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a b s t r a c t 

Brain stimulation is an increasingly popular neuromodulatory tool used in both clinical and research settings; 
however, the effects of brain stimulation, particularly those of non-invasive stimulation, are variable. This vari- 
ability can be partially explained by an incomplete mechanistic understanding, coupled with a combinatorial 
explosion of possible stimulation parameters. Computational models constitute a useful tool to explore the vast 
sea of stimulation parameters and characterise their effects on brain activity. Yet the utility of modelling stimu- 
lation in-silico relies on its biophysical relevance, which needs to account for the dynamics of large and diverse 
neural populations and how underlying networks shape those collective dynamics. The large number of param- 
eters to consider when constructing a model is no less than those needed to consider when planning empirical 
studies. This piece is centred on the application of phenomenological and biophysical models in non-invasive 
brain stimulation. We first introduce common forms of brain stimulation and computational models, and provide 
typical construction choices made when building phenomenological and biophysical models. Through the lens 
of four case studies, we provide an account of the questions these models can address, commonalities, and limi- 
tations across studies. We conclude by proposing future directions to fully realise the potential of computational 
models of brain stimulation for the design of personalized, efficient, and effective stimulation strategies. 
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ntroduction 

“All models are wrong, but some are useful ” - George E P Box. A funda-
ental question in neuroscience is how the brain’s structure and func-

ion may be manipulated to counteract injury or disease. One effective
ay to establish the relationship between brain and behaviour is to em-
loy targeted electrical brain stimulation and study the subsequent ef-
ects. While direct manipulations applied at different neural scales (from
ells to circuits) enrich our knowledge, the translation to clinical appli-
ations is by no means trivial. This is because many of the mechanisms
y which electrical brain stimulation influence brain function and be-
aviour remain elusive. A better understanding of the relationship be-
ween stimulation parameters and their behavioural and physiological
ffects is necessary for the effective deployment of this promising clini-
al and research tool. Computational modelling can help us understand
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he mechanisms underlying the effects of stimulation and how to opti-
ise stimulation parameters to increase the efficacy of treatments. 

Here we discuss the current state-of-the art in computational models
f the effects of electrical brain stimulation. We first introduce the most
ommon methods of electrical brain stimulation and computational
odel design. We then consider how recent work uses phenomeno-

ogical and biophysical computational models to gain insight on the
ffects of stimulation using a “case study approach ” Finally, we crit-
cally assess the current state of the field and suggest possible future
irections. 

lectrical brain stimulation 

The purpose of electrical brain stimulation is to extraneously manip-
late neural activity through the generation of local electric fields. The
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enerated electric fields can result in both local neurochemical changes
nd network-level changes ( Little and Brown, 2012; Bekar et al., 2008;
arren et al., 2019; Li et al., 2019a; Kurtin et al., 2021 ). Electrical brain

timulation can be broadly separated into invasive and non-invasive
rain stimulation. 

Invasive brain stimulation is commonly applied in the form of
eep brain stimulation (DBS). DBS uses surgically implanted electrodes,
hich typically target subcortical structures (Herrington et al., 2016) .
he stereotactically guided implantation of the electrodes to the stimu-

ation target results in highly precise spatial localisation. 
DBS has a long history of trial-and-error underpinning its current

se. Animal studies conducted as early as the late 18th century in-
estigated responses to cortical stimulation, and in the 1950’s, tha-
amic ablations were shown to reduce tremor (Pycroft et al., 2018) .
n the late twentieth century DBS had become established as a treat-
ent for Parkinsonian tremors (Bronstein et al., 2011) , and now is an

DA-approved treatment for movement and psychiatric disorders, such
s dystonia (Ostrem et al., 2014) and obsessive-compulsive disorder
Kohl et al., 2014) , respectively. Yet, over a century of trial and er-
or has not resulted in a complete mechanistic understanding of how
BS operates. Recent work has posited several theories (Dostrovsky and
ozano, 2002) , but none have been conclusively embraced. Extending
he application of DBS to processes that rely on distributed functions,
uch as cognition, requires a stronger mechanistic understanding of an
xpanding suite of stimulation parameters and their effects on brain
unction. 

Non-invasive brain stimulation (NIBS) has been lauded as a
ell-tolerated, safe, and cheap neuromodulatory tool (Hallett, 2000 ;
offman et al., 2014) . NIBS encompasses an umbrella of techniques
eveloped to manipulate brain function by applying current through
he scalp. The most widely used methods include transcranial magnetic
timulation (TMS) and transcranial electrical stimulation (tES). TMS
mploys transcranial electromagnetic induction to generate an electric
eld (Terao and Ugawa, 2002 ; Miniussi et al., 2010) , whereas tES pro-
uces neuromodulatory effects via weak currents applied to the scalp
Reed and Kadosh, 2018) . Two popular methods of tES include tran-
cranial alternating current stimulation (tACS) and transcranial direct
urrent stimulation (tDCS) (Woods et al., 2016 ; Polania et al., 2018 ;
itsche and Paulus, 2000) . Temporal Interference (TI) is a novel NIBS
pproach for sculpting electrical fields to enable non-invasive neural
timulation at depth (Grossman et al., 2017 ; Lee et al., 2020) . While
IBS eliminates the risk associated with surgical implantation of elec-

rodes, it is inherently associated with lower spatial resolution. One way
o address this limitation is via the usage of multiple electrodes to enable
ore focal stimulation (commonly referred to as high-definition (HD)-

ES) (Villamar et al., 2013) . Another development in the delivery of NIBS
s the more widespread availability of devices with several independent
hannels for current delivery to allow for multi-site stimulation. This
ove is supported by evidence that the effects of NIBS can be enhanced
hen stimulation is delivered to multiple regions in the same functional
etwork (Fischer et al., 2017) ; Dagan et al., 2018 ; Hill et al., 2018) . 

Despite brain stimulation’s utility as a clinical and research tool,
n undeveloped mechanistic understanding of the parameters under-
inning its function limit its effective deployment (Bergmann and
artwigsen, 2020 ; Horvath et al., 2015) . Some parameters are outside
f experimental or clinical control, including individual anatomy, the
rganization of local inhibitory and excitatory circuits, neurochemistry,
nd genetics (Li et al., 2015 ; Wagner et al., 2007) . However, many pa-
ameters can be controlled, including the type of stimulation applied,
he duration/intensity of stimulation, and the targeted region(s) and/or
rain state (Li et al., 2015 ; Wagner et al., 2007) . 

One way to both cultivate a mechanistic understanding and optimise
elivery of brain stimulation is to utilise computational models of stimu-
ation. Before discussing some specific examples, we first set the broader
ontext of the types of models that have been used in neuroscience. 
2 
ntroducing models of the effects of stimulation on brain function 

Brain stimulation manipulates neural activity at different topologi-
al levels (micro, meso and macroscale) and over different timescales
seconds to days or weeks). Across these levels, the effects of stimula-
ion can be thought to follow a casual pathway, as framed by Bergman
nd Hartwigsen Bergmann and Hartwigsen (2020) : Stimulation is de-
ivered → inducing changes in neural function → that can manifest in
hysiological changes that impact behavioural outcomes [ Fig 1 ]. Com-
utational models are able to simulate some or all stages of the causal
ath of stimulation. 

Models that consider the first stage in the causal path, the delivery

f stimulation , often concern the effects of applying current directly
via DBS) or indirectly (via NIBS) to the brain. Models of this nature of-
en focus on how current spreads through skin, skull, and brain tissues,
nd estimate electric field distributions in the brain. Comprehensive re-
iews on these computational forward modeling studies using finite el-
ments can be found in Saturnino et al. (2019) ; Johansson et al. (2019) ;
etrov et al. (2017) . 

