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ABSTRACT

Physically based hydrological models such as the Joint UK Land Environment Simulator (JULES) are 
increasingly used for hydrological assessments because of their state-of-the-art representation of physi-
cal processes and versatility. Generating parameter sets for a larger variety of land cover types may be an 
appropriate approach to simplify setting up JULES for operating simulations beyond the default para-
meterizations. Here we explore the possibilities of this approach using a case study in the tropical Andes. 
First, we evaluate to what extent the standard JULES land cover configurations can simulate the 
hydrological response of dominant soil and land cover types of the region. Next, we adjust the soil 
water retention parameters on a regional basis using experimental soil data from representative sites. We 
find that the adjusted parameters result in substantial alteration for the flow partition. Such parameter-
izations may increase the configurations to implement JULES for a larger variety of land cover types and 
assess soil disturbance’s potential impact more precisely.
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1 Introduction

Large parts of the world are undergoing rapid land use and 
cover change (LUCC) (Turner et al. 1994). This is particularly 
the case for mountain environments, which are naturally 
already very dynamic systems yet often host vulnerable 
human populations. Being able to predict the impact of these 
changes is essential for adequate land-use planning and opti-
mizing the local natural capital available to support sustainable 
development (Célleri and Feyen 2009). This is highly relevant 
in the tropical Andes, which is a hotspot of environmental 
change yet provides essential ecosystem services, including 
water supply to over 100 million people (Buytaert et al. 2006, 
Célleri et al. 2009).

Hydrological models are convenient tools to make pre-
dictions about the potential impact of LUCC on streamflow 
and related ecosystem services (Tsarouchi and Buytaert 
2018). A large variety of hydrological modelling paradigms 
are currently evaluated and applied (McIntyre et al. 2014). 
The use of physics-based models is gaining traction, as the 
effects of physical change can be explicitly represented once 
the physical properties of the catchment under existing and 
changed conditions are determined (McIntyre et al. 2014). 
They allow detailed mapping of the manifestation of envir-
onmental change to specific model parameters, which can 
subsequently be used for scenario analysis in a land man-
agement context (McIntyre et al. 2014). Among the phy-
sics-based models are land surface schemes, also referred to 
as soil-vegetation-atmosphere transfer models (SVAT) or 
land surface models.

Land surface models were initially developed as the lower 
boundary condition for global circulation models (GCMs) and 
another atmospheric modelling (Best et al. 2011). In this study, 
we use a popular land surface model, i.e. the Joint UK Land 
Environment Simulator (JULES) (Best et al. 2011, Clark et al. 
2011) for the modelling of hydrological phenomena in the 
tropical Andes. JULES includes a soil hydraulics component, 
which determines water movement in the land surface model. 
The required soil parameters are commonly obtained using 
pedotransfer functions (PTFs) (Marthews et al. 2014). PTFs 
estimate unavailable soil parameters from soil properties such 
as texture and dry bulk density (Cosby et al. 1984, Tomasella 
and Hodnett 1998). Marthews et al. (2014) found that the PTFs 
developed by Hodnett and Tomasella (2002) are more robust 
in tropical South America than the more commonly used 
texture-based PTFs of Cosby et al. (1984) and the PTFs of 
Tomasella and Hodnett (1998).

Here we explore the suitability of the simplified land cover 
representation described by Harper et al. (2018) to simulate 
typical land cover types of the upper Andean region of Perú 
and Ecuador, which is mainly covered by grass and shrubland 
vegetation on top of soils derived from volcanic materials such 
as Andosols, Leptosols, Histosols, Cambisols, and Regosols 
(FAO/IIASA/ISRIC/ISSCAS/JRC 2012, Hengl et al. 2017). 
The region features soils with high water retention capacity 
(Buytaert et al. 2005), which is found to be underestimated by 
the commonly used PTF parameterization (Cosby et al. 1984, 
Tomasella and Hodnett 1998, Hodnett and Tomasella 2002). 
The availability of sets of parameterizations greatly simplifies 
setting up JULES for large-scale applications and data-scarce 
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regions, but it comes at the expense of a highly simplified 
representation and coarse classification of surface hydrological 
processes. Therefore, we further evaluate the effects of using 
modified soil data with experimental data of Andosol (Ortiz 
and Peralvo 2013) from site Jatunhuaycu, Ecuador (JTU; 
Fig. 1) for a better representation of the hydrological response 
of tropical Andean catchments in Piura, Perú (PIU) and 
Huaraz, Perú (HUA).

2 Materials and methods

2.1 Study region

In the tropical Andes, the major hydrological processes are 
defined by varying biophysical properties within various 
ecosystems and biomes, including páramo, jalca, puna, 
and montane and cloud forests (Célleri et al. 2009). The 
páramo, jalca, and puna are high-altitude neotropical 
biomes distributed over a latitudinal gradient. 
Approximately 35000 km2 of areas in Northern Colombia 
and Venezuela to northern Perú are covered by páramo; 
jalca is found in northern to central Perú; puna can be 
found from central Perú to northern Argentina and Chile. 
Below those ecosystems, montane cloud and dry forests are 
characteristic vegetation types that can be found at eleva-
tions above 1000 m in the Andes, depending on the rainfall 
regime (Célleri et al. 2009).

The upper Andean ecosystems cover the headwaters of the 
major tributaries of the Amazon basin (Célleri et al. 2009) and 
also support smallholder irrigated agriculture, industrial con-
sumption, and hydropower production (Buytaert et al. 2014). 
Despite their importance for water supply, these mountain 
areas are particularly vulnerable and prone to human impact. 
Human activities associated with rapid economic growth dur-
ing the past half-century have caused drastic changes to the 
water cycle (Harden 2006). LUCC led by deforestation, oil 
exploitation, mining, and hydropower production (Zulkafli  
et al. 2013), and the significantly increasing demand for 
páramo water for intensive cattle grazing, cultivation, and 
pine planting (Buytaert et al. 2006), highlights the importance 
of water resources management.

2.2 JULES implementation

2.2.1 Model overview

JULES was originally developed by the UK Met Office as 
a community land surface model (Cox et al. 1999). It is com-
monly coupled to an atmospheric GCM or other atmospheric 
modelling system as the lower boundary condition (Clark et al. 
2011). In addition, the stand-alone model can simulate the 
fluxes between the land surface and the atmosphere, which 
includes carbon (Clark et al. 2011), water, energy, and momen-
tum (Best et al. 2011). It has been used successfully for various 
applications such as weather forecasting, climate change 

Figure 1. The location of the iMHEA sites within the major land cover types of the tropical Andes. JTU: Jatunhuaycu; PIU: Piura; HUA: Huaraz.

