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A B S T R A C T   

Maritime Situational Awareness (MSA) is a critical component of intelligent maritime traffic surveillance. 
However, it becomes increasingly challenging to gain MSA accurately given the growing complexity of ship 
traffic patterns due to multi-ship interactions possibly involving classical manned ships and emerging autono-
mous ships. This study proposes a new traffic partitioning methodology to realise the optimal maritime traffic 
partition in complex waters. The methodology combines conflict criticality and spatial distance to generate 
conflict-connected and spatially compact traffic clusters, thereby improving the interpretability of traffic patterns 
and supporting ship anti-collision risk management. First, a composite similarity measure is designed using a 
probabilistic conflict detection approach and a newly formulated maritime traffic route network learned through 
maritime knowledge mining. Then, an extended graph-based clustering framework is used to produce balanced 
traffic clusters with high intra-connections but low inter-connections. The proposed methodology is thoroughly 
demonstrated and tested using Automatic Identification System (AIS) trajectory data in the Ningbo-Zhoushan 
Port. The experimental results show that the proposed methodology 1) has effective performance in decom-
posing the traffic complexity, 2) can assist in identifying high-risk/density traffic clusters, and 3) is sufficiently 
generic to handle various traffic scenarios in complex geographical waters. Therefore, this study makes signif-
icant contributions to intelligent maritime surveillance and provides a theoretical foundation for promoting 
maritime anti-collision risk management for the future mixed traffic of both manned and autonomous ships.   

1. Introduction 

Maritime traffic safety management plays a vital role in human life 
security, economic development, and ocean environmental protection. 
Proactive maritime surveillance using modern and intelligent trans-
portation technologies is one of the essential components of maritime 
traffic safety management (Liang et al., 2022; Liu et al., 2022). To 
enhance maritime surveillance and make port transportation more 
efficient, a great variety of new technologies and systems have been 
developed and deployed, including but not limited to Artificial Intelli-
gence (AI), Big Data, Internet of Things (IoT), Intelligent Situational 
Awareness System (ISAS), and Automatic Identification System (AIS) 
(Filom, Amiri, & Razavi, 2022). They have different technical specifi-
cations and functionalities, enabling the realisation of maritime traffic 
monitoring and Maritime Situational Awareness (MSA) from diverse 

aspects. Nevertheless, the broadness of the surveillance areas and the 
diversity of ship motion activities (e.g., sailing, berthing, anchoring, and 
refuelling) bring significant challenges to their practical applications. 
Particularly, with respect to the transport demand growth, the appli-
cation of super large-scale ships, the development of emerging tech-
nologies (e.g., autonomous ships), and the impact of non-classical risks 
(e.g., COVID-19), maritime traffic situations have become increasingly 
complicated and sophisticated, particularly in complex waters (e.g., 
ports). These challenges hinder the effectiveness of the currently used 
MSA systems (Fang, Yu, Ke, Shaw, & Peng, 2018; Shi & Weng, 2021; Yu, 
Fang, Murray, & Peng, 2019). As a result, new advanced MSA techniques 
and tools have to be developed and implemented urgently to cope with 
the ever-growing complexity of maritime traffic situations for better 
maritime traffic surveillance and ship collision risk management to aid 
the establishment of the intelligent transportation system. 
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Based on the demand to enhance the operational monitoring over 
busy waters of interest, a variety of techniques and approaches have 
been proposed to undertake collision risk quantification and estimation 
(e.g., Chen, Huang, Mou, & van Gelder, 2019; Huang, Chen, Chen, 
Negenborn, & van Gelder, 2020; Yu, Liu, Chang, et al., 2020). They offer 
insights on providing a quantitative foundation for maritime surveil-
lance and issuing early collision warnings to support anti-collision de-
cision-making (Gilbert, Petrovic, Pickering, & Warwick, 2021; Liu, 
Zhang, Yan, & Soares, 2022; Öztürk, Boz, & Balcisoy, 2021). With the 
rapid development of AIS and the increased accessibility of a vast 
amount of vessel movement information (i.e., AIS data), accurate 
collision risk assessment and characterisation of maritime traffic have 
become possible and further attracted widespread attention in recent 
years. Apart from the usage for maritime collision analysis, advanced 
applications of AIS data in maritime safety-related studies have been 
witnessed, including maritime traffic pattern extraction (Li et al., 2020; 
Li et al., 2022), vessel trajectory anomaly detection (Iphar, Ray, & 
Napoli, 2020; Rong et al., 2019; 2022), vessel motion prediction (Li, 
Jiao, & Yang, 2023; Li & Yang, 2023; Zhang et al., 2023), and ship path 
optimization (Duan, Fan, Chen, Chen, & Ma, 2021; Tavakoli, Najafi, 
Amini, & Dashtimansh, 2021; Yu et al., 2021; Zhang, Liu, Hirdaris, 
Zhang, & Tian, 2022). While the applications of AIS data contribute to 
the improved analysis and modelling of ship motion behaviours, 
increasingly complex traffic situations associated with multi-ship in-
teractions and the growth of ship spatiotemporal movement uncertainty 
remained unaddressed, requiring new intelligent MSA methods to be 
found. More specifically, an intelligent MSA method requires continuous 
assessment of the maritime geographical features, the spatiotemporal 
dynamics and uncertainty of ship motion, and the multi-dependent in-
terrelationships among ships in a collective manner. Therefore, devel-
oping such an MSA method is very challenging in theory when so many 
constraints are embedded in complex dynamic waters, especially 
considering the emergence of future hybrid traffic encounter situations. 
One of the realistic solutions is to develop a practical maritime traffic 
partitioning approach to partition the whole maritime traffic into 
several interpretable traffic clusters, in which the ships in the same 
cluster have high spatiotemporal interrelationships while the ships be-
tween different clusters have low spatiotemporal interactions. Un-
doubtedly, it can reduce the difficulty of understanding the whole traffic 
situation and facilitate the identification of potential high-risk traffic 
clusters. 

