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Abstract

Let L and K be two Lie algebras over a commutative ring with identity. In
this paper, under some conditions on L and K, it is proved that every triple
homomorphism from L onto K is the sum of a homomorphism and an anti-
homomorphism from L into K. We also show that a finite-dimensional Lie
algebra L over an algebraically closed field of characteristic zero is nilpotent
of class at most 2 iff the sum of every homomorphism and every antihomo-
morphism on L is a triple homomorphism.
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1. Introduction

Throughout this paper, assume that R is a commutative ring with identity
and L,K are two Lie algebras over R. An R-linear map f : L → K is a
homomorphism if

f([x, y]) = [f(x), f(y)],

for any x, y ∈ L, is called an antihomomorphism if

f([x, y]) = [f(y), f(x)],
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for any x, y ∈ L, and is called a triple homomorphism if

f([x, [y, z]]) = [f(x), [f(y), f(z)]],

for any x, y, z ∈ L.

The set of all homomorphisms, all antihomomorphisms, and all triple
homomorphisms from L into K is denoted by Hom(L,K), AHom(L,K), and
THom(L,K), respectively. It can be easily seen that

AHom(L,K) = −Hom(L,K),

THom(L,K) = −THom(L,K),

and
Hom(L,K) ∪ AHom(L,K) ⊆ THom(L,K).

For a subset X of L, the centralizer of X in L is denoted by CL(X) and
is defined as follows:

CL(X) = {y ∈ L| [x, y] = 0,∀x ∈ X}.

In particular, Z(L) = CL(L) is called the center of L. Now let {L(n)}n≥0,
{Ln}n≥1, and {Zn(L)}n≥0 denote, respectively, the derived series of L, the
lower central series of L, and the upper central series of L, that is,

L(0) = L, L(n+1) = [L(n), L(n)],

L1 = L, Ln+1 = [L,Ln],

Z0(L) = 0, Zn+1(L)/Zn(L) = Z(L/Zn(L)).

A Lie algebra L is said to be simple if it is nonabelian and has only two
ideals. Also a Lie algebra L is said to be perfect if L = L2. Thus any simple
Lie algebra is perfect. Finally a Lie algebra L is called solvable if L(n) = 0 for
some n ≥ 0, and is called nilpotent if Ln = 0 for some n ≥ 1 or equivalently
Zn(L) = L for some n ≥ 0.

Algebraic systems with derivations and their generalizations are a popular
object of study nowadays. In particular, the algebras of derivations and
generalized derivations are important in the study of algebraic systems of Lie
type. Triple derivations, which are sometimes called prederivations, and their
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generalizations, Leibniz-derivations of order n, were used to study nilpotent
Lie algebras, see [5] and the references therein for more information.

Some work has been done on triple homomorphisms of associative rings
and algebras, see [3] and the references therein. Triple homomorphisms,
which are sometimes called prehomomorphisms, and their generalizations,
Leibniz-derivations of order n, were used to study nilpotent Lie algebras.
In recent years, triple homomorphisms of Lie algebras were also studied in
[7] and [8]. In [7], the authors proved that every triple automorphism of a
parabolic subalgebra of a finite-dimensional simple Lie algebra over an alge-
braically closed field of characteristic zero is either an automorphism or an
antiautomorphism. Also, Zhou in [8] proved that every triple homomorphism
from a perfect Lie algebra L onto a centerless Lie algebra K is the sum of a
homomorphism and an antihomomorphism from L into K.

The paper is organized as follows. First some basic properties of triple
homomorphisms are given in section 2, and then, under some conditions on
L and K, it is shown that THom(L,K) = {0}. In section 3, among other
things, we generalize the main result of [8], by weakening the assumptions
on L and K. Finally in section 4, some converse results related to section 3
are studied. Specially, we prove that if L is a finite-dimensional Lie algebra
over an algebraically closed field of characteristic zero, then L is nilpotent of
class at most 2 iff

Hom(L,L) + AHom(L,L) ⊆ THom(L,L).

2. General properties of triple homomorphisms

Suppose that f : L→ K is an R-linear map and M = Mf is the subalge-
bra of K generated by the image of f . It is obvious that f maps Z(L) into
Z(M) and L2 into M2, if f is either a homomorphism or an antihomomor-
phism.

We begin this section with a lemma which shows some properties of triple
homomorphisms. We omit the easy proof because it relies only on the defi-
nitions.

Lemma 2.1. Let f ∈ THom(L,K) and M = Mf . Then
(i) M = f(L) + [f(L), f(L)] containing [f(L), f(L)] as a subalgebra.
(ii) f(L3) ⊆M3 and f(Z2(L)) ⊆ Z2(M).
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(iii) if L is perfect, then ker f is an ideal of L and M is a perfect subalgebra
of K.

It should be mentioned that in general, it is not true that Z(L) and L2 are
mapped by f into Z(M) and M2, respectively, if f is a triple homomorphism.
Also, the image and the kernel of a triple homomorphism need not always
be a subalgebra, as the following example shows.

