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Abstract
Motivation: Liquid Chromatography TandemMass Spectrometry experiments aim to produce high-quality fragmentation spectra, which can be used
to annotate metabolites. However, current Data-Dependent Acquisition approaches may fail to collect spectra of sufficient quality and quantity for ex-
perimental outcomes, and extend poorly across multiple samples by failing to share information across samples or by requiring manual expert input.

Results: We present TopNEXt, a real-time scan prioritization framework that improves data acquisition in multi-sample Liquid Chromatography
Tandem Mass Spectrometry metabolomics experiments. TopNEXt extends traditional Data-Dependent Acquisition exclusion methods across
multiple samples by using a Region of Interest and intensity-based scoring system. Through both simulated and lab experiments, we show that
methods incorporating these novel concepts acquire fragmentation spectra for an additional 10% of our set of target peaks and with an additional
20% of acquisition intensity. By increasing the quality and quantity of fragmentation spectra, TopNEXt can help improve metabolite identification
with a potential impact across a variety of experimental contexts.

Availability and implementation: TopNEXt is implemented as part of the ViMMS framework and the latest version can be found at https://
github.com/glasgowcompbio/vimms. A stable version used to produce our results can be found at 10.5281/zenodo.7468914.

1 Introduction

Liquid chromatography (LC) tandem mass spectrometry (MS/
MS) is commonly used to aid identification of small molecules
in untargeted metabolomics. On its own a mass spectrometer
may identify the relative abundances (intensities) of different
masses of ion (m/z, mass-to-charge ratio) of an injected sam-
ple. The use of LC coupled to electrospray ionization gener-
ates ions into the mass spectrometer separated in time,
creating 3D data in which intensity profiles of different ions
(chromatographic peaks) may be observed across retention
time (RT). In MS/MS schemes, we may isolate ions within a
fixed mass range (an isolation window), fragment them, and
measure the intensities and m/z of the fragments. Therefore,
LC-MS/MS combines MS1 (survey) scans, which report inten-
sities of all ions currently eluting from the chromatographic
column, and MS2 (fragmentation) scans, which each produce
measurements of the intensities of fragment ions—a fragmenta-
tion spectrum. A combination of MS1 and MS2 scans will pro-
duce the data, which allow us to annotate chemicals by
directly matching their fragmentation spectra to spectral data-
bases, by machine-learning assisted comparison with structural
databases (Djoumbou-Feunang et al. 2019, Dührkop et al.

2019) or by analysis with metabolome data-mining tools (van
Der Hooft et al. 2016, Wang et al. 2016). However, biological
samples are often highly complex and may contain hundreds or
thousands of metabolites. Consequently, we must make a care-
ful choice of fragmentation strategy to decide assignments of
MS1 and MS2 scans—a well-designed fragmentation strategy
should produce as many relevant fragmentation spectra as pos-
sible, at the highest quality possible.

Data-dependent acquisition (DDA) methods are often ob-
served to produce a lower number of spectra compared to
data-independent acquisition (DIA) methods (Guo and Huan
2020, Wandy et al. 2023). DIA methods set in advance a scan
schedule in which MS2 scans fragment all ions within a large
isolation window, whereas DDA methods use real-time feed-
back from MS1 scans to target a single precursor ion at a
time. Consequently, DIA scans require additional processing
to separate the hybrid spectra produced and algorithms for
this purpose are an area of ongoing research (Tsugawa et al.
2015, Tada et al. 2020). DDA MS2 scans typically produce
higher quality, ready-to-use spectra, but are instead bounded
by their ability to optimally schedule scans for any given sam-
ple. Previous work (Davies et al. 2021) has shown that it is
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theoretically possible to extract many more spectra from a
given sample with the correct assignment of scans in a DDA
scheme, so in this work, we will focus on improving DDA
scan-scheduling in practice. Currently, the most widely used
DDA method is TopN, which repeatedly schedules a duty cy-
cle of one MS1 scan followed by up to N MS2 scans. In each
of these MS2 scans one of the top N most intense precursor
ions observed in the last MS1 scan is targeted, and as a conse-
quence TopN often wastes time repeatedly recollecting spec-
tra for the most abundant precursor ions rather than
collecting new spectra. To counteract this effect, TopN data
are normally acquired using dynamic exclusion windows
(DEWs), which are a ðrt;m=zÞ box around each fragmenta-
tion event, forbidding further fragmentation events to fall
within a DEW’s m/z tolerance until a specified period of time
has elapsed. More recent extensions of this idea include
SmartRoI and WeightedDEW (Davies et al. 2021), which add
more flexible criteria for allowing refragmentation.