This study aims to propose an optimal ship traffic partition meth-
odology to partition the regional ship traffic into several compact, 
scalable, and interpretable groups. The first step to partition maritime 
traffic is to rationally interpret its pattern complexity and the multiple 
interactions (e.g., spatiotemporal proximity and potential conflict) 
among ships. Compared to the investigations in urban transportation 
networks (Gu & Saberi, 2019; Ji & Geroliminis, 2012; Saeedmanesh & 
Geroliminis, 2016), traffic partitioning studies in maritime trans-
portation is in infancy partially because of its traffic uniqueness in the 
sector, which requires one to generate traffic clusters with a guarantee of 
both conflict connectivity and spatial compactness. Both guarantees 
have some theoretical implications that have yet been well addressed in 
the current literature. For instance, the conflict calibration needs to 
incorporate the ship movement uncertain features in a dynamic traffic 
situation, whereas the spatial compactness measure requires extending 
the shortest path search approach based on a maritime traffic route 
network obtained by maritime trajectory knowledge extraction. On this 
basis, these two indices have to be integrated into a composite similarity 
measure model through an effective combination way, in which the 
weights assigned to the two indices also need to be determined based on 
sensitivity analysis as a trade-off parameter. Only by then, the similarity 
measure result can be fed into a robust graph-based clustering frame-
work to produce traffic clusters with a balanced size where the intra- 
cluster similarity can be maximized but the inter-cluster similarity 
minimized. Despite the high demand on research efforts and resources, 

the success of this work will make significant contributions both in 
theory and in practice. Along with the main contributions of supporting 
intelligent MSA by decomposing the traffic complexity in regulatory 
waters to guide ship collision avoidance risk management, the origi-
nality and other methodological contributions of this work are given as 
follows:  

1) Two optimization criteria, i.e., conflicting criticality and spatial 
distance, are integrated and incorporated into the traffic partitioning 
process to assist in generating both conflict-connected and spatial 
compact traffic clusters. To combine these criteria effectively, a 
linear combination function is utilized and the weights assigned to 
each criterion are determined through a sensitivity analysis to ach-
ieve a balanced trade-off between them.  

2) The proposed approach makes use of historical AIS data to generate a 
data-driven representation of maritime traffic route network. It 
contributes toward capturing the traffic clusters with real spatial 
compactness by using the length of the shortest path of ship pairs on 
the network instead of the traditional physical distance, ensuring the 
adaptation to the traffic scenarios in any restricted geographical 
waters. 

3) With respect to traffic partitioning, a graph-based clustering frame-
work known as Symmetric Nonnegative Matrix Factorization 
(SNMF) is extended by employing the Newton-like algorithm to 
produce ideal traffic clusters with balanced sizes. It is flexible and 
scalable to handle various traffic scenarios beyond the maritime 
sector by optimizing the graph clustering objectives. 

The remainder of the paper is organized as follows. Section 2 reviews 
the literature related to ship collision risk evaluation and estimation and 
AIS data applications in maritime traffic surveillance. The details of the 
developed modelling methodology are explained in Section 3, including 
the similarity measure model, graph partitioning algorithm, and metrics 
development. Application performance, validation, and implications are 
given in Section 4. Conclusions are presented in Section 5. 

2. Literature review 

2.1. Ship collision risk evaluation and estimation 

Collision risk assessment and estimation as an indispensable part of 
safety management is fundamental to reducing accidents in the mari-
time transportation domain. There is a strong understanding and 
extensive literature on maritime collision risk modelling and prediction 
associated with new concepts and definitions, such as near-miss (Zhang, 
Goerlandt, Montewka, & Kujala, 2015), collision candidates (Chen, 
Huang, Mou, & van Gelder, 2018), and traffic conflict (Weng, Meng, & 
Qu, 2012; Weng & Shan, 2015). Due to the critical mass of the relevant 
publications, a comprehensive and detailed survey has been docu-
mented in such papers as Chen et al. (2019) and Huang et al. (2020). 
Briefly speaking, the relevant research can be classified as ship domain- 
based and synthetic index approaches. The former evaluates and esti-
mates the collision risk in terms of the violation or overlap of the 
encountering ships’ domain areas, whereas the latter quatifies the po-
tential collision probability and severity by synergizing the indicators 
that characterise the approaching ships’ spatiotemporal proximity. 

Regarding ship domain-based approaches, many ship domain models 
have been developed to detect collision candidates. The critical concern 
for these models consists of the identification of the key influential 
factors (e.g., vessel attributes and knowledge of navigators (Liu, Feng, 
Li, Wang, & Wen, 2016; Wang & Chin, 2016)), the definition of the 
domain shapes (e.g., elliptical, polygonal, and fuzzy domains (Szlapc-
zynski & Szlapczynska, 2016; Wang, 2013; Wang & Chin, 2016)), and 
the specification of the model training methods (e.g., knowledge-based, 
empirical, and analytical methods (Szlapczynski & Szlapczynska, 
2017)). These models have been used to address different issues and are 
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capable of estimating waterway capacity, capturing near-miss hot-spots, 
and deriving knowledge about primary factors related to near-collision 
clusters (Liu et al., 2016; Liu, Yuan, Xin, Zhang, & Wang, 2021; Rong, 
Teixeira, & Soares, 2021). Unfortunately, the model training outcomes 
heavily rely on the traffic characteristics in the investigated water areas 
when historical traffic trajectory records are utilized (Kulkarni, Goer-
landt, Li, Banda, & Kujala, 2020; Wang & Chin, 2016). Additionally, it is 
unfeasible to directly apply these models for real-time Conflict Detection 
(CD) implementation. As a result, the ship domain-based collision esti-
mation by incorporating refined trajectory prediction models has been 
put forward to address this deficiency. 

With respect to synthetic index methods, the Distance to Closest 
Point of Approach (DCPA) and Time to Closest Point of Approach 
(TCPA) are the two most commonly employed indicators to characterise 
potentially dangerous encounter events. They were initially synthesised 
based on such techniques as linear regression (Chin & Debnath, 2009), 
weighting coefficient (Zhen, Riveiro, & Jin, 2017), and fuzzy theory (Lee 
& Rhee, 2001), and performed well in noticing potential collisions at 
open sea. Within this context, further extensions and enhancements are 
conducted. Examples include incorporating more detailed influential 
factors (e.g., relative speed, stability conditions, and ship manoeu-
vrability (Gil, Montewka, Krata, Hinz, & Hirdaris, 2020; Gil, 2021; 
Zhang, Montewka, Manderbacka, Kujala, & Hirdaris, 2021; Zhao, Li, & 
Shi, 2016)), deploying advanced index synthesis techniques (e.g., 
Analytical Hierarchical Process (Zhao et al., 2016), and Dempster-Shafer 
evidence theory (Li & Pang, 2013)), and considering their effectiveness 
to all kinds of encountering scenarios (Goerlandt, Montewka, Kuzmin, & 
Kujala, 2015). For easy implementation of the methods, a fundamental 
hypothesis is set as that ships keep a linear motion during their 
encounter process. Such a strong assumption significantly degrades their 
practical applicability in highly dynamic traffic situations. For instance, 
a ship may need to turn frequently due to the influence of waterway 
topography. It means that improvement is possible by exploring the ship 
motion dynamic characteristics associated with the actual collision risk 
in complicated waters. 

