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Purpose: This paper presents a hierarchical modeling approach for estimating

cardiomyocyte major and minor diameters and intracellular volume fraction

(ICV) using diffusion-weighted MRI (DWI) data in ex vivo mouse hearts.

Methods: DWI data were acquired on two healthy controls and two hearts

3 weeks post transverse aortic constriction (TAC) using a bespoke diffusion

scheme with multiple diffusion times (Δ), q-shells and diffusion encoding

directions. Firstly, a bi-exponential tensor model was fitted separately at each

diffusion time to disentangle the dependence on diffusion times from diffu-

sion weightings, that is, b-values. The slow-diffusing component was attributed

to the restricted diffusion inside cardiomyocytes. ICV was then extrapolated at

Δ = 0 using linear regression. Secondly, given the secondary and the tertiary

diffusion eigenvalue measurements for the slow-diffusing component obtained

at different diffusion times, major and minor diameters were estimated assum-

ing a cylinder model with an elliptical cross-section (ECS). High-resolution

three-dimensional synchrotron X-ray imaging (SRI) data from the same speci-

men was utilized to evaluate the biophysical parameters.

Results: Estimated parameters using DWI data were (control 1/control 2 vs.

TAC 1/TAC 2): major diameter—17.4 𝜇m/18.0 𝜇m versus 19.2 𝜇m/19.0 𝜇m;

minor diameter—10.2 𝜇m/9.4 𝜇m versus 12.8 𝜇m/13.4 𝜇m; and ICV—62%/62%

versus 68%/47%. These findings were consistent with SRI measurements.

Conclusion: The proposed method allowed for accurate estimation of biophys-

ical parameters suggesting cardiomyocyte diameters as sensitive biomarkers of

hypertrophy in the heart.
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1 INTRODUCTION

Cardiac microstructure plays a fundamental role in the

electro-mechanical function of the heart, and its dysreg-

ulation is a key determinant of heart failure.1,2 Despite

this importance, characterization of cellular-level biophys-

ical parameters remains challenging. Biophysical models

of diffusion-weighted MRI (DWI) data are a promising

way for quantifying biomarkers of cardiac microstruc-

ture including cell size, volume fraction, and dispersion.3

Unlike signal representation techniques such as diffu-

sion tensor imaging that yield an indirect characteriza-

tion of tissue-specific properties,4,5 biophysicalmodels aim

to directly quantify cellular features by simplifying the

underlying tissue environment as a combination of basic

geometrical compartments.3,6

Reports on biophysical models of cardiac diffusion

MRI have been very limited so far. Hsu et al.7 proposed a

bi-exponential tensor model to measure intracellular vol-

ume fraction (ICV). Tomeasure cell radius, Kim et al.8 pro-

posed a two-compartment model where intra- and extra-

cellular space were represented by impermeable cylin-

ders and unrestricted isotropic tensors, respectively. In

a more comprehensive study, Farzi et al.3 examined a

range of two-compartment models in the heart where

cardiomyocytes were represented by four different cylin-

der models including a standard cylinder, cylinder with

an elliptical cross-section (ECS), cylinders with Gamma

distributed radii, and cylinders with Bingham distributed

axes, respectively. The extracellular space was represented

by an isotropic tensor (ball) or an oblate tensor (pancake).

Despite the effort to develop and validate cardiac bio-

physicalmodels,3,7,8 unresolved challenges still exist. First,

dependence on diffusion time has solely been attributed

to the intracellular space using a variation of an imperme-

able cylinder. Diffusion of water molecules in the extra-

cellular space could also be highly restricted due to the

small interstitial gaps betweenmyocardial sheetlets. Ignor-

ing this time dependency could either result in under-

estimated intracellular volume fraction or overestimated

cell radius. This issue has also been observed in axonal

diameter mapping in the brain.6 Second, acquisition arti-

facts, noise propagation, and model inadequacy lead to

errors in the estimated parameters. Themagnitude of these

errors in relation to the intrinsic biological variation is

only incompletely understood. Measuring the accuracy

of estimated biophysical parameters is an essential con-

sideration for their adoption in practice. Poor parameter

estimation accuracy could adversely affect their sensitivity

to cardiac pathologies and limit their usefulness. Third, a

reliable validation strategy based on a three-dimensional

(3D) reconstruction of individual cardiomyocytes has not

yet been established.

This paper aims to develop and validate a new

biophysical modeling technique to quantify ICV and

cardiomyocyte diameters in healthy and diseased

myocardium ex vivo and assess the sensitivity of the

estimated biophysical parameters to cardiac disease. To

disentangle the diffusion time dependence on intra- and

extracellular diffusivities from diffusion weightings, a

two-step fitting procedure is proposed here. In the first

step, a bi-exponential tensor model is fitted to DWI data

collected at different encoding directions and b-values,

but with similar diffusion times. Collecting the volume

fraction for the slow-diffusing component at multiple

diffusion times, the decrease in ICV in relation to the

increase in diffusion time is modeled using linear regres-

sion, and ICV is reported at diffusion time equals zero.

In the second step, assuming a cylinder-ECS model for

cardiomyocytes, the major and minor diameters were esti-

mated by fitting the model parameters to the secondary

and tertiary diffusion eigenvalues for the slow-diffusing

component. The accuracy of estimated model parame-

ters was assessed experimentally against the ground-truth

biophysical parameters quantified from the correspond-

ing Synchrotron Radiation Imaging (SRI) scans from the

same specimen, and numerically using simulations in the

presence of noise. Building on our previously established

SRI-based 3D virtual histology for quantification of ICV

and cardiomyocytes’ orientation,3,9 we further extend the

framework to quantify cardiomyocyte diameters automat-

ically for validation. Finally, a murine disease model of

transverse aortic constriction (TAC) was used to evaluate

the performance of the biophysical model under a wider

range of (patho-) physiological conditions. TAC creates a

pressure overload that is comparable to aortic stenosis in

humans, resulting in well-characterized hypertrophy as

cardiomyocytes compensate by adding contractile units

and thereby increasing cellular cross-sectional area.10

2 THEORY

The total normalized signal S is modeled as a linear combi-

nation of signals from two nonexchanging compartments

attributed to the intracellular (IC) and the extracellular

(EC) space.3,7,8 The restricted diffusion inside cardiomy-

ocytes is modeled using a cylinder with an ECS (Scyl-ECS)

whereas the extracellular space and the vascular compo-

nents are lumped into one effective compartment repre-

sented by a tensor (Stensor) similar to Farzi et al.3

S = vICScyl-ECS + vECStensor, (1)

where {vIC, vEC} ∈ [0, 1] are volume fractions for each

compartment, respectively. By construction, vIC + vEC = 1.
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The normalized signal for a cylinderECS model3 is