Models of the second and third steps dealing with changes in

eural function and behaviour can be built at the micro, meso,
nd macrocale. Models focusing on the microscale level investigate
eurochemical and cellular-level mechanisms (Gubellini et al., 2009) .
t the mesoscale, models focus on brain structures in between

he cellular and whole-brain resolution, including white matter
racts, small circuits, and cortical tissues (Khodashenas et al., 2019) .
odels that explore macroscale levels investigate the effects of

rain stimulation on multiple brain regions, often in the form
f neural networks, and/or their consequences on behaviour
Weerasinghe et al.; 2019 ; Muldoon et al., 2016 ; Giannakakis et al.;
020 ; Deco et al., 2019) . These models will be explored in greater
etail in here. 

Macroscale models often employ phenomenological or biophysical
odels, which group populations of neurons into functional units and

onsider how they interact. Macroscale models often capture oscillatory
ehaviour, and come in two popular versions: the neural mass model
nd the neural field model. Neural mass models characterise activity
ver time only, whereas neural field models describe how properties
f neural units (such as average depolarization of a neural population)
volve over both space and time. Three models that have played a sem-
nal role in mathematical neuroscience and have been used to model
he effects of electrical brain stimulation on (different) aspects of neu-
al function are Wilson Cowan Models (WCM) [ Box 1 ], Kuramoto Os-
illators (KO) [ Box 2 ], and Stuart-Landau Oscillators (SLO) [ Box 3 ]
 Wilson and Cowan, 1972 ; Strogatz, 2000 ; Landau, 1944) . 

ox 1 . Wilson Cowan Models 

The original Wilson Cowan Model (WCM) was defined in Wilson 
and Cowan’s seminal 1972 paper (Wilson and Cowan, 1972) . It is 
a mean-field biophysical model that represents the properties of 
a spatially localised population of neurons, rather than individual 
neurons. The original WCM is composed of two coupled nonlinear 
equations that model the firing rate of excitatory neurons, E(t) , 
and the firing rate of inhibitory neurons, I(t) , within a brain region 
as a function of time t respectively. 

A sigmoidal transfer function, also known as an “input-output ”
function, 𝛿, determines how the input current to the subpopula- 
tions is transformed into neural firing rates. Connectivity or cou- 
pling coefficients, c i , where i = 1 to 4, represent the average number 
of excitatory ( i = 1,3) and inhibitory ( i = 2,4) synapses per popula- 
tion. There are different external inputs to the excitatory and in- 
hibitory subpopulations – P and Q , respectively – to account for 
cell type-specific afferents to the population. The equations de- 
scribing the time evolution of E(t) and I(t) are then 
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Fig. 1. Illustration of the causal path of stimulation. Brain stimulation can be administered invasively or non-invasively, both of which effect neurophysiology at 
the micro, meso, and macroscale. Then, the stimulation-induced changes in the brain exert downstream effects on behaviour. The brain images were made using 
BrainNet (Xia et al., 2013) 

B

where r is a constant that defines the refractory period, and 
𝛼( 𝑡 − 𝑡 ′) models the decay of cell inputs with time. The parameters 
of a WCM are often selected so that the system has three potential 
states: a low fixed point, a high fixed point, or a limit cycle. 
Fixed points, also known as steady-states, are largely uneventful 
(Wilson and Cowan, 1972) . At the low fixed point the firing rates 
of the subpopulations are stable and at a low level, creating a 
baseline state. At the high fixed point, the firing rates of the 
subpopulations are stable at a high level. Limit cycles represent 
oscillatory activity emerging from a balanced excitation and 
inhibition ( Wilson and Cowan, 1972) , and have been used as 
models for the gamma-frequency oscillations ( ≈40 Hz) detected 
from neuronal populations at the level of local field potentials. 
Additionally, these limit cycles have been extended to address 
pathological oscillations, reflecting excess synchrony that arises 
during epilepsy and essential tremor (Kim and Robinson, 2008 ; 
Deuschl and Bergman, 2002) . 

In network models of the brain, the dynamics of each node 
may be represented as a WCM operating in the limit-cycle regime, 
resulting in a system of coupled oscillators (Deco et al., 2009) . 

ox 2 . Kuramoto Oscillators 

The dynamics of a brain region exhibiting oscillations in local field 
potentials can be further reduced from the WCM to a simple phase 
oscillator (Cabral et al., 2011) . Each phase oscillator in isolation 
has very simple dynamics, being described by its phase rotating 
3 
at its natural frequency. However, when phase oscillators are cou- 
pled together, their interactions are described by the Kuramoto 
model of coupled oscillators: 

In the Kuramoto model of coupled oscillators, 𝜃𝑖 ( 𝑡 ) represents 
the phase at time t for node i, N is the total number oscillators, 𝜔 𝑖 is 
the intrinsic frequency of oscillator i , and K is the global coupling 
coefficient. 

As K increases the solutions of the model tend towards phase 
synchronisation, where “synchronisation ” refers to the stability 
of phase relationships. If all nodes have the same phase so that 
𝜃𝑖 ( 𝑡 ) − 𝜃𝑗 ( 𝑡 ) = 0 for all i and j then the oscillators are synchronised 
in-phase. If the phases of different nodes differ, but the phase 
differences do not vary with time, then the oscillators are syn- 
chronised out-of-phase, or “phase locked ”. In general, the phase 
coherence of a population of oscillators can be captured by the 
Kuramoto order parameter. The order parameter r defines the re- 
lationship between synchrony ( 𝜌) and the average phase ( 𝜓) for 
N nodes 

The order parameter ranges from 0 to 1. When r = 1, nodes 
are considered in-phase, and when r = 0, nodes are perfectly 
out of phase. For further reading, see the review written 
by Bick et al. (2020) . The review covers Ott-Antonson and 
Wantanabe-Strogaz reductions, which allow researchers to ana- 
lytically solve solutions for simple systems of Kuramoto oscilla- 
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tors (rather than rely on computer simulations) (Bick et al., 2020) . 
While these reductions are helpful to bridge the microscale to the 
macroscale, they do not extend to systems with added complex- 
ity, such as in the presence of heterogeneous couplings and time 
delays, which have been shown to modulate network activity not 
only in space and time, but also in the frequency domain, which 
is a crucial feature of brain activity (Cabral et al., 2014) . 

ox 3 . Stuart-Landau Oscillators 

The Stuart-Landau oscillator is a reductionist approach to model 
population-level oscillations in neural activity considering both 
the phase and the amplitude dynamics. 

The original equation was proposed in 1944 by Landau 
Landau (1944) to describe a system exhibiting a Hopf bifurcation, 
i.e., a system that transitions from a stable fixed point to a limit- 
cycle upon a change in parameters (Uddin and Dorning, 1986) . 
The canonical form defined by Stuart and colleagues in 1960 
Palm (1960) ; Watson (1960) ; Stuart (1960) is defined as: 

Here 𝐴 is a complex number expressing the evolution of the 
amplitude |𝐴 | and the phase 𝜙 over time as 𝐴 = |𝐴 |𝑒 𝑖𝜙. The param- 
eter 𝜎 expresses the growth rate (or decay rate if 𝜎 is negative) and 
the real part of l is known as the Landau constant (Landau, 1944) . 
Similar to the WCM, for some values of 𝜎 and l the SLO exhibits ei- 
ther a fixed point equilibrium or a stable limit cycle. Importantly, 
if the system is in a fixed-point regime but sufficiently close to 
the bifurcation point (sub-critical), it exhibits a damped oscilla- 
tion with decaying amplitude in response to input. As such, sub- 
critical SLOs perturbed with noise can be used to approximate the 
transient and short-lived oscillations detected in neural activity. 

our common construction choices for computational models 

So far, we have introduced different types of brain stimulation and
he causal path of stimulation’s effects on the brain and behaviour. We
escribed the different topological scales at which the brain is commonly
odelled, and introduced three common macroscale models of brain

unction – WCM, KO, and SLO. Direct comparison of different modelling
tudies is difficult, as each step in constructing a model, from defining
odes and edges to parameter choices for the oscillatory equations, re-
uires choosing from a number of options (see Fig. 2 for definition of
odes and edges). Nevertheless, there are commonalities, and here we
ist and briefly discuss four common construction choices used when
uilding phenomenological or biophysical models of the effects of brain
timulation [Fig 2] . 