In summary, ship collision risk assessment and estimation remain an 
active research subject. The existing methods are not applicable and new 
methods beyond state of the art have to be proposed due to the 
increasingly sophisticated traffic situations and dynamic ship motion 
behaviours. On the one hand, the influence of ship motion dynamics and 
uncertainty on collision risk estimation is rarely explored, while it is 
imperative to support accurate collision warning and provide further 
assistance in anti-collision decision-making. Indeed, this high and 
valuable research need is evident through the relevant studies in the air 
transportation field, which have already emphasised the necessity of 
involving traffic dynamics and uncertainties when implementing Con-
flict Detection and Resolution (CDR) (Hao, Zhang, Cheng, Liu, & Xing, 
2018; Mitici & Blom, 2018; Prandini, Hu, Lygeros, & Sastry, 2000). On 
the other hand, multiple ship encounters in complex waters are frequent 
and riskier, particularly given the emerging autonomous ships. The risk 
assessment of a maritime navigational scenario is highly correlated with 
the dependent conflicts among multiple ships. Hence, much attention 
should be paid to the co-behaviour of multiple vessels relating to their 
spatiotemporal interactions. Although several applications have been 
presented to evaluate the collision risk of multiple ships or regional 
traffic complexity (e.g., Liu, Wu, & Zheng, 2019; Xin, Yang, Liu, Zhang, 
& Wu, 2022; Zhang, Zhang, Fu, Kujala, & Hirdaris, 2022), the research 
capturing the high-risk traffic clusters from a whole regulatory area is 
largely missing in the reported literature. Hence, incorporating the 
spatiotemporal dynamics and interaction effects among multiple ships is 
a crucial and promising avenue for advancing the development of an 
effective technique for detecting traffic clusters. 

2.2. AIS data applications in maritime traffic surveillance 

Because of its broad spatial coverage, high transmission frequency, 

and data availability, AIS has become the primary reliable information 
source for maritime traffic surveillance. The AIS data is supportive for 
maritime safety management, but also maritime traffic behaviour 
analysis and modelling. Many research communities have made great 
efforts to its promising practical applications, involving a great diversity 
of outputs in maritime research (Xiao, Fu, Zhang, & Goh, 2019; Yang, 
Wu, Wang, Jia, & Li, 2019; Zhou, Daamen, Vellinga, & Hoogendoorn, 
2019). Among the existing studies, maritime traffic pattern mining is 
one of the most widely investigated research topics. It is dedicated to 
maritime traffic knowledge extraction and traffic characteristic ana-
lytics and exploitation, thereby serving as a prerequisite for intelligent 
maritime monitoring and surveillance. 

Existing methods for maritime traffic pattern mining are conducted 
from three perspectives: grid-based, vector-based, and statistics-based 
methods (Rong et al., 2021; 2022; Xiao et al., 2019). The grid-based 
methods are devoted to segmenting the maritime traffic regions into a 
series of spatially indexed grids, in which each cell is characterised by 
the necessary traffic property statistics (Ristic, 2014; Vettor & Soares, 
2015). The maritime knowledge extracted from the individual cells can 
then be applied for many purposes, such as supporting human- 
interpretable maritime traffic visualization, early threat recognition, 
and collision avoidance. The vector-based methods formulate the 
maritime traffic route network by abstracting the waypoints including 
entrance, exits, stationary spaces (e.g., ports and offshore platforms), 
and turning sections into nodes and the routes into navigational legs to 
connect nodes (Arguedas, Pallotta, & Vespe, 2017; Rong, Teixeira, & 
Soares, 2022). These methods contribute to presenting a light and 
structured representation of maritime traffic, facilitating the MSA in 
traffic prediction, route planning, and anomaly detection. The statistics- 
based methods focus on revealing traffic behaviours and patterns by 
quantitatively modelling and analysing the traffic characteristics, with 
the aim of estimating the maritime traffic capacity, supporting maritime 
traffic decision-making, and characterising the waters’ traffic properties 
(Kang, Meng, & Liu, 2018; Xin, Liu, Yang, Yuan, & Zhang, 2019; Yu, Liu, 
Teixeira, et al., 2020). Working towards MSA, all three categories of 
approaches provide essential prior knowledge for monitoring, ana-
lysing, and understanding the maritime traffic situation. They therefore 
show great potential for tackling challenging traffic scenarios in com-
plex waters and assisting in maritime traffic surveillance and manage-
ment. As a result, this study establishes a maritime geographical 
network through maritime traffic pattern mining from historical AIS 
data to facilitate the recognition of real spatial compact traffic clusters. 

Nevertheless, there remains much potential for making advanced use 
of AIS-based trajectory data to conduct MSA. The literature on parti-
tioning maritime traffic and identifying real-time high-interaction con-
nected multi-ship encounters in complex water areas is extremely 
limited, despite its crucial role in decreasing the difficulty of situational 
awareness and further guiding ship anti-collision risk management. The 
most relevant research (Liu, Wu, & Zheng, 2019; Zhen et al., 2017; Zhen, 
Shi, Shao, & Liu, 2021) in the maritime domain applied the DBSCAN 
(Density-Based Spatial Clustering of Applications with Noise) algorithm 
to detect clusters of encounter vessels and filter out the relatively safe 
vessels. These works suffer from the following drawbacks:  

1) Only the spatial distance among ships is considered when conducting 
maritime traffic clustering, which is insufficient to reveal the com-
plex dependencies of encounter ships. To reflect different aspects of 
ship traffic interactions simultaneously, it is of paramount impor-
tance to identify the encountering traffic clusters by fully considering 
the multiple dependent interrelationships (e.g., spatiotemporal 
proximity and conflict severity) among ships.  

2) These works detected traffic clusters or multi-ship encounters based 
on traditional Euclidean/physical distances among ships but yet 
considered the influence of restricted geographical waters on the 
spatial distance calculation. Evidently, it is problematic to overlook 
the effects of water topography on spatial distance measurement 
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because the two spatially close ships (of a short distance) may be 
blocked by obstacles, e.g., islands and skerries, especially in complex 
port waters.  

3) The adopted clustering techniques (i.e., DBSCAN) of these works 
reveal challenges in figuring out various interrelationships (e.g., 
conflict severity) among ships as well as discovering the traffic 
clusters in waters with varying traffic densities. The high complexity 
of ship spatiotemporal distribution, the unpredictability of ship 
motion behaviours, and the restricted geographical waters jointly 
create difficulties in pioneering an effective traffic clustering model. 
These unique and stochastic characteristics in maritime traffic justify 
the deficiencies of direct applications of arbitrary clustering tech-
niques, as they often produce error-prone clustering solutions. 

