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Abstract

Diabetes is a chronic disease that is characterised by a lack of regulation of blood

glucose concentration in the body, and thus elevated blood glucose levels. Conse-

quently, affected individuals can experience extreme variations in their blood glucose

levels with exogenous insulin treatment. This has associated debilitating short-term

and long-term complications that affect quality of life and can result in death in

the worst instance. The development of technologies such as glucose meters and,

more recently, continuous glucose monitors have offered the opportunity to develop

systems towards improving clinical outcomes for individuals with diabetes through

better glucose control. Data-driven methods can enable the development of the next

generation of diabetes management tools focused on i) informativeness ii) safety and

iii) easing the burden of management. This thesis aims to propose deep learning

methods for improving the functionality of the variety of diabetes technology tools

available for self-management.

In the pursuit of the aforementioned goals, a number of deep learning methods are

developed and geared towards improving the functionality of the existing diabetes

technology tools, generally classified as i) self-monitoring of blood glucose ii) decision

support systems and iii) artificial pancreas. These frameworks are primarily based

on the prediction of glucose concentration levels.

The first deep learning framework we propose is geared towards improving the artifi-

cial pancreas and decision support systems that rely on continuous glucose monitors.

We first propose a convolutional recurrent neural network (CRNN) in order to fore-

cast the glucose concentration levels over both short-term and long-term horizons.

The predictive accuracy of this model outperforms those of traditional data-driven

approaches. The feasibility of this proposed approach for ambulatory use is then

demonstrated with the implementation of a decision support system on a smart-

phone application. We further extend CRNNs to the multitask setting to explore

the effectiveness of leveraging population data for developing personalised models

with limited individual data. We show that this enables earlier deployment of ap-

plications without significantly compromising performance and safety.
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The next challenge focuses on easing the burden of management by proposing a

deep learning framework for automatic meal detection and estimation. The deep

learning framework presented employs multitask learning and quantile regression to

safely detect and estimate the size of unannounced meals with high precision. We

also demonstrate that this facilitates automated insulin delivery for the artificial

pancreas system, improving glycaemic control without significantly increasing the

risk or incidence of hypoglycaemia.

Finally, the focus shifts to improving self-monitoring of blood glucose (SMBG) with

glucose meters. We propose an uncertainty-aware deep learning model based on a

joint Gaussian Process and deep learning framework to provide end users with more

dynamic and continuous information similar to continuous glucose sensors. Conse-

quently, we show significant improvement in hyperglycaemia detection compared to

the standard SMBG.

We hope that through these methods, we can achieve a more equitable improvement

in usability and clinical outcomes for individuals with diabetes.
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‘Doubt is the key to knowledge.’

Persian Proverb
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Chapter 1

Introduction

Diabetes is a chronic metabolic disease where the regulation mechanism of blood

glucose concentration is compromised. As a result, affected people experience large

variations in their blood glucose profile. This is typically characterised by persistent

high blood glucose concentration (hyperglycaemia). The areas of primary concern

include extended periods of hyperglycaemia, as well as extended periods of low blood

glucose concentration (hypoglycaemia). These periods are generally referred to as

adverse glycaemic events and are associated with worsening quality of life.

As one of four major non-communicable diseases, addressing challenges diabetes is a

pressing endeavour in modern public health. Globally, it is estimated that over 400

million people are living with diabetes today [5]. This represents an increase from

1980 where the incidence of diabetes was 108 million to today, and is projected to

increase further to 700 million in 2045 [6]. In addition, this increase is geographically

distributed in unequal degrees, with a larger percentage increase in low- and middle-

income countries (LMICs) which compounds the complexity of solutions to address

this issue [6, 5].

The increasing trend in incidence of diabetes imposes a burden on global healthcare.

Consequently, this calls for the introduction and democratisation of technology that

is geared towards enabling long-term self-management of diabetes.
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1.1 Motivation

Diabetes technology can be defined collectively as the constellation of hardware

and software that empower people with diabetes to self-manage their condition,

from blood glucose levels to informing lifestyle decisions [7]. Some of these devices

include glucose meters, continuous glucose monitors (CGM), insulin pens, insulin

pumps, and combined systems such as the artificial pancreas.

Studies in the literature on the application of diabetes technology have indicated

that self management of diabetes is critical in maintaining a high standard in the

quality of life of people with diabetes. The primary method of diabetes management

is glucose control [8]. This is mainly carried out through self-monitoring of blood

glucose (SMBG), where users prick their finger with a lancet and insert a blood

sample in a glucose meter to obtain a blood glucose reading [9]. This gives a snapshot

of the users’ glucose profile and guides decision-making at particular points for

ingesting snacks to avoid hypoglycaemia or take insulin to avoid hyperglycaemia

[10]. Although SMBG method allows some management of glucose excursions, this

is sparse and irregular, limited to the few moments that the measurements can

be made, and can cause discomfort due to constant finger pricking. With this

in mind, the emergence of wearable technology has offered an alternative approach

through continuous and ambulatory monitoring which facilitates novel tools for tight

glycaemic control [8, 11, 10, 12].

Wearable devices, including continuous glucose monitors (CGM) and beyond, offer

the potential in improving diabetes management by facilitating continuous and min-

imally invasive monitoring of physiological signals. The continuous glucose monitor

represents the state-of-the art in measuring glucose concentration levels and pro-

vides regular measures at five minute intervals. In daily living, situations such as

physical activity and stress that are known to have an effect of the metabolic system

[13, 14, 15].
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The Cambrian explosion in wearable devices and the availability of smartphones

has resulted in an associated increase in the data. With the emergence of machine

learning, particularly deep learning, this data can be leveraged to develop person-

alised mobile decision support systems and artificial pancreas systems. The success

of deep learning in multiple fields (eg. computer vision, image recognition, natural

language processing, financial engineering, and wireless communication) has led to

active research in various areas of healthcare.

In the field of diabetes technology, few studies have been explored that utilise deep

learning and its complementary approaches to improve the functionality of diabetes

management tools. This improvement in diabetes technology with deep learning can

enable greater functionality and move diabetes management tools towards easing the

burden of managing diabetes.

1.2 Research Objectives

The self management of diabetes is critical in maintaining a high standard in the

quality of life of T1DM subjects. Wearable devices, such as CGM, offer the potential

in improving diabetes management by facilitating continuous and minimally invasive

monitoring of physiological signals.

The research detailed supports the thesis that deep learning approaches can leverage

the data produced from these devices in order to extend the functionality of current

diabetes management tools, and across the heterogeneous range of tools available.

This serves to provide more information to the individuals living with diabetes and

further ease the burden of managing diabetes.

This thesis mostly focuses on the diabetes population that is predominantly depen-

dent on insulin therapy in order to maintain a blood glucose concentration level

within a healthy range (euglycaemia).
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In order to achieve this outcome, the project aims to fulfil the following objectives:

1. To improve forecasting accuracy of glucose concentration levels with

continuous glucose monitors.

In the current landscape of the artificial pancreas system and decision sup-

port systems, the recommendations/control actions typically depend on cur-

rent glucose values. However, given the slow nature of subcutaneous insulin

delivery/ingested carbs this can only minimise the periods spent outside the

glycaemic target range. This objective looks at the using deep learning models

to develop personalised models for users in order to pre-empt and potentially

avoid adverse glycaemic events.

2. To leverage population data in scarce data settings to develop glu-

cose forecasting algorithms.

One of the outstanding challenges in the area of developing data-driven models

for diabetes technology is the availability of data for training personalised

models. Collection of data is generally costly and as a result can hamper

the development and early deployment of data-driven systems for diabetes

technology tools. Furthermore, generalised models trained on population data

are not as effective given the existence of inter-individual variability given

the complexity of the metabolic system. We aim to develop methods that

effectively leverage population data to develop personalised models in the face

of scarce data.

3. To develop resource efficient models to ease the burden of announc-

ing meals for improved glucose control.

Meals and snacks are a significant contributor to potential scenarios of post-

prandial hyperglycaemia in T1DM users. However, consistently having to log

meals through carbohydrate counting means that for at random moments the

participants miss logs for mealtimes or consequent snacks that AP systems are
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unable to handle the resulting PPGR. We aim to ease the burden of the user

by developing multitask learning methods of detecting and estimating unan-

nounced meals using signals from continuous glucose monitors and insulin.

This would further develop fully automated closed-loop insulin delivery, and

reduce the burden on T1DM users.

4. To develop algorithms to improve the limited information provided

through self-monitoring of blood glucose.

Given the lack of homogeneity in the landscape of diabetes technology solu-

tions, it is necessary to develop algorithms to cater to the different range of

tools available. Currently, machine learning approaches leverage continuous

glucose monitors that provide glucose level measurements at fixed intervals.

However, a large portion of people with diabetes also rely on glucose meters

that provide sparse and irregularly sampled and thus incompatible with sys-

tems that rely on continuous glucose methods. We aim to extend the current

algorithms for continuous estimation and forecasting to people with diabetes

using glucose meters.

1.3 Thesis Structure

This thesis is broadly composed of three sections that tackle improving three areas

of diabetes management as seen in Fig 1. below.
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Chapter 2: An Overview of Diabetes and Diabetes Technology

Chapter 2 gives the reader an overview of the current landscape of diabetes technol-

ogy, focusing on the wearable devices and/or algorithms that enable diabetes self-

management. This begins with background information on diabetes as a chronic

metabolic disease and challenges and complications people with diabetes face in

daily living. A review is then carried out on the sensors and devices that com-

prise state-of-the art in diabetes technology, the physiological signals and relevant

variables considered, and the examples of algorithms powering the current diabetes

management tools in use today.

Chapter 3: Deep Learning for Glucose Prediction

Chapter 3 addresses the challenge of forecasting glucose levels from continuous glu-

cose monitors. We introduce the convolutional recurrent neural network (CRNN), a

deep learning model, that automatically learns the features from multimodal signals

to provide both short- and long-term forecasts. This model is evaluated on both

synthetic and clinical datasets, and we show an improvement in performance over

traditional baseline methods. The work from this chapter is previously published in

J5 and C2 (See List of Publication in Appendix A).

Chapter 4: Multitask Learning for Personalised Glucose Prediction

Chapter 4 tackles the challenge of developing personalised deep learning models in

the presence of scarce available data. We introduce a multitask learning approach

to leverage data from other people with diabetes while maintaining personalisation.

We present results that show this approach yields better performance over compa-

rable learning strategies in scarce data settings and at both short- and long- term

prediction horizons. We also demonstrate consistent model performance in hypogly-

caemia detection with different training data sizes. This chapter is based on work



34 Chapter 1. Introduction

previously published in J4 and W1 (See List of Publication in Appendix A).

Chapter 5: Multitask Learning for Automatic Meal Detection and Esti-

mation

Chapter 5 is focused on easing the burden people with diabetes face in daily liv-

ing, particularly in tracking their carbs. Current artificial pancreas systems require

manual announcement of meals which hampers true closed-loop insulin delivery.

We develop a meal detection and estimation algorithm based on a multitask deep

learning model to detect and estimate meals. We also investigate the performance

of this approach in improving controllers towards a fully closed-loop artificial pan-

creas. This chapter is based on work previously published in J3 and C1 (See List of

Publication in Appendix A).

Chapter 6: Uncertainty-Aware Learning for Enhanced SMBG

Chapter 6 provides a solution to the challenge of improving self-monitoring of blood

glucose (SMBG) for individuals with diabetes use glucose meters instead of contin-

uous glucose monitors (CGM). This allows low-cost alternatives such as glucose me-

ters to provide continuous estimation and forecasting of glucose levels. We compare

our approach to baseline machine learning approaches used in forecasting glucose

concentration levels. Finally, the proposed approach is compared to the standard

SMBG to evaluate the improvement in adverse glycaemic event detection.

Chapter 7: Conclusion and Future Work

This chapter concludes the works presented in this thesis. The original contributions

are highlighted in the context of potential applications in diabetes technology. We

then discuss outstanding limitations with a view towards directions for future work

to overcome them.



Chapter 2

An Overview of Diabetes and

Diabetes Management Tools

2.1 Physiology of Glycaemic Feedback and Dia-

betes

In human physiology, it is essential that biochemical variables are consistently kept

in a narrow range to ensure adequate health. Homeostasis is the term that defines

”the self-regulating process by which biological systems tend to maintain stability

while adjusting to conditions that are optimal for survival” [16]. This is accom-

plished mainly through negative feedback. This project focuses on ensuring the

continual regulation of the plasma glucose concentration, one of the more important

physiological variables in the body, without increasing burden on the user.

Glycaemic homeostasis requires negative feedback to control the level of plasma

glucose concentration in the blood. Plasma glucose is supplied by dietary intake

and is used as a source of energy by the various tissues in the body. The acceptable

range of plasma glucose concentration for normal glycaemic conditions is 3.9 - 10

mmol/L. In normal functioning human physiology, this is adequately carried out

35
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Figure 2.1: A figure showing the mechanism of hormonal control of blood glucose
concentration. [1]

through monitoring by a number of biological mechanisms and hormonal regulation

[1]. However, this natural regulation by the human body can be distorted leading

to deviation from the acceptable range.

Hyperglycaemia is the condition characterised by the persistent elevated plasma

glucose concentration above the upper range of 10.0 mmol/L (180 mg/dL) [17]. At

the most extreme case, glucose concentration levels higher than 13.8 mmol/L (250

mg/dL), the subject with diabetes is at risk of diabetic ketoacidosis (DKA). This is

a condition where there is a build-up of ketones that increase the acidity of blood

[1]. In the long term, increased frequency of such adverse glycaemic events can

lead to poor outcomes such as cardiovascular complications, loss of vision (diabetic

retinopathy), kidney damage (nephropathy), nerve damage (neuropathy), and loss

of limbs.

Conversely, hypoglycaemia is characterised by persistent plasma glucose concen-

tration below the lower range of 3.9mmol/L (70 mg/dL) [18]. This can result in
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functional impairments which is particularly dangerous during everyday activities

such as driving. In extreme adverse scenarios where glucose concentration levels fall

further to below 3mmol/L (54 mg/dL) this can result in a coma, and even death in

worst cases.

In daily living, there are more activities outside meals and insulin that affect the

glucose concentration level in myriad ways. This generally ranges from physical

activity to undertaking stressful situations.

Physical activity is a recommendation for healthy living in the general population

[19, 20]. Current guidelines for T1D care also incorporate recommendations for

physical activity due to the benefits in managing diabetes. Exercise, from a physical

standpoint, improves physical fitness, maintains a healthy weight, and improves

insulin sensitivity. However, with these benefits come challenges in undertaking

physical activity given the effect on glucose control [19].

The guideline recommends aerobic and anaerobic exercise for the benefits [13]. Aer-

obic exercise comprises low-moderate intensity activities such as running, rowing,

and other cardio-related activities that typically targets a large set of muscles. The

active muscles increase glucose uptake and thus along with increased insulin sensitiv-

ity can lead to hypoglycaemia. On the other hand, anaerobic exercise is considered

to be high intensity activities such as resistance training, and high intensity inter-

val training (HIITs). During the undertaking of such exercises, there is a change

in neuroendocrine hormones that promotes an increase in the rate of conversion

of glycogen from the liver to glucose into the bloodstream as shown in 2.1. Along

with the typical recommendation of reduced insulin administration prior to exercise,

this could lead to an increase in the glucose concentration level and may result in

hyperglycaemia [13].

The glycaemic responses in daily living as a result of physical activity is more com-

plex given the different scenarios that arise in undertaking exercise regimes as well

as the metabolic state of the T1D individual. Firstly, as described earlier, glycaemic
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response during and after exercise is mainly attributed to the type of exercise (i.e

aerobic or anaerobic) as well as the intensity level and duration. In addition to

this is a factor that Gassaleti et al. [20] attribute to ’metabolic memory’ - the

given course of glucose trajectory given past adverse glycaemic events. Prior hy-

perglycaemia correlates with increased inflammatory and oxidative stress responses,

whereas, prior hypoglycaemia correlates with blunted autonomic responses and glu-

cose counterregulation. As a result, extreme hyperglycaemia (>250mg/dL) at the

onset of intense physical activity can potentially lead to diabetic ketoacidosis (DKA)

and prior hypoglycaemia results in an increased likelihood of future hypoglycaemia

events [19, 13].

Stress is also acknowledged as a potential contributor to hyperglycaemia in both

healthy and diabetic populations [21, 22, 23, 15]. Kyrou et al. [24] show that expo-

sure to stressful situations has a two part effect: the insulin sensitivity is depressed,

and simultaneously, the glucose production is increased through the liver. Contrary

to the non-diabetic population, this excess glucose production during a stress re-

sponse is not metabolised in the aftermath of the stressor. This is supported by a

number of studies that have shown that stress is strongly associated with poorer

glycaemic control [25].

In addition to having an effect on glucose concentration levels, the hormonal changes

due to these scenarios affect multiple organs as seen in Figure 2.1.

2.2 Sensors and Wearable Devices

In the last decade, the proliferation of sensors and low power systems has enabled

continuous monitoring that has shown potential in medical applications. This adds

to devices that have already existed in the diabetes technology ecosystem. In this

section we review the various technologies that have been proposed, both as stand-

alone and combined systems, as a result and are leveraged as tools for diabetes
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Figure 2.2: A timeline highlighting the pace of development of diabetes technology
tools. This comprises sensors and devices for detecting glucose concentration level,
insulin for controlling blood glucose levels, decision support systems and artificial
pancreas systems. [2].

management.

2.2.1 Glucose Meters

The current glucose meter is the standard tool that is universally available to the

Type 1 diabetes population for self-monitoring of blood glucose (SMBG). The glu-

cose meter is a relatively simple and easy-to-use technology that combines elec-

trochemistry and electronics [9]. The electrochemistry typically consists of test

strips/biosensors containing enzymes that react with the user’s whole blood sample

- provided from the capillaries with a finger prick [26, 27]. The ensuing enzymatic

reaction produces a tiny current that is converted to a calibrated glucose concentra-

tion reading with an A-to-D converter [26, 27].

The development of modern glucose meters can be traced to the Ames Reflectance

Meter (1970) among other similar glucose meters, which mainly operated based on
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photometry - where the intensity of the test strip colour was indicative of blood

glucose concentration [9]. Over time the development of glucose meters towards the

current form was ultimately dictated by the need for accuracy, portability, and ease

of use. This led to the development of Accutrend, Glucotrend, Precision QiD, One

Touch, and Glucocard II which are smaller handheld systems, easier to use, and more

precise and accurate [9, 26]. Glucose meters enable assessing multiple measures of

glucose levels throughout the day as needed for SMBG and MDI therapy.

Although multiple challenges have been resolved in moving towards consistent use

throughout the day, there are still multiple factors that can interfere with the per-

formance of the glucose meter. Primarily, the main source of error readings can be

attributed to the user in relation to performing the testing [27]. This can be due to

the manner in which the test strips are handled or the blood sample being below

the sufficient amount required [27].

Environmental factors such as humidity can lead to rehydration of the enzymes

which can lead to reduced reactivity [27]. Alternatively, extreme temperature dif-

ferences can also lead to discrepancies in results owing to the subsequent effect

on enzyme activity. Another consideration is the presence of drugs such as ac-

etamenophin which can interfere with the accuracy of measurements. Lastly, the

discrepancy in results from the true glucose concentration levels is much larger in

the prandial and postprandial state (i.e. the period after meals are ingested) - a

larger difference between capillary blood glucose concentration and venous blood

glucose concentration - as compared to a fasting state [27].

These challenges with glucose meters inform the guidelines necessary for effective

decision-making. When implementing the SMBG approach to glucose control it

is advised to assess the blood glucose concentration levels i) prior to meals and

snacks, ii) prior to exercise, iii) prior and during critical tasks such as driving , iv)

at suspected hypoglycaemia events and after subsequent treatment, and finally v)

at bedtime [7].
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2.2.2 Continuous Glucose Monitors

CGM devices are low power, minimally invasive devices that make use of electro-

chemical sensors to provide blood glucose measures by inferring from the glucose

concentration in the interstitial fluid [11, 3]. We provide insights into the operation

of CGM, along with the challenges and opportunities towards improving diabetes

management.

Figure 2.3: A Dexcom continuous glucose monitor showing the sensor(1), transmit-
ter(2) and app interface(3) for viewing glucose time series [2].

The dominant type of CGM devices take the similar mode of operation as glucose

meters regarding measuring glucose concentration via electrochemistry [12]. As seen

in Figure 2.5, the sensor takes the form of a needle-like structure that is embedded

just below the skin in subcutaneous tissue, with the abdomen or arm as the rec-

ommended application sites. The glucose concentration is sensed via a chemical

reaction and monitoring the resulting electrical current. For some devices, calibra-

tion is required with 1-2 fingerstick measures everyday while more recent devices

are self-calibrating and therefore can operate accurately without fingerstick mea-

sures [28, 3].

Continuous glucose monitoring (CGM) devices emerged as an improvement over

SMBG as a tool for diabetes management [29, 30]. There is increasing evidence for
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the clinical benefits in diabetes management given that readings are sampled every 5

minutes as opposed to actively at irregular checkpoints for SMBG [31]. As evident in

Figure 2.4, using the glucose meter results in being unable to detect as many adverse

glycaemic events as using the CGM. Furthermore, even with the detection of such

adverse glycaemic events, the lack of general information about glucose dynamics

or glucose trend from SMBG affects the outcomes of subsequent decision-making.

Figure 2.4: A comparison of the profiles of an Type 1 diabetes individual using a
CGM and SMBG approaches. The CGM is sampled regularly and more frequently
than SMBG. Consequently, adverse glycaemic events are mostly missed by adopting
the SMBG monitoring instead of CGM monitoring. The number of adverse gly-
caemic events detected is also considerably less with SMBG monitoring relative to
CGM monitoring.

The growing studies involved in assessing clinical value of continuous glucose mon-

itoring have shown the clinical benefits of these devices. These studies have shown

that increased use of CGM reduces the time spent out of advised range (70 - 180

mg/dL) [11, 10, 12, 31]. The inclusion of alarms for adverse glycaemic events helps

to minimise their duration as corrective action can be taken. Alternatively, hypo-

glycaemia detection can be used in closed loop insulin delivery systems to suspend

insulin delivery to enable quicker recovery [32].

The opportunities presented with the introduction of continuous glucose monitors

also pose some challenges to their adoption. CGM only provides an estimate of the
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blood glucose value from the glucose in the interstitial fluid. This leads to a time lag

of 5-6 minutes due to the transport of glucose from blood vessels to the subcutaneous

layer [11]. Furthermore, over time other measurement discrepancies exists due to

drift and calibration errors. Similar to glucose meters, the accuracy of continuous

glucose monitors (CGMs) are susceptible to interference; this can emanate from

a variety of sources including compression resulting in compression artefacts, and

drugs such as acetamenophin [12]. In addition, continued adoption is reported to

hindered due to the alarm fatigue, potentially resulting from false alarms [10].

The use of machine learning models to enhance the functionality of the continuous

glucose monitor (CGM) is a promising direction in the improvement of diabetes

management [33]. However, further work would be required in order to fully realise

the opportunities of CGMs in diabetes management systems.

2.3 Diabetes Management Tools

2.3.1 Artificial Pancreas

An artificial pancreas, also referred to as closed-loop insulin delivery, is one of the

latest developments in diabetes technology for enabling tight glucose control in the

Type 1 diabetes population [34, 35]. The development of insulin in 1920 kick-

started this route to improving diabetes management for individuals living with

diabetes [34]. However, this management is a delicate balance as there is a need

to consider factors such as insulin-on-board (IOB), insulin-to-carb ratio (IC ratio),

insulin sensitivity factor (ISF), and target blood glucose level. The artificial pancreas

senses glucose levels, and infers the necessary insulin infusion using an algorithm that

takes these factors into consideration to maintain a healthy glucose range.

The Biostater was developed in 1972 following intravenous closed-loop control in

the 1960s [34]. This is the first recorded artificial pancreas and was primarily used
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as a research tool and in inpatient settings. This device involved blood withdrawal

for continuous glucose measurement and intravenous insulin infusion to achieve a

set level of control. As a result, the lack of portable components restricted the use

to the lab settings. The subsequent miniaturization and improvement of individual

components over time as shown in Figure 2.2 has allowed the artificial pancreas to

move out of the research setting in the lab and be commercialised in the real world.

Figure 2.5: A typical current artificial pancreas system comprises a continuous glu-
cose monitor which is the sensor(1), the smartphone (2) and app interface(3) for
viewing glucose time series [2].

