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A B S T R A C T

While Generative Adversarial Networks (GANs) can now reliably produce realistic images in a multitude of
imaging domains, they are ill-equipped to model thin, stochastic textures present in many large 3D fluorescent
microscopy (FM) images acquired in biological research. This is especially problematic in neuroscience where
the lack of ground truth data impedes the development of automated image analysis algorithms for neurons and
neural populations. We therefore propose an unpaired mesh-to-image translation methodology for generating
volumetric FM images of neurons from paired ground truths. We start by learning unique FM styles efficiently
through a Gramian-based discriminator. Then, we stylize 3D voxelized meshes of previously reconstructed
neurons by successively generating slices. As a result, we effectively create a synthetic microscope and can
acquire realistic FM images of neurons with control over the image content and imaging configurations. We
demonstrate the feasibility of our architecture and its superior performance compared to state-of-the-art image
translation architectures through a variety of texture-based metrics, unsupervised segmentation accuracy, and
an expert opinion test. In this study, we use 2 synthetic FM datasets and 2 newly acquired FM datasets of
retinal neurons.
1. Introduction

Fluorescent microscopy (FM) is an essential tool in neuroscience
due to its ability to image deep within fixed or live neural tissue with
high sensitivity and spatial resolution (Matsumoto, 2003; Svoboda and
Yasuda, 2006; Wilt et al., 2009). Image data collected through FM
can then be used to study neuron activity, network organization, or
tissue composition (Grienberger and Konnerth, 2012; Livet et al., 2007;
Peterka et al., 2011; Rhodes and Trimmer, 2006). However, extracting
the relevant information from these images to test scientific hypotheses
remains challenging as images are large and plentiful. Efforts in the
neuroscience community have been made to streamline image analysis
using a mixture of crowd sourcing large FM datasets (Brown et al.,
2011; Peng et al., 2015; Berens et al., 2017), automated neural tracing
solutions (Xiao and Peng, 2013; Wu et al., 2014; Feng et al., 2015;
Yang et al., 2019; Li et al., 2017; Zhou et al., 2018; Apthorpe et al.,
2016; Zhao et al., 2020; Chen et al., 2021; Li et al., 2017), and
synthetic training datasets (Shariff et al., 2010; Svoboda and Ulman,
2016; Sorokin et al., 2018; Li and Shen, 2019).

While some approaches have met success, they are limited in their
ability to impact the general neuroscience community. For one, public
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FM datasets do not contain the full variety of image characteristics con-
ferred by different biological samples, experimental configurations, and
optical calibrations. Moreover, off-the-shelf neural tracing algorithms
focus on local connectivity patterns to provide generalizable tracing
solutions at the expense of accuracy as global neuron morphology
for a specific cell type is ignored (Acciai et al., 2016). Additional
data representative of the task at hand is still required for optimal
fine-tuning. Collecting FM images of sufficient quality and clarity to
serve as ground truths is typically impractical and, when exposure to
excitation light must be limited for various experimental reasons, often
impossible. Synthetic datasets can be generated as an alternative, but
techniques are unable to model both realistic local textures and global
morphological noise.

We show in this paper that we overcome these challenges by
learning local and global FM imaging characteristics directly from
few unlabeled images acquired from an experiment and then styliz-
ing meshes of previously reconstructed neurons (Fig. 1). This way,
large numbers of representative training data can be generated with
‘‘gold standard’’ ground truths. Unlike other microscopy image gener-
ators (Baniukiewicz et al., 2019), our unpaired mesh-to-image trans-
lation paradigm eliminates the need for any manual annotation as
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Fig. 1. An overview of our proposed pipeline and a visual comparison of generated synthetic fluorescent microscopy (FM) patches. We start with a neural mesh which can be
sourced from publicly available neural population reconstructions of Electron Microscopy (EM) blocks. Meshes are then voxelized and inputted into our generator. Using real FM
stacks as a style reference, the generator then learns to stylize the content of the voxelized mesh to produce realistic synthetic FM images of neurons. Note that our generated
patch more realistically models background noise and stochastic texture along the neuron’s dendrites compared to a standard unpaired image translation architecture (CycleGAN)
and a state-of-the-art image translation architecture (SPADE). Meshes in this figure were provided by Helmstaedter et al. (2013).
neural meshes can be sourced from rapidly growing, publicly available
datasets despite not having corresponding FM images (Helmstaedter
et al., 2013). Neural meshes provide the added benefit of representing
the volume of neurons through nodes and edges which can be easily
manipulated to substantially increase the variety of synthetic images
produced. Furthermore, we explicitly model FM images at differing
laser powers and frame averaging, mimicking the parameter space
encountered during actual FM experiments. Our model, as a result,
effectively operates as a synthetic microscope able to acquire realis-
tic FM images of neurons with various structured noise and optical
configurations (Fig. 1).

In this paper, we propose an unpaired mesh-to-image translation
methodology which is shown to reliably and accurately model realistic
FM images of neurons. Primary contributions of this work are:

• An unpaired training methodology for generating large synthetic
3D fluorescent images of neurons by successively stylizing 2D
slices of voxelized meshes of neurons with 3D context.

• The introduction of a discriminator with trainable Gram matrix
operations to learn stochastic textures at multiple scales.

• An experimental evaluation of our methodology on 2 synthetic
and 2 real FM image datasets of neurons, demonstrating our ar-
chitecture’s superior performance to state-of-the-art image trans-
lation architectures.

• All code and our newly acquired 3D FM image datasets are
publicly available.

2. Related works

An established approach for generating synthetic FM images of
biological content is to use manually-designed shapes, features, and
noise distributions (Shariff et al., 2010; Svoboda and Ulman, 2016;
Sorokin et al., 2018). For FM images of neurons, neural skeletons are
typically convolved with manually-designed point spread functions and
varying levels of Poisson noise is injected into the 3D stack (Vasilkoski
and Stepanyants, 2009; Radojević and Meijering, 2019). Sümbül et al.
modify this approach by using volumetric electron microscopy (EM)
reconstructions of neurons to model incongruities along a neuron’s
dendrites (Sümbül et al., 2016). Determining the optimal feature set to
model FM imaging statistics, however, is not straight forward. While
the optical parameters used to acquire images are recorded during
experimentation, there are always differences between theoretical and
experimental optical imaging statistics due to mirror or lens misalign-
ment, accumulation of impurities, and varying light refraction of im-
aged samples (Chernyavskiy et al., 2010; Ghosh and Preza, 2015).
2

Estimating these statistics experimentally is also problematic as it
requires additional equipment and is highly susceptible to noise (Panka-
jakshan et al., 2009). Even in the ideal case of being able to accurately
model local statistics, more sophisticated techniques are needed to
generate structured noise in FM images often seen in the form of
auto-fluorescence of nearby cells or unwanted labeled morphologies.
Instead, GANs (Goodfellow et al., 2014) can be used to learn both
the imaging properties and structured noise and therefore generate
fluorescent images. This is accomplished by having a discriminator 𝐷
that learns to discern real from fake images and a generator 𝐺 that
attempts to generate fake images that fool 𝐷.