In multi-injection, multi-sample experiments, several samples
are injected in series. If the same high intensity traces appear
across multiple injections, a naive TopN will repeatedly frag-
ment the same molecular ions. Therefore, TopN is often aug-
mented with static exclusion windows, which may persist across
injections and, like the DEW, forbid fragmentation within their
bounds. An obvious approach to these iterative exclusion
schemes is to remember DEWs between samples for further use
as exclusion windows (Bendall et al. 2009). However, exclusion
lists are instead frequently created from manual analysis and
existing software tools are generally only semi-automated
(Koelmel et al. 2017). A contrasting approach is to analyse sam-
ples offline and pre-schedule scans targeting individual ions
(Broeckling et al. 2018, Zuo et al. 2021). However, in a multi-
sample context this approach may have difficulty when its plan
differs from reality, due to random variation between injections
or genuine biological variation between samples (Wandy et al.
2019). The Thermo vendor method AcquireX (https://assets.ther
mofisher.com/TFS-Assets/CMD/brochures/sn-65392-ms-acquirex-
intelligent-data-acquisition-sn65392-en.pdf) combines offline
processing with real-time DDA decision-making, but can only be
used to process repeated injections of the same sample.

We introduce TopNEXt, a real-time DDA scan-prioritization
framework and an extension of our previously introduced
Virtual Metabolomics Mass Spectrometer (ViMMS) (Wandy
et al. 2022). TopNEXt implements several improved multi-
sample fragmentation strategies within a modular and cohesive
base. To do this, it extends the concept of exclusion windows by
implementing novel ideas of intensity exclusion (where we may
revisit high intensity signals) and Region of Interest (RoI) area
exclusion (where we compare entire groups of MS1 points for
similarity against exclusion windows) in addition to existing
concepts of real-time RoI-tracking and multi-sample exclusion
(Bendall et al. 2009, Davies et al. 2021). We show through both
simulated and lab experiments that these concepts enable collect-
ing more and higher-quality relevant fragmentation spectra com-
pared to TopN, allowing DDA strategies to obtain more
metabolite annotations in future.

2 Methodology

TopNEXt is embedded within the open-source Python-based
ViMMS (Wandy et al. 2022) framework. ViMMS allows us
to implement new fragmentation strategies in Python and test
their performance using either re-simulated data or an actual

mass spectrometer—currently ViMMS can control only
Thermo Fisher IAPI instruments (https://github.com/thermo
fisherlsms/iapi). In either case, we can evaluate these fragmen-
tation .mzMLs (Martens et al. 2011) against an aligned
peaklist produced from corresponding fullscan .mzMLs via
peak-picking with e.g. MZMine 2 (Pluskal et al. 2010). We
use the metrics of “peak coverage”, a measure of how many
detected chromatographic peaks we have collected fragmenta-
tion spectra for, and “intensity coverage,” a measure of the
intensity at which we collected spectra for detected peaks
(a proxy for quality).