Scyl-ECS = exp[−|g|2L||(d; Δ, 𝛿)(ĝTû1)2]
exp[−|g|2L⊥(r1, d; Δ, 𝛿)(ĝTû2)2]
exp[−|g|2L⊥(r2, d; Δ, 𝛿)(ĝTû3)2], (2)

where |g| and ĝ are the gradient magnitude and direction,
Δ is the diffusion time, 𝛿 is the diffusion gradient dura-

tion, d is the parallel diffusivity along the cylinder axis û1,

and r1 and r2 are the major and minor radii along û2 and

û3, respectively. The functions L|| and L⊥ are defined as

follows11:

L||(d; Δ, 𝛿) = 𝛾2𝛿2(Δ − 𝛿∕3)d, (3)

L⊥(r, d; Δ, 𝛿) = 2𝛾2
∞∑

m=1

[
d2𝛽6m(r

2𝛽2m − 1)
]−1

…

[
2d𝛽2m𝛿 − 2+ …

2 exp[−d𝛽2m𝛿]+ …

2 exp[−d𝛽2mΔ]− …

exp[−d𝛽2m(Δ − 𝛿)]− …

exp[−d𝛽2m(Δ + 𝛿)]
]
. (4)

Here, 𝛽m is the mth root of equation J′1(𝛽mr) = 0 and J′1 is

the derivative of the Bessel function of the first kind, order

one. The normalized signal for a tensor model with sym-

metric diffusion tensor D and diffusion weighting factor

b = 𝛾2𝛿2(Δ − 𝛿∕3)|g|2 is:

Stensor = exp[−bĝTDĝ] =

exp[−bd||(ĝ
Tû1)

2]

exp[−bd⊥1
(ĝTû2)

2]

exp[−bd⊥2
(ĝTû3)

2], (5)

where d||, d⊥1
, and d⊥2

are primary, secondary, and tertiary

diffusion eigenvalues, respectively, for tensorD and û1, û2,

and û3 are the corresponding diffusion eigenvectors. Dif-

fusion eigenvectors are assumed to be parallel with the

corresponding axes from the cylinderECS model.

To disentangle the DWI signal dependence on diffu-

sion time and diffusion weighting (b-values), we propose a

two-step hierarchical fitting procedure.

2.1 Step 1

To account for signal dependence on diffusion weightings,

diffusion time is fixed at this step. By setting the diffu-

sion time Δ at a fixed value, the cylinderECS model can

be represented by a standard diffusion tensor D where

(cf. Equations 2 and 5):

d|| =
L||(d; Δ, 𝛿)

𝛾2𝛿2(Δ − 𝛿∕3)
= d, (6)

d⊥i
=

L⊥(ri, d; Δ, 𝛿)

𝛾2𝛿2(Δ − 𝛿∕3)
fori = 1, 2. (7)

By replacing the cylinerECSmodel with a standard dif-

fusion tensor model, Equation (1) can be rewritten as a

tensor-tensor model:

S = vICStensor + vECStensor, (8)

with the parameter vector

p =
[
vIC, d

||
IC
, d

⊥1

IC
, d

⊥2

IC
, d||

EC
, d

⊥1

EC
, d

⊥2

EC
, 𝜃, 𝜙, 𝛼

]
, (9)

where 𝜃, 𝜙, and 𝛼 are rotation angles to represent diffu-

sion eigenvectors; 𝜃 = arccos(ûT1 ẑ) is the angle between

the z-axis and û1, 𝜙 = arctan
(
ûT1 ŷ

ûT1 x̂

)
is the angle between

the x-axis and the projection of û1 on the xy-plane, and

𝛼 = arctan
(

ûT3 ẑ

−ûT2 ẑ

)
is the angle between the û1 rotated by

90◦ about the z-axis and û2.3

Given an observed data vector s̃ with M measure-

ments, the parameter vector p for a tensor-tensor model

is estimated at each diffusion time separately by maxi-

mizing the log-likelihood 𝓁(p, 𝜎|s̃) ≡ log(s̃|p, 𝜎) where
𝜎 is the SD of noise. At high signal-to-noise ratio

(SNR), a Gaussian distribution can approximate the noise

statistics;

𝓁(p, 𝜎|s̃) = −
1

2𝜎2

M∑

m=1

[
S(p; Ψm) − s̃m

]2
−
M

2
ln 2𝜋𝜎2, (10)

whereΨ is the set of all imaging parameters, and S(p; Ψm)

is the analytic synthesized signal from the compartment

model. For a normally distributed noise, minimizing the

negative log-likelihood is equivalent to minimizing the

root mean squared error between the observed data and

the predicted analytic signal from the model.

Given a vIC measurement obtained at each diffusion

time, the ICV is estimated using a linear regression model

to extrapolate its value as Δ → 0.

2.2 Step 2

Given d
⊥1

IC
and d

⊥2

IC
measurements obtained at each diffu-

sion time, r1 and r2 were estimated by minimizing the cost

function below:
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 =
∑

Δ′=10,… ,50 ms

[
d
⊥i

IC
(Δ′) −

L⊥(ri, d||; Δ
′, 𝛿)

𝛾2𝛿2(Δ′ − 𝛿∕3)

]2
, (11)

where d|| is estimated as Δ → 0 by fitting d||(Δ) =

d(Δ = 0) + c1Δ to intracellular parallel diffusivities esti-

mated at different diffusion times from step one.

In Step 1, the primary diffusion eigenvalue in the

extracellular space was set at 2.1𝜇m2/ms correspond-

ing to the free diffusivity in the buffer measured at an

region-of-interest (ROI) in the left ventricular cavity. All

experiments were conducted using a Matlab toolkit pub-

licly available at https://github.com/mfarzi/myoscope.

2.3 Experimental sampling
requirements

To reliablymeasuremodel parameters in Step 1,multishell

and multidirection data are essential. Bi-exponential sig-

nal decay can only be observed for large b-values exceed-

ing 1500 s/mm2. In Step 2, to accurately measure car-

diomyocyte diameters, experiments with multiple diffu-

sion times are necessary. Specifically, diameters in the

range of 20 𝜇m can only be estimated with diffusion times

longer than 30ms.

3 METHODS

3.1 In vivo MRI

All experimental investigations conformed to the UK

Home Office guidance on the Operations of Animals

(Scientific Procedures) Act 1986 incorporating European

Directive 2010/63/EU and were approved by the Univer-

sity of Oxford Animal Welfare and Ethical Review Board.

TAC surgery and in vivo MRI occurred under isoflu-

rane general anesthesia, with buprenorphine hydrochlo-

ride (1mg/kg) provided for peri- and post-surgical analge-

sia. Mice were euthanized via overdose of pentobarbitone

and rapid excision of the heart.