Deep convolutional GANs have generated a variety of medical and
biological images (Hong et al., 2021; Osokin et al., 2017; Goldsborough
et al., 2017), but continue to falter when generating images that vary
considerably at local and global scales (Bellemo et al., 2018; Beers
et al., 2018). Generating 3D images of neurons is particularly chal-
lenging as neurons have intricate geometric patterns spanning large 3D
volumes and cannot be spatially compressed without losing substantial
semantic information (see Figs. 1 and 2). One way to capture informa-
tion at different scales is to implement a multi-objective discrimination
task (Durugkar et al., 2016; Wang et al., 2018; Mok and Chung, 2018;
Neyshabur et al., 2017). Another useful technique to more easily learn
global semantics is to condition GANs on an abstract representation of
the object trying to be generated, denoted as 𝑥 (Isola et al., 2017).
In the case of biological images, 𝑥 is typically a binarized image of
the biological content or corresponding ground truths (Baniukiewicz
et al., 2019; Liimatainen et al., 2019; Ren et al., 2019; Bailo et al.,
2019; Han et al., 2018; Shin et al., 2018; Kraus et al., 2016; Costa
et al., 2017). However, this image-to-image translation paradigm is
typically limited to only paired image datasets as both the generator
𝐺 and discriminator 𝐷 are conditioned on 𝑥 to aid convergence during
training (Isola et al., 2017). Unpaired image-to-image translation al-
gorithms, namely cycleGANs, have been proposed, but require several
additional architectures to ensure correspondence between 𝑥 and gen-
erated images and are therefore excessively computationally intensive
for large 3D images (Zhu et al., 2017; Yang et al., 2018). We differ from
these methods by only incorporating a shallow segmentation network
and segmentation loss during training to ensure that generated images
preserve the content of 𝑥 in an unpaired manner.

Style transfer, which looks to stylize the content of an image with
local image statistics similar to that of another image, has also been
instrumental in generating synthetic biomedical images (Armanious
et al., 2018; Izadyyazdanabadi et al., 2019; Cho et al., 2017; Hollandi
et al., 2020). Current approaches of style transfer, however, typically
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Fig. 2. Overview of our mesh and FM patch sampling protocol for three datasets
(columns). We first overlay a real stack (shown as the maximum z-projection in gray)
with a voxelized mesh of a previously reconstructed neuron (shown in green) so that
features are spatially correlated. Patches are then sampled from the same spatial regions
in the real and voxelized mesh domains, ensuring that sampled patches contain similar
features. Datasets include a synthetic 2D Bipolar Cell dataset (2DSyn_BC), a synthetic 3D
Ganglion Cell dataset (3DSyn_GC), and a newly acquired 3D FM Amacrine Cell dataset
(3DFM_AC). Note: the fourth 3D FM Bipolar Cell Population dataset (3DFM_BCPop)
seen in Fig. B.11 was excluded from this figure as binarized semantic maps were used
as the input into our generator instead of meshes in order to directly compare unpaired
and paired training regiments.

use a pre-trained VGGNet which limits the range of possible style
representations to be learned (Gatys et al., 2016; Johnson et al., 2016;
Wang et al., 2018; Park et al., 2019). For one, VGGNet only looks at
2D images and does not encode any 3D styles. Secondly, VGGNet was
trained on natural images and therefore introduces a bias toward cer-
tain styles seen in nature. Instead of a pre-trained network, we propose
integrating Gram matrix operations directly into a discriminator so that
styles are optimized for the domain at hand.

3. Methods

3.1. Sampling the voxelized mesh

We start with a mesh of a previously reconstructed neuron that we
wish to represent as an FM stack. This mesh is then voxelized to create
a binarized 3D matrix 𝑀 ∈ 𝑅𝐻×𝐿×𝑊 where H, L, and W are the height,
length and width of the voxelized mesh. The voxel size, or pitch, used to
voxelize the mesh is determined by the resolution of the acquired real
FM stacks, ensuring that the geometries and 3D scales of the neurons
are consistent across voxel and real domains.

Patches are sampled from matrix 𝑀 to further reduce GPU memory
consumption. We found that randomly sampling patches independently
from both FM image and voxelized mesh domains led to significantly
worse results as it was not guaranteed that the same features were sam-
pled across domains for a given batch. For example, somas from real FM
stacks could be over-sampled in a batch causing a generator to attempt
3

to artificially create soma-like features. This effect is exacerbated when
small batch sizes are used. To help stabilize the learning procedure, we
instead randomly sample the same spatial regions across domains by
overlaying the neuron in 𝑀 with the neuron in the real stack as shown
in Fig. 2.

3.2. Slice-to-slice translation

FM stacks contain consecutive 2D slices of a specimen at differing
focal planes. The distance between each focal plane is constant, but
the number of slices acquired in each stack varies depending on the
dimensions of the imaged region.

We mimic this acquisition process by generating 2D slices of neu-
rons that then compose an entire 3D image stack. As a result, our
generator 𝐺 is comprised of only 2D convolutions instead of 3D convo-
lutions, taking advantage of the redundancy of information across the
𝑧-axis and considerably reducing the number of parameters needing to
be trained. This memory efficient architecture also helps prevent mode
collapse and preserves thin structures seen in FM images which are
often missed by 3D convolutions. Numerous factors additionally affect
the quality of the acquired slice, but for the sake of simplicity we focus
on 3 variables: laser power 𝑝, frames averaged 𝑓 , and z-depth of the
focal plane 𝑧.

As a starting point for our architecture, we decided to use the SPADE
as it provides state-of-the-art performance on image translation tasks
conditioned on semantic maps and is optimally suited to texturize the
uniform empty space seen in our voxelized meshes (Park et al., 2019).
We then condition 𝐺 on both the 2D slice 𝑚𝑖 of our voxelized mesh and
the set 𝑠𝑖 of styles {𝑝, 𝑓 , 𝑧𝑖}, such that 𝐺 at slice 𝑖 takes on the mapping
𝐺𝑖 ∶ 𝑚𝑖, 𝑠𝑖 → 𝑦𝑖. By successively generating 𝑦𝑖, we are able to then
generate a synthetic volume 𝑌 . Patterns that appear in 𝑦𝑖, however, may
depend on the presence of the neuron in neighboring slices. To provide
more context to our generator, we add 𝑛𝐺 slices spaced at intervals 𝛥𝐺𝑧
above and below 𝑚𝑖 as extra input channels. These additional slices
also condition 𝐺 so that 3D styles can be modeled while still using
2D convolutions. Various types of noise are added to the generator as
discussed below. The generator learns the mapping 𝐺𝑖 ∶ {𝑥𝑖, 𝑠𝑖, 𝜁 , 𝜁𝑖} →

𝑦𝑖, where 𝑥𝑖 = 𝑚𝑖,𝑖±𝛥𝐺𝑧 ,…,𝑖±𝑛𝑝×𝛥𝐺𝑧 and where 𝜁 and 𝜁𝑖 represent injected
stack and slice noise respectively. For simplicity, let 𝐺(𝑀,𝑆, 𝜁 ) also
designate 𝑌 .

