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Summary 23 

Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver disease worldwide, 24 

affecting up to 30% of adults. Progression to non-alcoholic steatohepatitis (NASH) is 25 

a key risk factor for cirrhosis, hepatocellular carcinoma and cardiovascular events. 26 

Alterations in reproductive hormones are linked to the development and/or progression 27 

of NAFLD/NASH in women. Women with Polycystic Ovary Syndrome (PCOS) and 28 

those with estrogen deficiency are at increased risk of NAFLD/NASH, with higher 29 

mortality rates in older women compared to men of similar ages. NAFLD/NASH is 30 

currently the leading indication for liver transplantation in women without 31 

hepatocellular carcinoma. Therefore, a better understanding of NAFLD in women is 32 

needed to improve outcomes. In this review, we discuss the hormonal and non-33 

hormonal factors contributing to NAFLD development and progression in women. 34 

Furthermore, we highlight areas of focus for clinical practice and for future research.  35 
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Introduction  36 

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by 37 

increased hepatic fat content (≥5%), which is diagnosed after exclusion of well-38 

established causes of hepatic steatosis such as alcohol, steatogenic dugs and inherited 39 

errors of metabolism.1 Hepatic triglyceride accumulation by itself is not hepatotoxic.2 40 

However, pathogenic processes such as adipose tissue dysfunction3, gut microbiome 41 

dysbiosis4, fructose-induced mitochondrial dysfunction and endoplasmic reticulum 42 

oxidative stress5 may drive hepatic steatosis to hepatic inflammation and hepatocellular 43 

ballooning (non-alcoholic steatohepatitis or NASH) with or without fibrosis, leading to 44 

fibrosis and eventually cirrhosis.6 Liver fibrosis represents the main predictor of liver 45 

and non-liver-related adverse clinical outcomes. Hepatocellular carcinoma (HCC) can 46 

occur in both cirrhotic and non-cirrhotic patients.  47 

Globally, NAFLD has a prevalence of 30%7 and this is projected to rise to 56%8, 48 

paralleling the increased incidence of obesity and type 2 diabetes. In adults, up to a 49 

third of patients with NAFLD develop NASH over a period of ~7 years9, and around 50 

40% of the individuals who have histologically proven NASH progress to fibrosis.10 51 

NAFLD has a higher prevalence in men than in premenopausal women below the age 52 

of 50 years old.9 However, in women, the prevalence of NAFLD increases after 53 

menopause with a rising trend observed after the age of 50 years, followed by a peak at 54 

60 to 69 years, before declining after the age of 70 years.10  55 

Recently, a panel of international experts proposed the redefinition of NAFLD to 56 

metabolic dysfunction fatty liver disease (MAFLD) based on the presence of hepatic 57 

steatosis and metabolic risk factors (overweight/obesity, type 2 diabetes and/or 58 

metabolic dysfunction).11 The term MAFLD may include patients with concomitant 59 

causes of liver diseases and it may exclude those with steatosis but without the full 60 
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metabolic risk factor spectrum.12 However, some studies suggest women with NAFLD 61 

may be less likely to be meet the criteria for diagnosis of MAFLD than men with 62 

NAFLD13, which could have a detrimental effect on outcomes in women. Hence, we 63 

have elected to use the NAFLD nomenclature in this review.  64 

Women aged ≥50 years with NAFLD are 1.2 times more likely to develop NASH 65 

compared to age-matched men and are more likely to progress to advanced fibrosis14, 66 

with preliminary transcriptomic and plasma profiling studies suggesting that NAFLD 67 

may follow a distinct biological trajectory in women aged ≥50 years.15,16 Liver fibrosis 68 

stage is associated with increased mortality from 0∙32 deaths per 100 person-years at 69 

stages F0 to F2 to 1∙76 deaths per 100 person-years at stage F4, resulting in an almost 70 

seven-fold increased predisposition to hepatic decompensation (hazard ratio of 6∙8, 71 

95% CI 2∙2 to 2∙13).17 Predicting the presence of fibrosis with blood-based non-72 

invasive markers, that may perform differently according to sex, may require dedicated 73 

cut-offs for women.18 This may be due to the fact that women tend to have lower serum 74 

liver enzyme activities compared to age-matched men.18 Nevertheless, there is no 75 

evidence that non-invasive markers of fibrosis, such as FIB-4 and NAFLD fibrosis 76 

score, which rely heavily on measurement of transaminase activities, may perform 77 

differently in women. Interestingly, a recently developed non-invasive marker, called 78 

the AGILE 3+, has demonstrated how integrating sex with other clinical parameters 79 

may improve the risk stratification of patients with NAFLD.19  In addition, HCC occurs 80 

less frequently in women compared to men, in both cirrhotic and non-cirrhotic 81 

patients20, suggesting that dedicated surveillance strategies may need to be explored. 82 

NASH is the leading cause of end stage liver disease requiring transplantation in 83 

women who do not have HCC.21 In women undergoing liver transplantation, long-term 84 

survival is higher compared to men.22 However, women are more likely to die whilst 85 
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on the waiting list for liver transplantation due to NASH, partly due to underestimation 86 

of mortality in women using current stratification scores (i.e. the Model of Endstage 87 

