve simulator performance [234], [238], but there are limits on the degree of parallelism

available and the performance scaling as additional processing cores are used [237], [249]. An

alternate approach is to use many-core processors such as Graphics Processing Units (GPUs),
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which offer significantly higher degrees of parallelism and improved performance characteristics,

however, it can be challenging to exploit the massively-parallel nature of GPUs. Algorithms

and data structures used within applications used within multi-core CPU transport simulation

must be replaced with alternatives which can leverage the highly-parallel hardware. Chapters 3

and 4 have shown that GPUs can be applied to road network modelling and simulation when

using a microscopic approach via fine-grained data-parallelism, however, these chapters also

showed that there are architectural and algorithmic difficulties in the application of data paral-

lelism to simulation which must be carefully considered. For instance, as presented previously

in section 2.1.3, road networks are typically represented by directed weighted graphs within

macroscopic road network modelling and simulation. Directed graphs are made up of a set

of vertices, with edges forming one-way connections between two vertices. In weighted graphs

each edge has an associated cost. Road network graphs often contain zones (also known as cen-

troids), which are a special class of vertex within the graph, used as a mechanism to associate

demand data with the road network. Graphs representing transport networks typically have a

low average degree and therefore low density with large diameters. These characteristics play

an important part in algorithm selection and performance.

Macroscopic road network simulations are often multi-stage processes, which use an iterative

process involving the assignment of transport demand onto a road network, followed by a

coarse-grained simulation of the road network, which is repeated until some convergence criteria

have been met. The assignment phase involves the selection of routes for journeys from an

Origin-Destination (OD) matrix onto the road network. The simulation phase then applies the

assigned journeys to predict the status of the transport network given the assigned demand.

The assignment portion of this iterative process can dominate the simulation run-times.

This chapter presents two main contributions. Contribution C5 is the proposal of a highly-

parallel algorithm for concurrently finding the shortest paths through a network from multiple

origin vertices - an Many Source Shortest Path (MSSP) algorithm. Unlike existing state of the

art GPU accelerated Single Source Shortest Path (SSSP) algorithms [225], [229], [250] which

optimise for dense graphs such as social networks, the MSSP algorithm optimises for sparse,

high-diameter graphs characteristic of transport networks. To demonstrate the performance

impact of the algorithm on macroscopic road network modelling, it is embedded within the

Simulation and Assignment of Traffic to Urban Road Networks (SATURN) transport simu-

lation software suite, with the objective of reducing the run-time for large scale macroscopic

simulations compared to the existing, highly-optimised multi-core CPU solution. SATURN is a

macroscopic assignment and simulation package used for the analysis and evaluation of traffic

management schemes [235], used for a broad range of tasks within the transport modelling sec-

tor including large-scale regional models of the UK [239]. Embedding the proposed data parallel

approach within the SATURN software suite ensures that the performance results reported can
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be conceptualised with real world examples rather than abstract, theoretical benchmarks. This

evaluation within a macroscopic simulation suite widely used within the UK, using real-world

networks provides Contribution C6 of this thesis.

This chapter is organised as follows. Section 5.2 describes the macroscopic assignment and

simulation process within SATURN, focussing on the performance limiting algorithms. Sec-

tion 5.3 presents a set of real-world benchmark road network models of various scales which

are used to evaluate the performance of alternate macroscopic road network assignment and

simulation implementations throughout this chapter. Section 5.4 describes the novel MSSP

algorithm offers improved GPU performance over highly efficient serial SSSP implementations

on the CPU, and advances the state of shortest path calculations on the GPU for sparse graphs.

Section 5.5 provides details of a novel GPU algorithms which make use of the many shortest

routes through a transport network during the assignment process, when embedded within a ma-

jor commercial macroscopic road network simulation tool. Details of how this may be achieved

using multiple GPUs is provided by section 5.6. Section 5.7 discusses the cross-validation of the

GPU implementation against the existing CPU-based macroscopic road network assignment

and simulation model. Section 5.8 discusses the benchmark methodology and provides the

results and a discussion of the benchmarking of the GPU accelerated version of SATURN using

real-world road networks, leveraging the advancements described in previous sections to offer

improved performance and reduced runtime compared to the existing multi-core CPU-based

implementation. Section 5.9 concludes the chapter.

5.2 SATURN

SATURN is a software suite for the analysis and evaluation of traffic management schemes [235].

It was originally developed in 1982 by the Institute for Transport Studies at the University

of Leeds as a combined simulation-assignment model. More recently, it has been extended

for “pure junction simulation” and “conventional traffic assignment model, with or without

simulation” [202]. The SATURN suite contains many applications for different steps in the

traffic management scheme evaluation process. SATALL is the main application when used as

a combined assignment-simulator model. The SATURN user manual [202] describes the broad

range of metrics which can be used during the evaluation of a transport scheme.

SATURN currently leverages multi-core CPU parallelism to increase simulator performance,

and decrease the time taken for simulations to complete. This is characteristic of other macro-

scopic assignment and simulation tools, as discussed in section 2.4.1. The commercially-available

multi-core implementation of SATALL uses OpenMP [95] to provide task-level parallelism and

coarsely-grained data parallelism, using the multiple processor cores to solve a small number

of independent tasks concurrently within key portions of the application. The serial version of
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SATURN is compiled using the Silverfrost Fortran Compiler [251], whilst the multi-core portion

of the parallel implementation is compiled using the Intel Fortran compiler [252].

In order to produce a GPU accelerated implementation of the algorithm implemented within

SATALL, the overall process and performance characteristics must first be understood. Fig-

ure 5.1 shows the assignment-simulation loop used within SATURN. It uses the Frank-Wolfe

algorithm [191] to iteratively converge on a stable state of road network assignment, follow-

ing Wardrop’s principal of traffic equilibrium [190]. Wardrop’s principal states that traffic will

settle down into an equilibrium where no driver can reduce their journey time by choosing an

alternate route. Within this chapter, SATURN version 11.3 is used.

Figure 5.1: The assignment-simulation loop within SATURN [235]

Before applying the convergent assignment-simulation loop, the data used can be prepared

to improve the performance of algorithms within the iterative process without impacting the

results of the simulation. For instance, the density, diameter and average degree of a graph may

influence the performance of algorithms which operate over the graph. As transport networks

are typically very sparse graphs with large diameters, it is often beneficial to attempt to find an

alternate representation of the network which modifies these properties. Contraction hierarchies

[199] (previously discussed in Chapter 2) can be used to generate a denser representation of a

graph, which can be used within key algorithms, and the results mapped back onto the original,

sparse representation. Within SATURN the denser representation of the transport network is

known as a SPIDER network [198]. The application of the contraction hierarchy involves the

modification of the network graph, replacing chains of directly connected edges into a single

edge between the origin vertex of the original edge, and the destination vertex of the final edge.

The weight of the new edge is aggregated from the weights of the original edges. Essentially

shortcuts are created, with a single edge representing a chain of several real edges. If all of the

routes which involve a node have been replaced by shortcuts, then for the purposes of assignment

the vertex can be removed along with the associated edges. This has the effect of reducing the

number of vertices in the graph (and likely edges) resulting in a denser representation, with a

smaller diameter. This is a 1:1 mapping, so the results of an assignment or simulation of a denser

representation can be directly mapped back on to the original network. Contraction hierarchies

have previously been shown to offer significant performance advancements when applied graph
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Subroutine CPU Time (seconds) Proportion of Total (%)
A 39337.91 97.39
B 135.98 0.34
C 107.59 0.27
D 58.09 0.14
E 57.77 0.14
F 55.59 0.14

Table 5.1: Serial Fortran per-routine run-time performance for large real-world benchmark model (5194
zones) sorted by time. The six longest-running routines are shown but with the mangled subroutine
names removed. The most time consuming subroutine A is a key subroutine called within the assignment
phase of the assignment simulation loop. This subroutine finds the flow of vehicles per edge in the
network, based on the origin-destination information and the state of the network from the previous
assignment-simulation loop.

algorithms such as shortest path calculations [199]–[201].

Upon profiling of the serial implementation of SATALL using a large scale real-world net-

work, with typical parameters, a single subroutine is highlighted as accounting for over 97% of a

12 hour runtime (see Table 5.1 for the runtime of the top 6 subroutines). This clearly highlights

the area of the application where the majority of the application time is spent, and identifies this

area as a candidate for potential GPU optimisation. The subroutine in question, A, corresponds

to part of the assignment phase of the assignment-simulation loop. It involves the calculation

of the flow of vehicles per edge within the network, given some demand information and the

current time taken to traverse each edge within the network, from the previous iteration of

the assignment-simulation loop. This process is performed for each user-class within the model

(where a user-class is a category of vehicle such as car, motorcycle, Light Goods Vehicle (LGV)

or Heavy Goods Vehicle (HGV)) with different demand information and network costs for each

user-class.

The per-user-class process can be further divided into two algorithmic processes: (i) Shortest

Path Calculation and (ii) Flow Accumulation. First the shortest path between a pair of zones

(origin or destination within the demand matrix, represented by virtual vertices) is found using

an SSSP algorithm. This is followed by the accumulation of vehicle flow for each edge in the

selected route. In the serial implementation, the shortest path calculations account for 95% of

the subroutine runtime (92% of the total runtime). The overall process for assigning demand

to a network as flow is shown in algorithm 4.

Section 5.2.1 and section 5.2.2 describe the respective algorithms in more detail.

5.2.1 Shortest Path Calculations

The sequential and multi-core implementations of SATALL make use of the D’Esopo-Pape SSSP

algorithm [212] to find the routes between a single origin zone and all other vertices (including

zones). D’Esopo-Pape is a work-efficient but highly sequential algorithm. This makes it well-
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Algorithm 4 Existing Serial SATALL algorithm
Input: Graph G with Z zones,

UC User classes,
Origin-Destination Matrix OD of dimensions Z by Z

Output: Flow per edge in G, F
1: for each User-Class do
2: for origin zone o ∈ {1, ...Z} do
3: paths ← call CalculatePaths(o,G,OD)
4: for destination zone d ∈ {1, ...Z} do
5: F (o, d)← call AccumulateFlow(d, o, paths, G,OD)
6: end for
7: end for
8: call AggregateAndPostProcessFlowData(F )
9: end for

suited to sequential or task-parallel approaches, but not appropriate for implementation using

data-parallelism.

The D’Esopo-Pape algorithm was selected for implementation within SATURN as it out-

performed other SSSP implementations at the time of development for the scale of network

being simulated at the time [198]. The algorithm is shown and described within the litera-

ture review in section 2.4.2.1. An alternative work-efficient SSSP algorithm which may offer

increased CPU performance is Dijkstra’s algorithm [215], described in section 2.4.2.1. The most

performant variant of Dijkstra’s algorithm uses a Fibbonaci Heap [216]. This is asymptotically

the most efficient serial SSSP algorithm. However, the scale of improvement offered would

likely be relatively small, as shown in literature comparing SSSP implementations [223], and

any performance improvement would also be highly dependent on the network in question [221].

An alternative to using an SSSP algorithm would be to use an All Pairs Shortest Path

(APSP) algorithm, as presented in section 2.4.2.2. However, this would be highly inefficient as

the assignment process only requires the shortest paths between the zones within the network,

rather than paths between all vertices. As the number of zones is typically only a small pro-

portion of the number of vertices within the network, even after contraction hierarchies have

been used to create a denser representation, many unnecessary paths would be found by APSP

algorithms. This would require additional compute resources, but more significantly increased

memory resources to calculate and store the additional routes and costs. As such this class of

algorithm were dismissed, for the case where paths from “many” but not all origins are required.

Instead a novel data-parallel shortest path algorithm to find the paths from many origins, based

on the Bellman-Ford SSSP algorithm is proposed in section 5.4.
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5.2.2 Flow Accumulation

The calculated shortest paths through the road network are used to map vehicle flow onto

the transport network from the origin-destination matrix. The sequential algorithm, used in

the serial and task-parallel multi-core implementations of SATURN, is straight-forward and

performs relatively well, as described in Algorithm 5. For a given origin zone, this algorithm

iterates the destination zones within the matrix, determines if the origin and zone are connected,

and if so traces the route along the shortest path from the destination zone back to the origin.

As each edge is encountered, the trip cost for the origin-destination pair is accumulated onto

the total flow assigned to that edge.

Algorithm 5 Sequential Flow Accumulation
Input:

Z is the number of zones,
G is Graph,
O is origin zone,
P are Shortest paths from all zones,
OD is Origin-Destination Matrix of dimensions Z by Z F is Flow per edge in G, from the
previous Origin

Output:
F is Flow per edge in G

1: for destination zone d ∈ {1, ...Z} do
2: f ← OD(O, d)
3: e← call PredecessorEdgeFromVertex(O, d, P,G)
4: while e < |GE | do
5: F (e)← F (e) + f
6: v, v′ ← e
7: e← call PredecessorEdgeFromVertex(o, v, P,G)
8: end while
9: end for

5.3 Real-World Benchmark Models

To evaluate the performance impact of using alternate or novel algorithms within SATURN,

executed on different hardware architectures, a set of benchmark road networks are required.