For our experiments, we collected 10 different store-
bought beers and ran them in four batches on four separate
days. The first batch was used to optimize our fragmenta-
tion strategy parameters, and the other three to produce
data for our experiments. Beer was chosen because it is com-
plex and chemically diverse but is also easy to obtain.
Monophasic sample extraction was done by adding chloro-
form and methanol in a ratio of 1:1:3 of beer:chloroform:-
methanol (v/v/v) and mixing with a vortex mixer. The
extracted solution was then centrifuged to remove protein
and other precipitates, and the supernatant was stored at
�80�C. Chromatographic separation with HILIC was per-
formed on all samples by injecting 10 ll beer extract with a
Thermo Scientific UltiMate 3000 RSLC LC system and a
SeQuant ZIC-pHILIC column. A gradient elution was car-
ried out with 20 mM ammonium carbonate (A) and acetoni-
trile (B), starting at 80% (B) and ending at 20% (B) over a
15 min period, followed by a 2 min wash at 5% (B) and a
9 min re-equilibration at 80% (B). The flow rate was 300 ll/
min and the column oven temperature was 40�C. Mass spec-
tra data were generated using a Thermo Orbitrap Fusion
tribrid-series mass spectrometer controlled by Thermo IAPI
via ViMMS. Full-scan spectra were acquired in positive
mode with a resolution of 120 000 and a mass range of 70–
1000 m/z. Fragmentation spectra were acquired using the
orbitrap mass analyser at a resolution of 7500, with precur-
sor ions isolated using a 0.7 m/z width and fragmented using
a fixed HCD collision energy of 25%. The AGC was set at
200 000 for MS1 scans and 30 000 for MS2 scans. Each
beer extract was injected a maximum of six times from the
same vial before moving to a new aliquot of the same beer
extract, in order to minimize over-sampling of the same vial.
Over-sampling can introduce re-sampling bias in the data
due to differences in the head-space volume, septum degra-
dation, and solvent evaporation with each successive
injection.

The exact beers used, the parameters used for peak-picking,
thorough descriptions of our evaluation metrics and the spe-
cifics of our fragmentation strategy parameter optimization
procedure including the final parameter values used can be
found in Supplementary Sections S1–S4.

3 Algorithms

In ViMMS, and therefore TopNEXt, DDA fragmentation
strategies are expressed as a modular scoring function. In all
the strategies, we will discuss here, their scoring function is
used to rank the precursors in each MS1 scan, so that up to N
MS2 scans can be scheduled on the N most highly-scored pre-
cursors. TopN can be represented using the scoring function
in Equation (1).
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scoreðp;ExÞ ¼ Iexðp;ExÞ � Ikðkp � kminÞ � logðkpÞ: (1)

For TopN, all precursors p are scored directly by their log
intensity logðkpÞ. To ensure that all acquisitions are of a us-
able quality, it is common practice to only consider precursors
above a minimum intensity threshold kmin, where Ikðkp �
kminÞ is an indicator function expressing this constraint. We
also implement the DEW via the exclusion indicator function
Iexðp;ExÞ which is 0 if the precursor p falls within any exclu-
sion window in the set Ex, and 1 otherwise. If there are insuf-
ficient targets with a score above zero, a duty cycle may end
with fewer than N MS2 scans.

TopNEXt implements several different strategies contain-
ing a number of features and these can be seen in Table 1.
Because each strategy is built on TopN they are therefore
implemented by using only the three terms in Equation (1) or
more complicated expressions substituted in their place. For
example, TopN is commonly extended to multi-sample con-
texts with additional exclusion windows, which function
identically to the DEW. For our fully automatic “TopNEX
(TopN EXclusion)” implementation, we use an iterative ex-
clusion scheme where DEW from previous injections are car-
ried forward to the current injection as in Bendall et al.
(2009)—so we just include these additional exclusion win-
dows in Ex. Sections 3.1–3.3 dissect the features and control-
lers in Table 1, showing how we can define them by
substituting “modified intensities” in place of kp. TopNEXt
facilitates these operations efficiently with a simple geometry
of points, lines, and rectangles for which details can be found
in Supplementary Section S6.2. Note that in our experiments
later, we will also substitute the SmartRoI and WeightedDEW
weights (Davies et al. 2021) in place of Iex: this procedure is
described in Supplementary Section S6.1.