Liver Disease or MELD score).23 A sex- and sodium-adjusted MELD score for liver 88 

transplant allocation has recently been proposed24, which may help to ensure more 89 

equitable access to liver transplantation. 90 

Women with NAFLD have increased mortality rates from cardiovascular disease 91 

(CVD) compared to women without NAFLD.25 This excess risk of CVD is also higher 92 

in women compared to age-matched men with NAFLD (e.g. 10% in a 40-year old 93 

woman with NAFLD vs 8% in a 40-year old man with NAFLD).26 The excess CVD 94 

risk increases with age, and is exaggerated after menopause (e.g. in people with 95 

NAFLD aged 60 years, the CVD risk in women is 18% vs 9% in men).26  96 

In this review, we summarize factors contributing to the development and progression 97 

of NAFLD in women and in specific population groups. We aim to raise awareness of 98 

NAFLD in women, highlight areas for future research to address gaps in knowledge of 99 

underlying pathophysiological mechanisms, and management of this complex 100 

condition. 101 

 

Search strategy and selection criteria  102 

A literature search was performed to identify studies investigating NAFLD/NASH in 103 

women, published up to November 2022. Original research and review articles were 104 

identified through searches in the PubMed database, Scopus database, Ovid Medline, 105 

Ovid EMBASE, limited to articles published in the English language. We included 106 

basic science studies, randomized controlled trials, reviews, original prospective 107 

studies, cross-sectional studies, retrospective studies and best practice guidelines using 108 

different combinations of the following search terms: “fatty liver” OR “non-alcoholic 109 
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fatty liver disease” OR “NAFLD” OR “steatohepatitis” OR “NASH” OR “liver 110 

fibrosis” OR “liver disease” OR “liver cancer” AND “women” OR “gender” OR 111 

“female” OR “sex difference” OR “reproductive age” OR “premenopausal women” OR 112 

“postmenopausal women”. For effects of hormones on NAFLD, we used the search 113 

terms: “androgens” OR “estrogens” OR “oestrogens” OR “testosterone” OR “sex 114 

hormones” OR “sexual dimorphism” OR “menopause” OR “hormone replacement 115 

therapy” AND “NAFLD” OR “NASH” OR “steatohepatitis” OR “liver fibrosis”. For 116 

effects of NAFLD in specific population groups, we use a combination of search terms 117 

including “NAFLD in Polycystic Ovary Syndrome”, “NAFLD in Turner syndrome”.  118 
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Reproductive hormones and NAFLD  119 

ESTROGENS  120 

Estrogens play important roles in regulating lipogenesis and fatty acid oxidation. 121 

Ovariectomised female rats had a 51% increase in hepatic lipogenesis and a 34% 122 

reduction in fatty acid oxidation27 due to decreased synthesis of peroxisome 123 

proliferator-activated receptor α (PPARα, a regulator of fatty acid oxidation) and 124 

upregulation of the genes encoding sterol regulatory element-binding protein 1 125 

(SREBP-1, a nuclear transcription factor that promotes lipid synthesis).27 Additionally, 126 

stearoyl coenzyme A desaturase 1 (SCD1, the rate-limiting enzyme in triglyceride 127 

synthesis) is upregulated.28 128 

The metabolic actions of estrogens are typically attributed to classical estrogen 129 

receptor-α (ERα) signalling.29 Both male and female ERα knockout mice exhibit 130 

upregulation of lipogenic (SREBP-1 and fatty acid synthase or FAS) and adipogenic 131 

(PPARγ and lipoprotein lipase) genes, a process that is reversed by ERα agonist 132 

treatment.27,28 Mice lacking G-protein coupled estrogen receptor (GPER) and mice with 133 

liver ERα-knockout (LERKO) exhibit similar metabolic phenotypes including higher 134 

body weight and increased visceral adiposity.30,31 Female, but not male, GPER-135 

knockout mice fed a high fat diet display lower levels of high-density lipoprotein 136 

(HDL)-cholesterol and greater liver fat accumulation compared to controls.31 This 137 

suggests that both ERα and GPER pathways are important for hepatic and whole-body 138 

lipid homeostasis and contribute to sexual dimorphism in NAFLD.  139 

Estrogens also influence reverse cholesterol export, i.e. the process by which peripheral 140 

cholesterol is returned to the liver.32 In LERKO mice, hepatic low-density lipoprotein 141 

(LDL) receptors are reduced by ~18 to 22%32 and hepatic expression of PDZK1 protein 142 

(which plays a role in HDL cholesterol uptake) is reduced by 22% and 33% in male 143 
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and female mice, respectively.32 Loss of ERα reduces cholesterol efflux from foam cells 144 

into HDL particles in female and male LERKO mice.32 Thus, estrogen deficiency 145 

disrupts the molecular machinery involved in hepatic lipogenesis and adipogenesis. 146 

Consistent with these findings, progression from pre- to post-menopause is 147 

independently associated with an increase in total cholesterol and LDL cholesterol in 148 

women aged between 47 and 55 years.33 This may contribute to the higher prevalence 149 

of NAFLD in post-menopausal women.  150 

Interactions between estrogens and glucagon may be important in the pathogenesis of 151 

