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a b s t r a c t 

We study the determinants of convergence to efficient conventions in coordination games 

played on networks, when agents focus on past performance (imitative play). Previous the- 

oretical results provide an incomplete picture and suggest potentially-complex interactions 

between the features of dynamics and behavior. We conducted an extensive simulation 

study (with approximately 1.12 million simulations) varying network size, interaction and 

information radius, the probability of actual interaction, the probability of mistakes, tie- 

breaking rules, and the process governing revision opportunities. Our main result is that 

“more interactions,” be it in the form of larger interaction neighborhoods or of a higher 

interaction probability, lead to less coordination on efficient conventions. A second ob- 

servation, confirming previous but partial theoretical results, is that a large network size 

relative to the size of neighborhoods (a “large world”) facilitates convergence to efficient 

conventions. Third, a larger information neighborhood helps efficiency because it increases 

visibility of efficient payoffs across the network. Last, technical details of the dynamic spec- 

ification as tie-breaking or inertia, while often relevant for specific theoretical results, ap- 

pear to be of little empirical relevance in the larger space of dynamics. 
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1. Introduction 

Coordination games epitomize a host of economic problems, from the adoption of technological standards or social con- 

ventions to trade policies and international migration flows. The selection of specific equilibria (or “conventions,” in the 

terms of Young, 1993 ) for certain dynamics or certain kinds of individual-level behavior can be viewed as a stylized sum-

mary of the prediction that a society will eventually achieve efficiency or not. It is well-known, however, that even when

Pareto-efficient equilibria are available, in many cases, alternative ones are selected. This is especially true when the al- 

ternative equilibria are risk-dominant ( Harsanyi et al., 1988 ), which for 2 × 2 coordination games simply means that they

maximize payoffs under the assumption that opponents randomize uniformly. 
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Fixing a particular behavioral rule is not enough to derive a prediction. In a seminal contribution, 

Kandori et al. (1993) showed that imitate-the-best rules lead to risk-dominant conventions under global interactions 

(interacting with all other agents), but Robson and Vega-Redondo (1996) found that the very same rules lead to Pareto- 

efficient conventions if interactions are governed by random matching instead. That is, with frequent interactions (play 

against all other agents each period), risk dominance obtains, while with sporadic interactions (play against a randomly- 

sampled single agent each period), Pareto-efficiency is selected. Also, natural extensions of a given rule can dramatically 

change selection results. For example, even under global interactions, the addition of long-enough memory leads to the 

selection of Pareto efficient equilibria for imitative rules ( Alós-Ferrer, 2008 ). 

The nature of interactions is particularly consequential as well. A large literature has studied selection results when 

coordination games are played on networks, reflecting the sensible assumption that economic interactions are typically lo- 

cal in nature (see Weidenholzer, 2010 , for a review of earlier results in this literature). It is well-known that myopic best

reply favors risk-dominant conventions or generalizations thereof in networks, starting with the circular city or checker- 

board models ( Ellison, 1993; 20 0 0 ). 1 Going back to imitation, in the case of games on networks, Alós-Ferrer and Weiden-

holzer (2006) showed that whether risk-dominant or Pareto-efficient conventions are selected depends on the interaction 

radius, with a larger radius favoring risk-dominance. Alós-Ferrer and Weidenholzer (2008) introduced the distinction be- 

tween interaction and information and provided a selection result for general networks. That work considered the case of 

informational spillovers, where interaction is local, and information extends at least slightly beyond the interaction neigh- 

borhood. Specifically, for a large class of networks, Pareto efficiency wins the day provided information flows beyond the 

confines of interaction neighborhoods. To date, this remains the only selection result for general networks in this area. A 

few papers ( Cui and Wang, 2016; Khan, 2014 ) have identified conditions for the selection of efficient conventions in a dia-

metrically opposed situation, where information is limited to the closest neighbors in a network, but interactions are global 

and follow random matching in the full population. 

Putting together all these partial results paints an incomplete picture of the determinants of the selection of efficient or 

risk-dominant equilibria. While we understand the role of certain dimensions in isolation and for particular cases (imitation 

vs. best reply, local vs. global interactions, informational spillovers or lack thereof, etc.), those dimensions interact in com- 

plex ways with each other and with other features of the dynamics, the game, and the network. In this work, we seek to

shed light on the conditions leading to long-run efficiency in coordination games played on networks, when agents follow 

imitation rules. We focus on the imitate-the-best rule where players imitate the best-performing strategy that they observe. 2 

We consider two main dimensions: First, the information-interaction structure agents operate in. Second, the frequency of 

interactions within one’s network. For the latter, one can view the contributions of Kandori et al. (1993) and Robson and

Vega-Redondo (1996) as the extreme points of the spectrum, which yield vastly different selection results (risk dominance 

and Pareto efficiency, respectively). One of our goals is to more gradually explore the space between those end points. 

We conducted extensive (over one million) agent-based simulations using a supercomputer, covering a wide range of 

information-interaction structures and interaction frequencies. Compared to the classic stochastic stability analysis that relies 

on a double-limit approach, a computational approach has the advantage that one can study and compare results for a much

larger space within a single study and, hence, it is useful when the goal is to identify general drivers of selection instead

of considering specific examples. A drawback is, however, that computational “selection” results are always probabilistic 

in nature, and hence, we can only speak of the likelihood of survival and not of the clear-cut selection that is typical of

theoretical results. 

Our main result is that, generally, “more interactions” decrease the likelihood of full coordination on the efficient equi- 

librium. That is, a larger interaction neighborhood or more frequent interactions within a given neighborhood shift selection 

away from efficiency and toward risk-dominant conventions. The results also extend and confirm previous theoretical evi- 

dence suggesting that a large network relative to the size of the interaction neighborhoods supports efficiency. 

The analysis also allows us to examine the robustness of the results with respect to a number of additional dimensions.