In vivo cine imaging was performed on healthy female

controls and male mice 3 weeks post TAC (C57Bl/6J, n = 2

each) as described previously.12,13 In brief, a double-gated,

two-fold compressed-sensing accelerated multiframe gra-

dient echo cine images (echo time/pulse repetition time =

1.79∕4.6ms, field of view = 30 × 30mm, slice thickness

1mm, matrix-size 128 × 128), covering the entire left ven-

tricle (LV) were acquired in short-axis orientation, using a

9.4T preclinical MR scanner (Agilent) with shielded gra-

dients (max gradient strength = 1 T/m, rise time = 130𝜇s)

and a quadrature-driven birdcage coil (Rapid Biomedical)

of inner diameter= 33mm. End-systolic and end-diastolic

frames were manually segmented using a bespoke soft-

ware tool to quantify global LV function and to measure

end-diastolic wall thickness in a mid-ventricular slice.

3.2 Heart samples

Sample preparation was performed as described previ-

ously14: the hearts were excised and perfused in con-

stant pressure Langendorff mode at 80mmHg with modi-

fiedKrebs-Henseleit solution and cardioplegically arrested

with STH-2 buffer. The hearts were then perfused via an

aortic cannula at constant flowwith 4% paraformaldehyde

(PFA) and subsequently with 1% PFA. The hearts were

immersed in 1% PFA and stored at 4◦C to continue fixa-

tion. Prior to imaging, the hearts were rinsed of fixative

via immersion in phosphate-buffered saline (PBS) and per-

fusion of PBS by aortic cannula. The hearts were then

embedded in 2% agarose-PBS gel (Web Scientific) to mini-

mize sample motion for MRI and subsequent synchrotron

imaging.

3.3 DWI data acquisition
and postprocessing

DWI was performed on the same preclinical MR scan-

ner but with a quadrature-driven birdcage coil of inner

diameter = 20mm (Rapid Biomedical). Images were

acquired using a DW fast spin echo sequence with six

gradient strengths, five diffusion times (Δ = 10, 20, 30,

40, and 50 ms), and 10 diffusion-encoding directions

similar to Farzi et al.3 One non-DW image was also

acquired for each diffusion time, bringing the number

of images to 305. The imaging parameters were: 3D fast

spin echo sequences with bandwidth = 100 kHz, resolu-

tion = 187.5 𝜇m isotropic, field-of-view = 9 × 9 × 5mm,

echo train length = 8, echo spacing = 3.4ms, diffusion

gradient duration 𝛿 = 2.5ms, and nominal b-value =

69, 280, 620, 1100, 1700, and 2500 s∕mm2. For b-value =

2500 s∕mm2, the gradient strengths were 780.06, 530.98,

430.76, 370.76, and 330.70mT/m for diffusion times 10,

20, 30, 40, and 50ms, respectively. The gradient strengths

were adjusted to achieve lower b-values. Fully sampled

data with a single averagewere acquired. No parallel imag-

ing technique was used. The total acquisition time for MR

imaging was 37 h for each mouse heart. To improve the

SNR, dynamic receiver gain adjustment was used,14 and

a low-pass Butterworth filter of order n = 4 with a nor-

malized cutoff frequency of 1∕3 was applied.3 Similar to

Kim et al.,8 different echo time were used for each dif-

fusion time. To compensate for this variable echo time,
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diffusion signals were normalized to the corresponding

s0, that is, signal measured at b = 0, for each diffusion

time.

3.4 SRI data acquisition
and postprocessing

Tomographic SRI data were acquired at beamline I13-2

imaging branch of the Diamond Light Source as previ-

ously described.3,9,15 In brief, a single ROI near the apex

was imagedusingmonochromatic X-rays (20–30 keV). The

exposure time per projection image was ≈ 1.2 s and 2401

projection scans were acquired at uniform angular spacing

over 180 degrees of sample rotation. The total acquisition

time was 1 h 25 min. The 2D projections were combined

using a filtered back-projection algorithm16 to obtain a

3D volume with an effective isotropic pixel size of 2.2 𝜇m

as detailed in our previous work.3 Next, reconstructed

SRI scans were rigidly registered to DWI data using the

tensor-based warping method proposed by Farzi et al.3

such that structure tensors (STs)17,18 were aligned with

the diffusion tensors. Figure 1 shows one cross-section

of the reconstructed SRI data in the short-axis orien-

tation registered with the corresponding DWI data for

two healthy control (HC) hearts and two disease TAC

hearts.

3.4.1 SRI Data Quantification

Figure 2 shows a schematic framework to quantitate ICV

and cardiomyocytes’ minor and major radii from the

reconstructed SRI scans. In this study, eachDWI voxel cor-

responds to a volume of 85 × 85 × 85 voxels in the recon-

structed SRI scans. First, structure tensors (STs)17,18 were

computed based on gray level intensity gradients in the

reconstructed SRI scans using the method of quadrature

filters performed in the spatial domain using freely avail-

able Matlab codes.19 Similar to Farzi et al.,3 quadrature

filtering was performed using a spatial filter size of 11 with

center frequency 𝜋∕3 and bandwidth of 2 octaves. Next,

each voxel is rotated so the tertiary ST eigenvector corre-

sponding to the primary diffusion eigenvector is aligned

with the z-axis. This is essential to segment cardiomy-

ocytes’ cross-sections perpendicular to their longitudinal

axis properly. An intensity-based clustering approach was

then used to segment cardiomyocytes. Since the inten-

sity profile shows one dominant mode in its histogram,

differentiating between intra- and extracellular space is

challenging. Here, like Farzi et al.,3 the gray-level inten-

sity profile for each cluster was assumed to be Gaussian.

A Gaussian Mixture Model (GMM) is then fitted to data

estimating a probability map for how likely each pixel

belongs to the intracellular space. ICV is then estimated as

the mean of the probability map.