Example 2.2. Let L be the Heisenberg Lie algebra, i.e. the Lie algebra of
all 3 × 3 strictly upper triangular matrices over R with the standard basis
{e12, e13, e23}. Then one can easily see that Z(L) = L2 = Re13, L3 = 0,
Z2(L) = L, and every R-linear map on L is a triple homomorphism of L.
Now consider the R-linear maps f, g, h on L defined via

f(e12) = f(e23) = f(e13) = e12,

g(e12) = e12, g(e23) = e23, g(e13) = 0,

h(e12) = h(e23) = 0, h(e13) = e13.

All three maps are triple homomorphisms but none of them are a homomor-
phism or an antihomomorphism. Also, f does not map Z(L) = L2 into itself,
and Img = kerh is not a subalgebra of L. Note that the map g : L→ Mg is
not onto because Img ⊂Mg = L.

The next example shows that even if L is perfect and f is a triple ho-
momorphism from L into K, and thus M = Mf is perfect by Lemma 2.1, it
doesn’t necessarily follow that M = f(L) which would be the case if f is an
(anti)homomorphism.

Example 2.3. Let L be any perfect Lie algebra over a field and let L0 and
L1 be two isomorphic copies of the vector space L via the isomorphisms ϕi :
L→ Li for any i ∈ Z2, and suppose that xi = ϕi(x). Hence

L0 = {x0 : x ∈ L}, L1 = {x1 : x ∈ L}.

We now make the vector space K = L0 ⊕ L1 into a graded Lie algebra over
Z2 via the Lie product:

[xi, yj] = [x, y]i+j,
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and then extend linearly. Note that the Jacobi identity clearly holds in K as
it holds in L and L0 is a Lie subalgebra of K. Now consider the linear map
f : L→ K defined by f(x) = x1. Thus for any x, y, z ∈ L one has

[f(x), [f(y), f(z)]] = [x1, [y1, z1]]

= [x1, [y, z]0]

= [x, [y, z]]1

= f([x, [y, z]]),

which means that f is a triple homomorphism. Since L is perfect, it is easy
to see that

[f(L), f(L)] = [L1, L1] = [L,L]0 = L0,

and therefore

f(L) = L1 ⊂ K = L1 + L0 = f(L) + [f(L), f(L)] = Mf .

Our first theorem gives a simple criterion for a linear map to be a triple
homomorphism if K is 3-torsion free, i.e. if 0 6= x ∈ K, then 3x 6= 0.

Theorem 2.4. Let K be 3-torsion free. Then an R-linear map f : L → K
is a triple homomorphism iff

f([x, [x, y]]) = [f(x), [f(x), f(y)]],

for any x, y ∈ L.

Proof. One part is trivial. For the other part, for any x, y, z ∈ L, we have

f([x, [x, z]]) = [f(x), [f(x), f(z)]],

f([y, [y, z]]) = [f(y), [f(y), f(z)]],

f([x+ y, [x+ y, z]]) = [f(x+ y), [f(x+ y), f(z)]],

so

f([x, [y, z]]) + f([y, [x, z]]) = [f(x), [f(y), f(z)]] + [f(y), [f(x), f(z)]]. (∗)

Using the Jacobi identity, one has

f([z, [y, x]]) + 2f([y, [x, z]]) = [f(z), [f(y), f(x)]] + 2[f(y), [f(x), f(z)]].
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Changing the role of x and z in the above relation, we obtain

f([x, [y, z]]) + 2f([y, [z, x]]) = [f(x), [f(y), f(z)]] + 2[f(y), [f(z), f(x)]]. (∗∗)

Now adding 2 times (∗) to (∗∗), we get

3f([x, [y, z]]) = 3[f(x), [f(y), f(z)]],

which implies that f is a triple homomorphism, for K is 3-torsion free.

We show that the assumption “K is 3-torsion free” is essential in Theorem
2.4. First we need a lemma about 2-Engel Lie algebras. Recall that a Lie
algebra L is said to be 2-Engel if [x, [x, y]] = 0, for any x, y ∈ L.

Lemma 2.5. Let L be a 2-Engel Lie algebra over a field F. Then
(i) [x, [y, z]] = [y, [z, x]] = [z, [x, y]] and 3[x, [y, z]] = 0 for any x, y, z ∈ L.
(ii) L4 = 0 and if charF 6= 3, then L3 = 0.
(iii) if L3 6= 0, then dimL ≥ 7.

Proof. (i) and (ii): For a proof the reader is referred to either Theorem 3.1.1
of [6] or Lemma 2.1 and Theorem 2.3 of [4].
(iii): Let L3 6= 0. So F is of characteristic 3 and there exist three elements
x, y, z ∈ L such that [x, [y, z]] 6= 0. Using part (i) and the fact that L is
2-Engel and L4 = 0, one can easily check that the set

{x, y, z, [x, y], [y, z], [z, x], [x, [y, z]]}

is linearly independent over F and so dimL ≥ 7.