To address the above issue, recent advances in urban transportation 
network partitioning using graph-based clustering techniques offer 
valuable insights (Gu & Saberi, 2019; Ji & Geroliminis, 2012; Saeed-
manesh & Geroliminis, 2016). Specifically, the road network partition-
ing focuses on segmenting a heterogeneous traffic network into several 
spatially connected, homogeneous, and compact-shaped sub-regions in 
terms of indices like link speed and density. For instance, Saeedmanesh 
and Geroliminis (2016) developed a three-step clustering framework to 
segment the heterogeneous road networks into several homogeneous 
sub-regions. In the framework, a snake-based similarity measure was 
developed to account for the spatial relations between links and a non- 
linear graph-based optimization technique was employed to assign the 
links to proper clusters. These studies have shown much attractiveness 
in decomposing traffic network complexity and identifying the network 
congested regions. Despite that, to the authors’ best knowledge, there 
has not been any maritime traffic partitioning using graph-based clus-
tering techniques based on multiple spatiotemporal interactions among 
ships. Therefore, this study attempts to combine the graph-based clus-
tering framework with a multi-attribute interrelation measure model, as 
a hybrid pioneer, to investigate the maritime traffic partitioning. 

3. Methodology: Optimal maritime traffic partitioning 

As aforementioned, the development of an optimal ship traffic 
partition methodology should aid to achieve the goals of 1) extracting 
the traffic clusters that have shown high conflict connectivity to detect 
real traffic conflict patterns; and 2) generating the traffic clusters that 
are spatially compact to ease the design and deployment of traffic 
management strategies. Based on these two goals, this study involves 
constructing an undirected graph for ship traffic partition, in which each 
ship is modelled as a node and their neighbouring relationships (i.e., 
edges) are built based on their conflict criticality and spatial distance. By 
doing so, the traffic partitioning problem is transformed into a graph cut 
problem. It is dedicated to separating the network into several sub- 
graphs. The proposed partitioning methodology consists of the 
following major steps. Firstly, a composite similarity model that con-
siders conflict connectivity and spatial compactness is introduced. The 

conflict relations are quantified by a probabilistic conflict detection 
approach, which can precisely compute the conflict criticality between 
ship pairs by incorporating the ship motion dynamic and uncertain 
characteristics. The spatial compact relations, on the other hand, are 
measured based on a maritime traffic knowledge extraction technique. It 
extracts the real spatial distance between ship pairs from a derived ship 
traffic route network. Based on the constructed similarity model, a graph 
clustering mathematical framework is further utilized to assign the ships 
with high conflict criticality and spatial compactness into one cluster. 
Additionally, four metrics are adopted to evaluate and check the per-
formance of the proposed traffic partitioning framework. Fig. 1 provides 
the associated methodological framework. The important supporting 
techniques embedded into each step are explained in the following 
subsections. 

The symbols and explanations used in the optimal traffic partitioning 
model are provided in Table 1. 

3.1. Similarity measures and models 

The key issue of graph partitioning is how to define a similarity/ 
adjacent measure to describe the connections/interactions between each 
pair of ships. This study is devoted to developing a similarity model to 
enable the simultaneous consideration of both the conflict relation and 
spatial distance of ship pairs. The similarity model comprises the 
following elements: 1) a probabilistic conflict criticality evaluation 
model to reflect the conflict relation in Section 3.1.1, 2) a real spatial 
distance identification model to define the spatial relation in Section 
3.1.2, and 3) the developed composite similarity model in Section 3.1.3. 

Fig. 1. The research framework.  

Table 1 
The symbols used in the optimal traffic partitioning model.  

Symbol Definition and Explanation 

Wc
ij the spatial compactness similarity between ships i and j 

Wc
ij the conflict connectivity similarity between ships i and j 

Wij the composite similarity between ships i and j 
G maritime traffic network with node set V and edge set E 
W the similarity matrix for G, where W ∈ RN×N 

N the number of data samples in G 
D the diagonal matrix with Dii =

∑N
j=1Wij 

L the Laplacian matrix with L = D-W 
k the number of clusters 
XT the transpose of matrix X 
H the clustering membership matrix 
Tr(W) the trace of matrix W 
W̃ the normalized W, where W̃ = D-1/2WD-1/2 

A the whole dataset for G 
{Ac}

k
c=1 

the partitioned traffic clusters for G 
vol(Ao) the number of samples in subset Ao 

NSk the average NSk(Ao) of partitioning results 
NC the Normalized Cut (Ncut) 
f1 the conflict connectivity measure of partitioning results 
f2 the spatial compactness measure of partitioning results  
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3.1.1. Probabilistic conflict detection 
Collision risk quantification is an integral part of the detection of 

conflicting traffic clusters. Here, the conflict criticality is measured in a 
probabilistic manner to ensure the adaptation to traffic scenarios with 
high movement uncertainty. 

In general, a conflict is defined as a situation in which the minimum 
safe separation between two ships is violated over a finite prediction 
horizon (Hernandez-Romero, Valenzuela, & Rivas, 2019; Mitici & Blom, 
2018). This study uses a classical ship domain model (Fujii & Tanaka, 
1971) adopted in restricted waters to characterise the conflict between 
ships. The ship pairs are in conflict if the following inequality holds 
during the CD horizon (see Fig. 2). 

DistAB(t) ≤ SDA(t)+ SDB(t) (1)  

where DistAB denotes the distance between ships A and B at time t, and 
SDA and SDB are the distances from each ship’s centre to their domain 
boundaries, respectively. The distance SDA can be calculated based on 
the following equation: 

SDA(t) =

⎛

⎜
⎜
⎜
⎝

1 + tan2(βAB(t) − φA(t))
1

RL,A
2 +

tan2(βAB(t)− φA(t))
RS,A

2

⎞

⎟
⎟
⎟
⎠

1/2

(2)  

where βAB(t) denotes the relative course of ship B’s position over ship A’ 
position, φA(t) represents the ship A’s heading course, and RL,A and RS,A 
represent the length of the semi-major and semi-minor axis of ship A’s 
elliptical domain, which are equal to 3LA (LA is the Length Overall (LOA) 
of ship A) and 0.8LA (refer to (Fujii & Tanaka, 1971)), respectively. 

Since the future positions and heading courses of the encountering 
ships are uncertain due to various disturbances, the variables DistAB(t), 
SDA(t) and SDB(t) are uncertain as well. Furthermore, the event that the 
encountering ships will violate the minimum separation distances in the 
future time t (i.e., Eq. (1)) becomes a probabilistic question to answer. 
Hence, the conflict probability between ships at a given time t is cali-
brated by using the following expression: 

PC(t) = Pr[L(t) ≤ 0 ] =
∫ 0

− ∞
fL(t)dL(t) (3)  

where fL(t) denotes the probability density function of the loss of mini-
mum safe separation between two ships, in which L(t) = DistAB(t)-SDA(t)- 
SDB(t). 