Rather than use a set of procedurally generated models to benchmark the algorithmic perfor-

mance, a set of real-world networks in use within the UK were used as benchmark models,

ranging from very small town-scale models to large region-scale models including metropolitan

areas. Table 5.2 provides relevant properties of the networks, including the number of user

classes, number of zones, as well as the vertex and edge counts for both original and spider

representations of the network. The Epsom model is a very small model provided as an exam-

ple within the SATURN suite, modelling a town within Surrey in England. The second model,

Derby is a model of the city of Derby, England. The CLoHAM (Central London Highway

98



Original Spider
Network User Classes Zones Vertices Edges Vertices Edges
Epsom 2 12 89 130 17 74
Derby 13 547 19044 29081 2700 25385
CLoHAM 5 2548 80609 147481 15179 132600
LoHAM 5 5194 129330 196546 18427 192711

Table 5.2: Properties of the real-world SATURN networks used during development and benchmarking.
The number of vertices and edges are shown for both the original and Spider (contraction hierarchy)
variants.

Assignment Model) and LoHAM (London Highway Assignment Model) models are strategic

models for motorised trips using London’s highway network, developed by Transport for Lon-

don (TfL) [253], [254]. The properties of these real-world networks in table 5.2 demonstrate

the low density which is characteristic of road network graphs, for instance the largest network,

LoHAM, has a density of 1.18× 10−5 in it’s original form and a density of 5.68× 10−4 using the

denser SPIDER representation.

The smallest model, Epsom, contains only 12 zones, 89 vertices and 170 edges in the original

representation, making it a very small network. As such it is too small to justify GPU execution

and is excluded from performance related figures and tables.

5.4 GPU Many Source Shortest Path for Sparse Graphs

Within an iteration of the assignment-simulation loop of SATURN, the shortest paths must

be calculated between each origin and destination zone, for each user class within the simula-

tion. Each user-class can be treated as a separate independent process for the shortest path

computation, although multiple user-classes can be processed concurrently on a single GPU.

The proposed shortest path algorithm is based on the Bellman-Ford SSSP algorithm [213],

but heavily modified to improve performance for low-density, high-diameter graphs character-

istic of road networks. The most significant conceptual change compared to the traditional

Bellman-Ford algorithm is that the algorithm solves the shortest path problem for multiple

origin vertices concurrently, rather than only a single source vertex, i.e. it is a MSSP algo-

rithm. Furthermore, unlike APSP algorithms it does not necessarily solve for all origins either

(although it could be used to do so). For the LoHAM network, the MSSP algorithm operating

over all origin zones will find 28% of possible shortest paths within the graph when using the

denser SPIDER representation, or only 4% of the shortest paths using the un-modified graph.

This is a substantial reduction in work-load and storage compared to an APSP algorithm.

As detailed in section 2.4.2.1, the core Bellman-Ford algorithm is a relaxation-based algo-

rithm, which iteratively refines approximations of the shortest paths between the origin vertex

and all other vertices until the minimal-cost paths are found. At each iteration, each edge within
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the graph is considered for relaxation. If the edge can result in a lower cumulative cost from

the origin to destination vertex of the edge, the estimate of cost and edge used are updated for

the destination vertex. This is repeated for |V | − 1 iterations, ensuring that all shortest paths

have been found.

Several of the common modifications to the Bellman-Ford algorithm are included to improve

the work-efficiency of the algorithm when considering a single source. Firstly, early-termination

of the algorithm can be achieved in most cases, by detecting if any changes have been made dur-

ing the iteration. The algorithm can be terminated when no changes occur within an iteration

[224].

The work-load can further be reduced using the vertex-frontier (VF) approach [225], [226].

The vertex frontier approach is based on the fact that during the first iteration of the Bellman-

Ford algorithm, only edges which leave the origin vertex will be relaxed successfully. In subse-

quent iterations, only edges leaving vertices which were updated during the previous iteration

will be relaxed. By tracking the vertices which were updated by relaxations in a given iteration,

within the vertex frontier, the work-efficiency can be improved as fewer edges are be considered

at each iteration. The vertex frontier must be initialised to contain the origin vertex, and the

iterative process can stop once the vertex frontier is empty. For instance, Figure 5.2 shows a

simple graph containing 9 vertices and 10 edges which can be used to demonstrate the use of

the vertex-frontier based approach. Figure 5.3 shows the contents of the vertex frontier at each

iteration of the algorithm when finding the routes from origin vertex a. The vertex frontier

is initialised to only contain the origin vertex a. During the first iteration, each edge leaving

vertex a is relaxed, resulting in updated route costs for vertices b, c and d, which are stored in

the vertex frontier for the second iteration of the algorithm. In the second iteration, the three

edges leaving vertices in the frontier are relaxed, resulting in three updated cumulative costs

estimates and a new vertex frontier containing vertices e, f and g. The third iteration results

in three new cumulative cost estimates, but the frontier only contains the elements h and i as

there is no need to store the same element (i) multiple times. Subsequently, the fourth iteration

results in a single update and a new frontier of a single element, followed by an empty frontier

at the end of fifth iteration. As the frontier is now empty, there is no more work to be done

and all shortest paths from the origin vertex a have been found.

Graphs representing transport networks are typically very sparse, with low-density and high-

diameter. This results in relatively small vertex frontiers, especially during early iterations as

the frontier is growing, and during later iterations, due to the high-diameter of road network

graphs. The size of the vertex frontier directly impacts the level of parallelism available within

the algorithm, resulting in under utilisation of modern GPUs. For instance, full occupancy of

the NVIDIA Titan V GPU requires 163, 840 threads when there are no resource constraints

which impact occupancy [79]. This lack of parallelism limits the achieved performance of the
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Figure 5.2: A simple example graph to illustrate the use of a vertex-frontier.
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Figure 5.3: The contents of the vertex-frontier for the Bellman-Ford algorithm, for origin vertex a of
the example graph in Figure 5.2

SSSP algorithm implemented for the GPU, achieving reduced performance compared to CPU

implementations of highly work-efficient SSSP algorithms such as Dijkstra’s algorithm.

To address the lack of parallelism within the Bellman-Ford shortest path algorithm when

processing sparse road networks, and given that the paths from many source vertices are required

within road network assignment, a novel modification to the vertex-frontier based Bellman-Ford

algorithm is proposed. The Origin-Vertex Frontier (OVF) is an extension to the Vertex-Frontier

concept. Each element within the OVF contains both the recently updated vertex, and the origin

which it corresponds to as a pair. The algorithm using the origin-vertex frontier is similar to the

simpler vertex-frontier based algorithm. The OVF is initialised to contain the origin vertex for

each origin being considered. While the OVF is not empty, the edges which leave each element

of the OVF are relaxed, with updated origin-vertex pairs being stored within the next OVF.

Once the OVF is empty, all shortest paths for the set of origin vertices have been found. This

switch from an SSSP algorithm to MSSP algorithm via the OVF forms Contribution C5 of this

thesis.

For instance, using the graph from the previous example (figure 5.2) to find the paths from

origin vertices a and b, the OVF would be initialised as (a, a), (b, b). Figure 5.4 illustrates

the contents of the OVF as the iterative algorithm progresses. After the first iteration, the

OVF would include origin-vertex pairs corresponding to updates caused by edges leaving (a,a)
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Figure 5.4: The contents of the origin-vertex-frontier within the the MSSP algorithm, for origin vertices
a and b of the example graph in Figure 5.2
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Figure 5.5: The size of the vertex-frontier and origin-vertex-frontier at each iteration of the modified
Bellman-Ford algorithm for the LoHAM large road network, containing 5194 zones. The frontier size is
shown for a single origin vertex and for all 5194 origin vertices.

and (b,b), resulting in a new origin-vertex frontier of (a, b), (a, c), (a, d), (b, e).

Following a further iteration the OVF would contain (a, e), (a, f), (a, g), (b, h), and

so on until the OVF is empty.

This can cause a significant increase in the size of the frontier (if sufficient numbers of origins

are being considered), and therefore parallelism exposed to the GPU’s many processing cores.

Figure 5.5 shows both the vertex-frontier for a single origin, and the origin-vertex-frontier for the

largest real-world road network being considered, LoHAM, for all 5194 origin zones. The OVF

for 5194 origins is significantly larger than the single origin VF, indicated by the significantly

different scale of the y-axis. The OVF is sorted by both origin index and vertex index at each

iteration. This is a key optimisation to ensure good utilisation of memory bandwidth and cache

efficiency by maximising the likelihood of memory coalescence by improving data locality.

For the GPU implementation of this algorithm, other implementation-specific factors are

also considered. Within the road network graph the degree of vertices varies over a small range.

This can result in an imbalanced work-load if each thread considers a single vertex, as threads

will process different numbers of edges. This can have a negative impact on performance on

Single-Instruction-Multiple-Thread (SIMT) architectures, as some threads (and warps) will be

idle whilst higher-degree vertices are still being processed.
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Figure 5.6: The load-balancing effect of the cooperative thread array for 28 edges distributed across 8
threads. The imbalance of work has been minimised from a maximum divergence of 7 edges to a single
edge.

Further improvements to performance can be found by using a Cooperative Thread Array

(CTA)[255] to balance the workload between threads. Vertices in the OVF may have differing

degrees to one another. If individual threads process all edges which leave the vertex, then

divergence will occur based on the degree of the vertex being processed. This can be balanced

using a CTA, so that each thread processes a fair share of the edges within the block of threads,

reducing divergence within the block. The cooperative group of threads must first find the total

number of edges they are collaborating on, based on the number of edges leaving each vertex

assigned to the block of threads, storing this in low-latency shared-memory. Once this is known,

each thread can then access a single edge from the pool of edges to relax. This can be efficiently

implemented using a binary search. Threads will iteratively process a single edge from the pool,

until all edges for the block have been processed. Figure 5.6 illustrates this load balancing

approach. Figure 5.6a shows the work-balance (and approximate run-time) per thread for an

example case with imbalance. When using a CTA, the variance in edges processed per thread is

reduced, as illustrated by figure 5.6b. In this case the imbalanced is reduced, with neighbouring

edges performing the same amount of work. When scaled up to a full block made up of multiple

warps, this resolves imbalance within warps, whilst also minimising divergence between warps.

Using the CTA does impose some additional cost in both compute and memory bandwidth,

however, the overhead costs are not significant compared to the improvements gained through

the reduction in divergence.

Algorithm 6 details the multiple source shortest path algorithm, based on the Bellman

Ford algorithm. In the data-parallel implementation of this algorithm, a single GPU kernel is

executed to initialise the result arrays (lines 5-14), reducing kernel launch overhead. The for loop

used to initialise the origin vertex frontier OV F , lines 15-17, and the per-OVF element for loop,
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lines 20-32, are also parallelised using CUDA kernels. The inner while-loop used to process edges

leaving vertices in the OVF (lines 21-31) is implemented using a CTA. This is implemented using

shared memory within a block of threads. A binary search is used to select the next edge from

shared memory to load-balance the non-uniform degree of vertices within the graph. A single

atomic transaction is used to update the results arrays on lines 25-26 to avoid race conditions.

Atomic operations have higher latency than non-atomic global memory operations, as the read-

modify-write operation includes the latency of two global memory operations. The latency

can also be compounded by the serialisation of atomic memory operations to the same address

by competing threads (atomic contention). For recent NVIDIA architectures, the additional

latency compared to non-atomic operations has been measured in the order of 10s of cycles for

up to 32 contentious operations [256]. Although the additional latency from the use of atomic

operations is not ideal, it is less-impactful than alternative methods of avoiding race conditions.

5.5 GPU Flow Accumulation

Within the CPU implementation, the flow accumulation algorithm is relatively simple with an

insignificant impact on runtime compared to the shortest path calculations. However, with the

GPU implementation of the shortest path calculation, the cost of transferring the shortest path

results to the host for serial computation (or parallel CPU-based computation) takes a relatively

large amount of time, potentially offsetting any benefit of computing the shortest path results

on the GPU. As such it is preferable to minimise the costly device to host memory transfers,

and consider a GPU implementation of the flow accumulation process, as the volume of data

which must be transferred after this process is much smaller than that produced during the

shortest path calculation phase. In some use-cases however, such as select link analysis, the

data must be transferred back to the host. This will typically only occur once the simulation

has converged, in which case the impact on performance is less significant.

As described in section 5.2.2, the flow accumulation process traces routes from each desti-

nation zone back to each origin zone in the OD matrix, adding the demand on to each edge of

the route. For a parallel implementation, care is required when writing to the shared results

array, which for a many-core GPU can be achieved using atomic addition.

For the purposes of SATURN, double-precision floating point numbers are used for trip costs

and edge-flow values, as a large range of demand values can be used and the accumulation of

these values can result in a loss of value if lower precision numbers are used.

Algorithm 7 describes a relatively naive approach to accumulate these flow values in parallel.