F IGURE 1 Ex vivo diffusion-weighted

MRI (DW-MRI) and corresponding

synchrotron X-ray imaging (SRI) slices. The

first column shows the ex vivo DWI

measurements at b = 0 (no diffusion

weighting) in the four-chamber view for the

four mouse hearts. The second column

shows the cross-section in the short-axis

orientation at b = 0 (no diffusion weighting)

corresponding to the red line in the

four-chamber view. The third column shows

the corresponding DWI mask where the left

mid-ventricle wall is segmented into six

region-of-interests (ROIs): R1 in the septum,

R2 and R3 in the anterior wall, R4 in the

lateral wall, and R5 and R6 in the inferior

wall. The boundary voxels shown in gray

were excluded from the quantification to

avoid the partial volume effect. The last

column shows reconstructed SRI images

from collected tomographic data

corresponding to R4 in the short-axis

orientation. Lighter intensities represent the

extracellular space whereas the darker

intensities represent cardiomyocytes.

b0 image b0 image

R R

R

R

R

R

R

R

R
R

R

R

RR

R

R R

R

R

R

R

R

R
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(A)

(C) (D)

(B)

( )

F IGURE 2 Proposed synchrotron X-ray imaging (SRI) Quantification Pipeline. Each diffusion-weighted MRI (DWI) voxel corresponds

to a volume of 85 × 85 × 85 voxels in the reconstructed SRI scans. (A) First, the SRI volume is rotated to align cardiomyocytes with the z-axis.

This rotation is essential to estimate cardiomyocytes’ cross-sections appropriately in the xy-plane. The rotation matrix was derived by first

computing the structure tensors (STs) using the method of quadrature filters,18 and then estimating ST eigenvectors and combining them.

(B) The gray-level intensity profile for the intra- and extracellular space was assumed to be Gaussian and a Gaussian Mixture Model (GMM)

was fitted to the data. The lighter intensities represent the extracellular space whereas the darker intensities represent the cardiomyocytes.

(C) Given the GMMmodel, a probability map for how likely each pixel belongs to the intracellular space is computed in the xy-plane.

(D) To segment cardiomyocytes’ cross-sections, a threshold of 0.5 is applied to each voxel. Next, at each xy-plane, cardiomyocyte

cross-sections were segmented as individual blobs using a watershed algorithm,20 and the major and minor radii were estimated for each

blob. A Gamma distribution is then fitted to the estimated radii over all blobs in the SRI volume corresponding to a single DWI voxel.

To segment cardiomyocytes’ cross-sections, each voxel

is assigned to the most likely cluster, that is, a threshold

of 0.5 is applied to the estimated intracellular probability

map. Next, cardiomyocyte cross-sections were segmented

as individual blobs at each xy−plane using a watershed

algorithm.20 The major and minor radii were estimated

for each blob. A Gamma distribution is then fitted to the

estimated radii over all blobs in the SRI volume, corre-

sponding to a single DWI voxel.

3.5 Degeneracy and Precision Analysis

A global minimum at p∗ in the likelihood function means

that 𝓁(p∗|s) ≤ 𝓁(p|s) for all parameters p. The optimiza-
tion problem is degenerate if at least two different bio-

physically plausible sets of model parameters p1 and p2
exist such that 𝓁(p1|s) = 𝓁(p2|s) = 𝓁(p∗|s) for the mea-
surement data s. To assess the degeneracy of the objective

cost function 𝓁(p|s) for a single draw of noise and one spe-

cific set of parameters, each biophysical parameter pi was

swept within its physiologically plausible range, and the

minimum cost function was computed by optimizing the

remaining parameters.21-23 These graphs (see Figure S3)

provide a useful one-dimensional representation to assess

if multiple local or global minima exist for a specific data

vector s. If one global minimum exists in all graphs, then a

unique solution exists, and the objective function is nonde-

generate. The global minimum in these graphs is the same

as the optimal solution for 𝓁(p|s). Furthermore, degener-
acy may not be a property of the model alone, but also a

consequence of the choice of acquisition parameters.

For a parameter vector p and the corresponding noisy

data vector s generated from the model, the difference

between the estimated parameter p̂ and the ground-truth

p, that is, p̂ − p, is the error of the maximum likelihood

estimator (MLE) for p̂. An ensemble of p̂ − p, known as

the sampling distribution of the MLE, can be generated

using different draws of random noise for the same p and

obtaining the MLE estimate for each noise draw. The esti-

mator is unbiased if the mean of the estimator error is

zero. The precision of the estimator can also be measured

by calculating the SD of the estimation error. A smaller

SD means the MLE of a parameter varies less around its

mean value. Notably, under certain conditions, the vari-

ance of the sampling distribution can be related to the

Fisher Information.

To assess the accuracy of parameter estimation

for a tensor-tensor model, synthetic data was simu-

lated using p =
[
vIC, d

||
IC
, d

⊥1

IC
, d

⊥2

IC
, d||

EC
, d

⊥1

EC
, d

⊥2

EC
, 𝜃, 𝜙, 𝛼

]
=
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[0.6, 0.9, 0.5, 0.3, 2.1, 1.6, 1.0, 0, 0, 0] with diffusivities and

rotation angles reported in 𝜇m2∕ms and radian, respec-

tively. Intracellular eigenvectors were parallel to the

extracellular eigenvectors. DWI data was generated using

the same diffusion scheme used to collect the experimen-

tal data in this study, that is, 10 diffusion directions and

six nonzero b-values= 69, 280, 620, 1100, 1700, and 2500

ms∕𝜇m2. One b0 measurement was also simulated. Next,

N = 1000 noisy samples at SNR = 20, 30, 40, 60, 80, and

100 dB were generated using a Rician noise model.24 All

SNR were computed with respect to the b0 image. At each

SNR level, the model parameters were estimated for each

noisy sample of measurements. The mean and SD of the

estimator error p̂ − p were reported.

3.6 Dependence on diffusion Time

Kim et al.8 showed that the diffusion of water molecules

inside the cardiomyocytes are restricted by their size. This

experiment identified whether signal dependence on dif-

fusion times also exists in the extracellular space. To assess

the dependence of diffusion eigenvalues on diffusion time,

a tensor-tensor model was fitted at Δ = 10, 20, 30, 40, and

50ms separately using six different b-values and 10 diffu-

sion encoding directions. An ROI comprised of 37 voxels

was selected inside the LV cavity filled with the buffer.

We expect free diffusion of water molecules in the buffer

with no diffusion time dependence. Themid-ventriclewall

was segmented into six ROIs: R1 in the septum, R2 and

R3 in the anterior wall, R4 in the lateral wall, and R5 and

R6 in the inferior wall (Figure 1). The average and SD for

both intra- and extracellular diffusion eigenvalues were

reported.

4 RESULTS

4.1 In vivo MRI

Mid-ventricular end-diastolic frames in short axis orienta-

tion are shown in Figure S1 for all four hearts. Ejection

fraction was substantially reduced in the TAC hearts (35%

and 28% vs. 50% in controls), while left ventricular mass

was increased (TAC: 122∕156mg vs. 61∕96mg in controls)

(Table 1). The difference was less pronounced when nor-

malized to the body weight (TAC: 4.7/6.0 ×10−3 vs. 4.5/3.4

×10−3 in controls). Mid-left-ventricular end-diastolic wall

thickness was 1.2/1.1mm in the TAC and 0.94/0.85mm in

the control hearts, suggesting a hypertrophic response in

the TAC mice as expected.