1. Network nodes describe brain regions 

Most studies to date opted for atlas-based parcellations of the brain to
elate brain regions to nodes in a network. Studies have proposed that in-
luding cerebellar and subcortical structures may increase the biophys-
cal relevance of models (Murray et al., 2018 ; Giannakakis et al., 2020) ,
s well as accounting for differences in tissue excitability. For example,
n Giannakakis et al. (2020) differences between healthy and epileptic
rains were distinguished by modifying the internal weight values in
he WC oscillators. Another consideration when defining model nodes
s that atlas parcellations based on cytoarchitectural characteristics may
4 
efine regions with non-uniform functional characteristics. Models that
roup independent functional subunits into a region do not capture the
ndividual contributions of each subunit, but rather a net misrepresenta-
ion of both. An alternative approach involves parcellating the brain into
unctional regions (Soreq et al., 2019) , which can be done on a group or
ndividual level (Shen et al., 2013) . Functionally derived parcellations
an reduce confounds of overlapping representations of regional activ-
ty that arise when independent functional subunits are grouped within
he same structural/anatomical regions (Shen et al., 2013) . 

Another consideration when researchers decide whether to use a
tructurally or functionally defined atlas for dynamical models is pro-
ided by the work of Domhof et al , who used Kuramoto and Wilson
owan models to systematically investigate how several parameters, in-
luding atlas parcellation, influenced the specificity and reliability of
imulated data to participants’ empirical data (Domhof et al., 2022) .
he authors showed there was a substantial, significant effect of atlas
ype (structurally or functionally defined), particularly on how well the
imulated structural-functional relationships captured empirical ones.
he simulated data generated using a structurally defined atlas more
eliably related model outputs to the empirical data, whereas the func-
ionally defined atlas showed improved specificity of simulated data to
articipants’ empirical data (Domhof et al., 2022) . Thus, the system-
tic influences of atlas parcellation technique observed by Domhof et
l should be considered when designing and implementing modelling
tudies. 

2. Network edges and their weights 

Connections between nodes are often derived from diffusion
eighted imaging (DWI) to create models that capture connectiv-

ty among functional units and how stimulation propagates through
he brain. DWI measures white matter density as a function of wa-
er anisotropy across imaging voxels, and is well-suited for detect-
ng long, continuous projections of axonal bundles, such as the cor-
us callosum (Basser et al., 2000) , corticospinal, and frontal aslant
racts (Kiero ń ska and S ł oniewski, 2020) . Work by Nowak and Bul-
ier (1998) showed that postsynaptic responses to grey matter stim-
lation are due to axonal, but not cell body, activation. Recent
ork confirms and expands these results, showing that DBS near
hite matter (WM) tracts are more likely to deliver excitatory effects

Mohan et al., 2020) and the efficacy of non-invasive brain stimula-
ion depends on WM structure (Li et al., 2015 ; Kurtin et al., 2021 ;
in et al., 2017) . Moreover, modelling studies found that stimulation of
M tracts with coherent fibre orientation result in more focused electric

elds (Metwally et al., 2012 ; Shahid et al., 2013) . Therefore, modelling
eighted connections between regions should better simulate how stim-
lation will propagate through the brain. In some studies, the signal
ropagation time between brain areas is included by considering a time
elay associated with each edge. Time delays can be approximated by
onsidering the distance between brain areas (Deco et al., 2009) or the
verage length of the fibres (Cabral et al., 2022) and assuming a conduc-
ion velocity. While accounting for the effect of time delays in conduc-
ion velocity and interregional communication increases the biological
elevance of the work, there are a wide range of conduction speeds that
enerate simulated brain function that reproduce features of empirical
rain function (Triebkorn et al., 2020) . 

Models that use participant’s structural or functional connectivity to
nform edges and their weights are referred to as personalised Brain Net-
ork Models (BNM) (Bansal et al., 2018b) . Simulations of brain stimu-

ation on BNM thus reveal individual responses to stimulation, and pro-
ide insights as to how individual connectivity influences the effects of
rain stimulation (Bansal et al., 2018b) . This enables the identification
f key nodes that, when targeted by stimulation, innervate whole-brain
etworks. One such study was conducted by Muldoon et al and is ex-
lored later in this work (Muldoon et al., 2016) . 

3. Local brain activity is described by dynamical models 

The dynamics of each node are then described by a mathe-
atical model such as WCM, KO, or SLO, all of which are capa-
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Fig. 2. Illustration of the four common construction choices made when developing computational oscillatory brain models. DWI = diffusion weighted imaging. 
Brain images were made using BrainNet Xia et al. (2013) and MRIcroGL 
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le of reflecting the stochastic, complex variability in brain activity
Murray et al., 2018) . For example, WCM and SLO can both model state
ransitions through a bifurcation point known as a Hopf bifurcation. On
ne side of the bifurcation (the “subcritical ” side) there are low ampli-
ude noise-driven oscillations. On the other side of the bifurcation, there
re self-sustained oscillations. 

Although the Kuramoto model focuses solely on the interaction be-
ween the phases of oscillatory regions, it has the advantage of be-
ng analytically tractable. We note that spiking (integrate and fire)
odels, traditionally used for micro or mesoscale investigation, can

lso be used in macroscale models to generate dynamic asynchronous
nd/or oscillatory behaviour comparable to the phenomenological mod-
ls covered in this work, but the additional degrees of complexity make
he numerical and analytic solutions less tractable (Cakan and Ober-
ayer, 2020) . 

4. Parameter values are selected by fitting model outputs to em-

irical data 

Parameter values are selected that align model outputs with empir-
cal neural phenomena. Parameter values are often informed by litera-
ure (as in Muldoon et al. (2016) ) or searching through a range of pa-
ameter values (as in Deco et al. (2019) or Weerasinghe et al. (2019) ).
he choice of parameter values greatly impacts model outputs
Cabral et al., 2022 ; Triebkorn et al.; 2020) , and thus the validity of con-
lusions drawn from modelling studies. We end this work by introducing
ow machine learning approaches may improve parameter selection. 

In the next two sections we provide case studies of work using com-
utational models to answer either mechanistic or predictive questions
f the effects of brain stimulation on brain function and/or behaviour.
e have focused on a few particular exemplars which are representa-

ive of the use of WC, Kuramoto, or Stuart-Landau models, and highlight
ow the four common construction choices are implemented in current
esearch. 
a  

5 
echanistic modelling of stimulation effects 

In this section, we consider two models that aim to develop a mech-
nistic understanding of the effects of stimulation. Specifically, the
ystem-wide impact of regional stimulation (Muldoon et al., 2016) and
he long-term effects of stimulation (Giannakakis et al., 2020) . 

How to maximise the system-wide impacts of regional stimulation? ”

Different psychiatric (Baker et al., 2019) and neurological
Watanabe et al., 2021) conditions are characterised by pathological
rain function, the mitigation of which is the goal of neuromodula-
ory interventions. Indeed, a large body of empirical evidence shows
hat focal brain stimulation influences whole-brain network dynamics
Battleday et al., 2014 ; Fertonani and Miniussi, 2017) which attenuate
he effects of neuropathology (Bronstein et al., 2011 ; Ostrem et al., 2014 ;
ohl et al., 2014) . Therefore, the extent to which stimulation affects lo-
al and global brain dynamics is of important clinical utility. Further
haracterisation of how underlying structural connectivity influences
he effects of regional brain stimulation on local and whole-brain func-
ion is an important step in identifying targets suitable for stimulation
o attenuate pathological brain function. 