Furthermore, two discriminators are used to encode 3D FM image
statistics. One is a fully convolutional discriminator (𝐷𝑐𝑜𝑛𝑣) and the
other is a Gramian-based discriminator outlined below (𝐷𝑔𝑟𝑎𝑚). Both
discriminators are presented a downsampled 3D volume with 𝑛𝐷 slices
sampled at intervals of 𝛥𝐷𝑧. The discriminator losses 𝐷𝑐𝑜𝑛𝑣 and 𝐷𝑔𝑟𝑎𝑚
are then computed through a Hinge loss as outlined in Lim and Ye
(2017).

Since our algorithm is intended to be used on unpaired image
datasets, steps must be taken to ensure that the semantic content of 𝑀
is preserved. We therefore utilized a segmentation loss 𝑠𝑒𝑔 by training
a subsequent network 𝑆 to reconstruct 𝑀 from 𝑌 . As a way to preserve
memory, 𝑆 is a 2D CNN. A summary of our methodology can be found
in Fig. 3.

3.3. Spatial standard deviation layer

Learning the image characteristics of FM stacks is a complex task as
local features are stochastic, but greatly depend on global context. Con-
volutions alone are ill-suited for this task as they have a limited field of
view and typically reduce high-frequency information after every layer.
We address this concern by first introducing a 𝚂𝚙𝚊𝚝𝚒𝚊𝚕_𝚜𝚝𝚍𝚍𝚎𝚟 layer
before the second to last layer in 𝐷𝑐𝑜𝑛𝑣. This layer, which is a derivative
of Minibatch_stddev as outlined in Karras et al. (2017), computes
the average standard deviation of activations across all spatial locations
for each feature map, replicates the values, and concatenates those
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Fig. 3. An overview of our architecture. A 2D slice 𝑚𝑖 from a 3D voxelized mesh 𝐌 is input to a generator 𝐺 along with noise and neighboring slices above and 𝑚𝑖. By using 𝐺
to map 𝑚𝑖 → 𝑦𝑖 for all slices in 𝐌, we generate a synthetic 3D image 𝐘. The discriminator 𝐷 then samples slices from 𝐘 and real 3D image�̂� (denoted by 𝐘′ and �̂�′ respectively).
A Gram matrix operation is additionally added to 𝐷𝑔𝑟𝑎𝑚 for style encoding. The generator loss is then computed as the summation of the GAN loss (𝐺𝐴𝑁 ), the 𝐷𝑐𝑜𝑛𝑣 style loss
(𝐷𝑐𝑜𝑛𝑣

𝑠𝑡𝑦𝑙𝑒 ), the 𝐷𝑔𝑟𝑎𝑚 style loss (𝐷𝑔𝑟𝑎𝑚

𝑠𝑡𝑦𝑙𝑒 ), and segmentation loss (𝑠𝑒𝑔).
values with the original feature maps. For the 2D case, the output of
this layer can be summarized by a tuple with elements:

𝚜𝚙𝚊𝚝𝚒𝚊𝚕,𝚌
𝑙,𝑤 =

(

 𝑐
𝑙,𝑤,

√

1
𝐿 ∗ 𝑊

∑

𝑙∈𝐿,𝑤∈𝑊
( 𝑐
𝑙,𝑤 − 

𝑐
𝐿,𝑊 )2 + 𝜖

)

(1)

such that 𝚜𝚙𝚊𝚝𝚒𝚊𝚕,𝚌 ∈ 𝑅2𝑥𝐿𝑥𝑊 , the 𝑐th feature map  𝑐 ∈ 𝑅1𝑥𝐿𝑥𝑊 , (⋅, ⋅)
denotes the concatenation of feature maps, 𝜖 is 10−6, and L and W are
the length and width of the feature map respectively.

This layer serves two primary purposes. Firstly, the variance of each
feature map allows 𝐷𝑐𝑜𝑛𝑣 to encode textures while maintaining spatial
information. Secondly, computing the variance ensures that generated
structures are spatially variable, helping prevent mode collapse.

3.4. Noise and acquisition layer

Noise is a defining property of biological images and needs to
be explicitly modeled in generator 𝐺. For structured noise spanning
multiple slices, Gaussian noise is added as an extra feature channel at
varying spatial scales and kept constant for each slice of a 3D image.

Similar to noise robust GANs (Kaneko and Harada, 2020; Bora et al.,
2018), we also introduce an acquisition layer as the output layer
of 𝐺 in order to inject voxel noise directly into each generated slice.
However, our acquisition layer takes extra steps to more similarly
mimic image acquisition in fluorescent microscopes. More specifically,
the acquisition layer receives the voxel offset value 𝜇𝑐 ∈ 𝑅𝐿×𝑊 ,
a set of 𝑛 feature maps 𝜁𝑐 ∈ 𝑅𝑛×𝐿×𝑊 containing the probability
distribution parameters for 𝑃 (𝑥) where 𝑥 ∈ 𝑅𝐿×𝑊 , a channel offset
scalar 𝛽𝑐 , and the number of frames averaged 𝐹 . We then sample
𝑐 ∼ 𝑃 (𝑥) 𝐹 times such that 𝑐 ∈ 𝑅𝐹×𝐿×𝑊 and obtain the acquired
image by:

𝚊𝚌𝚚,𝚌 = 1
𝐹

𝐹
∑

𝑓=1
𝑐𝑙𝑖𝑝(𝜇𝑐 + 𝑐

𝑓 + 𝛽, 0, 1) (2)

where 𝑐𝑙𝑖𝑝(⋅, 0, 1) denotes the voxel-wise clipping of values between 0
and 1. To model Gaussian noise, we simply set 𝜁𝑐 ∈ 𝑅1×𝐿×𝑊 , which we
denote as 𝜎𝑐 , and sample voxel noise 𝑐 ∼ 𝜎𝑐 (0, 1)𝐹×𝐿×𝑊 .

However, non-Gaussian distributions are required to model real FM
noise. We therefore decided to explicitly model a Fréchet probability
function due to its flexibility in producing a wide range of tailed dis-
tributions. This is accomplished by having 𝜁 denote the set of feature
4

𝑐

Table 1
Architecture details for our Gramian-based discriminator.

Discriminator Norm. Act. Output shape

Input image – – 1 × 4 × 128 × 128
Conv3 × 3 × 3 Instance ReLU 32 × 4 × 128 × 128
Conv4 × 4 × 4 Batch ReLU 32 × 4 × 128 × 128

Conv3 × 3 × 3 Batch ReLU 64 × 4 × 64 × 64
Conv4 × 4 × 4 Batch ReLU 64 × 4 × 64 × 64
Gram – – 1 × 2112
Dense Batch ReLU 1 × 1056
Dense – – 1 × 1

maps {𝛼𝑐 , 𝑠𝑐} where 𝛼𝑐 is the inverse of the Fréchet shape parameter
and 𝑠𝑐 the Fréchet scale parameter. We then sample voxel noise such
that 𝑐 ∼ 𝑠𝑐 (−1 log 𝑢)𝛼𝑐 where 𝑢 ∼ 𝑈 (0, 1)𝐹×𝐿×𝑊 .