4.2 Degeneracy analysis

For the simulated signal susing a tensor-tensormodelwith

p =
[
vIC, d

||
IC
, d

⊥1

IC
, d

⊥2

IC
, d||

EC
, d

⊥1

EC
, d

⊥2

EC
, 𝜃, 𝜙, 𝛼

]
= [0.6, 0.9,

0.5, 0.3, 2.1, 1.6, 1.0, 0, 0, 0], a unique global minimum

exists for the objective cost function, confirming that

the cost function is nondegenerate (Figure S3). As the

SNR tends to infinity, the estimator variance approaches

zero, allowing parameter estimation with high accu-

racy (Figure 3). However, as the SNR decreases, both

the estimator variance and bias increase, and parameter

estimation becomes challenging. Figure S2 shows the dis-

tribution of estimated vIC, d
||
IC
, and d||

EC
at a high SNR =

100 dB and a lower practical SNR = 40 dB, for example.

As a practical solution to improve the estimator pre-

cision, extracellular primary diffusion eigenvalue d||
EC
was

fixed to 2.1𝜇m2∕ms in this study. Figure 3D shows the

SD of estimator error in this scenario. Enforcing this con-

straint reduces the normalized SD for all parameters to

below 5% at SNR ≥ 40 dB.

4.3 Dependence on diffusion time

The mean diffusivity inside the buffer was measured as

2.1𝜇m2∕ms. No diffusion time dependence was seen in

the buffer (Figure 4C). Both intra- and extracellular appar-

ent diffusivities depend on diffusion times (Figure 4). For

the control hearts, the primary, secondary, and tertiary

eigenvalues decreased by about 10%, 20%, and 30% for the

TABLE 1 Analysis of cardiac morphology and function using in vivo MRI.

Sample EDV (𝝁L) ESV (𝝁L) SV (𝝁L) EF (%) LVM (mg) BW (g) EDWTH (mm)

HC01 73.1 36.5 36.6 50.1 95.5 21.4 0.94

HC02 45.7 23.4 22.3 48.8 61.5 18.2 0.85

TAC01 73.3 47.3 26 35.5 122.1 25.8 1.08

TAC02 99.1 71.7 27.5 27.7 156.1 26.1 1.23

Abbreviations: BW, body weight; EDV, end diastolic volume; EDWTH, mean end diastolic wall thickness; EF, ejection fraction; ESV, end systolic volume;

LVM, left ventricle mass; SV, stroke volume.
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F IGURE 3 Precision analysis for the Tensor-Tensor model. Panels (A) and (B) show the mean and SD for the maximum likelihood

estimator error. Panels (C) and (D) show the mean and SD of the estimator error when d||
EC
is a priori fixed at 2.1𝜇m2∕ms. The reported

figures were normalized to 1 for ICV and 3.0𝜇m2∕ms for the diffusivities. For SNR≥40 dB and fixed d||
EC
, the bias and variance were below 1%

and 5%, respectively. Synthetic data was simulated using model parameters p =
[
vIC, d

||
IC
, d

⊥1

IC
, d

⊥2

IC
, d||

EC
, d

⊥1

EC
, d

⊥2

EC
, 𝜃, 𝜙, 𝛼

]
=

[0.6, 0.9, 0.5, 0.3, 2.1, 1.6, 1.0, 0, 0, 0] with diffusivities and rotation angles reported in 𝜇m2∕ms and radian, respectively. DWI data was

generated using ten diffusion directions and six nonzero b-values = 69, 280, 620, 1100, 1700, and 2500 ms∕𝜇m2. One b0 measurement was

also simulated bringing the total number of measurements to 10 × 6 + 1 = 61. Next, N = 1000 noisy samples were generated at SNR = 20, 30,

40, 60, 80, and 100 dB using a Rician distribution.

slow-diffusing compartment. The secondary and tertiary

diffusion eigenvalues decreased by about 10% and 30%,

respectively. Similar patterns were also seen for the TAC

heart, but the secondary diffusion eigenvalue in the extra-

cellular space showed a slightly higher reduction by 6%.

Figure 4 shows data for the first control heart.

4.4 Biophysical parameters

Tables 2–4 show themean and SD for ICV,major diameter,

and minor diameter in six ROIs for both control and TAC

hearts (Figure 1). The average ICV was 62% in the con-

trol hearts. ICV estimations were similar in both control

hearts across the six ROIs (Table 2). Unlike the controls,

ICV was different between the TAC hearts: ICV = 68%

and 47% in the first and second TAC hearts, respectively.

Estimated ICV was homogeneous in all six ROIs in the

second TAC heart, and about 20% lower than the con-

trols. Estimated ICV in the first TAC heart were similar

to controls in regions R2, R3, and R4, whereas a slight

increase of about 5% was seen in regions R1, R5, and

R6. The major and minor cardiomyocyte diameters were

homogeneous in all six ROIs in the controls. The car-

diomyocyte cross-section in SRI data suggested an ECS

with r1∕r2 ≈ 2 on average. Themajor andminor cardiomy-

ocyte radii were both consistently higher by about 30% in

the TAC heart compared to the controls in all six ROIs

within the LV wall (Tables 3 and 4). The reported increase

in cardiomyocyte diameters from the ground-truth SRI

measurement was in accordance with the estimated

parameters from the compartment models. However,

the SD for estimated parameters was higher using

compartment modeling compared to the ground-truth

SRI quantification.
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F IGURE 4 Dependence of intra- and extracellular diffusion eigenvalues on diffusion time. (A) The primary, secondary, and tertiary

diffusion eigenvalues decreased by 13%, 22%, and 29% for the slow-diffusing compartment by increasing the diffusion time from 10 to 50ms.

(B) The secondary and tertiary diffusion eigenvalues decreased by 10% and 27% by increasing the diffusion time from 10 to 50ms,

respectively. Data is shown on the mid-ventricle wall for the first control heart. (C) No time dependency was observed in the buffer diffusivity

measured in an ROI selected inside the left ventricular cavity. The mean for the diffusion eigenvalues in the buffer was 2.1 𝜇m2∕ms. The

vertical error bar below and above each data point indicates 1 SD.

TABLE 2 Average (SD) of intracellular volume fraction estimated in six regions-of-interesta (%).

