Non-alcoholic fatty liver disease in Women – Current Knowledge and Emerging Concepts

Pei Chia Eng, Roberta Forlano, Tricia Tan, Pinelopi Manousou, Waljit S. Dhillo, Chioma Izzi-Engbeaya

PII: S2589-5559(23)00166-0

DOI: https://doi.org/10.1016/j.jhepr.2023.100835

Reference: JHEPR 100835

To appear in: JHEP Reports

Received Date: 17 January 2023

Revised Date: 26 May 2023

Accepted Date: 5 June 2023

Please cite this article as: Eng PC, Forlano R, Tan T, Manousou P, Dhillo WS, Izzi-Engbeaya C, Nonalcoholic fatty liver disease in Women – Current Knowledge and Emerging Concepts, *JHEP Reports* (2023), doi: https://doi.org/10.1016/j.jhepr.2023.100835.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL).

In pre-menopause women:

NASH prevalence in PCOS Cirrhosis risk in Turner syndrome

NASH resolution with weight loss

In post-menopausal women:

NAFLD prevalence Risk of NASH occurrence Risk of fibrosis progression Mortality from CVD Mortality on liver transplant waiting list

Unmet needs in clinical practice

evidence on influence of sex on non-invasive markers sex-specific prediction model tools sex-specific weight loss targets evidence on sex-specific response to drugs in clinical trials

Created in BioRender.com bio

- 1 Title: Non-alcoholic fatty liver disease in Women Current Knowledge and
- 2 **Emerging Concepts**
- 3 Short title: NAFLD in Women
- 4 Pei Chia Eng^{1,2} (ORCID ID 0000-0002-4172-1344), Roberta Forlano^{1,3} (ORCID ID
- 5 0000-0003-4746-7065), Tricia Tan^{1,2} (ORCID ID 0000-0001-5873-3432), Pinelopi
- 6 Manousou^{1,3} (ORCID ID 0000-0002-5363-1565), Waljit S Dhillo^{1,2} (ORCID ID 0000-
- 7 0001-5950-4316), Chioma Izzi-Engbeaya^{1,2} (ORCID ID 0000-0001-7599-0166)
- ⁸ ¹Department of Metabolism, Digestion and Reproduction, Imperial College London,
- 9 UK
- ¹⁰ ²Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust,
- 11 London, UK
- ³Department of Hepatology, Imperial College Healthcare NHS Trust, London, UK

13 **Correspondence to:**

- 14 Dr Chioma Izzi-Engbeaya
- 15 Section of Endocrinology and Investigative Medicine
- 16 Department of Metabolism, Digestion and Reproduction
- 17 Imperial College London
- 18 Du Cane Road, London, W12 0NN
- 19 <u>c.izzi@imperial.ac.uk</u>
- 20 Key words: Non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, women,
- 21 estrogens, androgens, menopause
- 22 Word count: 5387 words

23 Summary

24 Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver disease worldwide, 25 affecting up to 30% of adults. Progression to non-alcoholic steatohepatitis (NASH) is 26 a key risk factor for cirrhosis, hepatocellular carcinoma and cardiovascular events. 27 Alterations in reproductive hormones are linked to the development and/or progression 28 of NAFLD/NASH in women. Women with Polycystic Ovary Syndrome (PCOS) and 29 those with estrogen deficiency are at increased risk of NAFLD/NASH, with higher 30 mortality rates in older women compared to men of similar ages. NAFLD/NASH is 31 currently the leading indication for liver transplantation in women without 32 hepatocellular carcinoma. Therefore, a better understanding of NAFLD in women is 33 needed to improve outcomes. In this review, we discuss the hormonal and non-34 hormonal factors contributing to NAFLD development and progression in women. 35 Furthermore, we highlight areas of focus for clinical practice and for future research.

36 Introduction

37 Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by increased hepatic fat content (\geq 5%), which is diagnosed after exclusion of well-38 39 established causes of hepatic steatosis such as alcohol, steatogenic dugs and inherited errors of metabolism.¹ Hepatic triglyceride accumulation by itself is not hepatotoxic.² 40 41 However, pathogenic processes such as adipose tissue dysfunction³, gut microbiome 42 dysbiosis⁴, fructose-induced mitochondrial dysfunction and endoplasmic reticulum oxidative stress⁵ may drive hepatic steatosis to hepatic inflammation and hepatocellular 43 44 ballooning (non-alcoholic steatohepatitis or NASH) with or without fibrosis, leading to fibrosis and eventually cirrhosis.⁶ Liver fibrosis represents the main predictor of liver 45 46 and non-liver-related adverse clinical outcomes. Hepatocellular carcinoma (HCC) can 47 occur in both cirrhotic and non-cirrhotic patients.

Globally, NAFLD has a prevalence of $30\%^7$ and this is projected to rise to $56\%^8$, 48 49 paralleling the increased incidence of obesity and type 2 diabetes. In adults, up to a 50 third of patients with NAFLD develop NASH over a period of ~7 years⁹, and around 51 40% of the individuals who have histologically proven NASH progress to fibrosis.¹⁰ 52 NAFLD has a higher prevalence in men than in premenopausal women below the age of 50 years old.⁹ However, in women, the prevalence of NAFLD increases after 53 54 menopause with a rising trend observed after the age of 50 years, followed by a peak at 55 60 to 69 years, before declining after the age of 70 years.¹⁰

Recently, a panel of international experts proposed the redefinition of NAFLD to metabolic dysfunction fatty liver disease (MAFLD) based on the presence of hepatic steatosis and metabolic risk factors (overweight/obesity, type 2 diabetes and/or metabolic dysfunction).¹¹ The term MAFLD may include patients with concomitant causes of liver diseases and it may exclude those with steatosis but without the full

61 metabolic risk factor spectrum.¹² However, some studies suggest women with NAFLD 62 may be less likely to be meet the criteria for diagnosis of MAFLD than men with 63 NAFLD¹³, which could have a detrimental effect on outcomes in women. Hence, we 64 have elected to use the NAFLD nomenclature in this review.

65 Women aged \geq 50 years with NAFLD are 1.2 times more likely to develop NASH compared to age-matched men and are more likely to progress to advanced fibrosis¹⁴, 66 67 with preliminary transcriptomic and plasma profiling studies suggesting that NAFLD may follow a distinct biological trajectory in women aged ≥ 50 years.^{15,16} Liver fibrosis 68 69 stage is associated with increased mortality from 0.32 deaths per 100 person-years at 70 stages F0 to F2 to 1.76 deaths per 100 person-years at stage F4, resulting in an almost 71 seven-fold increased predisposition to hepatic decompensation (hazard ratio of 6.8, 95% CI 2.2 to 2.13).¹⁷ Predicting the presence of fibrosis with blood-based non-72 73 invasive markers, that may perform differently according to sex, may require dedicated cut-offs for women.¹⁸ This may be due to the fact that women tend to have lower serum 74 liver enzyme activities compared to age-matched men.¹⁸ Nevertheless, there is no 75 76 evidence that non-invasive markers of fibrosis, such as FIB-4 and NAFLD fibrosis 77 score, which rely heavily on measurement of transaminase activities, may perform 78 differently in women. Interestingly, a recently developed non-invasive marker, called 79 the AGILE 3+, has demonstrated how integrating sex with other clinical parameters may improve the risk stratification of patients with NAFLD.¹⁹ In addition, HCC occurs 80 81 less frequently in women compared to men, in both cirrhotic and non-cirrhotic patients²⁰, suggesting that dedicated surveillance strategies may need to be explored. 82 83 NASH is the leading cause of end stage liver disease requiring transplantation in women who do not have HCC.²¹ In women undergoing liver transplantation, long-term 84

- 85 survival is higher compared to men.²² However, women are more likely to die whilst
 - 4

on the waiting list for liver transplantation due to NASH, partly due to underestimation
of mortality in women using current stratification scores (i.e. the Model of Endstage
Liver Disease or MELD score).²³ A sex- and sodium-adjusted MELD score for liver
transplant allocation has recently been proposed²⁴, which may help to ensure more
equitable access to liver transplantation.

Women with NAFLD have increased mortality rates from cardiovascular disease (CVD) compared to women without NAFLD.²⁵ This excess risk of CVD is also higher in women compared to age-matched men with NAFLD (e.g. 10% in a 40-year old woman with NAFLD vs 8% in a 40-year old man with NAFLD).²⁶ The excess CVD risk increases with age, and is exaggerated after menopause (e.g. in people with NAFLD aged 60 years, the CVD risk in women is 18% vs 9% in men).²⁶

97 In this review, we summarize factors contributing to the development and progression
98 of NAFLD in women and in specific population groups. We aim to raise awareness of
99 NAFLD in women, highlight areas for future research to address gaps in knowledge of
100 underlying pathophysiological mechanisms, and management of this complex
101 condition.

102 Search strategy and selection criteria

103 A literature search was performed to identify studies investigating NAFLD/NASH in 104 women, published up to November 2022. Original research and review articles were 105 identified through searches in the PubMed database, Scopus database, Ovid Medline, 106 Ovid EMBASE, limited to articles published in the English language. We included 107 basic science studies, randomized controlled trials, reviews, original prospective 108 studies, cross-sectional studies, retrospective studies and best practice guidelines using 109 different combinations of the following search terms: "fatty liver" OR "non-alcoholic

110 fatty liver disease" OR "NAFLD" OR "steatohepatitis" OR "NASH" OR "liver 111 fibrosis" OR "liver disease" OR "liver cancer" AND "women" OR "gender" OR 112 "female" OR "sex difference" OR "reproductive age" OR "premenopausal women" OR 113 "postmenopausal women". For effects of hormones on NAFLD, we used the search terms: "androgens" OR "estrogens" OR "oestrogens" OR "testosterone" OR "sex 114 115 hormones" OR "sexual dimorphism" OR "menopause" OR "hormone replacement 116 therapy" AND "NAFLD" OR "NASH" OR "steatohepatitis" OR "liver fibrosis". For 117 effects of NAFLD in specific population groups, we use a combination of search terms 118 including "NAFLD in Polycystic Ovary Syndrome", "NAFLD in Turner syndrome".

ournalpre

119 Reproductive hormones and NAFLD

120 ESTROGENS

121 Estrogens play important roles in regulating lipogenesis and fatty acid oxidation. 122 Ovariectomised female rats had a 51% increase in hepatic lipogenesis and a 34% 123 reduction in fatty acid oxidation²⁷ due to decreased synthesis of peroxisome proliferator-activated receptor α (PPAR α , a regulator of fatty acid oxidation) and 124 125 upregulation of the genes encoding sterol regulatory element-binding protein 1 (SREBP-1, a nuclear transcription factor that promotes lipid synthesis).²⁷ Additionally, 126 stearoyl coenzyme A desaturase 1 (SCD1, the rate-limiting enzyme in triglyceride 127 synthesis) is upregulated.²⁸ 128

The metabolic actions of estrogens are typically attributed to classical estrogen 129 130 receptor- α (ER α) signalling.²⁹ Both male and female ER α knockout mice exhibit 131 upregulation of lipogenic (SREBP-1 and fatty acid synthase or FAS) and adipogenic (PPAR γ and lipoprotein lipase) genes, a process that is reversed by ER α agonist 132 treatment.^{27,28} Mice lacking G-protein coupled estrogen receptor (GPER) and mice with 133 134 liver ERa-knockout (LERKO) exhibit similar metabolic phenotypes including higher body weight and increased visceral adiposity.^{30,31} Female, but not male, GPER-135 136 knockout mice fed a high fat diet display lower levels of high-density lipoprotein (HDL)-cholesterol and greater liver fat accumulation compared to controls.³¹ This 137 138 suggests that both ERa and GPER pathways are important for hepatic and whole-body 139 lipid homeostasis and contribute to sexual dimorphism in NAFLD.