HYDROLOGICAL SCIENCES JOURNAL 1517



prediction, and earth system modelling and has been increas-
ingly used for hydrological assessment (Zulkafli et al. 2013, Le 
Vine et al. 2016). JULES can be used to adequately predict the 
change in hydrological observations. This makes it possible to 
identify the potential hydrological impact under anthropo-
genic interventions (Rodriguez and Tomasella 2016, 
Boongaling et al. 2018) by changing the model structure or 
parameter values that represent the catchment properties. The 
processes of the energy exchange between various land surface 
and the atmosphere are simulated under the physically based 
approaches as described in detail by Best et al. (2011) and 
Clark et al. (2011).

Distinct parameters are used to calculate the energy balance 
for specific land use types. In this study, we reclassified the land 
cover types, using the survey data of Ochoa-Tocachi et al. 
(2018), into four vegetated plant functional types (Harper  
et al. 2018) – tropical broadleaf evergreen trees (BET-Tr), C3 
grasses (C3), C4 grasses (C4), and evergreen shrubs (ESH) – 
and a non-vegetated type – bare soil (BS). We focused on the 
water fluxes simulated by JULES, in which precipitation is 
intercepted by the canopy storage, then partitioned into sur-
face flow and infiltration into the soil based on the Hortonian 
infiltration excess mechanism. The saturation excess flow is 
calculated with a probability distributed model (PDM) 
described by Moore (1985), with a probability function that 
describes the sub-grid distribution of soil moisture (Clark and 
Gedney 2008). The infiltration is assumed to be 
redistributed instantly following the Darcy-Richards diffusion 
equation, which generates the subsurface flow at the lower 
boundaries as the gravity drainage.

2.2.2 The iMHEA catchment network

The difficulties of implementing and maintaining research- 
grade observation networks have historically hindered data 
collection in remote mountain areas, limiting the develop-
ment and implementation of hydrological models to support 
water resources management. The advent of alternative 
methods for scientific data collection, particularly citizen 
science, provides new opportunities to alleviate data scarcity 
and promote public participation in hydrological science 
(Buytaert et al. 2014). Here, we use hydrological monitoring 
data from a regional citizen science-based initiative (Ochoa- 
Tocachi et al. 2018). The Regional Initiative for Hydrological 
Monitoring of Andean Ecosystems (iMHEA) aims to char-
acterize the hydrological response of different Andean eco-
systems in Perú, Ecuador, and Bolivia (Table 1). The iMHEA 
dataset includes streamflow, precipitation, and several 

weather variables at a high temporal resolution using cheap 
and robust technology (Buytaert et al. 2014). This monitoring 
is implemented in small and homogeneous catchments, dis-
tributed over the Andes between the latitudes of 0 and 17°S 
(Fig. 1), and covers three major high-elevation biomes: 
páramo, puna, and jalca (Ochoa-Tocachi et al. 2016). Most 
of the catchments are rural areas covered by tussock and 
other grasses, wetlands, shrubs, and patches of native forest. 
These regions are not affected by urbanization, water abstrac-
tions, or stream alterations.

2.2.3 Meteorological forcing data

Precipitation was recorded in each catchment with 
a minimum of two tipping-bucket raingauges distributed 
over the catchment areas (Ochoa-Tocachi et al. 2016), 
referred to here as the “iMHEA precipitation” dataset. 
Other meteorological data that are not available from the 
iMHEA network, i.e. downward shortwave and longwave 
radiation, temperature, specific humidity, wind speed, and 
surface pressure, are extracted from the Reanalysis II dataset 
developed by the National Centers for Environmental 
Prediction and the Department of Energy (NCEP-DOE; 
Kanamitsu et al. 2002). The dataset is available on a T62 
Gaussian grid with 192 × 94 points (approximately 2° scales) 
and provides a six-hourly temporal resolution from 
January 1979 to the present. These gridded data are inter-
polated in space to a point scale with the nearest-neighbour 
interpolation method. We adjusted the NCEP-DOE tempera-
ture and pressure data from their record level to the site level 
using the local environmental lapse rate of 0.65°C per 
100 m (Buytaert et al. 2006). For finer temporal resolution, 
we disaggregated the six-hourly data to hourly with linear 
interpolation.

2.2.4 Parameterization of high-Andean soils

We developed the soil parameters required by JULES 
(Table 2) using the PTFs summarized in Table 3. The 
required soil composition and chemical variables are 
obtained from the Harmonized World Soil Database ver-
sion 1.21 (FAO/IIASA/ISRIC/ISSCAS/JRC 2012) and 
SoilGrids (Hengl et al. 2017). The water retention proper-
ties from the local experimental data (Ortiz and Peralvo 
2013) are considerably higher than those derived from 
PTFs (Fig. 2). Therefore, we explore using in situ experi-
ment data from the JTU catchment (code: EXP) obtained 
by Ortiz and Peralvo (2013) as an alternative estimation of 
water retention properties for a more objective comparison. 

Table 1. Description of the monitored catchments. BET-Tr: tropical broadleaf evergreen trees; C3: C3 grasses; C4: C4 grasses; ESH: evergreen shrubs; BS: bare soil. The 
codes JTU, PIU, and HUA refer to the locations shown in Fig. 1.

Code Ecosystem Land use Altitude (m) Area (km2) Soil Land cover

JTU3 Páramo Natural 4144–4500 2.25 Andosol, Histosol 0.80 C4, 0.20 ESH
JTU2 Páramo Grazing 4085–4322 2.42 Andosol 1.00 C4
HUA1 Humid puna Natural 4280–4840 4.22 Andosol, Histosol 0.75 C4, 0.25 BS
HUA2 Humid puna Grazing 4235–4725 2.38 Andosol, Histosol 0.70 C4, 0.30 BS
PIU1 Páramo Natural 3112–3900 6.60 Andosol, Histosol 0.15 BET-Tr, 0.85 C4
PIU2 Páramo Grazing 3245–3610 0.95 Andosol, Histosol 0.15 BS, 0.85 C4
PIU4 Forest Natural 2682–3408 2.32 Andosol, Cambisol 0.80 BET-Tr, 0.20 C4
PIU7 Dry puna Grazing, cultivation 3110–3660 7.80 Andosol 0.35 C3, 0.45 C4, 0.2 ESH

1518 H.-K. CHOU ET AL.



We use three sets of PTF-based and one set of experimen-
tally based (henceforth “EXP-based”) soil properties in this 
study (Table 4).

