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Abstract
When EEG recordings are used to reveal interactions between central-nervous 
and cardiovascular processes, the cardiac field artifact (CFA) poses a major chal-
lenge. Because the electric field generated by cardiac activity is also captured by 
scalp electrodes, the CFA arises as a heavy contaminant whenever EEG data are 
analyzed time-locked to cardio-electric events. A typical example is measuring 
stimulus-evoked potentials elicited at different phases of the cardiac cycle. Here, 
we present a nonlinear regression method deploying neural networks that allows 
to remove the CFA from the EEG signal in such scenarios. We train neural net-
work models to predict R-peak centered EEG episodes based on the ECG and 
additional CFA-related information. In a second step, these trained models are 
used to predict and consequently remove the CFA in EEG episodes containing 
visual stimulation occurring time-locked to the ECG. We show that removing 
these predictions from the signal effectively removes the CFA without affecting 
the intertrial phase coherence of stimulus-evoked activity. In addition, we pro-
vide the results of an extensive grid search suggesting a set of appropriate model 
hyperparameters. The proposed method offers a replicable way of removing the 
CFA on the single-trial level, without affecting stimulus-related variance occur-
ring time-locked to cardiac events. Disentangling the cardiac field artifact (CFA) 
from the EEG signal is a major challenge when investigating the neurocognitive 
impact of cardioafferent traffic by means of the EEG. When stimuli are presented 
time-locked to the cardiac cycle, both sources of variance are systematically con-
founded. Here, we propose a regression-based approach deploying neural network 
models to remove the CFA from the EEG. This approach effectively removes the 
CFA on a single-trial level and is purely data-driven, providing replicable results.
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1   |   INTRODUCTION

The muscular activity of the heart creates an electric 
field that propagates throughout the entire body (Dirlich 
et al.,  1997). The electric field of the heart is 1–2 mV in 
amplitude and typically quantified via ECG, but is also 
captured by the electrodes of the EEG, producing a regu-
larly occurring artifact, the cardiac field artifact (CFA). In 
experimental paradigms commonly used in EEG research, 
CFA-related variance is usually unsystematic and there-
fore diminished by averaging procedures when param-
eterizing the signal. Still, the representation of the CFA 
in the EEG signal might reduce the signal-to-noise ratio 
(SNR) of the phenomenon of interest. In experiments in-
vestigating the central-nervous effects of cardioafferent 
traffic, however, these phenomena happen to be time-
locked to the activity of the heart. Specifically, to study 
how phasic variations in cardioafferent traffic impact in-
formation processing (Azzalini et al.,  2019; Critchley & 
Harrison, 2013; Garfinkel & Critchley, 2016), a standard 
paradigm is to present brief stimuli at times of low and 
high cardioafferent traffic by synchronizing their onset 
to the electrocardiogram (ECG; Al et al.,  2020; Azevedo 
et al., 2017; Garfinkel et al., 2014; Gray et al., 2010; Larra 
et al.,  2020; Pramme et al.,  2016; Schulz et al.,  2009). 
Consequently, EEG signal and CFA-related variance are 
confounded systematically, and removing the CFA is nec-
essary to interpret the electrophysiological findings. Thus, 
a major challenge when investigating the neurocognitive 
impact of cardioafferent traffic by means of the EEG is a 
systematic confound between variance induced by car-
dioafferent traffic and variance produced by the electrical 
field of the heart.

Several methods may be used to suppress the CFA 
in the recorded EEG signal. Some studies used spe-
cific derivations or transformations to attenuate the 
CFA (Hjorth,  1975; Luft & Bhattacharya,  2015; Terhaar 
et al., 2012). Another approach is to correct for the CFA 
by subtracting a baseline ERP without stimulation from 
the ERP of experimental trials (Gray et al., 2010; van Elk 
et al.,  2014). Most recent studies rely on signal decom-
position using independent component analyses (ICA; 
Hyvärinen et al., 2001), a blind source separation method 
that aims at decomposing a mixed signal into its statisti-
cal sources (c.f. Ullsperger & Debener, 2010). ICA can be 
used to detect and remove artifacts (Jung et al., 2000) by 
identifying and removing those independent components 
(ICs) that represent mostly artifactual activity. Identifying 
ICs reflecting cardiac activity can be done manually, based 
on topography and time course (Al et al., 2020, 2021; Bury 
et al., 2019; Ullsperger & Debener, 2010), or with the help 
of classification tools (Issa et al.,  2019; Pion-Tonachini 
et al.,  2019; Radüntz et al.,  2017; Tamburro et al.,  2019; 

Viola et al., 2009). Despite such classification tools, the de-
cision of whether a given IC represents primarily cardiac 
or brain activity is often difficult and not always objectifi-
able, thus not replicable.

