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Abstract

This thesis develops data-driven flow reconstruction methods to reconstruct the velocity of plane

Couette flow from wall temperature. We performed a Direct Numerical Simulation (DNS) for

a heated plane Couette flow with imposed flux boundary condition at the bottom wall to

create a data-set. Due to the the imposed flux the temperature at bottom wall is free and

wall temperature patterns can develop. The focus of this thesis is on the investigations of

the strong correlation between the flow velocity and the wall temperature. We analyse their

joint probability density function and cross variance spectrum to develop a spectral linear

regression model. This model successfully reconstructs wall shear stress from wall temperature

except possibly at peaks. To reconstruct flow velocity from wall temperature, we apply flow

decomposition modes such as the Proper Orthogonal Decomposition (POD) modes [Holmes

et al., 2012]. We design test problems to develop a framework to reconstruct gappy fields with

missing information. In this framework, we prescribe suitable regularisation for the under-

determined gappy fields. We also develop a decomposition method - the subdomain POD

method which divides a physical domain into a number of subdomains and then applies the

POD method in each subdomain individually. This subdomain POD are locally optimised and

inherits properties of the POD modes. In both cases, namely the POD and the subdomain POD

method, the reconstructions are found to be in good agreement with the flow velocity obtained

form the DNS. To develop data-driven methods with imposed physical constraints, we propose

a linear dynamical model based on Orr-Sommerfeld-Squire [Kim and Bewley, 2007, Murray,

2006] system and the scalar transport equation. This model successfully reconstruct some of

the key flow structures at z+ = 35.
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Chapter 1

Introduction

1.1 Motivation

More than half of the world population lives in cities and this proportion is expected to continue

to increase in future [United Nations, 2019]. Due to this continuing urbanization, the interaction

between the city dwellers and the ever changing urban climate is becoming increasingly impor-

tant. Among others, an important research area is to enhance the capabilities in addressing

the growing urban environmental risks ( e.g. air pollution [Manisalidis et al., 2020], the urban

heat island effects [Taha, 2004] ), as these risks directly influence public health [United Na-

tions, 2014]. According to the World Health Organization (WHO), air pollution alone causes

one in nine deaths worldwide [World Health Organization, 2016], costing seven million lives

per year. The environmental risks predominantly depend on the characteristics of air flow

within street canopies. For example, strong winds can rapidly transport pollutants hundred of

kilometers, whereas under weak wind conditions, pollutants tend to accumulate around their

sources [Bergin et al., 2005]. Thus, to confront the environmental risks, it is essential to mea-

sure, to understand and to be capable of controlling the airflow in the urban environment.

To measure airflow, a number of different approaches have been employed in the literature,

such as field measurements [Oke, 1988, Van Pul et al., 1994], physical models [Lateb et al.,

2016] and numerical simulations [Kasagi et al., 1992, Nagano and Tagawa, 1995]. Among

1



2 Chapter 1. Introduction

Figure 1.1: Thermal images for two urban landscapes in Berlin, Germany [Oke et al., 2017].

these, field measurements and physical modelling are costly and experimental set up is time

consuming. In addition, noisy results obtained from field measurements need filtering and thus

lose information. Although field measurements are performed under real conditions utilising all

possible phenomena such as shear, buoyancy and humidity, the number of measurement points

are limited [Inagaki et al., 2013, Montazeri and Blocken, 2013]. Besides, weather status can

change rapidly and repetition of experiments under identical conditions is impossible [Lateb

et al., 2016]. Physical models are performed in controlled environments and thus the receptivity

of the experiment can be ensured [Barlow and Coceal, 2009]. However, the results from physical

models are subject to noise and there are technical difficulties involved in the measurement

procedure [Blocken et al., 2008], such as, the measurement of skin friction.



1.1. Motivation 3

Figure 1.2: A diagram showing the scales resolved by the DNS and LES [Ouro Barba et al.,
2017]. The DNS resolves scales upto Kolmogorov scale in the dissipation range whereas the LES
resolves only the large eddies and the remaining unresolved eddies (shown with SGS cut-off)
are needed to be modelled. At the top of the diagram the size of eddies are reducing from the
production range to the dissipation range.

Another frequently used measurement approach is numerical simulation, which can provide

detailed spatial and temporal flow information. Unlike field measurements, exact boundary

conditions and parameters can be set according to a given problem. Two frequently used

simulation approaches in fluid dynamics are − direct numerical simulation (DNS) [Pirozzoli

et al., 2014] and large eddy simulation (LES) [Podvin et al., 2006]. In DNS, the whole range of

spatial and temporal scales upto Kolmogorov length scale are resolved. Despite the requirement

of high computational cost, DNS provide reliable data for the validation of turbulence models

and is a necessary tool to discover fundamental physics of turbulence. On the other hand,

LES ignores smaller length scales and resolves dynamically important larger scales only. The

effect of such truncation is modelled to incorporate the dynamical interactions of neglected

scales with largest scales. Since, it is not required to resolve all scales, LES is computationally

cheaper than DNS. A schematic diagram showing the scales resolved by the DNS and the LES

is presented in figure 1.2 using a energy spectrum.



4 Chapter 1. Introduction

To obtain accurate results while minimising computational costs, flow reconstruction techniques

can be a useful tool to investigate the flows. Flow reconstruction techniques are methods that

provide information of the states of a flow, such as velocity and temperature, from a set of

limited observations. In many circumstances, the flow states may not be available through-

out the physical domain or some of the states may be missing completely, and thus the flow

reconstruction techniques are important in these situations. The advantages of reconstruction

techniques are: (a) they require limited observations which are simpler to measure and (b) they

are cost effective. Some examples of flow reconstruction are the estimation of velocity fields

from wall pressure measurements [Bui-Thanh et al., 2004], flow controls by reducing wall fric-

tion [Lee et al., 2001] and wall thermal imprints [Inagaki et al., 2013]. The similarity between

these examples of flow reconstruction techniques is that they estimate/control the flow using

wall data. But, among these partial observations, that is pressure, skin friction and thermal im-

prints, thermal imprints can provide more detailed spatial information compared to the others.

For example, to measure the pressure at the wall of an aerodynamic body, the available spatial

information (degrees of freedom) is the same as the number of sensors used, whereas a digital

infrared camera can capture millions of pixels on a 2D plane. Figure 1.1 shows an example of

thermal imaging in urban landscapes chosen from the literature. Another motivation of using

wall thermal imprints as the limited observation is the strong correlation between the thermal

dynamics and the driving air flow [Antonia et al., 1988]. The wall thermal imprints can be

considered as the footprints of the turbulent flow around the wall.

Thermal image velocimetry (TIV) is an example of a flow reconstruction technique which

uses wall thermal images as limited observations. In comparison to other flow visualization

techniques, such as particle image velocimetry (PIV), the TIV is more robust when applied

to the urban environment. The size of the measurement area for the PIV is reported to be

limited to about 10m2 [Inagaki et al., 2013] due to the difficulties in tracking and controlling

the particle distributions within the test area. On the other hand, the TIV can be applied over

a large landscape in open environment. A schematic diagram is shown in figure 1.3 describing

the TIV. The TIV requires a low cost infrared thermal camera to evaluate 2D airflow velocity

distribution near a surface, such as the exterior of buildings, using a set of wall thermal imprints.
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From these thermal imprints, advection velocity of the thermal patterns are evaluated. The

advection velocity is the time rate of change at which the thermal patterns on the wall are

moving. A regression line is then fit using advection velocity and flow velocity around the

wall. The slope of the regression line is chosen as multiplier and finally, the multiplier is simply

multiplied to the thermal patterns to obtain the flow velocity.

(a) (b)

(c) (d)

t = t1

t=t2

Vadv

x1

x2

v(z*,t)

(t)

z=z*

x

y

x

y

Anemometer

Single point velocity v(z*,t)
measurements by anemometer

Estimating Advection velocity by
 tracking wall  thermal patterns

Fitting regression line of v(z*,t) 
and advection velocity 

Velocity field reonstruction  from advection
 velocity and the slope of the regression line

Figure 1.3: Schematic diagram describing TIV technique. Here, v(z∗, t) is the velocity measured
by anemometer at z = z∗, ∆x1 and ∆x2 are the displacements of thermal structures within
time period (t2 − t1) and Vadv is the advection velocity. The coordinate x and y is shown in
the top left corner of the figure.
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?

x

z

y
Thermal pattern

Figure 1.4: A schematic diagram of a cubic box visualizing the aim of the thesis. The tem-
perature on the bottom wall are the limited observation. The objective is to obtain the flow
information on the zx plane.

Although TIV technique can provide detailed spatial velocity distribution, its ability to re-

construct velocity far from the wall is limited. One inherent limitation of TIV is the use of

linear regression which assumes the near wall linearity of flows. Far from the wall, velocity

follows the well known log law and a linear analysis would not yield a good reconstruction of

the velocity field in far wall region. TIV technique has been applied to reconstruct velocity field

only 35mm away from the wall [Inagaki et al., 2013]. TIV technique also suffers from locality

effects, especially if the physical domain contains stagnation points. In this case, reconstructed

velocity would not be representative of the entire surface as local velocity at a stagnation point

is zero. The other limitations of this technique are the difficulties in tracking complex patterns

near any corners, conditions of the walls, buoyancy effects.

This thesis is based on the core idea of the TIV - the thermal wall patterns are correlated with

the turbulent flow structures near the wall. The aim of the research is to use this correlation

to get the turbulent flow structures near the wall. Correlation coefficient is the highest near to

the wall and tends to decrease further away from the wall. Therefore, the important research

questions are (1) how far from the wall can the turbulent flow structures be reconstructed? and

(2) to what extent (accuracy of the reconstruction) reconstruction is possible? The aim of the

current research are visualized in the figure 1.4 by an idealistic scheme of a cubic box - given
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the thermal patterns on the bottom wall, what is flow field in the plane perpendicular to the

bottom wall?

V = [θ1 θ2 ... θN ]

V V Tϕ = λϕ

POD

(a)

V = [θ1 θ2 ... θN ]

θj = Aθj−1

DMD

Aϕ = λϕ

(b)

Figure 1.5: A diagram showing different flow decomposition methods (a) the POD mmodes are
the eigenvectors of VV T , where V = [θ1 θ2 . . . θN ] and θj are the observations at discrete
time steps, (b) the DMD modes are the eigenvectors of the operator A, where A maps θj−1 to
θj.

Flow decomposition methods [Taira et al., 2017], e.g, proper orthogonal decomposition (POD)

[Holmes et al., 2012, Moehlis et al., 2002] and dynamic mode decomposition (DMD) [Schmid,

2010, Taira et al., 2017], are two widely used methods to reconstruct flow fields from limited

observation. These flow decomposition techniques are a tool of data-driven analysis. Generally,

a flow decomposition method extract a set of modes from a data-set. The meaning of such modes

depends on the particular decomposition method used. For example, POD uses correlation to

extract modes from experimental/simulated data. POD modes are in fact, eigenmodes of

the correlation matrix of a flow field. The decomposition technique POD at it heart is a

statistical method that extracts the best features of a data set to represent it optimally (in

an L2 sense). A data set is expressed as a linear combination of POD modes and such a

linear representation eases any further analysis/development while the dynamics of the data

could be highly non-linear. On the other hand, in DMD it is assumed that the dynamics of a

set of data is governed by a linear mapping (e.g. a tangent operator to non-linear dynamical

operator) and the eigenmodes of this linear operators are DMD modes. Unlike POD, DMD

modes are not orthogonal and can not be arranged in an order based on the energy they

capture. However, DMD modes are efficient to present a dynamically important feature which
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might not energetically important. To reconstruct flows using these decomposition modes, one

need to know how these modes are modulated with time from a set of available full/partial

measurements [Holmes et al., 2012]. It is also in practice to use flow decomposition modes to

build up a dynamical model, as can be found in [Moehlis et al., 2002] where they used POD

based dynamical model to analyse and determine some flow features of plane Couette flow

(Re = 400). Figure 1.5(a,b) shows how the POD and the DMD modes are related to the flow

observations, respectively.

Another important approach is the use of dynamical models. The data driven flow decomposi-

tion methods discussed earlier, do not take into account any dynamical relation but only extract

some important features (modes) from a set of data. Use of dynamical models can thus be an

attractive approach for flow reconstructions as it provides some physical constraints whereas

observations can be assimilated into the model - which is still a data-driven approach. These

models can be divided into two subgroups - linear and non-linear models. A description of

the linear and non-linear models and flow control/estimation using these models can be found

in [Kim and Bewley, 2007]. The non-linear models are expensive to solve as they required

iterative procedures (e.g. adjoint method) [Giles and Pierce, 2000,Protas et al., 2004,Yamaleev

et al., 2008]. An example of the linear model can be found in [Illingworth et al., 2018] which

used Orr-Sommerfeld-squire model to reconstruct velocity field. The main advantage of using a

linear model is that the linear control and estimation theory is readily applicable to the model.

There are established methods, such as Kalman filter [Trentelman et al., 2002,Kim and Bewley,

2007] that can be used to estimate flow from partial observations.

In this thesis, we will reconstruct flow from partial observations. Linking back to TIV, in each

case thermal wall imprints will be used as partial observations. We will investigate different

flow decomposition methods and dynamical models using suitably chosen test problems, and

will discuss the advantages and disadvantages of each method. With these methods/models, if

succeeded, the limitations of TIV can be overcome and frameworks can be established for flow

reconstructions away from wall using wall temperature.
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1.2 Aims and objectives

The aim of the thesis is to reconstruct flow structures using wall thermal imprints. A series of

objectives has been set to achieve the aim as listed below:

• O1. Creating a data-set for flow reconstructions: The objective is to obtain steady

state DNS data-set of plane Couette flow and compare with analytic and published results.

• O2. Inferring wall shear stress from wall temperature: The objective is to develop

a spectral model to reconstruct wall shear stress using the strong correlation between flow

velocity and wall temperature.

• O3. Flow reconstruction using data driven decomposition methods: The ob-

jective is to use data driven decomposition method, such as the POD, to reconstruct the

velocity field. The temporal amplitude of the modes are unknown at a given time and

these temporal amplitudes are to be evaluated from the wall temperature.

• O4. Flow reconstruction using dynamical models: The objective is to estimate

velocity field using dynamical models, such as Orr-Sommerfeld-Squire system [Illingworth

et al., 2018] and wall temperature.

1.3 Outline of the thesis

In chapter 2, we perform a DNS of plane Couette flow at Reτ = 263 and verify the validity

using published results. We build up a data-set which will be used in the remainder of the

thesis. In chapter 3, we use a spectral model to estimate the wall shear stress from the wall

temperatures and parameterise the model to reduce the degrees of freedom.

We discuss the POD method in chapter 4. The POD decomposes a flow field into a set of

orthonormal modes and these modes can be ordered by the kinetic energy. That is, the kinetic

energy(variance) of the first mode is higher than the second mode, the second mode contains
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higher kinetic energy than the third mode and so on. We set up a number of test problems

with increasing difficulty to test the performance of the POD modes for flow reconstructions.

To reconstruct flow velocity from wall temperature, we choose suitable regularisation method

to solve the resulting under-determined system. In chapter 5, we develop a subdomain POD

method where the domain is divided into subdomains and the POD method is applied to each

subdomain. These modes are different from the standard POD modes as the subdomain modes

are locally optimised and are efficient to reconstruct the local flow structures. Here, we consider

the same set of problems as in chapter 4 and compare the reconstructed flows using both the

standard and subdomain POD modes. In chapter 4 and 5, we successfully reconstruct the

streamwise component of the flow velocity using only wall temperature.

In Chapter 6, we use linear dynamical model [Illingworth et al., 2018] to reconstruct the flow

velocity. The dynamical model provide a physical constraint, which is a new inclusion com-

pared to the data-driven methods used in chapter 4 and 5. To estimate velocity field from wall

temperature, we develop a dynamical model using the Orr-Sommerfeld-Squire system [Illing-

worth et al., 2018] and the scalar transport equation. In this chapter, the non-linear terms in

the perturbed quantities is considered as the random forcing with finite variance. We use wall

temperature to approximate the variance of this random forcing and flow velocity is estimated

from the resulting response of the model.



Chapter 2

Creating a data-set for flow

reconstruction using Direct Numerical

Simulation

In this chapter, we create a data-set for flow reconstruction by performing Direct Numerical

Simulation (DNS) of plane Couette flow with the top wall moving while keeping the bottom

wall fixed. In addition, the bottom wall is subjected to a constant temperature flux qw and

the top wall is kept at a fixed temperature. We compare turbulence statistics obtained from

DNS with other published results and find good agreement. We generate DNS data-sets which

will be used in upcoming chapters to reconstruct the wall shear stress and the velocity field of

plane Couette flow.

11
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2.1 Direct numerical simulation

The DNS is performed with the code SPARKLE, which numerically integrates the incompress-

ible Navier-Stokes equations [Craske and Van Reeuwijk, 2015]

∂u

∂t
+ u · ∇u = −∇p+ ν∇2u, (2.1)

∇ · u = 0, (2.2)

∂θ

∂t
+ u · ∇θ = κ∇2θ. (2.3)

Here, x = (x, y, z)T , where x, y and z are the streamwise, spanwise and wall normal directions,

respectively, u = (u, v, w)T is the flow velocity, p is the kinematic pressure and ν and κ are

the kinematic viscosity and the thermal diffusivity of the fluid, respectively. SPARKLE is

parallelised with a two-dimensional domain decomposition. Since the flow is homogeneous in

the directions x and y, periodic boundary conditions are applied in this directions. The spatial

operators are discretised using a symmetry preserving finite volume method [Verstappen and

Veldman, 2003] which is accurate to fourth order. The variables are arranged on a staggered

grid. Each control volume is centred on the location of the transported variable and fluxes are

defined on the centre of each face. The time marching is implemented by using an adaptive

third order explicit Adams-Bashforth numerical scheme.

DNS resolves the whole range of temporal and spatial scales from the Kolmogorov scale to the

integral scale. The Kolmogorov scale η is determined by

η =
(
ν3/ε

) 1
4 (2.4)

where, ε is the rate of turbulent kinetic energy dissipation. For DNS, the spatial increment

∆x should be considered less than η. Chapman estimated the number of grid points that is

required to resolve up to the Kolmogorov scale as [Chapman, 1979]

N ∼ Re9/4 (2.5)
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u = 2Uθ = 0

−κ∂θ/∂z = qw u = 0

z

x

h
u(z)

Figure 2.1: Schematic diagram of the simulated domain

where, Re = 2U/Lx is the Reynolds number, 2U is the mean velocity and Lx is the stream-

wise length. Thus the DNS requires high computational cost and is not suitable for practical

engineering applications. However, the DNS are used widely as a tool to understand the fun-

damental aspects of canonical flows and to develop/validate turbulence models.

2.2 Case setup

We perform Direct Numerical Simulation (DNS) of plane Couette flow, for which the bottom

wall is static and the top wall is moving with velocity 2U (figure 2.1). In addition, the bottom

wall is subjected to a constant temperature flux qw and the top wall is kept at a fixed tempera-

ture. Due to the prescription of a fixed temperature flux, the temperature on the bottom wall

is free. The dimensions of the cuboidal domain are 6h× 3h× h, where h is the channel height.

To simulate the flow, the computational domain is discretised into 864× 432× 432 grid points.