3.1 Multi-sample RoI exclusion

RoIs are rectangular regions in rt;m=z space, which are typi-
cally constructed as a first step in peak-picking, to group indi-
vidual MS1 points along rt into approximately peak-like
objects. By using ViMMS’ existing implementation of real-
time RoI-tracking (Davies et al. 2021) implemented with the
centwave RoI-building algorithm (Tautenhahn et al. 2008),
we can build and manipulate peak-like objects in place of
fixed-size exclusion regions. In this scheme, we replace the
standard DEW with the rule that no RoI can have another
fragmentation event fall inside it within some RT tolerance of
its last fragmentation. To denote this change, we substitute all

instances of a precursor p with its containing RoI, r. Then, Iex

assumes responsibility for this rule in addition to behaving as
before, where for each RoI, we check whether its precursor in
the current MS1 scan falls into an exclusion window in the set
Ex. To demonstrate that this alone does not significantly alter
results, we define “TopN RoI”, which has an empty Ex (i.e.
only RoIs are given as argument to Iex) and “TopN Exclusion
RoI” with an Ex containing the DEWs that would have
appeared in previous injections in a non-RoI method. The first
new concept implemented by TopNEXt is to populate Ex not
with remembered DEW boxes, but instead with exclusion
windows matching RoIs fragmented in previous injections. In
doing so, “Hard RoI Exclusion” extends RoI-tracking to
between-injections exclusion also. Because we are only chang-
ing the contents of Ex, all three of these controllers can be
expressed by Equation (2). An example of how Multi-Sample
RoI Exclusion works can be seen in Fig. 1: some points in the
second injection fall within the area labeled ab and hence in-
side a, so under Hard RoI Exclusion would not be considered
for fragmentation.

scoreðr;ExÞ ¼ Iexðr;ExÞ � Ikðkr � kminÞ � logðkrÞ: (2)

3.2 Intensity exclusion

While exclusion regions by design prevent revisiting an area
of the space, it may sometimes be desirable to do so. For ex-
ample, if the fragmentation strategy has run out of opportuni-
ties to increase coverage, it may be desirable to reacquire a
peak at a higher intensity, potentially improving spectral qual-
ity. To encourage this behavior, we replace the intensity
logðkrÞ in Equation (2) with a modified intensity value, where
we reduce the current intensity of a ROI r by the highest in-
tensity of r at any previous fragmentation. This is
logðkrÞ � logð/ðr;ExÞÞ, where /ðr;ExÞ is a function that com-
putes the maximum intensity of any Multi-Sample RoI
Exclusion windows the precursor falls within. logð/ðr;ExÞ) is
0 if r has not been previously fragmented i.e. the intensity
used in the score is not modified. This defines “Intensity RoI
Exclusion”, which is shown in Equation (3). Note that Iex

only considers DEWs (which only exist within a single injec-
tion) and /ðr;ExÞ only considers exclusion windows, which
persist across injections.

Table 1. A breakdown of which fragmentation strategies incorporate which features.a

Method Multi-Sample RoI DEW Multi-Sample RoI

Exclusion

Intensity Exclusion RoI Area Weighting

TopN
TopN Exclusion �

TopN RoI �
TopN Exclusion RoI � �

Hard RoI Exclusion � � �
Intensity RoI Exclusion � � � �

Non-Overlap � � � �

Intensity Non-Overlap � � � � �

a The column “RoI DEW” describes whether the within-sample exclusion is tied to RoIs, whereas “Multi-Sample RoI Exclusion” (Section 3.1) shows
whether between-sample exclusion is tied to RoIs. “Multi-Sample” indicates whether it carries over information between samples and “Intensity Exclusion”
(Section 3.2) and “RoI Area Weighting” (Section 3.3) show whether the between-sample exclusion uses intensity changes or RoI area, respectively. The last
five methods are implemented using the TopNEXt framework: the first three are implemented elsewhere in ViMMS.
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scoreðr;ExÞ ¼ Iexðr;ExÞ � Ikðkr � kminÞ
�maxð0; logðkrÞ � logð/ðr;ExÞÞÞ: (3)