One of the weaknesses of the literature is that some of the punctual results obtained over the years depend on specific de-

tails of the dynamics. Two such details are particularly worrying, namely tie-breaking assumptions and the specification of 

revision opportunities. The former refers to the behavior of agents when the behavioural rule identifies more than one op- 

tion, e.g. several different strategies yield the highest observed payoff (in the context of imitation). In this case, most models 

specify that any acceptable option be tried with positive probability (“no reason not to deviate”), while other contributions 

(e.g. Oechssler, 1997 ) argue that, on the basis of e.g. unmodeled switching costs, agents who are currently playing an “opti-

mal” action should not switch to other such actions. Revision opportunities refer essentially to the possibility of inertia and 

the speed of the learning dynamics in terms of updating. Models as Kandori et al. (1993) specify that every agent has an
1 Allowing for more than two strategies, and for particular versions of the best reply dynamics (asynchronous updating), Peski (2010) has shown that 

strengthening risk-dominance to strict 1 / 2 -dominance guarantees unique selection for a large class of networks (including all where each agent has an 

even number of neighbors). However, strict 1 / 2 -dominance is a very demanding concept, and Alós-Ferrer and Weidenholzer (2007) showed that weaker 

generalizations of risk dominance fail to guarantee unique selection even for circular cities for games with four or more strategies. 
2 This rule has several interesting features. First, it can be seen as naive in the sense that for large neighborhoods it poses a minimal computational 

burden on agents. For example, alternative rules such as imitating the strategy which yields the highest average payoffs in the neighborhood typically are 

computationally more demanding. Second, it nicely captures the well-documented human tendency to focus on salient outcomes such as those leading to 

high payoffs ( Barron and Erev, 2003; Erev and Barron, 2005 ). 

2 
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independent probability of being able to revise in any given period (“independent inertia”). With the remaining probabil- 

ity, the agent upholds the current strategy. Other models use simultaneous learning ( Alós-Ferrer, 2008 ), where there is no

inertia, or asynchronous learning (e.g. Blume, 1993; 2003; Peski, 2010 ), where each period one and only one agent has the

opportunity to revise. Different specifications of revision opportunities and tie-breaking rules can give rise to crucial differ- 

ences in the dynamics (see Alós-Ferrer, 2003; Alós-Ferrer and Netzer, 2015 ). In our simulations, we use different tie-breaking

rules and different revision processes and find no effect on selection. We conclude that although revision opportunities and 

tie-breaking assumptions are sometimes relevant for theoretical knife-edge results, their empirical relevance seems limited. 

The remainder of the paper is structured as follows. Section 2 presents the coordination game and the learning en-

vironment. Section 3 describes the agent-based simulations. Section 4 presents the main results. Section 5 discusses the 

robustness analysis. Section 6 concludes. 

2. The model 

We study behavior in a general 2 × 2 coordination game. Following the literature (e.g., Alós-Ferrer and Weiden- 

holzer, 2008 ), we normalize the payoffs as follows, 

P R 

P 1,1 0 , α

R α, 0 β, β

where 0 < α < β < 1 and α + β > 1 . This game has two strict equilibria given by (P, P ) and (R, R ) . The former outcome

is Pareto-efficient, whereas the latter one is risk-dominant in the sense of Harsanyi et al. (1988) . We also write π(s, s ′ ) for

the payoff when a player plays s against an opponent adopting s ′ , with s, s ′ ∈ { P, R } . 
There is a population I of N players arranged on a circle so that the immediate neighbors of a player i are i − 1 and i + 1

(modulo N). Players play the game recurrently in discrete time t = 1 , 2 , . . . against a subset of their 2 k closest neighbors with

k ∈ { 1 , . . . , � N 2 �} . For a given k the potential interaction neighborhood of player i is K(i ) = { i − k, . . . , i − 1 , i + 1 , . . . , i + k } for

k � = � N 2 � and K(i ) = I \ { i } for k = � N 2 � . That is, the set K(i ) describes the set of feasible interactions of player i, and the

collection of potential interaction neighborhoods (K(1) , . . . , K(N)) defines a graph with undirected links. However, agent i 

does not necessarily interact with all neighbors in K(i ) , but only with a random subset R t (i ) ⊆ K(i ) of realized interaction

neighbors and plays the above coordination game against each of them. The size of the subset R t (i ) essentially captures the

frequency of interactions. Interactions are symmetric in the sense that any realization R t = 

(
R t (i ) 

)
i ∈ I satisfies j ∈ R t (i ) if and

only if i ∈ R t ( j) for all i, j. 

The model described so far corresponds to the 2 k -model within a linear city as in Ellison (1993) , Alós-Ferrer and Wei-

denholzer (2006) , or Alós-Ferrer and Weidenholzer (2008 , Section 4), with the addition of random sampling within the 

interaction neighborhoods. We now further specify the latter as follows. Each potential link between two agents i, j (that 

is, such that j ∈ K(i ) and hence i ∈ K( j) ) is actually realized with (independent) probability p ∈ (0 , 1] . In particular, a given

agent i actually interacts with any given potential neighbor in K(i ) with probability p. For p ∈ (0 , 1) , every given agent i

has a strictly positive probability of interacting with any subset of K(i ) . For p = 1 , there is no random sampling and player

i always interacts with all his potential interaction neighbors in every period, that is, R t (i ) = K(i ) for all t . 

Given a strategy profile ω = (s j ) j∈ I the payoff of player i is 

�i (ω) = 

1 

| R 

t (i ) | 
∑ 

j∈ R t (i ) 

π(s i , s j ) . 

That is, players are concerned about relative average payoffs or in other words about the payoff per interaction. Agent i 

observes only the strategies chosen and the payoffs obtained by all players in her information neighborhood M(i ) . For m ∈
{ 1 , . . . , � N 2 �} we define the information neighborhood of player i as M(i ) = { i − m, . . . , i − 1 , i, i + 1 , i + m } for m � = � N 2 � and

M(i ) = I for m = � N 2 � . Players follow an imitate-the-best rule as in, e.g., Robson and Vega-Redondo (1996) or Alós-Ferrer and

Weidenholzer (2008) , with player i choosing a strategy in the set 

B i (ω) = { s ′ i | s ′ i = s j with j ∈ M(i ) , � j (ω) ≥ �l (ω) ∀ l ∈ M(i ) } . 
Potential ties are broken according to a tie-breaking rule T (ω) specifying the probability that P is chosen in case B i (ω) =

{ P, R } . We consider two distinguished rules: The cautious tie-breaking rule T C specifies T C (ω) = 1 if s i = P and T C (ω) = 0

otherwise. The random tie-breaking rule T R specifies that all ties are broken randomly, that is, T R (ω) = 

1 
2 . Both rules apply

only if there is actually a tie. 