The current artificial pancreas consists of a CGM for frequently monitoring glucose

concentration levels at regular intervals (5 minutes), an insulin pump for continu-

ous subcutaneous insulin infusion, and a control algorithm running on a dedicated

platform (i.e. a smartphone or custom hardware) or within the insulin pump for

providing feedback and determining the insulin needed to maintain tight glycaemic

control. The Medtronic Minimed 670G, Tandem Control IQ, and Diabeloop repre-

sent the current state-of-the-art in artificial pancreas technology for individuals with

Type 1 diabetes that are commercially available [36]. However, these are not fully

closed-loop system given that they deliver basal insulin automatically but require

the user to input the carbohydrate content at meal times in order to estimate the

appropriate insulin. This remains a challenge in attaining a fully closed-loop AP

system [37, 36].

Nevertheless, the artificial pancreas has garnered attention and enthusiasm in the

diabetes community. This can be seen in the development of open-source alternatives
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(OpenAPS) developed within the community [38]. The technical, safety, and ethical

considerations involved should spur researchers and all concerned stakeholders to

work towards making a fully closed-loop artificial pancreas available.

2.3.2 Decision Support Systems

Decision support systems are software tools that have been developed in recent

years to facilitate the ease in decision-making for people with diabetes. Earlier sys-

tems have focused on enabling clinicians in advising individuals on optimising their

glucose control [39, 40, 41]. The advent of smartphones enabled the development

of mobile applications that can allow individuals with T1D to have these decision

support systems on-the-go.

The decision support systems have so far been used in the following categories:

1. Providing recommendations for adjustments to insulin delivery: In the first

instance, we note that managing insulin delivery is a delicate procedure that

takes a number of factors into account. The standard formula used for calcu-

lating the necessary insulin dose is provided below:

I = Imeal + Icorrection,

I =
Carbs(g)

ICR
+

BG(t)− BGT

ISF
− IOB,

(2.1)

where ICR is the insulin-to-carb ratio, ISF is the insulin sensitivity factor

(also known as a correction factor), and IOB refers to the insulin on board.

The insulin sensitivity factor is also a highly individualised parameter that

quantifies the effect of 1 unit of rapid acting insulin in reducing blood glucose

concentration levels over a period of 2-4 hours. BG(t) refers to the current

blood glucose concentration level and BGT refers to the target blood glucose

level.
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To this end, decision support systems have been developed based on this that

are intended to reduce the accumulation of errors from misestimation and op-

timise the calculated insulin dose [42, 43, 44]. One scenario involves prandial

insulin doses where an insulin bolus is calculated from an estimated carbohy-

drate size and an insulin-to-carb ratio (ICR). The insulin-to-carb ratio (ICR)

is a highly individualised parameter that an individual with diabetes comes to

after appropriate education and observing postprandial glucose patterns. This

is shown in Equation 2.1. In addition, the insulin dose can also be given to

correct a high blood glucose concentration level down to a target blood glucose

concentration level, BGT when in a fasting state.

2. Detecting unannounced meals and estimating carbohydrates: As noted pre-

viously, the insulin bolus for meals requires the individual with diabetes to

estimate the carbohydrate size in a given meal and some decision support sys-

tems focus on optimising the insulin dose. However, this is an added burden

and is missed occasionally which can lead to worsening outcomes [45, 46]. De-

cision support systems focusing on this have the objective of automatically

detecting meals, and in some cases estimating carbohydrate size in order to

enable postprandial glucose control [47, 48, 49, 50].

3. Prediction of adverse glycaemic events (i.e hypoglycaemia and hyperglycaemia):

Alternatively, some decision support systems focus on predicting adverse gly-

caemic events in order to allow the individual with diabetes to have enough

time to take action and avert the occurrence of this adverse event [51]. A

number of systems in this case tend to focus on hypoglycaemia prediction,

wherein the following situations are considered: short-term hypoglycaemia

prediction[52], nocturnal hypoglycaemia prediction [53, 54], postprandial hy-

poglycaemia prediction [42, 55], and post-exercise hypoglycaemia [56]. Deci-

sion support systems that provides predictive hyperglycaemia alerts is impor-

tant such that it allows individuals with diabetes, particularly those on MDI

treatment regimens, to provide pre-emptively provide insulin.
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These decision support systems for these functions have typically been based on al-

gorithms that rely on a selection of heuristics (rules-based algorithms) or physiolog-

ical models (physiologic model-based algorithm). For physiologic model-based algo-

rithms, a number of physiological models of the glucose-insulin dynamics [57, 58, 59]

form the basis of these algorithms. These models also describe the effect of subcu-

taneous insulin transport from insulin infusion and the rate of appearance of carbo-

hydrates from meals. The rule-based or heuristic algorithms typically are based on

a number of knowledge-based rules or fuzzy logic [60, 61].

The success of data-driven models, particularly deep learning, in areas such as vision

and natural language processing along with the burgeoning promise of data-driven

models in the field of healthcare has led to a renewed focus on the application of

current machine learning techniques for developing the next generation of decision

support systems.

2.4 Machine Learning for Diabetes Technology

In the process of managing diabetes, activities ranging from daily glucose control

to scheduled clinical tests generate large amounts of data that can provide further

insight on analysis. In this section we establish the formulation of the problem for

developing data-driven models as decision support systems. We also briefly cover

a number of different decision support systems that have been developed in the

literature and covered in this thesis.

The adoption of wearable technologies that enable continuous, minimally invasive

means of monitoring users that generate large amounts of data. This enables short

term predictions that can help in the daily management of diabetes with the main

aim of maximising time in target. Machine learning can be used to develop models

that provide meaningful alerts when the user is about to succumb to an adverse

glycaemic event. The majority of research directions in this area cover supervised
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learning approaches.

In supervised learning, the aim is to learn a mapping f : X −→ Y , where X ∈ R
k×n

represents the input domain with k data points and n unique features. y is the

output domain that comprises the associated ground truth given a value of the

input (covariate), X. The task is termed a classification task when of the output is

discrete/categorical i.e.f : Rk −→ [1, ...,m] and a regression task when the output is

represented as continuous values i.e. f : Rk −→ R.

Blood glucose concentration prediction is currently the leading direction for the

application of machine learning in diabetes management. The current thinking un-

derpinning this problem formulation is that while detection of glucose concentration

levels aids in minimising the time spent in hyperglycaemia or hypoglycaemia, pre-

diction of such events would allow pre-emptive actions to potentially avoid them.

In a machine learning framework, this problem is formulated in two main ways and

tackled with the various learning algorithms.
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As seen in Table 2.1 above, there are myriad problems that are formulated as ma-

chine learning tasks. The additional challenge lies in the fact that multiple metrics

exist for evaluating the performance of the stated approaches. In the case of glucose

level prediction, the general task is typically formulated as a regression problem

where the label is the glucose value over a stated prediction horizon, typically 30

minutes.

For adverse glycaemic event prediction, the task is formulated as a supervised clas-

sification problem. The labels usually cover the set of possible glycaemic events over

the prediction horizon: hyperglycaemia, euglycaemia, and hypoglycaemia. Gadaleta

et al. [52] the levels are initially classed: Severe hypoglycaemia, hypoglycaemia, eu-

glycaemia, hyperglycaemia, and severe hyperglycaemia. The authors note that an

improvement in classifier performance is observed when specialized, in this case, to

predict hyperglycaemia. Finally, while the F-measure is important it is necessary

to consider the time lag as while, hence the authors finally settle on the specialised

SVM classifier (F1 = 0.73) although the linear regression and bayesian regression

methods have marginally better performance (F1 = 0.76).

An observation from these works reveals reduced performance as the prediction

horizon increases. This can be due to the increasing influence of external factors

such as future meals, physical activity and/or stress that can occur in the intervening

period.

Current results from these works have also highlighted the benefit in predicting

glycaemic state of subjects. Zeevi et al. [68] use glycaemic response to meals

to personalize nutrition for T2DM subjects and improve postprandial glycaemic

response; performance is evaluated by the difference between responses to a good

diet week (19 mg/dL) and bad diet week (50 mg/dL). This approach is in contrast

to other approaches that then consider modifications to bolus recommendations to

improve the glycaemic outcome. Herrero et al. [69] employ case-based reasoning

as means of adapting meal boluses to reduce the potential period of post-prandial
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hyperglycaemia. This is considers the most relevant previous cases in order to

determine the appropriate insulin bolus to recommend. Cappon et al. [43], on

the other hand, modulate the standard formula for bolus recommendations using a

3-layer feedforward neural network to optimise recommendation. This has shown

moderate success in reducing the BGRI relative to the standard formula.

Evidently, the current state of diabetes management tools that have been devised

over the years to enable effective glucose management have been implemented to

varying levels of success and with challenges remaining. As noted in this section,

data-driven approaches have provided an avenue for beginning to tackle the arising

challenges. In the following chapters, we introduce deep learning methods for tack-

ling these challenges and advancing the current state of diabetes technology across

the range of tools available to individuals with diabetes.



Chapter 3

Deep Learning for Blood Glucose

Prediction

© 2019 IEEE. Reprinted, with permission, from K. Li , J. Daniels, C. Liu , P.

Herrero, and P. Georgiou ”Convolutional Recurrent Neural Networks for Glucose

Prediction” IEEE Journal of Biomedical and Health Informatics, March 2019.

3.1 Introduction

The standard approach to diabetes management requires people actively taking BG

measurements a handful of times throughout the day with a finger prick test - self

monitoring of blood glucose. The recent development and uptake of continuous glu-

cose monitoring (CGM) devices allow for improved sampling (5 minutes) of glucose

measurements [74]. This approach has proven to be effective in controlling BG and

thus improving the outcome of subjects in clinical trials [75]. Further improvement

of glucose control can be realised through prediction, which allows users to take ac-

tions ahead of time in order to minimise the occurrence of adverse glycaemic events.

The challenges lie in multiple factors that influence glucose variability, such as in-

sulin variability, ingested meals, stress and other physical activities [76]. In addition,

individual glycaemic responses are conditioned by high subject variability [77, 78],

leading to different responses between individuals under the same conditions.

52
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Machine learning (ML) allows intelligent systems to build appropriate models by

learning and extracting patterns in data. The models discover mappings from the

representation of input data to the output. Performances of traditional machine

learning algorithms such as logistic regression, k-nearest neighbours [79], or sup-

port vector regression [80] heavily rely on the representation of the data they are

given. Typically, the features - information the representation comprises - are en-

gineered with prior knowledge and statistical features (mean, variance) [81], prin-

cipal component analysis (PCA) [82] or linear discriminant analysis [83]. Artifi-

cial neural networks (ANN) are also investigated widely in diabetes management

[84, 85, 86, 87, 88]. One advantage of the artificial neural network is that with

enough layers, feature engineering may not be necessary for modelling. However,

ANN models in the literature are mostly implemented with fewer than 3 layers,

hence its learning capacity is limited due to the model complexity. Deep learning,

which incorporates multi-layer neural networks, has lead to significant progresses in

computer vision [89], diseases diagnosis [90], and healthcare [91, 92]. Deep learning

shows superior performance to traditional ML techniques due to this ability to auto-

matically learn features with higher complexity and representations [93, 94, 95, 96].

In this chapter, we propose a deep learning algorithm for glucose prediction using

a multi-layer convolutional recurrent neural network (CRNN) architecture. The

model is primarily trained on data comprising CGM, carbohydrate and insulin data.

After preprocessing, the time-aligned multi-dimensional time series data of BG,

carbohydrate and insulin (other factors also can be considered) are fed to CRNN for

training. The architecture of the CRNN is composed of three parts: a multi-layer

convolutional neural network that extracts the data features using convolution and

pooling, followed by a recurrent neural network (RNN) layer with long short term

memory (LSTM) cells and fully-connected layers. The model is trained end-to-end.

The convolutional layer comprises a 1D Gaussian kernel filter to perform the tempo-

ral convolution, and pooling layers are used for reducing the feature set. A variant

of recurrent LSTM model is leveraged since LSTM shows good performances in pre-
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dicting time series with long time dependencies [97]. The final output is a regression

output by fully connected layers. The CRNN model is realized using the open-source

software library Tensorflow [98], and it can be easily implemented to portable de-

vices with its simplified version Tensorflow Lite. The performance of the proposed

method is evaluated on datasets of simulated cases as well as clinical cases of T1DM

subjects, and compared against benchmark algorithms including support vector re-

gression (SVR) [80], the latent variable model (LVX) [99], the autoregressive model

(ARX) [63], and a neural network for predicting glucose (NNPG)[84].

3.2 Datasets

In order to evaluate the performance of the proposed approach we consider two

datasets: an in-silico dataset and a clinical dataset. This section details the two

datasets employed in this work and the characteristics of both datasets.

The in-silico dataset consists of 10 adult T1DM subjects and was generated using

the UVA/Padova T1D, which is a simulator for glucose level simulation approved by

the Food and Drug Administration (FDA) [100]. This simulator serves as robust and

validated framework for generating simulated cases. The cohort of T1D cases gen-

erated can be configured with varying meal and insulin information such that each

case sufficiently differs. In this work, we used a modified version of the simulator

which includes such variability. In particular, the variability on meal composition,

insulin absorption, carbohydrate estimation and absorption, and insulin variabil-

ity were included. In addition, a simple model of physical exercise was also used.

Further details on how the simulator was modified can be found in [101].

The 10 unique adult cases each has 360 days of data for each case. This covers 3

meals per day - breakfast, lunch, and dinner. Insulin entries vary in each day, from

1 to 5. The insulin entry can be with a meal (meal and insulin at almost the same

time), or without a meal (correction bolus). A simple exercise model is considered

at certain points, which occur occasionally at any time of the day except for during
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the nighttime. The training and validation set account for 50% of the dataset, and

the testing set is the rest of data.

On the other hand, the clinical dataset was obtained from a clinical study at Imperial

College Healthcare NHS Trust St. Mary’s Hospital, London (UK) consisting of mul-

tiple phases evaluating the benefits of an advanced insulin bolus calculator for T1D

subjects [102]. The dataset in consideration was collected from a 6-month period

involving 10 adult subjects with T1D. The information included in the dataset com-

prises glucose, meal, insulin, and associated time stamps. In building the dataset, we

mainly consider CGM and self-reported data such as insulin boluses and meals, as

is done with the in-silico dataset. Before that, we excluded participants whose data

exhibited large gaps (corresponding to weeks of missing data), insufficient reports

of exercise over the 6-month period, and extensive errors in sensor readings.

The CGM data was measured using Dexcom G4 Platinum CGM sensors, with mea-

surements received every 5 minutes. The CGM sensors were inserted from the first

day of the study, and calibrated according to the manufacturer instructions. Other

information available in the dataset such as meal, insulin, and exercise were logged

by the subjects in a mobile application on a smartphone. Though the selected data

has good quality, many periods of missing data, bad points or unexpected fluctu-

ations exist relative to the quality of the in-silico dataset. Similar to the in-silico

dataset, each subject’s clinical data is halved for training and testing data.

The CRNN model can be applied to datasets where other inputs are available,

such as self-reports of exercise, stress and alcohol consumption. We believe that

these information are useful and can increase the forecast accuracy in some cases.

However, in this work we only consider CGM data recorded every 5 minutes, meal

data indicating meal time and amount of carbohydrates, as well as insulin data with

each bolus quantity and the associated time as input in the model.
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3.3 Methods

In this section we explain the proposed approach, convolutional recurrent neural

network (CRNN), in more detail. The approach consists of several components:

preprocessing, feature extraction using CNN, time series prediction using LSTM

and a final conversion to the final output. The architecture of the proposed CRNN

is shown in Fig. 3.1. In the diagram below, the input of the algorithm is time

series of glycaemic data from CGM, carbohydrate and insulin information (time

and amount); other related information are optional (exercises, alcohol, stress, etc.).

The output of preprocessing is cleaned, time-aligned glycaemic, carbohydrate and

insulin data, which are then fed to the CNN.

The output of CNN serves as the input of RNN, which is a multi-dimensional time

series data, representing the concatenation of features of the original signals. The

output of the RNN is the predictive BG level 30-min (or 60-min) later, while hidden

states are inherited and updated continuously internally inside of the RNN compo-

nent. The model is trained end-to-end. We evaluate the models with 30 and 60-min

prediction horizon (PH) because it is widely used in glucose prediction software, and

is easier to compare results with other works [103, 104, 86, 80, 99, 84]. We proceed

with an explanation of the data pipeline and components of the model architecture.

3.3.1 Data Preprocessing

The main purpose of the preprocessing component is to clean the data, filter the

unusual points and make it suitable as the input to the neural network. Besides

the normal steps including time stamp alignment and normalization, the most im-

portant operation to improve the data quality is the outlier detection, interpola-

tion/extrapolation and filtering, in particular for clinical data. Because in clinical

data, there are many missing or outlier data points due to errors in calibration,

measurements, and/or mistakes in data collection and transmission. Here, several

methods can be used to handle these scenarios [105]. They include dimension re-
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duction model to project data into lower dimensions [106], proximity-based model

to determine the data by cluster or density [107], and probabilistic stochastic filters

[108] to rule out outliers.

For cases when the data fluctuates with high frequency, 1D Gaussian kernel filter

is implemented on the glucose time series. A smoothed continuous time series of

glycaemic data is then obtained along with the time-aligned carbohydrate and in-

sulin information. In this work, for in silico data we do not use filters because the

dataset is already clean. For clinical data used in this work, we use the Gaussian

filter. The 3-dimensional time series that covers the last 2 hours before the current

time is sent to the neural network as input. A sliding window of size 24 is employed

to train the model. This is because during the experiments we found that 24 is an

optimal setting considering the tradeoff between the prediction accuracy and the

computation complexity. In [84] the NNPG algorithm uses a similar window size of

20.

3.3.2 Convolutional Recurrent Neural Networks

Convolutional Layers

The filtered time series signal goes through the multi-layer convolutions, which trans-

form the input data into a set of feature vectors. The convolution operation follows

the temporal convolution definition shown below:

z[m] =
l∑

i=−l

x[i] · δ[m− i], (3.1)

where x represents the input signal, δ denotes the kernel, z is the result of the

convolution, and m is the result’s index. Specifically in the first layer, x’ length is

the sliding window size of 24, kernel δ has a size of 8. The input signal can be fed

using a sliding window setting. The windows can be overlapped or non-overlapped,

determined by the allowed CNN size and computations. The convolutional layers

were selected as a component in order to automatically learn the associated weights
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Figure 3.1: The architecture of the proposed convolutional recurrent neural network
for BG prediction. The data at the left is the concatenated time series data including
glucose level, carbohydrate, insulin and other factors. After outlier filtering, the
multi-dimensional data can be sent to the multi-layer convolutional component.
Then the resultant time series is sent to the modified recurrent neural network
component presented in a red frame, which includes LSTM cells and dense fully
connected layer. Finally, the resultant is converted back from ”change of the glucose
value” to ”absolute glucose value”. The output is the future glucose values of PH
(eg. PH = 30 mins).

and recognises particular patterns and features in the input signal that can best

represent the data for future time steps. We posit that the convolution process with

the Gaussian kernel could aid in transforming the meal and insulin inputs to rates

of appearance of both glucose and insulin respectively. The dimension of data in

each layer is detailed in Appendix B.

The proposed method has 3 convolutional layers, with max pooling applied to down-

sample the feature map obtained from the previous convolutional layer. It is common

to periodically insert a pooling layer in-between successive convolutional layers to

progressively reduce the size of the representation, as well as the computation. It

also guards against the problem of overfitting. For instance, if the accepted size is

L1×D1, and the down-sampled parameters are spatial extent F and stride S, and

it results in a max-pooling vector Y of size L2×D2 as shown in Equation 3.2.
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L2 = (L1− F )/S + 1;

D2 = D1;

Yi = max(y∗i )

(3.2)

where y∗i is the vectors after being down-sampled, Yi is the feature map and max()

is the operator that computes the maximum value. The last convolutional layer

feeds directly into the recurrent layer that makes up the next component in the

architecture.

Recurrent Layers

An LSTM network comprised of 64 LSTM cells is adopted as recurrent layers [109].

Each LSTM cell consists of an input gate, an output gate and a forget gate. Each of

the three gates can be thought of as a neuron, and each gate achieves a particular

function in the cell. The LSTM network is good at building predictive models for

time series and sequential data [110]. These cells retain previous data patterns over

arbitrary time intervals, thus the internal ”memory” can predict the future output

according to the previous states. Its memory can be updated simultaneously when

new data are fed to the model. Equation 3.3 details the equations governing the

internal cell state. The LSTM was selected because this architecture provided the

best performance relative to other recurrent cells i.e. vanilla RNN and GRU cells.

The output of the CNN, a multi-dimensional time series, is connected to the LSTM

network. We implemented an RNN with 1 hidden layer, consisting of a wide LSTM

layer consisting of 64 cells. Dropout is also applied after the LSTM layer. Dropout

refers to ignoring neurons randomly during the training phase. It has been verified

that in many cases that dropout can effectively minimise issues of overfitting and

improve model generalisation [111].
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ft = σg(Wfxt + Ufht−1 + bf )

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

gt = σt(Wgxt + Ught−1 + bg)

ct = ft ◦ ct−1 + it ◦ σt(gt)

ht = ot ◦ σt(ct),

(3.3)

where x, h, f, i, o, c represent the input, output, forget gate, input gate, output gate,

and memory cell respectively. The σg and σt, is the sigmoid activation function and

hyperbolic tangent activation. and entrywise product, respectively. W,U, b represent

the weights and biases that are learned during training.

The output of the LSTM which is the final state, ht, feeds a multi-layer fully con-

nected network, which consists of 2 hidden layers (256 neurons and 32 neurons) and

an output layer with the glucose change as output, yt. The fully connected layer

produces the output with an activation function

yt = act(
N∑
i=1

htwi + bi) + xt, (3.4)

where yt is the multi-dimensional output, act() is an activation function, wi and bi

are weights of the fully connected network. Particularly, act() can be chosen from

a set of activation functions such as sigmoid function act(a) = 1/(1 + e−a), rectifier

act(a) = log (1 + exp(a)) or simple linearly act(a) = a. In this paper we choose the

linear function act(a) = a as the activation function for its simplicity.

In the training phase, a gradient descent optimisation is used. The initial weights

of the network are set randomly, and the mean absolute error (MAE), shown in

Equation 3.5, is set as the loss function to be minimised in the training. Partial

derivatives of the error in terms of the weights wi and bias bi are computed, and

the associated wi and bi are updated accordingly. The mean absolute error between
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the target and the predictive value is being minimised. The optimiser we use is

RMSprop, because it is a good choice for recurrent neural networks. It usually

maintains a moving (discounted) average of the square of gradients [112], and divides

gradient by the root of this average.

LMAE(y(k), ŷ(k|k − PH)) =
1

N

N∑
k=1

|y(k)− ŷ(k|k − PH)|, (3.5)

where ŷ(k|k − PH) denotes the prediction results provided the historical data and

y denotes the reference glucose measurement, and N refers to the data size.

The values of the hyperparameters that provide the best performance are determined

by grid search. Finally, the effectiveness of the various components of the final

architecture is demonstrated through a sensitivity analysis.

3.3.3 Software and Hardware

After the model has successfully undergone training and validation, we implement

our algorithm on a smartphone through Tensorflow Lite due to its efficiency running

on portable devices. The model is converted to a Lite model file and installed on an

Android or iOS system. It needs the associated application programming interface

(API) and interpreter to carry out the inference. Fig. 3.2 illustrates the manner in

which the Tensorflow Lite model file [98] is wrapped and loaded in a mobile-friendly

format.

Besides the CGM sensors and smartphones used in data acquisition, the proposed

model is developed with Python 3.6 and Keras v2.2.2 (Tensorflow backend) [113],

and trained using a NVIDIA GeForce GTX 1080 Ti.

3.4 Results

In this section we test the proposed CRNN algorithm for glucose level forecasting

using a in silico dataset and a clinical dataset. The performance of the proposed
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Trained by data
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Figure 3.2: A flow diagram explains the procedure to implement deep learning
models as Tensorflow Lite files to portable devices. In the figure, the yellow square
frames denote the models or files obtained after each operation, and the yellow
elliptic frames denote the associated operations applied. After the TF Lite model
files are created, they can be deployed in Android or iOS app with slightly different
settings, as shown in the cylinders on left and right.

algorithm is contrasted with that of four baseline methods: NNPG, SVR, LVX

and ARX (3rd order). The results are compared with the same input data after

the same pre-processing. The performance of the methods are compared based on

the accuracy over 30- and 60-minute prediction horizon. In addition, we evaluate

the time lag of the prediction. Different algorithms were tested on the in silico

data generated in a way described previously. The parameters involved in these

algorithms are tuned carefully for optimal result. In SVR, the SVR function in

Python is applied with the optimal parameters (C = 1e2, γ = 0.01, cachesize =

1000). The LVX method is applied based on the MATLAB code provided in [99],

the optimal predictor length and the number of LVs are Jx = 4 and NLV = 4

respectively. This represents 20-minute historical data of glucose measurement,

insulin and meal information being used for prediction. The 3rd order ARX model

is optimized by MATLAB function arx() for every specific subject.
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3.4.1 Criteria for Assessment

Several criteria are used to test the performance of the proposed algorithm. The

root-mean-square error (RMSE) and mean absolute relative difference (MARD) be-

tween the predicted and reference glucose readings serve as the primary indicators

to evaluate the predictive accuracy.