Note that Eq. (3) represents the instantaneous conflict probability at 
a given time. Here the conflict criticality over the CD horizon is quan-
tified by considering both the maximum PC(t) with 0 < t ≤ TCDH (TCDH is 
the CD horizon) and its corresponding occurrence moment. The first 

indicator reveals the highest intensity of a potential conflict, while the 
second indicator represents the urgency of a traffic case needing im-
mediate conflict resolution actions. Indeed, these two indices play 
equally significant roles and are equivalent to the commonly used 
indices (i.e., DCPA and TCPA) in maritime traffic navigation (Cho, Han, 
& Kim, 2020; Hu et al., 2019). Therefore, an exponential function (Hu 
et al., 2019; Wang, Song, & Wen, 2018) is utilized to synthesise the 
outlined indices as follows: 

C(γ) = MPC
1+

(
tMPC
TCDH

)

(4)  

where MPC represents the maximum conflict probability over the CD 
horizon, and tMPC denotes the occurrence moment of the maximum 
conflict probability. Note that the CD horizon (i.e., TCDH) is set to be 15 
min in terms of the work presented by Bakdi, Glad, and Vanem (2021), 
as this study pays attention to the CD in the medium-term time horizon. 

After defining the conflict criticality measure model from a proba-
bilistic viewpoint, the probabilistic CD can be further implemented. The 
probabilistic CD methodology consists of two important elements: one is 
the uncertain trajectory prediction, which serves as a prerequisite for 
potential collision detection and evaluation; the other is the conflict 
probability computation, which concerns the development and use of 
techniques and approaches with which the actual conflict criticality can 
be estimated accurately and efficiently. In the authors’ previous 
research (Xin, Liu, Yang, Zhang, & Wu, 2021), uncertain trajectory 
forecasting is conducted by modelling the ship motion as a deterministic 
motion correlated with the ship navigation plan plus a stochastic 
component given by various perturbations. Regarding conflict proba-
bility computation, a two-stage Monte Carlo (MC) simulation model is 
deployed to achieve a fast and accurate estimation of the conflict criti-
cality. More details and discussion on the probabilistic CD procedure are 
found in Xin et al. (2021). 

3.1.2. Real spatial distance identification 
Maritime traffic partitioning requires guaranteeing the spatial 

compactness of the produced traffic clusters to ease the design of colli-
sion risk management strategies. The traditional measure of spatial 
compactness is conducted in terms of the Euclidean distance (or called 
linear distance) among ships (e.g., Liu et al., 2019; Xin, Liu, et al., 2022; 
Zhen et al., 2021). However, in complex and restricted waters, the two 
ships spatially adjacent may not be reachable from each other. For 
instance, the obstacles (e.g., small islands) between the ships often block 
them away. Hence, the traditional linear distance measure is not 
applicable to describe the spatial compactness of traffic scenarios in 
complex waters involving restricted geographical features. 

A practical solution to this issue is to find the shortest distance be-
tween ship pairs with reference to the maritime traffic route network as 
their actual spatial distance. However, in contrast to road networks, 
there are only a limited number of conventional transportation routes 
and traffic lanes in complex port waters, which makes it difficult to 
accurately measure the real spatial distance between any pair of ships. 
As a result, some recent studies have resorted to identifying ship traffic 
motion patterns through the extraction of maritime traffic knowledge to 
establish a complete and accurate maritime traffic route network. 
Establishing such a network by extracting nodes and legs is a common 
solution, as stated in Section 2.2 (Arguedas et al., 2017; Rong et al., 
2022). However, these methods become challenging when applied to 
complex traffic waters where traffic motion behaviours are difficult to 
categorize (Xiao et al., 2019). In particular, these methods can detect 
high-density waypoints but ignore low-density waypoints. This makes it 
difficult to extract all ship motion patterns and further determine the 
real spatial distance between ship pairs under any situation. 

To overcome these difficulties, this study proposes using image 
processing technique as an effective solution. This approach captures the 
main skeleton of the navigable waters as the traffic route network, Fig. 2. Definition of a ship conflict.  
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helping to accurately capture the reasonable spatial distance on the 
network. Firstly, the Kernel Density Estimation (KDE) is applied to 
distinguish the navigable and unnavigable water areas. It estimates the 
spatial probability distribution of ship traffic based on real AIS data 
using the following formula: 

g(x) =
1
K ′

∑K′

i=1
ϕh(x − xi) =

1
K ′ h

∑K′

i=1
ϕh

(x − xi

h

)
(5)  

where ϕh is a kernel function satisfying ϕh(x)〉0 and 
∫

ϕh(x)dx = 1, h 
denotes a bandwidth parameter larger than 0, and K’ represents the 
number of samples to be investigated within the bandwidth h. The entire 
investigated water area is divided into a series of grids. For each grid, if 
its spatial probability distribution value of ship traffic is larger than a 
defined threshold, it represents a navigable area. Otherwise, it is 
unnavigable. 

Leveraging on the probability distribution results obtained using the 
KDE, the whole investigated water area can be transformed into a binary 
image comprising of grids with 1 representing the navigable area and 
0 representing the unnavigable area. The image processing operation is 
then applied to the binary image to extract the image skeleton (Lam, Lee, 
& Suen, 1992). Compared with the approaches that perform maritime 
traffic network abstraction based on node and edge extraction, it is more 
easily implemented by using the morphological algorithms in the 
MATLAB toolbox. Through the execution of the morphological algo-
rithms, a network skeleton that provides a compact, structured, and 
precise traffic route description can be built. 

After obtaining the traffic network representation, it can be 
employed to identify the real spatial distance between ship pairs. The 
procedure implementation comprises the following steps. First, several 
points (e.g., 10) are evenly sampled on the connection lines between the 
ship pairs to identify whether they fall into the navigable areas. If all 
these points are in the navigable areas, the real spatial distance between 
ship pairs is calculated in terms of the Euclidean distance; otherwise, the 
nearest point on the traffic route network that each ship is close to is 
searched for. Then, Dijkstra’s algorithm is applied to calculate the 
shortest path distance between the two points. In this way, the pro-
cedure offers the potential to support generating actual spatial compact 
traffic clusters. The flowchart demonstrating the traffic network repre-
sentation learning and real spatial distance identification procedure is 
presented in Fig. 3. 