Estrogens also influence reverse cholesterol export, i.e. the process by which peripheral
cholesterol is returned to the liver.³² In LERKO mice, hepatic low-density lipoprotein
(LDL) receptors are reduced by ~18 to 22%³² and hepatic expression of PDZK1 protein
(which plays a role in HDL cholesterol uptake) is reduced by 22% and 33% in male

and female mice, respectively.³² Loss of ERα reduces cholesterol efflux from foam cells
into HDL particles in female and male LERKO mice.³² Thus, estrogen deficiency
disrupts the molecular machinery involved in hepatic lipogenesis and adipogenesis.
Consistent with these findings, progression from pre- to post-menopause is
independently associated with an increase in total cholesterol and LDL cholesterol in
women aged between 47 and 55 years.³³ This may contribute to the higher prevalence
of NAFLD in post-menopausal women.

Interactions between estrogens and glucagon may be important in the pathogenesis of 151 152 NAFLD. Glucagon promotes hepatic lipolysis and suppresses de novo lipogenesis. Glucagon levels have been observed to be inversely associated to NAFLD 153 154 progression.³⁴ Attenuation of glucagon receptor signalling is also proposed to increase the risk of NAFLD.³⁵ Furthermore, in NAFLD, expression of the glucagon receptor 155 gene and the function of the glucagon protein may be impaired, resulting in glucagon 156 resistance.^{34,36} In vitro studies have shown that physiological levels of estrogen can 157 158 inhibit glucagon secretion via binding to the GPR30 estrogen receptor³⁷, and estradiol-159 mediated inhibition of glucagon release is attenuated by deletion of GPR30 receptors.³⁸ Ovariectomy has also been shown to increase circulating glucagon in rodents^{37,39} and 160 161 glucagon levels are suppressed by estradiol treatment.^{37,40} These data suggest estrogen 162 deficiency would be predicted to have beneficial effects in NAFLD via increased 163 glucagon levels. However, estrogen deficiency has detrimental effects as described 164 above. Therefore, the roles of estrogen (and estrogen deficiency) in the development 165 and progression of NAFLD require further study.

166 ANDROGENS

167 Prenatal exposure of female rodents to androgens disrupts the balance between 168 enzymes involved in lipogenesis (SREBP, PPAR and carbohydrate-responsive element-binding protein or ChREBP) and lipolysis.⁴¹ In young adult ewes, prenatal 169 170 exposure to androgens downregulates hepatic PEPCK and causes hepatic insulin resistance.⁴² Upregulation of expression of other hepatic metabolic genes including 171 172 mitogen activated protein kinase 4 (a pro-inflammatory protein involved in ceramide 173 signalling), UDP-glucose ceramide glucosyltransferase (involved in ceremide 174 metabolism) and acyl-coenzyme A dehydrogenase (involved in lipid metabolism) also occurs, further exacerbating liver damage.⁴² 175

The effects of androgens in animal models could be mediated by changes in body 176 177 adiposity/composition exacerbated by a high fat diet⁴³ and/or via changes in transcriptional activity of gluconeogenic genes.⁴⁴ Postnatal exposure of female rodents 178 to dihydrotestosterone (DHT) induces hepatic steatosis, insulin resistance and 179 recapitulates the reproductive phenotype of PCOS.⁴⁵ In normal weight female mice, 180 181 low dose DHT upregulates SREBP cleavage activating protein (SCAP) and SREBP-1. 182 which promotes FAS and acetyl-CoA carboxylase expression, resulting in hepatic steatosis.⁴⁶ In DHT-exposed female rats, NASH may develop via activation of NF-κB 183 184 signalling, enhanced expression of pro-inflammatory cytokines (IL-6, IL-1β, and TNFα) and an increase in pro-apoptotic markers.⁴⁷ Cumulatively, prenatal or postnatal 185 186 androgen exposure appears to increase the risk of NAFLD development and 187 progression by increasing lipogenesis and pro-inflammatory mediators.

Factors contributing to the development and progression of NAFLD in women *AGE OF MENARCHE*

190 Earlier onset of menstruation (i.e. age of menarche <12 years) has been associated with increased risk of cardiometabolic disease in post-menopausal women.⁴⁸ In the 191 192 CARDIA study, earlier menarche by 1 year conferred a 10% increased risk of NAFLD 193 (diagnosed using CT scans) in adulthood independent of socio-economic factors and baseline BMI.⁴⁸ Early menarche is often preceded by rapid accumulation of fat during 194 195 childhood, a physically less active lifestyle and/or behavioural factors that could also increase the risk of the metabolic syndrome.⁴⁹ Therefore, other factors such as obesity. 196 insulin resistance or a hyperandrogenic phenotype (such as in PCOS)⁵⁰ may interact 197 198 with early menarche to confer an additional risk of developing NAFLD (Figure 1).

199 MENOPAUSAL STATUS

200 Estradiol, being the most abundant circulating female reproductive hormone, plays 201 important roles in the regulation of lipid and glucose metabolism in hepatic and adipose tissues. In pre-menopausal women, estradiol is predominantly secreted by the ovaries.⁵¹ 202 However, after menopause⁵¹, ovarian estrogen secretion ceases and circulating estradiol 203 levels decline to a mean value of ~10pmol/L⁵², but low quantities are still produced by 204 non-ovarian tissues.^{51,53} The decline of circulating estradiol during natural menopause 205 206 is associated with increased risk of NAFLD, type 2 diabetes, central adiposity and hypertriglyceridemia.54 207

In a cross-sectional study involving 541 people with biopsy-proven NASH⁵⁵, advanced fibrosis was more prevalent in post-menopausal women (27.6%) compared to men (22.2%) and pre-menopausal women (14.4%).⁵⁵ Women over the age of 50 years have increased odds of advanced fibrosis (OR 1.8, 95% CI 1.2-2.7) even after adjustment for covariates (enrolling site, ethnicity, degrees of portal inflammation).⁵⁵ The risk of severe fibrosis remained elevated in lean post-menopausal women with NAFLD

compared to lean pre-menopausal women with NAFLD (OR 2.17, 95% CI 1.1-4.5).⁵⁶ This suggests that menopause is associated with severe fibrosis that is, in part, independent of age or body fat composition.

Women who have undergone oophorectomy have an increased risk of NAFLD compared to pre-menopausal women who have not undergone oophorectomy.⁵⁷ In fact, a stronger association was observed in women who underwent oophorectomy before the age of 45 years.⁵⁷ Similarly, women with premature menopause prior to the age of 40 years have a 90% increased risk of severe fibrosis on histology compared to women who went through menopause after 40 years.⁵⁸ Conceivably, the duration of estradiol deficiency contributes significantly to post-menopausal hepatic fibrosis risk.

224 HORMONE REPLACEMENT THERAPY

The role of hormone replacement therapy (HRT) in preventing the development and/or 225 226 progression of NAFLD remains unclear. A randomised double-blind study comparing 227 women with type 2 diabetes on oral HRT (1 mg estradiol plus 0.5 mg norethisterone) 228 to those on placebo for 6 months showed that women on HRT (n=19) had reduced circulating concentrations of liver enzymes compared to the placebo group (n=23).⁵⁹ A 229 230 South American study reported that post-menopausal women on HRT (dose and type 231 of hormones not specified) for at least 6 months (n=14) had lower waist circumference, 232 lower HOMA-IR index, lower ferritin levels (a surrogate marker of parenchymal 233 inflammation) and lower γ -glutamyl transferase when compared with women not taking HRT (n=79).⁶⁰ However, improvement in liver biochemistry may not reflect 234 235 improvement in liver histology. Thus, the same group of researchers assessed frequency 236 of NAFLD diagnosed by abdominal ultrasound and reported a lower frequency of NAFLD in women taking HRT (14/53, 26·4%) compared with women not taking HRT 237

238 (79/198, 39.9%) irrespective of the type of HRT, duration of use and route of
 administration.⁶¹

However, other studies did not report reduction in the risk of NAFLD⁶² or severe 240 hepatic fibrosis amongst post-menopausal women taking HRT.⁵⁵ One study 241 242 demonstrated an increased risk of severe lobular inflammation with HRT use in postmenopausal women and oral contraceptive use in pre-menopausal women.⁶³ Details of 243 244 the types, routes of administration and doses of oestrogens (and progestins) and their 245 differential effects on the risk of severe inflammation, were not reported. Future studies 246 are indicated to investigate the impact of synthetic estrogens and progestins on the 247 natural history of NAFLD and/or NASH in post-menopausal women.

248 SELECTIVE ESTROGEN RECEPTOR MODULATORS

Selective estrogen receptor modulators (SERMs, e.g. tamoxifen) are agents that elicit 249 250 tissue-specific estrogen receptor agonist or antagonist activity. Women treated with 251 tamoxifen have a higher prevalence of NAFLD and an increased risk of progression to NASH and advanced fibrosis.⁶⁴ The mechanisms by which tamoxifen influences 252 NAFLD risk remain unclear. In vitro, genes involved in lipogenesis and fatty acid 253 254 synthesis (e.g. SREBP-1c, FAS, SCD1 and acetyl coenzyme A carboxylase) are upregulated after treating HepG2 cells with tamoxifen.⁶⁵ Obese female Wistar rats who 255 were fed a high-fat diet for 15 weeks and then given tamoxifen for 2 weeks were 256 257 observed to have increased hepatic lipid synthesis and decreased triglyceride export.⁶⁶ This was associated with a marked downregulation of salient information regulator 1 258 259 (SIRT1) and upregulation of p-FoxO1/LXRα-SREBP1c signalling leading to increased hepatic steatosis.⁶⁶ Administration of a SIRT1 agonist inhibited the promotion of 260

tamoxifen-induced lipid synthesis, suggesting that SIRT1 is a regulator of tamoxifen induced fatty liver disease.⁶⁶

263 In addition, tamoxifen-treated ovariectomized C57BL6/J female mice are protected from HFD-induced steatosis via selective activation of ERa-activating factor1 (ERa-264 AF1).⁶⁷ This contradicts findings from a previous study indicating that protective 265 metabolic actions of estradiol are mediated mostly via $ER\alpha$ -AF2.⁶⁷ It is likely that there 266 is redundancy in the ERa-AF1 and ERa-AF2 systems or the effects of tamoxifen may 267 differ depending on the tissue type.⁶⁷ More mechanistic studies are needed to elucidate 268 269 the influence of SERMs on NAFLD. More importantly, targeting liver ERα-AF1 or SIRT1 are potential future strategies to mitigate against the development and 270 271 progression of NAFLD.

272 TURNER SYNDROME

Turner syndrome (TS) is a sex-chromosome disorder in females caused by an abnormal 273 or absent X chromosome.⁶⁸ Women with TS have a 4·4-fold increased risk of type 2 274 diabetes⁶⁹, and a 5.5-fold increased risk of developing liver cirrhosis.⁶⁹ Histological 275 evidence of nodular hyperplasia, NAFLD and cirrhosis have been described in women 276 with TS.⁷⁰ Elevated liver enzymes were found in \sim 50% of women with TS (n=125).⁷¹ 277 Of the 21 women who had Fibroscans, liver stiffness measurements suggestive of 278 fibrosis were reported in 38%⁷¹ and liver architecture changes were found in the 11 279 women who consented for biopsy.⁷¹ Compared to age-matched eugonadal women or 280 281 estradiol-treated women with premature ovarian insufficiency, women with TS have higher waist circumference, elevated BMI, increased IL-6 and triglyceride levels.⁷² 282 283 Women with TS also have increased intrahepatocellular lipid content, which is correlated to duration of estrogen deficiency.⁷³ Although larger studies are needed to 284

explore the relationship between estradiol and metabolic risk, these data suggests a role
for estrogen deficiency in promoting hepatic steatosis and insulin resistance in this
context.

288 It is difficult to disentangle the contributions of gonadal hormones from that of sex 289 chromosomes in patients with Turner syndrome. In the four core genotype model (FCG 290 mice in which sex chromosomes are unrelated to gonadal sex), mice with one X chromosome had reduced body weight compared to XX mice.⁷⁴ By contrast, women 291 292 with one X chromosome have higher body weight and increased risks of developing metabolic disease than women with two X chromosomes.⁷⁵ Although low levels of sex 293 294 hormones contribute to the increased risk of developing metabolic disease, imprinting 295 of X-linked genes may also contribute to metabolic dysregulation in Turner syndrome.⁷⁶ Depending on the parental origin of the X chromosome, imprinting of 296 297 maternally transmitted X-linked genes in patients with TS has been shown to prevent 298 visceral fat accumulation whereas imprinting of paternally transmitted X-linked genes promoted higher triglyceride and lipid levels.⁷⁶ The rarity of sex chromosome 299 300 aneuploidies presents challenges in determining the relative contributions of reduced 301 numbers of sex chromosomes and hypogonadism in the development of NAFLD in 302 women with TS. However, the FCG mouse model may help advance our understanding 303 of these two contributing factors.