NAFLD. Glucagon promotes hepatic lipolysis and suppresses de novo lipogenesis. 152 

Glucagon levels have been observed to be inversely associated to NAFLD 153 

progression.34 Attenuation of glucagon receptor signalling is also proposed to increase 154 

the risk of NAFLD.35 Furthermore, in NAFLD, expression of the glucagon receptor 155 

gene and the function of the glucagon protein may be impaired, resulting in glucagon 156 

resistance.34,36 In vitro studies have shown that physiological levels of estrogen can 157 

inhibit glucagon secretion via binding to the GPR30 estrogen receptor37, and  estradiol-158 

mediated inhibition of glucagon release is attenuated by deletion of GPR30 receptors.38 159 

Ovariectomy has also been shown to increase circulating glucagon in rodents37,39 and 160 

glucagon levels are suppressed by estradiol treatment.37,40  These data suggest estrogen 161 

deficiency would be predicted to have beneficial effects in NAFLD via increased 162 

glucagon levels. However, estrogen deficiency has detrimental effects as described 163 

above. Therefore, the roles of estrogen (and estrogen deficiency) in the development 164 

and progression of NAFLD require further study.  165 

 

ANDROGENS 166 
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Prenatal exposure of female rodents to androgens disrupts the balance between 167 

enzymes involved in lipogenesis (SREBP, PPAR and carbohydrate-responsive 168 

element-binding protein or ChREBP) and lipolysis.41 In young adult ewes, prenatal 169 

exposure to androgens downregulates hepatic PEPCK and causes hepatic insulin 170 

resistance.42 Upregulation of expression of other hepatic metabolic genes including 171 

mitogen activated protein kinase 4 (a pro-inflammatory protein involved in ceramide 172 

signalling), UDP-glucose ceramide glucosyltransferase (involved in ceremide 173 

metabolism) and acyl-coenzyme A dehydrogenase (involved in lipid metabolism) also 174 

occurs, further exacerbating liver damage.42  175 

The effects of androgens in animal models could be mediated by changes in body 176 

adiposity/composition exacerbated by a high fat diet43 and/or via changes in 177 

transcriptional activity of gluconeogenic genes.44 Postnatal exposure of female rodents 178 

to dihydrotestosterone (DHT) induces hepatic steatosis, insulin resistance and 179 

recapitulates the reproductive phenotype of PCOS.45 In normal weight female mice, 180 

low dose DHT upregulates SREBP cleavage activating protein (SCAP) and SREBP-1, 181 

which promotes FAS and acetyl-CoA carboxylase expression, resulting in hepatic 182 

steatosis.46 In DHT-exposed female rats, NASH may develop via activation of NF-κB 183 

signalling, enhanced expression of pro-inflammatory cytokines (IL-6, IL-1β, and TNFα) 184 

and an increase in pro-apoptotic markers.47 Cumulatively, prenatal or postnatal 185 

androgen exposure appears to increase the risk of NAFLD development and 186 

progression by increasing lipogenesis and pro-inflammatory mediators. 187 

 

Factors contributing to the development and progression of NAFLD in women  188 

AGE OF MENARCHE 189 
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Earlier onset of menstruation (i.e. age of menarche <12 years) has been associated with 190 

increased risk of cardiometabolic disease in post-menopausal women.48 In the 191 

CARDIA study, earlier menarche by 1 year conferred a 10% increased risk of NAFLD 192 

(diagnosed using CT scans) in adulthood independent of socio-economic factors and 193 

baseline BMI.48 Early menarche is often preceded by rapid accumulation of fat during 194 

childhood, a physically less active lifestyle and/or behavioural factors that could also 195 

increase the risk of the metabolic syndrome.49 Therefore, other factors such as obesity, 196 

insulin resistance or a hyperandrogenic phenotype (such as in PCOS)50 may interact 197 

with early menarche to confer an additional risk of developing NAFLD (Figure 1). 198 

 

MENOPAUSAL STATUS  199 

Estradiol, being the most abundant circulating female reproductive hormone, plays 200 

important roles in the regulation of lipid and glucose metabolism in hepatic and adipose 201 

tissues. In pre-menopausal women, estradiol is predominantly secreted by the ovaries.51 202 

However, after menopause51, ovarian estrogen secretion ceases and circulating estradiol 203 

levels decline to a mean value of ~10pmol/L52, but low quantities are still produced by 204 

non-ovarian tissues.51,53 The decline of circulating estradiol during natural menopause 205 

is associated with increased risk of NAFLD, type 2 diabetes, central adiposity and 206 

hypertriglyceridemia.54  207 

In a cross-sectional study involving 541 people with biopsy-proven NASH55, advanced 208 

fibrosis was more prevalent in post-menopausal women (27∙6%) compared to men 209 

(22∙2%) and pre-menopausal women (14∙4%).55 Women over the age of 50 years have 210 

increased odds of advanced fibrosis  (OR 1∙8, 95% CI 1∙2-2∙7) even after adjustment 211 

for covariates (enrolling site, ethnicity, degrees of portal inflammation).55 The risk of 212 

severe fibrosis remained elevated in lean post-menopausal women with NAFLD 213 
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compared to lean pre-menopausal women with NAFLD (OR 2∙17, 95% CI 1∙1-4∙5).56 214 