Example 2.6. First we construct a 2-Engel Lie algebra L with L3 6= 0 over
any field F of characteristic 3. Let L be the 7-dimensional vector space over F
with the basis B = {x, y, z, a, b, c, u}. Define the non-zero brackets as follows:

[x, a] = [y, b] = [z, c] = u, [y, z] = a, [z, x] = b, [x, y] = c.

Since u ∈ Z(L), a, b, c ∈ Z2(L), and [x, [y, z]]+[y, [z, x]]+[z, [x, y]] = 3u = 0,
the elements of B satisfy the Jacobi identity and so L is a Lie algebra. Also,
for any α, β, γ ∈ B we have

[α, [α, γ]] = 0, [α, [β, γ]] + [β, [α, γ]] = 0,

which means that L is 2-Engel.
Now if we let f be the linear map on L sending all elements of B to u, then
f obviously is not a triple homomorphism but it satisfies the condition in
Theorem 2.4.
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The following theorem says that in some cases the zero map is the only
triple homomorphism.

Theorem 2.7. The following statements hold:
(i) If f ∈ THom(L,K), then f(L(n+1)) ⊆ K(n), for any non-negative integer
n.
(ii) If L is perfect, then THom(L,K) = THom(L,

⋂∞
n=1 K

(n)).
(iii) If L is perfect and

⋂∞
n=1K

(n) = {0}, then THom(L,K) = {0}.

Proof. (i): We prove by induction on n. The case n = 0 is obvious. If n = 1,
then

f(L(2)) = f([L(1), [L,L]]) = [f(L(1)), [f(L), f(L)]]) ⊆ [K, [K,K]] ⊆ K(1),

as desired. Assume now that n ≥ 2. Hence

f(L(n+1)) = f([L(n), [L(n−1), L(n−1)]])

= [f(L(n)), [f(L(n−1)), f(L(n−1))]]

⊆ [K(n−1), [K(n−2), K(n−2)]]

= K(n),

which completes the proof.

(ii): This follows at once from part (i).

(iii): This follows immediately from part (ii).

As a consequence, we obtain the following.

Corollary 2.8. Let L be a perfect Lie algebra and K be either a solvable Lie
algebra or a free Lie algebra. Then THom(L,K) = {0}.

Proof. By part (iii) of Theorem 2.7, it suffices to show that
⋂∞

n=1 K
(n) = {0}.

This is obvious if K is solvable. So we may assume that K is a free Lie
algebra. Taking advantage of the obvious relation K(n) ⊆ K2n and the well
known fact

⋂∞
n=1K

n = {0} for the free Lie algebra K, see page 182 of [2],
one sees that

⋂∞
n=0K

(n) = {0}, and the proof is completed.
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3. Conditions implying a triple homomorphism to be the sum of a
homomorphism and an antihomomorphism

In this section, we will assume that 2 ∈ R is unit. The following funda-
mental theorem, which is a generalization of the main result of [8], plays a
crucial role in the next results.

The following theorem plays a crucial role in the next results.

Theorem 3.1. Let f ∈ THom(L,K) with M2∩Z(M) = 0, where M = Mf .
Then the map δf : L2 →M2 defined by

δf (x) =
n∑

i=1

[f(ai), f(bi)],

when x =
∑n

i=1[ai, bi] for some n, is a well-defined homomorphism. Further-
more, the maps ϕ = f + δf : L2 → M and ψ = f − δf : L2 → M satisfy the
following properties:
(i) [Imϕ, Imψ] = 0.
(ii) Imϕ and Imψ are ideals of M .
(iii) 1

2
ϕ ∈ Hom(L2, K), 1

2
ψ ∈ AHom(L2, K), and f|L2 = 1

2
ϕ + 1

2
ψ. In other

words, the restriction of f to L2 is the sum of a homomorphism and an
antihomomorphism from L2 into K.

Proof. Let x =
∑n

i=1[ai, bi] =
∑m

i=1[ci, di] be two expressions for x, and let

α =
n∑

i=1

[f(ai), f(bi)]

and

β =
m∑
i=1

[f(ci), f(di)].

Obviously, α, β ∈M2. Since f ∈ THom(L,K), for any y ∈ L, one has

[f(y), α] =
n∑

i=1

[f(y), [f(ai), f(bi)]]

=
n∑

i=1

f([y, [ai, bi]])

= f([y, x]).
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Similarly, [f(y), β] = f([y, x]). Therefore, α − β ∈ M2
⋂
CM(f(L)). From

M = f(L) + [f(L), f(L)] and the Jacobi identity, it follows that α − β ∈
M2

⋂
Z(M) = 0. Hence α = β and δf is well defined. By definition, δf is an

R-linear map. What remains is to show that δf ∈ Hom(L2,M2). The above
relation shows that

[δf (x), f(y)] = f([x, y]), (∗)

the relation which will be used frequently.