304 POLYCYSTIC OVARY SYNDROME (PCOS)

PCOS affects up to 13% of women of reproductive age and is characterised by
ovulatory dysfunction, hyperandrogenism and/or polycystic ovarian morphology.⁷⁷
Women with PCOS have increased prevalence of NAFLD compared to age-, BMI- and
waist circumference-matched women without PCOS.⁷⁸ This excess risk is also present

in lean women (BMI <25kg/m²) with PCOS.⁷⁹ A concerning finding is the higher 309 prevalence of biopsy-proven NASH in women with PCOS younger than 40 years.⁸⁰ 310 311 Hyperandrogenism is associated with increased NAFLD risk in women with PCOS. In 312 a retrospective study involving 63,210 women with PCOS, serum testosterone levels 313 >3.0 nmol/L were associated with an increased risk of NAFLD (HR 2.30, 95% CI 1.16-4.53).⁷⁹ Liver fat is greater in hyperandrogenic women with PCOS compared to normo-314 315 androgenic women with PCOS after correcting for visceral adiposity and BMI.⁸¹ 316 Consistent with these findings, a cross-sectional study of 400 Chinese women with 317 PCOS concluded that the risk of NAFLD increases with free androgen index, which is 318 a surrogate measure of androgen bioavailability.⁸² Notably, excess androgens are 319 associated with increased risk of developing NAFLD in women, independent of obesity and insulin resistance.⁸² Women with hyperandrogenic PCOS also had higher 320 circulating levels of glycerophospholipids and lysoglycerophospholipids which are 321 potential biomarkers of NASH.⁸³ Intra-adipose androgen generation by enzyme aldo-322 323 ketoreductase type 1C3 was increased in subcutaneous adipose tissue (SAT) of women 324 with PCOS resulting in lipotoxicity and predisposing women with hyperandrogenic PCOS to liver injury.⁸⁴ Although a causative role for androgens has not been proven, 325 326 these association studies suggest a potential use for anti-androgens in treating women 327 with PCOS and NAFLD.

328 BODY FAT DISTRIBUTION

329 Sex-specific body fat distribution influences an individual's predisposition to 330 cardiometabolic complications independent of body weight or body fat percentage.⁸⁵ 331 Compared to age- and BMI-matched men, pre-menopausal women typically have 332 greater SAT mass in the abdominal⁸⁶ and femoral-gluteal areas.⁸⁷ By contrast, men have

333 a higher percentage of visceral adipose tissue (VAT), 10-20% in men vs 5-8% in women.⁸⁸ Given the higher VAT in men, men have a greater ability to dispose meal-334 335 derived free fatty acids (FFA) in VAT which results in higher liver fat disposal (Figure 2).⁸⁹ Excess FFA released into the bloodstream predisposes to lipotoxicity and 336 increased lipid uptake by liver, pancreas or muscle.⁹⁰ This overflow of FFA to liver 337 338 could lead to increased cellular levels of ceramides, long chain fatty acyl-coenzyme A and pro-inflammatory processes causing chronic low-grade inflammation.^{90,91} 339 Unsurprisingly, people with increased VAT mass are more insulin resistant, have 340 impaired glucose metabolism and are more likely to develop NAFLD.⁹² Indeed, a 341 342 prospective study showed rising incidence of NAFLD based on ultrasound and CT 343 imaging with increasing quartiles of VAT (17.1%, 18.1%, 25.2% and 34.4%, respectively) in both men and women after a median follow-up of 4.4 years.⁹³ By 344 345 contrast, individuals with the highest quartile of SAT are more likely to be at lower risk 346 of developing NAFLD (HR 2.30, 95%CI 1.28-4.12) compared to individuals with the lowest quartile of SAT.⁹³ 347

Prior to menopause, women accrue more fat in SAT, which protects them from the negative consequences of the metabolic syndrome.⁹⁴ As women transition through menopause, both SAT and VAT increase but VAT expands more at the onset of menopause and then plateaus at a higher set-point after menopause.⁹⁴

During menopause, changes in SAT and VAT metabolism also results in alterations in in body fat distribution.⁹⁵ Although premenopausal and postmenopausal women retain similar sensitivity and responsiveness to sympathetic activation by beta-adrenergic agonists, adipose tissue basal lipolysis rate is reduced and lipoprotein lipase activity (which promotes hydrolysis of circulating TG to FFA) is enhanced in the gluteal and abdominal adipose tissues of postmenopausal women.⁹⁶ Compared to premenopausal

women, expression of FAS is reduced in the SAT of postmenopausal women by 61%⁹⁵. 358 whereas PPAR γ expression is increased in VAT by 83%.⁹⁵ The increased PPAR γ 359 expression in VAT may reflect a compensatory attempt to curtail the need for increased 360 lipid storage, as VAT accumulation correlates with features of insulin resistance.95 361 Interestingly, thiazolidinediones (PPARy agonists used to treat type 2 diabetes), may 362 363 promote a redistribution of SAT and a lower expression of transcriptional genes for VAT, suggesting an effect on adipose tissue depot-specific regulation.⁹⁷ However, their 364 unfavourable safety profile (e.g. increased risks of atypical humeral fracture and 365 366 bladder cancer) limits their use in clinical practice. Changes in adipose tissue 367 metabolism, coupled with preferential fat accumulation in VAT during menopause 368 (Figure 1) predispose women to increased cardiometabolic risk.⁹⁸

369 Estrogen levels correlate positively with percentage of SAT and negatively with visceral fat accumulation in pre-menopausal women.⁹⁸ Estrogen treatment decreases 370 371 insulin resistance by ~50% and decreases abdominal visceral adiposity in postmenopausal women and ovariectomized female animal models.^{99,100} Estrogen also 372 373 reverses the increase in hepatic triglyceride content caused by diet-induced obesity in LERKO mice.¹⁰¹ Evidently, estrogens play a role in insulin sensitivity and glucose 374 375 homeostasis in women in addition to promoting fat accumulation in SAT and modifies 376 the risks of NAFLD progression.

377 MUSCLE QUALITY AND QUANTITY

378 Sarcopenia is defined as generalised progressive loss of skeletal muscle mass, muscle
379 function and muscle strength. Meta-analyses have shown that the risks of NAFLD and
380 NASH are increased by 1.5 to 2.5-fold among individuals with sarcopenia.^{102,103}
381 Furthermore, among individuals with NAFLD, sarcopenia is independently associated

with hepatic fibrosis after adjusting for obesity and insulin resistance (OR 2.59, 95%
CI 1.22-5.48).¹⁰⁴ Coexistence of sarcopenia and NAFLD doubles mortality risk,
independent of fibrosis stage.¹⁰⁵ It remains unclear if NAFLD directly contributes to
sarcopenia or sarcopenia causes NAFLD.

Skeletal muscle is a major site of insulin-stimulated glucose uptake.¹⁰⁶ Ageing results 386 387 in loss of muscle mass and reduction in type 2 (fast-twitch) muscle fibres (by ~10 to 14% per decade).¹⁰⁶ Fast-twitch muscles depend on glycolysis for energy production¹⁰⁷, 388 and the gradual reduction in fast-twitch muscle during ageing results in reduced 389 dependence on cytosolic glycolytic processes for glucose disposal.¹⁰⁶ Mitochondrial 390 391 bioenergetics are also altered with ageing. Reduced expression of gene regulators, such 392 as PPARy coactivator (PGC)-1a in aged skeletal muscles suppresses AMP-activated protein kinase, SIRT1 and mitogen-associated protein kinase (p38 MAPK).¹⁰⁸ 393 Suppression of SIRT1 limits oxidative capacity and lipid metabolism leading to 394 395 hyperlipidaemia, dysregulated glucose metabolism, hyperinsulinemia and insulin resistance.109 396

397 Ectopic fat accumulation in the muscles (myosteatosis) can be a consequence of insulin 398 resistance and perpetuate NAFLD. Severe myosteatosis is associated with a 2- to 3-fold increased risk of early NASH in patients with NAFLD.¹¹⁰ In a recent study, the fat 399 400 content in psoas skeletal muscle (measured by a parameter known as skeletal muscle 401 fat index) was observed to be higher in individuals with NASH and advanced fibrosis 402 $(\geq F3)$ than in those with NASH and early stages of fibrosis (F1 to F2).¹¹¹ Myosteatosis 403 promotes endoplasmic reticulum stress, which in turn impairs mitochondrial function.¹¹² Furthermore, myosteatosis contributes to reduced skeletal muscle protein 404 405 synthesis stimulated by anabolic hormones (insulin, estradiol and testosterone).¹¹²

Estradiol reduction during menopause further promotes proteolysis, reduction in lean
 mass, and increased fat mass.¹¹²

408 Mechanisms underlying the manifestation of sarcopenia are likely to be multifactorial. 409 Although low estradiol levels may play a potential role in decline in muscle mass in 410 women after the age of 50 years old, evidence elucidating the contribution of menopause to sarcopenia remains unclear. Some studies have reported an accelerated 411 decline in muscle mass in women during menopausal transition.^{113,114} Samson et al. 412 observed a decline in isometric knee extensor strength (IKES) and handgrip strength 413 414 (HGS) by 40.2% and 28% in elderly women 55 to 80 years old whereas the decrease in IKES and HGS was 10.3% and 8.2% in women 20 to 55 years old.¹¹³ By contrast, the 415 416 decline in IKES and HGS was 23% and 17.4% in men 55 to 80 years old but in the 417 younger men between age 20 to 55 years old, decline in IKES and HGS were 24% and 19.6%, respectively.¹¹³ A 20% reduction in maximum voluntary force of the adductor 418 419 pollicis (by ~20%) has also been seen around the time of menopause in women 420 followed by little change after that, whereas in men (n=176), muscle force was maintained before weakness started at age of 60 years.¹¹⁴ In the same study, women 421 422 receiving HRT had attenuated loss of muscle force, suggesting a possible role of estrogens in preventing loss of muscle strength and weakness.¹¹⁴ However, other 423 424 studies did not find any differences in the rate of decline of height adjusted appendicular 425 skeletal muscle mass between males and females before the age of 60 years old.¹¹⁵ 426 The fluctuation of estradiol during the menstrual cycle (estrus cycle in rodents) also 427

427 does not seem to affect the muscle strength, fatiguability or power performance of 428 young female athletes $(n=29)^{116}$ or rodents.¹¹⁷ Evidence to support the impact of 429 menopause on muscle strength and muscle mass independent of ageing are equivocal 430 and further research is needed to specify the contribution of menopause to sarcopenia.

- 431 Nevertheless, sarcopenia and NAFLD remain closely linked with each entity increasing
- 432 the risk of the other (Figure 2), resulting in cardiometabolic complications and the
- 433 effects of the menopause could potentially increase this risk.

434 Areas of Focus in Clinical Practice

435 DIAGNOSIS

436 Despite the high prevalence of NAFLD, diagnostic and management approaches in 437 clinical practice are variable. This is partly due to low rate of recognition of NAFLD 438 among non-hepatology specialists¹¹⁸ and delayed referral of patients at risk of advanced 439 liver disease to specialists for evaluation and care.¹¹⁸ Even more worryingly, data 440 collected from 102 countries revealed that at least 31% of the countries surveyed do not 441 have any national guidance, strategies or action plans in place to address the increasing 442 prevalence of NAFLD.¹¹⁹

443 Due to the lack of data on cost-effectiveness and value of non-invasive liver tests, screening for NAFLD in the general population is currently not recommended.^{120–124} 444 445 American and Asia-Pacific guidelines advise adopting a high index of suspicion to investigate for presence of NAFLD in high-risk individuals.^{122,124,125} European and 446 447 Latin-American guidelines offer more specific recommendations and suggest screening 448 in patients with persistently elevated liver enzymes, in people with metabolic syndrome, in type 2 diabetes and/or obesity (BMI \geq 30kg/m²).^{6,120} Risk prediction tools 449 450 such as the Fibrosis-4 score, NAFLD fibrosis score or Enhanced Liver Fibrosis score, 451 and transient elastography are recommended as next step in identifying patients at risk of advanced fibrosis and cirrhosis, as these patients should be referred to a hepatologist 452 for specialist management.¹²⁶ However, these prediction tools do not consider the 453 454 effects of sex, ethnic heritage and hormonal status on liver-related outcomes.