3.1.3. Composite similarity measure model 
Furthermore, the conflict relation and distance relation measures can 

be merged to fulfil the spatial compactness and conflict connectivity 

requirements simultaneously. In this study, the two measure indices are 
combined through a linear combination method for clustering purposes. 
It provides a simple yet powerful way to describe the relationships be-
tween ship pairs when the two indices are presented by the same value 
range. Note that the value ranges of conflict criticality between ship 
pairs fall within [0, 1] (i.e., Eq. (4)). Hence, the conflict connectivity 
similarity Wc

ij between ships i and j can be defined as equal to their 
conflict criticality. However, the real distance between ship pairs varies 
significantly (e.g., tens of nautical miles). A compactness similarity Wd

ij 

that allows its value range to be in line with Wc
ij is therefore defined by 

transforming the real distance between a ship pair as follows: 

Wd
ij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1,Distij ≤ D1
(

D1

Distij

)β

,D1 < Distij < D2

0,Distij≥ D2

(6)  

where Distij is the real spatial distance between the two ships, β is a 
scaling parameter, and D1 and D2 are two user-specified parameters that 
put the spatial compact relations into three categories, i.e., high, me-
dium, and negligible compact relations. According to Eq. (6), if the real 
spatial distance falls below D1, the ship pairs are regarded as high 
compact and Wd

ij is set to be 1. If the real spatial distance is between D1 

and D2, the compact similarity is monotonically decreasing based on an 
exponential mathematical expression. If the real spatial distance exceeds 
the threshold D2, the compact relation between ship pairs is negligible. 
Overall, Eq. (6) has the following properties: 1) exhibits a normalization 
effect to ensure that Wd

ij falls within [0, 1]; 2) offers flexibility to control 
the relations between Wd

ij and Distij by using β (e.g., a larger β results in a 
high decline rate, and vice versa); and 3) produces a sparse similarity 
matrix to simplify the optimization complexity of graph partitioning by 
setting 0 similarities for ship pairs with extremely large spatial distance. 

A composite similarity measure is further defined to put different 
weights for Wd

ij and Wc
ij through a linear combination way, as follows: 

Wij = Wc
ij⋅α + Wd

ij ⋅(1 − α) (7)  

where Wij denotes the similarity between ships i and j, and α is a trade- 
off weighting coefficient. This model explicitly considers the above two 
similarity measures and helps systematically describe the multi- 
interrelationships among ships in the whole investigated water. How-
ever, the conflict connectivity and spatial compactness indices may 
conflict with each other because the conflict criticality between ship 

Fig. 3. Flowchart of traffic network representation learning and real spatial distance identification.  
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pairs is not totally dependent on their real spatial distance. The indices 
such as ship size, speeds, and spatial approaching rate of encountering 
ships also have an impact on the conflict relations. This means that the 
set of weighting coefficient α is crucial, playing an important role in 
achieving a trade-off between the two indices. For instance, a higher α 
that puts more weight on conflict connectivity may result in spatially 
noncompact clusters. Consequently, the tuning/optimization of α is 
investigated and discussed based on the sensitivity analysis in the 
experimental section (see Section 4.3). 

3.2. Graph partitioning: Symmetric Non-negative matrix Factorization 

Spectral clustering represents a widely used type of clustering algo-
rithm for solving graph partitioning issues. Different from other classes 
of clustering algorithms (e.g., prototype-based, and density-based clus-
tering) that focus on the dataset itself, spectral clustering assigns the 
data samples into proper clusters in terms of the similarity between each 
pair of data samples and makes no assumptions on the form of the 
clustering datasets. Nevertheless, the successful applications of spectral 
clustering heavily rely on the properties of the leading eigenvectors and 
eigenvalues of the Laplacian matrix L. When the eigengap between the 
kth and (k + 1)th leading eigenvalues of matrix L is not sufficiently large, 
the application of spectral clustering could fail because the k-dimen-
sional subspace spanned by the leading k eigenvectors of L is unstable 
(Ng, Jordan, & Weiss, 2001). 

To address this problem, an extended and more competitive math-
ematical formulation, i.e., SNMF, was presented for graph clustering. It 
is a variant of Nonnegative Matrix Factorization (NMF) and distin-
guishes different clusters by performing the nonnegative lower rank 
approximation for a graph similarity matrix. According to the compre-
hensive study in (Kuang, Ding, & Park, 2012; Kuang, Yun, & Park, 
2015), SNMF has the following unique features of: 1) being adaptive to 
more general cases by offering the flexibility to define any similarity 
measure that describes the dataset structure well; 2) being capable of 
achieving higher accuracy and quality compared with other clustering 
algorithms including the standard forms and variations of spectral 
clustering, k-means, and NMF for graph clustering. These merits make 
SNMF appealing for graph partitioning applications. It has therefore 
been successfully applied in a diversity of research fields, such as com-
munity detection (Chunaev, 2020) and traffic network partitioning 
(Saeedmanesh & Geroliminis, 2016). 

In theory, SNMF and spectral clustering are two highly relevant 
approaches according to the graph clustering objective but adopt 
fundamentally distinct ways to optimize the objective function. For a 
typical graph partitioning problem, the objective function is inherently 
consistent, which is mathematically equivalent to a trace maximization 
formulation (Kuang, Yun, & Park, 2015), as follows: 

max
H≥0,HT H=I

Tr
(
HT WH

)
⇔

min
H≥0,HT H=I

Tr
(
WT W

)
− 2Tr

(
HT WH

)
+ Tr

(
HT H

)
⇔

min
H≥0,HT H=I

‖W − HHT‖
2
F

(8)  

where W ∈ RN×N, and H ∈ RN×k subject to H ≥ 0,HTH = I. It is an NP- 
hard problem to find the optimal solution to minimize the graph clus-
tering objective (Eq. (8)) due to the two constraints on H. As a result, 
spectral clustering and SNMF attempt to loosen one of the constraints on 
H to obtain a tractable formulation. More concretely, SNMF keeps the 
nonnegativity constraint, while spectral clustering retains the orthogo-
nality constraint. These two relaxed versions result in significantly 
different approaches for solving the optimization problems in Eq. (8). 
The orthogonality constraint in spectral clustering requires that each 
data sample falls into one cluster only. In contrast, by removing the 
orthogonality constraint in SNMF, the data sample can be assigned to 
several clusters with different membership values. In Zass and Shashua 

(2005), it was verified that the nonnegativity constraint on H plays a 
more crucial role than the orthogonality constraint. Additionally, Ding, 
He, and Simon (2005) have pointed out that keeping the nonnegativity 
constraint by SNMF brings about a near orthogonality approximation of 
the columns in matrix H. This property is beneficial and promising for 
SNMF to effectively figure out the graph partitioning problem. 