3.3 RoI area weighting

Hard RoI Exclusion and Intensity RoI Exclusion build on
TopN Exclusion by checking whether a query RoI has its last
precursor contained within previously fragmented RoIs.
Instead we can compare entire RoIs for similarity: if the area
of a query RoI is largely uncovered by previously fragmented
RoIs, then it is likely it is a RoI we have not previously frag-
mented. Therefore, TopNEXt implements a “Non-Overlap”
strategy, which weights the intensity of the query RoI by how
much of its area is uncovered by fragmentation boxes. When
two rectangles (RoIs or exclusion windows) a and b overlap,
they can be separated into a rectangular area where both a
and b are present, and two non-rectangular areas where only
one of a or b is present. It is possible to replace all three of
these areas with an equivalent set of non-overlapping rectan-
gles, and repeating this procedure will allow dissection of any
set of overlapping rectangles into non-overlapping rectangles.
We can then easily compute the area of the region where only
a is present—a’s area of non-overlap—by summing the areas
of the rectangles covering this region. To compute the Non-
Overlap score, we find this area for the query RoI as a pro-
portion of its total area and use it as a [0, 1] bounded weight
on the log intensity i.e. a power on the raw intensity by log
laws. kr is therefore substituted by the modified intensity
propðrÞ � logðkrÞ, where propðaÞ is the proportional area of
non-overlap for a, defined in Equation (4). Here, ai is the ith
rectangle covering a’s area of non-overlap, and a�i is the ith
rectangle covering a.

propðaÞ ¼
P

i areaðaiÞP
i areaða�i Þ

: (4)

Equation (5) expresses the whole Non-Overlap scoring
function.

scoreðr;ExÞ ¼ Iexðr;ExÞ � Ikðkr � kminÞ � propðrÞ � logðkrÞ:
(5)

Then, when deciding whether a point in RoI b should be
fragmented in Fig. 1, we would raise the intensity of the point
kr to the power of the blue area b as a proportion of the total
area of the RoI b.

“Intensity Non-Overlap” combines all the concepts intro-
duced in Sections 3.1–3.3, i.e. we combine Non-Overlap with
intensity scoring. As in Non-Overlap, the set of overlapping
rectangles is split into non-overlapping rectangles. But while
Non-Overlap uses only the rectangles, which would overlap
the query RoI, but not an exclusion window, Intensity Non-
Overlap uses all rectangles, which would overlap the query
RoI. Firstly, each exclusion window has intensity equal to pre-
cursor intensity of its associated fragmentation event, and
each RoI has intensity equal to its intensity in the most recent
MS1 scan. Supposing that we are interested in calculating the
Intensity Non-Overlap score for a, then unique combinations
of overlapping rectangles including a can be written as aB,
where B 2 f�; b; c;bc; d;bd; bc;bcd . . .g for any overlapping
boxes b, c, and d and with � representing no other boxes.
Each of these rectangles has a modified intensity associated
with it equal to the difference between a’s intensity and the
maximum intensity of any overlapping boxes, i.e.
kaB ¼ ka �maxb02Bðkb0 Þ, where when B ¼ � we have
maxb02Bðkb0 Þ ¼ 0.