This suggests that menopause is associated with severe fibrosis that is, in part, 215 

independent of age or body fat composition. 216 

Women who have undergone oophorectomy have an increased risk of NAFLD 217 

compared to pre-menopausal women who have not undergone oophorectomy.57 In fact, 218 

a stronger association was observed in women who underwent oophorectomy before 219 

the age of 45 years.57 Similarly, women with premature menopause prior to the age of 220 

40 years have a 90% increased risk of severe fibrosis on histology compared to women 221 

who went through menopause after 40 years.58 Conceivably, the duration of estradiol 222 

deficiency contributes significantly to post-menopausal hepatic fibrosis risk.  223 

 

HORMONE REPLACEMENT THERAPY 224 

The role of hormone replacement therapy (HRT) in preventing the development and/or 225 

progression of NAFLD remains unclear. A randomised double-blind study comparing 226 

women with type 2 diabetes on oral HRT (1 mg estradiol plus 0∙5 mg norethisterone) 227 

to those on placebo for 6 months showed that women on HRT (n=19) had reduced 228 

circulating concentrations of liver enzymes compared to the placebo group (n=23).59  A 229 

South American study reported that post-menopausal women on HRT (dose and type 230 

of hormones not specified) for at least 6 months (n=14) had lower waist circumference, 231 

lower HOMA-IR index, lower ferritin levels (a surrogate marker of parenchymal 232 

inflammation) and lower γ-glutamyl transferase when compared with women not 233 

taking HRT (n=79).60 However, improvement in liver biochemistry may not reflect 234 

improvement in liver histology. Thus, the same group of researchers assessed frequency 235 

of NAFLD diagnosed by abdominal ultrasound and reported a lower frequency of 236 

NAFLD in women taking HRT (14/53, 26∙4%) compared with women not taking HRT 237 
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(79/198, 39∙9%) irrespective of the type of HRT, duration of use and route of 238 

administration.61  239 

However, other studies did not report reduction in the risk of NAFLD62 or severe 240 

hepatic fibrosis amongst post-menopausal women taking HRT.55 One study 241 

demonstrated an increased risk of severe lobular inflammation with HRT use in post-242 

menopausal women and oral contraceptive use in pre-menopausal women.63 Details of 243 

the types, routes of administration and doses of oestrogens (and progestins) and their 244 

differential effects on the risk of severe inflammation, were not reported. Future studies 245 

are indicated to investigate the impact of synthetic estrogens and progestins on the 246 

natural history of NAFLD and/or NASH in post-menopausal women.   247 

 

SELECTIVE ESTROGEN RECEPTOR MODULATORS 248 

Selective estrogen receptor modulators (SERMs, e.g. tamoxifen) are agents that elicit 249 

tissue-specific estrogen receptor agonist or antagonist activity. Women treated with 250 

tamoxifen have a higher prevalence of NAFLD and an increased risk of progression to 251 

NASH and advanced fibrosis.64 The mechanisms by which tamoxifen influences 252 

NAFLD risk remain unclear. In vitro, genes involved in lipogenesis and fatty acid 253 

synthesis (e.g. SREBP-1c, FAS, SCD1 and acetyl coenzyme A carboxylase) are 254 

upregulated after treating HepG2 cells with tamoxifen.65 Obese female Wistar rats who 255 

were fed a high-fat diet for 15 weeks and then given tamoxifen for 2 weeks were 256 

observed to have increased hepatic lipid synthesis and decreased triglyceride export.66 257 

This was associated with a marked downregulation of salient information regulator 1 258 

(SIRT1) and upregulation of p-FoxO1/LXRα-SREBP1c signalling leading to increased 259 

hepatic steatosis.66 Administration of a SIRT1 agonist inhibited the promotion of 260 
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tamoxifen-induced lipid synthesis, suggesting that SIRT1 is a regulator of tamoxifen- 261 

induced fatty liver disease.66  262 

In addition, tamoxifen-treated ovariectomized C57BL6/J female mice are protected 263 

from HFD-induced steatosis via selective activation of ERα-activating factor1 (ERα-264 

AF1).67 This contradicts findings from a previous study indicating that protective 265 

metabolic actions of estradiol are mediated mostly via ERα-AF2.67  It is likely that there 266 

is redundancy in the ERα-AF1 and ERα-AF2 systems or the effects of tamoxifen may 267 

differ depending on the tissue type.67 More mechanistic studies are needed to elucidate 268 

the influence of SERMs on NAFLD. More importantly, targeting liver ERα-AF1 or 269 

SIRT1 are potential future strategies to mitigate against the development and 270 

progression of NAFLD.  271 

 

TURNER SYNDROME 272 

Turner syndrome (TS) is a sex-chromosome disorder in females caused by an abnormal 273 

or absent X chromosome.68 Women with TS have a 4∙4-fold increased risk of type 2 274 

diabetes69, and a 5.5-fold increased risk of developing liver cirrhosis.69 Histological 275 

evidence of nodular hyperplasia, NAFLD and cirrhosis have been described in women 276 

with TS.70 Elevated liver enzymes were found in ~50% of women with TS (n=125).71 277 