Reassuringly, sex does not influence the likelihood of unreliable liver stiffness
 measurements assessed by vibration-controlled transient elastography.¹²⁷

457 *LIFESTYLE INTERVENTIONS*

458 Current management is focused on optimising associated co-morbidities including diabetes, hypertension, hyperlipidaemia, and reducing cardiovascular risk by 459 460 encouraging smoking cessation and prescribing lipid lowering medication. Data from 461 Korea suggest that women (but not men) with NAFLD have an increased risk of cardiovascular and liver-related mortality.¹²⁸ By contrast, data from America indicate 462 463 that men with NAFLD have an increased risk of death from cancer and cardiovascular causes compared to women.^{129,130} Therefore, more data are required before 464 recommending sex-specific risk factor reduction. 465

Lifestyle modification remains the initial step in the management of NAFLD. Physical 466 activity exceeding 150 minutes/week decreases serum aminotransferase levels.¹²²⁻ 467 ^{124,131} Reducing calories by 750-1000kcal/day improves insulin resistance and hepatic 468 steatosis.^{122–124,131} Weight loss of at least 5% of body weight reduces hepatic steatosis 469 but greater weight loss of \geq 7%-10% improves NASH.^{122–124,131} However, in women, 470 471 \geq 7-10% weight loss has a lower probability of NASH resolution, highlighting a need for sex-specific weight loss targets.¹³² Additionally, the optimal amount of weight loss 472 473 required to produce beneficial effects in NAFLD in post-menopausal women is not 474 known. Furthermore, weight loss interventions that preserve or increase muscle mass¹³³ may have added benefits. 475

476 *THERAPEUTICS*

There are currently no licensed medications for the treatment of NAFLD. Vitamin E
and pioglitazone have been recommended in some guidelines.^{122–124} Vitamin E has been

demonstrated to have beneficial effects on liver transaminases, hepatic steatosis, lobular inflammation and hepatocellular ballooning.¹³⁴ However, sex-specific outcomes were not reported in this meta-analysis¹³⁴, nor in the individual studies included in the meta-analysis.^{135,136} Furthermore, long-term high-dose Vitamin E use may increase the risk of heart failure¹³⁷ and prostate cancer.¹³⁸ Therefore, sex-specific analyses of treatment responses and adverse events are required as the risk-benefit ratio of Vitamin E use in NAFLD may differ between men and women.

486 Pioglitazone, a PPARy activator, improves insulin sensitivity and attenuates 487 inflammation and fibrosis in patients with and without diabetes with biopsy-proven NASH, but weight gain, fluid retention and increased risk of bone fractures are 488 commonly-occurring adverse effects that limit its use.^{122–124} Interestingly, women with 489 490 NAFLD and pre-diabetes or type 2 diabetes treated with pioglitazone have greater reductions in liver fat content than men with similar co-morbidities.¹³⁹ This may be due 491 492 to a greater reduction in insulin resistance by pioglitazone in women compared to men.¹³⁹ Until further data are available, both Vitamin E and pioglitazone are not 493 recommended for patients without biopsy-proven NASH. 122-124 494

495 Reproductive hormones impact the risk of NAFLD development and progression in women. However, current evidence is insufficient to recommend HRT as a treatment 496 497 for NAFLD in post-menopausal women. In a small study that included men and women 498 with NAFLD, combination treatment with spironolactone (which has anti-androgenic 499 effects) and Vitamin E reduced hepatic fat scores after 52 weeks of treatment.¹⁴⁰ Sub-500 analyses by sex were not reported in this study. In women with PCOS, spironolactone use has been shown to improve insulin resistance and lipid levels.¹⁴¹ Whether the anti-501 502 androgen effect of spironolactone would modify the risk of developing NASH in women with PCOS remains to be explored. As current management options for 503

- 504 NAFLD are limited, patients should be offered the opportunity to participate in research
- so as they may benefit from early access to emerging therapies.

506 Future Directions and Conclusions

507 While several medications have failed to demonstrate an improvement in clinical trials 508 endpoints, there are still promising agents in the pipeline for the treatment of NAFLD¹⁴². In addition, reproductive hormone receptor agonists involved in hepatic 509 steatosis, inflammation and/or fibrosis, such as the kisspeptin receptor¹⁴³ and estrogen-510 related receptor α^{144} , are being developed as potential therapeutic agents. Data from 511 512 large-scale studies like DAISY-PCOS (Dissecting Androgen excess and metabolic 513 dysfunction - an Integrated Systems approach to PCOS) may advance our 514 understanding of the influence of androgens on NAFLD and offer tailored management 515 strategies in women.

516 In conclusion, management of women with NAFLD should take into consideration their 517 risk profiles, hormonal status, age and metabolic factors. Evidence-based data on the 518 influence of sex on biomarker sensitivity and/or sex-specific prediction models are 519 needed. A better understanding of the influence of reproductive hormones on NAFLD 520 and reporting of sex-based responses to therapeutic interventions could lead to the 521 development of beneficial personalised management approaches in women.

522 Figure legends

523 **Figure 1:** Changes occur in adipose tissue, liver and skeletal muscle during the 524 menopause that have detrimental metabolic effects. These may contribute to the 525 increased prevalence of metabolic conditions in postmenopausal women.

Figure 2: Interactions between adipose tissue, muscle and liver contribute to the
development and progression of Non-alcoholic Fatty Liver Disease (NAFLD) in
women. Adipokines and myokines (such as myostatin) mediate adipose tissue-muscle
interactions. Ageing and the menopause (i.e. estrogen deficiency) increase visceral
adipose tissue (VAT) depots and reduce muscle mass and quality. Expanded VAT
depots increase free fatty acid (FFA) delivery to the liver, which has detrimental effects.
These alterations in body composition contribute to insulin resistance, hyperglycaemia
and/or hyperlipidaemia, with consequent development and progression of NAFLD.

534 Author Contributions

- 535 Conceptualisation: All authors; Writing Original Draft: PCE, RF, CI-E; Writing -
- 536 Review & Editing: All authors.

537 **Conflict Of Interest Statement**

538 All authors report no potential conflicts of interest.

539 Funding

540 CI-E is funded by an Imperial-BRC IPPRF Fellowship (P79696), a Society for 541 Endocrinology Early Career Grant, an Association of Physicians of Great Britain and 542 Ireland Young Investigator Award (P90797) and a Mason Medical Research 543 Foundation Grant (P91847). WSD is funded by an UK National Institute for Health 544 Research (NIHR) Research Professorship (NIHR-RP-2014-05-001) and an NIHR 545 Senior Investigator Award. The Department of Metabolism, Digestion and 546 Reproduction is funded by grants from the MRC, NIHR and is supported by the NIHR 547 Imperial BRC Funding Scheme and the NIHR/Imperial Clinical Research Facility. The 548 views expressed are those of the authors and not necessarily those of the abovementioned funders, the UK National Health Service (NHS), the NIHR, or the UK 549 550 Department of Health.

References

552	1	Pierantonelli I, Svegliati-Baroni G. Nonalcoholic Fatty Liver Disease: Basic
553		Pathogenetic Mechanisms in the Progression from NAFLD to NASH.
554		Transplantation 2019; 103 . DOI:10.1097/TP.00000000002480.
555	2	Parthasarathy G, Revelo X, Malhi H. Pathogenesis of Nonalcoholic
556		Steatohepatitis: An Overview. Hepatol Commun. 2020; 4.
557		DOI:10.1002/hep4.1479.
558	3	Duval C, Thissen U, Keshtkar S, et al. Adipose Tissue Dysfunction Signals
559		Progression of Hepatic Steatosis Towards Nonalcoholic Steatohepatitis in
560		C57Bl/6 Mice. <i>Diabetes</i> 2010; 59 : 3181.
561	4	Safari Z, Gérard P. The links between the gut microbiome and non-alcoholic
562		fatty liver disease (NAFLD). Cellular and Molecular Life Sciences 2019 76:8
563		2019; 76 : 1541–58.
564	5	Jegatheesan P, De Bandt JP. Fructose and NAFLD: The multifaceted aspects of
565		fructose metabolism. Nutrients. 2017; 9. DOI:10.3390/nu9030230.
566	6	Arab JP, Dirchwolf M, Álvares-da-Silva MR, et al. Latin American
567		Association for the study of the liver (ALEH) practice guidance for the
568		diagnosis and treatment of non-alcoholic fatty liver disease. Ann Hepatol 2020;
569		19 : 674–90.
570	7	Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L. The
571		global epidemiology of nonalcoholic fatty liver disease (NAFLD) and
572		nonalcoholic steatohepatitis (NASH): a systematic review. <i>Hepatology</i> 2023;
573		77: 1335–47.
574	8	Estes C, Anstee QM, Arias-Loste MT, et al. Modeling NAFLD disease burden
575		in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United
576		States for the period 2016–2030. J Hepatol 2018; 69: 896–904.
577	9	Sherif ZA, Saeed A, Ghavimi S, et al. Global Epidemiology of Nonalcoholic
578		Fatty Liver Disease and Perspectives on US Minority Populations. <i>Digestive</i>
579		Diseases and Sciences 2016 61:5 2016; 61: 1214–25.
580	10	Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global
581		epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of
582		prevalence, incidence, and outcomes. Hepatology 2016; 64.
583		DOI:10.1002/hep.28431.
584	11	Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic
585		dysfunction-associated fatty liver disease: An international expert consensus
586		statement. J Hepatol 2020; 73: 202–9.
587	12	Kim D, Konyn P, Sandhu KK, Dennis BB, Cheung AC, Ahmed A. Metabolic
588		dysfunction-associated fatty liver disease is associated with increased all-cause
589		mortality in the United States. J Hepatol 2021; 75: 1284–91.
590	13	Yu C, Wang M, Zheng S, et al. Comparing the Diagnostic Criteria of MAFLD
591		and NAFLD in the Chinese Population: A Population-based Prospective
592		Cohort Study. J Clin Transl Hepatol 2022; 10: 6–16.
593	14	Balakrishnan M, Patel P, Dunn-Valadez S, et al. Women have Lower Risk of
594		Nonalcoholic Fatty Liver Disease but Higher Risk of Progression vs Men: A
595		Systematic Review and Meta-analysis. <i>Clin Gastroenterol Hepatol</i> 2021; 19 :
596		61.
597	15	Vandel J, Dubois-Chevalier J, Gheeraert C, et al. Hepatic Molecular Signatures
598		Highlight the Sexual Dimorphism of Nonalcoholic Steatohepatitis (NASH).
599		<i>Hepatology</i> 2021; 73 : 920–36.