The implementation of our acquisition layer additionally allows us
to have control over the final image output. Not only do we have the
spatially dependent noise characteristics which can be used to artifi-
cially dampen or amplify noise, but we can also estimate a denoised
version of the image as:

̂𝚊𝚌𝚚,𝚌 = 𝑐𝑙𝑖𝑝
(

𝜇𝑐 + 𝛽 +
( 1
𝛼𝑐 + 1

)𝛼𝑐
, 0, 1

)

(3)

3.5. Gramian-based discriminator

Let us consider 𝐷𝑔𝑟𝑎𝑚
𝐽 (𝑦, 𝑠) to be the feature maps of the 𝐽 th layer

of 𝐷𝑔𝑟𝑎𝑚 when processing input 𝑦 with style encoding 𝑠. Although our
methodology can be naturally extended to 3D images, for simplicity we
assume 𝑦 to be a 2D image and 𝐷𝑔𝑟𝑎𝑚

𝐽 (𝑦, 𝑠) to be of shape 𝐶𝐽 ×𝐿𝐽 ×𝑊𝐽
where C is the number of output channels. The Gram matrix 𝜙𝐷

𝐽𝐽
(𝑦, 𝑠)

is then defined by a 𝐶𝐽 × 𝐶𝐽 symmetric matrix with elements:

𝜙𝐷𝐽 (𝑦)𝑐,𝑐′ =
1

𝐶𝐽𝐿𝐽𝑊𝐽

𝐿
∑

𝑙=1

𝑊
∑

𝑤=1
𝐷𝑔𝑟𝑎𝑚
𝐽 (𝑦, 𝑠)𝑙,𝑤,𝑐𝐷

𝑔𝑟𝑎𝑚
𝐽 (𝑦, 𝑠)𝑙,𝑤,𝑐′ (4)

The information contained in 𝜙𝐷𝐽 (𝑦, 𝑠) is further reduced to a (1 +
𝐶𝑗 )𝐶𝑗∕2 vector 𝜓𝐷𝐽 (𝑦, 𝑠) by flattening the lower triangle of the ma-
trix. Meaningful style representations can now be learned by feeding
𝜓𝐷𝐽 (𝑦, 𝑠) through a fully-connected network trained with an adversarial
loss. Therefore, 𝐷𝑔𝑟𝑎𝑚 is summarized by initial convolutional layers,
computation of 𝜓𝐷(𝑦, 𝑠), and final fully-connected layers.
𝐽
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Now that we have a network learning to encode styles relevant to
the task at hand, we compute the style loss at various layers throughout
the network:

𝐷,𝑗𝑠𝑡𝑦𝑙𝑒(�̂�, 𝑦, 𝑠) =
𝐽
∑

𝑗=1
E�̂�,𝑦‖(𝜙𝐷𝑗 (�̂�, 𝑠) − 𝜙

𝐷
𝑗 (𝑦, 𝑠))‖1 (5)

3.6. Objective

After combining all the loss terms, we obtain the following multi-
objective equation:

𝐺∗ = argmin
𝐺

max
𝐷

𝜆𝑠𝑒𝑔𝑠𝑒𝑔(𝐺) +
𝐾
∑

𝑘=1
𝐺𝐴𝑁 (𝐺,𝐷𝑘

𝑐𝑜𝑛𝑣) +

𝜆𝐷𝑐𝑜𝑛𝑣𝑠𝑡𝑦𝑙𝑒

∑

𝑗∈𝐽
𝐷𝑐𝑜𝑛𝑣 ,𝑗𝑠𝑡𝑦𝑙𝑒 (𝐺) + 𝜆

𝐷𝑔𝑟𝑎𝑚
𝑠𝑡𝑦𝑙𝑒

∑

𝑗∈𝐽
𝐷𝑔𝑟𝑎𝑚 ,𝑗𝑠𝑡𝑦𝑙𝑒 (𝐺) (6)

where 𝜆𝑠𝑒𝑔 is the weight for the segmentation loss, 𝜆𝐷𝑐𝑜𝑛𝑣𝑠𝑡𝑦𝑙𝑒 and 𝜆
𝐷𝑔𝑟𝑎𝑚
𝑠𝑡𝑦𝑙𝑒

are the weights for the style loss computed from 𝐷𝑐𝑜𝑛𝑣 and 𝐷𝑔𝑟𝑎𝑚
respectively, and 𝐾 is the number of 𝐷𝑐𝑜𝑛𝑣s used to compute the
multi-scale GAN loss.

4. Datasets

4.1. Synthetic 2D Bipolar Cells (2DSyn_BC)

The first dataset modeled is a synthetic 2D FM dataset of Type 5i
bipolar cells (2DSyn_BC). A total of 41 meshes of previously recon-
structed EM data provided by Helmstaedter et al. (2013) were used to
create this synthetic dataset. Synthetic images were constructed by first
flattening a randomly sampled mesh along the 𝑍-axis and voxelizing
the mesh with a pitch of 200. Voxels were then convolved with a
Gaussian filter (𝜎𝑥 = 𝜎𝑦 = 1.5) and all non-zero voxels were set
to 0.4. As a source of structured noise, we randomly inserted 2 × 2
squares to the image background. Frames were then multiplied by
a randomly chosen scalar from the set {0.15, 0.30, 0.45} to mimic the
varying laser powers. Additive Gaussian noise was injected by sampling
𝑥 ∼  (0, 0.8

√

(𝐼)∕𝑓 ) where 𝑥 is the output voxel, I is the mean intensity
of the voxel value, and 𝑓 is the number of frames to be averaged
which was randomly chosen from the set {1, 2, 4}. To create a second
unpaired voxel dataset, the same 41 meshes were flattened and then
flipped along the 𝑥-axis ensuring that there was no one-to-one mapping
of geometries as shown in 2. 128 × 128 patches were continuously
sampled during training.

4.2. Synthetic 3D Ganglion Cells (3DSyn_GC)

To see how well our algorithm extends to 3D FM stacks, we ad-
ditionally created a synthetic 3D dataset of F-mini Retinal Ganglion
Cells (3DSyn_GC). A total of 25 meshes along with their relative spatial
locations were provided by Helmstaedter et al. (2013). All meshes were
voxelized with a pitch of 1000 with their relative spatial locations
preserved. Each mesh was convolved with a Gaussian filter (𝜎𝑧 =
1.0, 𝜎𝑥 = 𝜎𝑦 = 1.5) and the background was set to 0.1. All individual
neurons were combined into one image, recreating the neural popu-
lation. An individual neuron was then identified and amplified (×1.5)
so that it was brighter than the background neural population. Images
were multiplied by a scalar value randomly sampled from {0.4, 0.6}.
Additive Gaussian noise was again injected into the image by sampling
𝑥 ∼  (0, 0.25

√

(𝐼)∕𝑓 ) with the number of frames chosen from the set
{1, 2}. The unpaired second voxel dataset was created by flipping all
neurons along the 𝑥-axis again as shown in Fig. 2. 4 × 128 × 128
patches were additionally sampled during training.
5

Fig. 4. (a) Real and (b) generated 64 × 64 patches (inverted for visual effect) sampled
from the 3DFM_AC dataset at varying laser powers and frame averaging (labeled L
and F respectively in red). For visual purposes, only a subset of styles are portrayed.
A complete panel of real and generated patches of varying styles can be found in
Fig. B.12.