Since the ECG source signal is readily available, a 
regression-based technique would seem to be another 
obvious method of choice. This possibility, however, has 
been left surprisingly unexplored. Here, we present a 
regression-based approach to remove the CFA from the 
EEG signal when the experimental stimulation is time-
locked to the ECG. An important consideration when 
designing regression models to predict the CFA from the 
ECG signal is that the relationship may not be entirely lin-
ear but will partly depend on the type of ECG derivation as 
well as on the cardiac cycle. Over the course of the cardiac 
cycle, the electrically active cardiac structures change. 
Therefore, the dipole generating the CFA changes its spa-
tial orientation relative to the EEG montage, inducing 
temporally specific dependencies between the EEG and 
ECG signals. To address this, we entered this information 
as predictors and used neural network models with dense 
hidden layers to perform the regression task, as these 
models are capable to model such nonlinear dependen-
cies. Recent studies successfully deployed neural network 
models for cleaning the EEG from various types of arti-
facts (Lopes et al., 2021; Merlin Praveena et al., 2022). An 
advantage of neural network models is that they are eas-
ily scalable in terms of their complexity. It should thus be 
possible to define models that are sufficiently complex to 
perform well, while also keeping computational demands 
to a minimum.

For the present study, we recorded the EEG as well 
as the ECG of 40 participants during an experiment in 
which lateralized visual stimuli were presented time-
locked to the ECG using a closed-loop system. Our goal 
was to remove the CFA on a single trial level with max-
imum efficacy while preserving specific EEG variance 
related to the visual stimuli. First, we present the re-
sults of an extensive grid search conducted to determine 
which set of model hyperparameters provides an opti-
mal balance of speed and performance. These results are 
presented to allow future studies to easily employ this 
method, since performing a grid search to fine-tune the 
model hyperparameters is very computation-intensive 
and time-consuming. Subsequently, we trained the 
neural networks to predict the EEG from the ECG (and 
additional features), and then removed the CFA by sub-
tracting these predictions from the signal. We compared 
the ERPs of the contaminated and the cleaned data by 
calculating effect sizes for each point in time × sensor 
space as an estimate of the efficacy of the CFA removal 
approach. Finally, we calculated the inter-trial phase co-
herences (ITPCs) for the contaminated and the cleaned 
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signals to demonstrate that this approach is appropriate 
to remove the CFA on the single trial level while pre-
serving stimulus-related information. Here, effect sizes 
for time × frequency × sensor data are provided.

2   |   METHOD

2.1  |  CFA removal using neural network 
regression

The basic idea of the method for removing the CFA 
from the EEG signal presented here is to use a regres-
sion modeling approach. Regression model training is 
performed on EEG data without systematic experimen-
tal stimulation. The models are trained for each partici-
pant and electrode to predict the EEG signal using the 
ECG signal and temporal features of the cardiac cycle. 
The data used for training the models consisted of indi-
vidual time points from epochs centered at R-peaks that 
neither preceded nor succeeded an experimental stimu-
lation event. For evaluating the models' performance, 
20% of the samples were put aside as a test dataset and 
were not used for training. During training, 20% of the 
remaining samples were also not used for training, but 
as a validation-dataset to track the model fit over train-
ing iterations. After training, predictions were made 
for the experimental dataset, containing samples from 
episodes of stimulus-induced activity time-locked to the 
ECG. These predictions then get subtracted from the 
observed signal for each EEG channel and participant 
individually, so that anatomical differences, differences 
between the recording-sessions and the spatial orienta-
tions of the dipoles generating the CFA relative to the 
EEG montage are considered. This also means that 
the method proposed here should produce compara-
ble results independent of population characteristics as 
sources of interindividual variability are taken into ac-
count. It is therefore not advisable to rely on pretrained 
models (i.e., from a different sample) as this could be 
detrimental to performance.