The mesh is uniform in all directions and no grid stretching is considered.

In the simulation, we assume that the Richardson number Ri = gβqwh
2/U2 � 1, where g,

β and h are the gravitational acceleration, thermal expansion coefficient and domain height

domain respectively. This assumption allows us to represent the temperature as a passive

scalar [Kasagi et al., 1992].

Two averaging operators will be used. The first type is the standard spatio-temporal average

(·) = 1
LxLyT

∫ T
0

∫ Lx

0

∫ Ly

0
(·) dy dx dt, whilst the second type is a temporal-only average 〈·〉 =

1
T

∫ T
0

(·) dt, where Lx, Ly are the lengths in the streamwise and spanwise directions respectively
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and T is the averaging period. The temporal-average operator will be used for the spectral

analysis. The two averaging operators naturally lead to two distinct definitions of fluctuations

A′ = A− A, A′′ = A− 〈A〉. (2.6)

We note that A′ = A′′ for a long time average. In this simulation the Prandtl number Pr =

ν/κ = 1 and the shear Reynolds number Reτ = uτh/(2ν) = 263, where Reτ is based on the half

channel height h/2, kinematic viscosity ν and the friction velocity uτ =
√
τw/ρ. Here, τw and ρ

are the wall shear stress and fluid density, respectively. Plus units are used to non-dimensionalise

the data according to u+ = u/uτ and θ+ = (θw − θ)/θτ , where θτ = −κ∂θ/∂z
∣∣
w
/uτ = qw/uτ is

the reference wall temperature and the subscript w represents measurements at the bottom wall

(z = 0). To obtain time in plus units we non-dimensionalise time according to t+ = 2tuτ/h.

To acquire the turbulent statistics, the simulation is carried out until it reaches a statistically

steady steady state at time t+ = 420 and then averages are computed over a time period of 21

plus units.

2.3 Turbulence statistics

Figure 2.2(a) shows the (spatio-temporal) mean streamwise velocity. The mean velocity profile

is in good agreement with the DNS of [Pirozzoli et al., 2014] at Reτ = 260. The mean velocity

can be fitted to the log-law u+ = (1/k) log(Ez+) with coefficients k = 0.41 and E = 8.34. The

root mean square (RMS) of the three velocity components and the (spatio-temporal) mean of

stress as a function of the wall normal coordinate are presented in figure 2.2(c,e). The velocity

statistics are in good agreement with those from [Pirozzoli et al., 2014].

Plotted in figure 2.2(b,d,e) are the (spatio-temporal) mean temperature, the RMS of temper-

ature and the (spatio-temporal) mean of the total temperature flux alongside its components,

namely the diffusive and the turbulent temperature flux, respectively. Due to a scarcity of

plane Couette simulations with a passive scalar, we also include channel flow simulations in the
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Figure 2.2: DNS results (a) the mean velocity; (b) the mean temperature; (c) RMS profiles of
u, v, w-components of the velocity; (d) RMS profiles of θ; (e) stress profiles and (f) temperature
flux profiles. In figures (a,c,e), comparisons with published results from [Pirozzoli et al., 2014] at
Reτ = 260, in figure (b) comparisons with the result from [Liu, 2003] at Reτ = 52.8, [Johansson
and Wikström, 2000] at Reτ = 265 and [Schwertfirm and Manhart, 2007] at Reτ = 180, and
in figure (d) comparisons with the result from [Schwertfirm and Manhart, 2007] at Reτ = 180
have been shown, respectively. In figures (a-d), horizontal axis represents z+ and in figures
(e-f) z+ is along vertical axis.
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comparison. These have very similar inner layer properties, but the outer layer behaviour is

different. The mean temperature is compared with data from [Liu, 2003] at Reτ = 52.8, [Schw-

ertfirm and Manhart, 2007] at Reτ = 180 (channel flow) and [Johansson and Wikström, 2000] at

Reτ = 265 (channel flow), and a reasonably good agreement is found for all three cases. In fig-

ure 2.2(d), the RMS temperature at the bottom wall is non-zero due to the applied temperature

flux and the maximum RMS temperature is found at z+ = 10.34. A comparison with [Schwert-

firm and Manhart, 2007] at Reτ = 180 (channel flow) is also shown in figure 2.2(d) and good

agreement is found at the near-wall (top wall) region. We chose the top wall for comparison

to match with the fixed temperature boundary condition of the reference [Schwertfirm and

Manhart, 2007].

The temperature flux profiles in figure 2.2(f) are similar to the shear stress profiles. Along the

channel height, the total temperature flux matches the theoretical constant value closely, with

a relative error in the `2-norm that is less than 1%.

2.4 Conclusions

A data-set for flow reconstruction was created using Direct Numerical Simulation of plane

Couette flow with imposed heat flux condition on the bottom wall. Due to the prescription of

a fixed temperature flux, the temperature on the bottom wall is free and temperature patterns

can develop on the wall. DNS wall patterns will be used as a proxy for flow reconstructions

in upcoming chapters. in the simulation, Richardson number Ri is assumed zero in limiting

sense. That is, the role of gravity is not considered in the simulation.

We computed turbulence statistics of the flow and compared them with published results. The

mean velocity and the mean temperature follow a log-law. The root mean squares, stress and

heat flux statistics are found to be in good agreement with previously published results. The

RMS temperature at the bottom wall is non-zero due to the applied temperature flux and the

maximum RMS temperature is found at z+ = 10.34.



Chapter 3

Estimating wall shear stress from

thermal wall patterns

In this chapter1, we reconstruct the wall shear stress of plane Couette flow from thermal wall

imprints generated by direct numerical simulation at Reτ = 263 discussed in chapter 2, using

an imposed surface temperature flux and fixed temperature at the bottom and top boundary,

respectively. We explore the strong correlation between wall shear stress and wall temperature

by analysing their joint probability density function and cross variance spectrum, before de-

veloping a spectral model based on linear regression. We then use observed symmetries in the

estimator parameters to reduce the degrees of freedom of the model. The reconstructed wall

shear stress reproduces streamwise streaky structures. The relative error in the `2-norm of 0.25

is primarily associated with the absence of local maxima in the reconstructed wall shear stress.

3.1 Introduction

The wall shear stress is an important quantity in fluid dynamics that plays a leading role in

many industrial applications, such as in aviation and the shipping industry [Douvi et al., 2015].

The wall shear stress can be directly linked to fuel consumption and energy efficiency; hence

1Chapter 2 and 3 are under review with the International Journal of Heat and Fluid Flow.
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measurements of the wall shear stress have attracted attention for many decades [Douvi et al.,

2015, Mayer, 1998, Haff et al., 2018]. A thorough review of the early attempts to measure the

wall shear stress can be found in [Haritonidis, 1989]. Measurement techniques in this regard

can be divided into two categories: indirect and direct methods. Indirect methods rely on

established correlations between a flow and its wall shear stress. For example, the Preston tube

technique relies on the law of the wall to measure the wall shear stress [Winter, 1977]. Other

possible correlations are the pressure gradient in channel flow [Örlü and Vinuesa, 2020] and the

momentum thickness over a flat plate [Haritonidis, 1989].

In contrast, direct methods sense a force acting on a surface. Examples include the flush-

mounted floating element [Naughton and Sheplak, 2002] and the micro-electro-mechanical sys-

tem (MEMS) based sensors [Ho and Tai, 1998, Löfdahl and Gad-el Hak, 1999]. The small

physical size of the MEMS sensors makes them suitable for a vast number of applications re-

quiring relatively high spatial and temporal resolutions. With the advance of physics in the

field of thermal [Leu et al., 2016,Liepmann and Skinner, 1954] and laser [Naqwi, 1993] sensors,

the uses of MEMS sensors are increasing.

Both direct and indirect techniques have their shortcomings, including disturbance due to

sensor probing and a lack of capability to measure the spatial distribution of the wall shear

stress, which limits their viability in industrial applications. To overcome these limitations,

flow visualisation techniques have been developed. The thin oil film technique [Maltby R. L.,

1962, Tanner and Blows, 1976, Tanner, 1977] based on the thin-oil-film equations derived by

Squire [Maltby R. L., 1962] and the liquid crystal coating [Reda and Muratore, 1994, Zhao,

2018] are two such techniques.

In the non-intrusive TIV [Hetsroni et al., 2001, Kowalewski et al., 2003, Inagaki et al., 2013]

thermal images at a wall are tracked to find the velocity of the thermal structures. Whilst the

aim of TIV is not directly to reproduce the wall shear stress, it is clear that high velocities

inferred with TIV are likely to correlate with high wall shear stresses. The aim of this chapter

is to investigate to what extent the spatial distribution of the wall temperature can be used

to estimate the instantaneous wall shear stress. We discussed direct numerical simulation of a
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plane Couette flow with constant surface temperature flux in previous chapter 2 and generated

a data-set of thermal wall imprints. These are then correlated with the wall shear stress, and

a spectral model is developed to link the two.
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Figure 3.1: Snapshots acquired from the DNS, (a) wall shear stress and (b) wall temperature.
The contour plots show the color from the minimum (blue) to the maximum (red) (a) τ+

w =
−0.18 to τ+

w = 7.25 and (b) θ+
w = −14.11 to θ+

w = 7.62.

3.2 Joint PDF and spectral analysis

The aim of this section is to establish the link between the wall temperature θw and the wall

shear stress τw. We start by presenting a pair of snapshots of the θw and τw in figure 3.1,

obtained from the DNS at the same time step. Visual inspection of the figure 3.1 suggests
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similarities between the two fields. Both fields contain large streamwise streaky structures,

which are the signature of a wall bounded shear flow [Waleffe, 1997,Hetsroni et al., 2001].

The snapshots show that the wall shear stress is low when the temperature is high and vice

versa, suggesting that these two physical quantities are negatively correlated [Wallace et al.,

2006]. Indeed, the correlation coefficient

Rθwτw =
θ′wτ

′
w√

θ′2w

√
τ ′2w

(3.1)

between θw and τw is equal to −0.69. The faster (relative to the mean velocity) patches of the

fluid cool down (relative to the mean wall temperature) the corresponding sections of the wall,

whereas the slower patches give rise to the higher temperature regions. This is because sweeps,

which cause high shear stress, bring low-temperature fluid to the wall.
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Figure 3.2: (a) 〈τw〉+y and (b) 〈θw〉+y against y+, respectively.

The figure 3.2(a,b) show 〈τw〉+y and 〈θw〉+y , respectively against y+. The averaging operator 〈·〉y

is defined as below

〈·〉y =

∫ Lx

0

(·) dx
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It is evident that from the figures 3.2(a,b) that wall shear stress τw and θw are strongly (nega-

tively) correlated. In both figures, a large mean structure with streak size about 1100 plus-units

is visible.
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Figure 3.3: Joint PDF of wall shear stress fluctuation and thermal wall pattern fluctuation.
The contour labels represent the probability of data points inside the contours. From inside
(dark blue) to outside (yellow) the contours represent 25%, 50%, 70%, 80%, 95% and 99%
data respectively. The percentage in each quadrant is the percentage of data points within the
quadrant.

The joint probability density function of the wall temperature θw and the wall shear stress

τw is presented in figure 3.3. The contours represent the probability of data pairs inside the

contours. The data pairs are concentrated in the second and the fourth quadrants (which

collectively contain 74% of the data pairs) and suggest a strong negative correlation between

the wall temperature θw and the wall shear stress τw. In addition, the contribution of the

second and fourth quadrants are almost the same. The next largest contribution corresponds

to the third quadrant, which corresponds to low stress and the transport of low temperature

fluid to the wall. Another important observation is that the joint PDF is not symmetric about

the (θ′w)+ = 0 line. This asymmetry clearly differentiates the relationships between θw and τw

for high and low temperature regions.
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In the remainder of this section we discuss the relationship between θw and τw in Fourier space.

The 2D Fourier transform of χ in x, y is denoted by χ̂(kx, ky, z, t), where χ is an arbitrary

quantity and kx = 2πnx/Lx and ky = 2πny/Ly are the wavenumbers in the streamwise and the

spanwise directions. The wavelengths in the streamwise and spanwise directions are defined as

λx = 2π/kx and λy = 2π/ky, respectively. The relation between the spatio-temporal fluctuation

and those in Fourier space (based on a temporal mean < · >) are provided using the Plancherel

theorem (see appendix A for derivation) [Wiener, 2010]

τ ′2w =
∑
nx

∑
ny

〈τ̂ ′′∗w τ̂ ′′w〉, θ′wτ
′
w =

∑
nx

∑
ny

〈θ̂′′∗w τ̂ ′′w〉, θ′2w =
∑
nx

∑
ny

〈θ̂′′∗w θ̂′′w〉 (3.2a-c)

The left side of equation 3.2(b) is the total cross covariance of the wall shear stress and the

wall temperature, and the quantities 〈θ̂′′∗w τ̂ ′′w〉 on the right side are the cross-variances in the

wavenumber space. That is, the cross-spectrum 〈θ̂′′∗w τ̂ ′′w〉 shows how the total covariance θ′wτ
′
w is

distributed over different wavenumber pairs (kx, ky). The same principle holds for τ ′2w and θ′2,

using the equations 3.2(a) and 3.2(c), respectively.
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Figure 3.4: (a) spectrum of the wall temperature θ̂′∗θ̂′ ; (b) The modulus of shear stress and

wall temperature cross-spectrum θ̂′∗τ̂ ′ ; (c) spectrum of the wall shear stress τ̂ ′∗τ̂ ′. The contours
represent the percentage of the variance captured by the wavenumber pairs within the contours.
From the inner-most contour (dark blue) to the out-most contour (yellow) the percentages are
57%, 70%, 80%, 95% and 99% respectively.
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Figure 3.4 shows the modulus of the cross-spectrum along with the individual spectrum of the

wall shear stress and the thermal wall patterns. The contours show the percentages of vari-

ance/covariance captured by the wavenumber pairs within the contours. As can be seen from

figure 3.4, the wavenumber pairs around the k+
x = 0 line are the most energetic pairs for both

wall quantities τ̂ ′′w and θ̂′′w. Compared to the wall shear stress spectrum, the temperature spec-

trum is more dominated by the first few low wavenumbers pairs. The energetically dominant

pairs around k+
x = 0 are responsible for the coherent streamwise streaky structures which are

long in the streamwise direction and short in the spanwise direction.

3.3 Inferring τw from θw

In order to use the wall temperature to estimate the wall shear stress, a spectral model will

be developed that relies on a linear least-squares estimator. The linear least squares estima-

tor assumes that, for each wavenumber pair (kx, ky), the input θ̂′′w(kx, ky, t) and the output

τ̂ ′′w(kx, ky, t) are related linearly as

τ̂ ′′w(kx, ky, t) = C(kx, ky)θ̂
′′
w(kx, ky, t) (3.3)

where C(kx, ky) is an unknown time-independent estimator parameter. To obtain C, we min-

imise
〈
τ̂ ′′w − C(kx, ky)θ̂

′′
w

〉2
with respect to C. For minimisation,

0 =
d

dC

〈
τ̂w(kx, ky)

′′ − C(kx, ky)θ̂w(kx, ky)
′′〉2

= 2
〈
θ̂w(kx, ky)

′′∗
(
τ̂w(kx, ky)

′′ − C(kx, ky)θ̂w(kx, ky)
′′
)〉

= 2
〈
θ̂w(kx, ky)

′′∗τ̂w(kx, ky)
′′ − C(kx, ky)θ̂w(kx, ky)

′′∗θ̂w(kx, ky)
′′〉

= 2
〈
θ̂w(kx, ky)

′′∗τ̂w(kx, ky)
′′〉− 2C(kx, ky)

〈
θ̂w(kx, ky)

′′∗θ̂w(kx, ky)
′′〉



24 Chapter 3. Estimating wall shear stress from thermal wall patterns

By rearranging, the estimator parameter C(kx, ky) for each kx and ky pair is then given by

C(kx, ky) =
〈θ̂w(kx, ky)

′′∗τ̂w(kx, ky)
′′〉

〈θ̂w(kx, ky)′′∗θ̂w(kx, ky)′′〉
(3.4)
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Figure 3.5: (a) |C|, obtained from the DNS; (b) The exponential fit c; (c) argC, obtained
from the DNS; (d) The Gaussian fit ϕ; The exponential fit parameters (e) a, b and p, and the
Gaussian fit parameters (f) σ and M . The figures (a-d) are shown in the k+

x k
+
y plane. The

horizontal coordinate µx in figures (e,f) is defined as equation 3.9.

To determine C, we use half the data set (230 snapshots). The other half is used to test the

performance of the model. In Fourier space, we consider the interval |k+
x | ≤ 0.03 and |k+

y | ≤

0.26. This choice is motivated from the cross spectrum of τw and θw in figure 3.4(b), where
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more than 95% of the total cross variances is associated with the chosen wavenumber pairs.

Therefore, 33×129 = 4257 wavenumber pairs are considered in total. However, the symmetries

of the Fourier transform imply that χ̂(kx, ky) = χ̂∗(−kx,−ky) and χ̂(kx,−ky) = χ̂∗(−kx, ky) for

all kx, ky. The combination of these with the fact that the wall shear stress is real-valued in

physical space, leaves only 17× 65 = 1105 pairs.

In order to determine C, we acquired the wall temperature and wall shear stress at a tempo-

ral resolution of ∆t+ = 0.0021, which corresponds to approximately 10 DNS time steps. We

consider 460 consecutive snapshots; within this time period, the top wall moves approximately

three channel lengths (2TU = 3.067Lx) in the streamwise direction. The choice of the temporal

resolution can be explained via Taylor’s hypothesis which implies that a structure with stream-

wise wavenumber kx at a wall-normal height z gives rise to a temporal frequency ω = kxU(z) as

it convects downstream Illingworth2018. For our choice of the largest streamwise wavenumber

k+
x = 0.03 and the largest mean velocity (at the top wall), the maximum temporal frequency is

ω+ = 0.606. That is, to resolve the maximum frequency at the largest k+
x , the required temporal

resolution is 0.0063 in plus-unit (3 times larger than ∆t+ = 0.0021). Since, ∆t+ is chosen much

smaller than the required minimum temporal resolution for the largest wavenumber considered,

our choice of ∆t+ is justified.

Plotted in figure 3.5(a, c) are the modulus and phase of C, which linearly correlates the wall

temperature mode θ̂w to the wall shear stress mode τ̂w for each (k+
x , k

+
y ). Visual inspection of

the modulus of C suggests that modes k+
x = 0 of θ̂w and τ̂w are strongly negatively correlated,

whereas the higher wavenumber modes (k+
x ≥ 0.01) are positively correlated for k+

y ≥ 0.02.

The phase of C, as shown in figure 3.5(c), converges to π for all k+
x . For higher wavenumbers

k+
x , the phase of C converges to π at higher k+

y .

In order to be able to predict wall shear stress from the wall temperature, it is convenient

to parameterise C by considering its modulus c(kx, ky) and phase ϕ(kx, ky) independently as

C = c exp(iϕ). The data suggest a reasonably good model can be obtained by using the
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approximation:

c(kx, ky) = a(kx) + b(kx) (1− exp (−|ky|/p(kx))) (3.5)

ϕ(kx, ky) = π − M(kx)√
2πσ2(kx)

exp

(
−1

2

k2
y

σ2(kx)

)
(3.6)

where a, b and p are the parameters of the exponential fit for c and M , σ are the parameters

for ϕ. All of the 5 parameters are functions of the streamwise wavenumber kx only. Thus,

this approximation of C significantly reduces the degrees of freedom of the estimation from

17 × 65 = 1105 (17 and 65 are the numbers of the streamwise and spanwise wavenumbers

considered, respectively) to 17× 5 = 85.