Recent, state-of-the-art modelling (West et al., 2020 ;
arokhniaee and Lowery, 2021) and empirical
Muthuraman et al., 2020) work shows focal deep brain stimula-
ion influences cortical and subcortical network communication.
or example, work by Bansal et al constructed personalised BNM to
nvestigate the role of interregional connectivity on the whole-brain
ffects of stimulation, and showed that interindividual variability
n structural connectivity explain local and global effects of brain
timulation (Bansal et al., 2018a) . Moreover, measures of the local
nd global effects of simulated stimulation explained differences in
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articipant’s performance of less and more complex tasks, respectively
Bansal et al., 2018a) . Collectively, the work by Bansal et al provides
 compelling case that individual structural connectivity provides a
caffold upon which stimulation exerts its influence. 

An example of research addressing the relationship between the
unctional and structural properties of stimulation targets and their local
o global impacts is found in the first case study presented in this work,
hich features work by Muldoon et al . The authors modelled the effects
f regional stimulation on whole-brain networks (Muldoon et al., 2016) .
heir framework is based on Network Control Theory (NCT) (Tang and
assett, 2018) which identifies regions that are influential in shifting
eural network dynamics; that is, a region’s controllability (Tang and
assett, 2018 ; Muldoon et al., 2016) . Controllability originated from
ngineering and physics research, and evaluates the potential that an
xternal input to a part of a system can drive the whole system’s dy-
amics to a target state (Kalman et al., 1963) . In a neurological context,
 target state refers to the desired pattern of activity or connectivity
hich the stimulation is intended to induce. For example, if stimulation

s delivered in hopes of shifting aberrant dynamics to emulate those of
ealthy controls, then the pattern of activity or connectivity in healthy
ontrols is considered to be the target state. 

The authors first focused on the system-wide impacts of regional
timulation. They subsequently applied their results to the neural net-
orks that underpin cognitive function. Here, we will focus on the first
art of their study to provide an example of how computational models
ere constructed and employed to run a systematic assessment of how

ndividual connectivity influences the controllability of stimulation tar-
ets. 

The authors constructed their model by parcellating the brain into
iscrete regions using anatomical scans obtained with MRI [ Fig 2 Ai].
hese regions formed the nodes of the network. The network’s edges
ere defined through the number of streamlines between regions esti-
ated using DWI [ Fig 2 Aii]. This resulted in a weighted, undirected,

tructural connectivity matrix for each study participant, in line with
revious literature (Caumo et al., 2012) . This was used to inform a per-
onalised BNM, where individual connectivity is used as a scaffold for
he dynamical components of the model. 

The dynamics of each brain region was described by a WCM Box
 [ Fig 2 Aii]. We note that the authors only included excitatory inputs
o the excitatory subpopulation, assuming that most long-range connec-
ions are excitatory. The time delay in communication between regions
as set to be proportional to their physical distance to ensure activity
ropagated through the system in a biologically relevant manner. 

Having defined nodes and edges, the authors then selected their
odel’s parameters. They kept all region-specific parameters and

he sigmoidal transfer function the same as in the canonical WCM
Muldoon et al., 2016 ; Wilson and Cowan, 1972) . The authors selected
he global coupling coefficient so that the dynamics of the system were
lose to the transition from steady, baseline activity, to a state where the
ring rate at most nodes oscillated at around 20Hz. The transition point
as dependent on structural connectivity and Muldoon et al found that

he transition value of global coupling coefficient had low within-subject
ariability and high between-subject variability, which highlights the
mportance of personalised BNM (Bansal et al., 2018b) . 

Though Muldoon et al do not specify which modality of brain stimu-
ation they are modelling, we infer that they are investigating the gen-
ral effects of brain stimulation. Muldoon et al modelled the effects of
rain stimulation by changing the current input to the system via the
xcitatory subpopulation, P , for a target region. The “stimulation ” was
elivered as a single pulse for 1 second, which caused the target region
o transition from a baseline non-oscillatory state to an oscillatory state
perating near 20 Hz Box 1 . 

In Wilson and Cowan’s paper introducing the model, they related
ncreased population firing due to an increase in the input current P to
rimate studies that show increased firing due to constant motor stim-
lation (Wilson and Cowan, 1972) . 
6 
The local changes in the target region then resulted in changes in the
ynamics of other regions. A functional connectivity matrix one second
efore and during the stimulation was constructed by considering the
ross-correlation in firing rates between all pairs of regions. 

The authors measured the effects of stimulation by defining the
functional effect ” and the “structural effect ”. The functional effect mea-
ured the difference between the functional connectivity matrix before
nd during stimulation. The structural effect measured the change in
he difference between the structural and functional connectivity matri-
es before and during stimulation. The “functional effect ” of a region is
 measure of its ability to shift whole-brain activity and connectivity.
he “structural effect ” is a measure of the extent to which a region’s
tructural connectivity accounts for its influence on neural network dy-
amics. 

Key results from their study were that first, individual variation in
tructural connectivity lead to variations in the neural/physiological re-
ponse to stimulation, further supporting the use of BNM as a method
o understand how structural constraints influence the functional ef-
ects of brain stimulation (Bansal et al., 2018b) . Second, NCT identified
odes with high controllability. Regions of low structural effect (regions
ith high structural connectivity) induced global changes in the brain

tate, whereas regions of high structural effect (which were more con-
trained due to sparse structural connectivity) induced more focal effects
Muldoon et al., 2016) . 

The work by Muldoon et al provides a useful example of how person-
lised BNM may be constructed to investigate how subject-specific con-
rollability influences the effects of stimulation. Findings by Muldoon
t al were corroborated and expanded by recent work from Menardi et
l , who constructed personalised BNM and showed that in their mod-
ls, choosing stimulation targets based on their controllability more
ffectively modulated the target network of interest, further encour-
ging the use of NCT (Menardi et al., 2022) . Thus, NCT accompanies
tructural and functional connectivity as measures that can, and ar-
uably should, be considered when evaluating neural features contribut-
ng to individual responses to brain stimulation ( Bansal et al., 2018b;
omhof et al., 2022 ). 

What are the long-term effects of stimulation? ”

As evidence accumulates that tDCS (Gangemi et al., 2021 ; Bystad et
l., 2016) and other brain stimulation modalities (Janicak et al., 2010 ;
imousin and Foltynie, 2019) have clinically relevant benefits when de-
ivered over more than a single session, insights characterising and un-
erstanding the source of the differential effects of brain stimulation in
atients and healthy controls are increasingly important. For example,
t is thought that the long-term effects of tDCS increase neural plasticity
y shifting the balance of excitatory and inhibitory neurotransmitters
Yamada and Sumiyoshi, 2021 ; Hurley and Machado, 2017) , though it
s unclear how stimulation in clinical populations (who may already ex-
ibit dysregulated excitatory/inhibitory dynamics) affects this balance.
et, there are many practical limitations to characterising the effects
f brain stimulation over 24 hours, let alone over week- or month-long
nterventions. Models of the long-term effects of brain stimulation in
linical populations are increasingly needed, as they mitigate many of
he difficulties inherent to long-term studies and can inform how stim-
lation differentially influences clinical populations. 

In our second case study answering a mechanistic question, Gian-
akakis et al modelled the effects of stimulation on structural connectiv-
ty and neural network dynamics over different time periods, through-
ut 30 minutes of stimulation ( “short-term ”), and 24 hours after ( “long-
erm ”) (Giannakakis et al., 2020) . Using structural data from healthy
ontrols and people with epilepsy, they considered how differences in
onnectivity and inherent regional excitability influence the effects of
timulation (Giannakakis et al., 2020) . 

The authors parcellated the brain into discrete corti-
al and subcortical regions as defined by the Desikan atlas
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Desikan et al., 2006) [ Fig 2 Ai]. As in Muldoon et al , personalised
NM were created by using streamline tractography data to inform the
oupling between regions [ Fig 2 Aii]. However, a key difference from
uldoon et al. (2016) is that the structural connectivity was updated

uring and after the simulation via a Hebbian learning rule where the
onnection strength is increased between two nodes if increases in
ring in one node precede increased firing in the post-synaptic node;
therwise, pairwise connectivity decreased. 