4.3. FM 3D Amacrine Cells (3DFM_AC)

A novel dataset of FM stacks (3DFM_AC) was acquired of individual
EGFP-expressing Starburst Amacrine Cells (SACs) (Fig. B.10). A total
of 22 SACs were imaged at 5 varying laser powers (0.81 μW, 1.85
μW, 3.84 μW, 7.71 μW, 15.70 μW) 8 times as shown Figs. 4 and B.12.
The xy-resolution and z-resolution of the images acquired were 0.621
um and 0.100 um respectively. More details regarding the protocol
to acquire this dataset can be found in Appendix A. To condition the
GAN, 19 SAC meshes were voxelized with a pitch of 645 provided
by Helmstaedter et al. (2013). Patches of 4 × 128 × 128 were sampled
after the meshes were overlaid with real stack for training as shown in
Fig. 2. Our entire dataset can be directly accessed from https://data.
mendeley.com/datasets/f6kk4364p4.

4.4. FM 3D Bipolar Cell Population (3DFM_BCPop)

An additional novel dataset of 2 FM stacks (3DFM_BCPop) was
acquired of GFP-expressing Bipolar Type 2 Cell populations from their
somas to their axon terminals (Fig. B.11). Regions of 318.2 um × 318.2
um were imaged with an xy-resolution of 0.155 um and a z-resolution

https://data.mendeley.com/datasets/f6kk4364p4
https://data.mendeley.com/datasets/f6kk4364p4
https://data.mendeley.com/datasets/f6kk4364p4
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of 0.100 um, resulting in stacks having an xy-cross section of
2048 × 2048 pixels. Both stacks were collected by averaging 8 frames
acquired with a laser power of 15.70 μW. Instead of voxelized meshes,
binarized semantic maps were created using two 3D Frangi filters, one
for the somatic layer (𝛼 = 0.01, 𝛽 = 10, 𝜎𝑦 = 15) and one for the
axon terminal layer (𝛼 = 0.01, 𝛽 = 10, 𝜎𝑦 = 8). This was done so that
we could directly compare results between paired and unpaired image
translation training regiments. When training was with unpaired data,
patches of 4 × 18 × 128 at the same retinal depth were randomly
sampled from both the FM stack and the binarized semantic map
such that there was no correspondence between the two. Our entire
dataset can also be directly accessed from link listed in the previous
sub-section.

5. Implementation

Some minor adjustments to SPADE’s generator were required to
train on our data. For one, the network was made smaller by elim-
inating one of the upsampling layers and a base of 16 filters were
used rather than 128. Additionally, 𝑚𝑖 was concatenated to the second
to last feature map of 𝐺 to ensure that the thin processes present in
𝑚𝑖 were not lost. We found that batch normalization was helpful to
generate realistic background structured noise, while pixel normaliza-
tion was better suited to learn pixel noise distribution. As a result, a
combined approach was used with batch normalization implemented
in the first 3 layers and pixel normalization thereafter. The final layer
was our acquisition layer. Gaussian noise was explicitly modeled
for our synthetic datasets and Fréchet noise for our real FM dataset.
More over, 2, 3, and 4 neighboring slices of the voxelized mesh were
concatenated with 𝑚𝑖 and input to the generator for the 3DSyn_GC,
3DFM_AC, and 3DFM_BCPop datasets respectively. Finally, when train-
ing on 3DFM_BCpop, our generator had an additional upsampling layer
which was required to model some of the larger objects present in the
images.

The multi-scale discriminators were also closely modeled after
SPADE. The base filters were again downsized from 128 to 32 to shrink
the network. Instance normalization was implemented at the first layer
to ensure that each feature maps were normalized across all styles. Our
𝚂𝚙𝚊𝚝𝚒𝚊𝚕_𝚜𝚝𝚍𝚍𝚎𝚟 layer was also incorporated in the second to last layer
of 𝐷𝑐𝑜𝑛𝑣.

An additional 2D U-Net was used as our segmentation network. The
segmentation network used instance normalization for the first layer
and the remaining layers were batch normalization layers. The U-Net
only had one downsampling layer to minimize the networks size. A
categorical cross-entropy loss was used along with ADAM optimization
(𝛽1 = 0.9, 𝛽2 = 0.999) with a learning rate of 0.01.

Finally, our 𝐷𝑔𝑟𝑎𝑚 consisted of a shallow 4 layer CNN, a Gram
matrix operation, and 2 fully-connected layers. The topology for the
3D network is shown in Table 1.

Training of 𝐺 occurred over 200 epochs with an additional 100
epochs of linearly decaying step size. All additional training details are
outlined in Park et al. (2019). All code and implementation details can
be accessed at https://github.com/MihaelCudic/BioSPADE.git.

6. Evaluation

Quantitatively determining the realism of images produced by our
architecture is challenging as conventional metrics like inception score
are not suited for the FM domain. It is even more challenging to
evaluate performance when using real unpaired data.

To provide meaningful metrics, we thus evaluated on 3 main cri-
teria: content, local texture, and noise distribution. While all training
was posed as an unpaired image translation task, 200 128 × 128
paired patches and 100 4 × 128 × 128 paired patches were synthesized
for testing on 2DSyn_BC and 3DSyn_GC datasets respectively so that
6

generated synthetic images and real synthetic images were conditioned r
on the same voxelized mesh. This allows us to directly evaluate gener-
ated and real image similarity. For our 3DFM_AC dataset, evaluation
was done on 104 4 × 128 × 128 unpaired patches as no paired
atches exist. Patch sizes and the remaining sampling protocols were
onserved between training and testing to ensure the same sampling
f features and prevent metrics biasing toward the null space of FM
mages containing individual neurons. Unlike the other three datasets
hat contained individual neurons, our 3DFM_BCpop dataset was of a
eural population and therefore contained significantly less null space.
esting on this dataset was done over 8 36 × 512 × 512 randomly
ampled patches with paired semantic maps as input to determine our
rchitecture’s ability to generate images larger than training patches.
atches were used instead of the entire 38 × 2048 × 2048 stack due to
emory constraints.

To quantify the content realism of our synthetic datasets, we first
veraged 25 instantiations for both real and corresponding generated
mages to reduce pixel noise. The Normalized Mean Squared Error
NMSE) was then calculated between the averaged real and gener-
ted images across the neuron body. Because stacks in the 3D_BCPop
ataset were acquired once, the NMSE was computed between real
nd corresponding generated images for a only single instantiation
hen evaluating content realism on 3D_BCPop data. However, the same
irect comparison of image content could not be done when evaluating
erformance on the unpaired 3D_AC dataset as there was no corre-
pondence between meshes and FM images. We therefore computed the
MSE of the auto-correlation matrix with size 3 × 11 × 11 of both real
nd generated images as a way to estimate if the correct point spread
unction was learned.

Standard texture similarity metrics were used to determine the local
exture realism. The MSE of the Gray Level Co-Occurrence Matrix
GLCM) and the John Shannon Divergence (JSD) of the Local Binary
atterns (LBP) were used on 2D slices (Haralick et al., 1973; Ojala
t al., 2002). For the 3D case, we computed MSE of the multi-sort Co-
ccurrence Matrix (COOC) (Kovalev et al., 2001). Because these metrics
re sensitive to voxel noise distributions, a Gaussian filter was used to
lur the image prior to the calculation of these metrics.