To be able to fit the parameters for each kx in the approximations (3.5)-(3.6) we minimise

‖c− |C|‖w and ‖ϕ− argC‖w with respect to {a, b, p} and {M,σ}, respectively, where,
∣∣C∣∣ and

argC are obtained from the DNS and the norm ‖ · ‖w is a weighted `2-norm, defined for any

arbitrary χ as

‖ χ̂ ‖w (kx) =

√√√√ Ny∑
ny=0

χ̂

(
kx,

2πny
Ly

)
w

(
kx,

2πny
Ly

)
(3.7)

where

w(kx, ky) =
τ̂ ∗w (kx, ky) τ̂w (kx, ky)

Nx∑
nx=0

Ny∑
ny=0

τ̂ ∗w

(
2πnx
Lx

,
2πny
Ly

)
τ̂w

(
2πnx
Lx

,
2πny
Ly

) (3.8)

Here, Nx and Ny are the number of modes in the streamwise and spanwise directions, respec-

tively. This norm is designed to give the most energetic modes more weight in the minimisation,

and is similar to the norm described in [Colonius et al., 2002] based on stagnation enthalpy for

compressible flow that accounts for the three components of the velocity, the speed of sound

and pressure.

Plotted in figure 3.5(b,d) are the fitted c and ϕ. Comparison with figure 3.5(a,c) suggests that

the approximations (3.5)-(3.6) are in good agreement with the DNS. In figure 3.5(e,f) the five

parameters a, b, p, M and σ are shown. The horizontal axis represents the cumulative energy
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fraction µx, where µx is defined for m = 0, 1, 2, . . . , Nx as

µx(m) =
m∑

nx=0

Ny∑
ny=0

w

(
2πnx
Lx

,
2πny
Ly

)
=

m∑
nx=0

Ny∑
ny=0

τ̂ ∗wτ̂w

/
Nx∑
nx=0

Ny∑
ny=0

τ̂ ∗wτ̂w (3.9)

Note that µx does not depend on the spanwise wavenumbers due to the full summation over

Ny modes.

Figure 3.6: (a) Instantaneous wall shear stress from the DNS; estimated wall shear stress using
(b) 9× 33, (c) 17× 65 and (d) 33× 129 wavenumber pairs. The contour plots show the color
from the minimum τ+

w = −0.18 (blue) to the maximum τ+
w = 7.25 (red).

As shown in figure 3.5(e), the parameters b and p for the first three smallest µx, seem to act

differently from the rest. The first three modes, including the mean mode, constitute approx-

imately 90% of the total variance and are therefore very important for the estimation. The

decay rate p for the third mode is found to be high and equal to the maximum limit set to

solve the minimisation problem (3.5) numerically. For large values of µx the parameters show a

consistent behaviour. For example, the almost identical decay rate p indicates a similar asymp-

totic behaviour for the higher streamwise wavenumbers. Figure 3.5(f) shows the parameters σ

and M are increasing with µx. Specifically, as µx increases, the phase of C converges to π at a
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higher ky.

The model (3.5)-(3.6) with the calibrated coefficients shown in figure 3.5(e,f) will now be used

to estimate the wall shear stress from the wall temperature for a snapshot that was not used in

the calibration of the coefficients and therefore provides a more stringent test. The shear stress

is shown in figure 3.6(a), and the estimations are shown in figures 3.6(b-d) with number of

modes 9× 33 (b), 17× 65 (c) and 33× 129 (d). The spanwise wavelengths considered in figures

3.6(b-d) are λ+
y ≥ 98.44, λ+

y ≥ 49.22 and λ+
y ≥ 24.61, respectively, whereas the mean streak

width is obtained from the DNS as 94.79, in plus units. Since the minimum spanwise wavelength

considered in figure 3.6(b) is close to the mean streak width, some of the streaky structures have

started to appear. In figure 3.6(c), the minimum spanwise wavelength is almost the half of the

mean streak width found in the DNS and most of the streaky structures are visible. In figure

3.6(d), where λ+ ≥ 24.61, the streaky structures become more prominent. Visual inspection

reveals that figure 3.6(d) is a good reconstruction of the wall shear stress in figure 3.6(a), which

is to be expected, since from the cross spectrum in figure 3.4(b), 33×129 wavenumber pairs are

associated with more than 95% of the total cross variances. The reconstructed wall shear stress

is unable to reproduce the local maxima (colored red), due to the truncation in wavenumber

space. The relative errors of the estimate in figure 3.6(b-d) in `2-norm are 0.36, 0.28 and 0.25,

respectively.

3.4 Conclusions

We used the wall temperature patterns as a proxy for the wall shear stress. Indeed, the wall

shear stress and the wall temperature are strongly correlated and both possess the signature of

coherent streamwise streaky structures.

In order to reconstruct the shear stress, we analysed the wall temperature in Fourier space and

developed a simple spectral linear regression model between τw and θw. The first three stream-

wise wavenumbers were found to constitute about 90% of the total variance and the higher

wavenumbers showed a asymptotic behaviour in the weighted (energy) wavenumber space. In
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addition, the phase of C was found to deviate increasingly from π at higher wavenumbers.

The complex correlation coefficient C was successfully parameterised by its modulus and phase

independently, reducing the degrees of freedom of the estimation substantially (from 1105 modes

to 85 modes, 13 times reduced). The spectral model reproduces the wall shear stress well (the

relative `2-norm error was 0.25), except for the local maxima due to the truncation of the

number of modes.

The idea of using the wall temperature was motivated by the need for measurement techniques

that are capable of estimating distributed wall shear stress in a non-intrusive manner with

low set-up cost. Use of wall temperature patterns meet both of these requirements and can

estimate wall shear stress of plane Couette flow well, with the exception of local stress maxima.

The spectral model discussed here could in theory be readily applied to the estimation of wall

shear stress in other flows, such as Rayleigh-Bénard convection [Ahlers et al., 2009,Grossmann

and Lohse, 2000,van Reeuwijk et al., 2008]. Further work should also incorporate appropriate

modifications for non-homogeneous surfaces such as flows with obstacles. For non-homogeneous

surfaces, Fourier modes are no longer applicable and would need to be replaced with other

decompositions such as the proper orthogonal decomposition [Lumley, 1967, Holmes et al.,

2012].



Chapter 4

Estimating flow from thermal wall

patterns using the POD method

In this chapter, we aim to evaluate and use proper orthogonal decomposition (POD) modes

to reconstruct streamwise velocity of plane Couette flow using wall temperature. To achieve

the aim, we carefully design two sets of test cases/problems with increasing complexity. The

first set of problems are designed to evaluate and test the performance of the POD modes. In

the first problem of this set, we first evaluate POD modes of 1D Kuramoto-Sivashinsky (KS)

chaotic dynamics. The second problem consists of evaluation and testing of the POD modes

for the plane Couette flow at Reτ = 263 discussed in chapter 2. The second set of problems

are designed to test the performance of POD modes to reconstruct a gappy field. A gappy

field is where some of the information is missing. Once again, we first test with the simpler KS

dynamics and followed by plane Couette flow data-set. Finally, we proceed to the key aim —

reconstruct the flow velocity using wall temperature only, which represents a large amount of

’gappiness’ and therefore a limiting case of the second set of problems.

30
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4.1 Proper orthogonal decomposition

The proper orthogonal decomposition (POD) of an ensemble is a statistical technique that

provides an orthonormal set of modes. The special property of POD modes is the optimal

ability to capture a physically important quantity, such as the kinetic or the thermal energy of

an ensemble. For example, if the POD technique is applied on the velocity ensemble of a fluid

flow, the first k POD modes captures more kinetic energy of the flow compared to any k modes

obtained from any other modal decomposition. The POD was first introduced in turbulence

by John L. Lumley [Lumley, 1967] and is also known as Karhunen-Loéve decomposition and

Principal Component Analysis (PCA).

The POD is widely used in the field of random variables, image processing, signal analysis,

data compression, oceanography, process identification and control in chemical engineering

[Gal Berkooz et al., 1993]. A good review of POD can be found in [Holmes et al., 2012]

and [Gal Berkooz et al., 1993]. After Lumley, POD was explored by Sirovich and others in

a series of investigations [Sirovich, 1989], for channel flow [Deane and Sirovich, 1991, Sirovich

and Deane, 1991] and for transitional jet flow [Sirovich et al., 1990]. But perhaps the two

most important results were presented in [Sirovich, 1987] and [Everson and Sirovich, 1995].

In the first, Sirovich proposed an alternative computational approach to evaluate POD modes

–the method of snapshots– which greatly reduced the computational cost. In the second work

[Everson and Sirovich, 1995], POD modes were used to reconstruct human faces from 10%

available pixels using gappy POD method. [Podvin et al., 2006] used this gappy POD method

later for reconstructing a turbulent flow past an open cavity. They reconstructed 3D velocity

fields using POD modes and 2D velocity on a wall-normal plane.

The core idea of any modal decomposition technique is to represent a field, such as a scalar

field ϑ, as the linear superposition of a set of orthonormal spatial modes {ϕi}. An illustration

of a flow decomposition is presented in the Figure 4.1. If ai are the temporal coefficients, then

ϑ(x, t) =
∞∑
i=1

ai(t)ϕi(x) (4.1)
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+ + + ...
      Modal

decomposition

Original ensemble
Modes

Figure 4.1: Schematic diagram describing a modal decomposition technique.

In practice, the scalar field ϑ is approximated by a finite number of modes. A finite-dimensional

approximation θ of ϑ, using N modes can be expressed as

θ(x, t) =
N∑
i=1

ai(t)ϕi(x) (4.2)

The Fourier expansion is a good example of a modal decomposition techniques and arises over

statistically homogeneous dimension of a flow (see section 4.2.2). The scalar field θ is assumed

to belong to the Hilbert space L2(D), of square integrable functions, defined from the spatial

domain D of the ensemble to the complex field C. The validity of this assumption is trivial,

since, for any physically realistic flow field,

∫
D

θ2(x, t) dx is finite. The inner product of the

L2(D)–space is defined as

(f, g) =

∫
D

f(x)g∗(x) dx (4.3)

where, ∗ stands for the complex conjugate and, f and g are some functions of L2(D). The
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norm of the L2(D)–space can be expressed as

‖ f ‖= (f, f)1/2 =

√∫
D

f(x)f ∗(x) dx (4.4)

Among the infinite number of functions in the L2(D)–space, the POD technique searches for a

function ϕ that minimises the averaged squared norm between the ensemble θ and its projection

onto ϕ, i.e., the quantity
〈∥∥θ − (θ, ϕ)ϕ/‖ϕ‖2

∥∥2
〉

is minimised. The angle brackets denote time

averaging over the ensemble time T as 〈θ〉 = T−1

∫ T

0

θ (x, t) dt. The above minimisation

problem is equivalent to maximising the averaged projection of θ onto ϕ, normalised by ‖ ϕ ‖2

[Holmes et al., 2012]; that is,

max
ϕ∈D

〈| (θ, ϕ) |2〉
‖ ϕ ‖2

(4.5)

Solution of the (4.5) yields the best approximation for ϕ and the critical points of the functional

in (4.5) form a set of functions which provides the desired basis. The maximisation problem

(4.5) can be solved as a variational problem and shown to be equivalent to the eigenfunction

problem [Holmes et al., 2012],

Rϕ = λϕ (4.6)

where, R is a linear operator, defined as

Rϕ = 〈(ϕ, θ) θ〉 . (4.7)

Any mode ϕi of the equation 4.2 will be a POD mode, if the mode satisfies the eigenfunction

problem (4.6). In other words, if the equation 4.6 is an N–dimensional eigenfunction problem

then the eigenfunctions (solutions of the equation 4.6), ϕ1, ϕ2, ϕ3, . . . , ϕN are the POD modes

of the scalar field θ with corresponding eigenvalues λ1, λ2, λ3 . . . , λN .

The eigenvalue problem (4.6) can be extended for any multi-component state variable. For

example, a state variable s can be defined as s = (u, v, w, θ), where u = (u, v, w)T are velocity

components and so, s is a vector-valued function. The state vector s is assumed to belong to
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the space D and the inner product is defined for any f ,g ∈ D [Holmes et al., 2012] as

(f ,g) =

∫
D

(g∗(x))TQ(x)f(x) dx (4.8)

where, Q ∈ C4×4 is a positive-definite Hermitian matrix. In general, Q is assumed to be the

identity matrix I, in which case the eigenvalue problem (4.6) becomes

Rϕ(x) =

∫
D

〈
s(x, t)s∗(x′, t)T

〉
ϕ(x′) dx′ = λϕ(x) (4.9)

The eigenfunctions of the equation (4.9) (that is the POD modes of s) are now also vector-valued

functions.

The continuous operator R is a non-negative definite, compact and self-adjoint operator [Holmes

et al., 2012]. Also, the Hilbert-Schmidt theorem and the non-negative definite property ensure

the eigenvalues of R are monotonically non-increasing and non-negative, and the eigenfunctions

ϕi are mutually orthogonal. So, without loss of generality, the eigenvalues of R can be ordered

as, λ1 ≥ λ2 ≥ λ3 ≥ ... ≥ λN ≥ 0.

4.2 Finding POD modes

Both in experiments and simulations, a flow is often measured/recorded at a finite number

of points (mesh/grid points) within a physical domain. For the computation of POD modes

in the discrete observation space, the definition of the norm involved in the linear operator R

(equation 4.6) needs to be adjusted. Let {θk : k = 1, 2, . . . , Ns} be Ns observations of the scalar

field θ, obtained at different times t = tk. If Ng is the total number of grid points within a

domain D, then each of the θk ∈ RNg is a column vector that contains the information at Ng

grid points. We now form a matrix, V = [θ1 θ2 . . . θNs ] ∈ RNg×Ns , which is defined as

the state matrix of the scalar θ. Then, the matrix VV T is simply the auto-correlation matrix

of the scalar θ, where the superscript T denotes the transpose. In RNg , the standard inner

product is defined for any θm and θn as (θm, θn) = (θn)T θm. Since the time average refers to
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the arithmetic mean over the ensemble, for any g ∈ RNg , Rg becomes [Holmes et al., 2012],

Rg =
1

Ns

Ns∑
k=1

(θk)Tgθk (4.10)

The operator R is now a discrete operator which is given by

R =
1

Ns

Ns∑
k=1

θk(θk)T =
1

Ns

VV T (4.11)

That is, the discrete operator R is the averaged auto-correlation matrix VV T/Ns. The eigen-

function problem (4.2) then reduces to a matrix eigenvalue problem

VV Tϕ = λϕ (4.12)

where, ϕ ∈ RN
g is a column vector. Here, the factor (1/Ns) has been dropped and assumed to

be lumped into λ.

4.2.1 Method of snapshots

In general, a direct computational approach to solve the eigenvalue problem (4.12) is costly as

the matrix V V T is of size N2
g and for flow problems, Ng is generally very large. For example, if

the domain D ⊂ R and the grid size Ng is 104, then the matrix V V T is of order 108. To reduce

the computational cost, Sirovich [Sirovich, 1987] developed an alternative approach known as

the method of snapshots. This alternative method is described below.

As V is a rectangular matrix, the singular value decomposition can be applied to V . The

singular value decomposition of the matrix V ∈ RNg×Ns is a factorisation of the form [Taira

et al., 2017],

V = ΦΣΨT , (4.13)

where,

1. Φ ∈ RNg×Ng whose columns ϕk for k = 1, 2, . . . , Ng, are orthogonal eigenvectors of VV T .
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2. Ψ ∈ RNs×Ns whose columns, Ψl for l = 1, 2, . . . , Ns, are orthogonal eigenvectors of V TV .

3. Σ ∈ RNg×Ns , is a diagonal matrix whose diagonal elements are the singular values σk, of

the matrix V for k = 1, 2, . . . , p, where p = min(Ng, Ns).

That is, for k = 1, 2, . . . , Ng and l = 1, 2, . . . , Ns;

VV Tϕk = λkϕk

V TVΨl = λlΨl

(4.14)

The two equations in (4.14) possess the same eigenvalues. Now depending on the values of M

and N , one of the following schemes can be adopted,

1. If Ng < Ns, then solve VV Tϕk = λkϕk to find ϕk. This procedure is described as the

direct method.

2. If Ng > Ns, then solve V TVΨl = λlΨl to find Ψl. Then the POD modes ϕl can be found

as

ϕl =
1√
λl

VΨl (4.15)

The equation (4.15) is known as method of snapshots [Sirovich, 1987] and, can be derived

substituting V = ΦΣΨT and λl = σ2
l in equation 4.14. Usually, for a flow problem, Ng � Ns

and thus the method of snapshot is computationally economical to find POD modes. The

eigenvalue problem in the method of snapshots is of order N2
s and the number of grid points,

or the dimension of the domain do not have any effect on the computation of the eigenvalues

of V TV . The computational costs depend only on the number of observations Ns, used to

evaluate the POD modes.

Since, VΨ = ΦΣΨTΨ = ΦΣ and V = [θ1 θ2 . . . θNs ], we can derive the following equa-

tions for k = 1, 2, . . . , Ng,

ϕk =
1√
λk

Ns∑
l=1

Ψlkθ
l (4.16)
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where, Ψlk is the l-th component of Ψk. The equation (4.16) implies that POD modes can be

expressed as a linear combination of the snapshots and thus POD modes inherit the properties

of the flow field, such as boundary conditions, incompressibility and homogeneity.

In the following algorithm, a step by step procedure to find the POD modes by the method of

snapshots is listed.

Algorithm

1. Arrange the flow field components for the N snapshots as, V = [θ1 θ2 . . . θNs ].

2. Compute the matrix, R = V TV .

3. Solve the eigenvalue problem RΨ = λΨ and arrange the eigenvalues in descending order.

4. Compute the POD modes using equation (4.15).

4.2.2 POD modes in the homogeneous direction

Let us consider a flow problem that is statistically homogeneous in space. That is, the statistics

depend only on time. Due to the homogeneity in space, for any two points x and x′ in space,

the auto-correlation operator R satisfies the following property [Holmes et al., 2012],

R(x,x′) = R(x− x′) (4.17)

Substituting the equation (4.17) in the vector-valued eigenvalue problem (4.9) results in,

R(x− x′)ϕ(x′) = λϕ(x) (4.18)

Now taking the Fourier transform on the both sides of equation (4.18) and using the convolution

property,

R̂ϕ̂ = λϕ̂ =⇒ R̂ = λ (4.19)
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Where, ̂ denotes the Fourier transform of the relevant quantities. The equation (4.19)

implies that, in a homogeneous direction, the eigenvalues of the problem (4.9) are the Fourier

coefficients of R and the eigenfunctions ϕ are the Fourier modes [Holmes et al., 2012].