Each trip from the origin-destination matrix (for each user-class) is handled by an individual

CUDA thread. Each CUDA thread follows the route from the destination, back to the origin one

edge at a time. As each edge is visited, the flow value for the trip is added to the flow value for
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Algorithm 6 Many Source Shortest Path (MSSP) algorithm based on the Bellman-Ford algo-
rithm, using an Origin-Vertex Frontier for execution on SIMT architectures.
Input:

V is the number of vertices,
E is the number of edges,
Z is the number of zones,
G is Graph with edge costs C,
OD is Origin-Destination Matrix of dimensions Z by Z

Output:
BE is Back-Edge array containing one element per vertex per origin,
BC is Back-Cost array containing one element per vertex per origin

1: Let OVF be the Origin-Vertex Frontier, a set of origin-vertex pairs
2: Let NF be the Next Origin-Vertex Frontier, a set of origin-vertex pairs

{Initialise the frontiers to empty}
3: OVF ← ∅
4: NF ← ∅

{Initialise the Back-Edge and Back-Cost arrays, using one thread per array element}
5: for each idx ← 1 to V × Z do
6: Let v ← idx ÷ Z
7: Let o← idx mod Z
8: if o = v then
9: BC (o, v)← 0.0

10: else
11: BC (o, v)←∞
12: end if
13: BE (o, v)← |GE |+ 1
14: end for

{Initialise the origin-vertex frontier with one element per zone}
15: for each idx ← 1 to Z do
16: OVF .append({idx , idx})
17: end for

{While the origin-vertex frontier is not empty, iterate the bellman-ford algorithm}
18: while OVF 6= ∅ do
19: NF ← ∅

{For each element of the origin vertex frontier, using 1 thread per element}
20: for each idx ← |OVF | do

{Co-operatively select an edge from the pool of vertex-frontier edges}
21: while e← edgeFromCooperativePool(idx ) do
22: v, v′ ← e {Source and destination vertices from edge}
23: c← C(e) {Cost of edge}

{If the edge results in a lower cost to the vertex, atomically update}
24: if BC (v) + c < BC(v′) then
25: BC (v′)← BC (v) + c
26: BE (v′)← e

{If the next vertex is not a zone, insert into the next frontier}
27: if v′ > Z then
28: NF .append({o, v′})
29: end if
30: end if
31: end while
32: end for
33: end while
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the edge (stored in global memory) using an atomic operation to avoid any race conditions. Due

to the characteristics of road networks which typically contain trunk roads such as motorways

or A roads, which many routes will traverse, this can lead to very high atomic contention for

certain elements of the edge-flow array. This can result in a loss of performance, especially on

older GPUs (Maxwell generation and older) which do not have a hardware-level instruction for

atomic addition of double-precision floating point numbers.

Algorithm 7 GPU Flow Accumulation using double-precision atomic addition. This is suitable
for Pascal-generation Nvidia GPUs and newer.
Input:

Z is the number of zones,
G is Graph,
P are Shortest paths from all zones,
OD is Origin-Destination Matrix of dimensions Z by Z

Output:
F is Flow per edge in G
{For each trip in the matrix, in parallel using one thread per trip}

1: for each trip t from origin o to destination d in OD do
2: f ← OD(t)
3: e← call PredecessorEdgeFromVertex(o, d, P,G)

{While the next edge in the trip is valid, accumulate flow}
4: while e ≤ |GE | do
5: F (e)← F (e) + f {atomic}
6: v, v′ ← e
7: e← call PredecessorEdgeFromVertex(o, v, P,G)
8: end while
9: end for

To improve performance on GPUs which must use a software-based atomic addition op-

eration, a more complex algorithm described in Algorithm 8 can be used which reduces the

number of atomic operations, at the cost of a significant amount of additional work. Following

this approach, an iterative process of sorting and reductions are used to process the routes in

small steps using a frontier-based approach. Initially, a trip-frontier is defined with all valid

trips from the OD matrix. This excludes trips with zero demand, or trips to and from the same

zone. The trip-frontier contains the trip identifier, and the edge which is next to be processed,

initially set to the first edge for that trip. The initial trip-frontier is then sorted by edge, to

enable neighbouring threads to co-operate with one another. While the trip frontier is not

empty, an iterative process is performed tracing one step of the route at a time until all trips

have been completed.

When implemented in parallel for the GPU, a kernel is launched using one thread per trip

in the trip-frontier. Each thread loads the trip cost and next edge for the route from global

memory. Threads within each block then cooperatively perform a block-level reduction of flow

values per edge within the block. The reduced flow value per edge is then atomically added to
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the edge-flow array in global memory, using only a single atomic operation per edge within the

block. In the worst case, this has one atomic operation per thread, but only a single atomic

operation per edge in the best case. Finally, the next trip frontier is sorted by edge, and the

total number of trips counted for the next stage of this iterative process.

Although this achieves the goal of reducing the number of double-precision atomic operations

required, it does so with significant additional costs compared to the previously described more-

naive approach.

Algorithm 8 GPU accelerated flow accumulation algorithm using a reduced number of double-
precision atomic operations. This is suitable for hardware with poor double-precision atomic
addition performance, such as Maxwell and Kepler generation Nvidia GPUs.
Input:

Z is the number of zones,
G is the Graph ,
P are the shortest paths from all zones,
OD is the Origin-Destination Matrix of dimensions Z by Z

Output:
F is the flow per edge in G

1: Let TF be the trip-frontier, a set of trip-edge pairs
2: Let NF be the next trip-frontier, a set of trip-edge pairs
3: Let BLF be local flow value within shared memory at the block level {Initialise the trip-

frontier TF with all valid trips in the OD matrix}
4: for each trip t from origin o to destination d in OD do
5: e← call get-edge-from-path(o, d, P,G)
6: if e ≤ |GE | then
7: TF .append({t, e})
8: end if
9: end for

{Sort the trip frontier so edges are in the same block of threads}
10: parallel sort TF by e

{Trace each trip in parallel, one edge at a time}
11: while TF 6= ∅ do
12: NF ← ∅ {Reset the next frontier}

{Update the flow for each trip in the frontier}
13: for each (t, e) in TF do
14: f ← OD(t)
15: e′ ← call PredecessorEdgeFromVertex(o, d, P,G)

{Update the next trip frontier if required}
16: if e′ <= |GE | then
17: NF .append({t, e′})
18: end if

{Accumulate flow for edge at the block level}
19: BLF (e)← blockReduce(f)
20: F (e)← F (e) + BLF (e) {atomic}
21: end for
22: parallel sort NF by e
23: TF ← NF
24: end while
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5.6 Multi-GPU Implementation

The GPU accelerated implementation of many-source shortest path has relatively high memory

requirements, both to store the back edges and back edge costs, as well as to store the current and

next origin-vertex frontiers. Combined with the fixed quantity of memory available on a GPU,

this can limit the number of concurrent user-classes which can be processed on a single device

at the same time. Multiple GPUs can be used to combat this, where the GPUs collaboratively

work on the same problem. This increases the total memory available, whilst also increasing

the total compute available, at the cost of complexity in orchestrating the distribution of work

across GPUs.

Within SATURN, and many other transport simulation tools, multiple types of vehicle (user

classes) are considered. Road networks often contain sections of road which are limited to certain

classes of vehicle (i.e. bus lanes), or different rules such as speed limits for different vehicle classes

such as HGVs. This can mean that the shortest path in terms of time from point A to point

B may be different for different user classes, and therefore the shortest path algorithm must be

executed independently for each user class modelled, before results are combined. Effectively,

user-classes form independent chunks of work, each using the MSSP algorithm to compute their

independent shortest paths and impact on vehicle flow within the network during the iteration of

the assignment-simulation loop. These user-classes may be processed concurrently on a single

GPU, or split across multiple devices. This can then be load-balanced so each GPU in the

system is performing approximately the same amount of work. For instance if there are 6 user

classes and 2 GPUs, each GPU can be assigned 3 user classes.

A small additional step is required to accumulate the flows from each device, where the per-

edge flow values from each user-class or each device must be collated, involving some memory

transfer and a per-edge accumulation.

Further load-balancing for imbalanced configurations (such as 5 user classes and 2 GPUs) was

considered. However, when splitting a user-class into smaller units for independent processing,

an additional step is required to combine the independently generated edge-flow values after

flow accumulation has been completed on each segment of work. This result combination step

includes a relatively large memory transfer of data to consolidate the results on a single GPU.

In practice the time required for the additional memory movement and result combination

outweighed the benefits and time saved from the more balanced work load across multiple

GPUs. Subsequently, this approach was dismissed. Alternatively, some degree of multi-device

load balancing may be possible by carefully assigning the user-classes onto devices to balance

the total work performed, although this was not pursued.
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5.7 Validation

To ensure that the performance of the GPU accelerated implementation can be fairly compared

against the existing CPU implementation, the implementation was cross-validated following two

approaches. First, the results of the shortest path algorithm for all origins, and the accumulated

per-edge flow values were captured from the first iteration of the assignment-simulation loop

within the serial CPU version of the SATALL application as a reference case. These results were

then compared directly against the shortest path results and accumulated per-edge flow values

generated by a single iteration of the GPU implementation of SATALL. Secondly, full runs of

the SATALL application were performed, until the convergence parameters of the assignment-

simulation loop were met. The metrics selected for validation were the same as used in the

existing calibration and validation procedure for the LoHAM network [249].

Alternate shortest path algorithms should produce the same cumulative costs as one another

for each vertex within the network (excluding variance from non-commutative floating point

precision operations). However, a given network may have multiple routes between two vertices

with the same cost. In cases where there are multiple equivalent cost routes, different algorithms

may select different routes, subject to the order in which edges are relaxed. Priority queue based

SSSP algorithms (such as Dijkstra’s algorithm or the D’Esopo-pape algorithm used within the

CPU version of SATALL) gain work-efficiency by processing vertices and edges of the graph in

deterministic orders, and therefore may generate alternate routes to one another. In contrast,

the parallel MSSP algorithm for GPUs does not perform relaxations in a specific order within

an iteration of the algorithm, conceptually all relevant edges are processed concurrently at each

iteration, potentially leading to alternate route selection. Additionally, the order of execution

of threads is not guaranteed within the SIMT programming model of NVIDIA GPUs. This can

lead to non-determinism between multiple invocations of the same algorithm even on the same

graph. The iterative nature of the assignment simulation can lead to divergence between runs,

as minor differences in early iterations can compound into larger and larger variations as the

iterations progress, however, as the algorithm is a convergent process the final results should be

equally valid.

The results captured from the isolated shortest path and flow validation were an exact match

for the smaller models of Epsom and Derby. For the larger CLoHAM and LoHAM networks,

discrepancies in the selected shortest path routes were observed, but the cumulative costs of all

routes were correct. This highlighted non-determinism within the MSSP implementation itself,

due to the use of atomic operations when selecting the shortest edge back to a given vertex.

Although the selected paths were correctly shortest paths, determinism is often preferred by

application users to ensure results are reproducible. The MSSP novel algorithm described in

this chapter can be implemented as a deterministic algorithm by using a more complex atomic
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Measure CPU (%) GPU (%) Delta (%)
Links - GEH < 5 64 64 0
Links - GEH < 7.5 78 78 0
Links - DMRB Flow Criteria 74 74 0
Screenline - Flow Difference < 5 90 90 0
Enclosure - Flow Difference < 5 94 96 +2
Mini screenline - GEH < 5 91 91 0
JT Routes - Time Difference < 15 92.1 92.6 +0.5

Table 5.3: Validation metrics for the multi-core CPU and GPU implementations of the LoHAM large-
scale model.

operation when relaxing an edge, which considers both the cost to the vertex, and the index of

the edge used. This may slightly increase the number of iterations required by the algorithm,

but results in deterministic results. The accumulated per-edge flow values, calculated by the

flow-accumulation process based on the shortest paths through the network, showed equivalent

results to the generated reference data when the same shortest paths were provided, with some

floating point variance due to numerical instability and out-of-order execution.

The second validation method of the full SATURN implementation involved the collection

of key metrics from the files generated. Table 5.3 contains the high-level validation results from

the key shows the values of the key metrics for the largest model used, LoHAM, based on the

existing calibration and validation procedure defined for the LoHAM and CLoHAM models

[257]. All metrics fall within 2% of the CPU for the GPU implementation. The GEH statistic,

first proposed by Geoffrey E. Havers [258], allows sets of traffic volumes to be compared. Within

SATALL, when comparing assigned traffic volumes against observed traffic volumes, edges with

GEH values of less than 5 are considered acceptable [202]. This measure is an empirical measure

used within road network simulations, rather than a true statistical test. The DMRB flow

criteria is based on formula from the Design Manual for Roads and Bridges [259], which are

used to evaluate weaving for motorway segments within SATALL [202]. Screenline analysis

metrics fall under the Select Link Analysis feature within SATURN. Screenlines are virtual

boundaries which intersect sections of road. The flow of vehicles across the screenline can be

compared to observed data. The proportion of routes with journey times below a threshold are

also used to evaluate the implementation.