We deployed neural network models composed of dense 
layers with an equal number of neurons using Tensorflow 
(Abadi et al., 2015) with the Keras API (Chollet et al., 2015) 
for Python. An important design choice when specifying 
neural network architectures is to define the model's hy-
perparameters. Some choices regarding hyperparameters 
were based on best practice recommendations: We used 
the ELU activation function (Clevert et al., 2016), as it was 
shown that it does suffer neither from vanishing or explod-
ing gradients, nor from dying neurons. It has also been de-
scribed as converging comparably fast during training. For 
weight initialization, we used the method proposed by He 

et al. (2015) and we used Nadam as an optimizer for the 
gradient descent algorithm (Dozat, 2016). For regulariza-
tion, to prevent overfitting the training data, we made use 
of early stopping during training. Training stopped when 
the loss metric did not further improve over the course of 
ten epochs. The mean squared error was used as the loss 
function, and the loss was calculated based on validation 
data that was not used for training.

Beside these a priori design choices, we also performed 
a grid search for several other hyperparameters and model 
features to investigate the models' performance in terms 
of prediction accuracy and training speed. One pair of hy-
perparameters determining the complexity of the model 
are the number of layers and the number of neurons per 
layer. Our grid search encompassed 1, 2, 4, or 8-layer mod-
els consisting of 5, 10, 20, or 50 neurons each. A hyper-
parameter choice possibly affecting model accuracy and 
training speed is batch size, which determines the amount 
of training data (i.e., samples/time-point data) the model 
uses for each iteration. Here, we compare a smaller batch 
size of 128 to a larger batch size of 2048. Similarly, we 
investigated how far a reduction of the training data af-
fects the models' performance by using either all available 
training data or just 25% of it.

A possible source of nonlinearity in the relation be-
tween ECG recorded at the chest and CFA recorded at 
the scalp are changes in the location and orientation of 
the dipole generating the electric field that produces the 
CFA. These changes should be related to the cardiac cycle. 
In the grid search, we therefore also compared whether 
information on the cardiac cycle helps to improve the 
model. To this end, we created two additional features 
(time series). One of these features simply consisted of 
the time in milliseconds that had passed since the last 
R-peak. The second feature consisted of the percentage 
of time that had already passed in the interval from the 
last to the next R-peak. We also investigated which ECG 
electrode's signal to use for the model. In our setup, we 
used the ECG electrodes of the cardiac trigger monitor as 
well as a dropdown electrode from the EEG cap, which 
we attached to the chest. Since this dropdown electrode 
is referenced against a scalp electrode, its signal should be 
sensitive to head movements and thus provide additional 
information. In the grid search, we compared the models' 
performance when using either one or both of these elec-
trodes' signals as features. Overall, this selection leads to 
4 (layers) * 4 (neurons) * 2 (batch size) * 2 (training data-
set size) * 2 (RR-interval latency and phase as additional 
features versus no information) * 3 (ECG channels) = 384 
models to train during the grid search to estimate the opti-
mal hyperparameter set for the intended task. The results 
of the grid search are reported in the section “Feature se-
lection and hyperparameter tuning.”
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2.2  |  Sample

The sample consisted of N = 40 (20 female) healthy, 
right-handed participants, aged 19 to 31 years (M = 23.78, 
SD = 3.42) with (corrected to) normal vision. Applicants 
were not included if they showed any evidence of acute or 
chronic diseases of the cardiovascular system (deviations 
from sine rhythm, glaucoma, history of fainting, resting 
blood pressure above 140/90 mmHg), history of psychi-
atric disease or neurological disorders. All exclusion and 
inclusion criteria were assessed during a brief telephone 
interview. Normal blood pressure and sine rhythm (i.e., 
absence of extrasystoles) were confirmed during a ten-
minute resting phase before the start of the experiment. 
Further exclusion criteria were smoking of more than five 
cigarettes per day, drug intake, or current use of medi-
cation. Participants were recruited by announcement in 
the institute's social media accounts. The study was per-
formed in accordance with the Declaration of Helsinki. 
All participants took part voluntarily and gave written 
informed consent. The ethics committee of the Leibniz 
Research Centre for Working Environment and Human 
Factors, Dortmund approved the study.