2.2.5 Routing

We simulate surface (Qsurface) and subsurface (Qsubsurface) run-
off fluxes in distributed mode with a defined grid (30-m reso-
lution). For a reasonable comparison to the observed river 
flows (Best et al. 2011), we applied a simple delay function to 
account for the routing delay in the river discharge (Qsim) in 
each time step (t). 

Qsim;t ¼
X

n

i¼1

Qsurface;t�ti1 þ Qsubsurface;t�ti2

� �

; ti1 ¼
di

Csurface
;

ti2 ¼
di

Csubsurface

(1) 

We calculate the distance (d) of each point (i) in the catchment 
to the outlet using the D8 flow routine (Fig. 3) with the Digital 
Elevation Model (DEM) obtained from Ochoa-Tocachi et al. 
(2018). The lag time was obtained empirically by analysing the 
time interval between the maximum rainfall and the peak 
discharge of the observed hydrograph.

2.2.6 Model evaluation

The water balance was assessed by the rainfall–runoff ratio 
(RR) between the total flow (Q) and the total rainfall volume 
(P) over the monitored period, which gives a direct indication 
of the water yield. 

RR ¼ Q
P

(2) 

The baseflow sustaining the ecosystem between rainfall events 
was assessed using the baseflow index (BFI) and an indicator 
based on the slope of the flow duration curve (R2FDC). BFI 

defines the ratio of baseflow (Qbase) to the total flow. For dry 
weather runoff assessment, the baseflow was separated from the 
total flow using the two-parameter algorithm of Chapman (1999). 

BFI ¼ Qbase

Q (3) 

R2FDC is defined as the slope in the middle third (between Q66 

and Q33) of the flow duration curve on a logarithmic y-axis, 
which was used to assess the long-term hydrological regulation 
capacity (Olden and Poff 2003). A lower slope (near 0) indi-
cates a higher hydrological regulation capacity: 

R2FDC ¼
log10Q66�log10Q33

0:66�0:33
(4) 

We evaluated the overall model performance using the Nash- 
Sutcliffe efficiency (NSE) (Nash and Sutcliffe 1970), where 
Qobs,mean is the mean of observed flow, and Qobs,t and Qmod,t 

are the observed flow and modelled flow, respectively, at time 
step t. NSE can range from −∞ to 1. For monthly flow evalua-
tion, a score between 1 and 0.75 is marked as “very good”; 
between 0.75 and 0.65 is marked as “good,” and between 0.65 
and 0.5 is marked as “satisfactory” (Moriasi et al. 2007). NSE 
scores lower than 0.5 are marked as “unsatisfactory.” However, 
for modelling based on daily flow, the NSE tends to be lower 
because of the high flow variability at that time step, so we label 
NSE values in the range of 0.15 to 0.5 as “near satisfactory,” in 
line with other studies (Dos Santos et al. 2020). 

NSE ¼ 1 �

PN

t
Qmod;t�Qobs;tð Þ

2

PN

t
Qobs;t�Qobs;meanð Þ

2 (5) 

3 Results

Here we investigate the adequacy of the JULES modelling 
using PTF-based and EXP-based soil parameter sets, com-
pared to the observed flow in the investigated catchments 
(Figs 4 and 5).

Figure 4(a) shows the hydrograph for the JTU3 catchment, 
which is characterized by a streamflow variation with low 
seasonality. The two parameter sets produce similar simula-
tions of the peak flows. However, we find a considerable 
increase in baseflow when using EXP-based parameters. Peak 
flow events are well detected by the model, while some events 
are considerably overestimated (e.g. March–June 2015).

Table 2. Description of soil parameters, as sourced from Best et al. (2011).

Symbol Description Unit

b Exponent in soil hydraulic characteristics
φ Saturated soil water pressure m
Ksat Hydraulic conductivity at saturation kg m−2 s−1

θsat Soil moisture content at saturation m3 m−3

θcrit Soil moisture content at the critical point m3 m−3

θwilt Soil moisture content at the wilting point m3 m−3

hcap Dry heat capacity J m−3 K−1

hcon Dry thermal conductivity W m−1 K−1

α Bare soil albedo

Table 3. Soil parameterization using pedotransfer functions. CL: clay fraction; SA: sand fraction; SI: silt fraction; DBD: dry bulk density (g cm−3); SOC: soil organic carbon 
(% weight); CEC: carbon exchange capacity (cmol kg−1); pH: hydrogen ion activity.

Soil data Pedotransfer function Source

1/(n − 1) n ¼ exp 62:986� 0:833CL � 0:529SOC þ 0:593pH þ 0:007CL2 � 0:014SA � SIð Þ=100ð Þ Hodnett and Tomasella 
(2002)1=α α ¼ 1000�9:80665= 1000=exp �2:294� 3:526SI þ 2:440SOC � 0:076CEC � 11:331pH þ 0:019SI2ð Þ=100ð Þð Þ

Saturation point (pF = 0) θsat ¼ 0:01 81:799þ 0:099CL � 31:42DBD þ 0:018CEC þ 0:451pH � 0:0005SA � CLð Þ
Wilting point (pF = 4.2) θwilt ¼ 0:01 22:733� 0:164SA þ 0:235CEC � 0:831pH þ 0:0018CL2 þ 0:0026SA � CLð Þ
Critical point (pF = 2.5) θcrit ¼ θwilt þ

θsat�θwilt

1þ α φj jð Þn½ �
1�1=n

Van Genuchten (1980)

Saturated hydraulic 
conductivity

Ksat ¼
25:4
3600

�10 �0:60�0:0064CLþ0:0126SAð Þ Cosby et al. (1984)

Saturated heat 
conductivity

hcon ¼ λθsat
air λFc

c λFs
s λFsi

si

� �1�θsat
λs ¼ λsi ¼ 1:57025Wm�1K�1; λc ¼ 1:16025Wm�1K�1 ; λair ¼ 0:025Wm�1K�1 Dharssi et al. (2009)

Heat capacity Cs ¼ Csi ¼ 2:133�106 J m�3K�1
; Cc ¼ 2:373�106 J m�3K�1

HYDROLOGICAL SCIENCES JOURNAL 1519



JTU2 (Fig. 4(b)) also features low seasonality. The flow is 
generally overestimated during the observed period in the 
model simulations using either PTF-based or EXP-based para-
meters. Most of the peak flow events are overestimated but 
detected under each parameter set.

Similar hydrology regimes are found in HUA1 (Fig. 4(c)) 
and HUA2 (Fig. 4(d)). These two catchments are both 
characterized by high seasonality, in which the wet season 

extends between November and April, followed by a long dry 
season. We find that the modelling with either the PTF-based 
or EXP-based data can provide a fairly good fit with the 
observation curve, in which most of the peak flows are under-
estimated, which is also the case for the dry season flows.