Sample Data R1 R2 R3 R4 R5 R6 ∪Ri

SRI 64 ± 0.7 61 ± 1.2 56 ± 2.3 55 ± 1.4 62 ± 2.4 65 ± 0.9 60 ± 4.6

HC01 DWIb 50 ± 7.4 45 ± 4.0 44 ± 4.9 46 ± 9.6 46 ± 6.3 44 ± 5.8 46 ± 7.4

DWIc 65 ± 7.1 57 ± 6.4 57 ± 7.5 65 ± 8.6 62 ± 7.6 61 ± 7.5 62 ± 8.1

SRI 64 ± 3.1 65 ± 2.7 66 ± 1.4 63 ± 6.7 63 ± 2.0 64 ± 1.5 64 ± 3.9

HC02 DWIb 42 ± 6.2 44 ± 6.8 51 ± 4.9 45 ± 4.4 49 ± 1.9 48 ± 5.0 46 ± 5.9

DWIc 56 ± 3.8 59 ± 8.0 67 ± 4.4 62 ± 5.3 64 ± 3.8 63 ± 3.8 62 ± 6.3

SRI 74 ± 2.0 69 ± 2.8 62 ± 1.3 67 ± 2.4 72 ± 1.4 74 ± 3.2 71 ± 4.4

TAC01 DWIb 56 ± 5.9 53 ± 4.7 51 ± 3.3 51 ± 4.8 55 ± 4.4 57 ± 3.9 54 ± 5.0

DWIc 70 ± 4.0 66 ± 6.7 65 ± 5.1 67 ± 5.3 70 ± 6.4 69 ± 4.9 68 ± 5.8

SRI 43 ± 2.1 42 ± 2.7 45 ± 2.1 45 ± 2.1 44 ± 1.8 41 ± 2.0 43 ± 2.6

TAC02 DWIb 35 ± 5.9 33 ± 5.9 40 ± 4.8 40 ± 6.4 35 ± 6.3 32 ± 5.0 36 ± 6.4

DWIc 50 ± 7.2 45 ± 6.2 48 ± 6.3 48 ± 8.7 44 ± 6.3 46 ± 6.4 47 ± 7.3

Note: The grey shading represents the ground-truth SRI measurements for each sample heart.

Abbreviations: HC, healthy control; TAC, transverse aortic constriction.
a See Figure 1 for a visual demonstration of the six selected ROIs R1 to R6. To avoid the partial volume effect, averaging is performed over voxels in the

mid-ventricle wall only.
bThe cylinderECS-tensor model with the one-step fitting procedure.
cThe cylinderECS-tensor model with the proposed two-step hierarchical fitting procedure.

Figure 5 shows the Bland–Altman analysis to assess

the agreement between SRI and DWI data in biophysi-

cal parameter measurement. Biophysical parameters esti-

mated from DWI data using the proposed two-step

hierarchical optimization approach were consistent with

SRI measurements. However, DWI data modeling using

one-step optimization resulted in a large ICVunderestima-

tion of about 15%.

5 DISCUSSION

The study presents four contributions to cardiac

microstructure mapping. Firstly, a new hierarchical

modeling strategy is proposed to reliably estimate car-

diomyocyte diameters and volume fraction. Our findings

confirmed that a mono-exponential signal decay cannot

appropriately represent the DWI signal at high b-values.
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TABLE 3 Average (SD) of minor cardiomyocyte diameter estimated in six regions-of-interest (ROIs)a (μm).

Sample Data R1 R2 R3 R4 R5 R6 ∪Ri

SRI 10.8 ± 0.4 10.6 ± 0.2 9.6 ± 0.4 9.4 ± 0.2 10.6 ± 0.6 11.2 ± 0.4 10.2 ± 0.8

HC01 DWIb 12.2 ± 5.6 10.2 ± 3.4 9.8 ± 2.4 10.0 ± 6.6 9.6 ± 2.4 9.6 ± 2.8 10.4 ± 4.8

DWIc 10.2 ± 1.4 10.8 ± 1.2 10.8 ± 1.6 9.8 ± 1.4 10.4 ± 1.2 10.4 ± 1.2 10.2 ± 1.4

SRI 10.2 ± 0.2 10.2 ± 0.2 10.0 ± 0.1 10.2 ± 0.4 9.8 ± 0.1 10.0 ± 0.2 10.0 ± 0.2

HC02 DWIb 8.6 ± 2.4 8.0 ± 2.6 11.0 ± 3.2 7.2 ± 3.0 8.8 ± 1.2 11.2 ± 2.0 8.8 ± 2.8

DWIc 9.6 ± 1.2 8.8 ± 1.4 10.2 ± 0.8 9.0 ± 1.0 9.8 ± 0.8 10.4 ± 0.6 9.4 ± 1.2

SRI 13.6 ± 0.4 13.0 ± 0.6 12.4 ± 0.6 13.0 ± 1.0 13.6 ± 1.0 13.8 ± 0.6 13.4 ± 0.8

TAC01 DWIb 13.2 ± 2.0 15.0 ± 3.2 15.0 ± 3 13.2 ± 2.2 13.6 ± 2.4 14.2 ± 1.8 14.0 ± 2.4

DWIc 12.0 ± 1.2 13.4 ± 0.8 13.8 ± 1.8 12.4 ± 1.0 12.8 ± 1.6 12.8 ± 1.0 12.8 ± 1.4

SRI 11.4 ± 0.4 11.8 ± 0.8 12.0 ± 0.4 12.2 ± 0.4 11.8 ± 0.6 11.2 ± 0.4 11.8 ± 0.6

TAC02 DWIb 12.0 ± 3.6 15.8 ± 4.6 13.0 ± 2.4 13.6 ± 2.0 12.4 ± 2.2 12.8 ± 3.2 13.2 ± 3.4

DWIc 13.2 ± 1.6 14.2 ± 1.8 13.2 ± 1.8 13.8 ± 1.0 13.0 ± 1.4 13.2 ± 2.0 13.4 ± 1.8

Note: The grey shading represents the ground-truth SRI measurements for each sample heart.

Abbreviations: HC, healthy control; TAC, transverse aortic constriction.
a See Figure 1 for a visual demonstration of the six selected ROIs R1 to R6. To avoid the partial volume effect, averaging is performed over voxels in the

mid-ventricle wall only.
bThe cylinderECS-tensor model with the one-step fitting procedure.
cThe cylinderECS-tensor model with the proposed two-step hierarchical fitting procedure.

TABLE 4 Average (SD) of major cardiomyocyte diameter estimated in six regions-of-interests (ROIs)a (μm).