Revision opportunities determine which players receive the chance to update their strategies in a given period. Specifi- 

cally, a revision process q is a probability measure on P(I) that specifies for each J ⊆ I the probability q (J) that exactly the

players in J receive an opportunity to revise ( Alós-Ferrer and Netzer, 2010; 2015 ). We consider two types of revision pro-

cesses: the simultaneous learning process specifies q (I) = 1 and q (J) = 0 for J � = I, that is, in each period all players receive a

revision opportunity. The independent inertia process specifies q (J) = (1 − ρ) | J | ρN −| J | where the inertia parameter 0 < ρ < 1

gives the probability that any given player does not receive a revision opportunity. 
3 
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Fig. 1. Pseudo-code of an agent-based simulation of length T . 

Table 1 

Example of a full factorial design. 

Description Parameter Values 

Network size N { 20 , 21 , . . . , 59 , 60 } 
Interaction radius k { 1 , . . . , � N−1 

2 
�} 

Information radius m { 1 , . . . , � N−1 
2 

�} 
Random Matching p { 0 . 25 , 0 . 5 , 0 . 75 , 1 } 
Tie-breaking T {T R , T C } 
Revision opportunities ρ { 0 , 0 . 05 , 0 . 1 } 
Mutation probability ε { 0 . 01 , 0 . 05 , 0 . 1 } 

 

 

 

 

 

 

 

The behavioral rule together with the tie-breaking specification and the revision process defines a dynamic adjustment 

process described by a Markov chain in discrete time, t = 1 , 2 , . . . . This process is then perturbed by allowing players to

make mistakes with a given probability ε > 0 . Specifically, if this event occurs (“a mutation happens”) the agent selects one

of the available strategies randomly, with uniform probabilities. The stochastically stable states are the long-run equilibria 

of the process as noise vanishes ( ε −→ 0 ; Kandori et al., 1993; Young, 1993 ). 

3. Agent-based simulations 

We translate the dynamics described above into an agent-based simulation protocol described in pseudo-code in Fig. 1 . 

Even for a given game with fixed payoff parameters α and β, the relevant space of the model described in the previous

section is seven-dimensional. The information-interaction network is characterized by the network size N, the (potential) 

interaction radius k, the information radius m, and the random sampling probability p. Fixing the behavioral rule of imitate- 

the best, the dynamics is characterized by the tie-breaking rule T , the revision process q, and, avoiding the double-limit

approach, the mutation probability ε. 

To explore this parameter space there are two fundamentally different approaches. One approach would entail a full 

factorial design using a small number of different values for each parameter, and a fixed number of simulations, say 150,

for each parameter combination. Even if such a design is highly discretized, e.g. like the example in Table 1 , this approach

would require simulations for 3 × 2 × 3 × N × 4 × N = 18 × N 

2 different parameter combinations for any given network size
2 2 

4 
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Table 2 

Range and distribution for the simulation parameters. 

Description Parameter Values 

Network size N N ∼ U({ 20 , . . . , 60 } ) 
Interaction radius k k ∼ U({ 1 , . . . , � N−1 

2 
�} ) 

Information radius m m ∼ U({ 1 , . . . , � N 
2 
�} ) 

Random Matching p p(s, k ) = 

s 
2 k 

, s ∼ U({
 k 
2 
� , 
 k 

2 
� + 1 , . . . , 2 k − 1 } ) . 

Tie-breaking T T ∼ U({T R , T C } ) 
Revision opportunities ρ ρ ∼ U({ 0 , δ} ) , δ ∼ U((0 , 0 . 1]) 

Mutation probability ε ε ∼ U([0 . 01 , 0 . 1]) 

Notes: U(S) denotes the uniform distribution over S ⊆ R . T R denotes Random-Tie-Breaking. 

T C denotes Cautious-Tie-Breaking. 1,118,149 simulations were conducted, with randomly- 

sampled parameter values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N. Thus this example would require a total of 192,618,0 0 0 (about 193 million) simulations. The drawback of this approach

is that it requires a high degree of discretization, and even then an exhaustive computational analysis using a full factorial

design might remain computationally unpractical. 

We rely on an alternative parameter-sampling approach that economizes on computation time and requires a much 

smaller degree of discretization. That is, instead of committing to an ex-ante fixed set of parameters, each simulation uses 

a set of randomly drawn parameters from the space of interest. 

We conducted about 1.12 million simulations following the parameter-sampling approach. Table 2 describes the parame- 

ter space and the exact distribution for each parameter. Payoff parameters of the coordination game were fixed at α = 0 . 5

and β = 0 . 7 . 3 

The simulation length, T , was chosen large enough such that for all conceivable states the empirical distribution ˆ μt :

{ P, R } N −→ [0 , 1] does not change by more than δ = 10 −5 . To ensure this level of precision a length of T (δ) ≥ 2 
δ

= 20 0 , 0 0 0

rounds suffices. To see this, let ˆ μt−1 : { P, R } N −→ [0 , 1] and ω t ∈ { P, R } N , and note that ˆ μt = 

t−1 
t ˆ μt−1 + 

1 
t 1 ω t . Then 

| | ̂  μt − ˆ μt−1 | | 1 = 

∣∣∣∣ t−1 
t 

ˆ μt−1 + 

1 
t 
1 ω t − ˆ μt−1 

∣∣∣∣
1 

= 

1 
t | | ̂  μt−1 − 1 ω t | | 1 = 

1 
t 

(∑ 

ω � = ω t ˆ μt−1 (ω) + | 1 − ˆ μt−1 (ω t ) | 
)

< 

2 
t 

Hence | | ̂  μt − ˆ μt−1 | | 1 < δ holds if 2 
t ≤ δ, which yields the sufficient condition t ≥ 2 

δ
. For a precision of δ = 10 −5 , a length of

T = 20 0 , 0 0 0 periods suffices. 