The realism of the noise was additionally computed by taking the
SE of the Peak Signal-to-Noise Ratio (PSNR) and the JSD of the voxel

ntensity values for both real and generated images. The MSE of the
SNR was not calculated for the real FM datasets as the theoretical
enoised image does not exist.

For our real FM datasets, we also estimated the utility of gener-
ted images by computing the Intersection of Union (IoU) score from
redicted segmentations of never-before-seen images. Specifically, we
rained an additional network only on generated images to perform
egmentation for each FM style. The segmentation network was a U-Net
ith 3 downsampling layers. Instance normalization was used at the

irst layer to ensure images with less signal could be segmented. The
egmentation network was trained 3 separate times and the average
oU score was reported. For the 3D_FM dataset, ground truths for the
eal data were acquired using the Frangi filter on the highest quality
M stack and a total of 4 never-before-seen stacks were used for
esting. Likewise, a never-before-seen stack was used for testing on the
D_BCPop dataset.

Finally, we evaluated selected algorithms trained on the 3DFM_AC
ataset through a blind ranking test with 6 expert microscopists work-
ng in neuroscience at the National Institute of Neurological Disorders
nd Stroke. More specifically, each expert was given 15 sets of ran-
omly sampled 6 × 128 × 128 patches containing a real patch and 4
enerated patches from every selected algorithm. The real patch served
s a reference style and expert microscopists were tasked to rank the
enerated images in the set by their realness (1 being most real and
being least real). No ties were allowed in the ranking. Experts were

sked to focus on the point spread function, the change in intensity
long the dendrites, and the background noise. The average rank was

eported for the expert opinion.

https://github.com/MihaelCudic/BioSPADE.git
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Table 2
A quantitative ablation study of our proposed unpaired mesh-to-image translation architecture starting from a baseline architecture (SPADE) for three datasets. CycleGAN was additionally used as a baseline
comparison. Various style losses (column 𝑠𝑡𝑦𝑙𝑒) were additionally tested to isolate their impact on training. Metrics used to evaluate our architectures include content metrics (NMSE and 𝑁𝑀𝑆𝐸𝑎𝑢𝑡𝑜), local texture
metrics (LBP, GLCM, and COOC), noise distribution metrics (PSNR and JSD), a utility metric (IoU), and an expert opinion test (Avg. Rank). More details about individual metrics can be found in the Evaluation
section. Darker green and darker red signify better and worse performing architectures for a given metric and the best performing architecture was bold. ‘div*’ designates when an algorithm diverged and 𝑉 𝐺𝐺𝑝𝑒𝑟𝑐𝑒𝑝**
designates the perceptual loss used in Park et al. (2019) and defined in Johnson et al. (2016).

ID Training Config. 𝑠𝑡𝑦𝑙𝑒 2DSyn_BC 3DSyn_GC 3DFM_AC
NMSE LBP GLCM PSNR JSD NMSE LBP GLCM COOC PSNR JSD NMSE𝑎𝑢𝑡𝑜 LBP GLCM COOC JSD IoU Avg. Rank
×101 × 103 × 108 × 100 × 102 × 101 × 103 × 108 × 108 × 100 × 102 × 10−1 × 103 × 108 × 108 × 102 × 100

𝙲𝚢𝚌𝚕𝚎𝙶𝙰𝙽 4.691 9.119 4.115 16 735.152 12.709 8.047 96.143 17.062 9.884 13 841.816 3.536 49.685 45.440 30.005 19.533 11.577 0.142∓0.201
𝚂𝙿𝙰𝙳𝙴 0.872 0.861 0.371 0.688 1.057 2.978 0.407 3.618 0.927 118.636 4.157 17 519 510.059 2.707 14.172 2.028 1.967 52.242∓3.278 2.880
A 𝚂𝙿𝙰𝙳𝙴 + 𝚜𝚎𝚐 0.955 1.098 0.739 0.895 1.511 1.892 0.381 1.521 0.593 147.718 3.930 33 988.546 1.637 16.445 2.108 2.359 58.973∓0.118
B A+𝙸𝚗𝚜𝚝𝚊𝚗𝚌𝚎_𝙽𝚘𝚛𝚖 0.434 0.410 0.108 0.083 0.137 2.058 0.708 4.467 0.871 200.654 3.187 1.854 1.494 5.576 0.903 0.823 64.480∓1.38 2.867
C B+𝚂𝚙𝚊𝚝𝚒𝚊𝚕_𝚜𝚝𝚍𝚍𝚎𝚟 0.930 0.300 0.078 0.191 0.095 1.934 0.833 2.350 0.857 816.951 4.539 4.721 1.209 6.631 2.269 0.876 70.121∓2.618
D C+𝙰𝚌𝚚𝚞𝚒𝚜𝚒𝚝𝚒𝚘𝚗 0.457 0.240 0.079 0.482 0.087 1.810 0.236 4.386 1.191 63.312 2.167 div* div* div* div* div* div*
E D+𝙿𝚒𝚡𝚎𝚕_𝙽𝚘𝚛𝚖 0.490 0.346 0.115 1.109 0.081 1.869 0.262 4.116 1.121 36.106 2.036 1.581 3.021 4.621 0.741 1.138 68.990∓3.845
F E−𝑉 𝐺𝐺𝑝𝑒𝑟𝑐𝑒𝑝** 0.443 0.202 0.099 0.043 0.048 2.023 0.667 3.220 0.620 10.597 2.101 3.476 3.406 7.334 3.079 2.038 72.216∓1.210
G F 𝑉 𝐺𝐺𝑠𝑡𝑦𝑙𝑒 0.442 0.168 0.262 0.014 0.054 1.568 0.693 6.122 1.655 9.175 3.715 1.327 1.682 1.830 0.523 0.519 75.206∓0.670

H F 𝐷𝑐𝑜𝑛𝑣𝑠𝑡𝑦𝑙𝑒 0.434 0.166 0.016 0.015 0.027 1.604 0.399 2.905 0.398 4.229 2.401 1.673 1.177 6.219 0.299 0.711 59.871∓1.111

Ours F 𝐷𝑐𝑜𝑛𝑣𝑠𝑡𝑦𝑙𝑒 + 
𝐷𝑔𝑟𝑎𝑚
𝑠𝑡𝑦𝑙𝑒 0.401 0.204 0.032 0.001 0.011 1.824 0.500 1.962 0.409 1.932 2.354 1.055 1.637 3.912 0.552 0.646 76.008∓0.877 2.267

I F 
𝐷𝑔𝑟𝑎𝑚
𝑠𝑡𝑦𝑙𝑒 0.678 0.387 0.072 22.750 0.056 1.683 0.491 4.336 1.217 8.369 2.230 1.622 1.311 5.631 0.327 0.987 77.938∓0.568