600	16	Grzych G, Vonghia L, Bout MA, et al. Plasma BCAA Changes in Patients
601		With NAFLD Are Sex Dependent. J Clin Endocrinol Metab 2020; 105: 2311–
602		21.
603	17	Sanyal AJ, Van Natta ML, Clark J, et al. Prospective Study of Outcomes in
604		Adults with Nonalcoholic Fatty Liver Disease. New England Journal of
605		<i>Medicine</i> 2021; 385 : 1559–69.
606	18	Lonardo A, Ballestri S, Bedogni G, Bellentani S, Tiribelli C. The Fatty liver
607		Index (FLI) 15 years later: a reappraisal. Metabolism and Target Organ
608		<i>Damage</i> 2021; 1 : 10.
609	19	Pennisi G, Enea M, Pandolfo A, et al. AGILE 3+ Score for the Diagnosis of
610		Advanced Fibrosis and for Predicting Liver-related Events in NAFLD. Clin
611		Gastroenterol Hepatol 2023; 21. DOI:10.1016/J.CGH.2022.06.013.
612	20	Pinyopornpanish K, Khoudari G, Saleh MA, et al. Hepatocellular carcinoma in
613		nonalcoholic fatty liver disease with or without cirrhosis: a population-based
614		study. BMC Gastroenterol 2021; 21: 1–7.
615	21	Noureddin M, Vipani A, Bresee C, et al. NASH Leading Cause of Liver
616		Transplant in Women: Updated Analysis of Indications For Liver Transplant
617		and Ethnic and Gender Variances. Am J Gastroenterol 2018; 113: 1649–59.
618	22	Loy VM, Joyce C, Bello S, VonRoenn N, Cotler SJ. Gender disparities in liver
619		transplant candidates with nonalcoholic steatohepatitis. <i>Clin Transplant</i> 2018;
620		32 . DOI:10.1111/CTR.13297.
621	23	Loy VM, Joyce C, Bello S, VonRoenn N, Cotler SJ. Gender disparities in liver
622		transplant candidates with nonalcoholic steatohepatitis. <i>Clin Transplant</i> 2018;
623		32 : e13297.
624	24	Sealock JM, Ziogas IA, Zhao Z, <i>et al.</i> Proposing a Sex-Adjusted Sodium-
625		Adjusted MELD Score for Liver Transplant Allocation. JAMA Surg 2022; 157:
626	~-	618–26.
627	25	Arshad T, Golabi P, Paik J, Mishra A, Younossi ZM. Prevalence of
628		Nonalcoholic Fatty Liver Disease in the Female Population. <i>Hepatol Commun</i>
629	26	2019; 3: 74-83.
630	26	Allen AM, Inerneau IM, Mara KC, <i>et al.</i> women with nonalconolic fatty liver
631		disease lose protection against cardiovascular disease: A longitudinal conort $L_{\rm res} = L_{\rm res} $
632		study. American Journal of Gastroenterology 2019; 114.
633	27	DOI:10.14309/ajg.000000000000000000000000000000000000
634	21	Paquette A, Chapados NA, Bergeron R, Lavoie JM. Fatty acid oxidation is
033		decreased in the liver of ovariectomized rats. <i>Horm Metab Res</i> 2009; 41 : 511–
627	20	J. Dequatte A. Wang D. Jankowski M. Cuthawska I. Laurie IM. Effects of
629	28	Paquelle A, wang D, Jankowski M, Gulkowska J, Lavole JM. Effects of
620		liver Monorgues 2008, 15, 1160, 75
640	20	Inver. Menopause 2008, 15: 1109–75. Mada C. Barona M. Mitro N. et al. Hanatia ED a accounts for say differences in
640 641	29	the ability to cope with an excess of dietery lipids. Mol Metab 2020: 32: 07
642		108
643	30	Weigt C Hertrampf T Kluven FM <i>et al</i> Molecular effects of FR alpha- and
644	50	beta-selective agonists on regulation of energy homeostasis in obese female
645		Wistar rats Mol Cell Endocrinol 2013: 377 : 147–58
646	31	Meoli L. Isensee J. Zazzu V. <i>et al.</i> Sex- and age-dependent effects of Gpr30
647	01	genetic deletion on the metabolic and cardiovascular profiles of diet-induced
648		obese mice. <i>Gene</i> 2014; 540 : 210–6.

649	32	Zhu L, Shi J, Luu TN, et al. Hepatocyte estrogen receptor alpha mediates
650		estrogen action to promote reverse cholesterol transport during Western-type
651		diet feeding. Mol Metab 2018; 8: 106–16.
652	33	Karvinen S, Jergenson MJ, Hyvärinen M, et al. Menopausal status and physical
653		activity are independently associated with cardiovascular risk factors of healthy
654		middle-aged women: Cross-sectional and longitudinal evidence. Front
655		Endocrinol (Lausanne) 2019; 10: 589.
656	34	Wang Y, Lin Z, Wan H, et al. Glucagon is associated with NAFLD
657		inflammatory progression in type 2 diabetes, not with NAFLD fibrotic
658		progression. Eur J Gastroenterol Hepatol 2021; 33: E818–23.
659	35	Jiang G, Zhang BB. Glucagon and regulation of glucose metabolism. Am J
660		<i>Physiol Endocrinol Metab</i> 2003; 284 . DOI:10.1152/AJPENDO.00492.2002.
661	36	Zhang L, Yao W, Xia J, Wang T, Huang F. Glucagon-Induced Acetylation of
662		Energy-Sensing Factors in Control of Hepatic Metabolism. Int J Mol Sci 2019;
663		20 . DOI:10.3390/IJMS20081885.
664	37	MANDOUR T, KISSEBAH AH, WYNN V. Mechanism of oestrogen and
665		progesterone effects on lipid and carbohydrate metabolism: alteration in the
666		insulin: glucagon molar ratio and hepatic enzyme activity. Eur J Clin Invest
667		1977; 7: 181–7.
668	38	Martensson UEA, Salehi SA, Windahl S, et al. Deletion of the G protein-
669		coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases
670		blood pressure, and eliminates estradiol-stimulated insulin release in female
671		mice. <i>Endocrinology</i> 2009; 150 : 687–98.
672	39	Faure A, Sutter-Dub MT, Sutter BCJ, Assan R. Ovarian-adrenal interactions in
673		regulation of endocrine pancreatic function in the rat. <i>Diabetologia</i> 1983; 24:
674		122–7.
675	40	Ropero AB, Pang Y, Alonso-Magdalena P, Thomas P, Nadal Á. Role of ERβ
676		and GPR30 in the endocrine pancreas: A matter of estrogen dose. Steroids
677		2012; 77: 951–8.
678	41	Abruzzese GA, Heber MF, Ferreira SR, et al. Prenatal hyperandrogenism
679		induces alterations that affect liver lipid metabolism. Journal of Endocrinology
680		2016; 230 : 67–79.
681	42	Hogg K, Wood C, McNeilly AS, Duncan WC. The In Utero Programming
682		Effect of Increased Maternal Androgens and a Direct Fetal Intervention on
683		Liver and Metabolic Function in Adult Sheep. <i>PLoS One</i> 2011; 6 : e24877.
684	43	Lai H, Jia X, Yu Q, et al. High-fat diet induces significant metabolic disorders
685		in a mouse model of polycystic ovary Syndrome. <i>Biol Reprod</i> 2014; 91: 127-8.
686	44	Andrisse S, Childress S, Ma Y, et al. Low-Dose Dihydrotestosterone Drives
687		Metabolic Dysfunction via Cytosolic and Nuclear Hepatic Androgen Receptor
688		Mechanisms. Endocrinology 2017; 158: 531.
689	45	Caldwell ASL, Middleton LJ, Jimenez M, et al. Characterization of
690		Reproductive, Metabolic, and Endocrine Features of Polycystic Ovary
691		Syndrome in Female Hyperandrogenic Mouse Models. <i>Endocrinology</i> 2014;
692		155 : 3146–59.
693	46	Seidu T, McWhorter P, Myer J, et al. DHT causes liver steatosis via
694		transcriptional regulation of SCAP in normal weight female mice. Journal of
695		<i>Endocrinology</i> 2021; 250 : 49–65.
696	47	Cui P, Hu W, Ma T, et al. Long-term androgen excess induces insulin
697		resistance and non-alcoholic fatty liver disease in PCOS-like rats. J Steroid
698		<i>Biochem Mol Biol</i> 2021; 208 : 105829.

699	48	Mueller NT, Pereira MA, Demerath EW, et al. Earlier menarche is associated
700		with fatty liver and abdominal ectopic fat in midlife, independent of young
701		adult BMI: The CARDIA study. Obesity 2015; 23: 468–74.
702	49	Laitinen J, Power C, Järvelin MR. Family social class, maternal body mass
703		index, childhood body mass index, and age at menarche as predictors of adult
704		obesity. Am J Clin Nutr 2001; 74: 287–94.
705	50	Cao X, Zhou J, Yuan H, Chen Z. Duration of reproductive lifespan and age at
706		menarche in relation to metabolic syndrome in postmenopausal Chinese
707		women. Journal of Obstetrics and Gynaecology Research 2016; 42: 1581–7.
708	51	Simpson ER, Davis SR. Minireview: Aromatase and the Regulation of
709		Estrogen Biosynthesis—Some New Perspectives. <i>Endocrinology</i> 2001; 142 :
710		4589–94.
711	52	Santen RJ, Mirkin S, Bernick B, Constantine GD. Systemic estradiol levels
712		with low-dose vaginal estrogens. Menopause 2020; 27: 361.
713	53	Simpson ER, Misso M, Hewitt KN, et al. Estrogen-the Good, the Bad, and
714		the Unexpected. <i>Endocr Rev</i> 2005; 26 : 322–30.
715	54	Turola E, Petta S, Vanni E, et al. Ovarian senescence increases liver fibrosis in
716		humans and zebrafish with steatosis. DMM Disease Models and Mechanisms
717		2015; 8: 1037–46.
718	55	Yang JD, Abdelmalek MF, Pang H, et al. Gender and menopause impact
719		severity of fibrosis among patients with nonalcoholic steatohepatitis.
720		<i>Hepatology</i> 2014; 59 : 1406–14.
721	56	Yoneda M, Thomas E, Sumida Y, Eguchi Y, Schiff ER. The influence of
722		menopause on the development of hepatic fibrosis in nonobese women with
723		nonalcoholic fatty liver disease. <i>Hepatology</i> 2014; 60: 1792–1792.
724	57	Florio AA, Graubard BI, Yang B, et al. Oophorectomy and risk of non-
725		alcoholic fatty liver disease and primary liver cancer in the Clinical Practice
726		Research Datalink. Eur J Epidemiol 2019; 34: 871.
727	58	Klair JS, Yang JD, Abdelmalek MF, et al. A longer duration of estrogen
728		deficiency increases fibrosis risk among postmenopausal women with
729		nonalcoholic fatty liver disease. <i>Hepatology</i> 2016; 64: 85–91.
730	59	McKenzie J, Fisher BM, Jaap AJ, Stanley A, Paterson K, Sattar N. Effects of
731		HRT on liver enzyme levels in women with type 2 diabetes: A randomized
732		placebo-controlled trial. Clin Endocrinol (Oxf) 2006; 65: 40-4.
733	60	Florentino G, Cotrim HP, Florentino A, et al. Hormone replacement therapy in
734		menopausal women: risk factor or protection to nonalcoholic fatty liver
735		disease? Ann Hepatol 2012; 11: 147–9.
736	61	Florentino GS de A, Cotrim HP, Vilar CP, Florentino AV de A, Guimarães
737		GMA, Barreto VST. NONALCOHOLIC FATTY LIVER DISEASE IN
738		MENOPAUSAL WOMEN. Arq Gastroenterol 2013; 50: 180–5.
739	62	Hamaguchi M, Kojima T, Ohbora A, Takeda N, Fukui M, Kato T. Aging is a
740		risk factor of nonalcoholic fatty liver disease in premenopausal women. World
741		J Gastroenterol 2012; 18: 237–43.
742	63	Yang JD, Abdelmalek MF, Guy C, et al. Patient Sex, Reproductive Status, and
743		Synthetic Hormone use Associate With Histologic Severity of Nonalcoholic
744		Steatohepatitis. Clin Gastroenterol Hepatol 2017; 15: 127.
745	64	Bruno S, Maisonneuve P, Castellana P, et al. Incidence and risk factors for
746		non-alcoholic steatohepatitis: prospective study of 5408 women enrolled in
747		Italian tamoxifen chemoprevention trial. <i>BMJ</i> 2005; 330 : 932.