In Non-Overlap, we only considered logðkpropðrÞ
r Þ. For

Intensity Non-Overlap, we generalize this to the logarithm of
the sum of all modified intensities given to each unique combi-
nation of boxes taken to the power of their proportional
area—this is shown in full in Equations (6) and (7).

propða;BÞ ¼
P

i areaððaBÞiÞP
i areaða�i Þ

: (6)

scoreðr;ExÞ ¼ Iexðr;ExÞ � Ikðkr � kminÞ
�log

�P
B max

�
0; kpropðr;BÞ

rB

��
:

(7)

Then, when deciding whether to fragment b in Fig. 1, b and
ab would have their intensity calculated as kb and kb � ka, re-
spectively, and their area as a proportion of the total area of b
would be used as a power on this before finally summing them
together. A detailed example of how Intensity Non-Overlap is
computed can be found in Supplementary Section S6.3.

4 Results

We test our results on two scenarios—repeated injections of
the same individual beer sample (multi-injection, single-
sample), and injections of different beer samples, with repeats
(multi-sample). In the first case, roughly the same peaks are
encountered each time at the same m/z and RT position in an
injection, which should cause it to be relatively predictable
and therefore straightforward. The second case should have
samples with partial overlap in metabolites, making optimally
fragmenting peaks in the correct sample more challenging.
Primarily we should expect that in the single-sample case es-
pecially TopN’s coverage will not significantly increase, but
the coverage of multi-sample methods will, and we should ex-
pect that intensity-based methods will obtain more intensity
coverage and continue to increase in intensity coverage even
when coverage stops improving.

Section 4.1 contains simulated results combining all strate-
gies built on top of TopNEXt with the three DEW variants
(regular DEW, SmartRoI, and WeightedDEW). We also

Figure 1. An illustration of RoI-tracking when using RoIs as exclusion

windows, where from top to bottom each subplot represents a

successive injection. The points are individual observations in MS1 scans.

A cross represents the precursor of a fragmentation event. On the first

injection, the RoI a is drawn. On the second injection, a persists as an

exclusion window, while b is drawn around the new points, forming the

overlapping area ab. Note that a and b are drawn here after all points were

observed, but as RoIs would be dynamically extended to the right to

cover the points as we observed them in real-time.
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present TopN, TopN RoI, and TopN Exclusion as baselines.
To differentiate the non-RoI implementation of TopN
Exclusion with the RoI-based implementation within
TopNEXt, we denote them “TopN Exclusion” and
“TopNEX,” respectively. These simulated results were pro-
duced using the fullscans from our fourth batch of lab experi-
ments, and MS1 and MS2 scan lengths were fixed to be 0.59
and 0.19 s, respectively—the average times from the same in-
strument in Supplementary Tables S1–S6 of Davies et al.
(2021)—so they could be more exactly reproducible.

Section 4.2 contains the lab experiments. These have a sig-
nificant instrument time cost to run, so for the multi-injection
experiment (the third batch of our experiments), we only pre-
sent comparison of TopN Exclusion, Non-Overlap, and
Intensity Non-Overlap. These three were chosen to compare
performance of an intensity method to a non-intensity
TopNEXt method and a baseline method as sample coverage
becomes exhaustive. For the multi-sample experiment, we
tested all the main variants—TopN Exclusion, Non-Overlap,
and Intensity Non-Overlap in the second batch, and TopN,
Hard RoI Exclusion, and Intensity RoI Exclusion in the
fourth. This shows performance on a complex and realistic
scenario. In the lab experiments, all TopNEXt methods use
WeightedDEW exclusion. WeightedDEW was found to have

the best performance when optimizing parameters on all three
in simulation (see Supplementary Section S4).