Of the 21 women who had Fibroscans, liver stiffness measurements suggestive of 278 

fibrosis were reported in 38%71 and liver architecture changes were found in the 11 279 

women who consented for biopsy.71 Compared to age-matched eugonadal women or 280 

estradiol-treated women with premature ovarian insufficiency, women with TS have 281 

higher waist circumference, elevated BMI, increased IL-6 and triglyceride levels.72  282 

Women with TS also have increased intrahepatocellular lipid content, which is 283 

correlated to duration of estrogen deficiency.73 Although larger studies are needed to 284 
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explore the relationship between estradiol and metabolic risk, these data suggests a role 285 

for estrogen deficiency in promoting hepatic steatosis and insulin resistance in this 286 

context. 287 

It is difficult to disentangle the contributions of gonadal hormones from that of sex 288 

chromosomes in patients with Turner syndrome. In the four core genotype model (FCG 289 

mice in which sex chromosomes are unrelated to gonadal sex), mice with one X 290 

chromosome had reduced body weight compared to XX mice.74 By contrast, women 291 

with one X chromosome have higher body weight and increased risks of developing 292 

metabolic disease than women with two X chromosomes.75 Although low levels of sex 293 

hormones contribute to the increased risk of developing metabolic disease, imprinting 294 

of X-linked genes may also contribute to metabolic dysregulation in Turner 295 

syndrome.76 Depending on the parental origin of the X chromosome, imprinting of 296 

maternally transmitted X-linked genes in patients with TS has been shown to prevent 297 

visceral fat accumulation whereas imprinting of paternally transmitted X-linked genes 298 

promoted higher triglyceride and lipid levels.76 The rarity of sex chromosome 299 

aneuploidies presents challenges in determining the relative contributions of reduced 300 

numbers of sex chromosomes and hypogonadism in the development of NAFLD in 301 

women with TS. However, the FCG mouse model may help advance our understanding 302 

of these two contributing factors.  303 

 

POLYCYSTIC OVARY SYNDROME (PCOS) 304 

PCOS affects up to 13% of women of reproductive age and is characterised by 305 

ovulatory dysfunction, hyperandrogenism and/or polycystic ovarian morphology.77 306 

Women with PCOS have increased prevalence of NAFLD compared to age-, BMI- and 307 

waist circumference-matched women without PCOS.78 This excess risk is also present 308 

Jo
urn

al 
Pre-

pro
of



15 
 

in lean women (BMI <25kg/m2) with PCOS.79 A concerning finding is the higher 309 

prevalence of biopsy-proven NASH in women with PCOS younger than 40 years.80  310 

Hyperandrogenism is associated with increased NAFLD risk in women with PCOS. In 311 

a retrospective study involving 63,210 women with PCOS, serum testosterone levels 312 

>3∙0 nmol/L were associated with an increased risk of NAFLD (HR 2∙30, 95% CI 1∙16–313 

4∙53).79 Liver fat is greater in hyperandrogenic women with PCOS compared to normo-314 

androgenic women with PCOS after correcting for visceral adiposity and BMI.81 315 

Consistent with these findings, a cross-sectional study of 400 Chinese women with 316 

PCOS concluded that the risk of NAFLD increases with free androgen index, which is 317 

a surrogate measure of androgen bioavailability.82 Notably, excess androgens are 318 

associated with increased risk of developing NAFLD in women, independent of obesity 319 

and insulin resistance.82 Women with hyperandrogenic PCOS also had higher 320 

circulating levels of glycerophospholipids and lysoglycerophospholipids which are 321 

potential biomarkers of NASH.83 Intra-adipose androgen generation by enzyme aldo-322 

ketoreductase type 1C3 was increased in subcutaneous adipose tissue (SAT) of women 323 

with PCOS resulting in lipotoxicity and predisposing women with hyperandrogenic 324 

PCOS to liver injury.84 Although a causative role for androgens has not been proven, 325 

these association studies suggest a potential use for anti-androgens in treating women 326 

with PCOS and NAFLD.  327 

 

BODY FAT DISTRIBUTION 328 

Sex-specific body fat distribution influences an individual’s predisposition to 329 

cardiometabolic complications independent of body weight or body fat percentage.85 330 

Compared to age- and BMI-matched men, pre-menopausal women typically have 331 

greater SAT mass in the abdominal86 and femoral-gluteal areas.87 By contrast, men have 332 
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a higher percentage of visceral adipose tissue (VAT), 10-20% in men vs 5-8% in 333 

women.88 Given the higher VAT in men, men have a greater ability to dispose meal-334 

derived free fatty acids (FFA) in VAT which results in higher liver fat disposal (Figure 335 