To partition maritime ship traffic into balanced groups with similar 
sizes, the commonly used objective function termed Normalized Cut 
(Ncut) (Shi & Malik, 2000) is adopted to produce the proper clusters. In 
Bach and Jordan (2006), it was proved that the normalized cut can be 
expressed as follows: 

Ncut = k − Tr
[
HT

(
D− 1

2WD− 1
2

)
H
]
= Tr(HT D− 1

2LD− 1
2H) (9)  

In terms of the derivation in Eq. (8), the minimization of Ncut can be 
achieved by using the normalized similarity matrix W̃ to replace the W 
in the third formula in Eq. (8). Consequently, given the normalized 

similarity matrix W̃ ∈ R
N×N
+ , the desired number of clusters k, and the 

nonnegativity constraints on H ∈ RN×k
+ , the graph clustering optimal 

model for SNMF can be formulated as follows: 

argmin
H≥0

‖W̃ − HHT‖
2
F (10) 

The purpose of SNMF is to search for a nonnegative lower rank 
approximation H for the matrix W̃. For an optimal matrix H, each col-
umn can be considered as the membership degree of the clustering data 
samples belonging to one cluster. Accordingly, the clustering assign-
ments of the data samples can be directly identified in terms of the 
largest entry in each row in the low-rank matrix H. 

Different optimization approaches can be contemplated for solving 
the minimization problem described in Eq. (10), such as the Newton-like 
algorithm (Gu & Saberi, 2019; Kuang et al., 2012), Alternating 
Nonnegative Least Squares (ANLS) algorithm (Kuang et al., 2015), and 
interior-point theory (Saeedmanesh & Geroliminis, 2016). In this study, 
the optimization problems are directly solved by implementing the 
Newton-like algorithm. It is suitable for small-size issues (e.g., N <
3000) and can produce accurate solutions with higher-quality clustering 
results. Despite that, it may encounter a local minimum solution due to 
its sensitivity to the initialization of H. Regarding this issue, the Newton- 
like algorithm is performed many times with the randomly sampled 
initial H to find a global minimal solution or at least guarantee a near- 
global minimum. 

3.3. Metrics development 

The performance evaluation is crucial to ensure the effectiveness of 
the proposed methodology. Therefore, four metrics are introduced to 
evaluate and compare the traffic partitioning results. 

The first adopted metric is ‘NcutSilhouette’ (NS) (Ji & Geroliminis, 
2012), which is expressed as follows: 

NSk
(
Ao,Ap

)
=

∑
u∈Ao

∑
v∈Ap

(1 − Wuv)
2

vol(Ao)⋅vol
(
Ap
) (11)  

where Ao and Ap represent two cluster subsets, vol(Ao) represents the of 
samples in subset Ao, and k denotes the number of clusters. Here NSk

(
Ao,

Ap
)

measures the average quadratic dissimilarity between clusters Ao 
and Ap. 

On this basis, whether the ships in one cluster are properly grouped is 
measured using the following metric: 

NSk(Ao) =
NSk(Ao,Ao)

NSNk
(
Ao,Aq

) (12)  

where NSNk
(
Ao,Aq

)
= min

{
NSk

(
Ao,Ap

) ⃒
⃒Ap ∈ A, Ap ∕= Ao}, and Aq 
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denotes the most relevant cluster with Ao. This metric measures the ratio 
of intra-cluster dissimilarity (NSk(Ao,Ao)) over inter-cluster dissimi-
larity (NSk

(
Ao,Aq

)
). Evidently, NSk(Ao)〈1 indicates that cluster Ao is 

properly separated. Furthermore, the overall performance for a given 
traffic partitioning can be evaluated in terms of the average NSk(Ao) of 
all partitioned clusters, as follows: 

NSk =

∑k
o=1NSk(Ao)

k
(13)  

A small NSk value implies that the overall traffic scenario is well 
partitioned. 

Additionally, the graph-based measure, Ncut (i.e., Eq. (9)), is 
employed to evaluate the comprehensive partitioning quality. This 
metric also considers both the similarity between different clusters and 
the similarity within the cluster. It is subsequently expressed as NC. The 
smaller the value of NC is, the better quality the partitioning scheme has. 

Note that the above two comprehensive metrics are highly depen-
dent on the designed similarity model (i.e., Eq. (7)). They cannot 
directly examine the spatial compactness and conflict connectivity of 
partitioning results because of the influence of the super parameters (e. 
g., α) in the similarity model. Therefore, two specific metrics associated 
with these two criteria are further presented. 

With respect to the conflict connectivity, it can be calibrated based 
on the degree that the ship pairs with conflicts are segmented into 
different clusters, as follows: 

f1 =
∑Nvc

i=1
C(γ)i (14)  

where Nvc denotes the number of ship pairs with conflicts that are ar-
ranged into different clusters, and C(γ)i represents the conflict criticality 
of the ith ship pair. A smaller f1 value suggests that more ship pairs with 
conflicts are effectively clustered into the same group. 

Regarding spatial compactness, NSk can still be applied by using the 
real spatial distance to replace the dissimilarity in Eq. (11), expressed as 
f2 in the following experimental section. The smaller the f2 value, the 
smaller the spatial distance within the clusters is while the larger the 
spatial distance between the clusters is. This suggests that the spatial 
compactness of the traffic partitioning is well fulfilled. 

4. Case study: Implementation and results 

In this section, the effectiveness of the proposed traffic partitioning 
methodology is evaluated and discussed. Section 4.1 shows the inves-
tigated water area and the AIS data pre-processing. Section 4.2 illus-
trates the offline training results of the ship traffic route network. In 
Section 4.3, sensitivity analyses on the super parameters in the proposed 
methodology are performed. Section 4.4 illustrates how the proposed 
methodology assists in intelligent MSA and capturing high-risk traffic 
clusters. Section 4.5 conducts model comparison and validation to 
highlight the reliability of the proposed methodology. Furthermore, 
insights and implications are analysed in Section 4.6. 

4.1. Study area and data description 

The illustrative case to be analysed in this study is the Ningbo- 
Zhoushan Port. It is a unique deep-water port with some of the 
densest traffic in the world in terms of cargo throughput. There are more 
than 620 production berths, including approximately 170 large-scale 
berths above 10,000 tons and more than 100 super large-scale deep- 
water berths above 50,000 tons. The restricted geographical regions, 
various vessel types, diversified movement behaviour, and the presence 
of complex environmental conditions expose it as a highly sophisticated 
traffic situation. It therefore provides typical challenging scenarios for 
traffic partitioning tests. The port areas for capturing the traffic clusters 
cover longitudes from 121◦52′E to 122◦22′E and latitudes from 29◦43′N 

to 30◦02′N (see Fig. 4). Additionally, one month’s AIS data records from 
01/11/2018 to 30/11/2018 are collected from the area. 

Although the AIS data provides a reliable source of information for 
maritime traffic research, it is not immune to data errors due to various 
technical malfunctions and failures. Therefore, it is essential to eliminate 
the possible errors/noises before conducting the experimental analysis. 
The AIS data pre-processing consists of a sequential process of four steps, 
which are the noise removal for each ship property (Kang et al., 2018), 
trajectory extraction and segmentation, trajectory consistency verifica-
tion (Zhao, Shi, & Yang, 2018), and trajectory linear interpolation 
(Zhang, Meng, & Fwa, 2019). By doing so, it ensures the reliability and 
effectiveness of AIS data for maritime knowledge extraction and traffic 
partitioning analysis. 