2.3  |  Experimental procedure

All participants were invited to the laboratory at 8:30 a.m. 
After the preparation of the EEG cap and the ECG 

electrodes, the participants were seated in a sound attenu-
ated EEG recording cabin with dim lighting. The partici-
pants were then fitted with a medical cervical collar with 
the intention of restricting head movements as much as 
possible. During the experiment, the letters “S” and “X” 
were presented as target stimuli, one at each trial (see 
Figure 1a), for 50 ms at a lateralized position with an offset 
of 2° visual angle relative to the center of the screen. To 
balance the physical properties of the visual stimulation, a 
noise stimulus consisting of three horizontal bars was pre-
sented simultaneously, contralateral to the target stimu-
lus. The height and width of the target and noise stimuli 
were at a 0.45° visual angle. The lateralized positions for 
the stimulus presentation were outlined by squares with 
an edge length of 1° that were visible the whole time. Also, 
a fixation cross with a diameter of 0.3° was presented in the 
center of the screen. All visual stimuli were presented in 
light gray (CIE values: x = 0.287, y = 0.312, Y = 80) against a 
dark background (CIE values: x = 0.287, y = 0.312, Y = 10). 
The participants were instructed to identify both letters “S” 
and “X” by pushing a left or right button using the index 
finger of their respective hands. Whether the letter “S” or 
“X” was assigned to the left or right index finger was coun-
terbalanced across participants. They were instructed to 
respond as quickly and accurately as possible. Overall, the 
experiment consisted of a practice block of 5 min and four 
experimental blocks of 20 min each (see Figure 1c).

In the four experimental blocks, the target stimuli 
were presented time-locked to the R-peaks of the ECG to 

F I G U R E  1   This figure depicts in (a) an example of the experimental stimuli used, in (b) the stimulus and delay period latencies with 
respect to the R-peak during systolic and diastolic stimulation, and in (c) an overview of the block-structure of the experiment.
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stimulate either 230 ms (systole) or 530 ms (diastole) after 
the R-peak (Schulz et al.,  2009). R-peaks were detected 
online using an AccuSync ECG monitor (AccuSync 72, 
Medical Research Corp.) which delivered TTL pulses to 
the stimulus presenting PC, creating a closed-loop system. 
After a participant responded to a stimulus or the maxi-
mum response time was reached, there was a jittery delay 
interval with an average length of 700 ms (systolic trials) 
or 400 ms (diastolic trials). The 300 ms difference in this 
interval was introduced to compensate for the different 
onset latencies between systolic and diastolic stimula-
tion. The subsequent R-peak after this delay interval was 
then used as the time-locking event for the next trial. This 
concept is illustrated in Figure 1b. Systolic and diastolic 
stimulation were altered block-wise, with half of the par-
ticipants beginning with systolic stimulation in the first 
experimental block and the other half beginning with di-
astolic stimulation.

2.4  |  EEG and ECG acquisition

A montage of 60 active Ag/AgCl electrodes (ActiCap, 
Brain Products) arranged according to the 10–20 system 
was used to record the EEG. During recording, the Fpz 
electrode was used as ground, and the P9 electrode served 
as an online reference. ECG data were recorded using a 
bipolar montage of two Ag/AgCl electrodes placed in Lead 
II configuration. Another electrode was placed below the 
chest and referenced to P9 to approximate the CFA at the 
scalp electrodes. Data were sampled at 1000 Hz by using a 
BrainAmp DC amplifier (Brain Product). A hardware low-
pass filter was applied at 250 Hz, and the impedances were 
kept below 10 kΩ.

2.5  |  EEG preprocessing

The open-source toolbox EEGLab (Delorme & 
Makeig, 2004) was used to preprocess the EEG data with 
MATLAB 2019b (The Math Works Inc.). At first, EEG 
data as well as ECG data were band-pass filtered from 0.5 
to 30 Hz using a Butterworth filter with filter order 6. With 
respect to the ECG data, two additional time series were 
created: one time series representing the cardiac cycle at 
each time point ranging from 0 to 1, and another time se-
ries containing the time passed since the last R-peak in 
sampling points. The 59 EEG channels were then scanned 
for electrodes with a bad signal. On average, 0.63 chan-
nels (SD = 0.81) were excluded from further analysis. 
Afterward, a common average reference was used to re-
reference the EEG data. For computing an Independent 
Component Analysis (ICA), the data were resampled at 

200 Hz, epoched into consecutive segments of 2000 ms 
length, and epochs containing bad-quality data were 
identified and removed using EEGLab's automatic epoch 
rejection function (see code for details). After comput-
ing the ICA, the IC weights were copied to the 1000 Hz 
continuous data set. There, ICs representing artifacts were 
identified using ICLabel (Pion-Tonachini et al., 2019). ICs 
labeled with a probability of at least 0.3 as reflecting mus-
cle or ocular artifacts were removed unless they were la-
beled with a probability of at least 0.1 to reflect cardiac 
activity. On average, 7.3 ICs (SD = 2.88) were removed. 
Finally, previously excluded channels were interpolated.