4. Results 

In this section we present the results of approximately 1.12 million agent-based simulations. The objective of the sim- 

ulations was to obtain estimates of the (limit) invariant distribution μ∗, which determines the long-run equilibria of the 

dynamics (see, e.g. Ellison, 20 0 0 ). By the Ergodic Theorem ( Karlin and Taylor, 1975 ) μ∗ can be approximated by the av-

erage time spent by the dynamics in each state for (long enough) simulations (as in Alós-Ferrer and Buckenmaier, 2017;

Alós-Ferrer et al., 2021 ). Formally, μ∗ is a distribution over the set of absorbing states 
 ⊆ { P, R } N . The monomorphic states

P̄ = (P, . . . , P ) and R̄ = (R, . . . , R ) are always absorbing for imitation-based dynamics. However, there might be other, non-

monomorphic, absorbing states. Since we are interested in whether coordination on P or R occurs and to keep the analysis

tractable, we focus on the two monomorphic states and aggregate all non-monomorphic ones (absorbing or not) in a resid- 

ual, denoted res ( Section 5.2 below briefly discusses non-monomorphc absorbing states and shows that they are empirically 

inconsequential). Specifically, for each simulation we record the fraction of time spent in each of the monomorphic states 

as well as the fraction of time spent in non-monomorphic ones. Formally, our main output is the relative probability distri-

bution f : { ̄P , R̄ } ∪ { res } −→ [0 , 1] . 

Note that the simulations are of finite length and rely on a positive (although small) mutation probability. Hence, in 

contrast to theoretical results that rely on a double-limit approach, mechanistic differences (e.g. due to differences in the 

mutation probability ε or the overall size of the network N) in the amount of time spent in non-monomorphic states are to

be expected. To illustrate this relation, we consider the probability that at least one mutation occurs, η(ε, N) = 1 − (1 − ε) N ,

as an indicator for the overall level of noise in the system. Indeed, this measure is highly correlated with the time spent in

non-monomorphic states f ( res ) (Pearson’s ρ = 0 . 9704 , N = 1 , 118 , 149 , p < 10 −7 ). 

To control for such mechanistic differences, we focus on the restriction of the relative frequency distribution to { ̄P , R̄ } ,
which we denote by F : { ̄P , R̄ } −→ [0 , 1] . That is, we consider the relative amount of time spent at a given monomorphic

state conditioning on the total amount of time spent in both monomorphic states. We interpret F ( ̄P ) as a measure of con-

vergence toward P̄ relative to R̄ , and take it as a probabilistic version of “selection.”
3 We chose to fix the payoff matrix instead of also varying the payoff parameters for two reasons. First, none of the theoretical results, whose limits 

we seek to explore, depend on the specifics of the payoff matrix beyond P being Pareto-efficient and R being risk-dominant. Second, adding two further 

dimensions to the already seven-dimensional parameter space is computationally expensive. 

5 
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4.1. Interaction vs. information 

We consider the distinction between interaction and information introduced in Alós-Ferrer and Weidenholzer (2008) (see 

also Alós-Ferrer and Weidenholzer, 2014; Cui, 2014 ). 4 That work considered coordination games with an efficient strategy 

and showed that, under information spillovers, that is, when the information neighborhood contains and exceeds the inter- 

action neighborhood ( m > k ), a simple condition requiring the network to be large relative to the interaction neighborhood

( N > (2 k + 1) 2 ) guarantees that agents will be able to coordinate on the Pareto-Efficient equilibrium. In contrast, in the

absence of information spillovers risk-dominant equilibria will often prevail. Khan (2014) finds that under global random 

matching, where in each period every agent interacts only with a single randomly selected partner, risk-dominant equilibria 

may prevail if information is sufficiently restricted. However, the efficient outcome is the unique long-run equilibrium under 

full observability or if each individual observes at least four other individuals. 

An examination of the models described above and others (as e.g. Robson and Vega-Redondo, 1996 ) suggests that effi-

ciency is related to a particular property. In all models selecting efficient conventions, the combination of behavior, inter- 

action, and information is such that the payoffs of the latter are “sticky” in an informational sense. Informational spillovers 

help efficiency because the payoffs of efficiency are observed across the network. In contrast, limited observability prevents 

the flow of information and, hence, favours risk-dominant outcomes. Imitate the best max takes advantage of this fact be- 

cause it translates high payoffs into high probability of adoption more than linearly, as opposed to, say, imitate the best

average. 

In the context of our agent-based setting, we thus expect that the key determinants for the selection of payoff-efficient 

equilibria will be the network size N, the interaction radius k, the information radius m, and the sampling probability p. 

In light of the theoretical results outlined above, apart from investigating the overall effects of N, k, m, and p, we also ask

whether those effects differ within and outside specific regions in that four-dimensional space. Specifically, we consider the 

regions defined by the following conditions. 

Definition 1. For a set of parameters (N, k, m, p) we say that 

1) there are informational spillovers if m > k, 

2) the network is relatively large if N > (2 k + 1) 2 , 

3) there is random sampling if p < 1 , and 

4) interactions are global if p = 1 . 

The interpretation of conditions (1), (3), and (4) is straightforward. In particular, we remark that our set of simulations 

contains cases with m > k (as in Alós-Ferrer and Weidenholzer, 2008 ), with m = k (as in any work not distinguishing in-

formation and interaction), and with m < k (analogously to Cui and Wang, 2016; Khan, 2014 ). Concerning (2), a network is

relatively large if it is large relative to the size of its neighborhoods. The idea is that a network with many agents, all of

whom are however directly linked or can be linked in a few steps, is a small world, while a network with a limited number

of agents who interact with relatively few other agents is a large world ( Alós-Ferrer and Weidenholzer, 2008; 2014 ). 

Our objective is twofold. On the one hand, we seek to explore long-run behavior in the vast space between the results

of Alós-Ferrer and Weidenholzer (2008) and Khan (2014) , which are in some sense opposites. On the other hand, we want

to study the tightness of the theoretical conditions (1)–(4) outlined above and, in particular, whether and how network size, 

information structure, interaction structure, and sampling probability systematically affect selection of the efficient outcome. 