The dynamics of the nodes of the network were modelled as modified
CM based on their previous study (Papasavvas et al., 2015) [ Fig 2 Aiii].

he author’s version of the WCM deviates from the canonical by in-
luding two inhibitory subpopulations as opposed to one, to model the
ffects of both subtractive and divisive inhibition. They cite two main
easons for including two inhibitory subpopulations. First, by includ-
ng two inhibitory subpopulations, the model exhibits complex dynam-
cs without abrupt transitions to chaos (Feigenbaum, 1978) . Papasav-
as et al argue that this increased complexity better reflects the brain’s
bility to balance long-range synchronous activity (Klimesch, 1999 ;
apasavvas et al., 2015) . Secondly, this increased complexity also better
odels selective attention (Hillyard et al., 1998) , sensory Schwartz and

imoncelli (2001) , and motor processing (Peuskens, 2004) . The study by
iannakakis et al was selected as a case study in this work because the

nclusion of the second inhibitory population exemplifies how canonical
odels can be improved and adapted. 

Next, the internal weight values between the excitatory and in-
ibitory subpopulations were chosen to model the differences between
ealthy and epileptic regions of the brain. The internal weights for the
ealthy regions were selected to give high amplitude oscillations for
oth the excitatory and inhibitory subpopulations, with the oscillatory
mplitude tapering off after a few hours (Giannakakis et al., 2020) .
pileptic regions were modelled as having a greater excitatory and lesser
nhibitory weights than healthy regions, in line with the nature of the
athology (Giannakakis et al., 2020) . 

Other differences from the canonical WCM were the use of a logis-
ic instead of a sigmoid input-output function. Within the input-output
unction, the inputs to both inhibitory populations are the same, but
he inputs from the inhibitory populations to the excitatory reflects
heir differing physiological targets. Divisive inhibition occurs through
argeting the soma, while subtractive inhibition occurs at dendrites
Wilson et al., 2012 ; Pouille et al., 2013) . 

Similar to the study conducted by Muldoon et al. (2016) , the au-
hors modelled stimulation by changing the value of P , which rep-
esents excitatory afferents to the region. During stimulation, the au-
hors decreased the value of P (i.e., excitatory input) by 50% for 3 tar-
et regions, simulating the possible inhibitory effects of cathodal tDCS
Giannakakis et al., 2020) Box 1 . The target regions were the amyg-
ala, hippocampus, and parahippocampal gyrus and were selected be-
ause of their known role in inciting seizures. While cathodal tDCS
ould not be a feasible method of stimulating subcortical regions, TI

timulation can non-invasively target stimulation to subcortical regions
Grossman et al., 2017) . Recent work has shown TI stimulation of the
nterior hippocampus modulates task-related hippocampal activity and
onnectivity (Violante et al., 2022) . Thus, inferences gained from Gian-
akakis et al’s effects on subcortical regions may inform empirical work
mploying TI. 

Three scenarios were considered. In this first scenario, the network
tructure was based on healthy controls and all regions were modelled
s healthy regions. In the second scenario, the network structure was
ased on epilepsy patients and the target regions for stimulation were
odelled as epileptic, more excitable, regions. For the third scenario,

he network structure was based on epilepsy patients and all regions
ere modelled as healthy regions. 

As a result of their simulations, Giannakakis et al predicted that the
ore excitable, epileptic group had a larger change in whole-brain and

ocal connectivity than healthy controls at the end of the 30 minute
timulation session. Over the next 24 hours, although the trajectory of
7 
ffects of stimulation on whole-brain and local connectivity differed, ul-
imately, the changes in connectivity were similar between the healthy
ontrol and epileptic groups. They conclude that the temporal dynamics
etween the two groups must also be different, considering the effects
f stimulation decay at varying rates for each model (due to the differ-
nt stimulation-induced behaviors) for them all to approach equilibrium
ithin 24 hours. 

odelling to optimise the delivery of stimulation 

In this section we discuss two studies that address pre-
ictive questions on how to optimise closed-loop stimulation
Weerasinghe et al., 2019) and how to force a transition between
rain states (Deco et al., 2019) . 

How can we optimise closed-loop stimulation? ”

Closed-loop stimulation systems use biomarkers to inform the tim-
ng of delivery of stimulation, and have the potential to increase the
fficacy of brain stimulation by delivering stimulation protocols when
arkers of pathology are present, which offers both greater precision

nd efficiency compared to continuous DBS approaches by mimicking
ndogenous circuits more closely (Rosin et al., 2011) . 

There are a number of studies investigating computational mod-
ls of closed-loop stimulation (Daneshzand et al., 2017 ; Daneshzand
t al., 2018 ; Weerasinghe et al., 2019) . Here we focus on the study by
eerasinghe et al. (2019) who sought to devise a closed-loop DBS strat-

gy that most effectively reduces pathological neural oscillations. To do
his, they investigated whether phase, amplitude, or phase and ampli-
ude of neural oscillations provided the best biomarker to inform deliv-
ry of closed-loop DBS. In the first part of the study, the authors used
 theoretical model to predict changes as a result of stimulation. Then,
he authors applied these predictions to empirical data from essential
remor patients, and introduced a novel stimulation strategy. 

The model consisted of a system of N Kuramoto oscillators Box
 where each oscillator was connected to every other oscillator. This
odel is phenomenological (i.e., descriptive), meaning that each oscil-

ator included in the model does not explicitly represent a particular
rain region, and the authors stated that each oscillator represented ei-
her a neuron or microcircuit (Weerasinghe et al., 2019) . The parameter
 determined the coupling strength in the following equation: 

𝑑𝜃𝑖 

𝑑𝑡 
= 𝜔 𝑖 + 

𝑘 

𝑁 

𝑁 ∑
𝑗=1 

sin ( 𝜃𝑗 − 𝜃𝑖 ) + 𝐼𝑋( 𝑡 ) 𝑍( 𝜃𝑖 ) . (5) 

he third term on the right-hand side describes stimulation. The stimu-
ation of intensity I acts on all oscillators but its effect depends on the
hase of each oscillator as through the phase response function 𝑍( 𝜃𝑖 ) .
he stimulation is turned “on or off” with X(t) . When 𝑋( 𝑡 ) = 1 , stimula-
ion is on, and 𝑋( 𝑡 ) = 0 means stimulation is off. 

In DBS, the response to stimulation can be described by amplitude
nd/or phase response curves (ARC and PRC, respectively). In the study,
RC and PRC described how amplitude and phase of pathological oscil-

ations (such as tremor, which has been shown to operate within 3 to 8
z (Cagnan et al., 2013) ) varied as a function of the phase at which stim-
lation was delivered. To capture the relationship between the ARC or
RC and stimulation the authors used the reduction method of Ott and
ntonsen (2008) ; Bick et al. (2020) , which in the limit of large N for
n instantaneous pulse and a sinusoidal phase response function, gives
nalytical expressions that describe how the ARC or PRC change over
ime. 

Weerasinghe et al then simulated a population of 𝑁 = 3000 oscilla-
ors using pulsatile stimulation at 𝜔 = 30 Hz and a range of phases. They
ound that stimulating at phase 𝜋 resulted in the largest change to the
RC, a result of the strong correlation between the ARC and the negative
radient of the PRC. 
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Then, the authors also explored how harmonics in the phase response
unction, 𝑍( 𝜃) , influenced the effects of stimulation. They found if 𝑍( 𝜃)
ontains a dominant first harmonic, and stimulation is applied when
he amplitude of oscillation 𝜌 is low, then the effects of stimulation are
agnified. 

These results provide two predictions which they tested by examin-
ng responses to phase-locked DBS in experimental data collected from
atients. In this experiment, DBS was applied at a range of phases and
he effect of DBS was measured using hand accelerometer data, since
he hand tremors of essential tremor patients parallel the neural oscil-
ations that underpin the movement itself (both occurring around 5 Hz)
Cagnan et al., 2016) . Though only one out of nine subjects fit their
redicted response to theoretically-driven, closed-loop stimulation, it
s highly commendable that Weerasinghe et al empirically tested their
odel-driven predictions. 