Two datasets, one stimulus-locked and another R-peak-
locked, were created. We refer to the dataset time-locked to 
the onset of the stimuli as the experimental dataset. The ac-
curacy of the visual stimulation regarding the cardiac phase 
was ensured by discarding trials not presented within the 
range of 30 ms of the targeted latency (230 ms for systolic 
stimulation, 530 ms for diastolic stimulation). On average, 
514.6 trials (22.9%) were removed due to latency impreci-
sion. The epochs of the experimental dataset ranged from 
−1000 to 2000 ms relative to stimulus onset. Epochs of bad 
data quality were then identified in the EEG data using 
EEGLab's automatic epoch rejection function and removed 
from the EEG as well as from the ECG data. On average, 
175.18 epochs were excluded (SD = 117.64) and the number 
of remaining trials was 1494.18 on average (SD = 226.65).

The dataset time-locked to R-peaks will be referred 
to as the training dataset. It comprised only epochs cen-
tered at R-peaks that neither preceded nor succeeded 
an experimental stimulus. This was done to prevent sys-
tematic variance related to the experimental stimulation 
from being present in this dataset. Overall, 3322.58 epochs 
(SD = 1403.65) could be identified that exhibited these 
properties. These epochs ranged from −1000 to 1000 ms 
relative to the R-peaks. On average, 790.25 (SD = 555.7) 
were excluded due to bad data quality, leaving a total of 
2532.33 (SD = 1051.25) for further analysis. Since the re-
gression was performed using the data from individual 
time-points as samples, over 5,000,000 samples were avail-
able on average before splitting the dataset into training-, 
validation-, and test-sets.

2.6  |  Calculating the ITPCs

ITPCs were calculated using the MNE module for Python 
(Gramfort et al.,  2013). The time-frequency decomposi-
tion was done using Morlet-wavelet convolution. Overall, 
20 linearly spaced frequencies were extracted, ranging 
from 2 to 20 Hz by using an also linearly spaced number 
of cycles ranging from 3 to 12. The ITPC is a measure of 
phase coherence and is calculated as the circular sum of 
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phases at a specific time point. Here, the ITPC is calcu-
lated across trials.

2.7  |  Effect sizes

To evaluate the differences between the contaminated 
and the cleaned signal, effect sizes are calculated as the 
bias-corrected partial η2 (Mordkoff, 2019; subsequently re-
ferred to as η2) and are also classified as small, medium, 
or large according to Cohen  (1992). The η2 can be used 
as an estimate for the efficacy and specificity of the CFA 
removal approach. For the ERPs, effect sizes are reported 
for each point in time × sensor space. For the ITPCs, effect 
sizes are reported for time × frequency × sensor data.

3   |   RESULTS

3.1  |  Feature selection and 
hyperparameter-tuning

To estimate an optimal set of hyperparameters and fea-
tures to define the neural network architecture and 

training data, a grid search was performed using a selec-
tion of values for the number of layers, the number of 
neurons within each layer, the batch size of each iteration 
during training, the size of the training dataset, whether 
cardiac phase information is used as a feature, and which 
ECG channels are used as a feature. Overall, 384 models 
were trained for the data of each participant for the EEG 
channels FCz, P7, and P8. The results, averaged across 
participants and EEG channels, are depicted in Figure 2.

The left side of Figure  2 illustrates the results of the 
grid search regarding the accuracy of the model. Depicted 
is the mean squared error (MSE) as a measure of how good 
the model fits the test data after training. The test data are 
a proportion (20%) of the initially available data that were 
not used during the actual training but used after train-
ing to evaluate the model's performance. A lower MSE 
indicates a better model fit. The results indicate that the 
performance of the neural networks was generally better 
with more complex models, that is, with a higher num-
ber of dense hidden layers and a higher number of neu-
rons. More importantly, however, the model's accuracy 
increases with the amount of information provided by the 
features. The performance gets better if information from 
both ECG channels, the lead II ECG channel as well as the 

F I G U R E  2   This figure depicts the results of the grid search used for hyperparameter tuning and feature selection. The left panel 
illustrates the model performance as the mean squared error (MSE) as a goodness of fit statistic when using the trained model on the test 
data. The right side shows the training time in seconds.
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dropdown EEG electrode, is used. Providing information 
about the cardiac phase also improves performance.