Alt. F−𝚂𝚙𝚊𝚝𝚒𝚊𝚕_𝚜𝚝𝚍𝚍𝚎𝚟 𝐷𝑐𝑜𝑛𝑣𝑠𝑡𝑦𝑙𝑒 + 
𝐷𝑔𝑟𝑎𝑚
𝑠𝑡𝑦𝑙𝑒 0.557 0.314 0.185 6.997 0.131 1.279 0.419 2.034 0.373 0.287 2.657 1.007 1.269 3.044 0.348 0.777 75.252∓3.076 1.987
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Fig. 5. Demonstration of our generator’s ability to generate a wide variety of images. (a) 3 instances of generated patches (middle rows) using the same voxelized mesh and their
combined RGB image where every instance corresponds to a different color channel. The combined RGB image shows that our generator learns the spatial distribution of structured
noise as each instance is unique. (b) Generated patches (inverted for visual effect) with linearly increasing laser powers. Patches outlined in red are generated from laser powers
seen during training. The laser powers for the remaining patches are realistically interpolated by the network. (c) 4 generated synthetic slices with each slice displaying differing

morphological variations (rotation, mirror, sheer) of the same neural mesh. .
Table 3
A quantitative ablation study on our proposed architecture comparing unpaired and paired training performance on
our 3DFM_BCPop dataset. Metrics were the same as those in Table 2. Darker green and darker red signify better
and worse performing architectures for a given metric and the best performing architecture was bold. Note that the
3DFM_BCPop dataset uses a semantic map instead of a mesh to condition our generator so that both unpaired and
paired training regiments can be tested.

ID Unpaired 3DFM_BCPop

NMSE LBP GLCM COOC JSD IoU
×101 ×103 ×108 ×108 ×102 ×101

CycleGAN ✓ 2.228 2.557 0.055 0.077 1.212 49.249 ± 1.811
SPADE ✓ 2.244 0.246 0.379 0.007 0.590 54.401 ± 1.447
A ✓ 3.192 1.066 3.158 0.062 1.755 50.340 ± 1.125
B ✓ 1.541 0.276 0.015 0.010 0.107 55.357 ± 0.656

C ✓ 1.524 0.111 0.064 0.031 0.185 57.930 ± 0.423
D ✓ 2.013 0.112 0.009 0.013 0.088 58.177 ± 0.744
E ✓ 1.570 0.085 0.016 0.008 0.077 56.477 ± 1.006
F ✓ 1.622 0.100 0.214 0.170 0.530 54.455 ± 1.585

G ✓ 1.641 0.046 0.114 0.084 0.162 61.351 ± 0.487
H ✓ 1.535 0.077 0.049 0.028 0.052 58.959 ± 2.770
Ours ✓ 1.535 0.094 0.027 0.013 0.067 59.652 ± 0.708
I ✓ 1.819 0.176 0.124 0.078 0.881 61.770 ± 0.871

Alt ✓ 1.560 0.086 0.008 0.004 0.026 58.006 ± 1.869

SPADE 1.353 0.229 0.035 0.003 0.500 62.948 ± 0.760
Ours 1.317 0.231 0.014 0.011 0.199 66.609 ± 0.363
7. Results

As shown in Figs. 4 and B.12, our architecture generates realistic
FM images across a variety of styles and content. Similar to an actual
microscope, each new acquisition of a frame preserves the structure
of the voxelized mesh while individual voxel noise varies (Fig. 5(a)).
Likewise, optical imaging parameters, such as laser power, can be
adjusted to create a spectrum of images (Fig. 5(b)).

The use of meshes as the basis of the input to our generator grants
unique control over the content of generated images since morpholog-
ical manipulations can be performed easily on the mesh vertices and
edges. Although we only explore simple linear transformations (rota-
tions, mirror, and sheer) shown in Fig. 5(c), non-linear transformations
and manipulations to individual branches could be used to increase
the content variety in generated images. Most significantly, once the
transfer function from the voxelized mesh to FM images is learned, our
generator is then able to generate realistic synthetic FM images with
8

arbitrary content. As demonstrated by Fig. 6, we are able to produce
realistic FM images of novel geometries, multiple overlapping neurons,
and larger patch sizes despite never having trained on these types of
voxelized meshes.

Quantitative and qualitative comparisons show that our proposed
architecture more accurately generates realistic FM images across sev-
eral datasets compared to CycleGAN, SPADE, and SPADE’s various
iterations. While it is challenging to visually distinguish algorithms on
the synthetic datasets (Figs. B.13 and B.14), we see quantitatively that
our architecture is a top performer by almost every computed metric
(Tables 2 and 3). Specifically on the 2DSyn_BC, our architecture outper-
forms both CycleGAN and SPADE architectures on almost every metric,
improving on some metrics by an order of magnitude. More drastic dif-
ferences, however, can be seen on the real FM datasets. Qualitatively,
we see that our architecture better models the reference style while
maintaining dendritic structure (Figs. B.15–B.17). These findings are
corroborated by quantitative results where we again improve on nearly
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Fig. 6. Demonstration of generator generalizability. The left column shows Z-
projections of real patches sampled as style references for all datasets (rows). In the
middle column, panels top to down show a generator input of novel geometries, a
voxelized mesh Z-projection of a neuron with an additional adjacent neuron, a voxelized
mesh Z-projection of several overlapping neurons, and a binarized semantic map double
the size of the real patch sampled during training. Each voxelized mesh was therefore
never seen in training. The final row shows the Z-projection of the generated synthetic
FM image conditioned on the novel generator inputs.

every metric (Tables 2 and 3) relative to the CycleGAN and SPADE
architectures. Most notable is the nearly 24 and 5 point improvement
on average IoU score when training a separate segmentation network
only on our generated images from the 3DFM_AC and 3DFM_BCPop
datasets respectively. On closer inspection, we see that our generated
synthetic data is able to train a segmentation algorithm to accurately
segment neurons from noisy FM images (Fig. 7), sometimes with nearly
a 40 point improvement in IoU. Results from our expert opinion test
additionally verify the noticeable improvement in image realism when
generating patches with our model as our generated patches were con-
sistently ranked higher than the two baseline models. When comparing
between paired and unpaired training paradigms (Table 3), we also see
that paired training increases performance as expected. However, our
architecture when trained with unpaired data remains competitive with
SPADE when trained with paired data, highlighting the importance of
our architectural advances. These results are further illustrated qualita-
tively (Fig. B.18) where noticeable artifacts are seen in paired training
of SPADE and not in unpaired training of our architecture.