RMSE =

√√√√ 1

N

N∑
k=1

(y(k)− ŷ(k|k − PH))2, (3.6)

MARD =
1

N

N∑
k=1

|ŷk(k|k − PH)− y(k)|
y(k)

, (3.7)

The RMSE and MARD provide an overall indication of the predictive performance.

As mentioned earlier, the benefit of glucose prediction is avoiding adverse glycaemic

events. In the clinical context, these metrics are limited in the insight they provide.

Additional metrics are needed to assess the proposed algorithm in the following

perspective:

• Capability of the forecasting algorithm in differentiating between adverse gly-

caemic events and non-adverse glycaemic events.

• Time delay in the predicted glucose readings and reference values to evaluate the

response time provided to deal with the potential adverse glycaemic event.

The Matthews Correlation Coefficient (MCC) is used to evaluate the performance

of the algorithms for detecting either adverse glycaemic event (hypoglycaemia or

hyperglycaemia).

MCC=
(TP × TN)−(FP × FN)√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)
, (3.8)

where TP, FP, FN, TN stand for true positive, false positive, false negative, and true

negative respectively. In this case, a true positive indicates a correct classification of
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hypoglycaemia (< 70 mg/dL) or hyperglycaemia (> 180 mg/dL) event in the next

30 or 60 minutes. We consider a true adverse event to have occurred when either

scenario persists in the CGM data for at least 20 minutes [114]. In addition, we

consider an event a true positive when the predicted event is at most 10 minutes

(PH+2 timesteps ahead) leading or within 25 minutes of the prediction horizon

lapsing (1 timestep for PH = 30 min, and 7 timesteps for PH = 60 min) the reference

event.

A standard confusion matrix typically includes the Accuracy as opposed to Matthews

Correlation Coefficient (MCC). This modification addresses the imbalance in classes

inherent in this situation - non-adverse events far outweigh adverse events.

The effective prediction horizon is defined as the prediction horizon, taking into ac-

count delays due to the responsiveness of the algorithm for a predicted value relative

to its reference value. Cross correlation of the predicted and actual readings is em-

ployed in performing a time delay analysis of the proposed algorithm to determine

the effective prediction horizon.

PHeff = PH − τdelay

= PH − argmax
τ

(ŷk(k|k − PH) � y(k)).
(3.9)

A singular quantitative metric is not sufficient in evaluating performance of the pro-

posed algorithm. Consequently, the set of metrics collectively give a comprehensive

description of the quality of the prediction algorithm performance.

p-values are calculated for other algorithms comparing to the proposed algorithm in

terms of smaller RMSE, MARD or longer PHeff . A Shapiro-Wilk Test is used to

ascertain the normality of the results before performing a paired t-test to derive the

p-values. Across all results, the tests show the null hypothesis (samples drawn from

a Gaussian distribution) cannot be rejected.
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3.4.2 Performance comparison with in-silico data

Table 3.1: Comparison of the prediction accuracy and of different prediction methods
for 10 virtual adult diabetic subjects (best result highlighted in BOLD)

PH Metric CRNN NNPG SVR LVX ARX
(min)

Overall

30

RMSE 9.38±0.71 12.91±1.19‡ 12.48±1.94‡ 11.32±1.34† 13.27±1.19‡

MARD 5.50±0.62 7.05±0.94‡ 6.40±1.36 6.59±0.80‡ 7.46±1.02‡

PHeff 29.0± 0.7 20.8 ± 1.8‡ 23.3 ± 1.6‡ 27.5 ± 1.3† 20.5 ± 1.7‡

Hyperglycaemia
MCC 0.84±0.05 0.83±0.05 0.84±0.05 0.83±0.05 0.81±0.05

Hypoglycaemia
MCC 0.79±0.15 0.64±0.20 0.79±0.10 0.83±0.06 0.78±0.10

Overall

60

RMSE 18.87±2.25 24.24 ± 3.01‡ 23.46 ± 3.33‡ 22.42 ± 2.74‡ 25.73 ± 3.24‡

MARD 9.16±1.16 13.70 ± 1.88‡ 10.83 ± 1.48 12.20 ± 1.82‡ 13.75 ± 2.45‡

PHeff 49.8±2.9 31.0 ±4.7‡ 32.6 ± 4.1‡ 44.2 ± 2.7‡ 19.8 ± 2.7‡

Hyperglycaemia
MCC 0.82 ± 0.05 0.79 ± 0.06 0.78 ± 0.07 0.86 ± 0.04 0.64 ± 0.05

Hypoglycaemia
MCC 0.80 ± 0.14 0.38 ± 0.39 0.79 ± 0.10 0.80 ± 0.07 0.72 ± 0.12

� *
p-value < 0.05;†p-value < 0.01;‡p-value < 0.005

The results of RMSE, MARD and forecasting of adverse glycaemic events are sum-

marized in the Table 3.1. In the Table we compare the predictive error of the algo-

rithms to measure the accuracy of the algorithms. The CRNN algorithm exhibits

the best overall RMSE and MARD for the 10 simulated cases at short(30) and long

term (60) predictions. The results in Table 3.1 are statistically significant relative

to each algorithm. This observation is also evident in both the hyperglycaemia and

hypoglycaemia region. In the hyperglycaemia region the CRNN shows a statistically

significant improvement in the glucose prediction over most other algorithms, with

the exception of LVX. CRNN reports a statistically significant improvement in effec-

tive prediction time (+1.5 min for 30-min and +5.6 min for 60-min) over LVX. An

overall improved prediction time . On the whole, the CRNN can be evaluated as the

best algorithm. The CRNN model also reports relatively low standard deviations

from which we infer a benefit in building individualized models.

An illustration of a comparison of various algorithms for 30-minute shown in Figure

3.4 for a virtual adult 4. As seen in the Figure 3.4, the CRNN exhibits the best
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Figure 3.3: One-day period prediction results for virtual adult 4. The solid black
line, dotted green line, solid magenta line, dashed blue line, dash-dotted red line
indicate the simulated glucose measurements, the prediction results of the 3rd order
ARX method, the prediction results of the SVR method, the prediction results of
the LVX algorithm, the prediction results of the CRNN method, respectively.

responsiveness as the predictive curve responds rapidly towards the sharp glycaemic

uptrend. The algorithm learns representations that appropriately account for both

sharp slopes and gradual increments in the glycaemic curve. Consequently, at a

glycaemic peak, CRNN yields a predictive curve with even higher slope to com-

pensate the time lag aiming at reducing the gap between the prediction and real

measurements. This feature helps CRNN to decrease the RMSE and MARD as well

as maximising the effective prediction horizon.

3.4.3 Performance comparison with clinical data

As mentioned in the previous section, the data obtained in the clinical trial exhibits

missing data, and erroneous data. This results in non-physiological discontinuities

that would affect the training process. To mitigate these occurrences, the data
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is processed with interpolations/extrapolations for gaps in data. The interpola-

tion/extrapolations points are not included in the evaluation of the performance of

the methods.

Table 3.2: Comparison of the performance metrics of different prediction methods
for 10 clinical adult diabetic subjects (best result highlighted in BOLD)

PH Metric CRNN NNPG SVR LVX ARX
(min)

Overall

30

RMSE 21.07 ± 2.35 23.14 ± 2.99 22.00 ± 2.83 21.51 ± 2.44 21.56 ± 2.53
MARD 11.61 ± 2.18 13.42 ± 2.35 13.54 ± 2.88 10.93 ± 1.87 11.00 ± 1.81
PHeff 19.3 ± 3.1 12.8 ± 5.9 18.6 ± 2.8 14.5 ± 3.4 12.0 ± 3.0

Hyperglycaemia
MCC 0.79 ± 0.04 0.75 ± 0.04 0.79 ± 0.05 0.79 ± 0.04 0.77 ± 0.04

Hypoglycaemia
MCC 0.51 ± 0.20 0.12 ± 0.12‡ 0.11 ± 0.08‡ 0.55 ± 0.17 0.53 ± 0.15

Overall

60

RMSE 33.27 ± 4.79 36.05 ± 4.85‡ 34.35 ± 4.55† 37.46 ± 5.04‡ 36.97 ± 4.75‡

MARD 19.01 ± 4.46 21.98 ± 4.87‡ 20.65 ± 3.92 19.69 ± 3.70‡ 19.65 ± 3.55‡

PHeff 29.3 ± 9.4 18.3 ± 4.9‡ 28.4 ± 5.2 19.9 ± 5.1* 14.6 ± 5.6‡

Hyperglycaemia

MCC 0.72 ± 0.05 0.66 ± 0.09* 0.74 ± 0.07 0.76 ± 0.05 0.71 ± 0.05
Hypoglycaemia

MCC 0.40 ± 0.13 0.01 ± 0.00‡ 0.06 ± 0.08‡ 0.56 ± 0.14* 0.51 ± 0.15

� *
p-value < 0.05;†p-value < 0.01;‡p-value < 0.005

Table 3.2 shows the RMSE and MARD of the performance of the algorithms for

the 10 cases of real data. Contrary to the relative performance of the methods in

the in-silico dataset, the evaluation of the methods is mixed. The CRNN maintains

the best results for RMSE and MARD over a 30 minute prediction horizon baseline

methods. However, the ARX and LVX models show improved performance in terms

of MARD relative to the CRNN. In addition, the LVX shows marginally better

performance over CRNN in predicting adverse glycaemic events. The time delay in

predicting these results shows that CRNN exhibits the best performance with the

smallest lag.

Over a long-term prediction horizon, the CRNN provides the best performance for

prediction of glucose level and with the least lag of the evaluated methods. SVR is

able to perform close to the CRNN in terms of effective prediction horizon. How-

ever, the better prediction of hyperglycaemic events is contrasted with very poor
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prediction of hypoglycaemia. The results for hypoglycaemia prediction, equivalent

to random guessing, suggest that 60 minutes represents the limit of meaningful hypo-

glycaemia prediction for SVR and NNPG given these inputs. Further improvement

may require the inclusion of engineered features. Although LVX exhibits superior

performance in predicting adverse glycaemic events, it should be noted that the user

would have considerably less time (-9 mins) to take action. As seen in Figure 2.5, the

CRNN and LVX both achieve good predictive curves compared to the ground truth

measurements. Specifically, at the inflection periods during peaks and troughs, the

LVX tends to have higher and lower predictions, respectively. The CRNN follows

the trend at both local and global peak points closely, which increases its overall

accuracy.

Figure 3.4: One-day period prediction results for clinical adult 17. The solid black
line, dotted green line, solid magenta line, dashed blue line, dash-dotted red line
indicate the real glucose measurements, the prediction results of ARX, SVR, LVX,
and the CRNN algorithm, respectively.

To understand the effect of each network component, we generate networks with



3.5. Discussion 69

different components and evaluate their performances. The results are shown in

Table 3.3. It shows that full CRNN achieves the best performance, and both CNN

and LSTM component contribute to the final result. In addition, we investigate the

influence of different lengths of training set. The results are shown in Table 3.4.

Using 1 month training data, the RMSE of CRNN can achieve 22.28±2.67 (30) and

35.56±4.55 (60). This can be slightly improved if longer training data are exploited.

It shows that collecting more training data can increase the predictive accuracy.

Table 3.3: An ablation study showing the effect of each stage on CRNN performance

Model
RMSE

30 min 60 min

CRNN 21.07± 2.35 33.27± 4.79

CRNN w/o CNN 22.16± 4.39 36.28± 7.14

CRNN w/o LSTM 21.50± 2.62 36.01± 6.41

Table 3.4: A table showing the performance with different periods of training data

Training
Data

RMSE
30 min 60 min

3 months 21.07± 2.35 33.27± 4.79

2 months 22.07± 2.84 35.12± 4.69

1 month 22.28± 2.67 35.56± 4.55

3.5 Discussion

3.5.1 Evaluation of model performance with in-silico and

clinical data

As we establish from our results, the CRNN provides the best predictive and tem-

poral performance compared to baseline methods.

One of the prominent improvements in the CRNN performance over the other base-

line models is the effective prediction time. This significant improvement can also be

attributed to the capability of deep learning to learn optimal and relevant features

from the inputs for the prediction task. This can be seen in Figures 3.3. and 3.4,
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where relative to the baseline methods, the response of the model to postprandial

glucose increases is faster, along with faster responses to subsequent drops due to

the effect of exogenous insulin.

Although the statistically significant improvements are small, the behaviour of the

signals as visualised in Figure 3.3 and 3.4 offer insight into possible benefits of

CRNN in clinical applications. One application with long-term glucose predictions

(≥ 60 min) is insulin dosing decision support [115, 42]. In this application, the

predicted glucose value, particularly at local maxima and minima could be important

in estimating the optimal insulin dose.

Subsequently, the evaluated models are observed to exhibit different behaviour rel-

evant to this application. The CRNN models tend to smoothly follow the reference

glucose profile with minimal lag. On the other hand, the LVX model tends to over-

shoot at local maxima and undershoot at local minima which can, for example, lead

to erroneous estimations of any resulting insulin bolus. Similarly, the SVR and ARX

models also show oscillatory behaviour and are therefore likely to also lead to more

erroneous estimations.

In the previous section we noted a discrepancy in the performance of the proposed

algorithm and baseline algorithms in simulated cases and the real patient cases.

Previous tests have also indicated that the performance in real subjects is much less

satisfactory in comparison to virtual subjects. In our opinion, the drop in perfor-

mance can be primarily attributed to the increased complexity of real data generated

from a patient relative to the simulated data generated from a physiological model.

In addition, the gaps in data and subsequent method of interpolation/extrapolation

may contribute to the further reduction in performance.

Relative to the baseline algorithms, the CRNN is better at capturing the features

since deep learning affords a better capacity at learning optimal representations of

features. This could also explain the relatively lower variance in metrics for the

performance of the CRNN in different cases relative to baseline models.
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3.5.2 Comparison with results in the literature

We achieved a mean RMSE = 9.38mg/dL in silico using the proposed method,

and it is the best amongst other algorithms, including SVR, LVX and 3rd order

ARX. In addition, we want to compare our algorithm with other approaches in

the literature. Using the dataset generated from the simulator, our algorithm is

better than the results of RMSE = 18.78mg/dL [103] and RMSE = 13.65mg/dL in

[104]. For several other works, it is difficult to evaluate the RMSE through direct

comparison due to the unavailability of the original code, model parameters, and

the benchmark datasets. However, we may compare the results with widely used

methods as benchmarks, such as SVR or NNPG. For instance, for PH = 30 min as

shown in Table 3 [86], the algorithm is 0.1 mg/dL better than the result of SVR

in terms of RMSE on the real dataset; our algorithm is 0.9 mg/dL better than the

SVR in terms of RMSE on the real dataset. In [85], for PH = 30 min their RMSEs

are 1.3 mg/dL better than NNPG for the simulated data and 0.2 mg/dL better than

NNPG for the real datasets. Our RMSEs are 3.5 mg/dL better than NNPG for the

simulated data and 2.1 mg/dL better for the real datasets. As far as we know, the

proposed algorithm achieves a performance state-of-the-art accuracy with regard to

RMSE. To build a fair comparison, we provide all benchmark models the same input,

including CGM data, meal and insulin. For the conventional NNPG, it only uses

CGM measurements. Thus, in the comparison we incorporate meals and insulin in

the input as well to generate an enhanced NNPG.

3.5.3 Application on resource-constrained mobile platforms

CRNN is a personalised algorithm for different diabetic subjects. Firstly, it is data

driven and personalised. Secondly, the model can be continuously updated as more

data is available. In details, the model is saved as a trained neural network. We use

the sequential model with Tensorflow backend to train the neural network, and the

result can be saved as a small file. This file can be compiled as a “.tflite” or a “.pb”
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Figure 3.5: An illustration of the glucose level shown in an app interface on an
Android system, where the red curve is the historic blood glucose, black dash line
is the current time, and the red dot curve is the prediction provided by the model.

file for the app on mobiles, by using a Tensorflow Lite converter. The model file

can be updated continuously at the cloud. The app may demonstrate the predictive

glycaemic curve on screen. A demonstration on the Android system is shown in

Fig. 3.5 In addition, we also found that the execution time of the model is 6ms on

a Android phone (LG Nexus5 with Processor: 2.26GHz quad-core, RAM:2GB) and

780ms on a laptop (MacPro with Processor: 3.1GHz Intel Core i5, RAM:8GB). The

reasons might be in the quantisation of weights and biases (e.g. 8 bit integer vs. 32

bit floating point), thus leading to a faster computation.

3.6 Conclusion

In this chapter a convolutional recurrent neural network is proposed as an effective

method for BG prediction. The architecture includes a multi-layer CNN followed by

a modified RNN, where the CNN could capture the features or patterns of the multi-

dimensional time series. The modified RNN is capable of analyzing the previous

sequential data and providing the predictive BG. The method trains models for each

diabetic subject using their own data. After obtaining the trained neural network,
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it could be applied locally or on portable devices. The proposed CRNN method

showed superior performance in forecasting BG levels (RMSE and MARD) in the

in silico and clinical experiments.



Chapter 4

Multitask Learning for

Personalised Glucose Prediction

© 2021 IEEE. Reprinted, with permission, from J. Daniels, P. Herrero, and P. Geor-

giou ”A Multitask Learning Approach to Personalised Blood Glucose Prediction”

IEEE Journal of Biomedical and Health Informatics, July 2021.

4.1 Introduction

In Chapter 3, we introduced a deep learning method that was a competitive ap-

proach compared to traditional machine learning approaches. The results attained

are further buttressed by recent works in the literature that demonstrate deep learn-

ing [116] performing better relative to traditional machine learning approaches that

usually rely on feature engineering [33, 117]. As stated previously, one advantage of

the deep learning approach is that optimal features can be learned to develop per-

sonalised models for each individual [117]. However, deep learning models typically

require large amounts of data in order to achieve accurate performance [118, 119].

A common challenge in the area of glucose prediction is that large amounts of

subject-specific data are expensive and difficult to collect. This hampers the earlier

deployment of personalised models which would aid in providing necessary inter-

74
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ventions earlier to improve glucose control. Leveraging population data in existing

datasets to address this scarcity is the complicated by inter-individual variability.

Studies have suggested that differences exist in the complex glucose dynamics of

individuals and clustered groups. As a result, there is a possibility that the perfor-

mance of personalised models can be hampered when consideration is not given to

the prior background information such as glycaemic variability [120].

This chapter introduces an end-to-end deep multitask approach to developing per-

sonalised models while overcoming the issue of inter-individual variability. The main

aim is to study effective learning from population data in the development of per-

sonalised prediction models. We focus on the following areas in this work:

• We investigate the effect of transfer learning approaches for blood glucose

prediction across different prediction horizons.

• We investigate the effect of incorporating background information such as

glycaemic variability on glucose prediction performance.

• We investigate the impact of training data size on the performance of multitask

models.

We now compare this approach to inductive transfer against the popular sequential

transfer learning (TL) approach that involves fine-tuning, and single-task learning

(STL) models trained solely on subject-specific data. We also include support vector

regression (SVR) as an additional traditional baseline approach for comparison.

4.2 Related Work

Transfer learning is a field that considers leveraging knowledge from previous experi-

ence to improve learning for a related particular task. Formally, a task T comprises

a label space Y and a predictive function f that is learnt from available data. The

available data is associated with a domain D, a space that comprises the input fea-

ture space X and the output Y [121]. Each task and domain associated with previous
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experience is termed a source domain and source task {(DS,TS)} and the particular

task and domain of interest is termed target domain and target task,{(DT ,TT )}.

Therefore in transfer learning, {(DS,TS)} is leveraged along with {(DT ,TT )} to im-

prove the ability to learn the target predictive function fT .

The success of transfer learning has been noted in the fields of computer vision,

digital imaging, natural language processing, as well as other areas of healthcare

[122, 123, 124, 121, 125]. This typically considers using a well sourced large dataset

(eg. ImageNet) in order to pre-train models, before subsequently fine-tuning models

on data from the target task [118]. In order to be successful, the tasks are usually

assumed to be related in some sense.

In the field of blood glucose prediction, transfer learning is not a well studied ap-

proach despite the success of data-driven methods in glucose prediction [33]. This

could be attributed to the lack of large publicly available datasets in the field. For

most studies that have employed deep learning, results have provided neither a con-

sensus nor a detailed analysis on the methods and benefits of information transfer

from source tasks to target tasks.

For short-term predictions (PH ≤ 60 minutes), the results on transfer learning are

mixed. Bhimireddy et al. [126] employ a sequence-to-sequence network and do not

report improved performance with transfer learning. On the other hand, Rubin-

Falcone et al. [127] pre-train their models in a two-stage process; the authors first

train on a large private dataset of 100 subjects before subsequently training the

general model on the six subjects in the first cohort of OhioT1DM subjects and

then fine-tuning on the latter cohort. This yields a 4% improvement in average

predictive performance in terms of root mean square error (RMSE).

Further works have also looked at variant transfer learning approaches to leverage

population data [128, 129, 130]. Hameed et al.[128] use knowledge distillation [131]

in order to learn models that leverage large datasets. In this case, a teacher model

is used to learn an initial model and the student model is subsequently trained in

the target domain and the outputs - soft prediction labels - from the teacher model.
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However, this approach was unable to improve performance over the student only

approach trained solely on subject-specific data. Other approaches [129, 130] aim

to learn from different metabolic classifications i.e. Type 2 diabetes and Type 1

diabetes. The approach of Gu et al.[129] is positive, although the model was only

tested on one day of glucose data and the authors are unclear on whether baseline

models were trained on the same data to evaluate the benefit of the transfer ap-

proach. A domain adversarial learning approach enables learning features common

to each group, thereby improving generalisation and performance [130].

Kushner et al. [132] study the benefit of sequential transfer learning at long-term

prediction horizons beyond 60 minutes. This work shows some benefit in the average

performance of the neural network model on the subjects. However, further anal-

ysis suggests subjects with high glycaemic variability did not benefit from transfer

learning.

Figure 4.1: A simplified illustration of the training steps for each of the learning
approaches. This covers subject-specific single-task learning (STL), transfer learning
(TL) with fine-tuning, and multitask learning (MTL)
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4.3 Multitask Learning

Multitask learning (MTL) is a type of transfer learning that involves learning mul-

tiple tasks simultaneously in order to improve generalisation [133]. The transfer

of information signals occurs in parallel since the models for each task are jointly

learned. This differs from the typical transfer learning approach which can best

be described as sequential transfer, where the models are pre-trained on the data

from the source domain towards source tasks before training on data from the tar-

get domain towards the target task. This approach can help to overcome the issue

of inter-individual variability that exists in developing optimal personalised models

within a feasible timeline.

The architecture and training protocol for multitask learning is different to the

single-task (STL) and fine-tuning (TL) approach. In this setting, the models are

trained from random initialisation similar to STL, however the personalised models

are trained jointly in order to facilitate transfer.

4.3.1 Network Architecture

Multitask learning for neural networks is realised by sharing the parameters of the

layers between the tasks in the multitask model. The architecture of the multi-task

neural networks are detailed in Figure 4.2.

The initial layers of the neural networks are shared between tasks (i.e. subjects),

and the final layer of the multitask models are task-specific. As a result, the pa-

rameter sharing is achieved by connecting each task-specific to the single branch of

initial layers. Sharing more parameters in the model serves as an additional form

of regularisation, such that the model is constrained to learn features relevant to all

tasks. This benefit underlying multitask learning is conditioned on the tasks being

similar so that such features exist. In the scenario where tasks are not similar, model

performance can be hampered relative to models trained in a single-task learning

approach - this is termed negative transfer.
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Figure 4.2: Top: The multitask network architecture shows the convolutional and
recurrent layers are shared between all subjects. All fully connected layers except
the final layers are shared by all tasks (individuals). Bottom: This multitask
configuration shows the convolutional and recurrent layers are shared between all
subjects. However, the fully connected layers are shared to varying degrees if clusters
are specified.
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To overcome the challenge of inter-individual variability that results in tasks be-

ing less similar, hence potential negative transfer, the degree of parameter sharing

is relaxed. The intermediate layers are clustered based on prior information. For

this work, we cluster individuals based on their glycaemic variability, with low (sta-

ble) glycaemic variability sharing a set of fully connected layers and high (labile)

glycaemic variability .