5.8 Benchmark Results

To measure the performance of the parallel MSSP algorithm, a set of benchmark experiments

were performed, using the existing serial CPU implementation, existing multi-core CPU imple-

mentation and the new GPU implementation. Three networks of different scales were bench-

marked, previously described in section 5.3, across a diverse range of hardware. Table 5.4
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CPU GPU
ID Model Cores Freq(GHz) Model Cores Freq(GHz) FP64 Ratio
DC 2x Xeon E5-2667 24 2.9
P i7-6850K 6 3.6 2x Titan Xp 3840 1.405 1:32
V i7-6850K 6 3.6 3x Titan V 5120 1.200 1:2
T i7-6850K 6 3.6 1x Titan RTX 4608 1.350 1:32

Table 5.4: The hardware used to benchmark real-world performance. The FP64:FP32 Ratio column of
the GPU properties describes the ratio of double precision floating point (FP64) units within the GPU
compared to single precision floating point(FP32) units. Most GPU architectures include a relative
low number of FP64 units, as they are often not used for computer graphics applications. For General
Purpose Computing on Graphics Processing Units (GPGPU) codes which may make heavy use of FP64
operations, including the flow-accumulation phase of SATALL, choosing a GPU architecture with a
higher ratio of FP64 units can have a significant impact on performance.

Hardware Implementation Total Runtime (s) Assignment Runtime (s)
Derby CLoHAM LoHAM Derby CLoHAM LoHAM

P Serial 1202.6 11411.5 41591.9 779.6 11154.4 40974.6
P Multi-core (6c) 288.1 1540.5 4992.4 128.5 1282.3 4395.5
DC Multi-core (24c) 361.3 1228.0 3426.1 155.6 893.2 2633.2
P-1 1 GPU 137.3 604.5 1327.5 51.8 455.8 1008.6
V-1 1 GPU 123.9 439.2 903.0 41.8 289.8 584.5
T-1 1 GPU 119.6 447.6 953.7 39.8 298.7 635.7
P-2 2 GPUs 120.8 404.9 864.8 35.6 256.5 547.0
V-2 2 GPUs 115.8 327.9 667.2 32.8 178.6 349.7
V-3 3 GPUs 110.1 303.6 624.1 27.7 154.2 306.1

Table 5.5: Average runtimes in seconds for the total and assignment portions of SATALL application to
complete across the three real-world road networks used for benchmarking, across a range of hardware.
Note: Serial results are from a single run rather than an average due to runtime.

provides identifiers for each hardware combination used. Each simulation was repeated 3 times

to produce an average runtime and remove variance due to external factors such as hardware

temperature. This also accounts for non-determinism which may be present in simulations

which have multiple, equivalent cost shortest path routes. This allows the fair comparison of

the performance of the alternate implementations.

The results of the benchmarking process described above are shown by the tables and figures

within this section. Table 5.5 provides the average total processing time, and average assignment

processing time for each real world road network using the various software implementation

and hardware combinations used. Figure 5.7 illustrates the average runtime of the assignment

phase of SATALL, the portion of the application which has been accelerated on the GPU. A

subplot is used for each road network benchmarked, with each series corresponding to a separate

hardware configuration. In the charts within this section, solid bars are used for the existing

serial and multi-core CPU implementations, using colour to differentiate between specific CPU

configurations. For GPU results, hatching is used to indicate the number of GPUs, and colour

indicates the model of GPU. For instance, system V-2 is indicated by the pink bar with white

circular hatching.
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The GPU implementation which uses the MSSP algorithm shows reduced total processing

times and reduced assignment times across all three benchmark models, with greater reductions

in runtime for the larger real-world networks. The assignment runtime of SATALL using a single

GPU is up to 70 times quicker than the Serial CPU implementation, and up to 7.5 times quicker

than the fastest single-socket CPU benchmarks. When using multiple GPUs, a 3-GPU system

shows up to 14 times the performance of a single-CPU, and up to 8.6 times the performance of

a dual-socket CPU system. These improvements correspond to a reduction in the assignment

runtime for the largest network from over 11 hours using a single CPU core or 44 minutes using

multiple CPUs down to 10 minutes using a single GPU, or 5 minutes using multiple GPUs.

The smallest network, Derby, shows the smallest improvement from GPU implementations,

although it is still an improvement over all CPU-based results. The Derby network contains

fewer zones, vertices and edges than the larger CLoHAM and LoHAM models.

This scale of this network limits the performance improvement from the many-core GPU

architecture. Within the MSSP algorithm, the Origin-Vertex Frontier does not grow large

enough to offer the high degree of parallelism required to extract the most out of the highly

parallel hardware, reducing the performance impact of the GPU. For this network, the Titan

RTX GPU offers the lowest single-GPU assignment runtime, of 39.8 seconds. This is slightly

faster than the Titan V GPU at 41.8 seconds, but both faster than the 51.8 seconds of the Titan

Xp in System P-1. All three models of GPU used are from the Titan prosumer GPU range. Each
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new generation brings architectural improvements, along with higher clock frequencies, more

global memory bandwidth, and often larger GPUs. The Pascal architecture Titan Xp of System

P-1 is the oldest of the three architectures. It is also the GPU with the fewest processing cores

and streaming multiprocessors, lowest compute performance, and lowest memory bandwidth.

These factors all lead to it being the slowest of the three GPUs.

The scale of parallelism within the GPU is an important factor. During periods of the MSSP

algorithm where the OVF is largest, the device will be over-subscribed. This is not necessarily a

bad thing, as future GPUs which typically contain more processing cores are not under-utilised.

However, if there are more threads requested than can be resident within SMs on the device,

the blocks of threads are serialised. This can lead to longer runtimes compared to larger devices

which can concurrently accommodate all threads. The Titan V GPU can support 163, 840

resident threads over 80 SMs, while the Titan RTX can support 73, 728 threads across its 72

SMs, compared to only 30 SMs and 61, 440 maximum resident threads. The newer architectures

also offer higher levels of compute performance per SM, and higher global memory bandwidth.

The performance difference between the Titan RTX and Titan V GPUs for the Derby network

is most likely due to the increased processing performance of the Turing architecture, and the

marginally higher global memory bandwidth.

For the middle-scale CLoHAM network, the Titan V outperforms the Titan RTX GPU,

unlike in the Derby network. In this case, the scale of the OVF and total trip matrix used

within the flow accumulation phase are sufficiently large that the additional parallelism within

the Volta generation card is beneficial. The gap in performance between the Volta and Turing

GPUs in systems V-1 and T-1 has also grown compared to the Pascal-generation GPU in P-1.

This pattern also applies to the larger LoHAM network, for the same reasons.

Upon further inspection of the performance of the MSSP algorithm for each network, the

CLoHAM network on average requires a relatively large number of iterations relative to the

scale of the network compared to than the larger LoHAM network. There are a relatively

large number of iterations where the OVF does not contain sufficiently many origin-vertex

pairs to fully utilise the device, suggesting the the network has a relatively high diameter, or

that there are chains of links which are sequentially updated. A denser representation of the

CLoHAM network would likely improve this, which could be achieved through additional, more

aggressive pre-processing during the application of contraction hierarchies to create the Spider

representation of the graph. Denser representations would likely also improve the performance

of shortest path calculations for other algorithms, however, a trade-off is made between the

improved shortest path calculation performance, and the additional costs of creating, storing

and conversion to and from the denser representation.

In addition to the reduced assignment runtime for the GPU implementation, the remaining

part of the total simulation time is also reduced compared to the CPU implementations. For
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the LoHAM network, 597 seconds of the 4992 second runtime occur outside of the assignment

portion of the application, compared to only 319 of the 903 seconds using a single Titan V GPU

in system V-1. This is due to different compilers being used for the alternate implementations,

with the Sivlerfrost compiler being used for the majority of the CPU implementations, while

the PGI Fortran compiler is used for the GPU results for improved GPU support. The PGI

compiler is more successful at optimising the CPU-based portions of the application, although

no source changes were made.

In Section 5.2 it was shown that the majority of time spent in the serial implementation of

SATALL is during the assignment phase of the application. The proportion of time spent in

the parallelised assignment portion of the application can give insight into the impact of the

optimisations made through algorithmic changes. For the serial implementation, assignment

runtimes account for between 65% and 99% of the total application runtime. The existing

multi-core implementation brings this down to between 43% and 77% for the multi-CPU results.

Single GPU results bring the assignment portion as low as 33% to 65%, while 3 GPUs bring

the proportion to between 25% and 49%. Additional GPUs would offer further improvements

for sufficiently large models. The reduction to between 25% and 49% of total runtime suggests

that further improvements to the assignment process would have a limited impact on total

runtime, and that other portions of the application such as simulation should be targets of

future optimisation when following Ahmdal’s law [260].

The performance improvements offered by the GPU accelerated implementation using the

novel MSSP algorithm can be evaluated by comparing against the reference CPU implemen-

tations. However, when comparing benchmarks from different hardware configurations it is

important to make fair evaluations. The serial CPU implementation provides a common base-

line to which the parallel CPU and GPU implementations can be compared, presented in Sec-

tion 5.8.1. Comparing a many-core GPU implementation against a single CPU core is not the

most fair comparison. Instead, Section 5.8.2 presents the speedup of the single-GPU imple-

mentations compared against the single-socket CPU system, to evaluate the performance of a

single processor. Multiple-GPU results results are then compared against multi-socket CPU

results, providing a fair node-level comparison in section 5.8.3. Lastly, insight can be gained

by comparing the performance of the multi-GPU results against the results from a single GPU,

which is provided in section 5.8.4.

It is also important to be aware of the cost and power requirements of the hardware used

when comparing the performance of CPUs and GPUs. Although GPUs are typically more

power-efficient then CPUs for compute performance, they often have a higher Thermal Design

Power (TDP) than CPUs. For instance, the Nvidia Titan Xp, Nvidia Titan V and Nvidia

Titan RTX GPUs used for these benchmarks all have a TDP of 250W, compared to TDPs of

130W and 140W respectively for the Intel Xeon E5-2667 and Intel Core i7-6850K respectively,
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Hardware Implementation Total Speed-up Assignment Speed-up
Derby CLoHAM LoHAM Derby CLoHAM LoHAM

P Multi-core (6) 4.17 7.41 8.33 6.07 8.70 9.32
DC Multi-core (24) 3.33 9.29 12.14 5.01 12.49 15.56
P-1 1 GPU 8.76 18.88 31.33 15.07 24.47 40.62
V-1 1 GPU 9.71 25.98 46.06 18.64 38.49 70.10
T-1 1 GPU 10.06 25.49 43.61 19.61 37.34 64.46
P-2 2 GPUs 9.95 28.18 48.09 21.88 43.48 74.90
V-2 2 GPUs 10.39 34.80 62.33 23.74 62.45 117.15
V-3 3 GPUs 10.92 37.59 66.65 28.19 72.34 133.86

Table 5.6: Relative speed-up compared to the single-CPU single-core results for single-socket CPU and
single-GPU. Note: Serial results are from a single run rather than an average due to runtime.

although actual consumption during use will vary. The upfront cost of the GPUs and CPUs used

for these benchmarks should also be considered, with the GPUs having original Manufacturer’s

Suggested Retail Price (MSRP) of 1200 United States Dollar (USD), 2999 USD and 2499 USD

each at release, compared to 1552 USD and 617 USD for each CPUs at release. The actual

price at the time of purchase may vary significantly however.

5.8.1 Performance Compared to the Serial Baseline

The serial CPU results from system P provide a common baseline to compare the results from

parallel implementations, although this is not an ideal comparison. Table 5.6 shows the rela-

tive speed-up for the total and assignment portion of the application relative to the baseline

serial implementation. Figure 5.8 illustrates the relative speed-up of the assignment portion of

SATALL for single-CPU and single-GPU systems relative to the serial baseline.

The existing multi-core CPU implementation provides improvements over sequential imple-

mentation as expected. Assignment speedup of up to a factor of 9 are shown using the 6 core,

12 thread CPU in system P, and up to a factor of 15 for the multi-socket dual-CPU system DC

which has 24 CPU cores in total. However, for the smaller Derby model the single socket CPU

outperforms the dual-socket CPU. The Derby model is too small to fully leverage the additional

parallelism of the 18 extra cores, which combined with higher single-core performance of the

6-core CPU leads to the reduced performance. The super linear scaling within system P is in

part due to a change in compiler between the serial implementation and the multi-core imple-

mentation, with the parallel portions of the application being compiled with the Intel compiler

rather than the Salford compiler.

The single-GPU results show assignment improvements across all three networks, of up to

70x for the LoHAM model using system V with the Titan V GPU.
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Figure 5.8: The relative speed-up of the assignment phase of SATALL for three real world models
compared to serial, single CPU core results. Higher is better.