Research building upon the work of Weerasinghe et al may employ
odels developed with more consideration for the role of brain regions

nd circuits underpinning motor disorders, which are often charac-
erised by well-known pathology in the basal ganglia (Graybiel, 2000) .
or example, Meier et al. (2022) developed a personalised BNM that in-
orporates a spiking network model of the basal ganglia with a whole-
rain model created using The Virtual Brain (Sanz Leon et al., 2013) , an
nline platform that enables researchers to input subject-specific MRI
ata to inform mean-field oscillatory models of brain function. The au-
hors showed simulated DBS to either the subthalamic nucleus or globus
allidus internus (GPi) restored normative thalamic and cortical activ-
ty, providing a proof-of-concept that a multiscale model can be used to
evelop and test new stimulation paradigms. 

Can stimulation force a transition between brain states? ”

Brain states refer to the transient patterns that underpin brain
unction, and identifying parameters that drive state transitions is
n important step in advancing the ability to alter the dynam-
cs of large-scale networks. Modulating pathologically dysregulated
rain network activity would have translational impact for treat-
ents ranging from disorders of consciousness, traumatic brain in-

ury (Stephens et al., 2018 ; Woytowicz et al., 2018 ; Li et al., 2020) ,
chizophrenia (Jia et al., 2020 ; Saris et al., 2021) , sleep disorders
Witt et al., 2018 ; Yu et al., 2018) , autism (Padmanabhan et al., 2017 ;
mith et al., 2018 ; Hong et al., 2019) , and more (Liu et al., 2018 ,
ai et al., 2021) . 

Recent modelling work has made advances in developing a mech-
nistic understanding of how oscillatory synchronisation results in
etastable, brain state-like behaviour (Vohryzek et al., 2022) , and how

rain states dynamics change when moving from wakefulness to sleep
Jobst et al., 2017 ; Deco et al., 2019) or the response to psychedelics
Deco et al., 2018) . For example, work by Bansal et al used WCO to
evelop personalised BNM with the aim of characterising the states
hat emerge in response to simulated brain stimulation of each node
Bansal et al., 2019) . The authors showed that there is a large variety
f states that emerge in response to stimulation, which can be grouped
nto three categories - coherent states (which exhibit global synchrony),
etastable states (which exhibit low levels of synchrony and little net-
ork structure), and chimera states (which are dominated by groups of

ynchronised regions) (Bansal et al., 2019) . Regional stimulation was
ost likely to evoke chimera states, inviting future work to explore
hether prioritising target states exhibiting chimera-like properties pro-
ide better stimulation targets than metastable or coherent states. 

Here we focus on a study by Deco et al in which a modified SLO
ystem was employed to model the activity of two different brain states
sleep and wakeful resting state) (Deco et al., 2019) . The authors used
heir model to predict what stimulation parameters could force a tran-
ition between these two states. 

First, Deco et al characterised each of the two discrete brain states
sleep and wakefulness – into three metastable substates (patterns of
8 
rain network activity that characterise a state) (Deco et al., 2019) . This
as done using the Leading Eigenvector Dynamic Analysis (LEiDA) de-
eloped by Cabral et al. (2017) . LEiDA characterised the temporal evo-
ution of dynamic functional connectivity through calculating the lead-
ng eigenvector of a phase coherence matrix. This simultaneously re-
uces dimensionality, improves signal to noise ratios, and allows for the
mooth characterization of recurring patterns over time. Moreover, the
etastable substates identified by LEiDA have been shown to capture

unctional organisation spanning the coherent, metastable, and chimera
ategorisations of states observed by Bansal et al. (2019) . 

Second, whole-brain models were generated and fitted to the
robability distributions of all the substates [ Fig 2 Aiv]. Similar to
uldoon et al. (2016) , the authors parcellated the brain using the AAL

tlas, this time into 90 regions, each of which became a node in their
etwork [ Fig 2 Ai]. Connections between nodes were set by a structural
onnectivity matrix created via tractography techniques [ Fig 2 Aii]. The
ynamics of each node was described using a modified LSO [ Fig 2 Aiii],
ritten in Cartesian form as 

𝑑𝑥 𝑛 

𝑑𝑡 
= [ 𝑎 𝑛 − 𝑥 2 

𝑛 
− 𝑦 2 

𝑛 
] 𝑥 𝑛 − 𝜔 𝑛 𝑦 𝑛 + 𝐺 

𝑁 ∑
𝑝 =1 

𝐶 𝑛𝑝 ( 𝑥 𝑝 − 𝑥 𝑛 ) + 𝛽𝜂𝑛 ( 𝑡 ) (6) 

𝑑𝑦 𝑛 

𝑑𝑡 
= [ 𝑎 𝑛 − 𝑥 2 

𝑛 
− 𝑦 2 

𝑛 
] 𝑦 𝑛 + 𝜔 𝑛 𝑥 𝑛 + 𝐺 

𝑁 ∑
𝑝 =1 

𝐶 𝑛𝑝 ( 𝑦 𝑝 − 𝑦 𝑛 ) + 𝛽𝜂𝑛 ( 𝑡 ) . (7) 

ere, 𝑥 𝑛 modelled the BOLD activity for each node. The intrinsic fre-
uencies 𝜔 𝑛 were 0.04 to 0.07 Hz, in line with the average peak fre-
uency of the BOLD signal in each node. The coupling parameter 𝐶 𝑛𝑝 
easures the strength of the coupling node p to node n . For 𝑎 𝑛 ≤ 0 the

aseline state is a stable fixed point dominated by noise, which the au-
hors describe as “a low-activity noisy state ” Deco et al. (2019) . At 𝑎 𝑛 = 0
his baseline state loses stability and transitions to a self-sustained os-
illatory state. Note this type of transition is a supercritical Hopf bifur-
ation, as discussed in the Section “Four common construction choices
or computational models ”. 

Fitting the model to the empirical data was done in two stages. First,
he authors updated the effective connectivity coefficients 𝐶 𝑛𝑝 to opti-
ise the fit between the modelled and empirical time-averaged phase

oherence matrix of the sleep and wake conditions. Second, the global
oupling parameter, G , was tuned to fit the SLO activity to the empiri-
ally derived probability of occurrence of the three substates. Previous
ork by Deco et al showed that the global coupling parameter played a

ritical role in shaping simulated brain network function to fit empiri-
ally derived measures of brain function (Deco et al., 2017) , and recent
ork by Triebkorn et al. (2020) evaluated the importance of conduction
elocity, global coupling, or graph theoretic properties in shaping mod-
lling dynamics that resemble empirical dynamics. Assessment of the
rst two free parameters was conducted using a systematic, exhaustive
earch of all combinations of parameter values, and showed that indi-
iduals typically exhibit a narrow range of values for global coupling
arameters that generated simulated dynamics close to empirically de-
ived ones, in line with previous work (Deco et al., 2017) . Thus, by tun-
ng the global coupling parameter, G , Deco et al ensured the simulated
ata closely emulated properties of the empirical data. 

In the final step they demonstrated that they could force a transition
etween the two states of wake and sleep through stimulation. Stimula-
ion was administered bilaterally to pairs of nodes, so if a node on the
eft was stimulated, then so was the corresponding node on the right.
timulation was modelled by changing the bifurcation parameter 𝑎 𝑛 for
arget nodes. Increasing values of the bifurcation parameter resulted in
timulation-induced oscillations; conversely, decreasing values of the bi-
urcation parameter modelled noise. This provided a contrast between
timulation parameters that serve to either reinforce or disrupt brain
ctivity. 

Furthermore, the authors investigated whether stimulating multiple
egions with weaker stimulation more effectively forced a transition be-
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ween brain states. Their best fit for multi-site stimulation resulted from
timulating two pairs of regions. 