4.3.2 Network Training

The training protocol in the multitask learning (MTL) setting differs from the single-

task learning (STL) setting. In the single-task setting, given that data during a train-

ing session is subject-specific, the training samples can be selected in mini-batches

sequentially as typically expected in supervised learning for time-series regression.

However, in the multitask setting, the training samples contain samples for the

number of tasks (subjects) present. Consequently, samples in a mini-batch are

drawn from a particular individual to train the shared layers and the layers specific

to the individual similar to [124]. The loss function, LMAE(y, ŷ), used to minimise

the error during training is defined below:

LMAE(y, ŷ) =
1

Nbatch

N∑
k=1

|yk − ŷk|, (4.1)

where ŷ denotes the predicted results given the historical data and y denotes the

reference change in glucose concentration over the relevant glucose prediction, and

Nbatch refers to the number of samples in the mini-batch.

A sample weighting is used as a gating approach in order to ensure that the input

corresponding to a subject is used to train layers in the network that pertain to the

associated subject. During a forward pass the mini-batch is fed into the network to

obtain the predicted glucose values, ŷ, and determine the loss according to Equation

4.1. At each iteration, the backpropagated error is used to learn personalised weights

of each subject in the task specific layers and eventually learn appropriate weights
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in shared layers that generalise to all subjects at the same time.

4.4 Dataset

The dataset used in this study is referred to as the OhioT1DM dataset [134], and

will be referred to as such from here on. This dataset was obtained under the Data

use Agreement (DUA) between Ohio University and Pennsylvania State University.

The OhioT1DM dataset is updated on 2020 and comprises 12 subjects with Type 1

diabetes (T1D) monitored in free-living conditions over a period of 8 weeks.

In Chapter 3 we use an in-silico dataset and clinical dataset from the ABC4D dataset

whereas in Chapter 4 we used the publicly available OhioT1DM dataset. We opted

for the OhioT1DM dataset instead of the ABC4D dataset due to the OhioT1DM

dataset having more individuals in the dataset. In addition to this the quality of

recordings was better with fewer gaps present in CGM measurements. The adher-

ence to logging self-reported data (such as exercise) was also better in the OhioT1DM

dataset.

Table 4.1: Background information and data sizes for subjects in the OhioT1DM
dataset

ID Gender Age
Glycaemic Variability

(CV)
Training
Set Size

Testing
Set Size

540 M 20 - 40 Labile (40%) 11947 2884
544 M 40 - 60 Stable (36%) 10623 2704
552 M 20 - 40 Labile (37%) 9080 2352
559 F 40 - 60 Labile (42%) 10796 2514
563 M 40 - 60 Stable (34%) 12124 2570
567 F 20 - 40 Labile (40%) 10877 2377
570 M 40 - 60 Stable (33%) 10982 2745
575 F 40 - 60 Labile (43%) 11866 2590
584 M 40 - 60 Stable (34%) 12150 2653
588 F 40 - 60 Stable (31%) 12640 2791
591 F 40 - 60 Labile (37%) 10847 2760
596 M 60 + Stable (33%) 10877 2731

As seen in Table I above, the dataset contains 7 male subjects and 5 female subjects.

In terms of age, all subjects are adults; with subjects grouped as young adults (20-40
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years), middle aged adults (40-60 years), and old adults (60+ years). The glycaemic

variability [120] is determined with the training data samples and is formulated

through the coefficient of variation (CV) as denoted below:

CV =
σ

μ
× 100%, (4.2)

where CV is the coefficient of variation, σ is the standard deviation of the glucose

concentration levels, and μ is the mean of the glucose concentration levels. A subject

is classified as labile if CV > 36%, and stable otherwise. This threshold represents an

increased incidence of hypoglycaemia in the glucose profile and is further supported

in the literature [135].

The subjects are provided with a Medtronic Enlite Continuous Glucose Monitoring

(CGM) devices along with one of a Basis Peak Band (Intel Corp. Santa Clara, CA,

US) or Empatica Embrace (Empatica, Inc., Boston, MA, US)1. The CGM measures

interstitial glucose concentration levels at 5 minute intervals. The Basis Peak mea-

sures values of the skin temperature, skin conductance, heart rate, and step count

(this has been aggregated over 5-minute intervals). On the other hand, the Empatica

Embrace measures skin conductance, skin temperature, and acceleration magnitude

(aggregated over 5-minute intervals). In addition to the physiological signals, sub-

jects provide self-reported assessments such as meal intake, insulin, exercise, sleep,

stressors, work, and sleep.

4.4.1 Preprocessing

Prior to training and testing, the data undergoes processing to facilitate effective

learning. We first prepare the real-world data with normalisation and imputation.

In order to evaluate the models we mainly consider four features that are both

prominent for the task and consistent for each subject: glucose concentration levels,

insulin, meals, and exercise. The first approach is to synchronize the data entries

1https://www.empatica.com/
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Figure 4.3: A visualisation of the imputation methods employed in this work. In
(A) the 2-hour input sequence has up to 30 minutes of recent values missing and is
imputed with linear extrapolation. (B) shows the imputation scheme during testing
for longer than 30 minutes of recent values missing (zero-order hold). Finally (C)
shows the imputation scheme when the missing values of the input sequence are
located between real values (linear interpolation).

for each modality, using the CGM timestamp as the reference timestamp. A sliding

window is used to extract 2-hour sequences of historical data for each prediction,

selected based on analysis in previous work [136].

As noted in [134], the exercise intensity levels for each individual in the dataset are

self-reported on a scale of 1-10. Given the variability between individual experiences

of exercise intensity, we transform the intensity scale to a simple binary self-report

on the presence (1) or absence (0) of exercise. The meals, insulin, and glucose values

are scaled by 200, 100, and 120 respectively.

The non-trivial issue of missingness is next addressed in processing this dataset [137].

Missingness is present in both the physiological variables (CGM) and self-reported

data and these are handled differently. In order to overcome this we implement data

imputation methods in the training set and the testing set.

The glucose concentration values that are missing in this dataset are assumed to be

missing at random. This means that the lack of data at these timestamps can be

attributed to random circumstances such as changing sensor, power aberration, and

communication failure among others.

In the training set, the gaps in the glucose concentration levels are imputed using

a linear interpolation. This assumes that the missing data is adequately explained
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with a linear relationship between adjacent glucose levels. For samples where the

input sequence of the glucose concentration values contains more than one hour

(12 samples) of imputed values, the sequence is discarded. This is done to avoid

learning artifacts and incorrect trends since it is difficult to determine the long-term

effect of missing information such as meals on missing glucose values. Regarding

the self-reported data, that is regarded as missing not at random. Consequently,

the assumption made is that a report not made at a particular timestamp, is due to

an absence of the activity. As such the gaps in data for insulin, meals, and exercise

are imputed with zero.

For accurate evaluation of the performance of the model on all test points in the

test set, using only interpolation at test time is not appropriate since we may be

using unknown future values. We employ different modes of extrapolation in order

to impute missing CGM values in the input sequence as detailed in Figure 4.3.

4.5 Methods

4.5.1 Glucose Prediction Models

We describe the glucose prediction models used in the experiments. These are

support vector regression and a deep learning model (convolutional recurrent neural

network).

Support Vector Regression (SVR)

The support vector regression has been shown in the literature [65, 52] to provide

competitive performance in the area of glucose prediction. This used a radial basis

function (RBF) as the kernel and provides a good benchmark given the ability to

perform well with small datasets. The SVR model is trained only on subject-specific

data. SVR is developed using Scikit-learn v 0.21.3 Python library [138].
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Deep Learning

Many deep learning architectures exist in the literature [117]. Although it is difficult

to establish a standout state-of-the-art approach, most approaches are based on

recurrent networks. We extend the convolutional recurrent neural network (CRNN)

architecture, a 6-layer end-to-end learning framework [139], for investigating the

different learning approaches detailed below. The models are developed with Python

3.6 and Keras v2.2.2 [113] and trained using a NVIDIA GTX 1050.

Single-Task Learning (STL): In the single task learning setting, the CRNN

model is trained from random initialisation solely on data from the distinct

subject.

Transfer Learning (TL): In the transfer learning setting, the model is first

pre-trained on data from the other subjects. The weights in all layers are

frozen except the final layer. The model is then fine-tuned on data from the

target subject.

Multitask Learning (MTL): In the multitask setting, the weights in the

model are trained from random initialisation, similar to the STL learning

approach. Models are trained jointly using all 12 subjects.

Multitask Learning (Glycaemic Variability) (MTL-GV): In this mul-

titask setting, the training approach the same as the MTL training approach

and models are trained jointly using all 12 subjects. The difference lies in the

network architecture as seen in Figure 5.5.

During training, we split the last 10% of the training data as the validation set. We

set the number of epochs to 200 and implement early stopping with a patience of

20 epochs (Δmin = 1× 10−4) to terminate training when validation loss is no longer

improving.

The optimised hyperparameters for the various glucose models are presented in Table

C.2 in the Appendix below.
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4.5.2 Criteria for Assessment

We employ multiple criteria to comprehensively evaluate model performance in the

following areas:

• Predictive accuracy in terms of the magnitude of error from the reference

values in the dataset.

• Temporal gain in terms of prediction horizon relative to reference values in the

dataset.

• Clinical significance of errors to understand subsequent use in diabetes man-

agement systems, particularly in extreme adverse glycaemic event regions.

The predictive performance of the model is primarily evaluated by the root-mean-

square error (RMSE) and mean absolute error (MAE). The effective prediction hori-

zon (PHeff ) is used to evaluate the temporal gain in forecasting a glucose concen-

tration value. This is determined using cross-correlation between the predicted and

reference glucose concentration levels.

The Clarke Error Grid Analysis (EGA) was originally developed to quantify the

clinical accuracy of current blood glucose estimates against reference blood glucose

values [140]. We adopt this approach, as done in literature, to evaluate the clinical

accuracy of glucose forecasting algorithms as shown in Figure 4.4 [127, 132]. The

graph is demarcated into five zones, labelled A-E, that represent increasing severity

of errors due to misestimation of predicted glucose concentration levels as follows:

• Zone A: Predicted values in this region lie within 20% of the reference CGM

values when CGM ≥ 70 mg/dL, and predicted CGM values are no more than

70 mg/dL during hypoglycaemia.

• Zone B: Errors of predicted values in this region fall outside the 20% error,

however, any resulting standard treatment could be incorrect but uncritical.

• Zone C: Predicted values in this region could result in unnecessary treatment.
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Figure 4.4: Clarke Error Grid showing the location of points in the various zones of
safety for Subject 559. This illustrates the clinical relevance of errors by the MTL
model at a 30-minute prediction horizon.

• Zone D: Predicted values in this region point to a potentially harmful adverse

glycaemic event (hyperglycaemia or hypoglycaemia) that has gone undetected.

• Zone E: Predicted values in this region if acted on could lead to the opposite

corrective action being undertaken to treat an adverse glycaemic event.

4.5.3 Statistical Analysis

For determining the statistical significance of differences between model perfor-

mances, we first perform preliminary test for normality using the Shapiro-Wilk test.

We use a paired t-test if normality is accepted, and a Wilcoxon signed-rank test

when normality is rejected. Significance level is set at p-value < .05. For multi-

ple pairwise comparisons, we adjust the significance level to p-value < .013 using

Bonferroni correction.
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4.6 Results

4.6.1 Performance comparison across prediction horizons

Table 4.2: Comparison of the performance metrics of deep multitask learning models
against conventionally trained deep neural networks and SVR models at different
prediction horizons (best result highlighted in BOLD)

PH
Metric

CRNN
SVR

(mins) MTL MTL-GV TL STL

30
RMSE 18.8 ± 2.3* 18.8 ± 2.8 19.2 ± 2.2 20.6 ± 2.6* 19.2 ± 2.7

MAE 13.2 ± 1.6 13.2 ± 1.5 13.4 ± 1.5 14.8 ± 2.1* 13.5 ± 1.7

PHeff 13.8 ± 5.1 13.3 ± 5.9 13.3 ± 4.3 10.6 ± 5.2 14.6 ± 5.6*

EGA 99.1 ± 0.7 99.2 ± 0.5 99.1 ± 0.6 98.6 ± 0.7* 98.9 ± 0.8

45
RMSE 25.3 ± 2.9* 25.9 ± 3.1 26.5 ± 3.0 26.8 ± 3.5 26.5 ± 4.3
MAE 18.2 ± 2.2† 19.0 ± 2.4 18.9 ± 2.2 19.5 ± 2.7 19.7 ± 3.5
PHeff 19.6 ± 6.3 17.5 ± 8.5 15.8 ± 4.0 14.2 ± 7.6 19.2 ± 2.5†

EGA 97.9 ± 1.5 97.5 ± 2.0 98.1 ± 1.3 97.8 ± 1.7 97.7 ± 1.7

60
RMSE 31.8 ± 3.9* 32.3 ± 3.9* 33.0 ± 3.7 33.9 ± 4.3 32.6 ± 4.0

MAE 23.4 ± 3.0* 23.6 ± 3.0† 24.4 ± 2.8 25.2 ± 3.5 24.0 ± 3.2

PHeff 20.4 ± 8.3 17.5 ± 8.8 14.2 ± 5.3 12.9 ± 8.3 12.9 ± 6.9*

EGA 96.8 ± 2.1 97.1 ± 2.0* 96.6 ± 2.3 96.2 ± 2.8 96.6 ± 2.2

90
RMSE 41.2 ± 4.5* 41.5 ± 4.3* 43.2 ± 4.5 43.1 ± 5.4 42.6 ± 4.8

MAE 31.1 ± 3.7* 31.2 ± 3.4† 32.6 ± 3.4 32.7 ± 4.1 32.5 ± 4.1

PHeff 21.2 ± 9.8* 20.0 ± 11.9 15.0 ± 7.6 18.7 ± 12.3 32.1 ± 1.8*

EGA 95.0 ± 3.0 95.0 ± 2.9* 94.6 ± 2.8 94.5 ± 3.0 94.9 ± 3.0

120
RMSE 48.0 ± 5.2* 47.2 ± 4.6* 49.3 ± 4.9 49.0 ± 5.4 48.0 ± 5.1

MAE 37.1 ± 4.1* 36.5 ± 3.8* 38.3 ± 3.7 37.9 ± 4.1 37.5 ± 4.0

PHeff 26.8 ± 13.8* 26.3 ± 13.1* 15.8 ± 7.3 14.4 ± 1.9 27.3 ± 14.2*

EGA 93.7 ± 3.0* 93.8 ± 2.8* 92.8 ± 2.9 93.1 ± 3.3 93.1 ± 3.6
� Statistically significant compared to TL with p-value < .013 (*Paired t-test; †Wilcoxon)

In this experiment, we investigate the performance of the multitask learning ap-

proaches against current learning approaches and methods at prediction horizons.

We evaluate the performance of MTL and MTL-GV against TL, STL, and SVR

approaches for 30-120 min. MTL-GV incorporates prior information on subject gly-

caemic variability whereas MTL does not incorporate any prior information in the

network architecture. The results for this are shown in Table 4.2.

At the short-term prediction horizon (<60 min), multitask learning shows the best

performance in terms of both predictive accuracy metrics. MTL and MTL-GV

showed the best mean RMSE (18.8mg/dL) and MAE (13.2mg/dL) compared to
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TL (+0.4mg/dL and +0.2mg/dL), STL (+1.8mg/dL and +1.6mg/dL), and SVR

(+0.4mg/dL and +0.3mg/dL) models. Compared to the conventional approach of

transfer learning by finetuning (TL), MTL reveals a significant improvement (p-value

< .013) in terms of RMSE at 30 min and in terms of RMSE and MAE at 45 min.

However, the improvement in metrics compared to MTL-GV are non-significant.

The trend of MTL demonstrating the best performance remains as the prediction

horizon increases. At long term predictions (≥60 min), the MTL and MTL-GV

models generally outperform the TL, STL and SVR models. Both MTL and MTL-

GV models reveal significant improvement compared to TL models at long-term

predictions in terms of both RMSE and MAE.At 120 minutes, MTL performs at

least as well as the SVR models in terms of RMSE and is slightly better (-0.4mg/dL)

in terms of MAE.

Multitask learning, in regard to clinical accuracy, shows a comparable performance

with other models. Compared to TL models, MTL only shows a significant im-

provement in performance at 120 min. On other hand, MTL-GV models show a

significant improvement from 60 min onward. For the prediction horizons studied,

the MTL and MTL-GV approaches maintain at least 93% of predictions within Zone

A or Zone B.

In terms of temporal gain, the MTL models show a higher temporal gain relative

to other conventionally trained models (TL and STL). However, the results of the

temporal gain of multitask learning models (MTL and MTL-GV) are mixed com-

pared to SVR models. MTL and MTL-GV models show a higher temporal gain at

45 min and 60 min, but lower temporal gain at 30 min, 90 min and 120 min.

4.6.2 Incorporating Prior Information on Glycaemic Vari-

ability

We also examine the effect of incorporating prior information. In this study we

incorporate information on glycaemic variability in the architecture of the multitask
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neural network (MTL-GV).

The effect of clustering layers does not lead to an improvement in predictive accu-

racy until 120 min. As seen in Table 4.2, MTL consistently demonstrates the best

predictive accuracy at these prediction horizons, with significant improvements over

MTL-GV in terms of RMSE and MAE at 45 min and 60 min (p-value < .05). On

the other hand, the predictive accuracy of multitask models are improved at 120 min

when incorporating glycaemic variability (MTL-GV), in terms of RMSE and MAE

(p-value < .05), over no specified clustering (MTL). The temporal gain is observed

to be affected as this is lower for MTL-GV models compared to MTL models across

all prediction horizons.

The Clarke Error Grid Analysis (EGA), which focuses on the percentage of samples

in the safe zones (Zone A and Zone B), shows that clustering provides a slight

increase in EGA (Zone A+B) at 30 min (+0.1%), 60 min (+0.3%) and 120 min

(+0.1%), a decrease at 45 min (-0.4%) and no change at 90 min.

4.6.3 Impact of Training Data Size

As noted in earlier sections, most public datasets available and suitable for glucose

prediction are typically small in size. This has to be considered when deploying

these models in diabetes management systems. This experiment investigates the

benefit of a multitask learning approach for different training set sample sizes. The

prediction horizon is set at 30 minutes as it is the typical prediction horizon used in

commercial CGM and predictive low glucose suspend (PLGS) systems [141].

The initial training set size covers 6 weeks. We also evaluate the performance at

the following duration periods up to the end of the training set: 4 weeks, 2 weeks, 1

week and 0.5 weeks (3.5 days). Table 4.3 shows the total number of training samples

for each duration period and the range of training samples for individuals. The total

number of training examples in the hypoglycaemia region.

An important aspect is the performance of these models in terms of clinical accuracy
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Figure 4.5: (Top) A comparison of the predictive accuracy, in terms of RMSE, for
data-driven machine learning models and learning approaches at different training
set sizes. (Bottom) The clinical relevance of errors in model prediction for hypogly-
caemia at different training set sizes.

Table 4.3: Total number of samples at different training set sizes and associated
samples in the hypoglycaemia region.

Duration
Number of Training Samples

All Hypoglycaemia

6 weeks
134790

(9080 - 12640)
4962

(110 - 1034)

4 weeks
88820

(5690 - 8380)
3120

(55 - 668)

2 weeks
44712

(2945 - 3986)
1367

(50 - 251)

1 week
22470

(1454 - 2148)
732

(8 - 194)

3.5 days
10710

(574 - 1093)
455

(5 - 91)

as the number training set size reduces. As seen in the first experiment, the clinical

accuracy for all models in the safe regions is generally high i.e. Zone A-B ≥98%. As
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seen in Table 4.3, the number of training points in the hypoglycaemia region (CGM

≤ 70mg/dL) are relatively scarce (3-4%), but very consequential for applications

such as PLGS systems. The guidance for hypoglycaemia treatment is to ingest

rescue carbohydrates and/or suspend the insulin basal rate to facilitate recovery of

blood glucose concentration levels.

As seen in Figure 4.5a, multitask learning (MTL) provides the best performance in

terms of RMSE at all training sizes. This is significant compared to the conven-

tional TL approach (p-value < .013). Furthermore, MTL are able to maintain this

consistent performance in predictive accuracy when trained on at least 1 week of

data (Δ RMSE ≤ 5%) from T1DM subjects.

For clinical accuracy, we focus on consistency of model performance in the hypogly-

caemia region to determine if early deployment is possible without compromising

performance. At all training data sizes, no models reported predictions in Zone E.

Figure 4.5b shows the clinical relevance of errors in hypoglycaemia at each training

set size and highlights the consistency in performance of the MTL approach. MTL

approach shows better consistency (Δmax Zone A = -4%) in performance over the

various training sizes relative to the MTL-GV approach (Δmax Zone A = -26.8%).

In this scenario, MTL-GV models show the best performance when trained with

at least 2 weeks of training data from each participant followed by the TL models.

However, this performance drops sharply when training data size is further limited

- Δmax Zone A = -26.8% for MTL-GV and Δmax Zone A = -22.4% for TL. The best

performance in clinical accuracy for hypoglycaemia prediction is obtained by the

MTL-GV model when the training data is reduced to the last 2 weeks of samples at

72.7%.

4.7 Discussion and future work

Multitask learning facilitates transfer of useful information between subjects. The

results detailed in Section V demonstrate that the performance of the personalised
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models improves with the introduction of population data, however, this benefit is

more consistent with a multitask learning approach.

Small datasets can typically result in underperformance of deep learning methods

which prompts the use of transfer learning[118]. One potential reason for the im-

provement in performance with the multitask learning approach, is that parameter

sharing may serve as an additional form of regularisation which works to improve

the generalisation of model performance on unseen data. This could also explain the

high and consistent performance experienced, despite limiting the size of training

data, relative to other approaches evaluated.

A clinical application that is highlighted in this work is the low-glucose suspend

for artificial pancreas systems and hypoglycaemia alerts for clinical decision support

systems. As noted by the results, the benefit of MTL is that it provides consistent

performance with limited data in terms of hypoglycaemia detection. In addition, as

the availability of training data increases over time (≥2 weeks), clustering with re-

spect to glycaemic variability (MTL-GV) and retraining models provides improved

performance in hypoglycaemia detection. This results in the clinical benefit of de-

ploying such tools earlier (relative to when trained with STL) without compromising

performance.

Multitask learning also allows us to address the possible effect of negative trans-

fer that would lead to a decrease in performance. Clustering layers before final

individual-specific layers can reduce the effect of negative transfer. The clustering,

however, seems to establish a trade-off between limiting the amount of negative

transfer and model performance from reduced parameter sharing. This observation

is made given the performance of MTL at different prediction horizons when gly-

caemic variability is considered. At 120 minutes, the relatedness between all tasks

may be reduced which would make negative transfer more prominent over the bene-

fit from parameter sharing. This may also explain the lack of improved performance

prediction for PH ≤ 90 min where clustering reduces the degree of parameter sharing

(i.e. regularisation) and as a result, model performance is affected.
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Assessing the credibility of such models to be deployed in the healthcare domain is

important and gaining attention. This credibility can be ascertained through model

risk assessment, verification, and validation [142]. The validation and verification of

the model can be considered through empirical metrics such as RMSE and MAE. On

the other hand, model risk assessment can be evaluated on the EGA and temporal

gain. For example, if consistent performance is sought by the clinician, the multitask

learning (MTL) approach shows the most consistency in model performance even

with reduced training data size. These considerations can give confidence to the

clinician to recommend these models in a PLGS system even with limited subject

data available.

Limitations in this work exist that can be tackled in future work. One such limitation

is that the small number of T1DM subjects in the dataset means we are unable

to fully characterise the effect of prior information on multitask performance. As

larger open datasets are being made available in the future, we could investigate

the impact of incorporating combinations of prior information, such as age and

glycaemic variability, on model performance. We could also investigate the effect

of other sources of information such as heart rate monitors on multitask learning

performance.

4.8 Conclusion

Deep learning approaches are increasingly becoming relevant in developing the next-

generation of diabetes management tools to aid in diabetes management. Glucose

prediction represents a core part of that path, and as a result, effective method-

ologies are necessary to realise this with data-driven models. Deployment of such

personalised models are hampered by the limited size of individual data available.

Multitask learning provides an effective approach for leveraging population data

to develop personalised glucose prediction models and overcome the challenge of

scarce data for training models. Furthermore, incorporating prior information such
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as glycaemic variability can be beneficial for long-term prediction tools in a multi-

task setting. Finally, this approach is agnostic to the neural network architecture

and can be compatible with other architectures developed in the future. The results

from this work suggest multitask learning can facilitate a path for potentially deploy-

ing personalised models towards improving glycaemic control on limited individual

data.