748	65	Zhao F, Xie P, Jiang J, Zhang L, An W, Zhan Y. The Effect and Mechanism of
749		Tamoxifen-Induced Hepatocyte Steatosis in Vitro. Int J Mol Sci 2014; 15:
750		4019.
751	66	Li M, Cai Y, Chen X, Zhang L, Jiang Z, Yu Q. Tamoxifen induced hepatic
752		steatosis in high-fat feeding rats through SIRT1-Foxo1 suppression and LXR-
753		SREBP1c activation. Toxicol Res (Camb) 2022; 11: 673–82.
754	67	Handgraaf S, Riant E, Fabre A, et al. Prevention of Obesity and Insulin
755		Resistance by Estrogens Requires ERa Activation Function-2 (ERaAF-2),
756		Whereas ERαAF-1 Is Dispensable. <i>Diabetes</i> 2013; 62 : 4098–108.
757	68	Gravholt CH, Andersen NH, Conway GS, et al. Clinical practice guidelines for
758		the care of girls and women with Turner syndrome: proceedings from the 2016
759		Cincinnati International Turner Syndrome Meeting. Eur J Endocrinol 2017;
760		177 : G1–70.
761	69	Gravholt CH, Juul S, Naeraa RW, Hansen J. Morbidity in Turner syndrome. J
762		<i>Clin Epidemiol</i> 1998; 51 : 147–58.
763	70	Roulot D. Liver involvement in Turner syndrome. <i>Liver Int</i> 2013; 33 : 24–30.
764	71	Calanchini M, Moolla A, Tomlinson JW, et al. Liver biochemical
765		abnormalities in Turner syndrome: A comprehensive characterization of an
766		adult population. Clin Endocrinol (Oxf) 2018: 89: 667–76.
767	72	Ostberg JE, Attar MJH, Mohamed-Ali V, Conway GS, Adipokine
768		Dysregulation in Turner Syndrome: Comparison of Circulating Interleukin-6
769		and Leptin Concentrations with Measures of Adiposity and C-Reactive Protein.
770		J Clin Endocrinol Metab 2005: 90: 2948–53.
771	73	Ostberg JE, Thomas EL, Hamilton G, Attar MJH, Bell JD, Conway GS, Excess
772		Visceral and Hepatic Adipose Tissue in Turner Syndrome Determined by
773		Magnetic Resonance Imaging: Estrogen Deficiency Associated with Hepatic
774		Adipose Content. J Clin Endocrinol Metab 2005; 90: 2631–5.
775	74	Link JC, Chen X, Arnold AP, Reue K. Metabolic impact of sex chromosomes.
776		Adipocyte 2013; 2: 74–9.
777	75	Bakalov VK, Cheng C, Zhou J, Bondy CA. X-chromosome gene dosage and
778		the risk of diabetes in Turner syndrome. J Clin Endocrinol Metab 2009; 94:
779		3289–96.
780	76	Van PL, Bakalov VK, Zinn AR, Bondy CA. Maternal X chromosome, visceral
781		adiposity, and lipid profile. JAMA 2006; 295 : 1373–4.
782	77	Teede HJ, Misso ML, Costello MF, et al. Recommendations from the
783		international evidence-based guideline for the assessment and management of
784		polycystic ovary syndrome. <i>Fertil Steril</i> 2018; 110 : 364.
785	78	Rađenović SS, Pupovac M, Andjić M, et al. Prevalence, Risk Factors, and
786		Pathophysiology of Nonalcoholic Fatty Liver Disease (NAFLD) in Women
787		with Polycystic Ovary Syndrome (PCOS). <i>Biomedicines</i> 2022; 10 .
788		DOI:10.3390/BIOMEDICINES10010131.
789	79	Kumarendran B, O'Reilly MW, Manolopoulos KN, et al. Polycystic ovary
790		syndrome, androgen excess, and the risk of nonalcoholic fatty liver disease in
791		women: A longitudinal study based on a United Kingdom primary care
792		database. <i>PLoS Med</i> 2018; 15 : e1002542.
793	80	Brzozowska MM, Ostapowicz G, Weltman MD. An association between non-
794		alcoholic fatty liver disease and polycystic ovarian syndrome. J Gastroenterol
795		<i>Hepatol</i> 2009; 24 : 243–7.
796	81	Jones H, Sprung VS, Pugh CJA, et al. Polycystic Ovary Syndrome with
797		Hyperandrogenism Is Characterized by an Increased Risk of Hepatic Steatosis

798		Compared to Nonhyperandrogenic PCOS Phenotypes and Healthy Controls,
799		Independent of Obesity and Insulin Resistance. J Clin Endocrinol Metab 2012;
800		97 : 3709–16.
801	82	Cai J, Wu CH, Zhang Y, et al. High-free androgen index is associated with
802		increased risk of non-Alcoholic fatty liver disease in women with polycystic
803		ovary syndrome, independent of obesity and insulin resistance. Int J Obes
804		2017; 41 : 1341–7.
805	83	Anjani K, Lhomme M, Sokolovska N, et al. Circulating phospholipid profiling
806		identifies portal contribution to NASH signature in obesity. <i>J Hepatol</i> 2015;
807		62 : 905–12.
808	84	O'Reilly MW, Kempegowda P, Walsh M, et al. AKR1C3-Mediated Adipose
809		Androgen Generation Drives Lipotoxicity in Women With Polycystic Ovary
810		Syndrome. J Clin Endocrinol Metab 2017; 102: 3327–39.
811	85	Kissebah AH, Vydelingum N, Murray R, Evans DJ, Kalkhoff RK, Adams PW.
812		Relation of Body Fat Distribution to Metabolic Complications of Obesity. J
813		<i>Clin Endocrinol Metab</i> 1982; 54 : 254–60.
814	86	Ibrahim MM. Subcutaneous and visceral adipose tissue: Structural and
815		functional differences. Obesity Reviews 2010; 11: 11-8.
816	87	Yim JE, Heshka S, Albu JB, Heymsfield S, Gallagher D. Femoral-gluteal
817		subcutaneous and intermuscular adipose tissues have independent and
818		opposing relationships with CVD risk. J Appl Physiol (1985) 2008; 104: 700-
819		7.
820	88	Karastergiou K, Smith SR, Greenberg AS, Fried SK. Sex differences in human
821		adipose tissues - The biology of pear shape. Biol Sex Differ 2012; 3: 1–12.
822	89	Spalding KL, Bernard S, Näslund E, et al. Impact of fat mass and distribution
823		on lipid turnover in human adipose tissue. Nat Commun 2017; 8.
824		DOI:10.1038/NCOMMS15253.
825	90	Gastaldelli A, Cusi K. From NASH to diabetes and from diabetes to NASH:
826		Mechanisms and treatment options. JHEP Reports 2019; 1: 312.
827	91	Hocking SL, Wu LE, Guilhaus M, Chisholm DJ, James DE. Intrinsic Depot-
828		Specific Differences in the Secretome of Adipose Tissue, Preadipocytes, and
829		Adipose Tissue–Derived Microvascular Endothelial Cells. <i>Diabetes</i> 2010; 59 :
830		3008–16.
831	92	Ballestri S, Nascimbeni F, Baldelli E, Marrazzo A, Romagnoli D, Lonardo A.
832		NAFLD as a Sexual Dimorphic Disease: Role of Gender and Reproductive
833		Status in the Development and Progression of Nonalcoholic Fatty Liver
834		Disease and Inherent Cardiovascular Risk. Advances in Therapy 2017 34:6
835		2017; 34 : 1291–326.
836	93	Kim D, Chung GE, Kwak MS, et al. Body Fat Distribution and Risk of
837		Incident and Regressed Nonalcoholic Fatty Liver Disease. Clin Gastroenterol
838		<i>Hepatol</i> 2016; 14 : 132-138.e4.
839	94	Lovejoy JC, Champagne CM, De Jonge L, Xie H, Smith SR. Increased visceral
840		fat and decreased energy expenditure during the menopausal transition. Int J
841		<i>Obes</i> 2008; 32 : 949–58.
842	95	Abildgaard J, Ploug T, Al-Saoudi E, et al. Changes in abdominal subcutaneous
843		adipose tissue phenotype following menopause is associated with increased
844		visceral fat mass. Sci Rep 2021; 11: 14750.
845	96	Ferrara CM, Lynch NA, Nicklas BJ, Ryan AS, Berman DM. Differences in
846		adipose tissue metabolism between postmenopausal and perimenopausal