Though the modelling study by Deco et al. (2019) was not empiri-
ally validated, a study by Chen et al. (2019) directly compared whether
timulation of the primary motor cortex or multi-site stimulation of the
rimary motor cortex, premotor cortex, and supplementary motor area
ncreased a measure of the synchrony between cortical and muscular
ctivity. The authors showed that multi-site stimulation resulted in sig-
ificantly higher and longer-lasting measures of cortico-muscular syn-
hrony, thus corroborating the simulated results from Deco et al that
ultisite stimulation can more effectively drive a neural system towards
 desired state (Chen et al., 2019 ; Deco et al., 2019) . 

teps to move from phenomenological to predictive modelling 

This work began by introducing different types of brain stimulation,
ow brain stimulation affects brain function, and how macroscale com-
utational models can represent such relationships. We then described
tudies that use phenomenological or biophysical models to simulate
rain stimulation and its effect on neural function with the aim of an-
wering either a mechanistic or predictive question concerning the ef-
ects of brain stimulation. The results from the Muldoon et al study
ot only suggested that differences in structural connectivity could ex-
lain some of the interindividual variability that hounds NIBS studies
Horvath et al., 2015 ; Li et al., 2019b) , but also provided a frame-
ork for deciding which regions to stimulate based on their control-

ability (Muldoon et al., 2016) . In the study by Giannakakis et al the
uthors suggested variations in excitability and connectivity may un-
erpin the differences in the brain’s immediate response to stimulation
Giannakakis et al., 2020) . Weerasinghe et al suggested a novel form
f closed-loop DBS called “Hybrid DBS ”. This would deliver high fre-
uency stimulation when endogenous oscillations surpass a threshold
mplitude (Weerasinghe et al., 2019) . Finally, results from Deco et al

uggest popular one-site or single-channel stimulation setups may not
e as effective as those using multi-channel setups concomitantly tar-
eting multiple regions (Deco et al., 2019) . 

There is no dispute that the human brain is complex, with trillions
f neural synapses packed into 1.41 dmm 

3 (Lüders et al., 2002) . Initia-
ives such as the Virtual Brain (Sanz Leon, et al. 2013) and NiMARE
Salo et al., 2022) aim to capture this complexity in-silico by devel-
ping detailed computational models. But such models are limited by
omputational power and current knowledge of neurological structure
nd function. Instead, macroscale approximations take a coarse-grain
pproach, supposing that clusters of billions of neurons act as a single
scillatory unit. These oscillatory models are grounded in physiological
ruths that have not changed substantially since Wilson and Cowan’s
eminal paper (Wilson and Cowan, 1972) . Such models are complex
nough to exhibit some of the brain’s macroscale dynamical patterns, yet
imple enough to offer a mechanistic insight into brain dynamics, and
o suggest ways to optimise stimulation delivery. Computational models
old real promise as ways to understand both how the brain works and
ow brain stimulation can be employed with maximal clinical benefit.
hough all the models described in this work have been informed by and
ompared to empirical data, only one (Weerasinghe et al., 2019) empir-
cally tested their model-generated predictions. In our view, a critical
ext step is for more widespread laboratory, and ultimately clinical, con-
rmation of model insights, and the integration of models in closed-loop,
ersonalised, neuromodulation interventions. Moving from phenomeno-
ogical to predictive modelling is not a clear-cut process; nevertheless,
ere we propose three modelling phases researchers may follow to gen-
rate testable stimulation parameters [ Fig 3 ] Phase 1: Identifying the

uestion 

In this phase what neural correlates best predict a clinical or be-
avioural outcome are identified. First, the behavioural or clinical out-
ome to be modulated with stimulation is chosen, and their func-
ional, neural correlates (EEG/MEG/functional Magnetic Resonance
9 
maging (fMRI)) are acquired. Then, researchers select the neural cor-
elate that best predicts the behavioural or clinical outcome measure.
his is considered the target feature, which can be used to define
he relationship between the neural correlate and outcome response.
here are inherent complexities when choosing which neural correlate
est captures the experimental spatio-temporal dynamics of the brain,
nd how it relates to behavioural or clinical outcomes. For example,
odels simulating brain activity captured with fMRI often aim to fit

he functional connectivity between brain areas averaged over time
Muldoon et al., 2016) . However, recent work has focused on the tem-
oral nature of brain dynamics by quantifying recurrent, metastable
rain states rather than a static representation of network connectiv-
ty (Deco et al., 2019 ; Cabral et al., 2017) . Another method to select
 neural correlate of clinical or behavioural outcomes is to use a fea-
ure extraction method, such as Highly Comparative TimeSeries Anal-
sis (HCTSA) (Fulcher et al., 2013 ; Fulcher and Jones, 2017) . HCTSA
dentifies neural features and ranks their ability to predict behavioural
r clinical outcome measures. Deciding which neural correlate serves
s an optimal target feature and determining how it relates to the be-
avioural or clinical outcome measure is not straightforward, yet it is a
rucial step when developing model-driven targets for brain stimulation.

Phase 2: Constructing the model 

A computational model is created that can generate the target fea-
ure identified in Phase 1. Phase 2 starts by constructing a computa-
ional model in line with the four common construction choices – first,
dentifying an atlas to define nodes, and second, informing edges be-
ween the nodes using participant’s structural or functional connectivity
ata. Though DWI is often used to inform connectivity between edges,
here are several well-characterised limitations in DWI, including both
he usual confounds in MR imaging (motion artefacts, eddy currents,
tc) as well as difficulties harmonising nonuniform tract distribution, or
hether fibre trajectories cross or ‘kiss’ (Basser et al., 2000) . Efforts to

econcile differences between individuals (Zhang et al., 2018) , inform
tructural connectivity with functional connectivity (Deco et al., 2011 ;
rbabyazd et al., 2021) , or create new scanning/analysis sequences

Ressel et al., 2018 ; Caan, 2016) will improve applicability of DWI
ot only for clinical (Kiero ń ska and S ł oniewski, 2020) and research
se (Basser et al., 2000) , but also for informing model edges and their
eights. Then, in line with the third common construction choice, re-

earchers choose a phenomenological or biophysical model to represent
ach node, and fourth, select the free parameters to be tuned. A non-
xhaustive list of suggestions include a global coupling coefficient, in-
erregional transmission delays, or the natural frequency of each node,
ll of which have been shown to influence the presence of empirically
elevant metastable oscillatory modes (Cabral et al., 2022) . Parameter
uning works to identify the configuration of free parameters that, once
mplemented in the model, generates outputs most similar to the target
eature. Different parameter tuning methods are covered in more detail
n the following section. 

Phase 3: Testing and evaluating the model 

Parameters that represent the delivery of stimulation are added to
he model constructed in Phase 2. Suggested parameters include the
hape of the stimulation waveform, the region(s) that are stimulated,
nd the duration, intensity, and the frequency or frequencies of stim-
lation. As in Phase 2, free parameters would be optimised using a
arameter tuning method. Phase 2 sought to identify which param-
ter configuration gave the closest relationship to the target feature;
n Phase 3, we wish to see which parameter configuration pushes the
arget feature along the target-response relationship to achieve an im-
roved outcome measure. For example, if Phase 1 identified metasta-
ility as a target feature and a positive target-outcome response rela-
ionship, then the optimal parameter configuration in Phase 3 would
enerate increased metastability. The final step is to conduct an empiri-
al study testing whether the parameter configuration identified by the
odel effectively modulates the clinical or behavioural outcome mea-

ure. This final important step remains as an Achilles’ heel for most cur-
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Fig. 3. Illustration of the three suggested phases to move models from phenomenological to predictive. Brain images were made using BrainNet and MRIcoGL 
Xia et al. (2013) 
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ent modelling studies. While considerable advances have been made
n establishing computational models, empirical validation is more
imited. 

inding the optimal parameters for computational models 

In comparison to manual fitting or choosing parameter values based
n literature, machine learning approaches may provide systematic,
omputationally tractable methods to evaluate and select parame-
er configurations, defined as parameter optimisation, or tuning, ap-
roaches. There are many different automated algorithms for parame-
er tuning (Liashchynskyi and Liashchynskyi, 2019 ; Mollee et al., 2017 ;
uder, 2016 ; Kangasrääsiö et al., 2019 ; Bergstra and Bengio, 2012) , and

n Box 4 we describe four of the most common examples. The four ex-
mples provided can be grouped into two sets, where each set has a
ifferent approach to identify the optimal parameters. The first set of
arameter tuning methods ( Fig 4 i-ii) identifies the optimal parameter
alues by running the computational models using different parameter
10 
onfigurations, and then determines the combination of parameter val-
es that generated simulated data that most closely resemble the exper-
mental values. The second set identifies the optimal parameter values
y searching the parameters space in the training phase of the model,
uring which the parameter values are updated at each iteration of the
raining according to specific criteria set by the optimisation approach
elected ( Fig 4 iii-iv]. 