4.2.3 Application to the Kuramoto-Sivashinsky equation

In this section, we design a problem to use the POD method for velocity reconstruction of the 1D

Kuramoto-Sivashinsky (KS) equation [Hyman and Nicolaenko, 1986, Lakestani and Dehghan,

2012]. The one dimensional KS equation can be presented in normalized form [Papageorgiou,

1991,Lakestani and Dehghan, 2012] as,

∂u

∂t
+ u

∂u

∂x
+
∂2u

∂x2
+ ν

∂4u

∂x4
= 0 (4.20)

with u(x, 0) = − sin(x) and u(x+ 2π, t) = u(x, t). The parameter ν is the viscosity. The PDE

(4.20) arises in many physical problems including propagation of concentration waves, plasma

physics, flame propagation, reaction-diffusion combustion dynamics, free surface film flows and

two-phase flows [Papageorgiou, 1991]. It has reported in [Papageorgiou, 1991] that ν plays an

important role to control the dynamics of the system and presented the types of attractors for

a wide range of ν. For example, if 0.0599 ≤ ν ≤ 0.06695, then the trimodal steady attractor

appears and for ν ≤ 0.023, the solution becomes chaotic. Therefore, in the present study,

the value of ν is chosen as 0.01 to allow the dynamics to be chaotic. The PDE (4.20) is first

transformed into Fourier space (spectral form [Gentian Zavalani, 2014])

dûk
dt

+ (νk4 − k2)ûk = −0.5ikŵ (4.21)

where ŵk(t) = 1
2π

∫ 2π

0
u2(x, t) exp(−ikx) dx. Now, using the integrating factor exp(νk4 − k2)t

on (4.21), we get

d

dt
(ûk exp(νk4 − k2)t) = −ik

2
ŵk exp(νk4 − k2)t (4.22)

The resulting ODE is then numerically solved using a fourth order Runge-Kutta method. For
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computations a high resolution grid, Nx = 2048 is chosen to capture the chaotic KS dynamics.

The time marching is carried out with ∆t = 0.01.

Figure 4.2: Solution of the KS equation with ν = 0.01.
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Figure 4.3: spectrum of POD modes of KS solution with ν = 0.01.

Once the system is solved for a sufficiently long time, a series of 2000 snapshots are collected for

the computation of POD modes. The solution is shown in the xt-plane as in the figure 4.2 for

the first 300 time steps considered for the computation. Since periodic boundary conditions are

adopted, the field u is homogeneous in space and the POD modes are the Fourier modes (see

section 4.2.2). The snapshot at t = 6000 is chosen as the sample snapshot, which is not used
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Figure 4.4: Reconstruction of the sample snapshot using 80 POD modes.

to evaluate POD modes. To reconstruct the sample snapshot as a combination of the POD

modes, we need to compute the temporal coefficients ai(t). The temporal coefficients ai(t) for

i = 1, 2, . . . , N are obtained by projecting the POD modes ϕi(x) on the scalar field θ(x, t) over

the entire domain D as

ai(t) = (θ, ϕi)D =

∫
D

θ(x, t)ϕi(x) dx (4.23)

As seen from the spectrum of the POD modes (figure 4.3(b)), there are about 80 modes cor-

responding to nonzero eigenvalues (eigenvalues < 10−6 are ignored). We use the first 80 POD

modes to evaluate the temporal modes using equation (4.23). The reconstructed sample snap-

shot ur is presented in the following figure 4.4 along with the original snapshot u.

To quantify the performance of the reconstructed snapshots, we define a measure of performance

[Illingworth et al., 2018] as,

γ =

√∫ 2π

0

∫ T

0

(u− ur)2 dt dx
/√∫ 2π

0

∫ T

0

u2 dt dx (4.24)

Thus, γ is the `2-norm of the error (u−ur) normalised by the `2-norm of u. For the reconstructed

snapshot ur in figure 4.4, γ = 10−7. γ is close to 0, since the spectrum 4.3 shows that there are

about 128 non-zero modes exists. For a perfect reconstruction γ = 0.

Figure 4.5 shows how γ changes with the number of modes N , used for the reconstructions. For
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Figure 4.5: The relative error of the POD method as a function of number of the modes used
for reconstruction N .

Figure 4.6: KS solution (a) and reconstruction of KS solution using 80 POD modes (b). Here,
the parameter ν = 0.01
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example, the POD method requires about 40 modes to obtain γ < 0.1. That is, a reconstruction

using the first 40 POD modes can have maximum 10% mismatches with actual snapshots. The

measure γ exponentially decay for N > 40 and for the reconstruction using 80 modes γ = 10−8.

A reconstruction of KS solution with 80 POD modes in the x-t plane with ν = 0.01 is shown

in figure 4.6, which shows a good reconstruction is achieved.

4.2.4 Application to plane Couette flow

We will now evaluate POD modes of the DNS results of plane Couette flow. To keep the

problem simple, we will restrict the reconstruction to the yz-plane only, where y and z are the

spanwise and the wall normal direction respectively.

Since the flow is homogeneous in the spanwise direction, the POD modes in spanwise direction

become the Fourier modes (section 4.2.2). That is, the POD modes in the spanwise direction

can be written as

ϕn(x) =
∑
ny

ϕ̂nny(z) exp

(
i
2πnyy

Ly

)
where, (x, t) is the n-th POD mode and ϕ̂nny are the POD modes in the wall normal direction.

The state variable in the yz-plane can be expressed as the linear combination of the POD modes

as [Moehlis et al., 2002]

s(x, t) =
∑
n

∑
ny

anny(t)ϕ̂nny(z) exp

(
i
2πnyy

Ly

)
(4.25)

Here, x = (y, z)T are the coordinates, s = (u, θw)T is the state variable, u is the streamwise

velocity component and θw is the wall temperature, ny is the spanwise wavenumber, anny are

the temporal coefficients, Ly is the lengths in the spanwise direction. The state variable s has

two components – the streamwise flow velocity u and the wall temperature θw. This choice of

the state variable is motivated from the key problem at hand – reconstructing the flow velocity
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using only the wall temperature. However, we are not solving the key problem in this section

and it will be a topic for section 4.4.

Since, s is vector-valued, ϕ̂nny are also vector-valued with components ϕ̂nny ,θw and ϕ̂nny ,u,

corresponding to θw and u, respectively. The index n is sometimes termed as the quantum

number [Moehlis et al., 2002] and ϕ̂nny is the n-th POD mode corresponding to wavenumber

ny.
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Figure 4.7: POD spectrum of the state variable s = (u, θw)T .

To evaluate the POD modes we use the plane Couette flow data-set DNS described in chapter

2. An ensemble of total 5600 DNS snapshots of the state variable s = (u, θw)T on the yz–plane

at x+ = 526 is used. We apply the method of snapshots to evaluate POD modes and plotted

in figure 4.7 is the eigenvalue spectrum of the modes. The spectrum does not vanish within the

first few modes and for a good reconstruction, we need to use a large number of modes [Podvin

et al., 2006,Moehlis et al., 2002,Wang et al., 2012,Gal Berkooz et al., 1993]. How the quality

of reconstructions depend on the number of modes is discussed later in this chapter.

The first three modes are shown in the figure 4.8. The first mode is the mean mode (ny, n) =

(0, 0), and the other two modes corresponds to (ny, n) = (0, 2) and (1, 0), respectively. The

mode (0, 0) is the mean mode and is the only real mode of the flow. The modulus of the modes
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Figure 4.8: The first three POD modes, presented in ascending order: (a) |ϕ̂+
00,u|, (b) arg(ϕ00,u),

(c)|ϕ̂+
02,u|, (d) arg(ϕ02,u), (e) |ϕ̂+

10,u| and (f) arg(ϕ10,u). The moduli of the modes are shown in
Plus unit.

(0, 2) and (1, 0) have a common pattern as they sharply rise in the buffer layer. The phases of

the modes (0, 2) and (1, 0) are not constant along the channel height, and have a phase lag π/4

approximately.

A sample snapshot (figure 4.9)(a), which is not used to compute the POD modes, is chosen to

be reconstructed. The temporal coefficients are computed by using the equation (4.23) and the

reconstructed snapshot using 500 modes is presented in the figure 4.9(b). Visual inspection of
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Figure 4.9: A DNS snapshot of the streamwise component u of velocity on the yz plane at x+ =
526 (a) and reconstructed snapshot using 500 POD modes (b). The measure of performance γ
of the reconstructed snapshot in figure (b) is 0.03.

the reconstructed snapshot confirms the good quality of the reconstruction except possibly for

the peaks, which is due to the truncation of modes N > 500. The reconstructed velocity in the

yz-plane is presented for t+ = 110.526 in figure 4.9. We found similar results for a set of other

time steps and evaluate the measure of performance γ over all the time steps on the set as

γ =

√∫ T

0

∫ Ly

0

∫ h

0

(u− ur)2dzdydt/

√∫ T

0

∫ Ly

0

∫ h

0

u2dzdydt

where, u and ur are the velocity obtained from DNS and the reconstructed velocity, respectively.

The measure of performance γ of the set of reconstructed snapshots is 0.03.
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4.3 Reconstruction of a gappy field

In this section, we will discuss how the POD method can be used for reconstructions with

incomplete observations. Suppose, ϕi are the POD modes of a scalar field θ. Then to reconstruct

the scalar field θ, only the temporal modes ai need to be evaluated. Now imagine that the modes

ϕi and some of the observations of the field θ are given. The incomplete or gappy observation

is denoted by θ̃, which is related to the full observation θ as

θ̃ = mθ (4.26)

where,

m(x) =


1; where information is available

0; elsewhere

is a mask function. Then equation 4.26 and 4.2 yield,

θ̃ = θ̃(x, t) = m(x)θ(x, t) = m(x)
N∑
i=1

ai(t)ϕi(x) (4.27)

Let us assume the modes ϕi is available. Then to obtain θ, one needs to approximate ai and

can be found from the minimization problem ( [Everson and Sirovich, 1995]),

min
ai

E = min
ai

∫
D̃

(
θ̃(x, t)−m(x)

N∑
i=1

ai(t)ϕi(x)

)2

dx (4.28)
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For the minimization,

0 =
∂E

∂ãk
, for k = 1, 2, . . . , N

= 2

∫
D

m(x)ϕk(x)

(
θ̃(x, t)−m(x)

N∑
i=1

ai(t)ϕi(x)

)
dx

= 2

∫
D

m(x)ϕk(x)θ̃(x, t) dx− 2
N∑
i=1

ai(t)

∫
D̃

m(x)ϕk(x)m(x)ϕi(x) dx

= 2

∫
D

ϕ̃k(x)θ̃(x, t) dx− 2
N∑
i=1

ai(t)

∫
D

ϕ̃k(x)ϕ̃i(x) dx, for k = 1, 2, . . . , N.

where, ϕ̃k = m(x)ϕk(x). Now, denoting Mik =
∫
D
ϕ̃k(x)ϕ̃i(x)dx, fk =

∫
D
ϕ̃k(x)θ̃(x, t)dx

and ã = [ã1 ã2 . . . ãN ]T , the minimisation problem (4.28) reduces to a system of linear

equations [Everson and Sirovich, 1995],

Mã = f (4.29)

The above system of linear equations can be solved to find ai(t). Clearly, if a full observation

θ is available then M would be an identity matrix and a = f . This method is known as gappy

POD method and has been proposed by Everson and Sirovich. They applied the POD modes

to recover images of human faces when only 10% pixel information were available. They defined

a ratio p as

p =
Available pixels

Total pixels
(4.30)

and reported that for p > 0.2 the reconstruction ability is good. They also presented a case

with p = 0.05, where the reconstruction procedure diverges for N > 50 and the resulted image

was a poor approximation of the real image.

4.3.1 Application to gappy KS problem

To form a gappy problem with the KS equation, we assume that out of 2048 grid points,

information is available only at 64 equidistant points. We consider 128 degrees of freedom
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corresponding to non-zero frequencies from the spectrum (figure 4.3). Although we have 2048

grid points, we consider the number of non-zero frequencies to compute the ratio p. Thus

the ratio, p = 64/128 = 0.5.. This is the same problem discussed in section 4.2.3, except

with missing information – a gappy problem. The POD modes obtained in section 4.2.3 are

the Fourier modes due to the homogeneity of the problem. Using the modes, we evaluate the

matrix M and f of the equation 4.29. The system is then solved for the temporal coefficients

ai and the field u is reconstructed as ur. Plotted in figure 4.10 is the reconstructed field ur

using 62 POD modes with the actual field u. Visual inspection confirms a good reconstruction

is achieved.
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Figure 4.10: Reconstruction of the sample snapshot using 62 POD modes with p = 0.5.

As discussed in section 4.2.3, for the KS dynamical equation, the first 40 POD modes can

reproduce a snapshot with relative error less than 10% and thus the gappy field is reconstructed

well even for the small value of the ratio. In this case, with p = 0.5, temporal coefficients for

62 modes are approximated. Depending on the available information, the relative error to

approximate the sample snapshot is shown in the figure 4.11. It is also clear that, for each

p, the relative error is similar to the case p = 1, before they diverge. That is, with missing

information, a reconstruction for this problem up to a certain number of modes is always

possible. Thus, the performance of the reconstruction depends on how much these certain

number of modes are able to recapture the dynamics.
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Figure 4.11: The measure of performance γ of the reconstructed KS snapshots using POD
modes for different p = 1, 0.5, 0.25 and 0.13.

4.3.2 Application to gappy plane Couette flow

A gappy field is considered by sampling the snapshot (figure 4.9(a), yz-plane) in the z (wall

normal) direction. From the actual resolution of the sample snapshot 432× 432, 25 equidistant

z-locations are sampled and all grid points in the y (spanwise) direction are used. Therefore,

the ratio of the available resolution to the total resolution is p ≈ 0.046.

We will use the POD modes to reconstruct the sample snapshot. As the modes are known,

the temporal coefficients can be computed using (4.29). Comparing the figures 5.11(a-b), the

reconstruction from the partial information (here only 4.6%) is sufficiently good.

If the total information were known, that is, for p = 1, the matrix M would be an identity

matrix. For a gappy field, ‖ M ‖ deviates from unity. From the spectrum (figure 4.7) of the

POD modes, there are 4642 modes corresponding to nonzero eigenvalues (≥ 10−3). Comparing

to the first eigenvalue corresponding to the mean mode, other eigenvalues are relatively small

and the tail of the spectrum does not vanish within the first few modes. That is, ‖M−1 ‖ will
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Figure 4.12: The streamwise velocity u+ at x+ = 526 (a) and the reconstructed field using 4.6%
of total information and 500 POD modes.

be the dominant factor for the convergence of the reconstruction process [Everson and Sirovich,

1995]. In the present gappy field, however, 4.6% pixel information is enough to capture the

sample snapshot and the reconstructed field is shown in the figure 4.12.

Another important observation is that, similar to the KS problem, the cases with p ≤ 0.086

follow the convergence path of the case p = 1 up to some N and then diverge. The case

p = 0.002 corresponds the problem, where only θw is available and figure 4.13 shows that the

reconstruction of the state variable s = (u, θw)T diverges for N > 5. It is obvious that with

only 5 modes, the reconstructed field will be a poor approximation of the actual field. This

limiting case of only having wall data will be discussed in next section — where we will analyse

the reason of the divergence and will modify the strategy to get a good reconstruction.
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Figure 4.13: The relative error in the reconstruction using the POD modes for different values
of p.

4.4 Extrapolation from the wall temperature

In this section, we will focus on the key application — reconstructing streamwise velocity

component from wall temperature. To do so, a gappy problem is formed by assuming that

all the information except the observations at the bottom boundary (wall temperature, shown

as filled black circles in figure 4.14) are missing. This can be viewed as a limiting case of the

example described in section 4.3.2 with p = 0.002. It is to be noted that, p is grid dependent

and the value of p could sometimes be misleading. For example, one can be biased to consider

a large number of measurement points on the wall (z = 0) compare to other vertical positions

along the channel height and p could be near unity. To avoid this measurement bias, we consider

the same number of grid points on the wall as the other vertical positions.

First, the POD modes are used to reconstruct the sample snapshot. Since only 5 modes can used

in this limiting case (subsection 4.3.2), the reconstruction of the sample snapshot is poor. The

restriction on the use of such a few number modes arise from the the ratio p. Since p ≈ 0.002
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Figure 4.14: A typical 2D gappy field (limiting case) is shown. The only available information
are the measurements (wall temperature) at the bottom wall.

is very small and the first 5 modes are not enough to describe the dynamics, ‖M−1 ‖ becomes

very large. An alternative description is also possible by using the condition number of the

matrix M , which is defined as, ‖M ‖‖M−1 ‖. As long as the matrix M is well conditioned, a

good reconstruction is possible. The condition number and the relative error for the different

number of modes used for the reconstruction (using the POD modes) are plotted in the figure

4.15a and 4.15b.

It is clear that, ‖ M ‖‖ M−1 ‖� 1 for N > 5 and thus the reconstruction with more than 5

modes diverges. The reconstructed sample snapshot with 5 modes is presented in figure 4.16.

It can be seen from the figure that the reconstructed snapshot produces large scale structures

only but does not capture dynamically important coherent structures near the bottom wall.

Since the reconstruction procedure restricted to the mean mode (first mode) and only four

dominant modes corresponds to the fluctuations, the POD modes fails for the limiting case

considered in this example. How a snapshot can be reconstructed using only wall temperature

via regularisation will be described in the next section.
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Figure 4.15: Condition number of M (a), relative error in the reconstruction using the POD
modes (b). Here, the ratio parameter p = 0.002.

Figure 4.16: The reconstructed field with 5 POD modes.

4.4.1 Regularisation

When reconstructing a gappy snapshot, it is required to solve a system of linear equations

(4.29). A parallel statement of solving such a system of equations is to search for a minimum
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(in least squares sense) of the following optimisation problem

min
ã
‖ f −Mã ‖2

2 (4.31)

where, ‖ . ‖p is the `p- norm.

x

y

x

y

Figure 4.17: Illustration of the LASSO (left) and Tikhonov (right) regularisations. The family of
ellipses represents solution space. The LASSO regularisation penalise a system by introducing a
constraint |x+y| < α (square region,left figure), whereas the Tikhonov regularisation introduces
a constraint x2 + y2 < α (circular region right figure).

By considering M to be the system matrix corresponding to an under-determined system of

linear equations, we prompt to regularise the system. A regularisation of the above problem

can be achieved by penalising the coefficient vector ai as

min
ã

(
‖ f −Mã ‖2

2 +α ‖ ã ‖p
)

(4.32)

where, α is a regularisation parameter. For p = 1 and p = 2, the regularisation methods are

known as LASSO (Least Absolute Shrinkage and Selection Operator) and Tikhonov regularisa-

tion, respectively. Let us illustrate these two regularisations in xy-plane as in figure 4.17. The

first norm in (4.32) presents an infinite family of quadratic functions and the second norm forms
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a square and circular restrictions for LASSO and Tikhonov regularisation, respectively. The

parameter α then can be chosen to select a constrained solution of the optimisation problem

4.32 (thus regularising the problem). The difference between LASSO and Tikhonov regular-

isation is that LASSO heavily penalises a subset of the components of ai, whereas Tikhonov

regularisation penalizes all the components uniformly.
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Figure 4.18: The measure γ of reconstruction against regularising parameter α. The blue circle
indicates the minimum relative norm which correspond to α = 7.33× 10−5.