Chapter 5

Multitask Learning for Automatic

Meal Detection and Estimation

Reproduced with permission from J. Daniels, P. Herrero, and P. Georgiou, “A Deep

Learning Framework for Automatic Meal Detection and Estimation in Artificial Pan-

creas Systems” Sensors; published by Multidisciplinary Digital Publishing Institute,

January 2022.

5.1 Introduction

The self-management of diabetes is a burdensome, delicate, and yet critical under-

taking across different facets that individuals with diabetes have to engage in daily

in order to avert adverse glycaemic events. Current diabetes management systems

such as the artificial pancreas (AP) and decision support systems have been devel-

oped in recent years in order to improve the management of diabetes. The artificial

pancreas is a system that comprises a continuous glucose monitor (CGM), insulin

pump, and an algorithm working in tandem to maintain blood glucose levels in an

acceptable range (70-180 mg/dL). The envisaged endpoint in the development of

the insulin-based artificial pancreas is a fully automated system that does is not

depend on user input throughout the day [36]. One major challenge in the realising

this objective with the artificial pancreas centres on postprandial glucose control.

96
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Studies have shown that when small meals (eg. 30g) are missed AP systems are

capable of handling the resulting postprandial increase in glucose [143, 144]. How-

ever, control is noticeably poorer with larger sized meals [143, 144]. As a result, the

current artificial pancreas systems is classified as a hybrid closed-loop system since

it requires meals to be announced prior to mealtime in order to ensure good control.

The need for user attention to initiate meal announcements in hybrid closed-loop

systems can lead to sub-optimal outcomes. In the ideal scenario, the user accurately

estimates the meal size by carbohydrate counting and provides that information to

the AP system prior to eating. This has to be done due to the delays associated

with subcutaneous insulin delivery. However, multiple studies have shown that

individuals with diabetes tend to have significant rates of late or missed meal insulin

boluses [145]. This can be attributed to factors such as diabetes distress, stress

and forgetfulness among others in a daily routine [146, 147, 148]. These studies

generally showed a strong link between late and missed meal boluses and HbA1c

levels. This increase in HbA1c levels can lead to worsening quality of life over time

[149, 150, 46, 151, 152]. Furthermore, individuals with diabetes are reported to

misestimate meal sizes between 20% and 59% [153, 154].

This appropriately motivates the need for systems such as the AP to be able to

detect unannounced meals and estimate the carbohydrate size in order to control

postprandial hyperglycaemia.

5.2 Related Work

A number of methods have been proposed in the literature towards tackling the

detection and estimation of unannounced meals. These methods broadly fall into the

following categories: (i) threshold-based detection using the rate of change (ROC)

of glucose levels and (ii) outlier detection using model predictions.

Various threshold-based approaches are proposed that analyse a number of rules

regarding the rate of change for meal detection. Dassau et al. [71] propose an
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ensemble approach that comprises three or four approaches - the backward difference

(BD), the second derivative of glucose, a Kalman filter (KF) estimation, and a

combination of BD and KF - with meal detection dependent on attaining a majority

vote from the approaches. Ramkisson et al. [49] employ an unscented Kalman filter

that extends Bergmans minimal model to account for a disturbance parameter and

tracks a cross-covariance of the forward difference of this parameter and glucose level,

and the rate of change to confirm meal detection. To include meal size estimation,

Samadi et al. [60, 47] initially analyse the first and second derivatives of a filtered

CGM signal in order to detect a meal, and then estimates the meal size from glucose

levels and insulin-on-board (IOB) using a fuzzy logic system.

A potential downside of relying on the rate of change and pre-defined thresholds

for meal detection is that when there is significant variability in glucose levels this

would lead to a reduction in the signal-to-noise ratio, and consequently, a relatively

high rate of false positives which can be potentially harmful in this context [60, 47].

As a result, some approaches typically require filtering which may then increase

the detection delay and reduce sensitivity. Even then, the thresholds are selected

based on a training dataset with specific underlying conditions (eg. sensor noise,

sensor drift, insulin sensitivity), so when these conditions shift significantly over the

deployment period this may lead to degraded performance while going undetected.

The alternative approach is model-based approaches that then detect meals based

on outliers in the glucose trajectory for which various approaches have been pro-

posed as well [155, 48, 50]. Cameron et al. [155] develop a probabilistic approach

that compares the expected signal and observed signal to detect a meal, and with

assumptions on the meal shapes, estimate the glucose rate of appearance. A vari-

able state dimension (VSD) approach is introduced where an extended Kalman filter

(EKF) is used to predict the glucose trajectory with a 95% prediction interval [48].

A meal is detected, once the upper bound is exceeded, and a least-squares approach

estimates the meal size. Mahmoudi et al. propose a similar approach that instead

uses an unscented Kalman filter (UKF) to predict the glucose trajectory [50]. How-
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ever this work employs two CGM sensors as opposed to one CGM sensor, and a

meal is detected once both glucose trajectory from both sensors exceed the 95%

prediction interval. Zheng et al. [156] employ the minimal model and run multiple

simulations when the difference between the model trajectory and CGM trajectory

is larger than a set value, to explain the likely meal size to reduce this divergence.

Finally, Garcia-Torado et al. [73] rely on a classification model (logistic regression)

that continuously estimates the probability of an unannounced meal and provides

a scaled insulin bolus based on the total daily insulin instead of estimating the

carbohydrate content.

This work devises a data-driven approach that leverages a deep multitask learning

framework in order to detect and estimate meals. To the best of our knowledge this

is the first meal detection and estimation framework based on multitask quantile

regression, where the assumption on distribution of errors is relaxed. As a result we

make the following contributions:

• We develop a novel meal detection algorithm based on multitask neural net-

works and quantile regression in order to automatically announce meals and

estimate meal size.

• We evaluate in-silico the performance of the meal detection and estimation

algorithm in moving towards fully closed-loop insulin delivery.

5.3 Methods

In this section we first present a meal detection and estimation algorithm that is

based on a sequence to sequence model that is extended to a multitask setting in

order to perform multiple quantile regression. We first describe the recurrent neural

network that makes up this framework. This method is evaluated using a in-silico

dataset of 10 adult subjects generated through the UVa-Padova simulator. We then

illustrate the use case in the AP setting and present results on in-silico validation.
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5.3.1 Multitask Deep Neural Network

As mentioned earlier, the deep neural network is based on a multitask sequence-

to-sequence model. The sequence-to-sequence (seq2seq) model is primarily a model

that is used to map one set of input sequences to an associated set of output se-

quences and has been used in glucose prediction tasks [157, 158, 126]. In this task,

the objective is to estimate the last 20 minutes of the individual’s glucose trajectory

using historical CGM measures, meals, and insulin.

Figure 5.1: The multitask deep neural network architecture for predicting the 20
minute glucose trajectory at multiple quantiles. The multitask seq2seq model pre-
dicts glucose trajectory with a 95% prediction interval (PI) with a lower bound
(2.5%) and upper bound (97.5%) .

To fully utilise the information available, a recurrent neural network encoder-decoder

architecture shown in Figure 5.1 is employed in this framework to estimate the

glucose trajectory. In this model, the encoder and decoder are based on long short-

term memory (LSTM) networks due to their ability to better model sequential data

without the issue of vanishing gradients [159]. The encoder LSTM input sequence

- xenc = (xt−i, ..., xt−4) - comprises the glucose concentration levels from the CGM,

insulin delivered and meals and returns the encoder state representations {c, h} .

The decoder generates the output sequence - ydec = (yt−3, ..., yt) - estimated quantiles
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of the glucose trajectory are generated at the output. The decoder input, xdec =

(xt−3, ..., xt), comprises the insulin delivered and announced/estimated meals and is

initialised with the final encoder state.

The output sequence generated from the decoder is then fed to the three final layers

of the model that consists of three separate tasks. Each task represents a quantile

distribution, τ , and consequently the model performs a quantile regression for the

associated quantile.

Quantile Regression

In the earlier work by shown in Chapter 3 and 4, the deep learning model is trained

using a mean absolute loss; this loss minimises the sum of absolute differences be-

tween the predicted value and the target value to perform a regression. In this work,

we extend the utility of to output the glucose trajectory multiple quantiles.

Aleatoric uncertainty captures the uncertainty in the available data for training a

model. This uncertainty may arise due to errors or variability in the data. In this

case the errors may arise from the misestimation of meals or noise in measurements

of glucose concentration levels from the CGM. As a result, once a persistent This

forms the basis of the proposed approach to the meal detection and estimation

framework in this work.

Quantile regression can be defined as method of estimating a conditional quantile, τ ,

where τ ∈ �0, 1� for a target variable, Y conditioned on the input, X . Subsequently,

the resulting prediction interval serves as an approach for estimating the aleatoric

uncertainty in the training data. One approach that we utilise in training a deep

neural network to perform quantile regression is the pinball loss/tilted loss as shown

in Equation 5.1.

Lτ (y, ŷ) =

⎧⎪⎪⎨
⎪⎪⎩
τ(y − ŷ), y − ŷ > 0,

(1− τ)(y − ŷ) otherwise,

(5.1)
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where y refers to the reference glucose value, ŷ refers to the predicted value, and τ

refers to the quantile that the regression is estimating.

In our multitask architecture, each output corresponds to the following quantiles:

a lower bound quantile (τLB), a median quantile (τM = 0.5), and an upper bound

quantile (τUB). The total of the quantile losses, Ltotal, are uniformly weighted and

jointly minimised as seen in Equation 5.2. It should be noted that the median

quantile (conditional mean) is equivalent to the mean absolute error.

Ltotal =
1

3
�LLB + LM + LUB� (5.2)

The multitask architecture is beneficial in terms of computation and memory since

the majority of weights are shared as opposed to having independent models for each

quantile. Furthermore, Tagasovska et al. show that using a multitask architecture

also enables consistent uncertainty quantification when modelling aleatoric noise in

data [160]. Figure 4.6.3 below shows that consistent prediction interval of the from

our multitask model for an adult subject.

Network Training

Prior to training the input features are first normalised. The neural network for

each individual is trained in a two step strategy. The training dataset is split into

80% training data and 20% validation data. In order to attain better performance

we first train a generalised model using aggregated data from each individual. The

individualised model for each participant is then obtained by fine-tuning the gen-

eralised model on the individual data. Further details on the hyperparameters and

optimisation of the model are included in Appendix C.
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5.3.2 Meal Detection and Estimation

Meal Detection

The first stage of the model involves the detection of a meal. First, the last 20

minutes of the glucose profile is estimated using the sequence to sequence model.

As explained in the previous section, the model outputs multiple quantiles for a

95% prediction interval coverage that arises from the errors arising from the input

variables. Consequently, in a scenario where the glucose trajectory persists outside

the prediction interval, this implies a significant error beyond noise in the input

variables that can be inferred as a missing input. In this setting, this missing input

is attributed to an unannounced ingested meal and therefore a meal detection flag

can be activated.

The use case of this framework necessitates the priority of safety. As a result, in the

detection of the algorithm, we set the condition that this error needs to persist for

m samples to satisfy activating the meal detection flag. In addition, the flag is only

activated if the rate of increase of glucose trajectory is at least 1 mg/dL/min.

Carbohydrate Estimation

Once the meal detection flag is activated we begin the process of estimating the meal

size. This step is achieved with a simple iterative search approach implemented at

the input in order to determine the best possible meal size to estimate the present

CGM value. We condition this iterative search on the mean absolute error (MAE)

between the median quantile of the present estimated glucose level and the reference

glucose level from the CGM. The search is completed once the mean absolute error

is less than a threshold, ε. We initially increase the meal input at 10g and review

the mean absolute error (MAE) until the result is lower than the threshold. We

then reduce the meal increment to 1g and rerun the last iteration to obtain a more

precise meal size estimate. The maximum meal estimate, mMAX , is set to 90g at a

time to mitigate risk of overestimation; additional successive meal estimates can be
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made to supplement the initial estimate.

ε = MAEval

=
1

N

N∑
k=1

|y(k)− ŷM(k)|,
(5.3)

where ŷM(k) denotes the predicted glucose level for a given sample at the media

quantile, k. y(k) denotes the reference glucose measurement, N refers to the number

of samples in the validation set.

For robustness and verification, a check is included where if the meal size increment

does not lead to the expected physiological increase in trajectory, the meal is dis-

carded. The algorithm pseudocode is detailed in Alg. 1. On a 24 hour glucose

profile, a graphical representation of Alg.1 of the detection and estimation of meals

is shown in Figure 5.2
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Algorithm 1 Meal Detection and Estimation Algorithm

Require: X = {G, I,M}, ε
Ensure: Output meal size, mE

Initialise model parameters θ from memory
N ← 2
for t ∈ 28, ..., T do

[yu,ym,yl] ← f(X|θ)
Compare yu and yCGM

Let k be number of samples where yu < yCGM

if k > N AND ΔBG/Δt ≥ 1 then 
 Activate meal detection
mE ← 0
error ← Abs(ym(t)− yCGM(t))
while error > ε AND mE < mMAX do 
 Perform meal estimation

if fine search then
mE ← mE + 1

else
mE ← mE + 10

end if
M ← mE

[yu,ym,yl] ← f(X|θ)
error ← Abs(ym(t)− yCGM(t))
if error ≤ ε then

mE ← mE − 10
Activate fine search

end if
if verify appropriate glucose dynamics then

mE ← 0 
 Discard meal estimate
break

end if
end while

else
mE ← 0

end if
end for

5.3.3 Fully Closed-Loop Control for Insulin Delivery

As mentioned in Chapter 2, a number of closed-loop controllers have been proposed

in the literature in order to facilitate tight glycaemic control. Examples of the differ-

ent types include proportional-integrative-derivative (PID), model predictive control

(MPC), reinforcement learning-based (RL) controllers, and bio-inspired controllers.

The bio-inspired artificial pancreas (BiAP) is a hybrid glucose controller based on
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that has been extensively validated in previous work [144] and is implemented in this

work to evaluate the algorithm. It should be noted, however, that this algorithm is

agnostic to the choice of controller.

Figure 5.3: The system architecture of the bio-inspired artificial pancreas with the
meal detection and estimation algorithm incorporated.

As shown in Figure 5.3 the meal detection and estimation module provides an es-

timate of the carbohydrate size to the bolus calculator in the BiAP controller to

determine the meal insulin bolus. However, based on the initial increasing trend

in the glucose trajectory the controller already begins to deliver the insulin boluses

due to this deviation from the target glucose concentration level. This insulin is

delivered as the deviation remains below the upper bound and the meal flag is not

raised. The prudent measure in this case is to remain conservative and minimise

the possibility of precipitating a postprandial hypoglycaemic event. Consequently

a weight (W=0.5) is applied to the calculated meal bolus before a final bolus is

delivered, and the basal insulin delivery is suspended after for 1 hour.
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5.3.4 Performance Metrics

We employ multiple metrics to comprehensively evaluate the meal detection and

estimation framework. To assess the detection of meals we use the following metrics:

precision, recall, false positive rate, and median delay.

Precision =
TP

TP + FP
(5.4)

Recall =
TP

TP + FN
(5.5)

A true positive (TP) is identified when the detection flag is raised and the delay in

identifying the meal is less than 120 minutes. Otherwise, this event is identified as a

false negative (FN). A false positive (FP) is identified when a meal flag is raised in

the absence of a meal. In the eventual use case of a meal detection algorithm, the

detection of an unannounced meal would prompt a bolus to be delivered either indi-

rectly by notifying the user with an alert, or directly in a sensor augmented pump.

Subsequently, it is important that the metrics not only assess the effectiveness of

the algorithm in detecting unannounced meals, but also we assess the quality of the

meal detection. The recall (sensitivity) assesses the ability of the algorithm is detect

a meal, whereas the precision assesses the quality of meal detection. The specificity

is not considered in evaluating the framework since TN 
 FP, leading to the al-

gorithm posting extremely high values for specificity. For the meal detection time,

we evaluate based on the median delay between the detected meals and the actual

meals in the testing dataset. For assessing the effectiveness of CHO estimation, we

indicate the mean error size and percentage error.

The performance of glycaemic control is evaluated using a comprehensive set of

metrics that are typically used in the literature. We primarily report the follow-

ing glycaemic metrics: percentage time spent in euglycaemia (70mg/dL <BG<

180mg/dL), percentage time spent in hyperglycaemia (BG≥180mg/dL), percentage
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time spent in hypoglycaemia (BG≤70mg/dL), mean glucose concentration level.

We evaluate the level of control with a number of indices, particularly, the high

blood glucose index (HBGI), low blood glucose index (LBGI), and risk index (RI).

In addition, we consider the insulin per day used to achieve the associated level of

control.

Finally, we provide a visual comparison of the quality of closed-loop glycaemic con-

trol of the different configurations with a control-variability grid analysis (CVGA)

[161]. This visualisation is complemented with a numeric assessment of the quality

of control.

Statistical Analysis

We evaluate the differences in the controller performance with different configu-

rations: meal announcement, meal detection, and unannounced. For determining

the statistical significance, we first perform a preliminary test for normality using a

Shapiro-Wilk test. We use a paired t-test if normality is accepted, and a Wilcoxon

signed-rank test when normality is rejected. Significance level is set at p-value <

.05. For multiple pairwise comparisons, we adjust the significance level to p-value <

.025 using Bonferroni correction. The data from the results are presented as Mean

± SD.

5.3.5 In-Silico Dataset

The University of Virginia/Padova (UVa/Padova) T1D Simulator is used to generate

a challenging scenario for training, validating and testing the models. For the meal

protocol scenario we choose four meals with the following average carbohydrate size

at the associated average meal times: 40g (7am), 70g (1pm), 30g (5pm), and 100g

(8pm). A meal-time variability (σT = 60 min) and meal size variability (CV =

10%) is introduced in order to generate realistic scenario of inter-day variability in

meals. In addition, to account for additional variability in meal composition, the
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simulator meal library was supplemented with a further 16 new meals as described

by the authors in [162].

To generate more realistic scenarios, additional intra-day variability on insulin ab-

sorption and insulin sensitivity was introduced. Variability of insulin absorption is

assumed to be ±30% and the insulin sensitivity varies in a sinusoidal manner with

a selected daily period.

As mentioned earlier, studies have shown that individuals with diabetes are not

always prompt with meal announcements and also the carbohydrate counting is

consistently misestimated. In order to model this behaviour, a trigger for skipping

and delaying meal announcement was randomly generated based on an average

2.5 meal announcements skipped, and 2 meals delayed per week. Carbohydrate

counting uncertainty is incorporated in the simulator [-30%, +10%] with a uniform

distribution. The values are selected due to the bias towards underestimation rather

than overestimation of carbohydrate size. These parameter choices are then used

consistently across all tests and comparisons.
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5.4 Results

5.4.1 Meal Detection and Estimation

In this section we report the results on the performance of the framework in detecting

and estimating the unannounced meals in the simulation scenario. The performance

is reported on each mealtime and for the snacks.

Table 5.1: Cohort performance metrics for the meal detection performance for the
different mealtimes. The meals section involves accounting for algorithm perfor-
mance without snacks included.

CHO(g)

Metric
Breakfast Lunch Snack Dinner Overall (Meals)
70±7 100±10 30±3 80±7 70±27 (83±15)
Meal Detection Performance

Precision (%) 86±7 98±2 97± 5 94±6 93±4 (92±4)
Recall (%) 90±5 97±3 24±14 89±4 76±5 (92±3)
Delay (min) 38±13 36±11 41±23 37±15 38±15 (37±13)

Table 5.1 shows the meal detection performance of the meals and snacks at different

mealtimes. The average breakfast meal size is of moderate size (70 ± 7g). The

method obtains a precision 86±7% and a recall 90±5%. In terms of detection time

these meals are flagged at 38±13 min. The lunch meals are the largest size considered

in this study at 100±10g. At lunchtime, the proposed method detects lunch with

98±2% precision and 97±3% recall. This detection is completed in 37±15 min.

Finally, for dinner, the average size during this mealtime is 80±7g which can also

be considered moderate-sized. For this proposed method, we detect dinner meals

at 94±5% precision and 89±4% recall. The snacks ingested after lunch are of a

relatively smaller size at 30±3g. Although the precision is high at 97±5%, the

recall is relatively low at 24±15%. In addition, the detection time is 41±23 min.

The observation is made that the recall and detection time performance is dependent

on the size of the meal, where small meals (snacks) show the worst performance

and large meals (lunch) show the best performance, with moderately sized meals

(breakfast and dinner) showing intermediate performance. On the other hand, we

notice that the performance in terms of precision is consistently high (86-98%) across
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different meal sizes.

Figure 5.4: Top: Estimated meal size versus true meal size for detected meals to
determine the accuracy of meal size error. Bottom: The distribution of estimated
meal sizes and true meal sizes. The probability densities of meal and snack size
errors is also shown.

Following the evaluation of the meal detection performance, we analyse the perfor-
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mance of the proposed method on meal estimation. Figure 5.4 shows the comparison

of the estimated meal size and the actual meal sizes and shows the distribution of

estimation errors in meals. First, we note that meal estimation is estimated in rela-

tion to the median glucose level trajectory which have errors and thus can lead to

under- and overestimation of meals. 80% of the estimated CHO have a estimation

error within 25g, whereas only 6% of detected CHO is larger than 50g, of which

snacks represent the majority. The distribution of the estimation errors, shown in

Figure 5.4, shows that the proposed method is slightly biased towards overestimation

with an average error 18±15g. This justifies applying the weight to the mealtime in-

sulin bolus for the insulin delivery strategy to mitigate postprandial hyperglycaemia

without significantly increasing hypoglycaemia risk.

5.4.2 Closed-loop Postprandial Glucose Control

In this section we report results of the performance of the BiAP controller with

different configurations. The different configurations used in this study are described

below:

BiAP-NMA: In this configuration, meals are not announced prior to the selected

mealtimes for bolus priming. The controller is therefore only able to respond to the

postprandial glucose excursion through feedback from the CGM signal. Since there

is no external input from the user for meal announcement this is a fully closed-loop

configuration.

BiAP-MD: This is a fully closed-loop configuration that corresponds to the BiAP

controller with the meal detection and estimation module incorporated. In this

configuration, the insulin bolus is delivered as explained in the closed-loop insulin

delivery.

BiAP-MA: This hybrid closed-loop configuration corresponds to the controller with

meal announcement included. Meal announcement involves the individual estimat-

ing the meal size and input this in the controller in order to deliver a preprandial
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insulin bolus. The behaviour of the individual is modelled as earlier described to

account for carbohydrate misestimation, missed boluses and late boluses.

Table 5.2: A comparison of the performance in terms of glycaemic metrics and risk
indices between different configurations of the BiAP: meal announcement (BiAP-
MA), meal detection (BiAP-MD), and without either detection or announcement
(BiAP-NMA). p-values calculated with Wilcoxon signed-rank test are underlined.

Metric
Controller

p* p†
BiAP-MA BiAP-MD BiAP-NMA

Glycaemic Targets
Mean BG (mg/dL) 137.7±5.0 144.5±6.8 148.9±9.8 0.002 0.003

TIR (%) 84.7±5.1 77.8±6.3 73.9±7.9 0.002 0.0007
TAR (%) 13.7±4.4 20.7±6.0 24.9±7.8 0.002 0.0009
TBR (%) 1.5±1.3 1.4±0.9 1.3±1.2 0.8 0.4

Risk Indices
HBGI 3.2±0.8 4.3±1.1 5.1±1.5 0.002 0.0005
LBGI 0.5±0.4 0.6±0.4 0.5±0.3 0.3 0.1
RI 3.7±1.0 4.9±1.3 5.6±1.6 0.002 0.002

� p* = BiAP-MD vs. BiAP-MA; p† = BiAP-MD vs. BiAP-NMA

The performance of the controllers in enabling tight glycaemic control is reported

in Table 5.2. BiAP-MD and BiAP are the two closed-loop controllers that are

described as fully closed-loop. A comparison of the performance between these

two controllers reveals that the meal detection and estimation algorithm improves

the control of postprandial hyperglycaemia. This is evident from the significant

reduction in time spent in hyperglycaemia (ΔTAR = -4.2%, p = 0.0009) and lower

risk of hyperglycaemia (ΔHBGI = -0.8%, p = 0.0005). Overall, BiAP-MD reports

a significantly lower mean glucose level (-4.4 mg/dL, p = 0.003) than the BiAP

controller and provides relatively tighter glycaemic control (ΔTIR = +3.9%, p =

0.0007). Finally, this is accomplished without a statistically significant increase in

time spent in hypoglycaemia (ΔTBR = +0.1%, p = 0.4) or risk of hypoglycaemia

(ΔLBGI = +0.1, p = 0.1).