There are several factors that may influence which parameter tuning
ethod is most appropriate, including the size of the parameter space

i.e., the set of values that parameters can acquire), the available com-
utational resources, whether the functions in the models are differen-
iable, whether the set of potential solutions is continuous or discrete,
nd whether there are constraints in the values that the parameters can
cquire. All these requirements and criteria can make the selection of
he appropriate approach difficult. A further complexity in using pa-
ameter tuning approaches is that their implementation for the optimi-
ation of computational models of brain function might not be trivial,
onsidering that they are commonly developed and integrated within
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Fig. 4. Illustration of parameter tuning methods, including (Ai.) Grid search, (ii.) random search, (iii.) Nelder Mead simplex (as an example of local search) and 
(iv.) simulated annealing (an example of global search). We selected Nelder Mead simplex algorithms to represent local search as it does not require the model to be 
differentiable. Given the fact that some biophyical models, including the WC model, utilise partially differential equations, the Nelder Mead simplex algorithm may 
be a better local search method than GD. 
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achine learning pipelines (Liashchynskyi and Liashchynskyi, 2019) .
herefore, adapting parameter tuning methods for these type of genera-
ive models may not be straightforward. Finally, and most importantly,
ome machine learning methods (especially those in the second cate-
ory) are not necessarily expected to identify parameter values within
iologically feasible ranges. This is a common concern in NCT studies
Muldoon et al., 2016 ; Gu et al., 2015) , which have been shown to better
apture theoretical controllability, rather than practical controllability
Suweis et al., 2019) . Constraining stimulation parameters within ranges
uitable for brain stimulation would ensure that model-generated stim-
lation hypotheses are practical. Yet even this suggestion is not readily
mplemented, as the relationship between modelled and empirical stim-
lation parameters is not known. To constrain the simulated stimulation
arameters to biologically relevant ranges, we suggest researchers im-
lement an approach such as that described in Phase 1 to identify the
esponse relationship between simulated and empirical brain stimula-
ion. 

.4. Parameter tuning approaches 

Grid Search: The parameter space is divided into different grids
Liashchynskyi and Liashchynskyi, 2019 ; Bergstra and Bengio, 2012) . A
odel is trained for all the combinations of parameters within each grid,

nd the combination of parameters that leads to a model that generates
he closest match between the simulated and empirical target features is
dentified as optimal. Two notable limitations of grid search are that it
s computationally expensive, and it does not use information from past
imulations in subsequent applications (e.g. if one parameter value was
ound to be suboptimal, it may still be used in following simulations if
t is in another grid). 

Random Search: Unlike the brute force approach of grid search-
ng, in random search combinations of parameters are randomly se-
11 
ected as input to the model (Liashchynskyi and Liashchynskyi, 2019 ;
ergstra and Bengio, 2012) . As in grid search, parameters generating a
lose match between the simulated and target feature are saved. Ran-
om search requires fewer computational resources than grid search,
et performance is equitable (Bergstra and Bengio, 2012) . 

Local Search: A loss function is defined as the difference between
he experimental and simulated data obtained by the model. The aim
f local search algorithms is to find the parameters that minimise this
oss function; namely, to reduce to the minimum the difference between
he simulated and experimental values. A commonly used local search
lgorithm is gradient descent (GD) (Ruder, 2016) . GD is characterised
y an iterative process in which the parameters p are updated gradually
t each iteration. To find the minimum of the loss function L(x) , the al-
orithm calculates the gradient at each iteration, which corresponds to
he partial derivative of the loss function with reference to each parame-
er’s value L(p) . The gradient establishes the direction of the parameter’s
pdate, while its magnitude is commonly selected by the user through
he learning rate and fine-tuned as hyper-parameter. Two limitations
f GD are, however, that the function L(p) needs to be differentiable
nd that GD tends to get stuck at local minimum. Furthermore, if mul-
iple local minima are present, running the simulation with the same
onfiguration might lead to different results, due to the random initial-
zation of parameter values. An alternative to gradient descent is the
elder-Mead simplex algorithm, which is a derivative-free local search
lgorithm (Nelder and Mead, 1965 ; Kangasrääsiö et al., 2019 ; Rios and
ahinidis, 2013) . This algorithm represents the search area as a simplex
ith the number of points determined by the number of dimensions. At

ach iteration, the point of the simplex with the poorest performance
s moved to a new position, resulting in a different simplex. This is re-
eated until a minimum is found. The algorithm, despite not requiring
 derivable function, is computationally expensive at higher numbers of
imensions. 
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Global Search: Global search distinguishes itself from local search
ecause it finds global minima across the entire parameter space.
 commonly used global optimization approach is simulated anneal-

ng (SA) (Kirkpatrick et al., 1983 ; Bouleimen and Lecocq, 2003 ;
ollee et al., 2017) . SA is a non-derivative approach that is capable

f finding global minima in presence of multiple local minima. At each
teration, SA algorithms move in a random direction along the loss func-
ion, and then evaluate the results of the model. If the results improved
rom the previous iteration (i.e., the loss decreased), then the move is
lways approved. If not, the move is accepted with a certain probability
ower than 1. The probability is regulated by both a parameter defined
s Temperature T , which is kept high at the first iteration and then grad-
ally reduced throughout iterations according to an annealing schedule,
nd the outcome after each move. At high temperatures, the probability
f accepting a bad move is higher compared to lower temperatures. The
dvantages of this methodology are that it doesn’t require the function
o be derivable, it is capable to find global rather than local minima,
nd can be used both for discrete and continuous variables. It was suc-
essfully applied to fine tune parameters in other computational models
Mollee et al., 2017) , and was shown to perform better than Nelder-
ead simplex algorithms (TÜRK Ş EN and APAYDIN, 2013) . 

onclusion 

Creating computational models that are predictive, rather than de-
criptive, would enable a more efficient exploration of the effects of
timulation. In-silico stimulation studies would reduce the substantial
ime, human, and financial resources associated with a trial-and-error
pproach (Lozano et al., 2019) , but until computational models of the ef-
ects of brain stimulation are effective at generating testable stimulation
ypothesis, empirical research will remain the gold standard. This work
egan with the quote “All models are wrong, but some are useful ” by
eorge E. P. Box (1976) . Yet without empirically testing the conclusions
rawn from computational models of the effects of brain stimulation, we
annot answer Prof. Box’s subsequent statement – “So the question you
eed to ask is not ‘Is the model true?’ (it never is) but ‘Is the model good
nough for this particular application?’ ” (Box et al., 2011) . 
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uthor summary 

Brain stimulation is an increasingly popular tool for both research
nd clinical use. However, its effects are not entirely known, and neither
re the mechanisms by which brain stimulation changes brain activity.
 tractable and efficient approach to investigate the effects of neuro-
odulation on brain function is to use computational models. These
odels allow researchers to run realistic simulations that show how the

rain is influenced by neuromodulation or predict what effects stimula-
ion will have on brain function and/or behavior. Here we introduce a
eneral framework describing common model construction choices, and
hrough a series of case studies show how models are used to investi-
ate the effects of brain stimulation on brain function. We then suggest
hree steps future research can take to improve computational models’
bility to generate testable predictions. We hope to make computational
odelling more accessible by showing researchers the mathematics un-
erpinning the models and how models are implemented in current re-
earch. 
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