In the example of reconstruction using only thermal wall patterns, the problem becomes ill-

conditioned as some of the columns of M matrix become linearly dependent. Recall that the

columns of M matrix represents interaction between two POD modes. Since information is

available only at the bottom wall, the mask variable m becomes sparse. Due to the large

sparsity, some of the columns of matrix M become linearly dependent. Here, LASSO is a

better choice, since it can select and penalise modes corresponding to such linearly dependent

columns and, the remaining columns can be used for reconstruction.

To choose the value for α, 200 DNS snapshots were chosen and reconstructed using the POD

modes with LASSO for a series of α values and the minimum relative norm was found as

9.11× 10−5 (figure 4.18). This value was then used to reconstruct other snapshots.
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Figure 4.19: The streamwise velocity field u+ at x+ = 526 (a), the reconstructed streamwise
velocity field using POD method with regularisation (b). The contour u+ = 15 is shown
explicitly in figures (a-b) to visualize a global flow structure and the reconstruction, respectively.

The reconstructed velocity field is shown along with the actual field in the figure 4.19. Visual

inspection of the figures show that, LASSO regularisation leads to a satisfactory reconstruction.

The contour u+ = 15 on the figure 4.19(a) captures a large structure of the velocity field and the

reconstruction of that structure using LASSO on the figure 4.19(b) is a good approximation.

The measure γ of the reconstruction is 0.24.
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4.5 Conclusions

We estimated POD modes of 1D Kuramoto-Sivashinsky solution with ν = 0.01 and plane

Couette flow at Reτ = 263. The POD method provides the most (in `2-norm) efficient way to

represent a complex flow as a linear combination of modes. Indeed, POD is a linear process

[Holmes et al., 2012]. The optimality of POD modes are referred only with respect to other

linear representations.

To reconstruct streamwise flow velocity from wall temperature, we set up test cases/examples

with increasing complexity. The objective was to test the performance of POD modes for a range

of values of p (p is the ratio of available pixels to total pixels). The first set of examples were

cases with p = 1. Here, we reconstructed the 1D KS solution and the streamwise component

u of plane Couette flow on a 2D yz-plane. In both cases, we got good reconstructions with

the measure of performance γ = 10−7 and γ = 0.03, respectively. For the plane Couette flow,

we reconstructed the streamwise velocity component u on a yz plane using 500 POD modes.

The reconstruction produced the flow structures close to the actual DNS except possibly at the

peaks due to the truncation of modes N > 500.

The second set of examples were set to test the performance of POD modes for gappy fields. We

found that 4.6% pixels are sufficient to reproduce KS dynamics whereas for the reconstruction

of plane Couette flow with 6.3% pixels, γ = 10−7. For all p, the γ versus N curves collapsed

to one curve until they diverged at a certain N . That is, the quality of reconstructions for all

p are same up-to a certain number of mode N .

Finally, we proceeded to our key problem — reconstruct streamwise flow velocity from wall

temperature only. This is a limiting case of the second set of problems with p = 0.002. With

little information at hand, the reconstruction diverged for N > 5. For p = 1, the system

matrix is an identity matrix. For smaller p, the columns of M increasingly became linearly

dependent to each other. Recall that, the columns of M are the interactions between modes

within subspace consisting of available pixels only. We applied LASSO regularisation to select

and omit modes corresponding to linearly dependent columns of M . Unlike `2-regularisation,
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LASSO penalises certain coefficients heavily compared to other coefficients. The characteristics

of automatic detection and selective penalisation of LASSO make it a suitable choice for the

problem at hand. The measure of performance γ of the resulted reconstructions with LASSO

was found to be 0.24.

The idea of using POD method to reconstruct flow velocity was motivated by the optimality

(in energy norm) of the POD modes. The reconstruction using the POD method captured

the flow structures which are only energetically significant. For example, the reconstruction

in the section 4.2.4 is missing peaks due to the truncation of modes. Similarly in many other

cases, the dynamically significant flow structures may not be energetically significant [Schmid,

2010]. For examples, flows around a corner [Podvin et al., 2006,Xiao, 2016] and boundary layer

flows [Pirozzoli et al., 2014, Kasagi et al., 1992]. In these flow problems, local flow structures

evolve differently compared to the rest of the flow [Tsukahara et al., 2006]. Since these flow

structures are local in space, it is convenient to divide the physical domain and consider the

local flow within a smaller subdomain. If the POD method is now applied within a subdomain

then the optimality (in energy norm) of these new modes may better represent the dynamically

important local flows. We will explore this idea of dividing a domain in the next chapter to

develop a decomposition method — the subdomain POD method.



Chapter 5

Estimating flow from thermal wall

patterns using subdomain POD

method

In this chapter, we propose a new decomposition method, termed as subdomain POD method.

In this method, we first divide a domain into several smaller subdomains and standard POD

method is then applied to each subdomain—resulting subdomain POD modes. The subdomain

POD method is motivated from the limitation of standard/global POD method to reconstruct

the flow structures associates with higher order modes — which are usually truncated. Since the

POD method is applied within each subdomain, the resulting subdomain POD modes are locally

optimal (in energy norm). These locally optimal modes can produce better reconstruction of

the local flows within each subdomain compared to the standard POD modes. To test and

apply subdomain POD modes to extract velocity from wall temperature, we use the same sets

of problems as chapter 4, namely the KS equation with ν = 0.01 and the DNS of plane Couette

flow at Reτ = 263. We also formulate gappy problems for both cases and test the performance of

subdomain POD modes. In all cases, the performance of subdomain POD modes are compared

with standard POD modes. Finally, we apply subdomain POD modes to the key problem

where only wall temperature is known (large gappiness) and the velocity is reconstructed.

59
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5.1 Subdomain POD method

In the POD method, a flow field is represented as a linear combination of modes [Holmes et al.,

2012,Sirovich, 1987,Everson and Sirovich, 1995]. POD modes can be arranged in an ascending

order based on kinetic energy [Holmes et al., 2012]. To reconstruct local flows associated

with relatively lower energy scales, a large number of modes are required [Gal Berkooz et al.,

1993, Deane and Sirovich, 1991, Sirovich and Deane, 1991]. This is due to the fact that POD

modes are optimised in `2-norm over entire domain. For the objective to reconstruct a flow

locally, we propose to use locally optimised modes — subdomain POD modes. In this novel

subdomain POD method, a complex flow topology with large degrees of freedom is divided into

a set of smaller subdomains, reducing the degrees of freedom significantly. Subdomain POD

modes are also suitable for boundary layer flows that have layered characteristics such as the

coherent structures in near wall region. Xiao et al. applied such local modes along with radial

basis functions to a flow past a cylinder [Xiao et al., 2017, Xiao, 2016] and 2D urban street

canyons [Xiao et al., 2017]. They selected suitable topology for subdomains to capture certain

flow aspects, such as the flow past a building in the urban street canyon case.

The Novel subdomain POD method is closely related to the finite element method [Gouri Dhatt

et al., 2012] and the spectral method [Gentian Zavalani, 2014,Sieber et al., 2016]. In the finite

element method, a function is approximated as a combination of the nth order polynomials

(standard basis functions) whereas the spectral method represents the function as a combination

of known functions, for example, Chebyshev polynomials [Canuto, 1986]. The spectral method

is also applied to multi-domain problems [Quarteroni, 1987] to approximate a function locally,

using collocation points to ensure the continuity at the subdomain boundaries. Compared to

these methods, the subdomain POD method uses data-driven basis functions (modes), obtained

from a set of observations of an unknown function. In the spectral method, the choice of the

known functions greatly influence the accuracy of the approximation and the best choices are,

in fact, the subdomain POD modes (in an `2 sense).

We recall the standard POD method that provides a set of orthonormal modes. If ϕ1, ϕ2, . . . , ϕN

such that
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θ(x, t) =
N∑
i=1

ai(t)ϕi(x) (5.1)

where ai are the temporal modes.

D1 D2

D1 D2 D3 DM

...

xb

D1

D2

D3

D4

D5

(a) (b)

Figure 5.1: Typical domain decomposition for 1D domain(a), 2D domain (b).

For the subdomain POD method, the physical domain D will be divided into Nd subdomains

such that D = D1 ∪D2 ∪D3 ∪ . . . DNd
(figures 5.1(a,b)). We apply the standard POD within

each subdomain. The POD modes for each subdomain Dj ψ
j
i , are the continuous functions

defined on Dj such that
〈
‖ θj(x, t)−

∑N
i=1 bi(t)ψ

j
i (x) ‖2

〉
is minimum locally within and on

Dj. The temporal coefficients, in this case, are obtained by projecting the modes ψji (x) over

the scalar field θ locally, that is,

bji (t) =
(
θ(x, t), ψji (x)

)
Dj

=

∫
Dj

θ(x, t)ψji (x)dx (5.2)

for i = 1, 2, . . . , N and j = 1, 2, . . . , Nd. Within each subdomain Dj, the scalar field has the

decomposition of the form

θ(x, t) =
N∑
i=1

bji (t)ψ
j
i (x) (5.3)

The POD modes ψji obtained within each subdomain Dj may be termed as subdomain POD

modes. These subdomain POD modes are different from standard POD modes ϕi. Standard

POD modes are the global optimum functions over the physical domain that represent the
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scalar field θ, whereas subdomain POD modes are only locally optimum functions within and

on each subdomain.

5.1.1 Properties of the subdomain POD modes

The computational cost of the subdomain POD modes increases with the number of subdo-

mains. Since the computational cost of computing eigenvectors (the method of snapshots)

depends only on the number of snapshots, the computational cost for the subdomain method

increased by a factor equal to the number of subdomains. On the other hand, the subdo-

main method does not need include the whole domain for reconstructions of a local flow that

significantly reduces the degrees of freedom.

The subdomain POD modes inherits orthogonality from the POD method. The subdomain

POD modes obtained in each subdomain are orthogonal within the corresponding subdomain.

The continuity at the subdomain boundaries does not follow automatically for the subdomain

POD method. In the current analysis, a transformation consisting of a spatially dependent

background field is used to ensure continuity. The details of the transformation for a 1D

domain decomposition is presented in the next section 5.1.2.

5.1.2 Background field

The representation of a field as a combination of subdomain POD modes ensures optimality

only in the `2-sense in each subdomain and the reconstructed field from subdomain POD

modes is not necessarily continuous at the subdomain boundaries. To address this problem,

we introduce a background field. Let us assume θ be a scalar defined in a 1D domain and

the domain is subdivided into subdomains [x1 x2], [x2 x3], [x3 x4] . . . [xn−1 xn]. Let us

assume θ is known at the subdomain boundaries. We define a background field as

θjb(x, t) =
(x− xj

lj

)
θj(xj+1, t) +

(xj+1 − x
lj

)
θj(xj, t) (5.4)
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Here, θj is θ within [xj xj+1], θjb is the background field in [xj xj+1], xj are the boundaries

of the subdomains and lj = xj+1 − xj are the lengths of the intervals. This background field is

required boundary information at prior. Now, a transformation is defined as

Θj
b(x, t) = θj(x, t)− θjb(x, t) (5.5)

The transformed field Θj vanishes at the boundaries. Now, let us recall that a scalar can be

expressed as a linear combination of its subdomain POD modes within a subdomain. That is,

at the boundary x = xj,

0 = Θj(xj, t) =
N∑
i=1

bji (t)ψ
j
i (xj, t) (5.6)

The modes ψji are orthogonal to each other and thus form a linearly independent set of functions.

Then, from elementary linear algebra,

ψji (xi, t) = 0 (5.7)

That is, all the subdomain POD modes of Θj vanishes at the boundary and the reconstructed Θj

obtained from a combination of the subdomain POD modes will also satisfy vanishing boundary

conditions. Thus the continuity at subdomain boundaries will be satisfied trivially.

Since θjb is a spatially distributed function and the correlation functions of the Θj and θj fields

are different, the subdomain POD modes of θj are different from that of the Θj field. But, once

the Θj field is reconstructed from the subdomain POD modes of Θj, this reconstructed Θj field

can be transformed back to the θj field using the background field θjb as

θj(x) = Θj(x) + θjb(x) (5.8)

It is to be noted that, to use background field the scalar at the boundaries θj(xi, t) must be

available a priori.
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5.1.3 Subdomain decomposition for a gappy field

We consider, a domain D partitioned into M subdomains D1, D2, . . . , DNm . As in the standard

gappy case, mask functions are defined for j = 1, 2, . . . , NM as

m(x) =


1 if information is available

0 elsewhere

As for the standard POD technique (section 4.3) within each subdomain Dj, we need to solve

a linear system of equations,

M j b̃j = f j (5.9)

for j = 1, 2, . . . , NM . Here, ψ̃jk = m(x)ψjk(x), M j
ik =

∫
Dj
ψ̃jk(x)ψ̃ji (x) dx, f jk =

∫
Dj
ψ̃jk(x)θ̃(x, t) dx.

After solving NM systems of linear equations in 5.9, the entire field can be obtained using the

equations 5.3 .

5.2 Application to the KS equation

We will now evaluate and apply the subdomain POD modes to reconstruct the KS dynamics.

Recall that, the one dimensional Kuramoto-Sivashinsky (KS) equation can be presented in

normalized form as [Papageorgiou, 1991],

∂u

∂t
+ u

∂u

∂x
+
∂2u

∂x2
+ ν

∂4u

∂x4
= 0 (5.10)

with u(x, 0) = − sin(x) and u(x + 2π, t) = u(x, t). The parameter ν is the viscosity. To

start with the subdomain POD method, a domain decomposition strategy consists of two

subdomains is considered. As shown in the figure 5.2a, these two subdomains are D1 : x ∈ [0, π]

and D2 : x ∈ [π, 2π] respectively. Within each subdomain, u is no longer periodic and thus

subdomain POD modes are not necessarily the Fourier modes.

To satisfy continuity at subdomain boundaries, a background field is introduced such that
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0 2

D1 D2

(a)
xi

xi+1

li

(b)

Figure 5.2: Domain decomposition strategy with two subdomain (a), transformation of the u
field; assuming u is known at the boundaries xi (b).

ub(x) =
(x− xi

li

)
u(xi+1) +

(xi+1 − x
li

)
u(xi) (5.11)

where, xi and xi+1 be the boundaries of a subdomain and since, the subdomains are chosen to

be of equal length, so li = π is the length of the subdomain for all i (figure 5.2b). We note that

u is known a priory at the boundary points x = 0, π and 2π. Now, we define a transformation

as

Ub(x) = u(x)− ub(x) (5.12)

From the above definition of ub, Ub vanishes on the both boundaries. Once each snapshots are

transformed as the equation 5.12, the subdomain POD modes are evaluated and the resulted

modes also satisfy the vanishing boundary conditions. Once the Ub field is reconstructed from

the subdomain POD modes of U , this reconstructed Ub field can be transformed back to the u

field using the background field ub as

u(x) = U(x) + ub(x) (5.13)

From the eigenvalue spectrum ( figure 5.3a) of the subdomain POD modes of U (within each

subdomain), the number of the subdomain POD modes is 48, corresponding to nonzero eigenval-

ues (eigenvalues < 10−6 are ignored). Then, the subdomain POD modes are computed from the

800 snapshots and denoted as
(
ψji

)800

for j = 1, 2. Next, 200 more snapshots are added to the

previous 800 snapshots and subdomain POD modes are computed again as
(
ψji

)1000

. If the both
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Figure 5.3: (a) Eigenvalue spectrum of the subdomain POD modes for 2 subdomains D1 and

D2, (b) orthogonality of
(
ψji

)800

and
(
ψji

)1000

implying that a data-set of 800 snapshots are

sufficient to extract the POD modes.

sets of modes are same then from the orthonormality of the modes,

((
ψji

)800

,
(
ψi

)1000
)

= 1,

which is satisfied as shown in the figure 5.3b. That is, these 800 snapshots are sufficient to ob-

tain the convergence. The temporal modes bji (t) are then computed from the converged modes

using the equation 5.2. The resulting U field, obtained as the combination of subdomain POD

modes, is transformed to the u field using the equation 5.13. The reconstructed u field and

the sample snapshot is shown in the figure 5.4. Here, the measure of performance γ of the

reconstructed field is of 10−8. Recall that, the measure of performance γ is defined as

γ =

√∫ 2π

0

∫ T

0

(u− ur)2 dt dx
/√∫ 2π

0

∫ T

0

u2 dt dx (5.14)

where, ur is the reconstructed u using standard or subdomain POD method.

We will now consider the gappy problem discussed in the previous chapter (section 4.3.1).

We suppose for each subdomains, there are 33 equidistant grid points where information are

available. Thus the ratio p = 0.5, is same as the standard POD case (p is defined as equation
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Figure 5.4: Reconstruction of the sample snapshot using 2× 48 = 96 subdomain POD modes.
The reconstruction is carried out using two subdomains as in figure 5.2a.
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Figure 5.5: Comparison of the reconstructed snapshot using the standard POD method and
the subdomain POD method (using 2 subdomains) of the sample snapshot.

4.30).

The subdomain POD modes, obtained earlier, are then used to compute the temporal coeffi-

cients bji (t) using the equation 5.9 and finally, the solution is reconstructed using equation 5.3.

The reconstructed fields for the both cases are shown with the actual sample snapshot in figure

5.5. Also, the reconstruction using 2 subdomains in xt- plane is shown in figure 5.6.

Figure 5.7 shows the performance parameter γ of both standard POD and subdomain POD

with 2 subdomains for different values of p. It is clear from 5.7(a,b) that, for a certain p, the

trends of γ for both methods are similar and γ diverges around the same values of N , where N
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Figure 5.6: (a) KS solution in x-t plane and (b) reconstruction of KS solution using 2×31 = 62
subdomain POD modes. Here, the parameters are ν = 0.01 and p = 0.0317.

represents the number of the modes used for reconstruction. That is, the reconstructions using

standard POD and subdomain POD are comparable.

We computed γ for the background fields for both subdomains as 1.28 and 1.31, respectively.

This implies, the introduction of background fields does not bias the reconstruction.

5.3 Application to plane Couette flow

In this section, We will apply subdomain POD method to reconstruct the streamwise component

u of plane Couette flow. We will also analyse the performance of subdomain POD modes for

different values of p and consequently compare with standard POD modes. As in the case
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Figure 5.7: (a) Relative error of the reconstructed snapshots for p = 1, 0.5, 0.25 and p = 0.13
using the standard POD modes and (b) the subdomain POD modes.

of standard POD method (section 4.2.4), we will restrict reconstruction to the yz-plane only,

where y and z are the spanwise and the wall normal direction respectively. Here, the 2D domain

is decomposed into 2 subdomains, sliced horizontally (as in the figure 5.1(b)).

Similar to the POD method, the state variable in the yz-plane can be expressed as the linear

combination of the POD modes for j = 1 and 2, [Moehlis et al., 2002]

sj(x, t) =
∑
n

Ny∑
ny=−Ny

ajnny
(t)ψ̂j

nny
(x) exp

(
i
2πnyy

Ly

)
(5.15)

Here, x = (y, z)T is the coordinates, sj = (u, θw)T is the state variable within domain Dj,

u is the streamwise velocity component and θw is the wall temperature, ny is the spanwise

wavenumber, ajnny
and ψ̂j

nny
are the temporal coefficients and the subdomain POD modes in

wall normal direction respectively, Ly is the length in the spanwise direction. Since, sj is vector-

valued, ψ̂j
nny

are also vector-valued with components ψ̂jnny ,θw
and ψ̂jnny ,u, corresponding to θw

and u, respectively. ψ̂j
nny

is the n-th POD mode in subdomain j corresponding to wavenumber

ny.
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The continuity along the boundaries of the subdomain is prescribed through the background

method, as introduced in the reconstruction of the KS equation solution. The background field

for the 2D plane is defined as

sjb(x, z) =
(z − zi

hi

)
sj(x, zi+1) +

(zi+1 − z
hi

)
sj(x, zi) (5.16)

where, hi = zi+1− zi is height of the subdomain, measured in the wall normal direction and let

hi = H for all i. Similar to the KS solution case, a transformation is defined as

Sj = sj − sjb (5.17)
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Figure 5.8: The eigenvalue spectrum the subdomain POD modes.