Low seasonality is found in PIU1 (Fig. 5(a)) and PIU2 (Fig. 5 
(b)), whereas PIU4 (Fig. 5(c)) and PIU7 (Fig. 5(d)) present high 
seasonality. In PIU1/PIU2, most of the peak flows and 
recessions are well simulated. A certain underestimation of 
flows is found in PIU1 during January to February 2015. In 
PIU2, some peak flow events are overestimated (e.g. November 
and December 2014). Lower baseflow is simulated by using the 
PTF-based parameters, which are better fitted to the observed 
values.

In PIU4 (Fig. 5(c)), both the PTF-based and EXP-based 
parameterizations underestimated the baseflow in the dry sea-
son. Certain peak flow events are overestimated (e.g. 
November 2015 and February 2016), while the main gap is 
found during the recession processes during the wet season. In 
PIU7 (Fig. 5(d)), the simulated flow is higher when using the 
PTF-based parameters. However, most of the peak flow events 
are detected using either parameter set. The simulated base-
flow is close to the observed values in June 2014. The most 
significant gap is found during March 2014, where the simu-
lated peak flow is considerably lower than the observed values.

Table 5 summarizes the performance of the JULES model 
driven by both the PTF-based and EXP-based soil properties. 
In catchment JTU3, the PTF-based parameter set simulates 
lower flows than the observed value (RR: 0.261 vs 0.380). The 
EXP-based parameter set simulates a larger total flow, which is 
closer to the observed value (RR: 0.325 vs 0.380). A higher 
percentage of baseflow is simulated under the experimental 

Table 4. Soil parameters used in this study’s JULES set-up.

Catchment n α θsat θcrit θwilt hcon hcap K

PTF-based
PIU 1.359 2.288 0.463 0.333 0.217 0.219 1 189 944 0.0034
HUA 1.386 2.364 0.422 0.280 0.167 0.264 1 259 371 0.0066
JTU 1.319 1.715 0.565 0.387 0.161 0.149 938 753 0.0052

EXP-based
EXP 1.446 0.850 0.689 0.497 0.221 0.090 668 588 0.0051

Figure 2. Water retention curves obtained from PTF estimation (PIU, HUA, JTU) 
and in situ investigations in the JTU catchment (EXP)2013.

Figure 3. D8 flow routine in the catchment: (a) JTU2; (b) JTU3.

1520 H.-K. CHOU ET AL.



values (BFI: 0.460 vs 0.266), whilst the flow duration curve is 
closer to its observed value (R2FDC: −0.80 vs −0.51). The 
overall performance is near satisfactory under the EXP-based 
set-up (NSE: 0.239).

For the JTU2 catchment, the PTF-based parameter set gives 
a better fit than the experimental parameter set. However, the 
observed RR is unrealistically low (0.071; Fig. 4(c)), which casts 

doubts on the quality of those observations. This may also be 
the reason for the unsatisfactory model performance under 
both set-ups (NSE: −1.55/−5.30).

In the conserved puna catchment HUA1, both set-up 
s underestimate the average flow (RR: 0.528/0.492 vs 0.638). 
The simulated flow duration curve is consequently steeper 
(Fig. 4(c); R2FDC: −1.09/−0.86 vs −3.23). A lower ratio of 

Figure 4. Left: a comparison of the observed and modelled flows of (a) JTU3, (b) JTU2, (c) HUA1, and (d) HUA2. Right: flow duration curves of the same hydrographs.
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baseflow (BFI: 0.563/0.577 vs 0.674) is simulated compared to 
the observed values. However, the overall model performances 
are near satisfactory under both set-ups (NSE: 0.467/0.435). 
Similar results are found in the grazed puna catchment HUA2.

In PIU1, the JULES run driven by the parameter values 
estimated using the PTF-based parameters underestimates the 
runoff by 32.9% (RR: 0.460 vs 0.686) but has a baseflow ratio 

(BFI: 0.424 vs 0.425) and regulation capacity (R2FDC: −1.16 vs 
−1.29) similar to the observations. For the experimental values, 
there is barely a difference in the overall flow (RR: 0.461), 
whereas a higher percentage of baseflow (BFI: 0.519) and 
flatter flow duration curve (R2FDC: −0.91) are simulated. 
The model performance is satisfactory under both set-ups 
(NSE: 0.620 vs 0.589).

Figure 5. Left: a comparison of the observed and modelled flows of (a) PIU1, (b) PIU2, (c) PIU4, and (d) PIU7. Right: flow duration curves of the same hydrographs.
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In the adjacent catchment PIU2, the parameters esti-
mated with the PTF-based parameterization yield a lower 
runoff than the observed value (RR: 0.550 vs 0.639), 
whereas the slope of the flow duration curve is closer to 

the observed value (R2FDC: −1.33 vs −1.37). A higher 
baseflow ratio is simulated under the experimental para-
meter set-up (BFI: 0.522) with a minor change in the total 
water yield. The overall model performance is good for 
both set-ups (NSE: 0.719/0.745).

In PIU4, both set-ups underestimate the total flow (RR: 
0.230/0.220) compared to its observed value (RR: 0.360). 
The modelling flows are underestimated under all flow 
regimes, characterized by their lower baseflow estimation 
(BFI: 0.675/0.752). A modelling performance of a near 
satisfactory level is found under both set-ups (NSE: 0.193/ 
0.160).

In PIU7, the average flow is considerably lower than the 

observed value for both set-ups (RR: 0.199/0.142 vs 0.269). 

The gap mainly exists in the peak flow, whilst the percen-

tage of baseflow is close to observed values (BFI: 0.709/ 

0.721 vs 0.703). For the PTF-based parameters, the middle 

third of the flow duration curve is closer to the observa-

tions (R2FDC: −1.05 vs −1.18). A near satisfactory perfor-

mance is simulated under the PTF-based set-up (NSE: 

0.474 vs 0.283).

We evaluated the difference in model performance between 

standard PTF parameter sets and the experimental parameter 

sets obtained from representative soils. The latter simulates 

higher model performance in two out of eight catchments 

(JTU3 and PIU4), whilst the PTF-based parameters show 

better performance in the rest of the catchments. Using the 

most suitable set-up in each case, seven out of eight catch-

ments are marked as at least “near satisfactory” (Fig. 6).

Figure 6. NSE score of the modelling flow in each catchment.

Table 5. Hydrological summary indices as calculated from the observed and 
modelled flow time series based on a daily time step in this study. OBS: observa-
tions; PTF: PTF-based set-up; EXP: EXP-based set-up; RR: rainfall–runoff ratio; BFI: 
baseflow index; R2FDC: slope of the flow duration curve; NSE: Nash-Sutcliffe 
efficiency. The codes JTU, PIU, and HUA refer to the locations shown in Fig. 1.