Hardware Implementation Total Speed-up Assignment Speed-up
Derby CLoHAM LoHAM Derby CLoHAM LoHAM

DC Multi-core (24) 0.80 1.25 1.46 0.83 1.44 1.67
P-1 1 GPU 2.10 2.55 3.76 2.48 2.81 4.36
V-1 1 GPU 2.33 3.51 5.53 3.07 4.43 7.52
T-1 1 GPU 2.41 3.44 5.23 3.23 4.29 6.91
P-2 2 GPUs 2.38 3.80 5.77 3.61 5.00 8.03
V-2 2 GPUs 2.49 4.70 7.48 3.91 7.18 12.57
V-3 3 GPUs 2.62 5.07 8.00 4.65 8.32 14.36

Table 5.7: Relative speed-up compared to the single-socket multi-core CPU results (system P). Higher
is better.

5.8.2 Single-Processor Performance

Comparing whole processors against one another presents a more balanced picture than com-

paring against a single CPU core. The relative assignment performance compared against the

single-socket multi-core CPU results of system P are shown in Table 5.7, although multi-CPU

and multi-GPU values are included for reference. Figure 5.9 visualises the relative performance

for single-GPU implementations compared to the single-socket CPU results.

The single GPU results show performance speedups from a factor of 2.5 up to a factor

of 7.5 for the various networks and hardware architectures. The smaller networks of Derby

and CLoHAM show reduced speedups compared to the larger LoHAM model for single GPU

implementations compared to a single CPU socket.
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Figure 5.9: The relative speed-up of the assignment phase of SATALL for three real world models on
single CPU and single-GPU systems compared to a single multi-core CPU.

5.8.3 Multi-Processor Performance

Computer workstations or servers may contain multiple CPUs and multiple GPUs. When

comparing performance results of multi-GPU systems, comparing to multiple CPUs presents a

more balanced picture than comparing to only a single CPU. Table 5.8 contains the relative

assignment speedup for single-GPU and multi-GPU implementations compared to the multi-core

implementation using multiple CPUs. Single-GPU values are included for reference, although

the main point of comparison is with the multi-GPU implementation. Figure 5.10 visualises

the assignment runtime of multi-socket and multi GPU implementations, and Figure 5.11 shows

the relative performance of each multi-GPU implementation against the multi-socket multi-core

results.

Single-GPU implementations are only 3x to 4.5x faster than the multi-CPU results, whilst

multi-GPU results show relative speedups of between 4.4x and 8.6x. For the LoHAM model,

using 3 Titan V GPUs the 8.6x improvement to assignment only results in a total SATALL

speed-up of 5.5x, as the assignment runtime for even the largest model is now below 50% of the

total application.

5.8.4 Multi-GPU Scaling

Finally, Table 5.9 and figure 5.12 show the relative performance for simulations using multiple

GPUs, compared to the single-GPU equivalent, i.e. the runtime of a simulation executed on
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Hardware Implementation Total Speed-up Assignment Speed-up
Derby CLoHAM LoHAM Derby CLoHAM LoHAM

P-1 1 GPU 2.6 2.0 2.6 3.0 2.0 2.6
V-1 1 GPU 2.9 2.8 3.8 3.7 3.1 4.5
T-1 1 GPU 3.0 2.7 3.6 3.9 3.0 4.1
P-2 2 GPUs 3.0 3.0 4.0 4.4 3.5 4.8
V-2 2 GPUs 3.1 3.7 5.1 4.7 5.0 7.5
V-3 3 GPUs 3.3 4.0 5.5 5.6 5.8 8.6

Table 5.8: Relative speed-up compared to multi-socket CPU (DC)
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Figure 5.10: The runtime of the assignment phase of SATALL for three real world models comparing
multi-socket CPU and multi-GPU implementations.

two Titan V GPUs in system V-2 is relative to the performance of a single Titan V GPU in the

identified as V-1.

This shows the strong-scaling behaviour from using additional processor units to solve the

same tasks. Diminishing returns are shown from increasing the number of GPUs within the sys-

tem. Using 2 Titan V GPUs only results in a 67% improvement of performance, and increasing

to 3 GPUs only provides a performance improvement of 91% compared to a single GPU (where

100% and 200% would be ideal). This is due to an imbalance of work-load between the devices

in the multi-GPU implementation. As discussed in section 5.6, the multi-GPU implementation

distributes whole user-classes of work to each device. Table 5.2 shows that the CloHAM and

LoHAM networks both have 5 user-classes, resulting in one GPU having to process an extra

user-class in each case. The best multi-GPU scaling is achieved when the number of user-classes

is a multiple of the number of GPUs. In the case of CLoHAM and LoHAM, there would likely

be a large improvement when 5 GPUs are used compared to between 1 and 4 GPUs. Splitting
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Figure 5.11: The relative speed-up of the assignment phase of SATALL for three real world models on
multi-GPU systems, compared to multi-socket CPU results.

Hardware Implementation Total Speed-up Assignment Speed-up
Derby CLoHAM LoHAM Derby CLoHAM LoHAM

P-2 2 GPUs 1.14 1.49 1.53 1.45 1.78 1.84
V-2 2 GPUs 1.07 1.34 1.35 1.27 1.62 1.67
V-3 3 GPUs 1.13 1.45 1.45 1.51 1.88 1.91

Table 5.9: Relative speed-up compared to equivalent single-GPU results.

the imbalanced user-class(es) across devices was attempted, but the additional device-to-device

memory transfers and synchronisation required outweighed the benefit of doing so on PCI-e

based systems. The Derby network does not see as significant an improvement in runtime as

splitting the work load across multiple devices results in under utilisation of each device.

The Pascal generation GPUs in system P (NVIDIA Titan Xp) show greater improvement

from a second GPU than the Volta-generation of GPUs. The Titan Xp GPUs contain fewer

streaming multiprocessors and processing cores than the Titan V GPUs, with a maximum of

61, 440 resident threads compared to 163, 840 for the volta generation GPU. This leads to addi-

tional serialisation within a single Titan Xp GPU than a single Titan V GPU. However, when

using multiple GPUs and the workload is distributed between them, there is less serialisation

during portions of the MSSP where origin-vertex frontiers are large enough to over-subscribe

the device.
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Figure 5.12: The relative speed-up of the assignment phase of SATALL for three real world models on
multi-GPU systems, compared to the matching single-GPU system

5.9 Summary

This chapter presented the challenges of applying the GPGPU techniques onto macroscopic road

network modelling and simulation. Macroscopic modelling tools such as SATURN often use an

iterative loop of demand assignment and network simulation following Wardrop’s equilibrium

in order to accurately model transport networks. Within the iterative process, a significant

portion of time can be spent performing shortest path calculations during the assignment phase

of each iteration. The work-efficient shortest path algorithms such as Dijkstra’s algorithm which

are typically used to achieve high performance shortest path calculations in multi-core CPU

environments are not well-suited to many-core processors such as GPUs. Additionally, existing

work on GPU acceleration for shortest path calculations, such as the algorithms implemented

within Gunrock [226] or nvGraph [229], are focussed on dense-graphs such as social media

networks. These algorithms do not perform well when applied to sparse transport networks. A

new approach was presented in this chapter to better leverage data-parallelism for sparse graph

representations, when many shortest paths must be found.

More specifically this chapter presented a novel Many-Source-Shortest-Path algorithm for

many-core processors such as GPUs, expanding on the Bellman-Ford SSSP algorithm. This

algorithm enables high performance shortest path calculations on the GPU for sparse networks

typical of road networks by solving for many source vertices concurrently, but not all vertices to

avoid the demanding memory requirements of APSP algorithms. The data-parallel algorithm
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relies on the use of an Origin-Vertex Frontier to efficiently find the shortest paths through the

network for many origins, using cooperation between the threads within the SIMT architec-

ture to balance the workload between individual threads to avoid the performance impact of

branching. This provides Contribution C5 of this thesis.

Subsequently, the performance of the MSSP algorithm is evaluated through implementation

within SATURN, a commercial tool for macroscopic road network assignment and simulation,

and benchmarking on a set of real-world transport networks used within industry in the UK,

as Contribution C6. This also involves a data-parallel approach to make use of the short-

est path results, to avoid costly memory transfers between the device and the host. A single

GPU implementation demonstrated assignment improvements of up to 65x compared to a se-

rial CPU implementation, 7.5x compared to a single-CPU multi-core implementation and up

to 4.5x compared to a dual-CPU multi-core implementation. Using multiple GPUs, perfor-

mance improvements of up to 134x were demonstrated compared to serial CPU results, 14.4x

compared to single-CPU multi-core results and up to 8.6x compared to dual-CPU multi-core

results. The multi-GPU implementation demonstrates relatively poor scaling for the networks

in use, due to an imbalanced work-load assigned to each device when the number of devices

does not equally divide the number of user-classes within the model. Comparing the existing

serial CPU implementation against a highly-parallel single-GPU or multi-GPU implementation

is not a particularly fair comparison, with the comparisons of multi-core single-CPU against

single-GPU implementations and multi-core multi-CPU implementation against multi-GPU im-

plementations providing fairer comparisons. It is included to provide a common baseline to

which parallel CPU and GPU implementations can be compared.

These improvements within the context of SATALL have reduced the proportion of time

spent in the assignment phase of SATALL from 99% for the serial implementation down to 49%

for the largest model. As such, from the perspective of SATALL total runtimes, the simulation

portion of SATALL is the next candidate for further optimisation, as greater improvements

to the assignment phase will yield smaller and smaller improvements on the total application

runtime. However, there would still be scope to improve the performance of the assignment

phase. Creating denser representations of the transport network through modification to the

contraction-hierarchy process would likely yield a performance improvement, due to an increase

in parallelism exposed by the model, resulting in less time under utilising the GPU during

shortest path calculation.

This chapter has demonstrated that many core processing architectures can provide sig-

nificant performance improvements for large-scale macroscopic road network assignment and

simulation models. The previous chapters 3 and 4 demonstrated the application of many-

core processors to microscopic road network simulations, leading to significant performance

improvements. However, the macroscopic and microscopic approaches see differing degrees of
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improvement, due to the degree of parallelism available within the modelling paradigm. In

order to more fully understand and compare the performance scaling implications of the GPU

approach for these two modelling approaches, and how changes in performance may effect model

selection, a comparative study between the two approaches is required. This is the topic of the

next chapter.
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Chapter 6

Comparison of GPU Accelerated
Road Network Simulation
Approaches

6.1 Introduction

Road networks can be modelled and simulated using different levels of granularity. Chap-

ters 3 and 4 presented techniques for accelerating microscopic road network simulations using

GPUs, with a simple model and procedurally generated network suitable for benchmarking

road network microsimulation implementations. Chapter 5 presented details of the macro-

scopic approach, and methods of accelerating the demand assignment phase of the iterative

assignment-simulation form of macroscopic road network modelling.

In Chapter 2, the advantages and disadvantages of each modelling resolution were reviewed.

Typically, within the road network modelling sector, macroscopic road network simulations

were used in favour of the finer-grained mesoscopic or microscopic simulations, with simulation

performance playing a key part in the decision [261]. Additionally, the highly stochastic nature

of microscopic models requires a large ensemble to be completed, further exacerbating the total

processing time required for microscopic simulations compared to the often more determinis-

tic macroscopic simulations [36]. This reduced variance can also lead to simpler analysis for

modelling practitioners.

This chapter aims to evaluate the relative impact of GPU acceleration on microscopic road

network simulations and macroscopic road network simulations, presented across Chapters 3

to 5, and how this may impact the choice of modelling approach used. This will provide

Contribution C7 of this thesis.

Chapters 3 and 4 proposed and benchmarked a procedurally generated, grid based road

network designed to benchmark microscopic road network simulations. Chapter 5 used real-
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world road networks used within industry in the UK to evaluate the performance impact of

GPUs on macroscopic road network simulations. The relative improvements to simulation

performance of each approach can be used to compare these, however, a fairer comparison

could be made if the same system were to be modelled using each approach.

In this chapter, the microscopic road network simulation benchmark model from Section 3.4

is adapted for use within the macroscopic road simulation application SATURN, accelerated

using GPUs within Chapter 5. Section 6.2 describes the adaptions made to the network. Sec-

tion 6.3 follows the grid-scale experiment of Section 4.5.1 to benchmark the performance of

the macroscopic simulation, presenting results for Central Processing Unit (CPU) and Graph-

ics Processing Unit (GPU) based simulations. Section 6.4 uses these new benchmark results to

compare the performance of the macroscopic simulator against the microsimulation results from

chapter 4, and the relative impact on the modelling approach is discussed. Finally, Section 6.5

summarises the chapter.

6.2 Benchmark Network

Rather than just comparing the relative performance impact of GPUs on microscopic road net-

work simulations presented in Chapters 3 and 4 against the relative improvements for macro-

scopic road network simulations in Chapter 5, a more direct comparison is made by comparing

the performance of each approach using a common benchmark road network. The procedurally

generated Manhattan-style grid network used to benchmark the microscopic road network sim-

ulations in Section 3.4 is a good candidate for this. The procedurally generated grid allows the

network to be used for tiny networks containing as few as 4 sections of road and a single junction

up to vast networks which can approximate national scale road networks in terms of capacity.