2).89 Excess FFA released into the bloodstream predisposes to lipotoxicity and 336 

increased lipid uptake by liver, pancreas or muscle.90 This overflow of FFA to liver 337 

could lead to increased cellular levels of ceramides, long chain fatty acyl-coenzyme A 338 

and pro-inflammatory processes causing chronic low-grade inflammation.90,91 339 

Unsurprisingly, people with increased VAT mass are more insulin resistant, have 340 

impaired glucose metabolism and are more likely to develop NAFLD.92 Indeed, a 341 

prospective study showed rising incidence of NAFLD based on ultrasound and CT 342 

imaging with increasing quartiles of VAT (17∙1%, 18∙1%, 25∙2% and 34∙4%, 343 

respectively) in both men and women after a median follow-up of 4∙4 years.93 By 344 

contrast, individuals with the highest quartile of SAT are more likely to be at lower risk 345 

of developing NAFLD (HR 2∙30, 95%CI 1∙28–4∙12) compared to individuals with the 346 

lowest quartile of SAT.93 347 

Prior to menopause, women accrue more fat in SAT, which protects them from the 348 

negative consequences of the metabolic syndrome.94 As women transition through 349 

menopause, both SAT and VAT increase but VAT expands more at the onset of 350 

menopause and then plateaus at a higher set-point after menopause.94  351 

During menopause, changes in SAT and VAT metabolism also results in alterations in 352 

in body fat distribution.95 Although premenopausal and postmenopausal women retain 353 

similar sensitivity and responsiveness to sympathetic activation by beta-adrenergic 354 

agonists, adipose tissue basal lipolysis rate is reduced and lipoprotein lipase activity 355 

(which promotes hydrolysis of circulating TG to FFA) is enhanced in the gluteal and 356 

abdominal adipose tissues of postmenopausal women.96 Compared to premenopausal 357 
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women, expression of FAS is reduced in the SAT of postmenopausal women by 61%95, 358 

whereas PPARγ expression is increased in VAT by 83%.95 The increased PPARγ 359 

expression in VAT may reflect a compensatory attempt to curtail the need for increased 360 

lipid storage, as VAT accumulation correlates with features of insulin resistance.95 361 

Interestingly, thiazolidinediones (PPARγ agonists used to treat type 2 diabetes), may 362 

promote a redistribution of SAT and a lower expression of transcriptional genes for 363 

VAT, suggesting an effect on adipose tissue depot-specific regulation.97 However, their 364 

unfavourable safety profile (e.g. increased risks of atypical humeral fracture and 365 

bladder cancer) limits their use in clinical practice. Changes in adipose tissue 366 

metabolism, coupled with preferential fat accumulation in VAT during menopause 367 

(Figure 1) predispose women to increased cardiometabolic risk.98  368 

Estrogen levels correlate positively with percentage of SAT and negatively with 369 

visceral fat accumulation in pre-menopausal women.98 Estrogen treatment decreases 370 

insulin resistance by ~50% and decreases abdominal visceral adiposity in post-371 

menopausal women and ovariectomized female animal models.99,100 Estrogen also 372 

reverses the increase in hepatic triglyceride content caused by diet-induced obesity in 373 

LERKO mice.101 Evidently, estrogens play a role in insulin sensitivity and glucose 374 

homeostasis in women in addition to promoting fat accumulation in SAT and modifies 375 

the risks of NAFLD progression.  376 

 

MUSCLE QUALITY AND QUANTITY 377 

Sarcopenia is defined as generalised progressive loss of skeletal muscle mass, muscle 378 

function and muscle strength.  Meta-analyses have shown that the risks of NAFLD and 379 

NASH are increased by 1∙5 to 2∙5-fold among individuals with sarcopenia.102,103 380 

Furthermore, among individuals with NAFLD, sarcopenia is independently associated 381 
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with hepatic fibrosis after adjusting for obesity and insulin resistance (OR 2∙59, 95% 382 

CI 1∙22-5∙48).104 Coexistence of sarcopenia and NAFLD doubles mortality risk, 383 

independent of fibrosis stage.105 It remains unclear if NAFLD directly contributes to 384 

sarcopenia or sarcopenia causes NAFLD.  385 

Skeletal muscle is a major site of insulin-stimulated glucose uptake.106 Ageing results 386 

in loss of muscle mass and reduction in type 2 (fast-twitch) muscle fibres (by ~10 to 387 

14% per decade).106 Fast-twitch muscles depend on glycolysis for energy production107, 388 

and the gradual reduction in fast-twitch muscle during ageing results in reduced 389 

dependence on cytosolic glycolytic processes for glucose disposal.106 Mitochondrial 390 

bioenergetics are also altered with ageing. Reduced expression of gene regulators, such 391 

as PPARγ coactivator (PGC)-1α in aged skeletal muscles suppresses AMP-activated 392 

protein kinase, SIRT1 and mitogen-associated protein kinase (p38 MAPK).108 393 

Suppression of SIRT1 limits oxidative capacity and lipid metabolism leading to 394 

hyperlipidaemia, dysregulated glucose metabolism, hyperinsulinemia and insulin 395 

resistance.109  396 

Ectopic fat accumulation in the muscles (myosteatosis) can be a consequence of insulin 397 

resistance and perpetuate NAFLD. Severe myosteatosis is associated with a 2- to 3-fold 398 

increased risk of early NASH in patients with NAFLD.110 In a recent study, the fat 399 

content in psoas skeletal muscle (measured by a parameter known as skeletal muscle 400 

fat index) was observed to be higher in individuals with NASH and advanced fibrosis 401 