Site Soil set RR BFI R2FDC NSE

JTU3 OBS 0.380 0.712 −0.51 n/a
PTF 0.261 0.266 −1.78 0.057
EXP 0.325 0.460 −0.80 0.239

JTU2 OBS 0.071 0.577 −1.03 n/a
PTF 0.189 0.737 −0.76 −1.550
EXP 0.294 0.858 −0.43 −5.300

HUA1 OBS 0.638 0.674 −3.23 n/a
PTF 0.528 0.563 −1.09 0.467
EXP 0.492 0.577 −0.86 0.435

HUA2 OBS 0.579 0.712 −2.93 n/a
PTF 0.511 0.574 −1.20 0.467
EXP 0.474 0.579 −0.83 0.416

PIU1 OBS 0.686 0.425 −1.29 n/a
PTF 0.460 0.424 −1.16 0.620
EXP 0.461 0.519 −0.91 0.589

PIU2 OBS 0.639 0.598 −1.37 n/a
PTF 0.550 0.440 −1.33 0.719
EXP 0.546 0.522 −1.00 0.745

PIU4 OBS 0.360 0.858 −0.99 n/a
PTF 0.230 0.675 −1.65 0.193
EXP 0.220 0.752 −1.02 0.160

PIU7 OBS 0.269 0.703 −1.18 n/a
PTF 0.199 0.709 −1.05 0.474
EXP 0.142 0.721 −0.73 0.283
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4 Discussion

4.1 Simulated hydrographs

The results of this study show that the simulation of stream-
flow phenomena in each catchment based on the JULES 
model, by both EXP-based and PTF-based parameterizations, 
produces a generally good agreement between the simulated 
value and the observed value in low-seasonality catchments 
(Fig. 5(a), PIU1; Fig. 5(b), PIU2). For high-seasonality catch-
ments, simulations often underestimate the actual flow rate 
during dry periods (Fig. 5(c), PIU4). The upper Andean region 
of Perú and Ecuador is mainly covered by the Andean páramo 
(Buytaert et al. 2006) biome. Volcanic soils are the dominant 
soil types, among which Andosols are particularly common 
(FAO/IIASA/ISRIC/ISSCAS/JRC 2012). These types of soils 
cover the páramo ecosystem in large parts of the tropical 
Andean mountain belt (Buytaert et al. 2005), which 
provides key hydrological services in montane environments. 
These soils are dark, humic and acidic with an open pore 
structure, in which organic matter and volcanic ash accumu-
late (Crespo et al. 2011). Thus, Andosols are known for their 
extremely high water retention capacity (0.64–0.93m3m–3 at 
saturation) (Buytaert 2004) with high organic carbon content 
(13–36%) and low bulk density (0.2–0.8 g cm–3). These proper-
ties of soil structure may have an important effect on the 
hydrological regime.

A detailed characterization of soil properties was conducted 
to understand the subsurface water transport and tracer mix-
ing in these Andosols at three locations along a steep hillslope 
in the upper Andean region (Mosquera et al. 2020). The soil 
moisture observations in the horizon showed a fast- 
responding (few hours) “rooted” layer to a depth of 15 cm, 
overlying a “perched” layer (52–61 cm depth) that remained 
near saturated year-round. Isotopic signatures revealed that 
water resides within this soil horizon for short periods, in both 
the rooted (two weeks) and the perched (four weeks) layer. The 
behaviour resembles that of a “layered sponge” in which ver-
tical flowpaths are dominant. That is, on the one hand, 
a perched water layer forms that maintains high-moisture 
near-saturated conditions year-round due to the presence of 
a low conductivity layer below a layer with a higher conduc-
tivity. On the other hand, there is fast vertical transport of 
water due to the rapid transfer of hydraulic potentials along the 
entire soil profile, facilitating water mobilization through the 
porous soil matrix. Despite the dominance of vertical flow-
paths, lateral flow likely develops during high-intensity rain-
storm events above hydraulically restrictive layers (e.g. the 
perched layer) due to the steep hillslope.

The large water storage capacity of these soils, which is often 
referred to as a “sponge-like” structure, may have a major 
impact on the observed hydrographs, which the model may 
still struggle to represent adequately. As shown in Fig. 4(a) 
(JTU3 catchment), the “EXP-based” parameterization overesti-
mates virtually all peaks, while it underestimates the flow the 
rest of the time. The effects of this sponge-like behaviour vary 
with climate, especially the rainfall rate and the seasonality. As 
rainfall increases, and with lower seasonality, the impact of the 
sponge effect becomes negligible. This phenomenon can be 
clearly seen from the hydrographs in Fig. 5(a), in which the 

PIU1 catchment has uniformly distributed rainfall. In this case, 
the theoretical simulation and the observed hydrographs coin-
cide very well.

4.2 Modelling performance

Overall, our JULES model set-up shows that it is possible to 
simulate the streamflow of the dominant land cover types of 
the upper tropical Andes. Modelling results from two out of 
eight catchments are marked as “satisfactory” under a baseline 
used to assess monthly flow (Moriasi et al. 2007). For our 
simulation based on a daily time scale, seven out of eight 
catchments are at least “near satisfactory” under an acceptable 
standard (Coffey et al. 2004, Nejadhashemi et al. 2012, Dos 
Santos et al. 2020). The main outlier is the JTU2 catchment, 
where the simulated flows are considerably higher than the 
observed values. One possible explanation is that this catch-
ment has an unrealistically low observed water yield for this 
biome (RR: 0.071). This observation suggests that subsurface 
and groundwater preferential flow pathways exist in the deep 
soil layers, bypassing the flow gauging station and introducing 
an error that led to an underestimation of the catchment water 
balance (Buytaert et al. 2006, Ochoa-Tocachi et al. 2016).

In JTU3, we observe a modest improvement in model perfor-
mance when the standard PTF parameter sets are replaced with 
experimental parameter sets. The main improvements are 
observed in the BFI and the slope of the flow duration curve, 
representing the partitioning of the rainfall in surface and subsur-
face response. In PIU4, the NSE score is slightly lower using the 
experimental parameter sets. There is a relatively small difference 
in the average flow between the two parameter sets. However, the 
baseflow ratio and the slope of the flow duration curve are much 
closer to the observed values with the EXP-based simulation. 
Therefore, we suggest this parameter set be used in the catchment. 
For these two catchments, the simulation using EXP-based para-
meters has improved the baseflow estimation considerably. 
However, it still presents a lower level of baseflows than the 
catchments actually generated. This is commonly attributed to 
the occurrence of hydrologically disconnected wetlands, which 
store water and release it gradually during dry periods (Buytaert 
and Beven 2011), as similar modelling results are also found in the 
lower Andean basins (Zulkafli et al. 2013).