The simplicity of the model also reduced the set of features which must be implemented within

the microsimulation.

The artificial road network consists of a 2D Manhattan-style grid made up of single-lane

one-way roads, with adjacent rows and columns of the grid network traversing in opposite

directions. Each junction has two input sections of road, and two output sections of road.

Sections of road around the edge of the grid are used as entrances and exits into and out of

the simulated region. For the microscopic model this is where vehicles are created or destroyed,

while in the macroscopic model these map to the zones used for the Origin-Destination (OD)

demand matrix. Junctions are simple, using stop signs and give-way modelling in place of more

complex dynamic infrastructure such as traffic lights.

Figure 6.1 shows the original design of the artificial road network used to benchmark the

microscopic road network simulators, including the arrangement of roads, junctions and turns

within each junction. For a given grid size G, the generated network contains G2 junctions,
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2G(G+ 1) road sections, 4G2 turning sections, 2G entrances and 2G exits.

Grid Size=5

Junction
Road Section

Turning Section

Figure 6.1: A 5× 5 example of the procedurally-generated artificial grid network used for microscopic
simulations, showing the overall structure of the network and the arrangement of turning sections within
a junction. The network can be scaled to any size, with networks of up to 576 × 576 used during
benchmarking.

For the CPU and GPU macroscopic simulation implementations, several key changes had to

be made due to the different modelling approach used within SATURN and the types of feature

available within SATURN when coding networks. Due to the differing levels of granularity of

the modelling approach, there are certain elements of the microsimulation model can not be

directly modelled in the macroscopic SATURN simulator. Demand modelling is also approached

differently, using demand-based assignment rather then stochastic behaviours per individual.

Figure 6.2 shows the adapted version of the network for the macroscopic simulator. The adapted

network, for a given grid size G, contains 4G zones, G2 regular vertices and 2G(G + 1) edges,

although the denser, Spider representation should contain a larger number of edges and fewer

vertices.

Unlike the Aimsun and FLAME GPU networks, SATURN networks include the concept of

Zones or Centroids as virtual zones used as entrances and exits into the simulation. Vertices are

also classified as either buffer vertices or simulation vertices which determines whether junction

simulation will occur or not. The core grid of junctions are all marked as simulation vertices,

while entrance vertices are marked as buffer nodes. A Zone is attached to each entrance or exit

edge within the simulation (where the edge connects a buffer node to a simulation node) to

allow demand to be assigned to the road network, and vehicles to enter and exit the simulation.

Figure 6.2 shows the scalable grid network, adapted for SATURN. Buffer vertices are shown

125



by pink squares, and simulation vertices are shown as green circles. Each buffer vertex has an

associated zone connected to the downstream edge, but this is not shown for simplicity. The

edges representing road sections are shown by black arrows. A detailed view of the junction

turn layout is shown for one of the junctions.

Due to differences between the models implemented in SATURN and the microscopic simula-

tor of chapter 3, the exact junctions modelled in the benchmark network for the microsimulation

model could not be replicated exactly. Explicit stop signs can not be encoded in the SATURN

network input file. Instead, the sections of road which would have used a stop sign are modelled

as give-way turns (SATURN turn priority marker G) [202]. Within the microscopic road net-

work model, all roads are single lane and the fine-grained modelling of individual vehicles within

2D space allows vehicles to avoid one another while traversing junctions. In SATURN however,

the junctions had to be implemented using additional lanes at the approach to each junction,

to allow the choice of turning actions to be coded into the network. This is achieved using a

“flare lane”, where a second lane appears just prior to the junction, on the appropriate side

of the road for the specific junction. Conceptually, this leads to another modelling difference,

where there is potential for vehicles from the same section of road to be alongside one another

in the junction.

The benchmark network in the microscopic model used box junctions to impose a restriction

on the number of vehicles within a junction at once. The turn geometry was generated such that

opposing vehicles intending to make right hand turns would perform nearside turns. Within

SATURN, the turn priority modifier X can be used to specify box junctions, however, this

models opposing right hand turns (for left-hand drive) as offside turns.

Another difference between the implemented network models is that the there is no concept

of vehicle detectors as modelled items of infrastructure, due to the macroscopic nature of the

model. Instead SATURN automatically captures metrics about sections of road, which can be

accessed through select link analysis procedures.

The microscopic model uses per-individual random number generation to stochastically

model the route taken by individuals through the network, using a 50% chance when mak-

ing a turn between two junctions, or a reduced probability to turn onto a simulation exit. The

modelling approach in SATURN instead relies on the iterative process of assignment and sim-

ulation to map demand information onto the network. To approximate the per-turn behaviour

the OD matrix is initialised to evenly distribute the matching demand for the 1 hour period

from the microsimulation model to each destination zone.

The microscopic model was also designed to use per-vehicle properties sampled from ran-

dom distributions, to model each individual vehicle’s properties such as length or acceleration.

Within SATURN, vehicle user-classes are used to represent a population of vehicles, where the

same parameters are used for all members of that group. Typically this is used in SATURN
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to distinguish between classes of vehicle such as Cars, Light Goods Vehicles (LGVs) or Heavy

Goods Vehicles (HGVs). For this benchmark network model, 4 user-classes of vehicle are used.

The SATURN network files enable the SPIDER SATURN parameter, as this is required to

provide a graph representation with enough density to justify the use of GPUs. This should

not effect the the modelled behaviour.

Grid Size=5

Simulation Vertex
Road Section

Buffer Vertex

Flare Lane
Turning Section

Figure 6.2: A 5× 5 example of the procedurally-generated artificial grid network used for macroscopic
simulations, showing the overall structure of the network including zones (pink squares), vertices (green
circles), road sections (black arrows) and the arrangement of turning sections within a junction (orange
arrows) including. The additional “flare lanes” are also shown. The network can be scaled to any size,
with networks of up to 122× 122 used during benchmarking.

6.3 SATURN Grid Network Benchmarking

By conducting an experiment into total runtime at differing scales it is expected that the re-

sults will give us insight into the relative performance benefits of GPUs on macroscopic and

microscopic road network simulations, including more-comparable results than just using rel-

ative performance impact alone. The Grid-Scale benchmark experiment from Section 4.5.1 is

designed to evaluate the performance of a road network simulation at various scales, with the

same input demand per entry into the network. This network has been adapted for the macro-

scopic assignment and simulation tool SATURN (described in Section 6.2), so that the same

benchmark experiment can be applied, and the performance used to evaluate the relative impact

of GPUs on macroscopic road network simulation. Section 6.3.1 provides the SATURN param-

eters used for the set of benchmarks simulations. The CPU and GPU versions of SATURN
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11.3 from Chapter 5 are executed three times at each scale of the experiment, with the average

total, assignment and simulation runtimes detailed in Section 6.3.2. SATURN simulations were

executed using the hardware detailed in Table 6.2.

6.3.1 Benchmark Model Parameters

Table 6.1 details the key SATURN parameters used with this benchmark. The numbers of

iterations for the assignment and simulation portions within SATURN were selected based on

the values used for the real-world networks from chapter 5.

Unlike in the microsimulation benchmark, the Grid Size parameter of the procedurally

generated network was varied from 4 to 122, rather than between 4 and 576. This upper bound

of grid scale is much lower than that used with the microscopic simulation tools due to the use of

fixed-size arrays within the X7 variant of the SATURN software suite. This software limitation

is not inherent to the modelling approach, it is merely an implementation detail within the

network processing within SATURN. Several work-around options were investigated, but they

were dismissed to avoid introducing larger discrepancies between the network being modelled.

Parameter name Value Units
Grid size 4 - 122
User Classes 4

Simulation Time 60 minutes
Road Section Length 1000 m
Free Flow Section Speed 50 kph
Capacity Section Speed 12 kph
Link Capacity 2000 PCU/h
Input flow 600 PCU/h
Flow delay curve power 3
Assignment Iterations (NITA) 60
Minimum Assignment Iterations (NITA_M) 60
Minimum Simulation Iterations (NITS) 15
Minimum Simulation Iterations (NITS_M) 15

Table 6.1: Parameters used for macroscopic simulations benchmarks of the artificial road network.

6.3.2 Macroscopic Assignment and Simulation Results

Each simulation from the grid-scale experiment was repeated 3 times to provide average runtime

values. Simulations were performed on the CPU using both serial and multi-core implementa-

tions. GPU simulations were performed using both single-GPU and dual-GPU configurations.

Table 6.2 describes the hardware used to benchmark the CPU and GPU versions of SATALL

for the grid-scale experiments.

Table 6.3 contains the average runtime values for the SATURN CPU and GPU simulations,

including the Total runtime, the runtime of the assignment portion of the application which
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CPU GPU
ID Model Cores Freq(GHz) Model Cores Freq(GHz)
CPU i7-6850K 6 3.6
GPU i7-6850K 6 3.6 2x Titan V 5120 1.200

Table 6.2: The hardware used to benchmark CPU and GPU SATURN simulations for the grid-scale
experiment using the Manhattan-style procedurally generated grid network.

has been accelerated for GPUs, and the serial CPU-based simulation portion of runtimes. Fig-

ures 6.3 and 6.4 illustrate the raw runtime values for the total processing time and assignment

portion of runtime portions of runtime respectively.

The total runtime results show the expected behaviour of the serial CPU implementation

showing the slowest runtimes, followed by the multi-core CPU implementation, and then the

single GPU implementation. The multi-GPU results show very similar performance to the

single-GPU results at this scale of network. This suggests that the model is either not sufficiently

parallel to fully utilise the Titan V GPU, or that the performance is not limited by the degree

of parallelism available, but rather the number of iterations of the Many Source Shortest Path

(MSSP) algorithm required to find the correct results.

For the serial CPU implementation, the assignment portion of the iterative process only

accounts for 37% of the runtime of the largest grid simulated. This suggests that this network

is unlikely to see significant improvements from the GPU assignment, as it is already only a

small portion of the total runtime. The multi-core, single-GPU and dual-GPU implementations

all provide similar assignment runtimes to one another. This is in contrast to the results of

Chapter 5 where the GPU implementation was able to reduce the runtime of the simulation for

the three benchmark networks, however, for the Epsom network used as a trivial example this

was not the case. This suggests that the scales of graph used here do not sufficiently occupy

the GPU to justify the cost, as confirmed by the comparable single and dual-GPU results.

The specific implementation which offers the highest performance at any given scale does vary

slightly across the range of implementations. At grid-scales fewer than 64, the multi-core CPU

implementation using 6 cores and 12 threads offers the shortest assignment runtime. In this

case, the overhead costs associated with performing the shortest path operations on the GPU,

such as data transfer, likely outweigh any performance advantage the MSSP algorithm can

offer. Larger grid-scales, up to 112 show assignment advantages for the GPU implementation,

although they are relatively minor. At the largest grid sizes of 120 and 122, both simulators

re-converge in terms of performance.

One aspect of the road network design which may play a part in this assignment performance

is the uniformity of the grid-based road network on assignment. A grid-based layout where edges

will have the same initial costs (due to being the same length with the same effective speed limit),

129



will have many routes with equivalent shortest cost. This may lead to the convergent algorithm

flipping between competing shortest routes, for any given origin-destination pair. It could also

be that the spider process is short-cutting many of the routes, producing even very short routes

which favour work-efficient serial shortest path implementations.

As the assignment of the multi-core and GPU implementations are similar, the total runtime

performance difference must come from another portion of the application. Figure 6.3 shows

the simulation portion of the runtime for each implementation at each scale of network. This

shows that both serial and multi-core CPU implementations show similar simulation runtime

to one another. This is expected as the simulation portion of the serial and multi-core SATALL

executables is executed in serial, and compiled using the silverfrost fortran compiler. The GPU

executable results are approximately twice as fast as the CPU implementations, even though

the simulation portion of SATALL is still executed in serial on the GPU. This is due to the use

of the PGI compiler, which more aggressively optimises the serial CPU code than the Silverfrost

compiler used for the CPU SATALL executables.
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Figure 6.3: The average total runtime of SATURN for the grid-scale benchmark, for CPU and GPU
implementations. Values shown are the average from 3 repetitions.

The relative performance improvement of the single GPU implementation against the multi-

core CPU implementation is shown by Table 6.4. This shows that total runtime improvements of

between 1.4 and 2.2 times the performance of the multi-core CPU implementation was achieved.