From this we see that for any x, y ∈ L2 and z ∈ L,

[f(z), δf ([x, y])] = [f(z), [f(x), f(y)]]

= [f(x), [f(z), f(y)]] + [f(y), [f(x), f(z)]]

= f([x, [z, y]]) + f([y, [x, z]])

= [δf (x), f([z, y])] + [δf (y), f([x, z])]

= [δf (x), [f(z), δf (y)]] + [δf (y), [δf (x), f(z)]]

= [f(z), [δf (x), δf (y)]].

Again since M = f(L) + [f(L), f(L)], it follows that

δf ([x, y])− [δf (x), δf (y)] ∈M2
⋂

Z(M) = 0,

showing that δf ∈ Hom(L2,M2).

It remains to show that ϕ and ψ satisfy (i)-(iii).

(i): Taking advantage of (∗) and that δf ∈ Hom(L2,M2), for any x, y ∈
L2, one has

[ϕ(x), ψ(y)] = [f(x) + δf (x), f(y)− δf (y)]

= [f(x), f(y)]− [f(x), δf (y)] + [δf (x), f(y)]− [δf (x), δf (y)]

= [f(x), f(y)]− f([x, y]) + f([x, y])− δf ([x, y])

= 0.
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(ii): Using (∗) again and definition of δf , for any x ∈ L2 and y ∈ L, one
has

[(f ± δf )(x), f(y)] = [f(x), f(y)]± [δf (x), f(y)]

= δf ([x, y])± f([x, y])

= (δf ± f)([x, y]),

implying that
[ϕ(x), f(y)] = ϕ([x, y]),

[ψ(x), f(y)] = ψ([y, x]).

Once again from M = f(L) + [f(L), f(L)] and the Jacobi identity, we see
that Imϕ and Imψ are ideals of M .

(iii): Using (∗) again and definition of δf and δf ∈ Hom(L2,M2), for any
x, y ∈ L2, one has

[ϕ(x), ϕ(y)] = [f(x), f(y)] + [f(x), δf (y)] + [δf (x), f(y)] + [δf (x), δf (y)]

= [f(x), f(y)] + f([x, y]) + f([x, y]) + δf ([x, y])

= 2[f(x), f(y)] + 2f([x, y])

= 2δf ([x, y]) + 2f([x, y])

= 2ϕ([x, y]),

showing that
1

2
ϕ([x, y]) = [

1

2
ϕ(x),

1

2
ϕ(y)].

This means that 1
2
ϕ ∈ Hom(L2, K). In a similar manner, one obtains 1

2
ψ ∈

AHom(L2, K). Also, we see that f(x) = 1
2
ϕ(x) + 1

2
ψ(x) and this completes

the proof.

Remark. It should be noted that in Theorem 3.1, the map δf : L2 →
[f(L), f(L)] is well-defined and a homomorphism under the weaker condition
[f(L), f(L)] ∩ Z(M) = 0 and all parts are true. Also, the condition “2 ∈ R
is unit” has been used only in part (iii) of Theorem 3.1.

With the notation of the previous theorem, we have:
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Theorem 3.2. Let L = A ⊕ B, where A is a perfect Lie algebra and B is
an abelian Lie algebra, and f ∈ THom(L,K) with M2

⋂
Z(M) = 0, where

M = Mf . Then M = Imϕ⊕Imψ⊕f(B) and f is the sum of a homomorphism
and an antihomomorphism from L into K.

Proof. First note that L3 = L2 = A and B ⊆ Z(L). Also, Z(M) = Z2(M)
because if x ∈ Z2(M), then [x,M ] ⊆ M2

⋂
Z(M) = 0, this is, x ∈ Z(M).

We know that the triple homomorphism f maps Z2(L) into Z2(M) and hence
f(B) ⊆ Z(M). It then follows that f(B) is an ideal of M . Also, Theorem
3.1 implies that Imϕ and Imψ are ideals of M . Now for any a ∈ A and b ∈ B
one gets

f(a+ b) = f(a) + f(b) =
1

2
ϕ(a) +

1

2
ψ(a) + f(b),

implying that M = Imϕ + Imψ + f(B), because Imϕ + Imψ + f(B) is an
ideal of M containing f(L). Now one can see from δf (L2) ⊆M2 and f(L2) =
f(L3) ⊆ M3 ⊆ M2 that (Imϕ + Imψ) ∩ f(B) ⊆ M2

⋂
Z(M) = 0. Hence

M = (Imϕ + Imψ) ⊕ f(B). Suppose now that x ∈ Imϕ ∩ Imψ. Therefore,
for any a ∈ A and b ∈ B, one obtains using part (i) of Theorem 3.1 that

[x, f(a+ b)] = [x, f(a)] =
1

2
([x, ϕ(a)] + [x, ψ(a)]) = 0,

so x ∈ Z(M). Since x ∈M2, we get by hypothesis that x = 0, as desired.
It remains to show that the last part of the theorem holds. To this end, we
extend the functions 1

2
ϕ and 1

2
ψ to a homomorphism g and an antihomomor-

phism h from L into K, respectively, as follows:

g(a+ b) =
1

2
ϕ(a) + f(b), h(a+ b) =

1

2
ψ(a).