To evaluate subdomain POD modes we obtain an ensemble of total 5600 DNS snapshots 2 of the

state variable sj = (u, θw)T on the yz–plane at x+ = 526. We apply the method of snapshots at

each subdomain to evaluate the modes of Sj and plotted in figure 5.8 is the eigenvalue spectrum

of the modes and the spectrum of the modes for both subdomains coincide. Since the mean and

second order statistics are symmetric about the channel mid-height, the eigenvalue spectrum
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of two subdomains should coincide. Similar to the POD modes, the spectrum of subdomain

modes does not vanish for large N (N < 2500).

Figure 5.9: A sample snapshot of streamwise velocity component u field obtained from DNS
(a), reconstructed field using 500 POD modes (b) and 2 × 250 = 500 subdomain POD modes
(c). Here, the ratio p = 1.

Once the actual snapshot has been translated by the background field, the translated snapshot
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is reconstructed using the subdomain POD modes. The background field is then added to

the reconstructed translated snapshot to obtain the reconstruction for the actual snapshot.

The reconstructed sample snapshot using 2 × 250 = 500 modes are shown in the figure 5.9.

For comparison purposes, we also reproduce the reconstructed snapshot using 500 standard

POD modes. Visual inspection of figures 5.9(a-c) confirms that both the methods yields good

reconstruction of the actual snapshot. The measure of performance for both cases are almost

same as γ = 0.03. As for the flow structures, the reconstruction using the subdomain POD

modes is a better fit compare to the POD modes. The locally optimised subdomain POD

modes reconstruct the peaks better which the standard POD modes fail to reproduce.

Figure 5.10: The comparison of the relative norm using the standard and the subdomain POD
modes (using the background field approach).

The measure γ of the reconstruction using the standard and the subdomain POD modes are

shown in the figure 5.10. As seen in the KS equation case; in the plane Couette flow, the

performance of the subdomain POD modes are found to be similar to the standard POD

modes.

Next, a gappy field is considered by sampling the sample snapshot 5.9(a) in the z (wall normal)
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direction. From the actual resolution of the sample snapshot 432 × 432, only the resolution

432× 25 is assumed to be known; the rest of the pixels are to be reconstructed. The sampled

z planes, starting from the plane z = 0 (the bottom wall) and moving upwards, are chosen

equidistant to each other and there is no sampling considered in the y (spanwise) direction.

Therefore, the ratio of the available information to the total resolution, p ≈ 0.046.

Figure 5.11: Reconstructed streamwise velocity component u with 2 × 250 = 500 subdomain
POD modes (a), and 500 standard POD modes (b). In both cases only 4.6% pixel information
are used, that is p = 0.046.

The reconstructed field using 2×250 = 500 subdomain POD modes is computed using equations

(5.9) and (5.3), and presented in the figure 5.11(b) along with the reconstructed snapshot using

500 standard POD modes. Comparing the figures 5.11(a,b) the reconstruction ability from the

partial information (here is only 4.6%) are sufficiently good by using both the standard and
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the subdomain POD modes. The larger flow structures in both reconstructions are close to

the actual DNS 5.9(a) whereas the subdomain POD method reconstruct the small scale flow

structures better than the standard POD method. The peaks are more visible in figure 5.11(a)

compared to figure figure 5.11(b).
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Figure 5.12: The measure γ in the reconstructions of the streamwise velocity component using
(a) the subdomain POD modes, (b) the standard POD modes. In figure (b), there is an extra
curve corresponding to p = 0.002 that diverges for N > 5.

The final comparison of the two methods are presented as the ability to reconstruct the sample

snapshot for varying values of the ratio p. While using the subdomain POD modes, the γ-curves

for the case p = 1 and p ≈ 0.086 coincide ( figure 5.12a). That is, only 8.6% pixel information

are enough to reproduce the full snapshot. On the other hand, any reconstruction process

diverges for N > 60 if p ≤ 0.023. The behavior of the standard POD γ-curves are found to

be similar to that of the subdomain POD except for the fact that the standard POD γ-curves

diverge more rapidly (figure 5.12b). The case with p ≈ 0.002 in figure 5.12b corresponds to the

limiting case when only the thermal field measurements are available at the bottom wall and the

streamwise velocity component u is missing. In this particular case, the reconstruction process

diverges if N > 5 and with the first 5 modes, one can only retrieve the mean thermal field along

with a few smaller order fluctuations. Most importantly, the boundary layer structures can not
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be obtained using the standard POD modes. This limiting case will be considered in the next

example, where the subdomain POD modes will be used to extrapolate the streamwise velocity

component u away from the bottom wall.

5.4 Extrapolation from the wall thermal imprints

In this section, the reconstruction ability of the subdomain POD modes will be assessed for

p = 0.002, in a similar way as the standard POD case. This is the case where only wall

temperature θw is available to reconstruct streamwise velocity component u. Since, no infor-

mation about the velocity component u is available, we no longer can use the background field

method. Recall that the background field was adopted to ensure continuity at the boundaries

of the subdomains. Instead, we will adopt a strategy where the yz-plane will be subdivided

horizontally into subdomains and the velocity within the first subdomain will be approximated

from wall temperature. Since the second subdomain shares a common boundary with the first

subdomain, the velocity at the bottom boundary of the second subdomain is available now

and will be used to approximate the velocity within the second subdomain. This procedure of

approximation will continue until the velocity within the last (top) subdomain is approximated.

. . . . . . .... . . . . .. . ...
o ooo o o ooo o
o ooo o
o ooo o

o ooo o
o ooo o . . .... . ...
. . .... . .... . ... . . .... . ...SD 1

SD 2

SD 3

   Gappy

snapshot
Reconstructed 

   snapshot

    Known

information
Gappiness

Extrapolated

Figure 5.13: The reconstruction strategy using the subdomain POD modes for j = 3. The open
circles represent the gappiness and the filled circles represent available/approximated quantity.

The domain decomposition and the repeated extrapolation procedure is shown in the figure

5.13 for j = 3. The above procedure is equivalent to the repeated application of any standard

extrapolation method, except for the use of the subdomain POD modes as the extrapolating

polynomials. The choice of this topology is also suitable from the fact that, the characteristics
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of the turbulent eddies at any location are expected to be similar in the near vicinity. Also,

in a boundary layer flow, the behaviour of the flow within boundary layer and outer layer are

different.The procedure is described below in detail.

Figure 5.14: The reconstructed snapshot using the subdomain POD modes for j = 2.
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Figure 5.15: The reconstruction of the local structure using POD method (a) and subdomain
POD method (b). The figure shows the contour u = 0.6 line that captures the near wall
boundary layer structure.

First, a topology of the subdomain is chosen similar to the 2D example in figure 5.1(b), sliced

horizontally. Since, the only available information are the observations at the bottom wall, the

first subdomain is considered to be consists of the bottom wall. The subsequent procedures are
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described as below

1. Divide the 2D domain into j subdomains.

2. Within the first subdomain, the known observations are the information (wall tempera-

ture) at the grid points of the bottom wall and the information at anywhere else is to be

reconstructed using gappy POD method.

3. Since consecutive subdomains share a common boundary, the information at the bottom

boundary of the second subdomain is available. The information at other grid points are

to be reconstructed, as in step 2.

4. Repeat the procedure until the top wall of the 2D domain is reached.

The procedure described above is carried out with LASSO regularisation (λ = 10−5) for two

subdomains and the resulting snapshot is shown in figure 5.14. The measure γ of reconstructed

snapshots is 0.245 which is comparable to the standard POD method. The reconstructed local

structure using the subdomain POD is better than that of using the standard POD modes,

as shown in the figure 5.15a and 5.15b. Since, subdomain modes are locally optimised modes,

these modes can describe the local structures better than the reconstruction using standard

POD modes.

5.5 Conclusions

We proposed a new decomposition — the subdomain POD method, where a physical domain

is divided into subdomains and the POD method is applied within each subdomain separately.

Subdomain POD modes inherit properties form POD modes such as boundary conditions,

homogeneity and orthogonality within a subdomain. The subdomain POD modes obtained

from each subdomain are orthogonal within the corresponding subdomain.

We used the same dynamical problems as in chapter 4 to test the performance of subdomain

POD modes. These examples also allow us to compare the performance of subdomain POD



78 Chapter 5. Estimating flow from thermal wall patterns using subdomain POD method

modes and standard POD modes. In first set of examples, 1D KS solutions were reconstructed

for a range p values. We used a background field to ensure continuity at subdomain boundaries.

background fields were chosen to obtain vanishing boundary conditions and the orthogonality

of modes ensures the continuity at subdomain boundaries. We found the reconstructions using

subdomain POD modes are as good as the reconstructions using POD modes for all p.

The second set of examples were reconstructions of the streamwise velocity components of

plane Couette flow for a range of values of p. Once again, we found similar performances using

subdomain and standard POD modes. For smaller p, reconstructions diverged around same

values of N for both methods, where N is the number of modes used.

The tests using two sets of examples, namely 1D KS solution and plane Couette flow confirm

that subdomain POD modes produce good reconstructions and comparable to those of standard

POD modes.

We applied subdomain POD to reconstruction of streamwise velocity component of plane Cou-

ette flow using wall temperature only. We proposed a subdomain strategy (horizontally sliced)

to pose the reconstruction problem as an extrapolation problem. Wall temperature at the bot-

tom boundary were used to extrapolate velocity within and on the first (bottom) subdomain.

Since, the consecutive subdomains share boundaries, we used the estimated velocity at the top

boundary of the first subdomain to extrapolate velocity within and on second (top) subdomain.

The measure of performance γ for reconstructions was found 0.245. Recall that, we applied

standard POD for this reconstruction in chapter 4 with γ = 0.24. Another important feature

of the reconstructions using subdomain POD is that of the reconstruction of local structures.

This is due to the fact that subdomain POD modes are locally optimised.

The idea of subdomain POD was motivated by the characteristics of boundary layer flows where

the flow at the boundary layer are different from the rest of the flow. Such local characteristics

can also found elsewhere, such as flow with obstacles [Podvin et al., 2006,Xiao, 2016]. In such

cases, the flow at corners are dynamically important but energetically insignificant [Schmid,

2010]. The Subdomain POD method is suitable for reconstructing such local flows for two

reasons. First, subdomain POD modes are locally optimised. We can choose subdomains care-
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fully around the local flow of interest. Second, we can reduce degrees of freedom significantly

by choosing suitable subdomain topology within the global domain. Future work should in-

corporate appropriate boundary conditions for truncated domains of interest and an optimal

strategy to find the topology of subdomains.



Chapter 6

Estimating flow using linear estimation

theory

In this chapter, we will apply linear estimation theory to estimate flow velocity from wall tem-

perature. In previous chapters, we used data-driven modal decomposition methods which do

not need to consider the physics of the flow explicitly, although the resulting modes inherit the

physics within. Thus an inclusion of a dynamical model enables us to impose a physical con-

straint and allows to assimilate wall temperature as input - which is still a data-driven approach.

We will use the Orr-Sommerfeld-Squire system [Illingworth et al., 2018] and the non-linear terms

in fluctuations will be considered as a time-dependent random forcing with zero mean and fi-

nite variance. We tested numerical routines for the operators used in Orr-Sommerfeld-Squire

system with suitable examples and eigenvalue spectrum. We also deduce a transport equation

for scalar fluctuation θ′′ in the Fourier space which along with Orr-Sommerfeld-Squire system

will form the dynamical model. In this model, the wall temperature is the input which will be

used to tune the model parameters and to estimate the flow velocity. we design a problem with

random disturbances to test the model and then finally proceed to estimate flow velocity using

the DNS wall temperature.

80
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6.1 State-space description

The state-space description of a dynamical system can be represented as,

dx(t)

dt
= Ax(t) + Bd(t) + Fr(t) (6.1a)

y(t) = Cyx(t) + v(t) (6.1b)

where, A is the system matrix, B is the forcing matrix, F is the input matrix, x(t) is the

state vector, d(t) model uncertainty and r(t) is due to physical controls (actuators). If there

is no actuator to control the system then r(t) = 0. similarly, for a perfect model without any

uncertainty, d(t) = 0.

The equation (6.1b) represents the measurements from the sensors. The operator Cy projects

the physical domain into the measurement space. If the measurements are available for the

whole domain then Cy = I , where, I is the identity matrix. The vector v(t) is the measurement

noise, assumed to be a Gaussian white noise with zero mean and finite variance.

d y u

Figure 6.1: A schematic diagram of a boundary layer over a flat plate [Hoepffner, 2006].

An example of such model is a boundary layer flow (Figure: 6.1) with two types of inputs: d(t)

be a upstream volume force which generate waves that propagate and grow along the stream
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and r(t) is a distribution of blowing/suction on the wall [Hoepffner, 2006]. Here, the input r(t)

is an actuator for control whereas d(t) is a generic flow characteristic (non-linear perturbation

feedback). The measurements y(t) can be the wall shear stress.

6.2 Estimation problem

The estimation problem deals with the estimation of the state x from the partial sensor mea-

surements. To build up a framework for the estimation problem, the dynamics of the estimated

state are described as [Trentelman et al., 2002,Murray, 2006]

dxe(t)

dt
= Axe(t) + Bd(t) + Fr(t)−K (y − Cyxe) (6.2)

That is, xe follows the same dynamical laws (6.1), except for the the last term −K (y−Cyxe),

where K is the observer gain. Starting from an arbitrary initial state, this last term drives

the estimated state xe to the state of the system, x. Now, if x̃ = x − xe denotes the error in

the estimation, then the dynamics of x̃ can be evaluated from (6.1a) and (6.2), and assuming

v = 0,

dx̃(t)

dt
= Ax̃+ K (y − Cyxe)

= Ax̃+ K (Cyx− Cyxe)

= (A + KC y)x̃

(6.3)

Thus the optimal choice for K will stabilise the error x̃, which, in turn ensures xe to be a good

estimate for the actual state x. The optimal K , is therefore, minimize the cost,

JE(xe) =

∫ ∞
0

‖ y − Cyxe ‖2 dt (6.4)

where, ‖ . ‖2 represents the `2 norm.
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Let us assume that P be the covariance matrix of the estimation error x̃. It can be shown that

P is a solution of the Lyapunov equation Kim2007

(A+KC)P + P (A+KC)∗ +KQvK
∗ +BQdB

∗ = 0 (6.5)

To obtain optimal K, we set a minimisation problem to minimise the variance of the estimation

error. That is

J = Tr(PQ) (6.6)

Here, Q is a weight matrix. We want to minimise the objective function J subject to the

constraint 6.5. We define the Lagrangian as

L = Tr(PQ) + Tr [Λ ((A+KC)P + P (A+KC)∗ +KQvK
∗ +BQdB

∗)] (6.7)

where Λ is a matrix Lagrange multiplier. At an extremum, the gradient of L with respect to

Λ, P and K must vanishes. The gradient with respect to Λ gives back the Lyapunov equation

∇ΛL = (A+KC)P + P (A+KC)∗ +KQvK
∗ +BQdB

∗ = 0 (6.8)

Considering the gradient with respect to P , we get

∇PL = 0 = Q+ A∗Λ∗ + C∗K∗Λ∗ + Λ∗A+ Λ∗KC

or,

(A+KC)∗Λ + Λ∗(A+KC) +Q = 0 (6.9)

The equation 6.9 is a Lyapunov equation in terms of Q, where Q is self-adjoint and (A+KC)

is stable. Now considering the gradient of L with respect to K we get,

∇KL = 0 = Λ∗PC∗ + ΛPC∗ + Λ∗KQv + ΛKQv
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or,

2Λ(PC∗ +KQv) = 0

That is,

K = −PC∗Q−1
v (6.10)

Now using 6.10 in equation 6.8. we find

AP − PC∗Q−1
v CP + PA∗ − PC∗Q−1

v CP ∗ + PC∗Q−1
v CP ∗ +BQdB

∗ = 0

or,

AP + PA∗ − PC∗Q−1
v CP +BQdB

∗ = 0 (6.11)

Which is the algebraic Riccati equation. The algebraic Riccati equation is widely used for

linear quadratic control and estimation problems with infinite time horizon [Doyle et al., 1989].

The solution of equation 6.11 are used to update Kalman gain for stabilisation of a system

using equation 6.10. The algebraic Riccati equation is time-independent and resulting a steady

Kalman gain. For systems with finite horizon, the algebraic Riccati equation is not suitable

and differential Riccati equation is required to compute time-dependent Kalman gain [Högberg,

2001,Lewis, 2012].

The weighting operators Qv and Qd are the variances of v and d respectively. These weighting

operators Qv and Qd are assumed to be finite and can be considered as the model parameters.

6.3 Estimation in pendulum-cart system

As a simple demonstration of the method, let us consider a pendulum-cart system [Murray,

2006] as in Figure: 6.2. The pendulum is attached to the cart and the cart can move in

X-direction. The pendulum can spin freely about its fixed point (colored red).

The states of the problem are the position x and the velocity dx/dt, the angle θ and its rate of
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f1

m2

X

θ
m1

L

Figure 6.2: A schematic diagram of a inverted pendulum-cart system. Here, L is the length of
the pendulum, f1 is the force acting on the system and, m1 and m2 are being the mass of the
cart and the pendulum respectively. The only direction in which the cart can move is denoted
as the X-axis. The position x is being measured.

change dθ/dt. The model describing the pendulum-cart system is given by,

dx

dt
= Ax + Bd

y = Cyx

(6.12)

where, x = (x, dx/dt, θ, dθ/dt)T is the state variable. The definition of A, B and Cy are given

as follows [Murray, 2006],

A =



0 0 1 0

0 −d/m1 −m2g/m1 0

0 0 0 1

0 −sd/(m1L) −s(m2 +m1)/(m2L) 0



B =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



Cy =

[
1 0 0 0

]

(6.13)

The model is valid only for small fluctuations about the fixed position θ = 0. We first build up

a data-set using the model (6.12) with chosen d. We choose the components of d as a Gaussian

white noise in time with variance 1. Now, an estimation problem can be formed as follows:
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among the four variables of the system, x, dx/dt, θ and dθ/dt, only one variable, x is available

from the data-set. What would be the other state variables?
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Figure 6.3: Estimation of the optimal vd that corresponds to the minimum γ. Here, the optimal
vd is equal to 1.
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Figure 6.4: Estimation of the states of a pendulum-cart system. The solid lines are the true
states and the dashed lines are the estimates.

The model 6.12 does not include any measurement noise. However, to get a finite Kalman

gain using equation (??) a non-zero variance of the measurement noise Qv, is required. In this
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pendulum-cart problem, the Kalman gain was computed using Qv = 10−10. This choice of Qv

allows us to get a finite Kalman gain whereas the measurement noise is kept low.