The right side of Figure  2 shows the average training 
time for the models in seconds. Please note that the absolute 
values presented here are not necessarily representative, as 
the grid search was parallelized and each model was trained 
using only a single thread of the CPU. Here, the results show 
that training time increases with model complexity (num-
ber of layers and number of neurons within each layer) and 
with the number of features (number of ECG channels and 
cardiac phase information). Additionally, the pattern of re-
sults clearly indicates that training time is also impacted 
by batch size, with larger batch sizes being associated with 
faster training and the size of the training dataset, with a re-
duced training dataset leading to a faster training.

In summary, batch size and size of the training dataset af-
fected training time substantially with comparably small ef-
fects on the model's performance, while adding information 
about the cardiac cycle and both ECG channels increased 
performance with smaller effects on training time. Thus, to 
balance performance and training time, it is advisable to use 
models of medium complexity, provide additional features, 
and use only a proportion of the training data.

For the following analyses, we trained the models 
using the data from both ECG channels as well as the car-
diac phase information as features, as using more features 
seems to have the strongest effect on model fit. The stron-
gest impact on training time had the factor sample set size. 
Therefore, we used only 25% of the available training data. 
With these choices made, all remaining combinations of 
hyperparameter settings provided an acceptable training 
time. We therefore went with the combination that pro-
vided the best model fit and used neural networks com-
prised of eight layers with ten neurons each and a batch 
size of 128 samples. Figure 3 illustrates the effectiveness 
of the regression-based CFA removal for R-peak centered 
epochs without experimental stimulation. The figure also 
illustrates that this approach reduced inter-individual 
variance related to the CFA without introducing inter-
individual variance related to the method itself.

3.2  |  Effect of CFA removal on ERPs

To quantify the effects of the CFA removal in ERP analy-
ses, we compared the ERPs of the CFA-contaminated and 
cleaned signals of stimulus-locked epochs. The ERPs of 
the contaminated, predicted, and cleaned signals, as well 
as the associated effect sizes, are depicted in Figure 4. The 
effect size estimates indicate that the effects of the CFA 
removal are medium to large (c.f. Cohen, 1992) at left pa-
rietal, occipital, and frontal recording sites. The locations 
of these clusters in time suggest that the observed differ-
ences between the contaminated and the cleaned signals 
specifically reflect a reduction of the CFA.

3.3  |  Effects of CFA removal on ITPCs

To assess the performance and specificity of the CFA re-
moval on the single trial level, we show the effects of the 
CFA removal for ITPCs (see Figure 5). The effect sizes cal-
culated for the comparison of the ITPCs obtained from the 
contaminated and the cleaned signals are medium to large, 
in particular at posterior and fronto-lateral electrodes.

4   |   DISCUSSION

The goal of the present study was to investigate a 
regression-based approach deploying neural networks to 
remove the CFA from the EEG signal, which is necessary 
when using experimental designs in which the signal of 
interest is time-locked to cardiac activity. We found that 
such an approach represents a feasible alternative to exist-
ing methods and allows for effective removal of the CFA 
on a single-trial level. Moreover, we found that the perfor-
mance of regression models to predict the CFA critically 
depends on the availability of additional information and 
the choice of hyperparameters.

Before the actual CFA removal, we performed a grid 
search to explore the performance of the model for 

F I G U R E  3   This figure shows the ERP of R-peak centered epochs without experimental stimulation for contaminated and cleaned 
data. The black line is the average across participants and the electrodes P7, P8, and FCz. The magenta shaded area indicates the standard 
deviation of the ERP across participants at each time point.
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8 of 13  |      ARNAU et al.

F I G U R E  4   The figure shows the ERPs calculated for trials with systolic (a) and diastolic (b) experimental stimulation. Displayed are 
the ERPs for the contaminated, predicted, and the cleaned signal, as well as the associated effect size estimates for the comparison of the 
contaminated and the cleaned signals. A baseline ranging from −200 to 0 ms relative to stimulus onset was used for the ERPs. Time-point 
zero refers to the onset of the experimental stimuli. The black line with the gray area under the curve in the ERP plots displays the global 
field power.
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various combinations of hyperparameter settings and 
features. The results provide the necessary information 
on how to best design such a model and, by doing so, 
also offer insights into the nature of the regression task 
and the CFA as well. Regarding the hyperparameters, 
the results of the grid search indicate that the models' 
fit improves with more complex architectures, that is, a 
higher number of layers and neurons, which might be 
necessary to model nonlinear dependencies. However, 
the results also indicate that the more important factor 

is to provide more information when training the mod-
els. The fit also increased when both ECG channels were 
used as compared to only one. This could indicate that 
the ECG channels were nonredundant in the sense that 
they were sensitive to different proportions of the vari-
ance of the cardiac field. As one of the ECG channels 
was referenced against the head and the other against 
the chest, it could also be the case that the covariance of 
both channels provides meaningful information regard-
ing the relative orientation of the dipole generating the 