(Notice that we do not necessarily have unique extensions if f(B) 6= 0).

As an immediate consequence, we have the following.

Corollary 3.3. Let L = A ⊕ B, where A is a perfect Lie algebra and B is
an abelian Lie algebra, K be a Lie algebra with K2

⋂
Z(K) = 0. Then every

triple homomorphism from L onto K is the sum of a homomorphism and an
antihomomorphism from L into K.

Notice that the above corollary is true if K is semisimple, that is, K is a
direct sum of simple Lie algebras.

For simple Lie algebras, we obtain the following strong result.
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Theorem 3.4. Let L = A ⊕ B and K = C ⊕ D, where A is a perfect Lie
algebra, C is a simple Lie algebra, and B,D are abelian Lie algebras. Then
every triple homomorphism from L onto K is either a homomorphism or an
antihomomorphism from L onto K.

Proof. Suppose that f ∈ THom(L,K) is onto. It is not difficult to see
that B ⊆ Z(L), L3 = L2 = A,D = Z(K) = Z2(K), and K3 = K2 = C.
Therefore, one has f(A) ⊆ C and f(B) ⊆ D. But f is surjective, hence
f(A) = C and f(B) = D. It then follows that f|A ∈ THom(A,C) is onto.
Thus, using Theorem 3.2, C = Imϕ ⊕ Imψ. Since C is simple, one obtains
either ψ = 0 or ϕ = 0, which implies that f|A is either a homomorphism or
an antihomomorphism from A onto C. Since B and D are both abelian and
[A,B] = [C,D] = 0, we conclude that f is either a homomorphism or an
antihomomorphism from L onto K.

In particular, every triple homomorphism from a perfect Lie algebra onto
a simple Lie algebra is either a homomorphism or an antihomomorphism.

Let us record a useful consequence of our previous results.

Corollary 3.5. Let L = A ⊕ B and K = A ⊕ D, where A is a finite-
dimensional simple Lie algebra over a field of characteristic not 2, and B,D
are abelian Lie algebras. Then
(i) every nonzero triple homomorphism on A is either an automorphism or
an antiautomorphism. In particular,

THom(A,A) = Hom(A,A) ∪ AHom(A,A).

(ii) THom(L,K) = Hom(L,K) ∪ AHom(L,K).

Proof. (i): Assume that f is a nonzero triple homomorphism on A. By
Lemma 2.1, ker f is a proper ideal of A and so f is injective, for A is simple.
Since A is finite-dimensional, we deduce that f is surjective. Now the result
follows from Theorem 3.4.

(ii): Assuming that f ∈ THom(L,K), one can see, similar to the proof of
Theorem 3.4, that B = Z(L), D = Z(K), f(A) ⊆ A, and f(B) ⊆ D. Using
part (i), it follows that f|A is either an homomorphism or an antihomomor-
phism on A. Since B and D are both abelian and [A,B] = [A,D] = 0, we

12



see that f is either a homomorphism or an antihomomorphism from L into
K, and the proof is complete.

Here we give four examples. The first example, which is related to the
general linear Lie algebra, is an application of Corollary 3.5.

Example 3.6. Let L = gln(F) be the general linear Lie algebra over a field
F of characteristic not dividing n. Then L = sln(F)⊕ Z(L), where sln(F) is
the special linear Lie algebra and Z(L) is the set of scalar matrices. Since
sln(F) is simple, we have by Corollary 3.5 that if charF 6= 2, then every triple
homomorphism on L is either a homomorphism or an antihomomorphism.

In the second example, it is shown that the sum of a homomorphism and
an antihomomorphism need not be a triple homomorphism at all.

Example 3.7. Let L = 〈x, y| [x, y] = x〉 be the two-dimensional nonabelian
Lie algebra over an arbitrary field F. Suppose the linear maps f, g on L are
given by

f(x) = x, f(y) = y,

g(x) = 0, g(y) = −y.
Obviously, f ∈ Hom(L,L), g ∈ AHom(L,L), but f + g /∈ THom(L,L).
It is not too tedious to check that every triple homomorphism on L is ei-
ther a homomorphism or an antihomomorphism. Also, if charF = 2, then
THom(L,L) = Hom(L,L) = AHom(L,L).

Theorem 3.4 is not true if we weaken the assumption to a semisimple Lie
algebra K, as the third example shows.

Example 3.8. Let L = A⊕B, where A and B are two simple Lie algebras.
Hence L is a perfect Lie algebra with trivial center. Consider now the linear
map f on L via f(a+b) = a−b, where a ∈ A and b ∈ B. It is readily verified
that f is a bijective triple homomorphism. But f is neither a homomorphism
nor an antihomomorphism, otherwise we must have for any a, a′ ∈ A and
b, b′ ∈ B that

[a, a′]− [b, b′] = f([a, a′] + [b, b′])

= f([a+ b, a′ + b′])

= ±[f(a+ b), f(a′ + b′)]

= ±[a− b, a′ − b′]
= ±([a, a′] + [b, b′]),
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which implies that either 2[a, a′] = 0 or 2[b, b′] = 0. Since 2 ∈ R is unit,
hence either A is abelian or B is abelian, a contradiction. It is also clear
that f = g + h, where g ∈ Hom(L,L) and h ∈ AHom(L,L) are defined via

g(a+ b) = a, h(a+ b) = −b,

for any a ∈ A and b ∈ B.