(≥F3) than in those with NASH and early stages of fibrosis (F1 to F2).111 Myosteatosis 402 

promotes endoplasmic reticulum stress, which in turn impairs mitochondrial 403 

function.112 Furthermore, myosteatosis contributes to reduced skeletal muscle protein 404 

synthesis stimulated by anabolic hormones (insulin, estradiol and testosterone).112 405 
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Estradiol reduction during menopause further promotes proteolysis, reduction in lean 406 

mass, and increased fat mass.112 407 

Mechanisms underlying the manifestation of sarcopenia are likely to be multifactorial. 408 

Although low estradiol levels may play a potential role in decline in muscle mass in 409 

women after the age of 50 years old, evidence elucidating the contribution of 410 

menopause to sarcopenia remains unclear. Some studies have reported an accelerated 411 

decline in muscle mass in women during menopausal transition.113,114 Samson et al. 412 

observed a decline in isometric knee extensor strength (IKES) and handgrip strength 413 

(HGS) by 40.2% and 28% in elderly women 55 to 80 years old whereas the decrease in 414 

IKES and HGS was 10.3% and 8.2% in women 20 to 55 years old.113 By contrast, the 415 

decline in IKES and HGS was 23% and 17.4% in men 55 to 80 years old but in the 416 

younger men between age 20 to 55 years old, decline in IKES and HGS were 24% and 417 

19.6%, respectively.113 A 20% reduction in maximum voluntary force of the adductor 418 

pollicis (by ~20%) has also been seen around the time of menopause in women 419 

followed by little change after that, whereas in men (n=176), muscle force was 420 

maintained before weakness started at age of 60 years.114 In the same study, women 421 

receiving HRT had attenuated loss of muscle force, suggesting a possible role of 422 

estrogens in preventing loss of muscle strength and weakness.114 However, other 423 

studies did not find any differences in the rate of decline of height adjusted appendicular 424 

skeletal muscle mass between males and females before the age of 60 years old.115 425 

The fluctuation of estradiol during the menstrual cycle (estrus cycle in rodents) also 426 

does not seem to affect the muscle strength, fatiguability or power performance of 427 

young female athletes (n=29)116 or rodents.117 Evidence to support the impact of 428 

menopause on muscle strength and muscle mass independent of ageing are equivocal 429 

and further research is needed to specify the contribution of menopause to sarcopenia. 430 

Jo
urn

al 
Pre-

pro
of



20 
 

Nevertheless, sarcopenia and NAFLD remain closely linked with each entity increasing 431 

the risk of the other (Figure 2), resulting in cardiometabolic complications and the 432 

effects of the menopause could potentially increase this risk.  433 

 

Areas of Focus in Clinical Practice 434 

DIAGNOSIS 435 

Despite the high prevalence of NAFLD, diagnostic and management approaches in 436 

clinical practice are variable. This is partly due to low rate of recognition of NAFLD 437 

among non-hepatology specialists118 and delayed referral of patients at risk of advanced 438 

liver disease to specialists for evaluation and care.118 Even more worryingly, data 439 

collected from 102 countries revealed that at least 31% of the countries surveyed do not 440 

have any national guidance, strategies or action plans in place to address the increasing 441 

prevalence of NAFLD.119  442 

Due to the lack of data on cost-effectiveness and value of non-invasive liver tests, 443 

screening for NAFLD in the general population is currently not recommended.120–124 444 

American and Asia-Pacific guidelines advise adopting a high index of suspicion to 445 

investigate for presence of NAFLD in high-risk individuals.122,124,125 European and 446 

Latin-American guidelines offer more specific recommendations and suggest screening 447 

in patients with persistently elevated liver enzymes, in people with metabolic 448 

syndrome, in type 2 diabetes and/or obesity (BMI ≥30kg/m2).6,120 Risk prediction tools 449 

such as the Fibrosis-4 score, NAFLD fibrosis score or Enhanced Liver Fibrosis score, 450 

and transient elastography are recommended as next step in identifying patients at risk 451 

of advanced fibrosis and cirrhosis, as these patients should be referred to a hepatologist 452 

for specialist management.126 However, these prediction tools do not consider the 453 

effects of sex, ethnic heritage and hormonal status on liver-related outcomes. 454 
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Reassuringly, sex does not influence the likelihood of unreliable liver stiffness 455 

measurements assessed by vibration-controlled transient elastography.127  456 

 

LIFESTYLE INTERVENTIONS 457 

Current management is focused on optimising associated co-morbidities including 458 

diabetes, hypertension, hyperlipidaemia, and reducing cardiovascular risk by 459 

encouraging smoking cessation and prescribing lipid lowering medication. Data from 460 

Korea suggest that women (but not men) with NAFLD have an increased risk of 461 

cardiovascular and liver-related mortality.128 By contrast, data from America indicate 462 

that men with NAFLD have an increased risk of death from cancer and cardiovascular 463 

causes compared to women.129,130 Therefore, more data are required before 464 

recommending sex-specific risk factor reduction. 465 

Lifestyle modification remains the initial step in the management of NAFLD. Physical 466 

activity exceeding 150 minutes/week decreases serum aminotransferase levels.122–467 