4.1 Simulated results—resimulated chemicals
4.1.1 Multi-injection, single sample results

In our simulated multi-injection results given in Fig. 2A, we
have 20 injections of the same beer. As we expect, TopN is a
completely flat line, which does not improve beyond seeing
the same sample once as no RT noise was introduced during
simulation. The other controllers are all roughly competitive
on coverage, with the gap being at most around 2% between
the best and worst performing variants. The best performing
variants are the different implementations of TopN
Exclusion, and after ten samples most methods have con-
verged to near-complete coverage of the sample. Despite gain-
ing coverage the fastest, in intensity coverage the TopN
exclusion variants perform the worst by a significant margin,
which increases up to around 3% behind the worst new
TopNEXt-based method, Hard RoI Exclusion. Intensity RoI
Exclusion has significantly better intensity coverage than any
non-intensity method and Intensity Non-Overlap is again bet-
ter than Intensity RoI Exclusion by a significant margin, per-
forming the best on this metric. For most methods in this
example, but particularly the intensity methods, the SmartRoI

Figure 2. (A) Simulated experiment with the same beer repeated for 20 injections. (B) Simulated experiment with six different beers each repeated four

times.
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variants are especially effective, with Intensity RoI Exclusion
being �6% higher in intensity coverage compared to Non-
Overlap, and Intensity Non-Overlap being �5% beyond that.
In total, Intensity Non-Overlap has an intensity coverage of
92%, a nearly 20% difference ahead of the nearest TopN
Exclusion variant. Importantly, we can also observe that the
TopN exclusion variants plateaus in intensity coverage
shortly after doing so in coverage, and that intensity methods
especially maintain a significant slope even as their coverage
does not, plateauing later in the process.

4.1.2 Multi-sample results

For the multi-sample experiment, we repeat six unique beers
(labelled 1–6) four times each for each controller, in the order
1-2-3-4-5-6-1-2-3-4 . . . meaning at any point no beer sample
has been repeated more than once more than another. This
should allow the strategies to firstly collect all shared metabo-
lites, then collect those exclusive to some samples later, rather
than potentially missing them permanently. When this order-
ing is applied to the lab experiment, it has the potential of
causing experimental issues on the real instrument (e.g.
through RT drift) but we decided the benefit of additional col-
lection opportunities outweighed the risk. Figure 2B shows
the results of this 6–4 (6 samples, 4 repeats) experiment. Once
again, TopN stops gaining any coverage or intensity coverage
once new beers cease to be introduced, and the multi-sample
methods all have a significant advantage over it. However,
the methods rank differently in coverage this time, and while
all new methods are roughly competitive in this respect, most
of the TopN exclusion variants trail by a significant margin of
around 4% behind the least effective of these methods, Hard
RoI Exclusion. TopNEX SmartRoI is very close to Hard RoI
Exclusion, but it still nonetheless ranks below all of the new
methods. The intensity methods perform best on coverage
here, with Intensity Non-Overlap being the best controller
overall, with around 8% increase in coverage from the
baseline TopN exclusion implementation to Intensity Non-
Overlap SmartRoI. The differences in intensity coverage
remain mostly similar to the same beer experiment, with
Intensity Non-Overlap SmartRoI being roughly 21% ahead
of baseline TopN Exclusion.

4.2 Lab results
4.2.1 Multi-injection, single sample results

In the prior simulated results given in Section 4.1 coverage
was often exhausted significantly before 10 injections, so we
ran only 10 injections for the multi-injection experiment on
the actual instrument. Figure 3A shows that all the multi-
sample methods are competitive on coverage, with Intensity
Non-Overlap being the lowest by a slight margin (as it is fo-
cussing on reacquiring peaks at higher intensities, i.e. intensity
coverage). Both overlap methods have significantly better in-
tensity coverage (with Intensity Non-Overlap having a further
advantage)—but most notably it can be observed that the
curves of the other two methods flatten as they run out of
new peaks to acquire, but the Intensity Non-Overlap curve
flattens at a decreased rate. This demonstrates the advantage
it has in continuing to reacquire peaks at higher intensities
even once coverage gains cease.