Finally the fourth example shows that Theorem 3.2 is not true if A is not
perfect. It also reveals that there exist two non-isomorphic Lie algebras such
that there exists a bijective triple homomorphism between them.

Example 3.9. Let L be the Heisenberg Lie algebra which mentioned earlier
in Example 2.2. We have that L3 = 0 and that K is abelian, and hence
THom(L,K) is the set of all linear maps from L into K. Also, it can be
easily seen that Hom(L,K) = AHom(L,K) is the set of all linear maps from
L into K which map L2 = Re13 to 0. Therefore, if K 6= 0 and f : L→ K is
any linear map sending e13 to any nonzero element of K, then f cannot be
written as the sum of a homomorphism and an antihomomorphism from L
into K. Also, if dimK = 3 and f : L→ K is an invertible linear map, then
f is a bijective triple homomorphism from L onto K and obviously L and K
are not isomorphic.

We close this section with a nice application of Theorem 3.1.

Theorem 3.10. Let f : L → K be a surjective triple homomorphism such
that ker f ⊆ Z(L). If L is perfect, then K is perfect too and L/Z(L) is
isomorphic to K/Z(K).

Proof. Since L is perfect, one has Z2(L) = Z(L) by Grün’s lemma. By
Lemma 2.1, K is perfect too and so again Z2(K) = Z(K). Thus f(Z(L)) ⊆
Z(K) by Lemma 2.1 and so Z(L) ⊆ f−1(Z(K)). Also we have f−1(Z(K)) ⊆
Z(L) because if z ∈ f−1(Z(K)), then f(z) ∈ Z(K) and so for any x, y ∈ L

f([x, [y, z]]) = [f(x), [f(y), f(z)]] = 0,

showing that [x, [y, z]] ∈ ker f ⊆ Z(L). Therefore z ∈ Z3(L) = Z(L). Thus
we proved that f−1(Z(K)) = Z(L) and f(Z(L)) = Z(K). This implies
that f induces a bijective triple homomorphism f̄ : L/Z(L) → K/Z(K)
defined via f̄(x̄) = f(x), where x̄ = x + Z(L) and f(x) = f(x) + Z(K).
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But K/Z(K) has trivial center, hence, using Theorem 3.1, one obtains that
δf̄ : L/Z(L)→ K/Z(K) is a homomorphism. Taking advantage of the facts
that L and K are perfect and f̄ is a surjection, we deduce that δf̄ is an
epimorphism. The proof is completed if we show that δf̄ is injective. Since
L is perfect, suppose that x̄ =

∑n
i=1[āi, b̄i] ∈ ker δf̄ is arbitrary. Hence

0̄ = δf̄ (x̄) =
n∑

i=1

[f̄(āi), f̄(b̄i)] =
n∑

i=1

[f(ai), f(bi)] =
n∑

i=1

[f(ai), f(bi)],

which means that
∑n

i=1[f(ai), f(bi)] ∈ Z(K). Thus for any c ∈ L

0 =
n∑

i=1

[f(c), [f(ai), f(bi)]] =
n∑

i=1

f([c, [ai, bi]]) = f([c,
n∑

i=1

[ai, bi]]),

meaning that [c,
∑n

i=1[ai, bi]] ∈ Z(L) and so
∑n

i=1[ai, bi] ∈ Z2(L) = Z(L),
that is x̄ = 0̄.

As a consequence we have:

Corollary 3.11. Let f : L→ K be a bijective triple homomorphism, where
L is perfect. Then
(i) K is perfect too and L/Z(L) is isomorphic to K/Z(K).
(ii) if L has trivial center, then L and K are isomorphic.

4. Some converse results

One can easily see that if L is abelian, then

THom(L,L) = Hom(L,L) = AHom(L,L)

is the set of all linear maps on L. Therefore, if L is abelian, then

THom(L,L) = Hom(L,L) ∪ AHom(L,L),

and
THom(L,L) = Hom(L,L) + AHom(L,L).

Conversely, if 2 ∈ R is unit, then each of the following statements:
(1) Hom(L,L) = AHom(L,L),
(2) THom(L,L) = Hom(L,L),
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(3) THom(L,L) = AHom(L,L),
implies that L is abelian. Notice also that the above equalities hold for the
two-dimensional nonabelian Lie algebra over a field of characteristic 2.
As seen in the previous section, the relation

THom(L,L) = Hom(L,L) ∪ AHom(L,L),

again holds under each of the following conditions:
(1) L = A⊕B, where A is a finite-dimensional simple Lie algebra over a field
of characteristic not 2 and B is an abelian Lie algebra,
(2) L is the two-dimensional nonabelian Lie algebra over a field.