This is mostly from the simulation speedup of the alternate compiler, which accounted for a

significant portion of the total runtime for this road network. The relative assignment perfor-

mance ranges from 0.1 times that of the multi-core implementation, to up to 1.2x for a grid
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Implementation Gridsize Total Time (s) Assignment
Time (s)

Simulation
Time (s)

Serial CPU 2 0.04 0.00 0.01
Serial CPU 4 16.25 0.07 16.14
Serial CPU 8 42.04 0.39 41.60
Serial CPU 16 92.74 1.98 90.67
Serial CPU 32 123.80 11.40 112.16
Serial CPU 48 205.55 34.91 170.15
Serial CPU 64 360.69 82.67 277.08
Serial CPU 80 477.07 161.75 313.71
Serial CPU 96 630.40 270.06 357.80
Serial CPU 104 741.72 348.89 389.66
Serial CPU 112 1156.65 449.64 702.98
Serial CPU 120 1514.37 541.50 968.12
Serial CPU 122 1597.22 589.60 1002.63
Multi-core CPU 2 0.17 0.15 0.01
Multi-core CPU 4 18.20 0.52 17.63
Multi-core CPU 8 43.03 0.90 42.08
Multi-core CPU 16 72.32 2.35 69.88
Multi-core CPU 32 133.00 7.62 125.14
Multi-core CPU 48 168.54 17.97 150.07
Multi-core CPU 64 329.24 29.28 299.01
Multi-core CPU 80 387.80 48.31 337.86
Multi-core CPU 96 401.55 72.83 326.14
Multi-core CPU 104 443.21 90.30 349.71
Multi-core CPU 112 884.66 109.29 771.27
Multi-core CPU 120 1120.06 130.12 985.14
Multi-core CPU 122 1191.69 137.53 1049.12
Single GPU 2 0.33 0.30 0.00
Single GPU 4 8.10 1.81 6.25
Single GPU 8 30.09 8.42 21.64
Single GPU 16 51.06 12.16 38.79
Single GPU 32 84.29 26.15 57.86
Single GPU 48 102.49 28.52 73.41
Single GPU 64 162.46 28.98 132.36
Single GPU 80 197.17 41.85 153.51
Single GPU 96 222.56 65.15 154.60
Single GPU 104 252.91 75.06 174.43
Single GPU 112 424.06 93.25 326.48
Single GPU 120 599.50 153.57 440.90
Single GPU 122 639.74 149.70 484.72
Dual GPU 2 0.40 0.37 0.00
Dual GPU 4 7.77 1.62 6.10
Dual GPU 8 28.45 7.14 21.27
Dual GPU 16 53.75 14.59 39.05
Dual GPU 32 84.39 26.50 57.62
Dual GPU 48 102.75 28.55 73.62
Dual GPU 64 161.80 28.75 131.9
Dual GPU 80 189.47 35.16 152.48
Dual GPU 96 213.25 56.30 154.21
Dual GPU 104 247.29 68.10 175.79
Dual GPU 112 422.07 91.23 326.51
Dual GPU 120 571.76 125.94 440.81
Dual GPU 122 635.53 145.58 484.72

Table 6.3: Average runtime (seconds) for the total runtime, assignment runtime and simulation runtime
of each grid scale benchmark for the serial CPU (i7 6850k), multi-core CPU (i7 6850k using 12 threads),
single GPU and dual GPUs (NVIDIA Titan V) macroscopic road network simulation implementation
(SATURN).

scale of 104.
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Figure 6.4: The average runtimes of the assignment portion of SATURN for the grid-scale benchmark,
for CPU and GPU implementations. The simulation portion is always executed in serial on the CPU.
Values shown are the average from 3 repetitions.

Gridsize Total Speedup Assignment Speedup Simulation Speedup
4 2.25 0.29 2.82
8 1.43 0.11 1.94

16 1.42 0.19 1.80
32 1.58 0.29 2.16
48 1.64 0.63 2.04
64 2.03 1.01 2.26
80 1.97 1.15 2.20
96 1.80 1.12 2.11

104 1.75 1.20 2.00
112 2.09 1.17 2.36
120 1.87 0.85 2.23
122 1.86 0.92 2.16

Table 6.4: Relative performance improvement comparing simulator performance for a single Titan
V GPU against a multi-core CPU implementation executed on an i7-6850k, for each timed phase of
SATURN for the grid-scale macroscopic experiment

6.4 Performance Comparison of Microscopic and Macroscopic

Simulations

To evaluate the relative performance impact of many-core parallel processing on the model res-

olution decision making process, the performance of microscopic and macroscopic road network

simulations can be compared for the same transport networks, using the microscopic bench-

mark results from Chapter 4 and the macroscopic results from Section 6.3.2. However, as these

macroscopic results are somewhat restricted in scale, we can gain some insight into the poten-
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Figure 6.5: The average runtimes of the simulation portion of SATURN for the grid-scale benchmark,
for CPU and GPU implementations. The simulation portion is always executed in serial on the CPU.
Values shown are the average from 3 repetitions.

tial evaluation of the simulation performance, based on the real-world networks benchmarked

in Chapter 5.

The modelling scale decision making process is guided by several factors. In some cases,

the choice is dictated by institutional guidance from governmental or professional bodies, which

should be periodically reviewed. In other cases, the task may dictate the specific modelling

approach required. For instance, fine-grained microscopic or mesoscopic modelling may be

required when optimising traffic signal timing or coordination, or when simulating the potential

impacts of connected and autonomous vehicles on the transport network. Many scenarios could

be successful using any of the three modelling granularities, at which point factors such as the

performance, determinism and data requirements may need to be considered.

Macroscopic road network simulations are traditionally less computationally expensive than

finer grained modelling approaches, leading to wider adoption, especially for large-scale regional

or national models. In contrast, microscopic simulations are typically only used for local, small

scale simulations, due to the high computational cost of each simulation. On top of this, the

requirement to run many simulations as part of an ensemble for the highly stochastic microscopic

simulations also shifts the decision making process towards the more deterministic macroscopic

models.

As GPUs can lead to performance improvements for both simulation approaches, the per-

formance of GPU simulations at the same scale can play an important factor in systems which
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require a low simulation latency, such as incident response.

We can gain insight into this by directly comparing the results of Section 6.3.2 against the

matching benchmarks from Chapter 4. Figure 6.6 presents these results for multi-core CPU

applications, and many-core single-GPU systems, with Figure 6.6a presenting the total run-

times of both the macroscopic and microscopic applications, and Figure 6.6b presenting the

total runtime of the microscopic simulation against the assignment portion of the macroscopic

application. The figures shows the total runtimes of each of the 4 CPU and modelling ap-

proach combinations, however, as the CPU-dominated simulation portion of the macroscopic

simulations, the assignment portion is also included to gain insight into the GPU performance.

The total time for multi-core macroscopic and microscopic approaches is comparable for

grid sizes up to 100, at which point the serial simulation portion of the application begins to

consume a significant portion of time, leading to longer runtimes. However, as many microscopic

simulations are required for meaningful results the CPU-based microsimulation is less-favourable

than the macroscopic approach for these scales of network.

The GPU-based microsimulations shows poor simulation runtimes at small scales. Com-

pounded by the need to run ensembles of many individual microsimulations this suggests that

GPU implementations of microscopic road network simulations are unlikely to be impact the

choice of modelling approach for small-scale simulations. However, the performance scaling

behaviour of the agent-based microsimulation is impressive compared to that of CPU microsim-

ulations and GPU or CPU macroscopic simulations, with minimal runtime increases for all

grid-sizes presented. This relative improvement between CPU and GPU microsimulation per-

formance does make it appear much more favourable, when compared to the total runtime of

the macroscopic assignment and simulation model. However, as the simulation phase of the

application is sequential, this comparison is not entirely fair. Assuming that the simulation

portion of the application could be parallelised to a reasonable degree, either using a multi-

core or many-core approach, at these scales of simulation the macroscopic approach could still

be favourable. This is highlighted by the total time of the GPU macrosimulation, which just

through a change in compiler has reduced the time required for a single execution to below that

of the largest comparable CPU microsimulation. Broadly speaking, deterministic macroscopic

simulations will still have a lower time to completion than an ensemble of microsimulations,

for the scales of the benchmark network demonstrated by this direct comparison. This may

not be the case for larger-scale simulations, considering the performance scaling of the curves.

The CPU-based microsimulation scales with a relatively steep gradient, which is compounded

by the need for many simulation runs, making it unfavourable for larger-scale simulations. The

GPU-based microsimulations show very low increases in simulation runtime as the scale is in-

creased, when efficient communication is used as proposed in Chapter 4. What can be seen of

the macrosimulation results, when excluding the simulation portion and only considering the
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Figure 6.6: CPU and GPU performance data against grid size for both microscopic and macroscopic
simulations, for both CPU and GPU implementations. Figure 6.6a contains the total runtime for both
microscopic and macroscopic approaches. Figure 6.6b shows the total microscopic runtime and the
assignment portion of the macroscopic simulators, as this is the section of the application which uses the
GPU and MSSP algorithm.

assignment phase, shows reasonable performance scaling until grid-sizes of more than 104, at

which point there is a clear change in gradient. Due to the limitations of the grid-network de-

sign when implemented for the SATURN road network simulation, a fair direct comparison for

larger scales can not be made. However, the shape of the assignment phase of the macroscopic

simulator when executed on the GPU does suggest that it will perform less-well than the GPU

accelerated microscopic simulations as model scale increases.

Instead, the relative performance improvement between the CPU and GPU based macro-

scopic and microscopic simulations can be compared, both for the available benchmark data,

but also using the figures presented in previous chapters, to discuss the improvement for larger

scale macrosimulations, and how it may compare to large scale microsimulations. Figure 6.7

show the relative speedup achieved by the single-GPU implementations compared to their rele-

vant multi-core results. The raw speedup is shown in Table 6.4. This shows total macroscopic

speedup of up to 2x, with assignment speedup peaking at 1.2x. The microsimulation speedup

however grows as the scale of the simulation is increased, demonstrating that individual mi-

crosimulations gain significant performance from GPUs when they are of a high enough scale.

As simulations with grid-scales larger than 122 cannot be directly compared, some insight

can be gained from comparing the relative speedup of single-GPU simulations by comparing the

relative speedup of the artificial benchmark against the real-world macroscopic benchmarks. The

grid-based macroscopic model with a gridsize of 122 has 488 zones. This can be used as a proxy

for the scale of the network, suggesting it is close in total work-load the Derby model (although

fewer user-classes are used, and the number of vertices and edges in the spider representation of

the graph may be significantly different). The LoHAM model contains 5194 zones, which would
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Figure 6.7: GPU implementation speedup relative to the respective CPU implementation for micro-
scopic and macroscopic implementations.

suggest it might be similar to a grid-scale of 1299. CLoHAMs 2547 zones could be approximated

as a 636 gridsize model, although these are rough estimates.

The maximum speedup values observed for single-GPU vs single-CPU comparisons in both

simulators can be compared, using values from Section 4.5.1 and Section 5.8.3. The GPU-

accelerated macroscopic simulator demonstrated relative performance improvement factors of

2.33, 3.51 and 5.53 for the three real-world models compared to the multi-core CPU implemen-

tation, in increasing order of size. The assignment phase of the macroscopic simulator, which is

the portion accelerated by the GPU, achieved relative performance improvement factors of 3.07,

4.43 and 7.52. These values all suggest that the relative performance improvement increases

as the scale of the problem increases. However, these values are still significantly below the

speedup of 67x observed for the largest microsimulation benchmark, in Section 4.5.1. This dif-

ference in relative performance improvement supports the idea that GPU acceleration reduces

the impact of one of the key disadvantages of microscopic road network simulations, especially

when compared to the traditionally computationally cheaper macroscopic simulations.

6.5 Summary

In this chapter the microscopic road network simulation results from Chapters 3 and 4 were

compared against the macroscopic simulator from Chapter 5. This discussion forms the basis

of contribution C7 of this thesis, although there is room for further investigation to be carried
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out as future work. The scalable, grid-based benchmark road network was modified to be

used within SATALL, to allow a more-direct performance evaluation between the alternate

road network modelling methodologies. However, the scale of these benchmarks were limited

by limitations within SATALL, and the network in question did not exhibit clear performance

improvements for the benchmark road network used, only offering relatively small performance

advantages over the existing multi-core implementation. Unlike in Chapter 5, using multiple

GPUs did not lead to a clear performance improvement over a single GPU. This also suggests

that the scale of network used did not lead to sufficient parallelism within the assignment phase

of SATALL.

Due to the limited scale of these benchmarks, the results of the previous chapter are the

source of insight into the performance at larger scales. Section 6.4 discussed the potential impact

of these relative performance improvements, both directly based on the small scale grid network

benchmarks, and with the relative performance improvements shown in previous chapters.

In general, it can be concluded that microscopic road network simulations appear to ben-

efit more from parallelisation through many-core processors such as GPUs. The performance

improvements available to microsimulations are clearly demonstrated by Chapters 3 and 4, es-

pecially for larger-scale simulations with performance improvements of up to 67x demonstrated

when comparing a single-CPU multi-core implementation against a single-GPU implementa-

tion. This is enabled by the fine-grained data-parallelism which is inherent to microscopic road

network simulations implemented as agent based models, although care must be taken to ensure

agents can efficiently communicate with one another in parallel. The real-world macroscopic

road network simulation results from the previous chapter do suggest that it is beneficial for

larger-scale simulations, but not for smaller simulations which do not expose sufficient paral-

lelism to outperform highly work-efficient CPU based implementations.