For the other five catchments (except JTU2), the PTF-based 
parameter set gives a better estimation for the hydrological 
regime. We find that the PTF-based parameter sets generate 
a lower fraction of baseflow than the experimental parameter 
sets, which is also lower than the observed values in these catch-
ments. One possible explanation is the overestimation of evapora-
tion by JULES, which was also highlighted by Martínez-de la 
Torre et al. (2019). A possible solution is to reduce evapotran-
spiration by lowering soil moisture availability (Blyth et al. 2019). 
We compare the effects on hydro-physical soil properties between 
two sets of water retention properties. The PTF underestimates 
the values of saturated water content (i.e. 0.689 vs 0.565 in JTU) 
and residual water content (i.e. 0.221 vs 0.161 in JTU) compared 
to the values obtained from local experiments. This is not 
a surprise, given the exceptionally large water retention capacities 
of many high-Andean soils. The experimental data result in only 
a very slight increase in soil water storage capacity. However, 
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these parameters have resulted in a higher soil moisture avail-
ability factor (βk; see Best et al. 2011), which suppresses the lower 
vegetation transpiration rates. This may explain the higher runoff 
ratios observed in the experimental parameter set runs.

In addition to the difficulty of smaller time-scale hydrolo-
gical modelling, the gap between the modelling and the obser-
vations can be attributed to several remaining sources of 
uncertainty. First, the meteorological input data are prone to 
uncertainty. The spatiotemporal rainfall variability in high- 
mountain areas such as the Andes is extremely high, compli-
cating the extrapolation of point-based measurements to 
catchment averages. The insufficient representative rainfall 
can lower the model performance in these tropical catchments 
(Zulkafli et al. 2013), as micro-climates might occur within 
a scale of 4 km (Buytaert et al. 2006). In our study, we find that 
peak flows can be over/underestimated due to the potentially 
over/underestimated rainfall (e.g. overestimated in PIU2: 
December 2015, PIU4: November 2015; and underestimated 
in PIU7: March 2014).

Next, the representativeness of the observed soil character-
istics can be questioned. As for the rainfall measurements, 
issues of incommensurability remain because of the difference 
in scale between the soil samples and catchment-averaged soil 
properties required by the model. The lack of in situ soil data 
for most catchments also required us to use the data from 
a single catchment in Ecuador for all sites. The transfer para-
meters could reasonably simulate the hydrology, assuming that 
the catchments have similar water retention properties 
(Heuvelmans et al. 2004). Our results show that the data are 
representative of the ecosystems hosted by the catchments; this 
extrapolation can introduce substantial errors.

Despite these shortcomings, our results show that it is possible 
to develop soil parameter sets for large-scale, physics-based hydro-
logical models, which improve upon the default parameter sets yet 
are sufficiently representative for a land surface class to be applied 
at a regional scale. The expanding configurations enable models 
such as JULES to be implemented for data-scarce regions where 
local in situ data are not available.

5 Conclusions

We implement the hydrological model JULES in eight tropical 
Andean catchments to evaluate the performance of the com-
monly used parameter values and regionally representative 
experimentally derived soil parameters. We find that the con-
ventional JULES set-up can represent key hydrological fluxes. 
However, the surface–subsurface partitioning is especially pro-
blematic, while this approach also overestimates vegetation 
transpiration. These processes are sensitive to the soil water 
retention parameters (saturated, critical, and wilting point). 
The soil moisture extraction of high-Andean soils can be 
suppressed by using the water retention curve from experi-
mental soil data. We find that these experimentally based 
parameter values have altered both the flow partitioning and 
catchment water balance in the simulations. In particular, the 
parameters improve baseflow simulation, which is more sui-
table for use in some baseflow-dominated catchments. 
However, the improvements indicate that several other sources 
of uncertainty remain, mainly arising from the input data and 

subsurface flow residence times. In addition, the experimental 
data we extrapolated from one sample is not representative 
enough for all study catchments. Nevertheless, our results 
suggest that the hydro-physical soil properties greatly affect 
the hydrological regime, especially in terms of the surface– 
subsurface partitioning. It is important to further investigate 
these effects as well as to develop regional parameter sets for 
different soil types that complement the existing land cover 
datasets that come with JULES.

Acknowledgements

The authors gratefully acknowledge the people and authorities of Andean 
communities who have provided essential and constant consent and 
support to our fieldwork. We thank all partners of the Regional 
Initiative for Hydrological Monitoring of Andean Ecosystems (iMHEA), 
mainly FONAG, Nature and Culture International (NCI), APECO, The 
Mountain Institute, and CONDESAN, who provided the data presented 
here. All iMHEA partners funded fieldwork. In addition, we acknowledge 
the important contributions of Charles Zogheib (Imperial College), Bert 
De Bièvre, Paola Fuentes and Enrique (FONAG).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by Natural Environment Research Council: NE/ 
K010239/1 and NE/I004017/1. HKC was funded by Taiwan Top 
University Strategic Alliance PhD Scholarships – Imperial PhD 
Scholarships of the Ministry of Education, Taiwan. BOT was funded by 
an Imperial College President’s PhD Scholarship and the “Science and 
Solutions for a Changing Planet” DTP (NERC grant NE/L002515/1) and 
acknowledges the National Secretariat of Higher Education, Technology, 
and Innovation of Ecuador (SENESYCT).

ORCID

Hsi-Kai Chou http://orcid.org/0000-0002-0010-8148
Boris F. Ochoa-Tocachi http://orcid.org/0000-0002-4990-8429
Simon Moulds http://orcid.org/0000-0002-7297-482X
Wouter Buytaert http://orcid.org/0000-0001-6994-4454

References

Best, M.J., et al., 2011. The joint UK land environment simulator (JULES), 
model description–Part 1: energy and water fluxes. Geoscientific Model 
Development, 4 (3), 677–699. doi:10.5194/gmd-4-677-2011

Blyth, E.M., Martinez-de la Torre, A., and Robinson, E.L., 2019. Trends in 
evapotranspiration and its drivers in Great Britain: 1961 to 2015.  
Progress in Physical Geography: Earth and Environment, 43 (5), 
666–693. doi:10.1177/0309133319841891

Boongaling, C.G.K., Faustino-Eslava, D.V., and Lansigan, F.P., 2018. 
Modeling land use change impacts on hydrology and the use of land-
scape metrics as tools for watershed management: the case of an 
ungauged catchment in the Philippines. Land Use Policy, 72, 
116–128. doi:10.1016/j.landusepol.2017.12.042

Buytaert, W., 2004. The properties of the soils of the south Ecuadorian 
páramo and the impact of land use changes on their hydrology. Doctoral 
dissertation. Katholieke Universiteit Leuven.