It seems to be a difficult task to characterize all Lie algebras L for which

THom(L,L) = Hom(L,L) ∪ AHom(L,L).

However, we will give a necessary condition for the above equality. Our
aim in the sequel is to characterize all Lie algebras L for which

THom(L,L) = Hom(L,L) + AHom(L,L).

For the rest of this section, we will assume that L and K are Lie algebras
over a field F.

Theorem 4.1. The following statements hold:
(i) If Hom(L,K) + AHom(L,K) ⊆ THom(L,K), then either L/L2 has di-
mension at most 1 or K is 2-Engel.
(ii) If THom(L,K) ⊆ Hom(L,K) + AHom(L,K), then either L2 = L3 or K
is perfect.
(iii) If THom(L,K) = Hom(L,K) ∪ AHom(L,K), then either L2 = L3 or
K = 0.

Proof. (i): We may assume that dimL/L2 ≥ 2 and claim that K is 2-Engel.
To do this, suppose that B1 is a basis of L2, B is a basis of L containing B1,
and let a, b ∈ B \ B1 be distinct. Consider now the linear maps f, g : L→ K
so that

f(a) = x, f(B \ {a}) = 0,

g(b) = y, g(B \ {b}) = 0,
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where x, y ∈ K are arbitrary. Obviously, f ∈ Hom(L,K) and g ∈ AHom(L,K)
and so by hypothesis ϕ = f + g ∈ THom(L,K). Hence

[x, [x, y]] = [ϕ(a), [ϕ(a), ϕ(b)]] = ϕ([a, [a, b]]) = 0,

as required.

(ii) and (iii): We may assume that L2 6= L3 and let z ∈ K be arbitrary.
Hence there exist two elements a, b ∈ L so that [a, b] ∈ L2 \L3. Suppose now
that B1 is a basis of L3, B2 is a basis of L2 containing B1 ∪ {[a, b]}, and B is
a basis of L containing B2. Consider the linear map f which sends [a, b] to z
and other elements of B to zero. Clearly, f ∈ THom(L,K).

Suppose first that f ∈ Hom(L,K) + AHom(L,K). Hence f = g + h,
where g ∈ Hom(L,K) and h ∈ AHom(L,K). Since g(L2), h(L2) ⊆ K2, one
obtains

z = f([a, b]) = g([a, b]) + h([a, b]) ⊆ K2,

which shows that K = K2.
Suppose now that f ∈ Hom(L,K) ∪ AHom(L,K). Hence one obtains

z = f([a, b]) = ±[f(a), f(b)] = 0,

showing that K = 0, and the proof is complete.

The corollary below says that if all triple homomorphisms on a nilpotent
Lie algebra can be written as the sum of a homomorphism and an antihomo-
morphism, then it is necessarily abelian.

Corollary 4.2. Let L be a nilpotent Lie algebra. Then the following are
equivalent:
(i) L is abelian,
(ii) THom(L,L) = Hom(L,L) = AHom(L,L),
(iii) THom(L,L) = Hom(L,L) ∪ AHom(L,L),
(iv) THom(L,L) ⊆ Hom(L,L) + AHom(L,L).

The above corollary shows that for any nonabelian nilpotent Lie algebra
L, there exists a triple homomorphism on L which cannot be written as
the sum of a homomorphism and an antihomomorphism. It should also be
remarked that if L is a nilpotent Lie algebra of class 2 (i.e. L3 = 0 and
L2 6= 0), then THom(L,L) is the set of all linear maps on L, and hence

Hom(L,L) + AHom(L,L) ⊂ THom(L,L).
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We now concentrate on Lie algebras for which the sum of every homo-
morphism and every antihomomorphism is a triple homomorphism. To be
precise, we obtain:

Theorem 4.3. Let L be a Lie algebra such that

Hom(L,L) + AHom(L,L) ⊆ THom(L,L).

Then either L is perfect or L is nilpotent of class at most 2.

Proof. We may assume that L is not perfect and consider two separate cases.
Suppose first that dimL/L2 ≥ 2. Let B1 be a basis of L2, B be a basis of L
containing B1, and let a, b ∈ B\B1 be distinct. Assume that f is the identity
map on L and g is a linear map on L given by:

g(a) = x, g(B \ {a}) = 0,

where x ∈ L is arbitrary. Clearly, f ∈ Hom(L,L) and g ∈ AHom(L,L),
and hence ϕ = f + g ∈ THom(L,L) by hypothesis. Therefore, for any
y, z ∈ B \ {a},