Sample Data R1 R2 R3 R4 R5 R6 ∪Ri

SRI 17.6 ± 0.8 17.2 ± 0.4 16.0 ± 0.6 15.8 ± 0.6 16.8 ± 0.6 18.0 ± 0.6 16.8 ± 1.0

HC01 DWIb 19.2 ± 3.4 19.4 ± 4.4 21.6 ± 6.8 19.0 ± 5.2 17.0 ± 3.0 18.2 ± 2.2 19.0 ± 4.6

DWIc 17.6 ± 2.0 17.2 ± 2.0 19.0 ± 2.8 17.0 ± 1.8 16.8 ± 2.2 17.2 ± 1.8 17.4 ± 2.2

SRI 16.6 ± 0.4 16.4 ± 0.2 16.2 ± 0.2 16.4 ± 0.8 15.8 ± 0.2 16.2 ± 0.6 16.2 ± 0.6

HC02 DWIb 20.6 ± 3.6 21.4 ± 4.4 19.0 ± 1.8 20.6 ± 2.8 17.8 ± 1.6 20.2 ± 3.8 20.0 ± 3.4

DWIc 18.6 ± 2.4 18.8 ± 2.8 17.6 ± 0.8 18.4 ± 1.2 16.6 ± 1.2 17.8 ± 3.0 18.0 ± 2.0

SRI 21.0 ± 0.6 20.2 ± 0.8 19.8 ± 0.4 20.6 ± 1.2 21.0 ± 1.6 21.4 ± 0.8 20.8 ± 1.0

TAC01 DWIb 22.8 ± 3.6 19.8 ± 3.6 22.2 ± 2.8 19.4 ± 3.6 18.2 ± 2.2 25.2 ± 7.2 21.4 ± 5.2

DWIc 20.0 ± 2.8 18.0 ± 2.2 19.4 ± 2.4 17.2 ± 2.8 16.6 ± 1.8 23.0 ± 7.4 19.2 ± 4.6

SRI 21.6 ± 0.8 22.0 ± 1.0 22.2 ± 0.6 22.2 ± 0.4 21.8 ± 0.6 21.4 ± 0.8 21.8 ± 0.8

TAC02 DWIb 19.8 ± 4.6 23.4 ± 7.2 22.0 ± 4.0 18.8 ± 2.6 20.0 ± 3.8 23.4 ± 6.0 21.0 ± 5.2

DWIc 18.4 ± 2.6 20.2 ± 5.4 19.8 ± 2.8 18.0 ± 1.8 17.8 ± 1.8 19.8 ± 2.6 19.0 ± 3.2

Note: The grey shading represents the ground-truth SRI measurements for each sample heart.

Abbreviations: HC, healthy control; TAC, transverse aortic constriction.
a See Figure 1 for a visual demonstration of the six selected ROIs R1 to R6. To avoid the partial volume effect, averaging is performed over voxels in the

mid-ventricle wall only.
bThe cylinderECS-tensor model with the one-step fitting procedure.
cThe cylinderECS-tensor model with the proposed two-step hierarchical fitting procedure.

A bi-exponential tensor model improved the root mean

squared error by approximately 40% compared to diffusion

tensor imaging, but cannot account for the signal depen-

dence on diffusion times. A cylinderECS-tensor model

represented the restricted diffusion inside cardiomyocytes

well, but resulted in large ICV underestimation (≈ 15%)

by ignoring diffusion time dependence in the extracellular

space, as confirmed in this study (Table 2). To alleviate
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F IGURE 5 Bland–Altman analysis

between synchrotron X-ray imaging (SRI)

and diffusion-weighted MRI (DWI)

parameters. The Bland–Altman plots show

the average difference between the

measurements on the y-axis and the mean

of the two measurements on the x-axis. A

small bias (the solid line) would confirm

consistency between measurements. To

assess the agreement between the two

measurements, dashed lines represent the

interval range of values within which 95% of

the differences between the two methods

are expected to lie. The column on the left

compares SRI and DWI data modeling using

a one-step optimization, whereas the

column on the right shows similar results

for comparison between SRI and DWI data

modeling using the proposed two-step

optimization method. The rows show

results for ICV, minor, and major diameters

from top to bottom, respectively. (A,B) ICV;

(C,D) minor diameter; (E,F) major diameter.
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the ICV underestimation issue, previous studies used

spherical or planar tensors to model the extracellular

space.3,8 However, adopting an isotropic tensor modestly

improved the ICV estimation error to about 8%. The pro-

posed two-step hierarchical fitting procedure addressed

this issue by disentangling the DWI signal dependence on

diffusion times and b-values.

The biexponential tensor model showed that intracel-

lular diffusion eigenvalues depend on diffusion times. For

the slow-diffusing compartment, the primary, secondary,

and tertiary eigenvalues decreased by approximately 10%,

20%, and 30% as the diffusion time increased from 10 to

50ms. The reduction in secondary and tertiary diffusion

eigenvalues can be attributed to restricted diffusion inside

cardiomyocytes. The modest reduction in the primary dif-

fusion eigenvalue may be attributed to the slight varia-

tion in cardiomyocyte orientation within each voxel.3 ICV

was also modestly dependent on diffusion time decreas-

ing by 5% when increasing the diffusion time from 10 to

50ms. This reduction in ICV may be due to increased

water exchange between compartments at higher diffu-

sion times. For the fast-diffusing compartment, the tertiary

diffusion eigenvalue reduced by about 30% when increas-

ing the diffusion times from 10 to 50ms, which may be

linked to the sheetlet gaps. A modest reduction of 10%

was also observed in the second diffusion eigenvalue. This

reduction may also be linked with slight dispersion of

cardiomyocyte orientation within each voxel.

As the second contribution, we examined the effect

of hypertrophy on estimated biophysical parameters in

two TAC hearts. At the macroscopic level, the TAC model

resulted in thicker LV walls compared to control hearts

(Table 1). At the cellular level, this increase in cardiacmass

could be attributed to the 30% increase in the cardiomy-

ocyte minor diameter compared to the control hearts

(Table 3). SRI data validated these findings, suggesting

cardiomyocyte diameters as potential biomarkers of hyper-

trophy in the heart. The first TAC heart showed a modest

increase in ICV while the second TAC heart had a sig-

nificantly lower ICV compared to the controls. The slight

increase of 5% in the first TAC heart is in keeping with the

suggestion that an increase in ICV putatively occurs before

the onset of irreversible myocardial fibrosis (i.e., decrease

in ICV).25 The reduction in ICV seen in the second TAC

heart could be due to the heart being arrested in a con-

tracted state (cf. Figure 1). ICV depends on cardiomyocyte

volume and packing density inside sheetlets as well as the

gaps between sheetlets. During heart contraction, shorten-

ing of cardiomyocytes or increasing cleavage gaps between

sheetlets result in lower ICV.26
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As the third contribution, we extended our 3D

virtual histology framework to quantify cardiomyocyte

diameters using an automatic watershed-based segmen-

tation algorithm and morphological operations. The esti-

mated ICV was consistent with results reported in Greiner

et al.27 The estimated diameter from reconstructed SRI

scans was 30% lower than the value reported in Chen

et al.28 but consistent with results reported in Farzi et al.3

This variation could be attributed to anatomical varia-

tion between species.29 Our findings showed good con-

sistency between estimated biophysical parameters and

the ground-truth parameters estimated from SRI data

(Figure 5). Variation in estimated SRI parameters may be

attributed to the physiological or pathophysiological vari-

ation, segmentation accuracy, data acquisition artifacts,

and measurement noise. However, we hypothesize that

the primary source of variation in estimated SRI param-

eters is physiological. This hypothesis is in keeping with

the higher variance observed in estimated biophysical

parameters using DWI data. This higher variance may be

attributed to the acquisition noise propagation in DWI

data.