We find that on average coordination on P occurs 74 . 7% of the time when m > k, whereas F ( ̄P ) is only 39 . 0% when there

are no informational spillovers. This difference is larger when interactions are global ( 63 . 9% vs. 26 . 4% ) than when there is

random sampling ( 85 . 5% vs. 51 . 7% ). When the network is relatively large the efficient outcome is selected 93 . 6% of the time,

whereas this percentage drops to 51 . 3% when this condition is violated. Again, this difference is larger when interactions are

global (global, 93 . 0% vs. 38 . 1% ; random sampling, 94 . 4% vs 64 . 6% ). Unsurprisingly when there are informational spillovers

and the network is relatively large, the efficient outcome is selected almost universally ( 99 . 2% ) in line with the theoretical

prediction ( Alós-Ferrer and Weidenholzer, 2008 ). In contrast, when at least one of those conditions is violated F ( ̄P ) drops

drastically to 51 . 1% . This difference is larger with global interactions ( 98 . 3% vs 38 . 1% ) compared to random sampling ( 100%

vs 64 . 3% ). 

To confirm these observations and to uncover possible monotonicities, we turn to a regression analysis. Since F ( ̄P ) is a

frequency, we use fractional logit regressions ( Papke and Wooldridge, 2008 ). Table 3 shows the results of these regressions

where we include N, k, m, and p as independent variables. 5 For the full sample of 1.12 million simulations, we find that

coordination on P increases in the size of the network (in terms of number of agents) and decreases with the interaction

radius. Both effects are in agreement with the results of Alós-Ferrer and Weidenholzer (2008, 2014) , which suggest that a

large network (relative to the size of the interaction neighborhoods) facilitates coordination on efficient conventions. We also 

find that coordination on P increases with the size of the information neighborhood, in alignment with the idea sketched 
4 Alós-Ferrer and Weidenholzer (2006) consider the circular city model under local information, that is, interaction and information neighborhood coin- 

cide, characterizing whether a risk dominant convention or an efficient convention will be established in the long run. The answer to this question depends 

on the interaction radius of the individual agents, i.e. on “how local” interactions are. 
5 The results are robust when we additionally control for i) inertia and tie-breaking, ii) η(ε, N) , or iii) all of those. See also Section 4.2 . 
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Table 3 

Fractional logit regression on F ( ̄P ) . 

Full Spillovers Large Network Random Sampling 

F ( ̄P ) Sample Yes No Yes No Yes No 

N 0.022 ∗∗∗ 0.044 ∗∗∗ 0.018 ∗∗∗ 0.003 0.019 ∗∗∗ 0.019 ∗∗∗ 0.024 ∗∗∗

(0.000) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) 

k −0.188 ∗∗∗ −0.236 ∗∗∗ −0.148 ∗∗∗ −0.362 ∗∗∗ −0.167 ∗∗∗ −0.178 ∗∗∗ −0.198 ∗∗∗

(0.000) (0.001) (0.001) (0.021) (0.001) (0.001) (0.001) 

m 0.078 ∗∗∗ −0.023 ∗∗∗ 0.120 ∗∗∗ 0.637 ∗∗∗ 0.072 ∗∗∗ 0.105 ∗∗∗ 0.057 ∗∗∗

(0.000) (0.001) (0.001) (0.020) (0.000) (0.001) (0.001) 

p −3.430 ∗∗∗ −4.737 ∗∗∗ −3.073 ∗∗∗ −0.608 ∗∗∗ −3.502 ∗∗∗ −3.752 ∗∗∗

(0.010) (0.020) (0.012) (0.041) (0.010) (0.017) 

Obs. 1,118,149 527,487 590,662 121,919 996,230 558,977 559,172 

Notes: Regressions on columns 2–7 are restricted to subsamples as given. Spillovers refer to condition 

(1); Large Network refers to condition (2); Random Sampling refers t conditions (3) (Yes) and (4) (No). 

Robust standard errors in parentheses. ∗ p < 10 −3 , ∗∗ p < 10 −5 , ∗∗∗ p < 10 −7 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

above that informational spillovers help efficiency because it is easier to observe the efficient payoffs across the network. 

Last, a larger sampling probability reduces coordination on the efficient outcome, suggesting that more frequent interactions 

(as in the comparison between Kandori et al., 1993 and Robson and Vega-Redondo, 1996 ) hinder efficiency. The result that

larger neighborhoods lead to a decrease in the probability of P̄ can also be cast in the latter terms. 

Next, we partition the parameter space into the two regions with and without informational spillovers. 6 In the absence 

of informational spillovers the results mirror those on the full sample. However, when there are informational spillovers, 

surprisingly, a further increase in the information radius leads to less coordination on P . This negative effect, however, should

not be overinterpreted. Since the subsample is restricted to simulations with m > k, there is a mechanical effect where small

values of m are only possible in this subsample for small values of k, creating a correlation between m and k . The next two

models consider the parts of the parameter space where the network is relatively large and where it is not, respectively.

For the area where N < (2 k + 1) 2 the results again closely resemble the ones obtained on the full sample, whereas when

the network is relatively large a further increase in the network size does not lead to an additional increase in coordination

on P . Also, in this case, the effect of the sampling probability becomes much smaller than in other models. Finally, when

restricting only to situations with random sampling or global interactions, we again see a positive effect of the network 

size and the information radius on F ( ̄P ) , whereas the effect of both the interaction radius and the sampling probability is

negative. 

Summarizing, we find that “more interactions,” be it in the form of a larger interaction neighborhood or of a higher sam-

pling probability, universally lead to less coordination on the payoff-efficient equilibrium. The evidence is also in line with 

previous results suggesting that a large network relative to the size of the interaction neighborhoods supports efficiency. 

The effects of the information radius appear to be more nuanced, suggesting that the key network feature is whether infor-

mation spills over the interaction radius or not, but once this is guaranteed, a larger information radius brings no further

positive effect. 

4.2. Revision processes and tie-breaking 

Different specifications of revision opportunities and tie-breaking rules can give rise to crucial differences in the dynam- 

ics (see, e.g. Alós-Ferrer, 2003; Alós-Ferrer and Netzer, 2015 ). For instance, Alós-Ferrer and Netzer (2010) showed that the

selection of potential maximizers for the logit dynamics is actually knife-edge and can vanish if revision opportunities do 

not follow an asynchronous process, as originally postulated by Blume (1993) and Blume et al. (1997) . If a given prediction

depends on such details, its strength is greatly diminished. 