124,131 Reducing calories by 750-1000kcal/day improves insulin resistance and hepatic 468 

steatosis.122–124,131  Weight loss of at least 5% of body weight reduces hepatic steatosis 469 

but greater weight loss of ≥7%-10% improves NASH.122–124,131 However, in women, 470 

≥7-10% weight loss has a lower probability of NASH resolution, highlighting a need 471 

for sex-specific weight loss targets.132 Additionally, the optimal amount of weight loss 472 

required to produce beneficial effects in NAFLD in post-menopausal women is not 473 

known. Furthermore, weight loss interventions that preserve or increase muscle mass133 474 

may have added benefits.  475 

 

THERAPEUTICS 476 

There are currently no licensed medications for the treatment of NAFLD. Vitamin E 477 

and pioglitazone have been recommended in some guidelines.122–124 Vitamin E has been 478 

Jo
urn

al 
Pre-

pro
of



22 
 

demonstrated to have beneficial effects on liver transaminases, hepatic steatosis, 479 

lobular inflammation and hepatocellular ballooning.134 However, sex-specific 480 

outcomes were not reported in this meta-analysis134, nor in the individual studies 481 

included in the meta-analysis.135,136 Furthermore, long-term high-dose Vitamin E use 482 

may increase the risk of heart failure137 and prostate cancer.138 Therefore, sex-specific 483 

analyses of treatment responses and adverse events are required as the risk-benefit ratio 484 

of Vitamin E use in NAFLD may differ between men and women.   485 

Pioglitazone, a PPARγ activator, improves insulin sensitivity and attenuates 486 

inflammation and fibrosis in patients with and without diabetes with biopsy-proven 487 

NASH, but weight gain, fluid retention and increased risk of bone fractures are 488 

commonly-occurring adverse effects that limit its use.122–124 Interestingly, women with 489 

NAFLD and pre-diabetes or type 2 diabetes treated with pioglitazone have greater 490 

reductions in liver fat content than men with similar co-morbidities.139 This may be due 491 

to a greater reduction in insulin resistance by pioglitazone in women compared to 492 

men.139 Until further data are available, both Vitamin E and pioglitazone are not 493 

recommended for patients without biopsy-proven NASH. 122–124  494 

Reproductive hormones impact the risk of NAFLD development and progression in 495 

women. However, current evidence is insufficient to recommend HRT as a treatment 496 

for NAFLD in post-menopausal women. In a small study that included men and women 497 

with NAFLD, combination treatment with spironolactone (which has anti-androgenic 498 

effects) and Vitamin E reduced hepatic fat scores after 52 weeks of treatment.140 Sub-499 

analyses by sex were not reported in this study. In women with PCOS, spironolactone 500 

use has been shown to improve insulin resistance and lipid levels.141 Whether the anti-501 

androgen effect of spironolactone would modify the risk of developing NASH in 502 

women with PCOS remains to be explored. As current management options for 503 
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NAFLD are limited, patients should be offered the opportunity to participate in research 504 

as they may benefit from early access to emerging therapies. 505 

 

Future Directions and Conclusions 506 

While several medications have failed to demonstrate an improvement in clinical trials 507 

endpoints, there are still promising agents in the pipeline for the treatment of 508 

NAFLD142. In addition, reproductive hormone receptor agonists involved in hepatic 509 

steatosis, inflammation and/or fibrosis, such as the kisspeptin receptor143 and estrogen-510 

related receptor α144, are being developed as potential therapeutic agents. Data from 511 

large-scale studies like DAISY-PCOS (Dissecting Androgen excess and metabolic 512 

dysfunction – an Integrated Systems approach to PCOS) may advance our 513 

understanding of the influence of androgens on NAFLD and offer tailored management 514 

strategies in women.  515 

In conclusion, management of women with NAFLD should take into consideration their 516 

risk profiles, hormonal status, age and metabolic factors.  Evidence-based data on the 517 

influence of sex on biomarker sensitivity and/or sex-specific prediction models are 518 

needed. A better understanding of the influence of reproductive hormones on NAFLD 519 

and reporting of sex-based responses to therapeutic interventions could lead to the 520 

development of beneficial personalised management approaches in women.  521 
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Figure legends 522 

Figure 1: Changes occur in adipose tissue, liver and skeletal muscle during the 523 

menopause that have detrimental metabolic effects. These may contribute to the 524 

increased prevalence of metabolic conditions in postmenopausal women. 525 

 

Figure 2: Interactions between adipose tissue, muscle and liver contribute to the 526 

development and progression of Non-alcoholic Fatty Liver Disease (NAFLD) in 527 

women. Adipokines and myokines (such as myostatin) mediate adipose tissue-muscle 528 

interactions. Ageing and the menopause (i.e. estrogen deficiency) increase visceral 529 

adipose tissue (VAT) depots and reduce muscle mass and quality. Expanded VAT 530 

depots increase free fatty acid (FFA) delivery to the liver, which has detrimental effects. 531 

These alterations in body composition contribute to insulin resistance, hyperglycaemia 532 

and/or hyperlipidaemia, with consequent development and progression of NAFLD. 533 
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