847		women. Journal of Clinical Endocrinology and Metabolism 2002; 87: 4166–
848		70.
849	97	Walker GE, Marzullo P, Verti B, et al. Subcutaneous abdominal adipose tissue
850		subcompartments: potential role in rosiglitazone effects. Obesity (Silver
851		Spring) 2008; 16 : 1983–91.
852	98	Puder JJ, Monaco SE, Sen Gupta S, Wang J, Ferin M, Warren MP. Estrogen
853		and exercise may be related to body fat distribution and leptin in young
854		women. Fertil Steril 2006; 86: 694–9.
855	99	Riant E, Waget A, Cogo H, Arnal JF, Burcelin R, Gourdy P. Estrogens Protect
856		against High-Fat Diet-Induced Insulin Resistance and Glucose Intolerance in
857		Mice. <i>Endocrinology</i> 2009; 150 : 2109–17.
858	100	Nabulsi AA, Folsom AR, White A, et al. Association of Hormone-
859		Replacement Therapy with Various Cardiovascular Risk Factors in
860		Postmenopausal Women. N Engl J Med 2010; 328: 1069–75.
861	101	Dakin RS, Walker BR, Seckl JR, Hadoke PWF, Drake AJ. Estrogens protect
862		male mice from obesity complications and influence glucocorticoid
863		metabolism. International Journal of Obesity 2015 39:10 2015; 39 : 1539–47.
864	102	Lee Y ho, Kim SU. Sarcopenia: an emerging risk factor for non-alcoholic fatty
865		liver disease. <i>Hepatol Int</i> 2020; 14 : 5–7.
866	103	Wijarnpreecha K, Panjawatanan P, Thongprayoon C, Jaruvongvanich V,
867		Ungprasert P. Sarcopenia and risk of nonalcoholic fatty liver disease: A meta-
868		analysis. Saudi J Gastroenterol 2018; 24: 12–7.
869	104	Koo BK, Kim D, Joo SK, et al. Sarcopenia is an independent risk factor for
870		non-alcoholic steatohepatitis and significant fibrosis. <i>J Hepatol</i> 2017: 66 : 123–
071		
8/1		31.
871 872	105	31. Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia
871 872 873	105	31. Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia</i>
871 872 873 874	105	31. Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia</i> <i>Sarcopenia Muscle</i> 2021; 12 : 964–72.
871 872 873 874 875	105 106	 Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia Sarcopenia Muscle</i> 2021; 12: 964–72. Dao T, Green AE, Kim YA, <i>et al.</i> Sarcopenia and Muscle Aging: A Brief
871 872 873 874 875 876	105 106	 Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia Sarcopenia Muscle</i> 2021; 12: 964–72. Dao T, Green AE, Kim YA, <i>et al.</i> Sarcopenia and Muscle Aging: A Brief Overview. <i>Endocrinology and Metabolism</i> 2020; 35: 716.
871 872 873 874 875 876 877	105 106 107	 Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia Sarcopenia Muscle</i> 2021; 12: 964–72. Dao T, Green AE, Kim YA, <i>et al.</i> Sarcopenia and Muscle Aging: A Brief Overview. <i>Endocrinology and Metabolism</i> 2020; 35: 716. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as
871 872 873 874 875 876 877 878	105 106 107	 Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia Sarcopenia Muscle</i> 2021; 12: 964–72. Dao T, Green AE, Kim YA, <i>et al.</i> Sarcopenia and Muscle Aging: A Brief Overview. <i>Endocrinology and Metabolism</i> 2020; 35: 716. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. <i>Nature Reviews Endocrinology 2012</i> 8:8 2012; 8: 457–65.
871 872 873 874 875 876 877 878 878	105 106 107 108	 Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia Sarcopenia Muscle</i> 2021; 12: 964–72. Dao T, Green AE, Kim YA, <i>et al.</i> Sarcopenia and Muscle Aging: A Brief Overview. <i>Endocrinology and Metabolism</i> 2020; 35: 716. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. <i>Nature Reviews Endocrinology</i> 2012 8:8 2012; 8: 457–65. Rvgiel KA, Picard M, Turnbull DM. The ageing neuromuscular system and
871 872 873 874 875 876 877 878 879 880	105 106 107 108	 Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia Sarcopenia Muscle</i> 2021; 12: 964–72. Dao T, Green AE, Kim YA, <i>et al.</i> Sarcopenia and Muscle Aging: A Brief Overview. <i>Endocrinology and Metabolism</i> 2020; 35: 716. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. <i>Nature Reviews Endocrinology 2012</i> 8:8 2012; 8: 457–65. Rygiel KA, Picard M, Turnbull DM. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. <i>J Physiol</i> 2016; 594: 4499–512.
871 872 873 874 875 876 877 878 879 880 881	105 106 107 108 109	 Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia Sarcopenia Muscle</i> 2021; 12: 964–72. Dao T, Green AE, Kim YA, <i>et al.</i> Sarcopenia and Muscle Aging: A Brief Overview. <i>Endocrinology and Metabolism</i> 2020; 35: 716. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. <i>Nature Reviews Endocrinology 2012</i> 8:8 2012; 8: 457–65. Rygiel KA, Picard M, Turnbull DM. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. <i>J Physiol</i> 2016; 594: 4499–512. Majeed Y, Halabi N, Madani AY, <i>et al.</i> SIRT1 promotes lipid metabolism and
871 872 873 874 875 876 877 878 879 880 881 882	105 106 107 108 109	 Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia Sarcopenia Muscle</i> 2021; 12: 964–72. Dao T, Green AE, Kim YA, <i>et al.</i> Sarcopenia and Muscle Aging: A Brief Overview. <i>Endocrinology and Metabolism</i> 2020; 35: 716. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. <i>Nature Reviews Endocrinology 2012</i> 8:8 2012; 8: 457–65. Rygiel KA, Picard M, Turnbull DM. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. <i>J Physiol</i> 2016; 594: 4499–512. Majeed Y, Halabi N, Madani AY, <i>et al.</i> SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by
871 872 873 874 875 876 877 878 879 880 881 882 883	105 106 107 108 109	 Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia Sarcopenia Muscle</i> 2021; 12: 964–72. Dao T, Green AE, Kim YA, <i>et al.</i> Sarcopenia and Muscle Aging: A Brief Overview. <i>Endocrinology and Metabolism</i> 2020; 35: 716. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. <i>Nature Reviews Endocrinology 2012</i> 8:8 2012; 8: 457–65. Rygiel KA, Picard M, Turnbull DM. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. <i>J Physiol</i> 2016; 594: 4499–512. Majeed Y, Halabi N, Madani AY, <i>et al.</i> SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. <i>Sci Rep</i> 2021; 11. DOI:10.1038/S41598-
871 872 873 874 875 876 877 878 879 880 881 882 883 884	105 106 107 108 109	 Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia Sarcopenia Muscle</i> 2021; 12: 964–72. Dao T, Green AE, Kim YA, <i>et al.</i> Sarcopenia and Muscle Aging: A Brief Overview. <i>Endocrinology and Metabolism</i> 2020; 35: 716. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. <i>Nature Reviews Endocrinology 2012</i> 8:8 2012; 8: 457–65. Rygiel KA, Picard M, Turnbull DM. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. <i>J Physiol</i> 2016; 594: 4499–512. Majeed Y, Halabi N, Madani AY, <i>et al.</i> SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. <i>Sci Rep</i> 2021; 11. DOI:10.1038/S41598-021-87759-X.
871 872 873 874 875 876 877 878 877 878 879 880 881 882 883 884 884	105 106 107 108 109	 Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia Sarcopenia Muscle</i> 2021; 12: 964–72. Dao T, Green AE, Kim YA, <i>et al.</i> Sarcopenia and Muscle Aging: A Brief Overview. <i>Endocrinology and Metabolism</i> 2020; 35: 716. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. <i>Nature Reviews Endocrinology 2012</i> 8:8 2012; 8: 457–65. Rygiel KA, Picard M, Turnbull DM. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. <i>J Physiol</i> 2016; 594: 4499–512. Majeed Y, Halabi N, Madani AY, <i>et al.</i> SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. <i>Sci Rep</i> 2021; 11. DOI:10.1038/S41598-021-87759-X. Hsieh Y-C, Joo SK, Koo BK, <i>et al.</i> Myosteatosis, but not Sarcopenia,
871 872 873 874 875 876 877 878 877 878 879 880 881 882 883 884 885 886	105 106 107 108 109	 Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia Sarcopenia Muscle</i> 2021; 12: 964–72. Dao T, Green AE, Kim YA, <i>et al.</i> Sarcopenia and Muscle Aging: A Brief Overview. <i>Endocrinology and Metabolism</i> 2020; 35: 716. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. <i>Nature Reviews Endocrinology 2012</i> 8:8 2012; 8: 457–65. Rygiel KA, Picard M, Turnbull DM. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. <i>J Physiol</i> 2016; 594: 4499–512. Majeed Y, Halabi N, Madani AY, <i>et al.</i> SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. <i>Sci Rep</i> 2021; 11. DOI:10.1038/S41598-021-87759-X. Hsieh Y-C, Joo SK, Koo BK, <i>et al.</i> Myosteatosis, but not Sarcopenia, Predisposes NAFLD Subjects to Early Steatohepatitis and Fibrosis Progression.
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887	105 106 107 108 109	 Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia Sarcopenia Muscle</i> 2021; 12: 964–72. Dao T, Green AE, Kim YA, <i>et al.</i> Sarcopenia and Muscle Aging: A Brief Overview. <i>Endocrinology and Metabolism</i> 2020; 35: 716. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. <i>Nature Reviews Endocrinology 2012</i> 8:8 2012; 8: 457–65. Rygiel KA, Picard M, Turnbull DM. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. <i>J Physiol</i> 2016; 594: 4499–512. Majeed Y, Halabi N, Madani AY, <i>et al.</i> SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. <i>Sci Rep</i> 2021; 11. DOI:10.1038/S41598-021-87759-X. Hsieh Y-C, Joo SK, Koo BK, <i>et al.</i> Myosteatosis, but not Sarcopenia, Predisposes NAFLD Subjects to Early Steatohepatitis and Fibrosis Progression. <i>Clinical Gastroenterology and Hepatology</i> 2022; published online Jan 31.
871 872 873 874 875 876 877 878 877 878 879 880 881 882 883 884 885 886 887 888	105 106 107 108 109	 Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia Sarcopenia Muscle</i> 2021; 12: 964–72. Dao T, Green AE, Kim YA, <i>et al.</i> Sarcopenia and Muscle Aging: A Brief Overview. <i>Endocrinology and Metabolism</i> 2020; 35: 716. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. <i>Nature Reviews Endocrinology 2012 8:8</i> 2012; 8: 457–65. Rygiel KA, Picard M, Turnbull DM. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. <i>J Physiol</i> 2016; 594: 4499–512. Majeed Y, Halabi N, Madani AY, <i>et al.</i> SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. <i>Sci Rep</i> 2021; 11. DOI:10.1038/S41598-021-87759-X. Hsieh Y-C, Joo SK, Koo BK, <i>et al.</i> Myosteatosis, but not Sarcopenia, Predisposes NAFLD Subjects to Early Steatohepatitis and Fibrosis Progression. <i>Clinical Gastroenterology and Hepatology</i> 2022; published online Jan 31. DOI:10.1016/J.CGH.2022.01.020.
871 872 873 874 875 876 877 878 877 878 879 880 881 882 883 884 885 884 885 886 887 888 888 889	 105 106 107 108 109 110 111 	 Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia Sarcopenia Muscle</i> 2021; 12: 964–72. Dao T, Green AE, Kim YA, <i>et al.</i> Sarcopenia and Muscle Aging: A Brief Overview. <i>Endocrinology and Metabolism</i> 2020; 35: 716. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. <i>Nature Reviews Endocrinology 2012 8:8</i> 2012; 8: 457–65. Rygiel KA, Picard M, Turnbull DM. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. <i>J Physiol</i> 2016; 594: 4499–512. Majeed Y, Halabi N, Madani AY, <i>et al.</i> SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. <i>Sci Rep</i> 2021; 11. DOI:10.1038/S41598-021-87759-X. Hsieh Y-C, Joo SK, Koo BK, <i>et al.</i> Myosteatosis, but not Sarcopenia, Predisposes NAFLD Subjects to Early Steatohepatitis and Fibrosis Progression. <i>Clinical Gastroenterology and Hepatology</i> 2022; published online Jan 31. DOI:10.1016/J.CGH.2022.01.020. Nachit M, Kwanten WJ, Thissen JP, <i>et al.</i> Muscle fat content is strongly
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890	105 106 107 108 109 110	 Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia Sarcopenia Muscle</i> 2021; 12: 964–72. Dao T, Green AE, Kim YA, <i>et al.</i> Sarcopenia and Muscle Aging: A Brief Overview. <i>Endocrinology and Metabolism</i> 2020; 35: 716. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. <i>Nature Reviews Endocrinology</i> 2012 8:8 2012; 8: 457–65. Rygiel KA, Picard M, Turnbull DM. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. <i>J Physiol</i> 2016; 594: 4499–512. Majeed Y, Halabi N, Madani AY, <i>et al.</i> SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. <i>Sci Rep</i> 2021; 11. DOI:10.1038/S41598-021-87759-X. Hsieh Y-C, Joo SK, Koo BK, <i>et al.</i> Myosteatosis, but not Sarcopenia, Predisposes NAFLD Subjects to Early Steatohepatitis and Fibrosis Progression. <i>Clinical Gastroenterology and Hepatology</i> 2022; published online Jan 31. DOI:10.1016/J.CGH.2022.01.020. Nachit M, Kwanten WJ, Thissen JP, <i>et al.</i> Muscle fat content is strongly associated with NASH: A longitudinal study in patients with morbid obesity. <i>J</i>
871 872 873 874 875 876 877 878 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891	105 106 107 108 109 110	 Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia Sarcopenia Muscle</i> 2021; 12: 964–72. Dao T, Green AE, Kim YA, <i>et al.</i> Sarcopenia and Muscle Aging: A Brief Overview. <i>Endocrinology and Metabolism</i> 2020; 35: 716. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. <i>Nature Reviews Endocrinology 2012 8:8</i> 2012; 8: 457–65. Rygiel KA, Picard M, Turnbull DM. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. <i>J Physiol</i> 2016; 594: 4499–512. Majeed Y, Halabi N, Madani AY, <i>et al.</i> SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. <i>Sci Rep</i> 2021; 11. DOI:10.1038/S41598-021-87759-X. Hsieh Y-C, Joo SK, Koo BK, <i>et al.</i> Myosteatosis, but not Sarcopenia, Predisposes NAFLD Subjects to Early Steatohepatitis and Fibrosis Progression. <i>Clinical Gastroenterology and Hepatology</i> 2022; published online Jan 31. DOI:10.1016/J.CGH.2022.01.020. Nachit M, Kwanten WJ, Thissen JP, <i>et al.</i> Muscle fat content is strongly associated with NASH: A longitudinal study in patients with morbid obesity. <i>J Hepatol</i> 2021; 75: 292–301.
 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 	 105 106 107 108 109 110 111 111 112 	 Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia Sarcopenia Muscle</i> 2021; 12: 964–72. Dao T, Green AE, Kim YA, <i>et al.</i> Sarcopenia and Muscle Aging: A Brief Overview. <i>Endocrinology and Metabolism</i> 2020; 35: 716. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. <i>Nature Reviews Endocrinology 2012 8:8</i> 2012; 8: 457–65. Rygiel KA, Picard M, Turnbull DM. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. <i>J Physiol</i> 2016; 594: 4499–512. Majeed Y, Halabi N, Madani AY, <i>et al.</i> SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. <i>Sci Rep</i> 2021; 11. DOI:10.1038/S41598-021-87759-X. Hsieh Y-C, Joo SK, Koo BK, <i>et al.</i> Myosteatosis, but not Sarcopenia, Predisposes NAFLD Subjects to Early Steatohepatitis and Fibrosis Progression. <i>Clinical Gastroenterology and Hepatology</i> 2022; published online Jan 31. DOI:10.1016/J.CGH.2022.01.020. Nachit M, Kwanten WJ, Thissen JP, <i>et al.</i> Muscle fat content is strongly associated with NASH: A longitudinal study in patients with morbid obesity. <i>J Hepatol</i> 2021; 75: 292–301. Zambon Azevedo V, Silaghi CA, Maurel T, Silaghi H, Ratziu V, Pais R.
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893	105 106 107 108 109 110 111	 Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia Sarcopenia Muscle</i> 2021; 12: 964–72. Dao T, Green AE, Kim YA, <i>et al.</i> Sarcopenia and Muscle Aging: A Brief Overview. <i>Endocrinology and Metabolism</i> 2020; 35: 716. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. <i>Nature Reviews Endocrinology 2012 8:8</i> 2012; 8: 457–65. Rygiel KA, Picard M, Turnbull DM. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. <i>J Physiol</i> 2016; 594: 4499–512. Majeed Y, Halabi N, Madani AY, <i>et al.</i> SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. <i>Sci Rep</i> 2021; 11. DOI:10.1038/S41598-021-87759-X. Hsieh Y-C, Joo SK, Koo BK, <i>et al.</i> Myosteatosis, but not Sarcopenia, Predisposes NAFLD Subjects to Early Steatohepatitis and Fibrosis Progression. <i>Clinical Gastroenterology and Hepatology</i> 2022; published online Jan 31. DOI:10.1016/J.CGH.2022.01.020. Nachit M, Kwanten WJ, Thissen JP, <i>et al.</i> Muscle fat content is strongly associated with NASH: A longitudinal study in patients with morbid obesity. <i>J Hepatol</i> 2021; 75: 292–301. Zambon Azevedo V, Silaghi CA, Maurel T, Silaghi H, Ratziu V, Pais R. Impact of Sarcopenia on the Severity of the Liver Damage in Patients With
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 887 888 889 890 891 892 893 894	 105 106 107 108 109 110 111 111 112 	 Moon JH, Koo BK, Kim W. Non-alcoholic fatty liver disease and sarcopenia additively increase mortality: a Korean nationwide survey. <i>J Cachexia Sarcopenia Muscle</i> 2021; 12: 964–72. Dao T, Green AE, Kim YA, <i>et al.</i> Sarcopenia and Muscle Aging: A Brief Overview. <i>Endocrinology and Metabolism</i> 2020; 35: 716. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. <i>Nature Reviews Endocrinology 2012</i> 8:8 2012; 8: 457–65. Rygiel KA, Picard M, Turnbull DM. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective. <i>J Physiol</i> 2016; 594: 4499–512. Majeed Y, Halabi N, Madani AY, <i>et al.</i> SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. <i>Sci Rep</i> 2021; 11. DOI:10.1038/S41598-021-87759-X. Hsieh Y-C, Joo SK, Koo BK, <i>et al.</i> Myosteatosis, but not Sarcopenia, Predisposes NAFLD Subjects to Early Steatohepatitis and Fibrosis Progression. <i>Clinical Gastroenterology and Hepatology</i> 2022; published online Jan 31. DOI:10.1016/J.CGH.2022.01.020. Nachit M, Kwanten WJ, Thissen JP, <i>et al.</i> Muscle fat content is strongly associated with NASH: A longitudinal study in patients with morbid obesity. <i>J Hepatol</i> 2021; 75: 292–301. Zambon Azevedo V, Silaghi CA, Maurel T, Silaghi H, Ratziu V, Pais R. Impact of Sarcopenia on the Severity of the Liver Damage in Patients With Non-alcoholic Fatty Liver Disease. <i>Front Nutr</i> 2022; 8.