Revision opportunities are one such detail. Another is given by tie-breaking rules. Typically, behavioral rules determine a 

set of strategies a player may choose, but additional assumptions are required to specify which strategy in that set is chosen.

For example, one might assume that a player randomizes uniformly among all strategies in the set (random tie-breaking) 

or sticks with her current strategy if it is in the set (cautious tie-breaking). Crucially, how exactly ties are broken may affect

the selection of the long-run equilibrium ( Alós-Ferrer, 2003; Oechssler, 1997; Sandholm, 1998 ). 

In what follows we study whether the revision process, specifically inertia, and tie-breaking are empirically relevant for 

the selection between Pareto-efficient and risk-dominant equilibra in finite time. Under simultaneous learning coordination 

on P occurs 55 . 8% of the time, which is essentially identical to the time spent at P when there is independent inertia

( 55 . 9% ). In the latter case, we find also no correlation between the level of inertia and convergence to the efficient outcome

(Pearson’s ρ = 0 . 0301 , N = 1 , 118 , 149 , p = 0 . 0301 ). Turning to the tie-breaking assumptions, we find that the degree of

coordination on P is very similar under random and cautious tie-breaking ( T R , 55 . 9% ; T C , 55 . 8% ). 
6 An alternative approach would be to consider larger regressions on the full sample including interaction terms. However, the latter essentially deliver 

the same messages while considerably complicating the discussion. 
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Table 4 

Fractional logit regression on F ( ̄P ) . 

Full Spillovers Large Network Random Sampling 

F ( ̄P ) Sample Yes No Yes No Yes No 

SimLearn 0.001 0.001 −0.001 −0.108 0.002 −0.002 0.007 

(0.006) (0.010) (0.008) (0.037) (0.006) (0.009) (0.009) 

ρ 0.142 0.058 0.134 −0.743 0.145 0.187 0.134 

(0.093) (0.154) (0.130) (0.572) (0.098) (0.139) (0.132) 

RTB 0.002 0.011 −0.005 0.011 0.002 0.004 0.003 

(0.004) (0.006) (0.005) (0.023) (0.004) (0.006) (0.005) 

Obs. 1,118,149 527,487 590,662 121,919 996,230 558,977 559,172 

Notes: Regressions on columns 2–7 are restricted to subsamples as given. Spillovers refer to condi- 

tion (1); Large Network refers to condition (2); Random Sampling refers t conditions (3) (Yes) and 

(4) (No). Robust standard errors in parentheses. ∗ p < 10 −3 , ∗∗ p < 10 −5 , ∗∗∗ p < 10 −7 . 

Table 5 

Fractional logit regression on F ( ̄P ) . 

F ( ̄P ) 1 2 3 4 

N 0.025 ∗∗∗ 0.022 ∗∗∗ 0.022 ∗∗∗ 0.022 ∗∗∗

(0.000) (0.000) (0.000) (0.000) 

k −0.188 ∗∗∗ −0.181 ∗∗∗ −0.188 ∗∗∗ −0.188 ∗∗∗

(0.000) (0.001) (0.000) (0.000) 

m 0.078 ∗∗∗ 0.078 ∗∗∗ 0.076 ∗∗∗ 0.078 ∗∗∗

(0.000) (0.000) (0.001) (0.000) 

p −3.431 ∗∗∗ −3.431 ∗∗∗ −3.431 ∗∗∗ −3.136 ∗∗∗

(0.010) (0.010) (0.010) (0.023) 

ε 3.524 ∗∗∗ 2.554 ∗∗∗ 0.829 ∗∗ 5.706 ∗∗∗

(0.297) (0.168) (0.166) (0.323) 

N × ε −0.060 ∗∗∗

(0.007) 

k × ε −0.130 ∗∗∗

(0.015) 

m × ε 0.035 

(0.014) 

p × ε −5.419 ∗∗∗

(0.375) 

Obs. 1,118,149 1,118,149 1,118,149 1,118,149 

Notes: Robust standard errors in parentheses. ∗ p < 10 −3 , ∗∗ p < 

10 −5 , ∗∗∗ p < 10 −7 . 

 

 

 

 

 

 

 

 

Table 4 shows the results of a series of fractional logit regressions on F ( ̄P ) . As independent variables we include the

probability of inertia ( ρ) and a dummies indicating simultaneous learning ( ρ = 0 ) or random tie-breaking. On the full sam-

ple we find that none of these variables shows a significant effect. It is conceivable, however, that revision opportunities 

and/or inertia are relevant in specific areas of the parameter space. Hence, we again consider the regions specified by con-

ditions (1)–(4). We find no significant effect of simultaneous learning, inertia, or random-tie breaking in any region. We 

conclude that although revision opportunities and tie-breaking assumptions are sometimes relevant in theory, empirically 

their relevance seems limited when time is finite. 

4.3. Non-vanishing noise 

Theoretical results in the literature typically are concerned with the limit case where the probability of mistakes ( ε) 

vanishes. In contrast, our computational approach is based on a setting with small but positive and non-vanishing noise. In 

that sense, our work also allows to explore the robustness of previous results (that only hold in the limit as ε goes to zero)

for non-vanishing, small levels of noise. This is important because in real settings the environment is constantly evolving 

and, hence, positive mutation rates are often optimal as they facilitate adaptation to a new optimum following a change in

the environment (see Ben-Porath et al., 1993 , for a theoretical argument). 

In this section, we further explore how the mutation probability affects our results, and in particular coordination on the 

efficient outcome. To that end, we reconsider the regression on the full sample reported in Table 3 (first column), adding

the mutation probability and its interactions with our main variables of interest as regressors. Table 5 reports the results of

those regressions. Overall, a higher mutation probability increases coordination on the efficient outcome. Importantly, the 

main effects of an increase in N, k, m, and p remain unchanged when we additionally control for the mutation probability.

The effect of network size, however, becomes smaller as the likelihood of mutation increases (model 1). In contrast, larger 

mutation rates strengthen the negative effect of neighborhood size on coordination on the efficient convention (model 2). 
8 
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Table 6 

Fractional logit regression on F ( ̄P ) controlling for the initial share of P-players. 