Buytaert, W., et al., 2005. The effect of land-use changes on the hydrological 
behaviour of Histic Andosols in south Ecuador. Hydrological Processes: 
An International Journal, 19 (20), 3985–3997. doi:10.1002/hyp.5867

HYDROLOGICAL SCIENCES JOURNAL 1525

https://doi.org/10.5194/gmd-4-677-2011
https://doi.org/10.1177/0309133319841891
https://doi.org/10.1016/j.landusepol.2017.12.042
https://doi.org/10.1002/hyp.5867


Buytaert, W., et al., 2006. Human impact on the hydrology of the Andean 
páramos. Earth-Science Reviews, 79 (1–2), 53–72. doi:10.1016/j.ear 
scirev.2006.06.002

Buytaert, W. and Beven, K., 2011. Models as multiple working hypotheses: 
hydrological simulation of tropical alpine wetlands. Hydrological 
Processes, 25 (11), 1784–1799. doi:10.1002/hyp.7936

Buytaert, W., et al., 2014. Citizen science in hydrology and water resources: 
opportunities for knowledge generation, ecosystem service manage-
ment, and sustainable development. Frontiers in Earth Science, 2, 26. 
doi:10.3389/feart.2014.00026.

Célleri, R. and Feyen, J., 2009. The hydrology of tropical Andean ecosys-
tems: importance, knowledge status, and perspectives. Mountain 
Research and Development, 29 (4), 350–356. doi:10.1659/mrd.00007

Célleri, R., et al., 2009. Understanding the hydrology of tropical Andean 
ecosystems through an Andean Network of Basins. IAHS-AISH 
Publication, 336, 209–212.

Chapman, T., 1999. A comparison of algorithms for stream flow recession 
and baseflow separation. Hydrological Processes, 13 (5), 701–714. 
doi:10.1002/(SICI)1099-1085(19990415)13:5<701::AID-HYP774>3.0. 
CO;2-2

Clark, D.B. and Gedney, N., 2008. Representing the effects of subgrid 
variability of soil moisture on runoff generation in a land surface 
model. Journal of Geophysical Research: Atmospheres, 113 (D10). 
doi:10.1029/2007JD008940

Clark, D.B., et al., 2011. The Joint UK Land Environment Simulator 
(JULES), model description–Part 2: carbon fluxes and vegetation 
dynamics. Geoscientific Model Development, 4 (3), 701–722. doi:10. 
5194/gmd-4-701-2011

Coffey, M.E., et al., 2004. Statistical procedures for evaluating daily and 
monthly hydrologic model predictions. Transactions of the ASAE, 
47 (1), 59. doi:10.13031/2013.15870

Cosby, B.J., et al., 1984. A statistical exploration of the relationships of soil 
moisture characteristics to the physical properties of soils. Water 
Resources Research, 20 (6), 682–690. doi:10.1029/WR020i006p00682

Cox, P.M., et al., 1999. The impact of new land surface physics on the 
GCM simulation of climate and climate sensitivity. Climate Dynamics, 
15 (3), 183–203. doi:10.1007/s003820050276

Crespo, P.J., et al., 2011. Identifying controls of the rainfall–runoff response 
of small catchments in the tropical Andes (Ecuador). Journal of 
Hydrology, 407 (1–4), 164–174. doi:10.1016/j.jhydrol.2011.07.021

Dharssi, I. et al., 2009. New soil physical properties implemented in the 
Unified Model at PS18, Met Office Technical Report 528.

Dos Santos, F.M., de Oliveira, R.P., and Mauad, F.F., 2020. Evaluating 
a parsimonious watershed model versus SWAT to estimate streamflow, 
soil loss and river contamination in two case studies in Tietê river basin, 
São Paulo, Brazil. Journal of Hydrology: Regional Studies, 29, 100685.

FAO/IIASA/ISRIC/ISSCAS/JRC, 2012. Harmonized world soil database 
(version 1.2). FAO, Rome, Italy.

Harden, C.P., 2006. Human impacts on headwater fluvial systems in the 
northern and central Andes. Geomorphology, 79 (3–4), 249–263. 
doi:10.1016/j.geomorph.2006.06.021

Harper, A.B., et al., 2018. Vegetation distribution and terrestrial carbon 
cycle in a carbon cycle configuration of JULES4. 6 with new plant 
functional types. Geoscientific Model Development, 11 (7), 2857–2873. 
doi:10.5194/gmd-11-2857-2018

Hengl, T., et al., 2017. SoilGrids250m: global gridded soil information 
based on machine learning. PLoS One, 12 (2), e0169748. doi:10.1371/ 
journal.pone.0169748

Heuvelmans, G., Muys, B., and Feyen, J., 2004. Evaluation of hydrological 
model parameter transferability for simulating the impact of land use 
on catchment hydrology. Physics and Chemistry of the Earth, Parts a/B/ 
C, 29 (11–12), 739–747. doi:10.1016/j.pce.2004.05.002

Hodnett, M.G. and Tomasella, J., 2002. Marked differences between van 
Genuchten soil water-retention parameters for temperate and tropical 
soils: a new water-retention pedo-transfer functions developed for tropical 
soils. Geoderma, 108 (3–4), 155–180. doi:10.1016/S0016-7061(02)00105-2

Kanamitsu, M., et al., 2002. NCEP–DOE AMIP-II Reanalysis (R-2).  
Bulletin of the American Meteorological Society, 83 (11), 1631–1643. 
doi:10.1175/BAMS-83-11-1631(2002)0832.3.CO;2

Le Vine, N., et al., 2016. Diagnosing hydrological limitations of a land 
surface model: application of JULES to a deep-groundwater chalk 
basin. Hydrology and Earth System Sciences, 20 (1), 143–159. doi:10. 
5194/hess-20-143-2016

Marthews, T.R., et al., 2014. High-resolution hydraulic parameter maps 
for surface soils in tropical South America. Geoscientific Model 
Development, 7 (3), 711–723. doi:10.5194/gmd-7-711-2014

Martínez-de la Torre, A., Blyth, E.M., and Weedon, G.P., 2019. Using 
observed river flow data to improve the hydrological functioning of the 
JULES land surface model (vn4. 3) used for regional coupled modelling 
in Great Britain (UKC2). Geoscientific Model Development, 12 (2), 
765–784. doi:10.5194/gmd-12-765-2019