The Kalman gain equation (??) uses the solution of the algebraic Riccati equation (??) which

requires Qd and Qv, the variance of the disturbance and measurement noise, respectively. Since

for the current problem we choose a fixed non-zero Qv, the Kalman gain K depends only on

Qd. We assume Qd = vd[1 1 1 1], where vd is a constant that needs to be evaluated. Let

us consider xe is a estimation of the position x. Since the estimate xe is dependent only on vd,

we want to find vd that minimises

γ =

√∫ T

0

(x− xe)2 dt

/√∫ T

0

x2dt (6.14)

where, T is the time period considered in the estimation problem. To find the optimal vd, we

estimate xe for the values of vd ranges from 0.1 to 2 with increments 0.1 and choose the vd

corresponding to the minimum γ. Figure 6.7 shows the minimum γ is achieved for vd = 1.

The Kalman filter assumes the disturbance of a model as a Gaussian white noise. Also the

data-set was built assuming the components of d as the Gaussian white noise with variance

1. Thus the estimated optimal vd should be the same as the data-set. Indeed, we find the

minimum γ is corresponding to vd = 1. The estimated state variables xe are shown along with

the actual or true states in the figure 6.4. The agreements are reasonably good with relative

estimation error is less than 25% for all the states.

6.4 Model for plane Couette flow

In this section, we will develop a model for plane Couette flow. The streamwise, spanwise and

wall normal directions are along the x, y and z-axis, and the corresponding components of the

velocity u are u, v and w respectively. The flow quantities are non-dimensionalised using wall

units such as friction velocity uτ , kinematic viscosity ν and half of the channel height h. The

pressure p̃ and the time are non-dimensionalised by ρu2
τ and 0.5h/uτ respectively. Then the
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momentum equation in non-dimensional form is given by

∂u+

∂t
= −(u+ · ∇)u+ −∇p+Re−1

τ ∇2u+ (6.15)

For convenience, we drop the superscript + for the rest of the section and write

∂u

∂t
= −(u · ∇)u−∇p+Re−1

τ ∇2u (6.16)

We perform a Reynolds decomposition of the velocity field u as

u = 〈u〉+ u′′ (6.17)

where 〈u〉 is the temporal average of the velocity and u′′ is the fluctuation. Averaging (6.16)

over time, we get

∂〈u〉
∂t

= − (〈u〉 · ∇) 〈u〉 − 〈(u · ∇)u〉 − ∇〈P 〉+Re−1
τ ∇2〈u〉 (6.18)

Subtracting (6.18) from (6.16),

∂u′′

∂t
= −(〈u〉 · ∇)u′′ − (u′′ · ∇)〈u〉 − ∇p′′ +Re−1

τ ∇2u′′ + 〈(u′′ · ∇)u′′〉 − (u′′ · ∇)u′′ (6.19)

Let us denote d = 〈(u′′ · ∇)u′′〉 − (u′′ · ∇)u′′, such that

∂u′′

∂t
= −(〈u〉 · ∇)u′′ − (u′′ · ∇)〈u〉 − ∇p′′ +Re−1

τ ∇2u′′ + d (6.20)

To get a linear model, we should truncate [Kim and Bewley, 2007] the non-linear forcing d

from the equation (6.20). Instead we keep the forcing d in the model while assuming d is a
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disturbance (white noise) to the model (i.e. does not depend on u). Then the variance of d

is a model parameter which need to be estimated from measurements/sensors. Let us project

the model in the Fourier space. For each wavenumber pair (kx, ky) the state-space form is

as [Illingworth et al., 2018],

∂

∂t

ŵ′′
η̂′′

 =

∆−1LOS 0

LC LSQ


ŵ′′
η̂′′

+

−ikx∆−1D −iky∆−1D −k2∆−1

ikx −iky 0



d̂x

d̂y

d̂z

 (6.21)


û′′

v̂′′

ŵ′′

 =
1

k2


ikxD −iky

ikyD ikx

k2 0


ŵ′′
η̂′′

 (6.22)

where, û′′, v̂′′, ŵ′′ and η̂′′ are the Fourier transform of the streamwise, spanwise and wall

normal velocity components’ fluctuations, and the wall normal component fluctuation of vor-

ticity, respectively. The boundary conditions are ŵ′′(0, t) = ∂zw
′′(0, t) = η̂′′(0, t) = ŵ′′(h, t) =

∂zw
′′(h, t) = η̂′′(h, t) = 0, where, h is the height of the channel. We recall that the model

(6.21)-(6.22) is for the perturbed quantities and the perturbation of all the three velocity com-

ponents vanishes at the wall. Equation 6.16 is the well-known Orr-Sommerfeld equation which

involves the wall normal component of velocity fluctuation and the vorticity fluctuation, re-

spectively. We use equation 6.17 to evaluate the streamwise and spanwise components of the

velocity fluctuation from the wall normal component of velocity fluctuation and the vorticity

fluctuation.

Here, (d̂x, d̂y, d̂z)
T are the Fourier transform of the components of d, LOS = −ikx〈u〉∆ +

ikx
d2〈u〉
dz2

+ Re−1
τ ∆2, LC = −iky

d〈u〉
dz

and LSQ = −ikx〈u〉 + Re−1
τ ∆. The operators D =

∂

∂z
,

k2 = k2
x + k2

y and ∆ = D2 − k2 are the Laplacian operator. In this description, both ŵ′′ and

η̂′′ are functions of time t and wall normal coordinate z. We note that, the model (6.21)-(6.22)

is a linear model where the non-linear interactions of the fluctuation u are grouped as the

disturbance/forcing d.
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6.4.1 Testing the numerical operators

We design four problems to test the numerical routines used to evaluate the operators D, D2,

D4 and ∆2 of the model (6.21)-(6.22) as shown in table 6.1. Problem (d) in table 6.1 is a

special case of the Orr-Sommerfeld equation (with forcing) where kx = 0, ky = 1 and Reτ = 10.

The numerical routines transform the domain into [−1 1] and the operators are evaluated at

Chebychev collocation points. For clamped boundary conditions in problem (c-d) (table 6.1 ),

we use the algorithm from [S. C. Reddy et al., 1998]. This algorithm implements two important

strategies. The first strategy is the use of trigonometric identity to avoid direct computation

of the differences between Chebychev points x(k)− x(j) and the second strategy is to flip the

order of modes as sin t can be computed with with relatively higher precision compared to

sin (π − t).

Problem List
No. Problem Exact solution
(a) Dw = −2z, z ∈ [−1 1] w(z) = 1− z2

w(−1) = w(1) = 0
(b) D2w = −2, z ∈ [−1 1] w(z) = 1− z2

w(−1) = w(1) = 0
(c) D4w = −1, z ∈ [−1 1] w(z) = 1

24
(−z4 + 2z2 − 1)

w(−1) = w′(−1) = w(1) = w′(1) = 0
(d) ∆2w = 10, k = 1, z ∈ [−1 1] w(z) = 10−(4.831−2.089y)ey−(4.831+

2.089y)e−y

w(−1) = w′(−1) = w(1) = w′(1) = 0

Table 6.1: List of problems designed to test numerical routines for operators. The performance
of the numerical routines are shown in the figure 6.5(a-d).

Figure 6.5(a-d) show the numerical results estimated from the routines that produces good

estimation of the exact solution. We also apply the numerical routines to evaluate the eigen-

values of Orr-Sommerfeld operator for plane Poiseuille flow [Schmid and Henningson, 2001] at

Re = 104 and wave number α = 1. We use 300 collocation points for simulation. The obtained

eigenvalues are compared with published result and found good agreement. The comparisons in

this section was performed to validate the numerical routines which will be used to dynamical

models discussed later.
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Figure 6.5: Validation of the operators with numerical examples, (a) D, (b) D2, (c) D4 and (d)
∆2 = (D2−k2) with k = 1. Solid lines are the exact results and the blue dots are the estimated
results using operators. The designed problems and the exact solutions are presented in table
6.1.
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Figure 6.6: Eigenvalue spectra of the Orr-Sommerfeld operator for plane Poiseuille flow with
velocity component u = 1− z2 at Re = 104 and wave number α = 1.
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6.5 Linear model for scalar transport

The scalar transport equation is presented in chapter 2 as

∂θ

∂t
= −(u · ∇)θ + κ∇2θ (6.23)

Here, θ is a scalar and κ is the coefficient of thermal conductivity. We use θ+ =
(
θw − θ

)
/θτ with

θτ = qw/uτ , where θw is the wall temperature and qw is the wall heat flux, to non-dimensionalise

equation (6.23) as,

uτθτ
h

∂θ+

∂t+
= −uτθτ

h
(u+ · ∇+)θ+ + κ

θτ
h2
∇∗2θ+ (6.24)

Dividing throughout by (uτθτ ) /h and dropping superscript +,

∂θ

∂t
= −(u · ∇)θ +

Pr

Reτ
∇2θ (6.25)

Now applying Reynolds decomposition on the scalar θ as,

θ(x, t) = Θ(x) + θ′′(x, t) (6.26)

where, Θ =
1

T
〈θ〉 =

1

T

∫ T

0

θ dt, T is the time period and θ′′ is the fluctuation about the time

averaged Θ. Now applying (6.17) and (6.26) to (6.25),

∂θ′′

∂t
= −〈u〉 · ∇Θ− 〈u〉 · ∇θ′′ − u′′ · ∇Θ− u′′ · ∇θ′′ + Pr

Reτ
∇2 (Θ + θ′′) (6.27)

Taking time average,

0 = −〈u〉 · ∇Θ− 〈u′′ · ∇θ′′〉+
Pr

Reτ
∇2Θ (6.28)
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Subtracting (6.28) from (6.27),

∂θ′′

∂t
= −〈u〉 · ∇θ′′ − u′′ · ∇Θ +

Pr

Reτ
∇2θ′′ − u′′ · ∇θ′′ + 〈u′′ · ∇θ′′〉 (6.29)

Since 〈u〉 = (〈u〉, 0, 0) and assuming non-linear terms in u′′j and θ′′ as dθ = −u′′·∇θ′′+〈u′′ · ∇θ′′〉,

equation (6.29)

∂θ′′

∂t
=

(
−〈u〉 ∂

∂x
+

Pr

Reτ
∇2

)
θ′′ − w′′dΘ

dz
− dθ (6.30)

We recall that the variables are in plus unit throughout this section and equation (6.30) is an

equation for the perturbation θ′′. Thus the boundary conditions for the scalar equation are

∂θ′′

∂z
= 0 and θ′′ = 0 at the bottom and top wall, respectively.

Finally, taking the Fourier transform,

∂θ̂′′

∂t
=

(
−ikx〈u〉+

Pr

Reτ
(D2 − k2)

)
θ̂′′ − ŵ′′dΘ

dz
− d̂θ (6.31)

Now using (6.31) along with (6.21), for each wavenumber pair (kx, ky) the state-space model is

given by

∂

∂t


ŵ′′

η̂′′

θ̂′′

 =


∆−1LOS 0 0

LC LSQ 0

LD 0 Lθ



ŵ′′

η̂′′

θ̂′′

+


−ikx∆−1D −iky∆−1D −k2∆−1 0

ikx −iky 0 0

0 0 0 I





d̂u

d̂v

d̂w

d̂θ


(6.32)


û′′

v̂′′

ŵ′′

 =
1

k2


ikxD −iky

ikyD ikx

k2 0


ŵ′′
η̂′′

 (6.33)
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where, ŵ′′, θ̂′′ and η̂′′ are the Fourier transform of the wall normal velocity component fluctua-

tion, scalar fluctuation and the wall normal components’ fluctuation of vorticity, respectively.

The boundary conditions ŵ′′(0, t) = ∂zŵ
′′(0, t) = η̂′′(0, t) = ŵ′′(h, t) = ∂zŵ

′′(h, t) = η̂′′(h, t) = 0.

For scalar, the boundary equations are
∂θ̂′′

∂z
(0, t) = 0 and θ̂′′(h, t) = 0 . Equation (6.22) is pre-

sented again as equation (6.33) to describe the model (6.32)-(6.33) in a compact form.

Here, (d̂x, d̂y, d̂z, d̂θ)
T are the Fourier transform of the components of dθ = (dx, dy, dz, dθ)

T ,

Lθ = −ikx〈u〉 + PrRe−1
τ ∆ and LD = −dΘ

dz
. The operators LOS, LC and LSQ are defined

elsewhere. The operator D = ∂
∂z

, k2 = k2
x + k2

y and ∆ = D2 − k2 are the Laplacian operator.

The model consisting of (6.32) and (6.33) is a linear model for which the non-linear interactions

of u′′ and θ′′ are assumed as a disturbance dθ of the model. We assume that the disturbance

is a white noise [Illingworth et al., 2018] with zero mean and finite variance. We will use this

model (6.32)-(6.33) to estimate flow velocity from wall temperature.

6.6 Estimation of flow velocity with random disturbances

Before using the DNS data-set we design a problem to estimate the flow velocity from the wall

temperature using the model (6.32)-(6.33) with random disturbances. We first evaluate the

model for known disturbances to build the data-set which we consider as measurements. The

disturbance dθ is assumed to be white in time and space. To build the data-set, we consider

the parameters, such as length, width and height of the 3D domain, Prandtl number Pr and

Reτ of the plane Couette flow in chapter 2. Again, we recall that the DNS data-set will not

be used for estimation and we will only use the case setup as in chapter 2. We consider 150

collocation points to simulate the model for the wavenumber pair (π/6, π/3) by considering the

components of d are Gaussian white noises with variances equal to 10−3. The simulated results

are considered as the data-set.

The next step is to use the Kalman filter to estimate the flow velocity form the wall temperature.

Here, we consider the flow velocity is unknown. We recall that, to get a finite Kalman gain it

is required to consider a non-zero measurement variance and we set Qv = 10−10 which is same
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Figure 6.7: Estimating the optimal vd for the reconstruction of the flow with random forcing.

as the pendulum-cart system. To evaluate the Kalman gain using equations (??) and (??), we

only need to estimate is Qd. We consider Qd is of following form

Qd = vd

[
I I I I

]
(6.34)

Here, vd is a constant. Since the streamwise component of velocity is strongly correlated with

the wall temperature, we consider the same variance vd for all the components of Qd. To

estimate the optimal vd, we minimise the following

γ =

√∫ T

0

(
θ̂′′w − χ̂′′w

)(
θ̂′′w − χ̂′′w

)∗
dt

/√∫ T

0

θ̂′′wθ̂
′′∗
w dt (6.35)

where, χ′′w is the estimated wall temperature from the model that depends on vd. The value of

vd for which γ of (6.35) is minimum is the optimal vd for the estimation. Figure 6.7 shows γ

for the values of vd ranges from 10−4 to 10−2. The minimum γ is found for vd = 10−3 which is

the same as the variance considered to build the data-set .

The reconstructed velocity components for a wavenumber pair (π/6, π/3) are presented in figure

6.8(a-c). For all the cases, we achieve a good reconstruction with exception at some of the peaks
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Figure 6.8: Estimation of the modulus of the velocity components (a) û, (b) v̂ and (c) ŵ, at
z+ = 35, kx = π/6 and ky = π/3, using wall temperature. The velocity components are the
response of the model excited with random forcing. The red solid line and the blue dashed line
are the exact and estimated quantities respectively.

in the time series.

The model successfully estimates the flow velocity when the disturbances are random white

signal in space and time. In next section, we will use the wall temperature from the DNS

data-set while we still assume the disturbances are random.

6.7 Estimation of flow velocity using wall temperature

In this section, we will use the model (6.32)-(6.33) to estimate flow velocity from the DNS wall

temperature. We acquire the wall temperature and the flow velocity at a temporal resolution

of ∆t+ = 0.0021, which corresponds to approximately 10 DNS time steps. We consider 130

consecutive snapshots; within this time period, the top wall moves approximately 1.5 channel

lengths (2TU = 1.534Lx) in the streamwise direction. To reconstruct velocity at z+ = 35, we

consider 17 streamwise and 64 spanwise wavenumbers. This choice is motivated from the joint

PDF (figure 3.3) analysis in chapter 3.



6.7. Estimation of flow velocity using wall temperature 97

For the estimation in the Fourier space, we choose qv = 10−10. This small value of Qv was used

in previous examples to evaluate a finite Kalman gain while the measurement noise was kept

low. We use equations (??) and (??) to evaluate the Kalman gains for the different values of

vd, where vd is defined in equation (6.34).
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Figure 6.9: Estimating the optimal vd for the wavenumber pair (π/3, π/6).

For each wavenumber pair, we estimate χ̂′′w, where χ̂′′w is the estimated wall temperature, for

the values of vd ranges from 10−6 to 10−1. The optimal vd is the value of vd that minimises γ of

equation (6.35). Then the flow velocity is estimated using the optimal vd in the Fourier space.

For example, figure 6.9 presents the γ versus vd curve for the wavenumber pair (π/3, π/6) and

the minimum γ can be observed at vd = 1× 10−5.

Figure 6.10 shows the reconstruction of the velocity component and the wall temperature with

the optimal vd. Since the DNS wall temperature is used for flow estimation, the variance of the

disturbances are not known a priori. The reconstructed wall temperature χ̂′′w is found to be a

good fit for the DNS wall temperature θ̂′′w. This fit confirms that the estimated variance of the

disturbance corresponding to the wall temperature d̂θ, is a good estimation.

The model yields a reasonably good estimation for the streamwise component û′′ for 25 ≤ t+ ≤

50, but under-estimate the peaks in the first half of the time series containing relatively higher

peaks. The estimations of other two velocity components are not particularly good which is

expected as the correlation of these components with the wall temperature are not as strong

as the streamwise component.
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Figure 6.10: Reconstructing the fluctuation of the velocity component û′′, v̂′′, ŵ′′ and the wall
temperature θ̂′′ in the Fourier space for kx = π/3 and ky = π/6. The red line is the time series
obtained from the DNS and the blue dashed line is the modeled quantity. Here, χ̂′′w is the
estimated wall temperature obtained using the optimal vd = 10−5.

The estimated flow velocity in the Fourier series are transformed to the physical space using

the inverse Fourier transform. The exact DNS streamwise velocity component along with

the reconstructed snapshot is presented in figure 6.11(a-b), respectively. It is clear that the

reconstructed snapshot resembles the exact DNS snapshot except possibly the peaks which

is both due to wavenumber truncation and the limitation observed in the wavenumber space

(figure 6.10). The relative error for the reconstructions over considered time interval T is 0.27.

In the estimated snapshot 6.11(b), the structures that are long in the streamwise direction and

thin in the spanwise direction are reconstructed more accurately. Here, we estimate flow at

z+ = 35 which is still close to wall. It will be interesting to investigate how the model performs

further away from the wall and is a scope for future work.
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Figure 6.11: Estimation of the streamwise velocity component u (a) obtained from the DNS,
(b) the reconstructed snapshot using the model, at z+ = 35,
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6.8 Conclusions

We tested the numerical routines to approximate the operators used in the Orr-Sommerfeld-

Squire system using Chebychev collocation method. The routines were tested using suitable

examples in table 6.1 and the eigenvalue spectrum of the plane Poiseuille flow at Re = 104.

All the numerical routines were found to yield good approximations of system operators and

reproduced the eigenvalue spectrum.