Full Spillovers Large Network Random Sampling 

F ( ̄P ) Sample Yes No Yes No Yes No 

N 0.030 ∗∗∗ 0.057 ∗∗∗ 0.035 ∗∗∗ 0.002 0.030 ∗∗∗ 0.020 ∗∗∗ 0.041 ∗∗∗

(0.000) (0.001) (0.000) (0.001) (0.000) (0.000) (0.000) 

k −0.281 ∗∗∗ −0.387 ∗∗∗ −0.233 ∗∗∗ −0.363 ∗∗∗ −0.269 ∗∗∗ −0.245 ∗∗∗ −0.324 ∗∗∗

(0.001) (0.002) (0.001) (0.021) (0.001) (0.001) (0.001) 

m 0.117 ∗∗∗ −0.035 ∗∗∗ 0.188 ∗∗∗ 0.641 ∗∗∗ 0.116 ∗∗∗ 0.144 ∗∗∗ 0.094 ∗∗∗

(0.001) (0.001) (0.001) (0.020) (0.001) (0.001) (0.001) 

p −5.291 ∗∗∗ −7.740 ∗∗∗ −5.123 ∗∗∗ −0.614 ∗∗∗ −5.887 ∗∗∗ −5.361 ∗∗∗

(0.016) (0.031) (0.020) (0.042) (0.017) (0.023) 

InitShareP 23.168 ∗∗∗ 28.229 ∗∗∗ 25.625 ∗∗∗ 2.612 ∗∗∗ 26.567 ∗∗∗ 20.105 ∗∗∗ 26.915 ∗∗∗

(0.060) (0.100) (0.090) (0.136) (0.069) (0.077) (0.094) 

Obs. 1,118,149 527,487 590,662 121,919 996,230 558,977 559,172 

Notes: Regressions on columns 2–7 are restricted to subsamples as given. Spillovers refer to condition (1); 

Large Network refers to condition (2); Random Sampling refers t conditions (3) (Yes) and (4) (No). Robust 

standard errors in parentheses. ∗ p < 10 −3 , ∗∗ p < 10 −5 , ∗∗∗ p < 10 −7 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Also the effect of the sampling probability becomes larger as ε increases (model 3), whereas we observe no significant 

interaction effect for the size of the information neighborhood. 

Summarizing, we find that larger mutation rates increase coordination on the efficient outcome. At the same time, the ef- 

fects of the size of the interaction neighborhood and the sampling probability increase as the mutation probability increases. 

In contrast, the effect of network size dampens as ε increases, whereas we find no moderating effect of the mutation prob-

ability on the effect of the size of the information neighborhood. 

5. Robustness analysis 

In the theoretical double limit as t → ∞ and ε → 0 , selection does not depend on the initial conditions. However, this

is not necessarily true for finite-horizon agent-based simulations, since the mutation probability ε does not vanish and the 

time horizon T , although long, is still finite. In the simulations, the initial conditions were random, that is, every position on

the circle had an independent probability of 50% of being initially occupied by a P - or an R -player. In this section we report

two robustness checks where we take into account the initial distribution of play ( Section 5.1 ), as well as the prediction of

the noise-free, unperturbed dynamics ( Section 5.2 ). 

5.1. Initial distribution of strategies 

A first way to account for path dependence is to consider the initial share of P -players at t = 0 . Since initial conditions

were determined randomly, the average share of P -players across all initial states is exactly 50 . 0% . We find that the conver-

gence on P obtains 74 . 0% of the time when the share of P -players in the initial distribution is above one half, whereas it

is only 37 . 1% when there are more R -players than P -players initially. Indeed, we find a clear correlation between the initial

share of P -players and convergence towards the payoff-dominant equilibrium (Pearson’s ρ = 0 . 442 , p < 10 −7 ). 

Table 6 shows the analogous regressions to Table 3 but additionally controlling for the initial share of P -players. Although

the initial distribution is highly predictive of the average time spent at full coordination on P, the results obtained previously

are all qualitatively unchanged. Hence, we conclude that our results are robust to the specifics of the initial condition. 

5.2. Deterministic prediction 

It is important to establish that our results capture essential features of the long-run behavior of the dynamics, and not

just whether the initial state lies in the basin of attraction of P̄ or R̄ for the unperturbed, noise-free dynamics. For, in the

latter case, we would merely be capturing the short-run of the dynamics, which has limited explanatory power for selection 

in the long-run. To that end, we first determined whether an initial state lies in the basin of attraction of P̄ or R̄ by running

a deterministic version of each of our 1.12 million simulations without mutations until either full coordination on P or R

was achieved, or 20 0,0 0 0 periods had passed (the exercise is analogous to Lee and Valentinyi, 20 0 0 ). We then repeated the

regressions reported in Table 3 while controlling for the deterministic prediction of the unperturbed dynamics, and hence 

for potential path-dependence in our finite-horizon simulations. That is, we re-ran all regressions including, as an additional 

control, the state where the dynamics converges to given the initial condition when ε = 0 . 

In the deterministic simulations, we find that, overall, 55 . 1% of the initial states lie in the basin of attraction of P̄ , whereas

the unperturbed dynamics converges to R̄ in 44 . 8% of the cases. In only 881 out of the 1,118,149 initial states ( < 0 . 1% )
9 



C. Alós-Ferrer, J. Buckenmaier and F. Farolfi Journal of Economic Dynamics & Control 124 (2021) 104074 

Table 7 

Fractional logit regression on F ( ̄P ) controlling for deterministic prediction. 