Finally, our results demonstrate the utility of the architectural com-
ponents introduced in this paper. Replacing 𝑉 𝐺𝐺𝑠𝑡𝑦𝑙𝑒 with 𝐷𝑐𝑜𝑛𝑣𝑠𝑡𝑦𝑙𝑒 and
𝐷𝑔𝑟𝑎𝑚𝑠𝑡𝑦𝑙𝑒 improves the architecture’s performance on most computed
metrics for all datasets as the VGGNet is pre-trained on natural scene
images devoid of the stochastic textures seen in FM images. More so,
𝑉 𝐺𝐺𝑠𝑡𝑦𝑙𝑒 is limited to 2D images, while 𝐷𝑔𝑟𝑎𝑚𝑠𝑡𝑦𝑙𝑒 is custom to the domain
at hand. Our Acquisition layer additionally allows us to decouple
the signal from the noise so that we can generate images with new
noise profiles and images that are theoretically impossible to obtain,
such as denoised FM images (Fig. 8). As for our Spatial_stddev
layer, it allows our architecture to better learn the spatial distribution
of structured noise. Fig. 9 shows that the Spatial_stddev layer
9

Fig. 7. (a) Segmentation predictions on never-before-seen FM slices (inverted for visual
effect) at varying laser powers using generated training datasets from SPADE and
our generator. (b) Average intersection of union (IoU) scores across multiple frame
averaging and laser powers using generated training datasets from SPADE and our
generator. Note that our generated training datasets improve IoU scores nearly 40
points for low signal-to-noise images.

forces the blobs to be randomly spread throughout the background of
generated bipolar cell images and minimizes uniform regions and er-
roneous structures from the generated Ganglion Cell images. However,
for images that do not contain structured noise, like our FM datasets,
the Spatial_stddev layer can hurt performance as evidenced by the
increase in most content and texture based metrics when it is left out
of the discriminator. While the performance decrease is not significant,
we suggest additionally training with Spatial_stddev when testing
different architecture designs that have limited structured noise.

8. Conclusion

In this paper, we have presented an unpaired image translation
methodology to generate realistic FM stacks from meshes of previ-
ously reconstructed neurons. Our algorithm trained on four FM image
datasets, two of which were synthetic datasets and two of which were
newly acquired 3D FM datasets that are available for public use. Using
a variety of evaluation metrics, we show that our generator is able
to learn stochastic textures and structured noise more accurately than
alternative architectures across all datasets. The utility of our pipeline
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Fig. 8. Demonstration of our algorithm’s ability to produce images with novel noise
characteristics for all three datasets (rows). Shown are paired noisy and denoised
patches from real and generated data. NOTE: there exists no real denoised patch as
every frame acquired contains noise.

Fig. 9. Comparison of average generated patches with and without Spatial_stddev
in the discriminator for both synthetic datasets. 20 samples were generated then
averaged together. For the Ganglion Cell dataset, stack noise 𝜁 was frozen so that
the structure of the dendrites were preserved when frames were averaged. We see
that the inclusion of Spatial_stddev increases the spatial variability of each
generated instance, while the exclusion of Spatial_stddev leads to mode collapse
and erroneous background textures.

is further demonstrated by its ability to generate a training dataset
for a segmentation network such that FM images of neurons can be
accurately segmented with no manual annotation required. More work,
however, needs to be done to test the complexity of features our
architecture can produce as our generator is conditioned only on the
neuron. Knowledge of the lower limit of real data points required to
sufficiently model FM styles should also be explored in future works
as it would give neuroscientists a sense of how much image data is
required to automate a task.

Most significantly, once our model is fully trained, it can operate
similar to an actual fluorescent microscope and produce realistic FM
images of novel biological content with optical configurations never
10
seen before in training. This greatly expands the impact of our pipeline
to the neuroscience community as our model can learn imaging char-
acteristics from a small dataset of easily acquired FM images and
then generate realistic synthetic FM training datasets of images that
are much harder to acquire. For example, not only do we show that
multiple styles can be learned explicitly during training, but the learned
spatially-dependent noise parameters in the final layer can also be
adjusted after training to account for more styles. This enables us to
compute paired noisy and denoised images which do not exist in real
world FM applications and subsequently train a denoising algorithm
to improve the quality of FM images acquired during an experiment.
Finally, additional neurons, along with other structures, can be inserted
into the voxelized mesh while preserving realistic FM imaging charac-
teristics so that more complex image segmentation tasks can be learned.
This is especially important when trying to analyze neural network
activity as individual dendritic responses need to be associated with
their parent neuron and ground truths are challenging to acquire. While
all neurons imaged and modeled in this paper are from the retina,
as more EM reconstruction datasets become publicly available, our
pipeline can be used for any part of the brain.
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Appendix A. 3DFM_AC and 3DFM_BCPop dataset protocol

Animal procedures were conducted according to institutional guide-
lines and approved by the NINDS Animal Care and Use Commit-
tee (ASP-1344). For the 3DFM_AC dataset ChAT-Cre mice (Ivanova
et al., 2010) were intravitreally injected with 2 μL of AAV-7m8-EF1a-
BbTagBY virus with a ∽0.8 × 10𝑒12 vg/mL titration (Cai et al., 2013).
Retinas were then dissected 3–4 weeks after injection, fixed with 4%
paraformaldehyde for 45 min, and washed three times. A confocal
microscope (Zeiss LSM 510) with a Plan-Neofluar 40x/1.3 Oil objective,
a 488 laser line, and a BP505-530 filter was then used to acquire stacks
of the fixed retinas. The Z-projections for all 22 SACs can be found in
Fig. B.10 and an example of the complete spectrum of laser power and
frame averaging configurations can be found in Fig. B.12(a). To acquire
the 3DFM_BCPop dataset, the retina of a Syt2 mouse was dissect, fixed,
and imaged using the same protocol with only a laser power of 15.70
μW and a magnification of 0.25. Samples of the data collected can be
seen in Fig. B.11.

Appendix B. Qualitative comparisons

Due to space constraints, a comprehensive qualitative comparison
between patches generated by our and competing models are shown
here. Figs. B.13 and B.14 show randomly selected patches generated
from models trained on 2DSyn_BC and 3DSyn_GC datasets respectively.
Then, Figs. B.15, B.16, and B.17 show randomly selected patches
generated from models trained on our newly acquired 3DFM_AC and
3DFM_BCPop datasets. The complete spectrum of laser power and
frame averaging configurations produced by our generator for a given
voxelized mesh patch is shown in Fig. B.12(b).
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Fig. B.10. Maximum z-projections of all 22 Starburst Amacrine Cells imaged in our new 3DFM_AC dataset.

Fig. B.11. Maximum z-projections of all 2 Bipolar Cell populations imaged in our new 3DFM_BCPop dataset.
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Fig. B.12. (a) Real and (b) generated 64 × 64 patches (inverted for visual effect) sampled from the 3DFM_AC dataset at varying powers and frame averaging. A total of 5
different laser powers and 8 frame averaging combinations were acquired.

Fig. B.13. Real and generated 128 × 128 patches sampled from the 2DSyn_BC dataset. While unpaired images were used during training, all real and generated patches were
created based on the same voxelized mesh to make visual comparisons easier.
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Fig. B.14. Real and generated 1 × 128 × 128 patches sampled from the 3DSyn_GC dataset. While unpaired images were used during training, all real and generated patches were
created based on the same voxelized mesh to make visual comparisons easier.

Fig. B.15. Real and generated 1 × 128 × 128 patches sampled from the 3DFM_AC dataset.
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Fig. B.16. Real and generated 1 × 128 × 128 patches sampled from the 3DFM_AC dataset.

Fig. B.17. Real and generated 1 × 128 × 128 patches sampled from the 3DFM_BCPop dataset.
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Fig. B.18. Qualitative comparisons between real, SPADE-generated, and Our-generated patches using unpaired and paired training regiments from the 3DFM_BCPop dataset.
Generated patches were then used to train a separate machine learning algorithm to perform segmentation. To the right of every generated patch is the predicted segmentation
of the real patch from the trained segmentation network.
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