McIntyre, N., et al., 2014. Modelling the hydrological impacts of rural 
land use change. Hydrology Research, 45 (6), 737–754. doi:10.2166/nh. 
2013.145

Moore, R.J., 1985. The probability-distributed principle and runoff pro-
duction at point and basin scales. Hydrological Sciences Journal, 30 (2), 
273–297. doi:10.1080/02626668509490989

Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic 
quantification of accuracy in watershed simulations. Transactions of 
the ASABE, 50 (3), 885–900. doi:10.13031/2013.23153

Mosquera, G.M., et al., 2020. Water transport and tracer mixing in 
volcanic ash soils at a tropical hillslope: a wet layered sloping 
sponge. Hydrological Processes, 34 (9), 2032–2047. doi:10.1002/ 
hyp.13733

Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through 
conceptual models part I—A discussion of principles.  
Journal of Hydrology, 10 (3), 282–290. doi:10.1016/0022- 
1694(70)90255-6

Nejadhashemi, A.P., Wardynski, B.J., and Munoz, J.D., 2012. Large-scale 
hydrologic modeling of the Michigan and Wisconsin agricultural 
regions to study impacts of land use changes. Transactions of the 
ASABE, 55 (3), 821–838. doi:10.13031/2013.41517

Ochoa-Tocachi, B.F., et al., 2018. High-resolution hydrometeorological 
data from a network of headwater catchments in the tropical Andes.  
Scientific Data, 5, 180080. doi:10.1038/sdata.2018.80

Ochoa-Tocachi, B.F., et al., 2016. Impacts of land use on the hydrological 
response of tropical Andean catchments. Hydrological Processes, 
30 (22), 4074–4089.

Olden, J.D. and Poff, N.L., 2003. Redundancy and the choice of hydrologic 
indices for characterizing streamflow regimes. River Research and 
Applications, 19 (2), 101–121. doi:10.1002/rra.700

Ortiz, E. and Peralvo, M., 2013. Restauración de áreas degradadas de 
páramo a pequeña escala y diseño de un plan piloto de manejo 
adaptativo para zonas de amortiguamiento dentro de las microcuencas 
Antisana y Pita en áreas de aporte a los sistemas de agua potable del 
Distrito Metropolitano de Quito. Quito: CONDESAN.

Rodriguez, D.A. and Tomasella, J., 2016. On the ability of large-scale 
hydrological models to simulate land use and land cover change 
impacts in Amazonian basins. Hydrological Sciences Journal, 61 (10), 
1831–1846.

Tomasella, J. and Hodnett, M.G., 1998. Estimating soil water retention 
characteristics from limited data in Brazilian Amazonia. Soil Science, 
163 (3), 190–202. doi:10.1097/00010694-199803000-00003

Tsarouchi, G. and Buytaert, W., 2018. Land-use change may exacerbate 
climate change impactson water resources in the Ganges basin.  
Hydrology and Earth System Sciences, 22 (2), 1411–1435. doi:10.5194/ 
hess-22-1411-2018

Turner, B.L., Meyer, W.B., and Skole, D.L., 1994. Global land-use/land- 
cover change: towards an integrated study. Ambio.Stockholm, 23 (1), 
91–95.

Van Genuchten, M.T., 1980. A closed-form equation for predicting the 
hydraulic conductivity of unsaturated soils. Soil Science Society of 
America Journal, 44 (5), 892–898. doi:10.2136/sssaj1980. 
03615995004400050002x.

Zulkafli, Z., et al., 2013. A critical assessment of the JULES land surface 
model hydrology for humid tropical environments. Hydrology and 
Earth System Sciences, 17 (3), 1113–1132. doi:10.5194/hess-17-1113- 
2013

1526 H.-K. CHOU ET AL.

https://doi.org/10.1016/j.earscirev.2006.06.002
https://doi.org/10.1016/j.earscirev.2006.06.002
https://doi.org/10.1002/hyp.7936
https://doi.org/10.3389/feart.2014.00026
https://doi.org/10.1659/mrd.00007
https://doi.org/10.1002/(SICI)1099-1085(19990415)13:5%3C701::AID-HYP774%3E3.0.CO;2-2
https://doi.org/10.1002/(SICI)1099-1085(19990415)13:5%3C701::AID-HYP774%3E3.0.CO;2-2
https://doi.org/10.1029/2007JD008940
https://doi.org/10.5194/gmd-4-701-2011
https://doi.org/10.5194/gmd-4-701-2011
https://doi.org/10.13031/2013.15870
https://doi.org/10.1029/WR020i006p00682
https://doi.org/10.1007/s003820050276
https://doi.org/10.1016/j.jhydrol.2011.07.021
https://doi.org/10.1016/j.geomorph.2006.06.021
https://doi.org/10.5194/gmd-11-2857-2018
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1016/j.pce.2004.05.002
https://doi.org/10.1016/S0016-7061(02)00105-2
https://doi.org/10.1175/BAMS-83-11-1631(2002)0832.3.CO;2
https://doi.org/10.5194/hess-20-143-2016
https://doi.org/10.5194/hess-20-143-2016
https://doi.org/10.5194/gmd-7-711-2014
https://doi.org/10.5194/gmd-12-765-2019
https://doi.org/10.2166/nh.2013.145
https://doi.org/10.2166/nh.2013.145
https://doi.org/10.1080/02626668509490989
https://doi.org/10.13031/2013.23153
https://doi.org/10.1002/hyp.13733
https://doi.org/10.1002/hyp.13733
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.13031/2013.41517
https://doi.org/10.1038/sdata.2018.80
https://doi.org/10.1002/rra.700
https://doi.org/10.1097/00010694-199803000-00003
https://doi.org/10.5194/hess-22-1411-2018
https://doi.org/10.5194/hess-22-1411-2018
https://doi.org/10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.2136/sssaj1980.03615995004400050002x
https://doi.org/10.5194/hess-17-1113-2013
https://doi.org/10.5194/hess-17-1113-2013

	Abstract
	1 Introduction
	2 Materials and methods
	2.1 Study region
	2.2 JULES implementation
	2.2.1 Model overview
	2.2.2 The iMHEA catchment network
	2.2.3 Meteorological forcing data
	2.2.4 Parameterization of high-Andean soils
	2.2.5 Routing
	2.2.6 Model evaluation


	3 Results
	4 Discussion
	4.1 Simulated hydrographs
	4.2 Modelling performance

	5 Conclusions
	Acknowledgements
	Disclosure statement
	Funding
	ORCID
	References