Full Spillovers Large Network Random Sampling 

F ( ̄P ) Sample Yes No Yes No Yes No 

N −0.004 ∗∗∗ 0.023 ∗∗∗ −0.005 ∗∗∗ −0.027 ∗∗∗ −0.002 ∗ −0.001 −0.008 ∗∗∗

(0.000) (0.001) (0.001) (0.002) (0.000) (0.000) (0.001) 

k −0.111 ∗∗∗ −0.213 ∗∗∗ −0.063 ∗∗∗ −0.182 ∗∗∗ −0.108 ∗∗∗ −0.106 ∗∗∗ −0.167 ∗∗∗

(0.001) (0.002) (0.001) (0.027) (0.001) (0.001) (0.002) 

m 0.105 ∗∗∗ −0.014 ∗∗∗ 0.134 ∗∗∗ 0.462 ∗∗∗ 0.102 ∗∗∗ 0.114 ∗∗∗ 0.068 ∗∗∗

(0.001) (0.002) (0.001) (0.015) (0.001) (0.001) (0.002) 

p −6.571 ∗∗∗ −9.049 ∗∗∗ −5.986 ∗∗∗ 0.207 ∗ −7.080 ∗∗∗ −5.135 ∗∗∗

(0.017) (0.033) (0.021) (0.054) (0.018) (0.022) 

DetState 6.115 ∗∗∗ 6.858 ∗∗∗ 5.855 ∗∗∗ 3.328 ∗∗∗ 6.449 ∗∗∗ 4.259 ∗∗∗ 7.701 ∗∗∗

(0.013) (0.027) (0.016) (0.035) (0.015) (0.016) (0.023) 

Obs. 1,117,268 527,487 589,781 121,402 995,866 558,977 55,8291 

Notes: Regressions on columns 2–7 are restricted to subsamples as given. Spillovers refer to condition (1); 

Large Network refers to condition (2); Random Sampling refers t conditions (3) (Yes) and (4) (No). Robust 

standard errors in parentheses. ∗ p < 10 −3 , ∗∗ p < 10 −5 , ∗∗∗ p < 10 −7 . 

 

 

 

 

 

 

 

 

 

 

 

convergence was not achieved within the time limit. 7 Conditional on convergence to a given state, the average time required

to reach full coordination was 261 periods for P and 474 periods for R (these relatively short times are unsurprising for the

deterministic dynamics). 

The results of the regressions are reported in Table 7 . After controlling for the deterministic prediction, we see that an

increase in the network size tends to have a negative effect on the time spent in the payoff-dominant equilibrium except 

in the region with informational spillovers. This is in stark contrast to the results obtained previously in Table 3 where the

effect of N was positive in all but one model. On the other hand, for the interaction radius k, the information radius m, and

the sampling probability p, we find that all results are robust. In particular, the previous conclusion that “more interactions”

(larger interaction neighborhood or higher sampling probability) lead to less coordination on the payoff-efficient equilibrium 

is unaffected. However, the regressions suggest that the effect of absolute network size (that is, in terms of number of

agents) is channeled through the unperturbed part of the dynamics. This might be less surprising than it seems. Theoretical 

results (e.g. Alós-Ferrer and Weidenholzer, 2008 ) show that, at least in certain subclasses of networks, the size of the basin

of attraction of R̄ for the unperturbed dynamics is monotonically decreasing in N, while population size does not have a 

direct effect on the basin of attraction of P̄ . Thus, the effect of N observed in previous regressions might primarily reflect

the differences in the relative sizes of the basins of attraction for the unperturbed dynamics. 

6. Conclusion 

We ran 1.12 million agent-based simulations to study the determinants of convergence to efficient conventions in coordi- 

nation games played on networks, when agents focus on past performance (imitative play). Our motivation was the fact that 

previous theoretical results indicate potentially-complex interactions between the features of dynamics and behavior, and an 

extensive simulation analysis allows us to study and compare results for a large part of the space of dynamics instead of

considering restricted sets thereof for analytical tractability. 

Our main result is that “more interactions” lead to less coordination on the payoff-efficient equilibrium. This can be 

in the form of larger interaction neighborhoods or of a higher sampling probability for a given interaction neighborhood. 

Interestingly, this is in agreement with the comparison between two classical studies, Kandori et al. (1993) and Robson and

Vega-Redondo (1996) , although none of those considered networks. In the first, interactions are frequent in the sense that, 

each period, each agent plays against every other agent, and the dynamics converges to the risk-dominant convention. In 

the second, interactions are sporadic in the sense that, each period, each agent plays against a single, randomly-sampled 

other agent, and the dynamics converges to the Pareto-efficient convention. 

A second observation is that, as suggested by previous theoretical results ( Alós-Ferrer and Weidenholzer, 2008; 2014 ), 

a large network size relative to the size of neighborhoods (a “large world”) facilitates convergence to efficient conventions. 

However, controlling for the prediction of the deterministic, noise-free dynamics suggests that the effect of the absolute 

size of the network might be channeled by the deterministic dynamics, possibly due to the relative size of the basins of

attraction in the latter. 

The third result is that the specification of tie-breaking rules and revision opportunities (inertia), which are often conse- 

quential for particular theoretical results, are empirically of little relevance in our set of simulations. This is reassuring, as 

predictions should be robust to technical details of the dynamic specification. 
7 In particular, this suggests that absorbing states or sets other than P̄ and R̄ are not empirically relevant in our simulations. The 881 cases where 

convergence to P̄ or R̄ did not obtain for the unperturbed dynamics were excluded from the regression analysis. 
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Our work is also related to a strand of literature that studies evolutionary game dynamics on general networks using 

simulations and approximation techniques (e.g. pair approximation, see Matsuda et al., 1992; Van Baalen, 20 0 0 ). That liter-

ature has typically concentrated on the role of spatial structure for the emergence and maintenance of cooperation in social 

dilemmas ( Allen et al., 2017; Hauert and Doebeli, 2004; Nowak and May, 1992; Ohtsuki et al., 2006; Santos et al., 2006;

Zhang et al., 2016 ). However, a few contributions have also examined coordination games ( Ohtsuki and Nowak, 2006b ). For

instance, Ohtsuki and Nowak (2006a) study coordination games on a circle and find that imitation of randomly-sampled 

agents can lead to efficient outcomes. Our work can also be interpreted as providing a link between the “approximate”

results in that literature and the “exact” results obtained in the stochastic stability literature. 

Of course, in spite of the large number of simulations, our study is still limited, since, for feasibility and concreteness, we

have made a number of specific decisions on the set of simulations. For instance, our study has considered only networks 

created out of the basic 2 k -model on the circular city, following Ellison (1993) and others. It would be desirable to conduct

further studies (possibly with a smaller number of simulations) with different sets of networks. Also, we have concentrated 

on the traditional, highly-stylized binary case. The theoretical results in, e.g., Alós-Ferrer and Weidenholzer (2008) extend 

to any n × n game with an efficient strategy, and it would be interesting to consider simulations for a large set of networks

and games with more than two strategies. These tasks are left for future research. 
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