A further comparison is made between the BiAP-MA and BiAP-MD controller.

The first observation is that BiAP-MA has lower mean blood glucose level (-6.8

mg/dL, p = 0.002) than BiAP-MD. In addition, we see significant improvement

in tight glycaemic control with BiAP-MA over the proposed BiAP-MD controller:
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Figure 5.5: A comparison of the 24 hour glucose profile of Adult 3 from the virtual
cohort over the 2 month period between the BiAP controller with meal detection
and the two baseline configurations. The red and green lines mark the hypergly-
caemia and hypoglycaemia threshold respectively. (Top) BiAP vs. BiAP-MD:
A comparison between the BiAP controller performance without and with the meal
detection and estimation incorporated. (Bottom) BiAP-MA vs. BiAP-MD: A
comparison between the BiAP controller performance with user-initiated meal an-
nouncement and automatic meal detection and estimation.

increased time in range (+6.9% mg/dL, p = 0.002), reduced time spent in hyper-

glycaemia (-7%, p = 0.002), and reduced associated risk of hyperglycaemia (-1.1,

p = 0.002). This difference in performance highlights the advantage of the indi-

vidual pre-bolusing for meals over automatic meal detection and estimation. The

accumulation of errors in meal announcements may lead to an increase in time spent

in hypoglycaemia (+0.1%, p = 0.8) and associated risk of hypoglycaemia (+0.1%,

p = 0.8), however, these are not observed to be statistically significant. The differ-

ence in 24 hour glucose profiles of an individual using the BiAP controller with the

different configurations over the 2-month period is highlighted in Figure 5.4.2.
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Figure 5.6: Control variability grid analysis for the BiAP controller with the different
configurations reported. Each marker represents a virtual adult in the simulation
assessed for the 2 month period.

An analysis of the CVGA plots on the population level shows a difference in the

quality of glycaemic control for the different configurations. The first comparison we

consider is between the fully closed-loop BiAP controllers (BiAP-NMA and BiAP-

MD). The general numerical assessment shows that both configurations demonstrate

a similar performance with 90% in Zone A+B and 10% in Lower D zone. In detail,

however, the observation seen in Table 5.2 BiAP-MD exhibits tighter glycaemic

control than BiAP-NMA is further buttressed in this plot. 10% of BiAP-MDmarkers

were observed in the Upper B zone which is an improvement in comparison to 20% of

BiAP-NMA markers, therefore displaying a lesser tendency towards benign control

deviations into hyperglycaemia.

On the other hand, for the second comparison we consider quality of glycaemic

control between BiAP-MA (hybrid closed-loop configuration) and BiAP-MD (fully

closed-loop configuration). BiAP-MA shows marginally worse quality control with

80% of the population in Zone A+B compared to BiAP-MD with 90% in Zone A+B.

As seen in Table 5.2 earlier, BiAP-MA provides tighter glycaemic control that BiAP-

MD, however, this can is more likely to lead to more instances of hypoglycaemia
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particularly when meals are overestimated and delayed. This would explain the

higher instance of individuals from the population in Lower D zone and therefore a

failure to deal with hypoglycaemia during control.

5.5 Discussion

5.5.1 Comparison with Other Approaches

As discussed in the related works section, a number of methods have been proposed

towards detection and estimation of unannounced meals. These generally come

under Kalman filters and/or heuristic rules. The reported metrics of the approaches

are reported in Table 5.3 below.

Table 5.3: A comparison of reported performance metrics in the literature for auto-
matic meal detection and estimation algorithms with our proposed approach.

Algorithm
Performance Metrics

Precision Recall F-Score Delay Size Error UQ
Dassau et al.[71] - - - 30 min - �

Ramkissoon et al.[49] 92.5% 82% 0.87 38 min - �

Samadi et al.[60] 79% 87% 0.86 - 23% �

Samadi et al.[47] 79% 93.5% 0.86 35 min - �

Zheng et al.[156] 93% 88% 0.91 26 min - �

Xie and Wang [48] 84% 76% 0.80 45 min 43% �

Mahmoudi et al.[50] - 99.5% - 58 min - �

Ours - All 93% 76% 0.84 38 min 31% �

Ours - Meals 92% 92% 0.92 37 min 19% �

� UQ = Uncertainty Quantification

We examine the performance of models that use heuristic rules such as inspecting

the rate of change of glucose concentration levels. Dassau et al. [71] evaluated their

meal detection algorithm on 17 subjects who consumed breakfast (22g - 105g). The

CGM sampling time interval is 1 min. The detection time from meal onset the

ensemble method is reported to be 30 min. This discrepancy in sampling time and

reported metrics makes a fair comparison difficult.

Samadi et al. [60] studied an in-silico population of 30 individuals - comprising 10

adults, 10 adolescents, and 10 children. The overall performance is reported to be
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91.7% precision and 91.3% recall. The meal detection time is not provided but the

meal estimate error is 23.1%. However, the performance of the adult cohort is more

comparable with the study undertaken in this chapter. Due to the higher variability

in adults the results are lower, with 79% precision, 87% recall, and 22% meal size

error. This is further supported by a study with 11 adult clinical subjects that

showed 93.5% recall and 79% precision with a detection time delay of 34 min on

average [47]. Zheng et al. [156] report on average a 88% recall and 93.3% precision

with a detection delay time of 26 min when evaluated on 100 in-silico subjects.

A meal size estimation error of 1.2±3.6g is reported, although this comparison is

unfair as the meal sizes and size range evaluated on is relatively small (14-40.8g).

Finally, Ramkissoon et al. [49] also evaluate their approach on 10 in-silico adults.

Their trade-off setting, which is meant balance between false positives (FP) and

recall, demonstrates 82% recall and 38 min detection time from meal start time.

The authors report a false positive rate of 0.2 per day, and from the reported data

a mean 92.5% precision is determined. However this approach does not estimate

meals for enabling postprandial control.

The proposed approach is more comparable to those of Xie and Wang [48] and

Mahmoudi et al.[50] as these rely on uncertainty quantification and outlier detection

to detect unannounced meals. Mahmoudi et al.[50] study 10 adult subjects from

an in-silico cohort. The reported recall (99.5%) for this method is relatively higher

than our proposed method. However, this comes at the expense of the detection

time as this is longer at 58 min, and the precision is not reported. Xie and Wang [48]

evaluate the VSD performance with 30 in-silico participants. The reported recall

(76%) and precision (84%) are relatively lower than the our proposed method. In

addition, the meal detection delay is further (45 min) than our proposed method

and has worse meal estimate error. Both approaches use a Kalman filter to quantify

uncertainty although this assumes the distribution of errors is Gaussian and may

be be the reason for the differences in performance. The primary difference in using

multiple quantile regression as opposed to Kalman filters is that the assumption of
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normality is relaxed.

Given the importance of the precision and recall, we compare the algorithms using

the F-score which is the harmonic mean of the two metrics. Our proposed method

achieves an average F-score of 0.84 for both meals and snacks. Given that meals are

the primary challenge for automated postprandial glucose control, we also consider

that when our approach is solely evaluated on meals - as is done with other methods

- it achieves the highest average F-score of 0.92.

A limitation in comparing this work with other works across the literature is the

difference in datasets used. The current clinical datasets available (OhioT1DM and

ABC4D) were not suitable for testing as the meals are not always recorded, or at

times recorded at a delayed time. Consequently, the stated metrics used in this

chapter would not be accurate in evaluating the performance of this methodology.

In future work, we intend to evaluate this work using both a suitable real-world

clinical dataset.

5.5.2 Misestimation of Carbohydrate Content

One of the primary challenges in developing a suitable framework for detection

and estimation of unannounced meals is the misestimation of carbohydrate content,

either by underestimation or overestimation. As noted in Figure 5.2, the error in the

model prediction varies i.e. the median glucose prediction level is sometimes higher

or lower than the true CGM signal. Consequently, the use of the mean absolute

error of the validation results in the possibility of underestimation or overestimation

of carbohydrate content during meal estimation. In addition, different meals and

snacks tend to lead to different glucose rates of appearance when ingested which may

lead to misestimation if the model only learns a single glucose rate of appearance.

The effect of this limitation is partly addressed by the 90g limit on estimated meals

at any instant which explains the concentrated horizontal line observed in Figure

5.4.
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In future work, the extent of misestimation can be minimised by improving the

predictive performance of the model. This may be achieved by incorporating phys-

iological factors – for example, explicitly allowing different rates of appearance of

glucose from different meals/snacks – in our current approach. This would have the

subsequent effect of reducing the extent of misestimation of carbohydrate sizes by

reducing the error in predicted glucose levels.

5.5.3 Safety Monitoring with Uncertainty Quantification

Safety is an important factor in the development of automated insulin delivery sys-

tems. Consequently, safety considerations are generally considered not only in the

evaluation but in the development and deployment of such systems as well. A promi-

nent challenge once such data driven models are deployed is that a scenario such as

dataset shift can lead to sub-optimal performance [163]. Dataset shift occurs when

there is a change in the conditions present in the training setting. This can be the

case when, for example, the behaviour of the individual and/or the CGM sensor

noise is different in deployment. The result of this can be increase in the number

of false negatives or in the worse case of increased variability as noted in [47], an

increase in false positives. This could increase potential risk of hypoglycaemia.

Table 5.4: A comparison of glucose concentration levels for both false positive and
false negative cases at different times during automated insulin delivery.

Failure
Case

Blood Glucose Level (mg/dL)
At occurrence +90 minutes +180 minutes

False Positive 126 ± 33 120 ± 50 127 ± 55
False Negative 148 ± 38 151 ± 33 145 ± 36

In the proposed methodology, we observe from the precision and recall metrics that

failure cases exist, although they are few. In general, the relatively higher pre-

cision compared to the recall corresponds to the presence of relatively more false

negatives than false positives. For false negatives, this indicates undetected meals

which mostly occurred with small carbohydrate sizes (<40g), and can be mostly

attributed to the subsequent blood glucose rise being smaller than the estimated
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size of prediction intervals. However, as noted earlier, the AP is capable of control-

ling postprandial glucose levels when carbohydrate size are smaller. This is further

evident in Table 5.4 given that the average change in glucose level is relatively small

over the 180 minute (3 hour) period from the missed meal.

For false positives, the primary observation is that the false positives tend to occur

during high glucose levels. The false positives could be attributed to varying factors

such as a decrease in insulin sensitivity which could then lead to a temporary glucose

increase beyond the estimated upper bound of glucose concentration levels. As seen

in Table 5.4, there is a decrease in the average glucose levels 90 minutes after a false

positive detection. However, this change in blood glucose level is reduced after 180

minutes in this scenario given the intake of meals later on. This is further evidence of

the safety in implementing the conservative approach for automated insulin delivery.

Although overcoming these moments of system failure remain an area of active re-

search, our proposed method provides an avenue to monitor the possible cases of

significant distribution shift. In deployment, the prediction intervals can be moni-

tored over successive periods (eg.overnight) to detect if a significant deviation has

occurred in the coverage of prediction intervals. This is possible given that the com-

puted aleatoric uncertainty is generally unaffected by significant distribution shifts

[164]. This behaviour can serve as a marker for when the deployed model needs to

be retrained in the event that the model is not robust to such distribution shifts.

As a result, uncertainty quantification should be an essential component for this

application area moving forward and form the basis of future work for building safe

and reliable systems.

5.6 Conclusions

Current artificial pancreas systems are hybrid closed-loop controllers and therefore

require the user to perform manual meal announcements in order to adequately

handle postprandial hyperglycaemia. Although preprandial bolusing is shown to be
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most beneficial in achieving glycaemic targets, this places a cognitive burden on the

user. Furthermore, the quality of glycaemic control is dependent on how well the

individual is engaged with timely meal announcement and accurate carbohydrate

estimation, which studies show is not always the case.

We develop a novel algorithm for meal detection and estimation of unannounced

meals based on neural networks and multitask quantile regression. Compared to

existing algorithms, this proposed approach achieves a better F-score for meal de-

tection and competitive meal estimation performance based on simulation results.

In addition, this algorithm provides a significant improvement in an artificial pan-

creas system to provide more effective closed-loop control. The hybrid closed-loop

configuration shows better glycaemic control than our proposed approach, however,

is worse at dealing with hypoglycaemia during control from the CVGA assessment.

This study suggests that our proposed algorithm can serve as a viable approach for

achieving fully automated closed-loop insulin delivery.



Chapter 6

Uncertainty-Aware Learning for

Enhanced SMBG

6.1 Introduction

In Chapter 2, the proliferation of smartphones and the development of biosensors is

discussed and noted to have led to devices and systems such as the continuous glucose

monitor (CGM) and flash monitors that comprise the range of solutions geared

towards enabling effective diabetes self-management. Studies have demonstrated

the ability of these devices to improve tight glycaemic control, the primary approach

for managing diabetes [165, 12].

Although these new devices show great promise in the effort to empower individuals

in the self-management of diabetes, they are still not widespread across the world due

to the cost and availability [7]. In addition, some individuals are unable to wear these

devices for extended periods of time without experiencing pain and/or discomfort

[166, 167, 168]. The myriad structural, economic, and physiological reasons that

exist are the reasons that it is expected that the range of diabetes management

tools outside of CGM-based solutions will persist for some time [7].

Glucose meters remain the most ubiquitous tool that enables individuals to monitor

their blood glucose concentration levels. However, this only provides snapshots of

123
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the glycaemic profile as opposed to CGM and flash monitors which also provide

information on the trend, hence is not as effective for enabling glycaemic control

[169, 170, 171]. In fact, it is supported in a number of studies performed that a

greater SMBG sampling frequency is correlated with a reduction in HbA1c [172, 31].

Furthermore, it is suggested that real-time CGM which provides the best resolution

and sampling frequency of glucose concentration levels is better than other inter-

mittent glucose sensing alternatives [173].

Figure 6.1: The variability of the glucose profile is best captured by the CGM as
opposed to through SMBG [3].

Recent works in the literature have demonstrated that machine learning can be

used to improve the capabilities of existing diabetes management tools [174, 33].

However, these works largely focus on the use of CGM which limits the wide ap-

plicability of machine learning for individuals with diabetes. As more applications

based on machine learning methods are introduced towards improving the outcomes

of one section of the diabetes population, this risks widening the chasm of health-

care inequality whereas machine learning can be employed in bridging this gap and

facilitating equitable outcomes across the population.

The primary challenge in the extension of these data-driven approaches to devise

tools for individuals with diabetes that use only standard care tools (glucometers
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and insulin pens) is the sparse and irregular nature of fingerstick measures. The

existing machine learning approaches used in these tools require structured regular

samples as provided by CGMs - typically in 5 minute intervals.

This chapter introduces a machine learning approach that combines Gaussian pro-

cesses (GP) and deep neural networks to develop an uncertainty-aware framework

for monitoring glucose concentration levels in a more continuous manner. The main

aim is to enable nowcasting of glucose concentration with trend information, even

with sparse and irregular fingerstick measures provided with glucose meters. We

address the following areas through our work:

• We study the performance of our uncertainty-aware learning approach against

comparable methods and existing machine learning approaches.

• We investigate the improvement in detection of adverse glycaemic events over

the current SMBG approach.

To the best of our knowledge, this is the first work that develops an uncertainty-

aware machine learning framework for forecasting blood glucose concentration levels

from glucometer readings rather than continuous glucose monitors in order to im-

prove SMBG-based management.

6.2 Related Work

As noted earlier, few works exist in the literature that have leverage data-driven

methods towards improving SMBG-based management. This can be attributed to

the intermittent nature of this management routine and the subsequent emergence of

real-time CGM devices which are more suited to current machine learning methods

that are compatible with regular sampling intervals.

CADMO (Computer-Assisted Diabetes Monitor) is an early decision support sys-

tem that is geared towards assisting healthcare professionals in providing care for

insulin-dependent individuals with diabetes [40, 41]. The system mainly comprises
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a mathematical model that simulates the glucose-insulin dynamics; the model es-

timates a continuous glucose profile by interpolating the glucose values obtained

through the glucose meter, and in addition generates a continuous insulin profile

based on the individual’s MDI history. The combination of physiological, statisti-

cal, and rule-based methods then can be used to simulate the glucose trajectory and

determine optimal insulin regime for good control. The limitations to this approach

is the lack of personalisation as average values for parameters are used, hence some

individuals that experience high variability in glucose and insulin therapy are not

represented adequately. System recommendations are suggested to be less useful

with more incomplete information. Similar to CADMO, KADIS (KArlsburg DI-

abetes management System) [39] is primarily centred around involvement of the

clinician rather than primarily around the individual with diabetes.

On the other hand, another approach explored in the literature [175, 176] is the

use of run-to-run control algorithms for optimising insulin delivery in order improve

the time in range for T1D individuals. These proposed methods are geared towards

individual use rather than clinicians for self-management.

Gu et al. [177] provide an alternative approach to complementing SMBG care with

BGMonitor. BGMonitor is a decision support system that is developed using recur-

rent neural networks for classifying four glycaemic event classes. The four glycaemic

event classes are Level 1 which corresponds to hypoglycaemia, Level 2 and Level 3

correspond to euglycemia, and Level 4 which corresponds to hyperglycaemia. The

system then alerts the user to initiate a finger prick measurement and subsequently

take a decision based on .

Joint models of Gaussian processes and deep learning models have been proposed in

other areas as well in order to overcome the challenge of sparse and irregular inputs.

The most popular application area is in sepsis management [178, 179, 180, 181],

where this is used to process lab tests and vital signs to detect predict onset of sepsis

which is primarily a classification task. Urteaga et al. [182] provides the closest

method to our approach, however this approach is developed to model reproductive
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hormonal dynamics in women. Another difference lies in the use of an attention-

based neural network instead of a convolutional neural network.

6.3 Methods

6.3.1 Model Architecture

We detail the proposed approach, shown in Figure 6.2 below, which comprises two

submodules: a Gaussian process (GP) for modelling the historical glucose concen-

tration levels from sparse glucose meter measurements, and a deep neural network

for forecasting the glucose prediction level from the resulting posterior distribution

of glucose concentration levels, and the insulin, meals, and exercise logs. As seen in

the previous chapters, recurrent neural networks are appropriate models for blood

glucose prediction. This evidence is also supported in the literature with various

recurrent network architecture designs being used for blood glucose prediction and

beyond as well [117]. The deep neural network used in this framework is primarily

an encoder-decoder architecture with self-attention, most similar with transformer

architectures [183, 184].

Gaussian Process. A Gaussian process can be formally defined as a collection

of random variables, any finite number of which have joint Gaussian distributions

[185]. Given that modelling the historical glucose concentration (output) from the

sparse fingerstick measures (input), this is framed as a regression problem where

assumed a mapping exists between inputs and output. The Gaussian process can

be described by the mean function m(x) and covariance function, k(x, x
′
) and sub-

sequently, defines a probability distribution over possible functions, f(X).

f(x)=∼=GP(m(x), k(x, x
′
)) (6.1)

For the purposes of simplicity, the the distribution is assumed to be zero-mean

(m(x)=0). To construct the covariance function, we use a combination of kernel
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Figure 6.2: The proposed approach comprises a Gaussian Process for modelling the
historical glucose concentration levels and a deep neural network for providing esti-
mation and forecast of glucose prediction levels up to τ timesteps ahead to determine
the trend.

functions in order to introduce appropriate prior knowledge about the glucose dy-

namics seen in the CGM profile.
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(6.2)

The covariance function as shown in Equation 6.2 is composed of two main com-

ponents. kA is a locally periodic kernel that is derived from the multiplication of a

rational quadratic kernel(kRQ) and a periodic kernel(kPer). We initialise the period

of the periodic kernel, p = 1 in order to model the long- and medium-term signal

trends. .The smaller short-term trends are captured by the RBF kernel. Finally, the

final component (σ2
nI) is the white noise kernel that contributes the random noise

associated with the glucose meter where σ2
n represents the variance noise and I is an
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identity matrix. θ = {�1, �2, �3, σ1, σ2, σn, α} is the full set of hyperparameters that

are learned during the training process.

The training process for learning the hyperparameters involves maximizing the

marginal likelihood of the GP, p(y | X, θ), from the training data (X, y) as shown

in Equation 6.3 below. Consequently, this corresponds to minimizing the negative

log marginal likelihood to obtain the optimal hyperparameters.

θ̂ = argmax
θ

(p(y | X, θ))

= argmin
θ

− log p(y | X, θ)

(6.3)

The output of the GP is a posterior distribution that enables interpolation of the

sparse, irregular glucose concentration levels from fingerstick measures to samples

with regular 5 minute intervals as seen in Figure 6.3.

This probabilistic approach provides a mean value (f̄),

f̄ = K∗(K + σ2
nI)

−1y (6.4)

along with a variance measure (Var(f)).

Var[f ] = K∗∗ −KT
∗ (K + σ2

nI)
−1K∗ (6.5)

where K refers to the covariance of the all training sample points, K∗ refers to the

covariance between the training sample points and the interpolated points, and K∗∗

refers to the covariance between all the interpolated points in the observed space.

Alternatively, the posterior can be sampled from the full covariance function to

obtain multiple samples rather than use just the mean value as seen in Equation

6.6.
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f = f̄ + (Var[f ])z, where z ∼ N (0, I)

= K∗(K + σ2
nI)

−1y + chol(K∗∗ −K∗(K + σ2
nI)

−1K∗)z
(6.6)

Figure 6.3: The Gaussian process regression is generated from the observed values
from the observations collected from the fingerstick measures (SMBG) and compared
to the CGM signal. Top: The mean of the posterior distribution and prediction
intervals for the observed period. Bottom: Three posterior samples drawn and
displayed from the posterior distribution for the glucose concentration levels.

Figure 6.3 shows the output of the GP. As we see, the uncertainty of the output

increases the further away the interpolated value is from the observed glucose meter

readings. The sparse glucose concentration levels are interpolated to obtain either

the expected mean of the GP output or multiple posterior samples are generated at
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regular intervals to then feed into the deep neural network.

LSTM Encoder-Decoder Layer. The initial layer of the deep neural network

consists of an LSTM encoder-decoder architecture. The encoder processes the his-

torical input of the reported data (exercise and meals), insulin, time of day, and

the output from the GP of the glucose concentration levels over the last 2 hours.

The final state and context vectors, ht and ct respectively, of the encoder feeds the

decoder which only takes the time of day as an input (the only known future input

at both training and test time). The output of the state, hi, at each cell in the

encoder and decoder are further processed by a residual layer and then fed into the

self-attention layer.

Self-Attention Layer. The output of the sequence-to-sequence layer feeds into a

self-attention layer that helps to learn long-term relationships from different points

in the temporal sequence. The attention mechanism used in this work is the scaled

dot-product attention, which takes the inputs as vectors: a query (Q), key (K), and

value (V). This is shown in Equation below.

Attention(Q,K, V ) = softmax(
QKT

√
dk

) · V, (6.7)

where Q and K are vectors of dimension dk, and V is a vector of dimension dv. The

output can be viewed as a scaled summation of the values based on the similarity of

the query and key vectors. Although the transformer is typically implemented with

multiple heads, the validation performance from the hyperparameter search resulted

in implementation with a single head (context vector), H. The self-attention layer

is also masked in order to enforce a causal representation.

Position-wise Feed-forward Layer. The penultimate section of the model is the

position-wise feed-forward layer that applies a feed-forward network to each position

of the that further processes the output from the self-attention layer.

z = max(ex − 1,W1x+ b1)W2 + b2, (6.8)
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where W , b represent the weights and biases of the dense layers in the position-wise

feed-forward layer. z represents the output of this layer after processing by an ELU

activation function. This architecture also features skip connections between the

LSTM layer and position-wise feed-forward layer to dynamically minimise model

complexity where necessary.

Quantile Output. The final layer of the deep neural network is a multi-output

layer in order to setup a multitask learning framework where each task corresponds

to a pre-specified quantile, q. For each quantile, the prediction is made from t=0,

to t=τ which is the furthest forecast value. This serves as a way to communicate

the uncertainty from the inputs at the output.

6.3.2 Uncertainty-Aware Prediction Framework

The sparse nature of the glucose meter readings means that there is an associated

uncertainty with the modelled glucose concentration levels over time. Incorporating

this uncertainty can be beneficial in training a more robust neural network that is

resilient to the various sources of noise. The approach we take in accomplishing this

is to first align the posterior samples, f = {f1, f2, ..., fM}, generated from the GP

with the corresponding time-series of the logs (meals, insulin, and exercise). These

input sequences, v = {v1, v2, ..., vM}, are then mapped to their corresponding target

label, yi.