[z, [y, a]] = ϕ([z, [y, a]]) = [ϕ(z), [ϕ(y), ϕ(a)]] = [z, [y, a+ x]],

which implies that [z, [y, x]] = 0, i.e. [B \ {a}, [B \ {a},B]] = 0. Similarly,
[B \ {b}, [B \ {b},B]] = 0. Thus, by combining the two latter results just
obtained, we proved that [B, [B,B]] = 0, that is, L is nilpotent of class at
most 2.
Suppose now that dimL/L2 = 1. Let B = B1 ∪ {a} be a basis of L, where
B1 is a basis of L2 and a ∈ L \ L2. Again assume that f is the identity map
on L and g is a linear map on L as follows:

g(a) = x, g(B1) = 0,

where x ∈ L is arbitrary. Clearly, f ∈ Hom(L,L) and g ∈ AHom(L,L), and
so ϕ = f + g ∈ THom(L,L) by hypothesis. Therefore, for any y, z ∈ B1,

[z, [y, a]] = ϕ([z, [y, a]]) = [ϕ(z), [ϕ(y), ϕ(a)]] = [z, [y, a+ x]],

[a, [a, y]] = ϕ([a, [a, y]]) = [ϕ(a), [ϕ(a), ϕ(y)]] = [a+ x, [a+ x, y]].

The first relation implies that [z, [y, x]] = 0, i.e. [B1, [B1,B]] = 0. Hence
[a, [B1,B1]] = 0 by the Jacobi identity. Also, by putting x = −a in the second
relation, one obtains [a, [a, y]] = 0, that is, [a, [a,B]] = 0. Therefore, by
combining the three latter results just obtained, we showed that [B, [B,B]] =
0, that is, L is nilpotent of class at most 2, and this completes the proof.
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Combining Corollary 4.2 and Theorem 4.3, one gets the following.

Corollary 4.4. Let L be a nonperfect Lie algebra. Then L is abelian iff
THom(L,L) = Hom(L,L) + AHom(L,L).

To give our last theorem, we need a fact regarding ad-nilpotent elements.
In [1], the authors proved that any nonzero finite-dimensional Lie algebra
over an algebraically closed field of arbitrary characteristic has a nonzero
ad-nilpotent element. In the nonabelian case, a bit more can be said about
ad-nilpotent elements.

Lemma 4.5. Let L be a finite-dimensional nonabelian Lie algebra over an
algebraically closed field. Then L contains a noncentral ad-nilpotent element.

Proof. There is nothing to prove if Z(L) = 0. We assume now that Z(L) 6= 0
and use induction on dimL. If the nonzero Lie algebra L/Z(L) is abelian,
then for any x ∈ L \ Z(L) one has (adx)2 = 0, as desired. Suppose now
that the nonzero Lie algebra L/Z(L) is nonabelian. By induction, L/Z(L)
has a noncentral ad-nilpotent element x+Z(L). Therefore, x is a noncentral
ad-nilpotent element of L, as wanted.

There is some evidence to infer that in general, the first case does not
probably occur in the conclusion of Theorem 4.3. By imposing some rational
restrictions on the Lie algebra and the field, we obtain the following.

Theorem 4.6. Let L be a finite-dimensional Lie algebra over an algebraically
closed field of characteristic zero. Then L is nilpotent of class at most 2 iff

Hom(L,L) + AHom(L,L) ⊆ THom(L,L).

Proof. If L is nilpotent of class at most 2, then THom(L,L) is the set of all
linear maps on L and the result follows.

We may now assume by way of contradiction that L is not nilpotent of
class at most 2. So, using Theorem 4.3, L is perfect. Taking advantage of
Lemma 4.5, L contains a noncentral ad-nilpotent element x. Suppose that
n ≥ 2 is the least natural number so that (adx)n = 0. It is well known that

exp(adx) =
n−1∑
k=0

(adx)k

k!
,
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is an automorphism of L. We know that −I ∈ AHom(L,L), where I is the
identity map on L. Hence by hypothesis ϕ = exp(adx) − I ∈ THom(L,L).
First assume that n = 2. Thus ϕ = adx is a triple homomorphism on L and
so, for any a, b, c ∈ L, one has

adx([a, [b, c]]) = [adx(a), [adx(b), adx(c)]].

But

0 = (adx)2([b, c])

= adx([adx(b), c] + [b, adx(c)])

= 2[adx(b), adx(c)],

which shows that [adx(b), adx(c)] = 0. Therefore, adx([a, [b, c]]) = 0. Since
L is perfect, we deduce that adx = 0, a contradiction.
Suppose now that n ≥ 3. So

ϕ =
n−1∑
k=1

(adx)k

k!

is a triple homomorphism on L and hence, for any a, b ∈ L, one obtains

ϕ([x, [a, b]]) = [ϕ(x), [ϕ(a), ϕ(b)]] = 0.

Now we have

(adx)n−1([a, b]) = (adx)n−2ϕ([a, b])

= (adx)n−3ϕ(adx)([a, b])

= (adx)n−3ϕ([x, [a, b]])

= 0,

which is again a contradiction, for L is perfect. This completes the proof.

We close the paper with two interesting open problems.

Problem 1. Do there exist two non-isomorphic perfect Lie algebras such
that there exists a bijective triple homomorphism between them?

Problem 2. Is it true that Hom(L,K) = {0} implies that THom(L,K) =
{0}?
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