F I G U R E  5   This figure shows the ITPCs for the contaminated and the cleaned signals for trials with systolic and diastolic stimulation. 
Effect sizes for the CFA removal are depicted in time-frequency space, averaged across channels, and as topographies for several time points 
throughout the trial. The frequency axis in the time-frequency plots is log-scaled.
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cardiac field and the EEG sensors. That is, the covari-
ance of the ECG channels might allow for modeling head 
movements. Another important factor in improving the 
models' fit was using features that provided information 
about the cardiac phase. We created two channels con-
taining cardiac phase information. One of these channels 
contained the time that has passed since the last R-peak; 
the other contained the temporal position in the current 
RR-interval. The observation that the models fit better 
when cardiac phase information was available highlights 
the nonlinear nature of the regression task. As the ori-
entation and location of the dipole generating the CFA 
change over the course of the cardiac cycle, a given value 
in an ECG channel might translate to different values in 
the EEG channels at different cardiac phases. Eventually, 
we opted for using eight-layer models with ten neurons 
per layer. As input features, we used both ECG channels 
as well as information about the cardiac phase.

Another set of hyperparameters we investigated con-
cerns the tradeoff of model fit and training time. The 
training of neural networks occurs in epochs. In each 
epoch, the model is trained on all the training data, which 
are presented sequentially in batches, with the models' pa-
rameters being adjusted with each batch. Smaller batch 
sizes thus lead to a larger number of adjustments to the 
models' parameters, which can lead to a better model fit. 
The training time of neural network depends to a large 
extent on the amount of training data and on how much 
of this data is used in each batch. Our observations sug-
gest that much training time can be avoided when using a 
smaller amount of data for training and larger batch sizes 
without decreasing the models' fit too much.

To investigate the performance of the proposed CFA-
removal approach, we compared the stimulus-locked ERPs 
and ITPCs of the contaminated and the cleaned signals for 
trials with systolic and diastolic stimulation. We chose to 
include the ITPC analysis to demonstrate that an analy-
sis requiring single trial data can be performed using this 
approach. Overall, the results for stimulus-centered ERPs 
show that the approach is effective and affects the CFA 
specifically. In the present study, we aimed for a presen-
tation latency relative to the R-peak of 230 ms and 530 ms 
for systolic and diastolic stimulation, respectively. Effect 
size estimates for the ERPs as well as for the ITPCs clearly 
show that the difference between the contaminated and 
the cleaned signal is the largest around these time points. 
For the ERPs, the effect size estimates exhibit medium to 
large effects (Cohen, 1992), which are most pronounced at 
left parietal and frontal recording sites. For the ITPCs, ef-
fect sizes were medium to large, with the strongest effects 
in the beta-range and at occipital electrodes. Both analyses 
show that the EEG signal related to cognitive processing is 
little affected by the CFA-removal approach.

Previously proposed approaches to remove the CFA 
all have specific downsides, possibly limiting their effec-
tiveness, the reproducibility, or their range of applica-
bility. Hjorth  (1975) suggested deriving the EEG within 
the 10–20 system in a way that is less sensitive to signals 
with the spatial distribution and the special frequency 
the CFA exhibits (c.f. Montoya et al.,  1993; Pollatos & 
Schandry, 2004). Based on a similar principle, transform-
ing the data to the current source density (CSD; Kayser & 
Tenke, 2006) has also been proposed to attenuate the CFA 
by reducing its low spatial-frequency component (Luft & 
Bhattacharya, 2015; Terhaar et al., 2012). The downside of 
methods that dampen signal components with low spatial 
frequency is that they reduce the SNR for EEG compo-
nents that exhibit such properties as well. In contrast, CFA 
components with a clearly defined topographical charac-
teristic might be relatively unaffected.