In this setting vi is considered a random variable, therefore in order to appropriately

train the neural network we minimise the expectation of the quantile loss with

respect to the empirical average as shown in Equation 6.9.

w∗ = argmin
w

Ev∼N (μ,Σ;θ)[�(g(v, w), y)],

=
1

3

∑
q∈Q

τ∑
t=0

M∑
m=1

q(yt − g(v, w))+ + (1− q)(yt − g(v, w))+
M

,

(6.9)
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where w∗ represents the optimal weights of the neural network parameters. The

quantile outputs represent the predictions at the 2.5, 50, and 97.5 quantile.

6.4 Experiments

In this section we detail the experiments that are performed to demonstrate the

benefit of the proposed approach. Firstly, we describe the dataset that is utilised

in undertaking these experiments. We then introduce the baseline methods used to

benchmark the different aspects of the proposed method. Lastly, we provide details

on the multiple metrics and statistical analysis we use to comprehensively evaluate

the performance of the proposed approach.

6.4.1 Dataset

OhioT1DM dataset. The OhioT1DM dataset [134] is introduced earlier as a pub-

licly available dataset that comprises data collected from 12 participants who are

individuals with T1D with glucose meters, wearable devices, insulin pumps, and a

diary for self-reported logs. The individuals are observed in free-living conditions

over a period of 8 weeks.

Data Pre-processing. Prior to training and testing, the data undergoes pre-

processing to facilitate effective learning. The inputs considered for this models are

the time of day, fingerstick measures, carbohydrate intake, insulin, and exercise.

The time of day is first converted to seconds in the day and then a final signal

through a cosine transform. The reported exercise is first transformed from the

initial range of 1-10 to a binary representation denoting the presence (1) or absence

(0) of exercise. The carbohydrate and insulin values are also scaled to within a 0-1

range. Finally, The glucose concentration values are scaled into the range [-1, 1].

This is first performed based on training data and then used to transform the test

data.
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Table 6.1: Training and testing data sizes and glucose meter readings (in brackets)
for subjects in the OhioT1DM dataset

ID
Number of samples
Train Test

540 11947 (414) 2884 (90)
544 10623 (191) 2704 (51)
552 9080 (180) 2352 (46)
559 10796 (169) 2514 (34)
563 12124 (531) 2570 (105)
567 10877 (406) 2377 (78)
570 10982 (241) 2745 (65)
575 11866 (253) 2590 (49)
584 12150 (135) 2653 (25)
588 12640 (558) 2791 (82)
591 10847 (411) 2760 (75)
596 10877 (166) 2731 (32)

6.4.2 Glucose Prediction Models

The following models are implemented to evaluate the different aspects of the pro-

posed method:

LSTM. The first baseline method we consider is a deep learning model, an encoder-

decoder architecture, that is based on a recurrent neural network (RNN) comprising

LSTM cells. This deep learning model is included in order to demonstrate the benefit

of a more flexible parametric model over the The irregularly-sampled measurements

from the glucose meter are interpolated with a last value carry-forward rule.

LSTM-SHA. This baseline model is a deep learning model that features an encoder-

decoder architecture based on a recurrent neural network comprising LSTM cells.

The primary difference between this model and the LSTM model is the single head

self-attention (SHA) layer. Furthermore, the difference between this model and

the proposed approached is that the interpolation of the fingerstick measures is

performed with a last-value carry forward approach as opposed to the GP-based

approach.

GP-LSTM. Similarly, this approach is a two-stage model where the fingerstick

measures are interpolated with the GP, and the mean of the posterior distribution

serves as input to the LSTM neural network.
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GP-LSTM-SHA. This approach is a two-stage model that uses interpolates fin-

gerstick measures with a Gaussian process and performs the glucose forecasting with

the LSTM-SHA model as explained in the Section 6.3. The main difference with the

proposed approach is that this approach mainly takes the mean of the GP posterior

distribution as input to the LSTM-SHA neural network.

UA-LSTM. This method is the proposed approach where the GP-LSTM is trained

with an uncertainty-aware manner. The neural network is fed multiple samples from

the posterior distribution of the GP model which map unto a single true output. In

this study, we use 8 posterior samples for training all uncertainty-aware models as

this provided the best validation performance.

Implementation Details

The models are developed with Python v3.6 using the GPy v1.9.9 and Tensorflow

v1.15. The experiments were all performed using an NVIDIA GTX 1050.

6.4.3 Experimental Setup

Performance comparison of different nowcasting methods. In this experi-

ment, we compare the performance of the proposed approach to the baseline methods

in nowcasting the glucose concentrations levels in terms of the predictive and clinical

accuracy. The models are evaluated using a held-out test set.

Adverse event detection compared to SMBG. This experiment is undertaken

to determine the benefits of the proposed approach over the current SMBG approach.

The proposed approach is evaluated based on the detection of hyperglycaemic events

and temporal gain relative to SMBG.

6.4.4 Performance Metrics

We employ multiple criteria to comprehensively evaluate model performance in the

areas of predictive accuracy, clinical accuracy, and detection time delay.
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The proposed approach is geared towards nowcasting of glucose concentration levels.

In order to evaluate the predictive accuracy, in terms of the magnitude of error from

the reference CGM values in the dataset, we employ the standard metrics of RMSE

and MAE.

To effectively evaluate the clinical utility of this approach, it would be necessary to

consider the predicted glucose concentration levels as well as the rate and direction

of change of the predicted glucose concentration values. The continuous glucose

error grid analysis (CG-EGA), developed by Clarke et al. [186], is an augmentation

of the original Clarke error grid analysis (EGA) [140] in order to better evaluate the

significance of errors in diabetes management systems. This is achieved with the

combination of two components, a point error grid (P-EGA) and a rate Error Grid

(R-EGA) as shown below in Figure 6.4.

Figure 6.4: A visualisation of the error grid analysis (AP: Accurate Prediction; BE:
Benign Error; EP: Erroneous Prediction) on a test set of an individual [4]. Left: The
Point-Error Grid Analysis (P-EGA) measures the accuracy of the point predictions
with the CGM reference. Right: The Rate-Error Grid Analysis (R-EGA) compares
the rate of change of direction of the trajectory from -4mg/dL/min to +4mg/dL/min
between reference and predicted rate of change.

The P-EGA is the same as the original EGA and measures the point accuracy of

model predictions. On the other hand, the R-EGA analyses the clinical accuracy

of the rate and the change of direction of the model predictions. Combining the P-

EGA and the R-EGA is necessary to produce the final results, which are categorised
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under one of the following labels: accurate prediction (AP), benign error (BE), and

erroneous prediction (EP). The objective in this metric is to maximise AP and

minimise BE and EP. These results are reported as a percentage over all the sample

points as well as within the specific clinical regions - hypoglycaemia, euglycaemia,

and hyperglycaemia.

Finally, for the comparison of eSMBG and SMBG methods we include an additional

set of metrics. We employ precision, recall (sensitivity), and the F-score for evalu-

ating the performance in detecting adverse glycaemic events. We also evaluate the

proposed approach using a detection time delay. This is useful in determining the

temporal gain in detecting the adverse glycaemic events for the proposed approach

over the current SMBG method.

6.4.5 Statistical Analysis

For determining the statistical significance of differences between our proposed

eSMBG approach and the other approaches, we first perform preliminary test for

normality using the Shapiro-Wilk test. We use a paired t-test if normality is ac-

cepted, and a Wilcoxon signed-rank test if normality is rejected. The significance

level is set at p < .05. For multiple pairwise comparisons, we adjust the significance

level using Bonferroni correction.

6.5 Results

In this section, we present the summarised results of the experiments undertaken for

this work along with observations relating to the model performance of the proposed

approach.
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Table 6.2: A comparison of the performance in terms of predictive accuracy and
clinical accuracy between different models on the Ohio T1DM dataset (best result
highlighted in BOLD)

Model RMSE MAE
CG-EGA

AP BE EP

LSTM 53.4±6.3* 42.0±4.5† 85.0±4.5 6.4±1.7 8.6±3.6

LSTM-SHA 53.6±6.8* 42.3±5.2† 84.2±4.4 7.7±1.9 8.1±3.7
GP-LSTM 51.5±6.3 40.5±4.8 85.9±3.9 6.6±1.8 7.5±3.2

GP-LSTM-SHA 53.0±7.2 41.8±5.6* 84.9±4.5 7.4±1.7 7.7±3.8

UA-LSTM 52.0±6.7* 40.9±5.0 85.1±4.6 6.8±1.9 8.1±3.5
eSMBG 50.8±7.1 39.9±5.5 85.6±4.3 6.9±1.6 7.5±3.5

� Statistical significance compared to eSMBG with p-value < .01 (*Paired t-test; †Wilcoxon)

6.5.1 Performance comparison of different methods.

Table 6.2 below provides a comparison of the results for the predictive accuracy

and general clinical accuracy of the proposed and baseline approaches. The eSMBG

approach (UA-LSTM-SHA) is shown to have the best predictive performance com-

pared to the other approaches in terms of RMSE and MAE. eSMBG performance

is significantly better than both LSTM and LSTM-SHA in terms of both MAE

and RMSE. However, for the other GP-based approaches, eSMBG significantly out-

performs UA-LSTM in terms of RMSE, and GP-LSTM-SHA in terms of MAE. In

general, we also note that the predictive accuracy of the models are improved when

the glucose concentration levels are modelled from the fingerstick measures using a

Gaussian Process (GP) as opposed to the last value carry forward approach. Fur-

thermore we see that although the uncertainty-aware training approach improves

the general predictive accuracy for the proposed approach, this is not observed with

GP-LSTM and UA-LSTM models.

We also observe the performance of the model performance in terms of clinical ac-

curacy for the proposed approach and selected baselines. In this case the results are

more nuanced, the proposed eSMBG approach (UA-LSTM-SHA) and the GP-LSTM

show the lowest EP for the cohort tested. The GP-LSTM models also demonstrates

the best performance of accurate predictions (AP), however this improvement is not

significant relative to eSMBG. Similar to the case with predictive accuracy, we see



6.5. Results 139

that the models where glucose concentration levels are modelled from fingerstick

measures using a Gaussian Process regression approach exhibit lower erroneous pre-

dictions (EP) than models which used the last value carry forward approach.

Table 6.3 provides further analysis of the clinical accuracy in the specific glycaemic

regions. As we note in the hypoglycaemia region, the performance of all models

are less than 5% accurate predictions (AP) and the erroneous predictions (EP) are

greater than 95% of the glucose predictions in the hypoglycaemia region. In the

euglycaemia region, all the models demonstrate a high level of accurate predictions

with AP >90% and low levels of erroneous predictions with EP <5%. In this case,

the GP-LSTM demonstrates the best performance in the euglycaemia region. For

our proposed approach, the uncertainty-aware training approach is shown to improve

on GP-LSTM-SHA performance in the euglycaemia region.

Finally, clinical accuracy of models in the hyperglycaemia region is lower than in

the euglycaemia region, but higher than in the hypoglycaemia region. The eSMBG

and GP-LSTM-SHA models demonstrate the highest performance in the accurate

prediction with 78.2% AP. However, GP-LSTM-SHA provides the lowest erroneous

prediction with 12.3% EP. The eSMBG method shows the next best performance

with the next lowest erroneous prediction with 13.0%.



140 Chapter 6. Uncertainty-Aware Learning for Enhanced SMBG

T
ab

le
6.
3:

A
co
m
p
ar
is
on

of
th
e
p
er
fo
rm

an
ce

in
te
rm

s
of

cl
in
ic
al

ac
cu
ra
cy

b
et
w
ee
n
d
iff
er
en
t
m
o
d
el
s
on

th
e
O
h
io

T
1D

M
d
at
as
et

in
th
e

d
iff
er
en
t
gl
y
ca
em

ic
re
gi
on

s
(b
es
t
re
su
lt
h
ig
h
li
gh

te
d
in

B
O
L
D
)

M
o
d
el

H
y
p
og
ly
ca
em

ia
E
u
gl
y
ca
em

ia
H
y
p
er
gl
y
ca
em

ia
A
P

B
E

E
P

A
P

B
E

E
P

A
P

B
E

E
P

L
S
T
M

0.
0±

0.
0

0.
0±

0.
0

10
0.
0±

0.
0

93
.4
±
1.
8

5.
8±

1.
7

0.
8±

0.
7

74
.9
±
9.
3

8
.5
±
2
.9

16
.6
±
8.
9

L
S
T
M
-S
H
A

2.
4±

7.
5

0.
0±

0.
0

97
.6
±
7.
5

91
.4
±
2.
3

6.
8±

1.
8

1.
7±

1.
3

76
.0
±
8.
6

10
.2
±
3.
1

13
.7
±
8.
4

G
P
-L
S
T
M

0.
2±

0.
4

0.
2±

0.
4

99
.7
±
0.
6

9
3
.6
±
1
.9

5
.7
±
1
.7

0
.7
±
0
.3

78
.0
±
8.
6

8.
8±

3.
2

13
.2
±
8.
5

G
P
-L
S
T
M
-S
H
A

3
.1
±
1
0
.0

0.
2±

0.
4

9
6
.7
±
1
0
.0

91
.9
±
2.
5

6.
8±

1.
8

1.
3±

1.
0

7
8
.2
±
8
.5

9.
6±

2.
7

1
2
.2
±
8
.6

U
A
-L
S
T
M

0.
0±

0.
1

0.
0±

0.
1

99
.9
±
0.
3

92
.4
±
2.
4

6.
2±

1.
9

1.
3±

0.
9

77
.2
±
8.
9

8.
8±

3.
2

14
.0
±
8.
8

eS
M
B
G

0.
1±

0.
2

0.
0±

0.
0

99
.9
±
0.
3

92
.7
±
1.
7

6.
4±

1.
4

1.
0±

0.
4

7
8
.2
±
8
.8

8.
8±

2.
8

13
.0
±
8.
5



6.6. Discussion 141

In general, we note that the clinical accuracy in the hyperglycaemia region is gen-

erally better with GP-based models as these have lower EP than models where the

glucose concentration is modelled with a last value carry forward approach.

6.5.2 Adverse event detection compared to SMBG

In Section 6.5.1, we compared the performance of the proposed approach against

other forecasting algorithms. This demonstrated the predictive and clinical accu-

racy of the proposed model, particularly for the detection of hyperglycaemic events.

Table 6.4 shows the improvement of the eSMBG approach over the current SMBG

approach.

Table 6.4: A comparison of the performance in terms of event detection for hyper-
glycaemic events between SMBG and eSMBG. p-values calculated with Wilcoxon
signed-rank test are underlined.

Precision Recall F1 Detection Delay/mins
SMBG 0.59 ± 0.11 0.27 ± 0.12 0.36 ± 0.13 217 ± 71
eSMBG 0.60 ± 0.17 0.49 ± 0.18 0.52 ± 0.14 72 ± 67
% Δ 0.0% +81.5% +44.4% −66.8%
p 0.9 <0.01 <0.01 <0.001

The eSMBG approach primarily leads to a significant increase (+81.5%, p <0.01)

in the recall. As a result, this leads to a significant increase (+44.4%, p <0.01)

in the F1 score although we do not see a significant change (+0.0%, p=0.9) in the

precision. Furthermore, the eSMBG provides a significant reduction in the detection

delay (-66.8%, p <0.001) of hyperglycaemic events with fingerstick measures.

6.6 Discussion

eSMBG is a deep learning framework that improves the capability of the self-

monitoring of blood glucose to control glucose concentration levels. The strength

of eSMBG lies in the uncertainty-aware learning approach and the presence of the

attention components.



142 Chapter 6. Uncertainty-Aware Learning for Enhanced SMBG

Attention-based deep learning models help provide a better performance as they

model long-term dependencies [183]. The primary difference between the LSTM-

based models and the attention-based models is the self-attention component. Typ-

ically, the LSTM-based models are able to model work by updating each successive

LSTM cell with the state of the previous cell, hence the dependencies are pre-

dominantly local. However, self-attention can facilitate better connections between

timesteps non-successive cells which may be difficult for LSTM networks to learn.

From our results, we observe that the addition of an attention component can im-

prove on the general predictive and clinical accuracy of the sequence-to-sequence

model, however this seems to be contingent on a large amount of data being avail-

able as seen in the uncertainty-aware learning approach.

As noted earlier, the uncertainty-aware learning approach results from multiple sig-

nals being sampled from the posterior distribution, this is observed to mainly im-

prove the overall predictive and clinical accuracy. This could be the result of the

proposed approach having more layers, therefore requiring a large amount of data

during the training phase. The posterior samples can be considered as a form of

data augmentation, with the various posterior samples being perturbations on the

mean sample to increase the number and diversity of data in the individual dataset

[187, 188]. Typically, this is performed on image and text data to improve model

performance in computer vision and natural language processing problems respec-

tively [189, 190]. However, this approach could hamper performance when the model

capacity is lower as observed in the case of the UA-LSTM model compared to the

GP-LSTM model.

From the perspective of functionality, the use case of an eSMBG tool in diabetes

management would be similar to the flash glucose monitor (FGM) [173]. The simi-

larity between these tools is that they can provide more dynamic information such

as trend information even with intermittent use. Furthermore, these tools do not

require calibration, but are not particularly accurate for the region of hypoglycaemia

and hence require support from additional fingerstick measures. However, results
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reported in the literature [173, 170, 191] indicate that FGM currently exhibits better

predictive accuracy relative to the demonstrated predictive accuracy for SMBG re-

ported in this work. Another difference in this case is that eSMBG has no maximum

sensor duration, unlike the FGM, and is only dependent on the availability of cheap

test strips [26].

Ultimately, this approach faces limitations that impact model performance. Cur-

rently, the clinical guidance recommends particular moments when the fingerstick

readings are taken with the glucose meter [7]. These guidelines are dictated by mo-

ments where subsequent actions would have an effective impact on glucose control.

However, when modelling the glucose concentration levels from fingerstick measures,

these points may not be the most optimal. In this case, future work could explore

the optimal points for taking measurements to improve the modelling of glucose

concentration levels, and subsequently predictive performance.

6.7 Conclusion

Self-monitoring of blood glucose with glucose meters remain the most accessible

diabetes management tool available to individuals with Type 1 diabetes for aiding

in glucose control. However, the sparse and irregular nature of fingerstick mea-

sures results in a much lower detection of adverse glycaemic events. We develop

an uncertainty-aware deep learning model for providing continuous monitoring with

short-term prediction of glucose concentration levels, which in turn improves de-

tection of adverse glycaemic events, particularly hyperglycaemia. This approach of

leveraging machine learning to improve existing tools can help narrow the gap in

outcome disparities between the various CGM-based diabetes technology tools.
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Conclusion and Future Work

The advent of data engineering has laid the foundation for facilitating an improve-

ment in the current diabetes technology tools that exist for individual living with

with diabetes today. This thesis investigated the application of state-of-the-art

machine learning methods towards enhancing the diabetes technology that enable

individuals with diabetes to manage this chronic condition on a daily basis. Deep

learning and multitask learning, specifically, allows the introduction of novel tools

that provide more functionality of the main diabetes technology tools (i.e. SMBG,

decision support, and artificial pancreas) and reduce the burden of managing dia-

betes.

7.1 Summary of Thesis Contributions

Chapter 3 introduced a deep learning framework for predicting the glucose pre-

diction levels in mobile devices. The deep learning model proposed is based on a

convolutional recurrent neural network (CRNN) that predicts the glucose concen-

tration levels at both 30 minute and 60 minute prediction horizons. This makes use

of information from wearable devices - continuous glucose monitors - and comple-

mentary information such as insulin and meals. This approach outperforms existing

traditional approaches in the literature when evaluated on relevant metrics.

144
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The application of the model is then further evaluated on a smartphone to demon-

strate feasibility for on-device inference, and consequently, ambulatory monitoring

and decision support on a resource-constrained device.

Chapter 4 extended the work presented in Chapter 3 to a multitask learning frame-

work as a transfer learning strategy in developing personalised glucose prediction

models. This work was motivated by the challenge of effectively learning from

real-world population data in order to attain better personalised glucose prediction

models when individual data is scarce. This perspective views each individual in the

dataset as a unique task. In doing so, the multitask learning approach tackles the

persistent issue of inter-individual variability that can hamper effective knowledge

transfer and offers the opportunity to deploy such models earlier. Incorporating

knowledge on glycaemic variability can help improve performance at long-term pre-

diction horizons and minimise the effect of negative transfer, particularly at hypo-

glycaemia regions. Furthermore, in an application such as a predictive low-glucose

suspend we show that this approach provides consistent performance with reduced

requirements on the amount of training data required.

Chapter 5 introduced another multitask framework that is focused on moving the

current hybrid artificial pancreas systems towards fully closed-loop insulin deliv-

ery. This is primarily tackled by substituting the meal announcement with a meal

detection and estimation module as postprandial control is a significant hurdle to

achieving fully closed-loop control. The problem is viewed from the perspective of

outlier detection and the glucose trajectory estimation is performed with multiple

quantile regression. In this setting, each task represents a pre-specified quantile

to quantify the aleatoric uncertainty for the given glucose trajectory. A meal is

therefore identified with a significant and persistent deviation from the expected

trajectory.

On evaluation in an artificial pancreas system, this approach improves the glycaemic

targets of the fully closed-loop setting and also improves the quality of glycaemic

control over the hybrid approach.
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Chapter 6 further demonstrates the utility of a deep learning framework in im-

proving the functionality of diabetes technology tools. The proposed approach of an

uncertainty-aware deep learning model allows more continuous monitoring of glu-

cose concentration levels from SMBG tools. Furthermore, this approach increases

the sensitivity (recall) of SMBG in detecting hyperglycaemic events earlier and with-

out significantly degrading the precision.

7.2 Future Challenges and Perspectives

The methods introduced in this thesis work towards the ultimate goal of easing the

burden of glucose control, however further opportunities and challenges still exist

that can be addressed in future work.

Figure 7.1: A simplified model of the external factors affecting blood glucose dy-
namics in T1DM population.

Incorporating physiological constraints into deep learning models. Al-

though the improvement in diabetes technology tools is mainly fuelled by the per-

formance improvements realised in data-driven methods, prior knowledge behind

the physiological models such as Bergman minimal model, Hovorka model etc. re-
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main important. This knowledge in the literature is developed from many years

of experimental studies undertaken over the years to reveal the relations between

the various factors i.e.ceteris paribus an increase in ingested meal increases glucose

levels, and similarly, an increase in insulin leads to a decrease in glucose levels.

For the deep learning models, these relations are expected to be learned during

the training process, however, this is demonstrated to not always be the case. For

example, the work detailed in Chapter 5 requires a post-hoc verification of the

physiological glucose-meal dynamics during meal estimation. From the viewpoint of

safety and robustness, a next step would be explicitly incorporating prior physiolog-

ical constraints into the deep learning models (physics-informed machine learning)

such that the expected dynamics are baked into the learned representations of the

models.

Incorporating more physiological signals into multitask learning models.

The metabolic system is a complex system that is affected by other external factors

beyond the primary considerations of meals and insulin [19, 15, 192]. Figure 7.1 il-

lustrates that, for example, aerobic exercise can have the effect of reducing the blood

glucose concentration level similar to insulin. Automatic detection of these events

can further ease the burden of self-management on the individual with diabetes.

The existing work in this thesis has demonstrated the benefits of multitask learning

and multitask architectures for developing diabetes technology tools. In Chapter 4

and 5 the multitask learning approach can facilitate effective information transfer

between tasks and provide an architecture for efficient computation. In order to

advance the utility of diabetes technology tools, these approaches can be exploited

further in developing the next generation of deep learning models for diabetes man-

agement.

The deep learning models introduced in 3 and 5 can be further developed in the

multitask learning framework to include detection of events such as exercise, sleep

and stress. We posit that jointly learning these tasks as auxiliary tasks could also

improve in the prediction of glucose values as these events would seem to be cor-
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related. In terms of functionality, the detection of anaerobic exercise and/or stress

could serve as a way to minimise the occurrence of false positives in our meal detec-

tion and estimation. Furthermore, as we see in Chapter 6, the performance of the

model introduced is limited to providing trend information and forecasts during and

shortly after glucose meter readings. This can be attributed to the rather sparse

nature of the fingerstick measures. Given the possible correlation of these physio-

logical signals that are more regularly sampled, we posit that a multitask Gaussian

Process that models a sparse signal jointly with these more densely sampled sig-

nals could improve the prediction performance and allow continuous monitoring of

glucose concentration levels, similar to minimally-invasive CGM devices.