We presented a model for scalar transport – which along with Orr-Sommerfeld-Squire system

form a complete dynamical system. In this system, any non-linear terms of u′′ and θ′′ are

grouped and are treated as disturbances. This implies that the resulting model is linear in u′′

and θ′′.

To test the performance of the model, we designed two problems. The first problem is a

pendulum-cart system driven by a random forcing. We successfully reproduced the variance

of the random forcing using the Kalman filter. The relative error for the reconstructed system

variables was found 0.25.

The second problem was designed such that the measurements were obtained from the response

of the model using random forcing dθ. We found the optimal variance Qd by minimising the

difference between the modeled and measured wall temperature. The reconstructed velocity

components are obtained as the model outputs and found to be a good fit of the measured wall

temperature.

Finally we move to our key problem - reconstruction of the flow velocity from the wall tempera-

ture. We undertook the same procedure as the problem with the random disturbances. Indeed,

we used the DNS wall temperature as measurements and found the optimal variance Qd for

wavenumber pairs to reconstruct flow velocity. The reconstructed streamwise component of the

velocity resembles the exact DNS snapshot except the picks with γ = 0.27. The model was

particularly good to reconstruct the structures that are long in the streamwise direction and

thin in the spanwise direction, but failed to reconstruct other two velocity components.
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We were motivated to use a dynamical model as it provides a physical constraint within the

data-driven framework. We succeeded to reconstruct some of the flow structures at z+ = 35.

To improve the quality of the reconstruction, a closure model, such as eddy viscosity model

[Illingworth et al., 2018] can be included in the model. Future works should also include the

reconstructions of the flow velocity further away from the wall and reconstructions with non-

homogeneous surfaces.



Chapter 7

Conclusions

In this thesis, we reconstructed flow velocity form wall temperature using different flow recon-

struction methods. Detailed conclusions were presented in each chapters. Some of the key

findings and the contribution of the thesis are presented here.

7.1 Summary

We created a data-set for flow reconstructions using direct numerical simulation of heated plane

Couette flow with a passive scalar. By imposing a fixed flux condition on the bottom boundary,

the wall temperature is free and wall patterns were developed. We considered temperature as

a passive scalar [Kasagi et al., 1992, Debusschere and Rutland, 2004] by assuming Richardson

number Ri is zero in limiting sense. That is, the role of gravity was not considered in the

simulation.

The turbulence statistics obtained from the DNS were compared with previously published

results. The mean velocity, the mean temperature, the RMS of the three components of the

velocity and stress profiles were found to be in good agreement with the published results. The

maximum RMS temperature was found near the bottom wall at z+ = 10.34. The total heat

flux matches the theoretical constant value closely, with a relative error in the `2-norm that is

less than 1%.

102
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In chapter 3, we used the strong correlation between the wall temperature θw and the wall shear

stress τw to develop a spectral model. The first three streamwise wavenumbers were found to

constitute about 90% of the total variance and the higher wavenumbers showed a asymptotic

behaviour in the weighted (energy) wavenumber space. We parameterised the complex model

parameter C by its modulus and phase independently. This parameterisation reduced the

degrees of freedom significantly. The reconstruction with 17×65 modes yields wall shear stress

with relative `2 error 0.25. The reconstruction under-estimates the wall shear stress at local

peaks due to truncation of wavenumbers.

We extensively analysed the POD method by suitably chosen examples - especially with gappy

fields in chapter 4. The ratio p which is defined as the ratio of available information to the total

information plays an important role in flow reconstructions. For all p, the γ versus N curves

collapsed to one curve until they diverged at a certain N . That is, the quality of reconstructions

for all p are same up-to a certain number of mode N . To reconstruct flow velocity from wall

temperature only, that is a field with large gappiness, we applied LASSO regularisation and

it appeared that the LASSO regularisation is more suitable to regularise the resulting under-

determined system. The estimated snapshots produced good reconstructions of the key flow

structures. The measure of performance γ for the reconstructed snapshot was found as 0.24.

The subdomain POD method divides a physical domain into a number of subdomains and apply

the POD method in each subdomain separately. In chapter 5, we tested the same two sets of

problems as in chapter 4 to analyse the subdomain POD modes and the reconstructions using

the subdomain POD method. We evaluated the subdomain POD modes for the KS equation

and the plane Couette flow. In both cases, the reconstructed snapshots were good fits for the

actual snapshots. From the second set of problems, we found the reconstruction ability for

different p are similar to that were reconstructed using the POD method. To reconstruct flow

velocity only from wall temperature, we designed an extrapolation framework and found good

reconstructions with γ = 0.245.

In chapter 6, we developed a model using Orr-Sommerfeld-Squire system and the scalar trans-

port equation. We tested the model using a pendulum-cart system and estimated the model
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parameter accurately. We used the Kalman filter and wall temperature to approximate the

streamwise component of the flow velocity. In the estimated velocity component u, structures

that are long in the streamwise direction and thin in the spanwise direction were successfully

reconstructed. The measure of performance for the reconstructed snapshots was found to be

0.27.

7.2 Concluding remarks

In this thesis, we reconstructed flow velocity/shear stress from wall temperature using different

flow decomposition methods and dynamical models. We started this thesis to estimate airflow

structures in urban environment as the airflow structures play important roles on almost every

aspects of city dwellers including public health, energy consumption, real estates, pollution,

economy and social interactions. There are many factors that regulates the airflow structures

in cities, such as shear, buoyancy, radiation, humidity, rainfall and other forms of precipitations

etc. In this thesis, we only focus on the shear-driven flows for which plane Couette flow is a

canonical flow. The flow was generated by moving the top wall which drives the scalar θ and

the temperature structures develop. Without the loss of generality, we can thus assume the

wall temperature θw depend only on the velocity u. That is,

θw = f (u) (7.1)

where, f is a operator that maps u to θw. Clearly, there are other factors, such as pressure and

humidity, that contribute to the wall temperature. These factors are ignored in this discussion

as we want to reconstruct the flow velocity from the wall temperature only. Now from (7.1),

we get the inverse problem as

u = f−1 (θw) (7.2)

Here, f−1 is the inverse of the operator f . Since the velocity u is a vector with three components

whereas θw is only a scalar, approximation of f−1 is a under-determined problem. Throughout

the thesis, we developed several methods to approximate the inverse operator f−1. In chapter
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3, we developed a spectral linear regression model which uses the strong correlation between

wall temperature θw and wall shear stress τw (and therefore u) and is described as

τ̂ ′′w = Cθ̂′′w (7.3)

where, C is the model parameter. If g is the operator that maps τ̂ ′′w into θ̂′′w then the inverse

operator g−1 is approximated as

g−1
(
θ̂′′w

)
= τ̂ ′′w = Cθ̂′′w (7.4)

Since C is complex, the inverse operator g−1 can be described as a combination of contrac-

tion/magnification operator and rotation operator in the Fourier space.

In chapter 4 and 5, we used flow decomposition methods to approximate the inverse f−1. Both

the POD and subdomain POD modes of the state variable s = (u, θw)T represent f−1 in the

modal space. The wall temperature from the DNS were used as the observations to find the

temporal evolution of the inverse operator f−1.

In chapter 6, we assimilated wall temperature to a dynamical model to extract flow velocity.

In this case, the operators A and B of the dynamical model provides a link between θw and u.

If we consider θw as the input and u as the output of the model, then the model operators can

be described as an approximation for the inverse operator f−1.

The main contribution of this thesis is the development of different data-driven methods to

approximate the inverse operator f−1. Throughout the thesis, we analysed and discussed the

pros and cons of each method. Some of the important pros and cons are highlighted in table

7.1. The reconstruction of wall shear stress from wall temperature using the spectral model

is attractive for two reasons. First, the use of wall temperature as a proxy is a non-intrusive

reconstruction method for wall shear stress. Second, the spectral model can reconstruct dis-

tributed wall shear stress. Compared to the conventional data fitting in the physical space, the

degrees of freedom of the spectral model were reduced 13 times by our proposed parameteri-
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Method Pros Cons

Spectral model 1. Has non-intrusive applica-
tions.

2. Produces distributed fields.

3. The proposed parametrisa-
tion reduces degrees of freedom
significantly.

1. The parameterisation priori-
tise higher energy modes at the
expense of the modes containing
lower energy.

2. Deals with wall quantities
only.

3. Limited ability to produce the
local maxima.

POD method 1. The modes are optimal with
respect to other linear represen-
tation.

2. Reconstruction ability for
gappy fields are reasonably
good.

3. The method can reconstruct
high dimensional sparse fields.

1. The evaluation of the
modes requires high computa-
tional cost.

2. Limited capability to repro-
duce structures associated with
lower energy.

Subdomain POD method 1. The modes are locally opti-
mised.

2. The modes inherit properties
from the POD modes.

3. Does not need to include the
whole domain.

4. Produces reconstructions as
good as the POD method.

1. Computational cost increases
by a factor equal to the number
of subdomains.

2. Needs extra attention to en-
sure the continuity.

3. The background fields require
information, at the boundary of
the subdomains.

Dynamical model 1. Computationally cheaper
compared to the flow decompo-
sition methods as no modes are
required a priori.

2. Uses dynamical equations.

3. The linear estimation theory
is applicable.

4. Estimations in the Fourier
space require to fit only one pa-
rameter per wavenumber pair.

5. Long streamwise structures
are reproduced more accurately.

1. The model is linear.

2. The estimation of the model
parameters requires several esti-
mations of the model outputs.

3. Under-estimates the flow ve-
locity at peaks.

Table 7.1: Pros and cons of the spectral method, the POD method, the subdomain method
and the dynamical model.
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sation. A minor disadvantage of the parameterisation is that it uses a weighted norm which

prioritise higher energy modes at the expense of modes containing lower energy. Consequently,

the model was unable to reproduce some of the local maxima. We also stress that the spectral

model was used only for wall quantities.

Flow reconstructions using the POD method dates back early 70’s. The feature of the optimality

of the POD modes with respect to other linear representations make the POD method an

attractive tool for flow analysis. One of our key findings of the POD modes is the reconstruction

ability of gappy fields. In the gappy plane Couette flow example, only 4.6% information was

enough to get a reasonably good reconstruction using 400 modes. Our main contribution

to the POD method is the development of a regularisation framework for high dimensional

sparse fields. For the reconstructions of the flow velocity using only the wall temperature, we

reproduced snapshots with γ = 0.24 when only 0.2% information was available. Although we

emphasise the good quality of the reconstructions using the POD method, the evaluation of

the POD modes require high computational cost. The POD method, like the spectral method,

have limited capability to reproduce structures that are associated with lower energy.

We develop the subdomain method that evaluates modes within a subdomain. The most attrac-

tive feature of the subdomain modes are that they are locally optimised. These modes inherits

all the properties of the POD modes. Since the computational costs for computing eigenvectors

depends only on the number of snapshots, the computational costs for the subdomain POD

method increase with the number of subdomains. On the other hand, the subdomain POD

method does not need to be applied on the whole domain. Thus careful design of the subdo-

main topology is required to reduce the degrees of freedom. The continuity on the boundary of

the subdomain is a challenging issue for the subdomain method. We used background fields to

ensure the continuity. The disadvantage of background fields is that they require information

at the boundaries of the subdomains.

The use of Dynamical models is perhaps the most elegant approach for flow reconstructions.

There is no need to evaluate modes a priori, which is advantageous compared to the flow

decomposition methods. Dynamical models provide physical constraints that emerges from the
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governing equations whereas the decomposition methods are completely data-driven approach.

The dynamical model developed here is a linear model- which is a drawback since the perturbed

quantities are highly non-linear and chaotic. In contrast, the linear estimation theory is readily

applicable to a linear model. Our model is a one-parametric model in the Fourier space. Thus

the computational cost is comparatively low. However, the estimation of this model parameter

required several estimations of the model outputs. The model accurately produced the long

streamwise structures but was unable to reproduce the local peaks.

7.3 Future work

With this thesis, multiple opportunities have been open up. Some of the important possibilities

are discussed below.

7.3.1 Reconstructing flows over non-homogeneous surfaces

Throughout the thesis, we considered flows over a homogeneous surface without any obstacles.

Due to homogeneity, we were able to apply the Fourier transform in the streamwise and spanwise

directions which eases the computational costs/difficulties. This would not be the case for a

non-homogeneous surface, such as flow over a building [Xiao, 2016, Xiao et al., 2017, Podvin

et al., 2006]. If modified, the methods we analysed in this thesis are applicable to flows with

obstacles. It will be particularly interesting to investigate how flow decomposition methods can

be utilised in this case to reconstruct flows from partial observations?

7.3.2 Optimal strategies for subdomain topology

One of the important conclusion in chapter 5 is the trade off between the computational costs

and the reduction of the degrees of freedoms for the subdomain POD method. To reduce the

degrees of freedom a suitable subdomain topology is required. In this thesis we used a topology

for the 3D domain that works reasonably good, but did not emphasise on the optimal choice
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for the topology. More insight is needed on how the topology should be chosen and how many

modes are required in each subdomain - which is an interesting scope for future work.

7.3.3 Closure models for perturbed quantities

In chapter 6, we used a dynamical model which was linear under the assumption that the

non-linear terms in u′′ and θ are random disturbances. This assumption can be improved by

imposing a closure model for the terms quadratic in u′′ and θ. The closure model represents

some imposed structures for the perturbed quantities. The eddy viscosity model was used by

Illingworth and others along with a triple decomposition in channel flows [Illingworth et al.,

2018] for the Orr-Sommerfeld-Squire system. It will be interesting to apply a closure to the

dynamical model presented in this thesis using the Orr-Sommerfeld-Squire system and the

scalar transport equation.

7.3.4 Application to other canonical flows

In this thesis, we investigated flow reconstruction methods only for shear-driven flow, namely

plane Couette flow. It is therefore natural to consider other canonical flows, such as Rayleigh-

Bénard convection [Ahlers et al., 2009,Grossmann and Lohse, 2000,van Reeuwijk et al., 2008].

In Rayleigh-Bénard, the important velocity component is the wall normal component as it is

strongly correlated with the temperature distribution. It is also interesting to investigate flows

due to pressure differences [Pirozzoli et al., 2016] as the pressure-velocity interactions play an

important role in fluid dynamics.
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Appendix A

Plancherel’s theorem for

Reynolds-averaged quantities

Plancherel’s theorem: If A and B are two real valued square integrable periodic functions

with Fourier series [Wiener, 2010]

A(x, y) =
∑
nx

∑
ny

â exp

(
2πi

(
nxx

Lx
+
nyy

Ly

))
, (A.1a)

B(x, y) =
∑
nx

∑
ny

b̂ exp

(
2πi

(
nxx

Lx
+
nyy

Ly

))
(A.1b)

where, Lx, Ly are the periods in x and y dimension respectively. The quantities â and b̂ are

given as

â(nx, ny) =
1

LxLy

∫ Lx

0

∫ Ly

0

A exp

(
−2πi

(
nxx

Lx
+
nyy

Ly

))
dy dx (A.2)

and

b̂(nx, ny) =
1

LxLy

∫ Lx

0

∫ Ly

0

B exp

(
−2πi

(
nxx

Lx
+
nyy

Ly

))
dy dx (A.3)

then the Plancherel’s theorem states that

∫ Lx

0

∫ Ly

0

AB dy dx = LxLy
∑
nx

∑
ny

â∗b̂ (A.4)
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Now, we apply the Plancherel’s theorem to the distributions of the wall shear stress and the

thermal wall patterns. Let us suppose τ̂w (nx, ny, t) and θ̂w (nx, ny, t) are the Fourier coefficients

of the wall shear stress τw(x, y, t) and the thermal wall patterns θw(x, y, t) respectively. Then

using the Plancherel’s theorem we write as,

∫ Lx

0

∫ Ly

0

θwτw dy dx = LxLy
∑
nx

∑
ny

θ̂∗wτ̂w (A.5)

Here, Lx, Ly are the length and width of the wall respectively. Since, the wall shear stress

and the thermal wall patterns are functions of space and time, both the spatial average and

average over wavenumber space will remain time dependent. Now taking the time average over

the equation A.5 and multiplying the factor 1/(LxLy) on both sides

θwτw =
1

T

∫ T

0

∑
nx

∑
ny

θ̂∗wτ̂w dy =

〈∑
nx

∑
ny

θ̂∗wτ̂w

〉
=
∑
nx

∑
ny

〈θ̂∗wτ̂w〉

That is,

θwτw =
∑
nx

∑
ny

〈θ̂∗wτ̂w〉 (A.6)

The left hand side of A.6 can be written as

θwτw =
(
θw + θ′w

)
(τw + τ ′w)

= θwτw + θwτ ′w + θ′wτw + θ′wτ
′
w

= θwτw + θwτ ′w + θ′wτw + θ′wτ
′
w

= θwτw + θ′wτ
′
w

That is,

θwτw = θwτw + θ′wτ
′
w (A.7)
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Next, we write the expression 〈θ̂∗wτ̂w〉 on the right side of the equation A.6 as,

〈θ̂∗wτ̂w〉 =
〈(
〈θ̂w〉∗ + θ̂′′∗w

)
(〈τ̂w〉+ τ̂ ′′w)

〉
=
〈
〈θ̂w〉∗〈τ̂w〉+ 〈θ̂w〉∗τ̂ ′′w + θ̂′′∗w 〈τ̂w〉+ θ̂′′∗w τ̂

′′
w

〉
=
〈
〈θ̂∗w〉〈τ̂w〉

〉
+
〈
〈θ̂∗w〉τ̂ ′′w

〉
+
〈
θ̂′′∗w 〈τ̂w〉

〉
+ 〈θ̂′′∗w τ̂ ′′w〉

= 〈θ̂∗w〉〈τ̂w〉+ 〈θ̂∗w〉〈τ̂ ′′w〉+ 〈θ̂′′∗w 〉〈τ̂w〉+ 〈θ̂′′∗w τ̂ ′′w〉

= 〈θ̂∗w〉〈τ̂w〉+ 〈θ̂′′∗w τ̂ ′′w〉

Then the right side of the equation A.6 can be written as,

∑
nx

∑
ny

〈θ̂∗wτ̂w〉 =
∑
nx

∑
ny

(
〈θ̂∗w〉〈τ̂w〉+ 〈θ̂′′∗w τ̂ ′′w〉

)

The first term in the right side includes temporal averages of the Fourier coefficients, which

vanish except for the pair (nx, ny) = (0, 0). Assuming the time period T is sufficiently large,

we can write

∑
nx

∑
ny

〈θ̂∗wτ̂w〉 = 〈θ̂∗w(0, 0)〉〈τ̂w(0, 0)〉+
∑
nx

∑
ny

〈θ̂′′∗w τ̂ ′′w〉 = θwτw +
∑
nx

∑
ny

〈θ̂′′∗w τ̂ ′′w〉 (A.8)

Now, we use the results in the equations A.7 and A.8 in the equation A.6, and cancelling the

common term θwτw from the both sides as

θ′wτ
′
w =

∑
nx

∑
ny

〈θ̂′′∗w τ̂ ′′w〉 (A.9)

Similarly, it can be shown that,

θ′2w =
∑
nx

∑
ny

〈θ̂′′∗w θ̂′′w〉, τ ′2w =
∑
nx

∑
ny

〈τ̂ ′′∗w τ̂ ′′w〉. (A.10a-b)
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