Although GPUs can shift the runtime decision making point towards finer-grained simula-

tions, they still present additional challenges compared to higher-level simulations. The highly

stochastic nature requires larger ensembles of many simulations for accurate results. This means

that the total microsimulation runtime for a full ensemble will likely still consume more time

than macro-scale simulations at large scales, but the total time saved by using many-core ar-

chitectures and data-parallelism can result in considerable performance improvements. Further

improvements to GPU hardware will likely increase the level of parallelism available within a

single device. Given the higher degree of parallelism exposed by microscopic modelling ap-

proaches rather than the macro-scale models, this would suggest that the relative difference

improvement in performance between the two approaches will grow as new generations of GPU

are produced.
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Chapter 7

Conclusions

Models and simulations of transport networks are used globally to analyse, design and man-

age transport network infrastructure, to achieve goals such as increasing capacity to support

ever-increasing levels of demand [1], reducing travel time by improving utilisation of existing

transport network infrastructure [2], [3] or increasing safety [262]. Transport models are often

categorised by their granularity, ranging from coarse top-down macroscopic approaches, through

medium-grained mesoscopic approaches, to fine-grained individual-based microscopic models.

Unfortunately, these simulations can be computationally expensive, with long run-times for

individual simulations, while many simulations may be required for meaningful results. The

performance of simulation tools imposes limits on their effectiveness [14]. Historically, individ-

ual computing processors would simply become faster year-on-year, however, that is no longer

the case, in-part due to physical limitations on the materials used within semicondutor de-

vices [70]. Instead, processors are containing greater and greater numbers of processing cores,

with multi-core Central Processing Units (CPUs) containing tens of complex processor cores,

to many-core processor architectures such as Graphics Processing Units (GPUs) which contain

thousands of relatively simple processing cores. Road network simulation tools used within

the transport modelling sector make good use of multi-core CPUs to reduce the time required

for simulations to complete, however, there has been little adoption of many-core architectures

which have the potential to offer performance advantages compared to many-core designs. But,

to access the performance offered by the highly parallel processing architecture, different al-

gorithms and data structures must be used, potentially increasing complexity and requiring

specialist knowledge to achieve.

This thesis set out to answer three questions:

1. Can modern GPUs be used to provide efficient and scalable microscopic road network

simulations which offer high levels of performance compared to more traditional CPU-

based approaches?

2. Are modern GPUs suitable for the acceleration of macroscopic road network simulations,
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to reduce the time required to simulate large-scale road networks?

3. What impact will GPU acceleration have on the choice of modelling approach, between

microscopic and macroscopic simulations?

This work has proposed novel algorithms to provide high levels of simulation performance

for large-scale simulations of road networks, for both microscopic and macroscopic modelling

techniques. Supporting evidence has been provided through experimentation and quantitative

benchmarking.

Chapters 3 and 4 sought to address the first of the three questions. In order to evaluate

whether many-core GPU processors can provide high performance for microsimulations com-

pared to the current state of the art CPU-based simulators in use today, a set of behavioural

models are which must be implemented into a GPU-based simulator. As there transport net-

works come in many forms, with differing local rules, Chapter 3 first proposed a subset of the

models used within Aimsun 8.1 [143], a state of the art commercial microscopic road network

simulation tool, which would be sufficient to implement a scalable benchmark model. This sub-

set of models was complemented by the definition of a scalable, procedurally generated artificial

road network, suitable for benchmarking this subset of models at any scale. Together these

two parts form Contribution C1 of this thesis. Chapter 3 also provides the description of an

GPU-accelerated implementation of this microscopic road network model as an Agent Based

Model (ABM), using the Flexible Large-scale Agent Modelling Environment for Graphics Pro-

cessing Unit (FLAME GPU) framework [184]. Several benchmark experiments are performed,

using both simulation engines, to evaluate the performance at a range of scales. This highlights

the need for efficient communication between agents within the transport network to reduce the

cost of communication within the many-core environment and enable high levels of performance

for large-scale simulations.

Subsequently, Chapter 4 proposes a general-purpose graph-based communication strategy

for GPU accelerated ABMs. The graph-based communication pattern provides a mechanism

for agents to efficiently communicate with one another based on locality within a road network,

or any other system which could be represented by a graph. It reduces the number of messages

each agent must iterate in order to find the relevant data required by the road network be-

havioural models, resulting in improved work efficiency compared to the other communication

techniques available in FLAME GPU [22]. This addresses the sub-question of what algorithms

and data structures may be required to accelerate microsimulations using GPUs, and provides

contribution C3. A benchmark ABM is proposed to along-side this communication method, to

evaluate the performance of the communication strategy in isolation from the complexities of

a complete road network simulation model, and forming Contribution C3. This was vital in

demonstrating and understanding the performance for the generalised approach. The bench-

mark ABM, inspired by simulations of molecules of water flowing through a network of pipes
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is benchmarked, demonstrating significant performance improvements when compared to alter-

nate communication strategies embedded within FLAME GPU. Performance improvements of

several order of magnitude are demonstrated for simulations containing half a million agents.

Chapter 4 continues by applying the novel communication strategy to the microsimulation

model and benchmark defined in Chapter 3, and the performance evaluated using a series of

benchmark experiments (Contribution C4). For a one-hour simulation of up-to 512, 000 vehicles

and 1, 575, 936 agent-based pieces of road network infrastructure, the GPU accelerated simulator

using the novel graph-based communication strategy achieves a real-time-ratio (RTR) of 44.7,

and a relative performance improvement of 67.7x is shown compared to the commercial multi-

core CPU microsimulator Aimsun.

The second question, concerning the suitability of GPUs for macroscopic road network as-

signment and simulation models is answered within Chapter 5. First, the areas of a macroscopic

model which would benefit the most from GPU acceleration must be identified. Through ap-

plication profiling the calculation of shortest paths through the transport network was found

to account for a significant proportion of macroscopic runtime. Many shortest paths must be

found, to assign transport demand routes through the network, at each iteration of a conver-

gent algorithm. Road network graphs are typically sparse, high-diameter graphs, which do not

achieve high levels of performance from state of the art Single Source Shortest Path (SSSP)

algorithms when implemented for highly parallel many core processor architectures [225]. In-

stead, a novel Many Source Shortest Path (MSSP) algorithm is proposed which mitigates the

lack of parallelism exposed by sparse road networks. The MSSP algorithm for many-core pro-

cessors extends vertex-frontier based Bellman-Ford SSSP algorithm [213] to concurrently find

the shortest paths from many origin vertices, using an Origin-Vertex Frontier (OVF). Methods

to achieve high performance are described, including the use of Cooperative Thread Arrays

(CTAs) to load-balance the unbalanced workload caused by varying vertex-degree throughout

road network graphs. This algorithm provides contribution C5.

Chapter 5 continues by describing how the MSSP algorithm was embedded The MSSP

algorithm is then embedded within a commercial macroscopic road network tool, SATURN

[202], to enable benchmarking against real-world transport network models used within the UK,

including large-scale regional models [253], [254]. A single-GPU implementation demonstrated

performance improvements of up to a factor of 65x compared to the serial version of SATURN,

and 7.5x compared to a single-CPU multi-core benchmark. A multi-GPU implementation,

which distributes independent units of work across the available devices showed speedups of up

to 8.6x compared to a dual-CPU multi-core benchmark for a region-scale macroscopic model.

This performance evaluation demonstrates the potential impact of the GPU-accelerated MSSP

algorithm on macroscopic road network modelling, and provides Contribution C6.

The third and final research question, regarding the potential shift in the choice of modelling
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approach used by academics and modelling practitioners based on the relative improvements

in simulation performance, was addressed by Chapter 6. It discussed the the impact of GPU

acceleration from Chapters 3 to 5 on the modelling approach selection criteria. Additional

benchmarking of the macroscopic road network simulation application was performed, using

an adapted version of the procedurally generated grid road network, and the work of previ-

ous chapters, evidence is provided which suggests that microscopic models see a much greater

impact from many-core acceleration. This is concluded to be due to the higher degree of paral-

lelism exposed by the modelling approach, making it more suitable for highly-parallel processing

hardware. This may shift the decision making process towards the finer-grained microscopic

simulations, if GPUs are adopted by road network simulation packages, which are traditionally

used due to the reduced computational cost.

7.1 Summary of Main Findings

In summary, this thesis set out to explore if the application of modern GPUs can be effectively be

applied to both microscopic and macroscopic road network simulation approaches, and evaluate

if the impact of GPUs on these modelling approaches may influence the often performance-

related choice in modelling approach. Microscopic road network simulations were shown to be

well suited for GPU parallelism, showing performance improvements of up to 67.7x for large

scale simulations compared to a commercial multi-core CPU microsimulator. This was achieved

through the definition of a benchmark model and scalable network, the development of a novel

agent-communication pattern for many-core ABMs and the use of this communication pattern

within a FLAME GPU based microscopic road network simulation, providing contributions C1,

C2, C3 & C4. To explore the suitability of GPUs for macroscopic road network models, a

novel many-source-shortest path algorithm for GPUs was developed and embedded within a

commercial application, to demonstrate improved performance of up to 8.6x for macroscopic

models, addressing contributions C5 and C6. Lastly, the relative improvements offered to

each modelling approach were compared and evaluated, suggesting that GPUs may enable a

shift towards the finer-grained microscopic modelling approach due to the increased degree of

parallelism available. This provides contribution C7.

7.2 Future Work

This thesis has delivered work involving the benchmarking of microscopic and macroscopic road

network simulations, plus a comparative performance assessment. However, there is room for

further expansion on each aspect of this thesis.

The implemented microscopic road network simulations are intentionally simplified models,
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with only a subset of features required to simulate real-world transport networks. A more

complete ABM capable of road network simulations, leveraging the graph-based communication

pattern could be explored, with scope for further many-core optimisation opportunities not

exposed by the subset of models selected within this thesis. For instance, the communication

pattern only considers a single edge of the graph at once, as this was sufficient for the benchmark

model behaviours and scalable benchmark model used. Techniques already used within GPU

ABM for spatial communication such as fixed-radius nearest-neighbour [263]–[265] searches

could be adapted to provide messages from many elements of the graph, leveraging the memory

hierarchy of the GPU to offer high performance.

With respect to the real-world macroscopic road network simulations of Chapter 5, the serial

simulation phase of the application has become the performance limiting part of the application.

Parallelising this, either through task-level or data-level parallelisation approaches, would bring

further reduction to total application runtimes, but also provide scope for further advancements

to the assignment phase of the application to be improved. Further improvements to the

graph representation of the underlying transport network may also yield further performance

improvements. Contraction hierarchies [199], [200] are already in use to improve the performance

of shortest path calculations through a denser network representation, but there have been

further developments to these techniques than present in SATURN, which may further improve

the performance of the MSSP algorithm by increasing concurrency, and reducing the number

of iterations required [201].

Both microscopic and macroscopic simulators do not benefit from GPU acceleration for

small-scale simulations. However, as simulation ensembles are often required, or multiple sce-

narios are being evaluated, there may be opportunities to increase the degree of parallelism

exposed to the GPU by using the many-cores to cooperatively work on multiple simulations

concurrently. This would not only enable small-scale simulations to benefit from GPU accelera-

tion, but also lead to reduced ensemble run-times, allowing broader evaluations to be conducted

within the same time-frame.

Improved benchmark networks could also be investigated. Although road networks are

very well-structured in some areas of the world, such as large American cities, other real-world

networks are much more irregular in structure, having evolved organically as they grew over

time. A more realistic benchmark network may offer a more accurate picture of the improvement

of road network simulations on real-world use-cases than a regular grid-shaped benchmark.

Scalable benchmark networks could also be designed with multiple modelling approaches in

mind, to provide fairer performance evaluations.

One of the recent developments in GPUs is an increase in reduced-precision floating point

arithmetic, primarily aimed at deep learning applications [83], [266], [267]. Since the Turing

architecture, dedicated processing cores for performing mixed-precision matrix operations have
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been introduced, and several formats of reduced precision floating point representations are now

supported at the hardware level. One possible use-case for this is within the iterative assignment-

simulation process of SATURN. As demonstrated in other domains such as molecular dynamics

([268], [269]), it’s possible to use reduced precision formats during early iterations of convergent

processes, switching to higher-precision formats as the approximation nears convergence. This

could potentially be applied to the macroscopic assignment-simulation loop, to speed up the

iterative process.

Processing hardware is also continuously evolving, with new GPU architecture such as Nvidia

Ampere [266] offering higher levels of raw arithmetic performance, increased memory bandwidth

and higher levels of parallelism all of which can result in improved performance to both simula-

tion approaches. The balance of these performance characteristics may influence the algorithms

and data structures which can be used within GPU accelerators. For instance, increasing the

parallelism of the GPU will have implications on how to effectively use memory caches. Gener-

ational improvements to GPU memory will also lead to additional performance improvements,

with kernels in both microscopic and macroscopic approaches being performance limited by

memory bandwidth rather than compute power.
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