7.3 Conclusion

The work in this thesis has detailed a number of approaches for that provide an

avenue for improving the functionality of the current set of diabetes management

tools available to individuals with diabetes. This can help expand the focus of

the deep learning beyond glucose prediction, as seen with the applications such

as that towards automatic meal detection. Given the increasing interest in deep

learning, the introduction of complementary approaches such as multitask learning

and uncertainty quantification in this thesis can lay the foundation for utilising deep

learning to achieve the ultimate goal in developing the right tools for optimising

glucose outcomes while minimising the burden of diabetes management.
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B.1 Model architecture

Table B.1: A Table detailing the size and dimensions of layers in CRNN
Layer Description Output Dimensions No. of

(layer) Parameters

Convolutional Layers (Batch×Steps×Channels)

(1) 1×4 conv 128(1)× 24× 8 104

max pooling, size 2 128(1)× 12× 8 −
(2) 1×4 conv 128(1)× 12× 16 528

max pooling, size 2 128(1)× 6× 16 −
(3) 1×4 conv 128(1)× 6× 32 2080

max pooling 128(1)× 3× 32 −
Recurrent Layer (Batch×Cells)

(4) lstm 128(1)× 64 24832

Dense Layers (Batch×Units)

(5) dense 128(1)× 256 16640

(6) dense 128(1)× 32 8224

(7) dense 128(1)× 1 33
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C.1 Clustering based on glycaemic variability

Glycaemic variability can represent a method for quantifying the degree of glycaemic

excursions present in the individual for the observed period. This can be indicative

of the risk hyperglycaemic or hypoglycaemia.

Table C.1: Percentage time spent in hypoglycaemia for each individual in
the training data: The percentage time spent in hypoglycaemia is presented along
with the associated glycaemic variability (represented by the coefficient of variation
(CV)) for every individual.

ID
Glycaemic Variability (CV)

(%)

Percentage time spent in hypogylcaemia
(%)

540 40 7.1

544 36 1.5

552 37 3.7

559 42 4.1

563 34 2.6

567 40 6.7

570 33 2.0

575 43 8.7

584 34 0.9

588 31 1.0

591 37 3.9

596 33 2.1
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Figure C.1: Comparison of percentage time in hypoglycaemia between
stable and labile groups: Based on a 36% threshold for separating individuals in
stable (CV leq 36%) and labile (CV > 36%) groups, a Mann-Whitney U test shows
a significant difference in percentage time in hypoglycaemia (p = .003).

Mean Percentage time spent in hypoglycaemia for stable group = 1.7 ± 0.6 %

Mean Percentage time spent in hypoglycaemia for labile group = 5.7 ± 1.9 %
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C.2 Bayesian hyperparameter optimisation

To select hyperparameters for the glucose prediction models, we perform a Bayesian

hyperparameter optimization algorithm with Tree of Parzen estimators using CometML

[193]. The search space and optimal hyperparameters are shown in Table C.2.

Table C.2: Hyperparameter search space and configuration

Hyperparameter Value Range
Prediction Horizon

30 45 60 90 120
CRNN

Kernel size CONV {1, 2, 4, 8} 4 4 2 1 1

Number of units
LSTM {8, 16, 32, 64}

FC (1) {64, 128, 256, 512}
FC (2) {8, 16, 32, 64}

32
256
16

32
128
16

32
256
32

64
64
64

32
512
16

{0.10,..., 0.90}

Dropout rate
CONV
LSTM
FC

0.40
0.17
0.42

0.36
0.58
0.33

0.50
0.74
0.41

0.23
0.54
0.36

0.52
0.18
0.24

{1× 10−5,..., 1× 10−2}

Learning rate

STL
TL
MTL

MTL-GV

3.7× 10−4

4.3× 10−5

6.0× 10−4

4.8× 10−4

1.2× 10−3

4.3× 10−5

5.0× 10−4

2.0× 10−3

3.6× 10−4

2.9× 10−5

1.1× 10−3

6.7× 10−4

3.0× 10−3

2.5× 10−3

5.4× 10−5

7.5× 10−4

7.0× 10−4

1.3× 10−4

1.0× 10−3

3.8× 10−4

{64, 128, 256, 512}

Batch size

STL
TL
MTL

MTL-GV

256
256
64
128

128
128
64
512

256
64
128
64

256
256
64
64

256
512
256
64

SVR
C {0.1,...,1000} 237 610 980 960 170

Gamma {1× 10−4,..., 1× 10−2} 1.4× 10−3 9.7× 10−4 4.0× 10−4 1.6× 10−3 1.1× 10−4

Epsilon {1× 10−4,..., 1} 1.4× 10−2 2.0× 10−4 3.1× 10−4 1.9× 10−1 2.6× 10−1
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C.3 Extended quantitative results on model per-

formance

Table C.3: Model performance in terms of RMSE and MAE in the Ohio
T1DM test dataset: The predictive accuracy for each model, in terms of RMSE
and MAE, in the test dataset at all considered prediction horizons. The performance
is reported for each glycaemic region.

Prediction
Horizon
(mins)

Model

HYPOGLYCAEMIA

BG ≤ 70mg/dL

EUGLYCAEMIA

70 mg/dL<BG<180mg/dL

HYPERGLYCAEMIA

BG ≥ 180mg/dL
RMSE MAE RMSE MAE RMSE MAE

30

MTL

MTL-GV

TL

STL

SVR

15.8 ± 4.3

14.7 ± 4.1

15.0 ± 3.3

17.5 ± 3.7

16.8 ± 5.4

12.6 ± 4.1

11.4 ± 4.1

12.1 ± 3.3

14.9 ± 3.9

14.1 ± 5.4

16.5 ± 2.2

16.5 ± 2.0

16.7 ± 2.1

18.4 ± 2.3

17.1 ± 2.3

11.9 ± 1.7

11.8 ± 1.6

12.0 ± 1.7

13.4 ± 2.0

12.3 ± 1.9

22.7 ± 3.9

22.8 ± 4.0

23.5 ± 4.1

24.7 ± 4.3

22.8 ± 4.8

16.1 ± 2.5

16.1 ± 2.6

16.6 ± 2.6

17.8 ± 3.1

16.0 ± 2.6

45

MTL

MTL-GV

TL

STL

SVR

25.8 ± 5.1

26.7 ± 5.5

24.6 ± 4.5

25.5 ± 6.0

27.1 ± 8.4

21.7 ± 5.6

22.6 ± 5.2

20.1 ± 5.3

21.4 ± 6.7

23.4 ± 8.6

21.9 ± 2.4

23.1 ± 3.0

23.0 ± 2.8

23.5 ± 3.0

23.5 ± 3.0

16.0 ± 2.1

17.1 ± 2.5

16.8 ± 2.3

17.3 ± 2.5

17.3 ± 2.7

31.0 ± 5.0

30.6 ± 4.2

32.6 ± 5.3

32.6 ± 5.5

31.6 ± 6.0

22.6 ± 3.7

22.4 ± 3.0

23.6 ± 3.8

24.0 ± 4.0

22.8 ± 3.9

60

MTL

MTL-GV

TL

STL

SVR

36.4 ± 5.9

34.2 ± 6.3

37.1 ± 6.2

40.9 ± 8.6

39.6 ± 11.8

30.9 ± 6.5

28.1 ± 6.9

31.6 ± 6.2

35.5 ± 9.5

34.4 ± 12.1

27.1 ± 3.7

27.8 ± 3.7

28.6 ± 3.6

29.2 ± 3.9

28.6 ± 3.8

20.2 ± 2.8

20.5 ± 2.9

21.3 ± 2.7

21.8 ± 3.1

21.4 ± 3.4

39.4 ± 6.4

40.0 ± 6.3

40.4 ± 6.1

41.7 ± 6.7

38.7 ± 6.6

29.6 ± 4.9

30.1 ± 5.0

30.5 ± 4.7

31.8 ± 5.7

28.6 ± 4.9

90

MTL

MTL-GV

TL

STL

SVR

56.5 ± 11.2

51.8 ± 9.1

55.0 ± 13.1

58.5 ± 11.0

63.7 ± 18.3

51.3 ± 11.6

46.5 ± 9.5

49.4 ± 12.9

53.2 ± 11.1

58.4 ± 18.4

35.4 ± 4.1

34.0 ± 3.5

35.8 ± 4.7

35.5 ± 4.1

37.0 ± 6.6

27.1 ± 3.2

25.8 ± 2.7

27.1 ± 3.5

27.3 ± 3.7

28.8 ± 5.9

50.1 ± 8.1

52.9 ± 7.5

54.3 ± 7.8

54.1 ± 9.6

49.6 ± 8.9

38.6 ± 7.1

41.3 ± 7.0

42.6 ± 6.7

43.0 ± 8.9

38.2 ± 7.6

120

MTL

MTL-GV

TL

STL

SVR

72.9 ± 12.9

68.7 ± 12.2

71.6 ± 12.9

70.9 ± 14.9

71.9 ± 12.4

68.9 ± 13.3

64.6 ± 11.7

67.8 ± 11.8

66.7 ± 14.4

68.9 ± 12.1

41.5 ± 5.8

39.3 ± 5.0

39.7 ± 6.1

40.4 ± 5.9

36.6 ± 5.0

32.4 ± 4.7

30.7 ± 3.8

30.8 ± 4.7

31.3 ± 4.6

29.1 ± 4.1

57.5 ± 9.5

58.5 ± 8.5

62.5 ± 9.1

61.6 ± 10.6

63.0 ± 10.7

45.8 ± 8.3

46.6 ± 7.5

51.4 ± 7.9

50.3 ± 9.6

52.3 ± 10.3
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Table C.4: Model performance in terms of EGA in the Ohio T1DM test
dataset: The EGA performance for each model, showing the percentage of CGM
samples in each zone (A-E) is reported for the test dataset at all considered predic-
tion horizons. This also shows the combined performance at Zone A and B (Zone
A+B).
Prediction
Horizon
(mins)

Model
EGA

Zone A+B Zone A Zone B Zone C Zone D Zone E

30

MTL

MTL-GV

TL

STL

SVR

99.1 ± 0.7

99.2 ± 0.5

99.1 ± 0.6

98.6 ± 1.4

98.9 ± 0.8

89.8 ± 3.8

90.0 ± 3.6

89.6 ± 3.5

87.0 ± 4.9

89.4 ± 4.1

9.2 ± 3.2

9.2 ± 3.2

9.5 ± 3.1

11.6 ± 3.9

9.5 ± 3.4

0.0 ± 0.0

0.0 ± 0.0

0.0 ± 0.0

0.0 ± 0.0

0.0 ± 0.1

0.9 ± 0.6

0.8 ± 0.5

0.9 ± 0.6

1.4 ± 1.3

1.0 ± 0.8

0.0 ± 0.0

0.0 ± 0.0

0.0 ± 0.0

0.0 ± 0.0

0.0 ± 0.0

45

MTL

MTL-GV

TL

STL

SVR

97.9 ± 1.5

97.5 ± 2.0

98.1 ± 1.3

97.8 ± 1.7

97.7 ± 1.7

81.2 ± 6.3

79.4 ± 7.4

80.2 ± 6.2

78.9 ± 7.5

78.9 ± 7.3

16.7 ± 5.1

18.2 ± 5.8

17.9 ± 5.1

18.9 ± 6.1

18.8 ± 5.9

0.0 ± 0.0

0.1 ± 0.1

0.1 ± 0.1

0.1 ± 0.1

0.1 ± 0.1

2.1 ± 1.5

2.4 ± 2.0

1.9 ± 1.3

2.1 ± 1.6

2.2 ± 1.6

0.0 ± 0.0

0.0 ± 0.0

0.0 ± 0.0

0.0 ± 0.0

0.0 ± 0.1

60

MTL

MTL-GV

TL

STL

SVR

96.8 ± 2.1

97.1 ± 2.0

96.6 ± 2.3

96.2 ± 2.8

96.6 ± 2.2

72.3 ± 8.2

72.2 ± 7.9

70.2 ± 7.9

68.8 ± 9.2

70.7 ± 9.5

24.5 ± 6.5

24.9 ± 6.2

26.5 ± 6.0

27.4 ± 6.8

26.0 ± 7.4

0.2 ± 0.2

0.2 ± 0.2

0.3 ± 0.2

0.3 ± 0.3

0.3 ± 0.3

3.0 ± 2.0

2.7 ± 1.8

3.1 ± 2.1

3.5 ± 2.6

3.0 ± 2.1

0.0 ± 0.0

0.0 ± 0.0

0.0 ± 0.0

0.0 ± 0.0

0.1 ± 0.0

90

MTL

MTL-GV

TL

STL

SVR

95.0 ± 3.0

95.0 ± 2.9

94.6 ± 2.8

94.5 ± 3.0

94.9 ± 3.0

58.9 ± 8.3

59.6 ± 8.0

57.6 ± 8.4

57.8 ± 8.0

57.6 ± 9.5

36.0 ± 5.8

35.4 ± 5.7

37.0 ± 6.1

36.7 ± 5.8

37.3 ± 7.6

0.5 ± 0.3

0.5 ± 0.4

0.6 ± 0.5

0.7 ± 0.4

0.7 ± 0.6

4.5 ± 2.8

4.5 ± 2.7

4.8 ± 2.5

4.8 ± 2.9

4.3 ± 2.7

0.0 ± 0.1

0.0 ± 0.1

0.1 ± 0.1

0.1 ± 0.1

0.1 ± 0.1

120

MTL

MTL-GV

TL

STL

SVR

93.7 ± 3.0

93.8 ± 2.8

92.8 ± 2.9

93.1 ± 3.3

93.1 ± 3.6

51.8 ± 7.3

52.3 ± 7.5

50.0 ± 7.4

50.5 ± 8.5

50.9 ± 8.9

41.9 ± 5.0

41.6 ± 5.3

42.9 ± 5.6

42.6 ± 6.1

42.2 ± 6.5

0.9 ± 0.6

0.7 ± 0.5

0.9 ± 0.7

1.0 ± 0.7

0.4 ± 0.4

5.2 ± 2.9

5.4 ± 2.7

6.1 ± 2.8

5.8 ± 3.0

6.4 ± 3.5

0.2 ± 0.2

0.1 ± 0.1

0.2 ± 0.2

0.2 ± 0.2

0.1 ± 0.1
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D.1 Meal detection and estimation algorithm

In the meal detection and estimation algorithm, the multitask quantile regression

model which forms the basis of this algorithm requires 28 time steps to start working.

The decoder we set N = 2 to ensure that the flag is only activated once the majority

(at least 15 min out of 20 min) of estimated samples are below the CGM trajectory.

Δt is set at 20 min. The maximum meal estimate, mMAX , is set to 90g at a time to

mitigate risk of overestimation; additional successive meal estimates. During meal

estimation appropriate glucose dynamics is verified done by tracking the MAE of

glucose as the meal size is incremented. The meal estimate is discarded if successive

increments in meal size lead to an increase in MAE as this violates the expected

dynamics.
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D.2 Training and validation of multitask quantile

regression model

The model architecture is primarily a multitask encoder-decoder architecture based

on LSTM recurrent neural networks. The LSTM layers for both the encoder layer

and decoder layer consist of 64 cells. The selected optimiser is the Adam optimiser

and at the pre-training stage the learning rate is 1× 10−3, which is then reduced to

1× 10−4 at the fine-tuning stage. The batch size for both training stages is 128. We

set the number of epochs to 100 and implement early stopping with a patience of 20

epochs to terminate training when validation loss is no longer improving (ΔLmin =

1 × 10−4). The models are developed with Python 3.6 and Keras v2.2.2 [113] and

trained using a NVIDIA GTX 1050.

Table D.1: Performance metrics for neural network on validation set: The
parameters of the meal detection and estimation framework are selected based on
performance of the model on the validation set. This is based on last 20% of the
training data in order to attain the predictive accuracy and prediction interval nec-
essary.

ID
Metric

RMSE MAE PI
1 5.8 4.0 95.3
2 5.9 4.1 94.5
3 8.0 4.6 94.7
4 5.7 4.0 94.9
5 7.7 4.3 93.6
6 5.7 4.1 94.9
7 6.7 4.8 94.7
8 7.2 4.3 93.7
9 5.0 3.7 97.3
10 8.4 4.3 95.4

Average 6.6 ± 1.1 4.2 ± 0.3 94.9 ± 1.0
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E.1 Bayesian hyperparameter optimisation

To select hyperparameters for the glucose prediction models, we perform a Bayesian

hyperparameter optimization algorithm with Tree of Parzen estimators using CometML

[193]. The search space and optimal hyperparameters are shown in Table E.1.

Table E.1: Hyperparameter search space and configuration
Hyperparameter Value Range LSTM LSTM-SHA
Number of cells {8,16,32,64} 16 8
Hidden layer size {8,16,32,64} 8 8
Learning rate {1× 10−5,..., 1× 10−2} 9× 10−4 3× 10−3

Max Gradient Norm {1× 10−2,..., 10} 2× 10−1 7× 10−1

Dropout rate {0.10,..., 0.90} 0.13 0.27
Batch size {64, 128, 256, 512, 1024}

FF 256 64
GP 256 64
UA 256 1024

� FF = Last Value Carry Forward; GP = Gaussian Process; UA = Uncertainty-Aware Training
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[53] A. Güemes, G. Cappon, B. Hernandez, M. Reddy, N. Oliver, P. Georgiou,

and P. Herrero, “Predicting Quality of Overnight Glycaemic Control in Type

1 Diabetes Using Binary Classifiers,” IEEE Journal of Biomedical and Health

Informatics, vol. 24, pp. 1439–1446, May 2020. Conference Name: IEEE

Journal of Biomedical and Health Informatics.

[54] A. Parcerisas, I. Contreras, A. Delecourt, A. Bertachi, A. Beneyto, I. Con-
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vanovič, and D. E. Seborg, “Experimental evaluation of a recursive model

identification technique for type 1 diabetes,” Journal of diabetes science and

technology, vol. 3, no. 5, pp. 1192–1202, 2009.



BIBLIOGRAPHY 169
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and R. Rabasa-Lhoret, “Carbohydrate counting accuracy and blood glucose

variability in adults with type 1 diabetes,” Diabetes Research and Clinical

Practice, vol. 99, pp. 19–23, Jan. 2013.



182 BIBLIOGRAPHY

[154] L. T. Meade and W. E. Rushton, “Accuracy of Carbohydrate Counting in

Adults,” Clinical Diabetes, vol. 34, pp. 142–147, July 2016. Publisher: Amer-

ican Diabetes Association Section: Feature Articles.

[155] F. Cameron, G. Niemeyer, and B. A. Buckingham, “Probabilistic Evolving

Meal Detection and Estimation of Meal Total Glucose Appearance,” Journal of

Diabetes Science and Technology, vol. 3, pp. 1022–1030, Sept. 2009. Publisher:

SAGE Publications Inc.

[156] M. Zheng, B. Ni, and S. Kleinberg, “Automated meal detection from continu-

ous glucose monitor data through simulation and explanation,” Journal of the

American Medical Informatics Association, vol. 26, pp. 1592–1599, Dec. 2019.

[157] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with

neural networks.,” in NIPS (Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, and K. Q. Weinberger, eds.), pp. 3104–3112, 2014.

[158] S. Mirshekarian, H. Shen, R. Bunescu, and C. Marling, “LSTMs and Neural

Attention Models for Blood Glucose Prediction: Comparative Experiments on

Real and Synthetic Data,” in 2019 41st Annual International Conference of

the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 706–712,

July 2019. ISSN: 1557-170X.

[159] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Com-

put., vol. 9, pp. 1735–1780, Nov. 1997.

[160] N. Tagasovska and D. Lopez-Paz, “Single-Model Uncertainties for Deep Learn-

ing,” in Advances in Neural Information Processing Systems, vol. 32, Curran

Associates, Inc., 2019.

[161] L. Magni, D. M. Raimondo, C. D. Man, M. Breton, S. Patek, G. D. Nicolao,

C. Cobelli, and B. P. Kovatchev, “Evaluating the Efficacy of Closed-Loop

Glucose Regulation via Control-Variability Grid Analysis,” Journal of diabetes

science and technology (Online), vol. 2, pp. 630–635, July 2008.



BIBLIOGRAPHY 183

[162] C. Liu, J. Veh́ı, P. Avari, M. Reddy, N. Oliver, P. Georgiou, and P. Herrero,

“Long-Term Glucose Forecasting Using a Physiological Model and Deconvolu-

tion of the Continuous Glucose Monitoring Signal,” Sensors, vol. 19, pp. 4338

– 4357, Jan. 2019. Number: 19 Publisher: Multidisciplinary Digital Publishing

Institute.

[163] A. Subbaswamy and S. Saria, “From development to deployment: dataset

shift, causality, and shift-stable models in health AI,” Biostatistics.

[164] A. Kendall and Y. Gal, “What Uncertainties Do We Need in Bayesian Deep

Learning for Computer Vision?,” arXiv:1703.04977 [cs], Oct. 2017. arXiv:

1703.04977.

[165] D. M. Nathan and f. t. D. R. Group, “The Diabetes Control and Complica-

tions Trial/Epidemiology of Diabetes Interventions and Complications Study

at 30 Years: Overview,” Diabetes Care, vol. 37, pp. 9–16, Jan. 2014. Publisher:

American Diabetes Association Section: DCCT/EDIC 30th Anniversary Sum-

mary Findings.

[166] I. Mamkin, S. Ten, S. Bhandari, and N. Ramchandani, “Real-Time Continuous

Glucose Monitoring in the Clinical Setting: The Good, the Bad, and the

Practical,” Journal of Diabetes Science and Technology, vol. 2, pp. 882–889,

Sept. 2008. Publisher: SAGE Publications Inc.

[167] K. D. Barnard, T. Wysocki, J. M. Allen, D. Elleri, H. Thabit, L. Leelarathna,

A. Gulati, M. Nodale, D. B. Dunger, T. Tinati, and R. Hovorka, “Closing the

loop overnight at home setting: psychosocial impact for adolescents with type

1 diabetes and their parents,” BMJ Open Diabetes Research and Care, vol. 2,

p. e000025, Apr. 2014. Publisher: BMJ Specialist Journals Section: Clinical

care/education/nutrition/psychosocial research.

[168] J. C. Wong, N. C. Foster, D. M. Maahs, D. Raghinaru, R. M. Bergenstal,

A. J. Ahmann, A. L. Peters, B. W. Bode, G. Aleppo, I. B. Hirsch, L. Kleis,



184 BIBLIOGRAPHY

H. P. Chase, S. N. DuBose, K. M. Miller, R. W. Beck, S. Adi, and for the

T1D Exchange Clinic Network, “Real-Time Continuous Glucose Monitoring

Among Participants in the T1D Exchange Clinic Registry,” Diabetes Care,

vol. 37, pp. 2702–2709, Sept. 2014.

[169] E. Toschi and H. Wolpert, “Utility of Continuous Glucose Monitoring in Type

1 and Type 2 Diabetes,” Endocrinology and Metabolism Clinics of North

America, vol. 45, pp. 895–904, Dec. 2016.

[170] R. A. Ajjan, M. H. Cummings, P. Jennings, L. Leelarathna, G. Rayman,

and E. G. Wilmot, “Accuracy of flash glucose monitoring and continuous

glucose monitoring technologies: Implications for clinical practice,” Diabetes

and Vascular Disease Research, vol. 15, pp. 175–184, May 2018. Publisher:

SAGE Publications.

[171] Y. C. Kudva, A. J. Ahmann, R. M. Bergenstal, J. R. Gavin, III, D. F. Kruger,

L. K. Midyett, E. Miller, and D. R. Harris, “Approach to Using Trend Arrows

in the FreeStyle Libre Flash Glucose Monitoring Systems in Adults,” Journal

of the Endocrine Society, vol. 2, pp. 1320–1337, Dec. 2018.

[172] K. M. Miller, R. W. Beck, R. M. Bergenstal, R. S. Goland, M. J. Haller,

J. B. McGill, H. Rodriguez, J. H. Simmons, I. B. Hirsch, and T1D Exchange

Clinic Network, “Evidence of a strong association between frequency of self-

monitoring of blood glucose and hemoglobin A1c levels in T1D exchange clinic

registry participants,” Diabetes Care, vol. 36, pp. 2009–2014, July 2013.

[173] G. Mancini, M. G. Berioli, E. Santi, F. Rogari, G. Toni, G. Tascini,

R. Crispoldi, G. Ceccarini, and S. Esposito, “Flash Glucose Monitoring: A

Review of the Literature with a Special Focus on Type 1 Diabetes,” Nutri-

ents, vol. 10, p. 992, Aug. 2018. Number: 8 Publisher: Multidisciplinary

Digital Publishing Institute.



BIBLIOGRAPHY 185

[174] S. Oviedo, J. Veh́ı, R. Calm, and J. Armengol, “A review of personalized

blood glucose prediction strategies for T1DM patients,” International Journal

for Numerical Methods in Biomedical Engineering, vol. 33, June 2017.

[175] C. C. Palerm, H. Zisser, W. C. Bevier, L. Jovanovič, and F. J. Doyle, III,
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