896	113	Samson MM, Meeuwsen IBAE, Crowe A, Dessens JAG, Duursma SA,
897		Verhaar HJJ. Relationships between physical performance measures, age,
898		height and body weight in healthy adults. Age Ageing 2000; 29: 235–42.
899	114	Phillips SK, Rook KM, Siddle NC, Bruce SA, Woledge RC. Muscle weakness
900		in women occurs at an earlier age than in men, but strength is preserved by
901		hormone replacement therapy. Clin Sci (Lond) 1993; 84: 95-8.
902	115	Kyle UG, Genton L, Hans D, Karsegard L, Slosman DO, Pichard C. Age-
903		related differences in fat-free mass, skeletal muscle, body cell mass and fat
904		mass between 18 and 94 years. Eur J Clin Nutr 2001; 55: 663–72.
905	116	Dasa MS, Kristoffersen M, Ersvær E, et al. The Female Menstrual Cycles
906		Effect on Strength and Power Parameters in High-Level Female Team
907		Athletes. Front Physiol 2021; 12. DOI:10.3389/FPHYS.2021.600668.
908	117	Rosa-Caldwell ME, Mortreux M, Kaiser UB, et al. The oestrous cycle and
909		skeletal muscle atrophy: Investigations in rodent models of muscle loss. Exp
910		<i>Physiol</i> 2021; 106 : 2472–88.
911	118	Wieland AC, Quallick M, Truesdale A, Mettler P, Bambha KM. Identifying
912		practice gaps to optimize medical care for patients with nonalcoholic fatty liver
913		disease. <i>Dig Dis Sci</i> 2013; 58 : 2809–16.
914	119	Lazarus J V., Mark HE, Villota-Rivas M, et al. The global NAFLD policy
915		review and preparedness index: Are countries ready to address this silent public
916		health challenge? J Hepatol 2022; 76 : 771–80.
917	120	Clinical Practice Guidelines EASL-EASD-EASO Clinical Practice Guidelines
918		for the Management of Non-Alcoholic Fatty Liver Disease. 2016.
919		DOI:10.1159/000443344.
920	121	Aller R, Fernández-Rodríguez C, lo Iacono O, <i>et al.</i> Consensus document.
921		Management of non-alcoholic fatty liver disease (NAFLD). Clinical practice
922		guideline. Gastroenterología y Hepatología (English Edition) 2018; 41 : 328–
923	100	
924	122	Chitturi S, Wong VWS, Chan WK, <i>et al.</i> The Asia–Pacific Working Party on
925		Non-alcoholic Fatty Liver Disease guidelines 2017—Part 2: Management and
926		special groups. Journal of Gastroenterology and Hepatology (Australia) 2018;
927	102	33 : 80–98.
928	125	National Institute for Health and Care Excellence. Non-alconolic fatty liver
929		disease (NAFLD): assessment and management NICE guidenne. NICE
950	124	<i>guidelines</i> 2010; 1–17. Chalasani N. Younossi Z. Lavina IE. <i>et al.</i> The Diagnosis and Management of
931	124	Nonalcoholia Fatty Liver Disease: Prostice Guidance From the American
932		Association for the Study of Liver Diseases, 2017
933		DOI:10.1002/hep.20267/suppinfo
035	125	Clinical Assessment and Management of Nonalcoholic Fatty Liver Disease
936	123	AASID https://www.aasld.org/practice-guidelines/clinical-assessment-and-
937		management_nonalcoholic_fatty_liver_disease (accessed April 3, 2023)
938	126	Dietrich CG Rau M Geier A Screening for nonalcoholic fatty liver disease-
939	120	when who and how? World I Gastroenterol 2021: 27: 5803
940	127	Vuppalanchi R Siddiqui MS Van Natta ML <i>et al</i> Performance characteristics
941	1 - 1	of vibration-controlled transient elastography for evaluation of nonalcoholic
942		fatty liver disease. <i>Hepatology</i> 2018: 67 : 134–44.
943	128	Hwang YC, Ahn HY, Park SW, Park CY, Nonalcoholic Fatty Liver Disease
944	-	Associates With Increased Overall Mortality and Death From Cancer.

945		Cardiovascular Disease, and Liver Disease in Women but Not Men. Clinical
946		Gastroenterology and Hepatology 2018; 16: 1131-1137.e5.
947	129	Paik JM, Henry L, De Avila L, Younossi E, Racila A, Younossi ZM. Mortality
948		Related to Nonalcoholic Fatty Liver Disease Is Increasing in the United States.
949		<i>Hepatol Commun</i> 2019; 3 : 1459–71.
950	130	Golabi P, Paik JM, Eberly K, de Avila L, Alqahtani SA, Younossi ZM. Causes
951		of death in patients with Non-alcoholic Fatty Liver Disease (NAFLD),
952		alcoholic liver disease and chronic viral Hepatitis B and C. Ann Hepatol 2022;
953		27 : 100556.
954	131	Raza S, Rajak S, Upadhyay A, Tewari A, Sinha RA. Current treatment
955		paradigms and emerging therapies for NAFLD/NASH. Front Biosci
956		(Landmark Ed) 2021; 26 : 206.
957	132	Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, et al. Weight Loss
958		Through Lifestyle Modification Significantly Reduces Features of
959		Nonalcoholic Steatohepatitis. Gastroenterology 2015; 149: 367-378.e5.
960	133	Heymsfield SB, Coleman LA, Miller R, et al. Effect of Bimagrumab vs
961		Placebo on Body Fat Mass Among Adults With Type 2 Diabetes and Obesity:
962		A Phase 2 Randomized Clinical Trial. JAMA Netw Open 2021; 4: e2033457-
963		e2033457.
964	134	Amanullah I, Khan YH, Anwar I, Gulzar A, Mallhi TH, Raja AA. Effect of
965		vitamin E in non-alcoholic fatty liver disease: a systematic review and meta-
966		analysis of randomised controlled trials. <i>Postgrad Med J</i> 2019; 95 : 601–11.
967	135	Sanyal AJ, Chalasani N, Kowdley K V., et al. Pioglitazone, Vitamin E, or
968		Placebo for Nonalcoholic Steatohepatitis. New England Journal of Medicine
969		2010; 362 : 1675–85.
970	136	Harrison SA, Torgerson S, Hayashi P, Ward J, Schenker S. Vitamin E and
971		vitamin C treatment improves fibrosis in patients with nonalcoholic
972		steatohepatitis. Am J Gastroenterol 2003; 98: 2485–90.
973	137	E L, J B, S Y, et al. Effects of long-term vitamin E supplementation on
974		cardiovascular events and cancer: a randomized controlled trial. JAMA 2005;
975		293 : 1338–47.
976	138	Klein EA, Thompson IM, Tangen CM, et al. Vitamin E and the Risk of
977		Prostate Cancer: The Selenium and Vitamin E Cancer Prevention Trial
978		(SELECT). <i>JAMA</i> 2011; 306 : 1549–56.
979	139	Yan H, Wu W, Chang X, <i>et al.</i> Gender differences in the efficacy of
980		pioglitazone treatment in nonalcoholic fatty liver disease patients with
981		abnormal glucose metabolism. <i>Biol Sex Differ</i> 2021; 12 : 1–8.
982	140	Polyzos SA, Kountouras J, Mantzoros CS, Polymerou V, Katsinelos P. Effects
983		of combined low-dose spironolactone plus vitamin E vs vitamin E
984		monotherapy on insulin resistance, non-invasive indices of steatosis and
985		fibrosis, and adipokine levels in non-alcoholic fatty liver disease: a randomized
986		controlled trial. <i>Diabetes Obes Metab</i> 2017; 19 : 1805–9.
987	141	Zulian E, Sartorato P, Benedini S, <i>et al.</i> Spironolactone in the treatment of
988		polycystic ovary syndrome: Effects on clinical features, insulin sensitivity and
989		lipid profile. Journal of Endocrinological Investigation 2005 28:3 2005; 28:
990	1.40	49-53.
991	142	Newsome PN, Buchnoitz K, Cusi K, <i>et al.</i> A Placebo-Controlled Irial of
992		Subcutaneous Semagiutide in Nonaiconolic Steatohepatitis. N Engl J Med
993		2021; 384 : 1113–24.

- Guzman S, Dragan M, Kwon H, *et al.* Targeting hepatic kisspeptin receptor
 ameliorates nonalcoholic fatty liver disease in a mouse model. *J Clin Invest*2022; **132**. DOI:10.1172/JCI145889.
- 997 144 Chen C yu, Li Y, Zeng N, *et al.* Inhibition of Estrogen-Related Receptor α
 998 Blocks Liver Steatosis and Steatohepatitis and Attenuates Triglyceride
 999 Biosynthesis. *American Journal of Pathology* 2021; **191**: 1240–54.
- 1000

1001

Journal