The fourth contribution is the quantification

of the uncertainties in parameter estimation for a

biexponential tensor model using simulated data.

For the simulated signal s using a tensor-tensor

model with p =
[
vIC, d

||
IC
, d

⊥1

IC
, d

⊥2

IC
, d||

EC
, d

⊥1

EC
, d

⊥2

EC
, 𝜃, 𝜙, 𝛼

]
=

[0.6, 0.9, 0.5, 0.3, 2.1, 1.6, 1.0, 0, 0, 0], our findings suggest

that a tensor-tensor model is not degenerate under the

proposed diffusion scheme (Figure S3). However, as SNR

decreases below 60 dB, the estimated parameters suf-

fer from large bias (>5%) and poor precision (>5%) as

shown in Figure 3. As a practical solution, similar to the

NODDI model,30 we fixed the primary extracellular dif-

fusion eigenvalue at 2.1𝜇m2∕ms. This parameter fixation

allowed for a more accurate estimation of the remaining

parameters at realistic experimental SNR levels of 40 dB

(Figure 3C,D). Here we used an experimental approach

based on synthetic simulations to assess the degeneracy.

Employing an analytic approach similar to Coelho et al.31

could further help to optimize the number of diffusion

directions, shells, and diffusion times to improve the pre-

cision of estimated biophysical parameters without fixing

the extracellular diffusivities.

This study had the following limitations. The pro-

posed hierarchical fitting procedure represented the dif-

fusion time dependence in the extracellular space indi-

rectly using a separate tensor model per diffusion time.

A new compartment model may be required to account

for the hindered time-dependent diffusion signal in the

extracellular space in future studies. Similar to References

3,7, and 8, the vascular component was combined with

the interstitial space between cardiomyocytes into one

effective compartment in this study.We previously showed

that the restriction effects imposed by vessel boundaries

would be negligible at diffusion times below 50ms in this

fixed ex vivo experimental setting.3 However, a separate

vascular compartment will be required to model cardiac

perfusion.

To optimize SNR, different echo times were used for

each diffusion time. To account for different T2 weighting,

collected signals were normalized to their corresponding

b0 signal at each diffusion time. However, if the under-

lying compartments have different T2 values, the relative

contributions of the compartments to the signal will not

be the same at all echo times due to the difference in the

amount of T2 decay. Kim et al.8 investigated this effect on

a cylinder-ball model and reported minor effects on esti-

mated biophysical parameters. Therefore, we adopted this

approach in our study.

In this study, heartswere fixedusing PFA. Fixatives like

PFA stabilize the tissue microstructures and make them

metabolically inactive, but they could affect the estimated

biophysical parameters.32 To reduce these effects, hearts

were rinsed of excess fixative via immersion in PBS in

this study.33 Lohr et al.34 studied the effects of continuous

formalin fixation on diffusion tensor properties; mean dif-

fusivity and fractional anisotropywere reduced by 22% and

10% postfixation after 7 days.34

We finally recognize the small sample size as a fur-

ther limitation. However, this work was designed as a

proof-of-concept study aimed to establish tools and tech-

niques. Future work will focus on a systematic characteri-

zation of the myocardium in health and disease using bio-

physicalmodeling. The application to geneticallymodified

mouse models may also help to further elucidate molecu-

lar mechanisms driving microstructural alterations.

6 CONCLUSIONS

Wepropose a newbiophysicalmodeling approach to quan-

tify cardiac microstructure in healthy and TAC mouse

hearts ex vivo using a biexponential tensormodel, followed

by a cylinderECS model. We show that both the intra- and

extracellular diffusion eigenvalues depend on the diffusion

time. At realistic SNR levels of approximately 40 dB, a large

MLE error, rather than degeneracy, resulted in poor pre-

cision in the estimation of biophysical parameters. As a

practical solution, we fixed the primary extracellular diffu-

sivity in this study at the measured free diffusivity in the

buffer. The estimated ICV and cardiomyocyte radii were

consistent with the ground-truth SRI quantification. The

cardiomyocyte minor diameter was a sensitive biomarker

of hypertrophy in the heart, demonstrating approximately

30% higher values in the TAC hearts compared to the

controls.
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SUPPORTING INFORMATION

Additional supporting information may be found in the

online version of the article at the publisher’s website.

Figure S1. In vivo MRI. Representative mid-ventricular,

end-diastolic cine images in short-axis orientation for all

hearts used in this study. The TAC hearts seem enlarged

with increased wall thickness.

Figure S2. Precision analysis for the tensor-tensor model.

The scatter plots show the distribution of estimated param-

eters vIC, d
||
IC
, and d||

EC
versus each other. The top row

shows the results at SNR = 100 dB. Estimate parameters

were highly concentrated about the ground truth marked

by red lines. The bottom row shows the results at SNR =

40 dB. Estimated parameters were highly scattered about

the ground-truth parameters. These results are based on

N = 1000 data vectors simulated using the same model

parameters but with different noise samples drawn from

a Rician distribution. See Figure 3 for more information

about the data simulation.

Figure S3. Degeneracy analysis for the Tensor-Tensor

model. At each noise level, one synthetic signal vector

was randomly drawn from a Rician noise distribution.

All signal vectors were generated using the same model

parameters p =
[
vIC, d

||
IC
, d

⊥1

IC
, d

⊥2

IC
, d||

EC
, d

⊥1

EC
, d

⊥2

EC
, 𝜃, 𝜙, 𝛼

]
=

[0.6, 0.9, 0.5, 0.3, 2.1, 1.6, 1.0, 0, 0, 0] with diffusivities and

rotation angles reported in 𝜇m2∕ms and radian, respec-

tively. For each parameter, its value was fixed at a spe-

cific value within its physiologically plausible range. The

remaining parameters were optimised to fit the model to

the given input data. The root mean squared error (RMSE)

was then reported for each parameter. A global minimum

in each graph confirms that a unique solution exists for

each optimization problem.
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