4.2.2 Multi-sample results

The 6–4 experiment was the most complex and representative
of real-use, so we ran this again without changing the setup of

runs or beers. Figure 3B shows that in both coverage and in-
tensity coverage TopN is again the weakest of the methods
and TopN exclusion trails behind the new TopNEXt meth-
ods. The new methods are competitive in terms of coverage:
the “intensity” methods clearly improve the intensity cover-
age by a large margin. There are some particularly large
spikes in intensity coverage (especially around sample 20) but
the overall trend, however, reassuringly matches the simu-
lated results. To further support these results, Supplementary
Section S5 contains a number of other simulated experiments
showing the generalization performance of these methods, in-
cluding replications of these experiments on all 10 beers pro-
ducing a total of 6120 output .mzMLs, which would not be
feasible in a lab setting demonstrating the advantage of devel-
oping and testing in ViMMS.

5 Discussion and conclusions

Our new methods introduce allowing a RoI to be refrag-
mented in a multi-sample DDA exclusion scheme given a
sufficient intensity increase or sufficiently dissimilar area to
previously fragmented RoIs. Our experiments demonstrated
that use of either of these criteria allows collection of similar
or greater numbers of unique fragmentation spectra at
higher intensities. We saw that by using both during multi-
ple injections of a single beer sample, we ultimately collected
a similar number of spectra at close to 20% more of the total
intensity. For multiple samples, the improvements were es-
pecially pronounced: we collected nearly 10% more of the
total spectra at up to 20% more of the total available inten-
sity. However, we would expect that when intensity meth-
ods reacquire a spectrum at higher intensity they also lose an
opportunity to acquire a new spectrum. Indeed, in the multi-
injection same beer results, although the final coverage is
nigh-identical, it rises slightly more slowly. But in the mixed-
beers 6–4 experiment, we see that the intensity methods in
fact have slightly better coverage compared to their non-
intensity counterpart, and Intensity Non-Overlap has the
highest overall.

What causes the coverage increase? Previously in Davies et al.
(2021), SmartRoI and WeightedDEW exchanged some intensity
coverage on certain spectra for increased overall coverage
against TopN. Although in theory all the scans can be allocated
for optimal (intensity) coverage, in a noisy real-world process
some degree of redundancy may be desirable. We only see the
TopNEXt coverage increase in the multi-sample case, so one po-
tential explanation is that peak-picking has detected different
peaks across samples in similar regions of the space, allowing ex-
tra coverage when revisiting these locations. A similar argument
could be made for SmartRoI variants performing best in our
experiments. SmartRoI produces less fragmentation events over-
all—see the “efficiency” metric in Table 2 of Davies et al.
(2021)—so it may create exclusion regions less prematurely in a
multi-sample context. This would allow these regions to be vis-
ited later compared to other DEW methods, when they would
be most relevant. Supplementary Section S5 contains additional
experiments, which further explore the behavior of our fragmen-
tation strategies.

Overall, together our simulated and lab results demonstrate
that TopNEXt addresses some of the traditional weakness of
DDA in terms of sample coverage. By providing more and better
quality fragmentation spectra, TopNEXt will aid the process of
metabolite annotation, which in turn should lead to greater
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biological understanding of metabolomics samples. Future
work might involve adaptation to different experimental
contexts. For example, rather than only being interested in
the absolute number of peaks we can acquire spectra for, a
specialized method for a case–control setup might value hav-
ing pairs of spectra from both case and control.
Alternatively, we also use RoIs as “peak-like objects,” which
can be compared for similarity against fragmented objects,
but we could instead use a different RoI-building algorithm
or a more complicated similarity measure than shared area.
These developments or others could be flexibly switched out
in the TopNEXt framework with the rest of the procedure
working as before, easing future fragmentation strategy de-
velopment. Additionally, the TopNEXt family of methods
can be used as-is through ViMMS to perform metabolomics
experiments if separate bridging code exists between
ViMMS and the mass spectrometry instrument model. This
is currently limited to instruments exposing a Thermo Fisher
IAPI, but in future bridges to other instrument models may
be written.

Supplementary data

Supplementary data are available at Bioinformatics online.
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