Another approach focuses on temporal aspects of the 
CFA. In their experiment, van Elk et al. (2014) presented 
auditory stimuli at various latencies after the R-peak. 
To correct for the CFA, they subtracted a baseline ERP 
from the ERP of each condition. The baseline ERP was 
obtained from episodes without auditory stimuli. This 
approach has also been used in a study investigating 
pain-evoked potentials (Gray et al.,  2010). The advan-
tage of using ERPs time-locked to the cardiac phase as 
an estimator for the CFA is that it takes specific charac-
teristics of the CFA related to the individual and record-
ing session into account. A potential downside of this 
method is, that it does not work at the level of individual 
trials. Certain analysis methods that rely on single trials 
cannot be deployed. This also means that this approach 
cannot remove the proportion of CFA-related variance 
from the signal that reflects the trial to trial variability 
of the CFA.

The approach that is by far the most commonly used 
to remove the CFA in recent studies is independent com-
ponent analysis (ICA; Hyvärinen et al.,  2001). ICA is a 
blind source separation method that aims at decomposing 
a mixed signal into statistical sources (c.f. Ullsperger & 
Debener, 2010). The motivation for using ICA to decom-
pose multi-channel EEG recordings is twofold. On the 
one hand, ICA can be used to detect and remove artifacts 
(Jung et al., 2000), on the other hand, it may also be used 
to unmix brain signals (Makeig et al.,  2002). The basic 
idea of deploying ICA to remove the CFA is to identify 
components in IC-space, that is, the decomposed signal, 
that predominantly reflect cardiac activity. To remove the 
artifact, these ICs can then be omitted when projecting 
the data back to sensor-space. Identifying ICs reflecting 
cardiac activity can be done manually, as they usually ex-
hibit a distinctive, asymmetric topography (Ullsperger & 
Debener, 2010), as well as a time course resembling the 
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ECG when analyzed in a heartbeat-locked manner. This 
method has been used successfully (e.g. Al et al.,  2020, 
2021), sometimes assisted by correlating the IC activation 
with the ECG (Bury et al., 2019). Several tools have been 
developed to improve the reproducibility of this, at least to 
some extent, subjective IC selection process. These tools 
are either focused on selecting ICs reflecting the CFA spe-
cifically (Issa et al., 2019; Tamburro et al., 2019) or offer 
general assistance in IC classification (Pion-Tonachini 
et al., 2019; Radüntz et al., 2017; Viola et al., 2009). Another 
problem related to identifying ICs that reflect the CFA is 
that ICs are not necessarily process-pure. Particularly in 
high density EEG recordings, specific sources can be re-
flected by multiple ICS. Furthermore, the separation of 
artifacts from brain-related activity is not always satisfac-
tory in such a way that EEG and CFA might still be mixed 
to some extent in IC-space (Ullsperger & Debener, 2010). 
These mixed source ICs are more likely when the ratio 
of degrees of freedom for the decomposition and num-
ber of sources of variance is low, for example when the 
number of EEG channels is low, when the experimental 
task is complex, or when the recording environment is 
noisy. This can render the decision about whether an IC 
represents primarily cardiac or brain activity difficult. The 
regression-based approach presented here avoids these 
potential pitfalls by not relying on spatial properties of 
the signal, estimating the CFA on a single-trial basis and 
being purely data driven without the subjective selection 
of components. It is also important to note that the appli-
cability of the proposed method does not rely on a specific 
timing of experimental stimulation and cardiac phase; the 
only prerequisite is that the EEG and ECG signals are re-
corded simultaneously.

There are, however, also downsides in comparison to 
existing methods. An obvious disadvantage is that the 
ECG needs to be recorded to perform the regression. 
Nevertheless, as this approach is most relevant for re-
search investigating the interdependency of cognitive 
and cardiac processes, the ECG will probably be recorded 
anyway. A possible limitation is also that we restricted the 
participants' head movements by using a medical cervical 
collar, thereby stabilizing the spatial propagation of the 
CFA. Although many EEG studies aim to stabilize head 
position, this may hamper the generalizability of our ap-
proach. This, however, also applies to ICA-based methods 
for CFA removal. For future studies, it might be possible 
to record the head movements by motion tracking systems 
and use this data as an additional feature in the regression 
models.

In conclusion, our results show that the proposed 
method to remove the CFA from the EEG signal using 
neural network regression is effective. Moreover, it al-
lows for a specific removal of the CFA while preserving 

stimulus-induced variance even if temporally related to 
the activity of the heart. The proposed neural network re-
gression approach can thus provide a replicable and auto-
mated method for CFA removal, in particular for studies 
presenting stimuli time-locked to heartbeats.
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