4.2. Ship traffic route network extraction and analysis 

Based on the procedure in Section 3.1.2, Fig. 4 illustrates the iden-
tified unnavigable regions and the derived ship traffic route network. 
The dark red areas represent the unnavigable regions, while the blue 
lines indicate the traffic route network. It is found that the blue lines 
effectively describe the skeleton of the navigable areas, which reveals its 
goodness-of-fit. Particularly, this precise and structured representation 
of the maritime traffic network allows the real spatial distance between 
ship pairs to be measured. To enlighten the use of the derived network 
for real spatial distance computation, an example of how to identify the 
spatial relations of ship pairs based on the graph-based topology is 
presented in Fig. 5. In the figure, ships B and C are separated from A by 
obstacles. The real spatial distance (RSD) based on the route network 
and the linear spatial distance (LSD) between ships A and B are 6.43 and 
4.51 nautical miles (nm), respectively. It is evident that the distance of a 
ship pair should be better measured by the length of their shortest path 
on the route network instead of using the physical distance because of 
the obstacles between them. The route network contributes to identi-
fying the real spatial distance in complex waters as a first step toward 
recognizing actual spatial compact traffic clusters. 

4.3. Sensitivity analyses on different design parameters 

According to the methodology section, four super parameters need to 
be determined to obtain the optimal traffic partitioning results, which 
are D1, D2, β, and α. The first three come from the compactness similarity 
measure model (i.e., Eq. (6)), while the last one is the trade-off 
weighting coefficient used to balance the spatial compactness and con-
flict connectivity (i.e., Eq. (7)). Their optimal values are respectively 
confirmed based on the following sensitivity analysis. 

4.3.1. Distance measure parameters 
In the maritime field, when the distance between ship pairs is larger 

Fig. 4. The identified unnavigable regions based on kernel density estimation 
and extracted ship traffic route network based on image processing technique in 
Ningbo_Zhoushan port. 
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than 6 nautical miles, they are not considered to be in an encountering 
situation (Cho et al., 2020; Zhang, Goerlandt, Kujala, & Wang, 2016). 
Hence, D2 is directly set to be 6 nautical miles to distinguish the 
encountered and non-encountered ship pairs. On the other hand, the 
alarm procedure is normally activated when the predicted distance be-
tween ship pairs is smaller than 1 nautical mile in open sea (Hu et al., 
2019). Considering the high density and greater tolerance for a small 
distance in complex port waters, four values within 1 nautical mile are 
selected for D1, which are 0.125, 0.25, 0.5, and 1. As for β, it is set as 0.5, 
1, 2 and 3 to control the decline rate of Wd

ij with Distij. Fig. 6 illustrates 
the average f1 and f2 of the tested traffic scenarios when using different 
combinations of D1 and β. Based on the Pareto principle in multiple 
objective optimizations that one is not dominated by others if at least 
one objective is better, three optimal combinations of (0.125, 2), (0.125, 
3), and (0.25, 3) that are non-dominated by any other combination 
constitute the Pareto front. It is also observed that both D1 and β have 
profound impacts on the partitioning quality in terms of the change 
degree of f1 and f2, indicating the necessity to perform sensitivity anal-
ysis to find the optimal combinations. Notably, f1 is more sensitive to 
these two parameters than f2 in terms of its higher fluctuations. 

To further identify the best D1 and β, the performance of each pair of 
super parameter combinations is compared. For combinations A and B, 
their domination relations for each traffic scenario can be identified. 
Then the percentage that each one dominates another in all experi-
mental traffic scenarios is calculated, and the one with a higher per-
centage is better than another one. By doing so, the number of times that 
each combination dominates other combinations can be counted. Ac-
cording to Fig. 7, the combination of D1 = 0.125 and β = 2 dominates all 
other 15 combinations. These results enable us to determine the optimal 
parameter combination as 0.125 and 2 by observing the relevant turning 
points. 

4.3.2. Composite similarity weight coefficient 
The weight coefficient α is fundamental to supporting a good trade- 

off between the two considered clustering criteria. Therefore, the traffic 
partitioning results with different α are analysed. In Fig. 8(a), an 
increasing α results in a decrease/improvement in f1 and in an increase/ 
deterioration in f2, implying the conflicting relations between the con-
flict connectivity and spatial compactness. When α is lowered, more 
penalty is imposed on the compactness dissimilarity and vice versa. 
Therefore, an appropriate way is applied to determine the optimal α. It is 
based on the principle that the increase of α should lead to a more 
substantial improvement in one metric than the deterioration in 
another. The change degree of the metric improvement/deterioration 
from (m-1)th to mth α is calibrated using the following equation: 

Δδm =

⎛

⎝
f m

1 − f
m− 1
1⃒

⃒
⃒f

M
1 − f

1

1

⃒
⃒
⃒

+
f m

2 − f
m− 1
2⃒

⃒
⃒f

M
2 − f

1

2

⃒
⃒
⃒

⎞

⎠× 100% (15)  

where fm
1 and fm

2 represent the average f1 and f2 for the mth α, m = 1, 2, 
…, M. In Eq. (15), the first term measures the improvement degree 
(negative index) in f1 while the second term measures the deterioration 
degree (positive index) in f2. Additionally, the normalization is con-
ducted by using the denominators to make the change degree of the two 
metrics comparable in the same scale. Hence, when Δδm < 0, it implies a 
whole improvement gained by increasing α and vice versa. From Fig. 8 
(b), f1 starts to decline slowly while f2 starts to rise rapidly when α 
reaches up to 0.6. More exactly, Δδm remains larger than 0 when α ≥ 0.6 
(see the subfigure in Fig. 8(b)). It means that the increase in α from 0.6 

Fig. 5. An example of real spatial distance computation based on the formu-
lated traffic route network. 

Fig. 6. Average f1 and f2 of the partitioned traffic scenarios with various combinations of D1 and β.  

Fig. 7. Traffic partitioning performance comparison with respect to various 
combinations of D1 and β. 
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would not improve the whole partitioning performance. Therefore, a 
sensible balance between the two conflicting objectives is achieved by 
using α = 0.6. 

4.4. Application results and analysis 

In this subsection, the effectiveness of the proposed traffic parti-
tioning methodology is demonstrated based on the real cases. It started 
by highlighting the application effect on decomposing the whole traffic 

Fig. 8. Sensitivity analysis of composite similarity weight coefficient α: (a) average f1 and f2 with different α; (b) increase/decrease degree in f1 and f2 with the 
increase in α. 

Fig. 9. Illustration of ship traffic partitioning results at one moment. (a) visualization of ship traffic network; (b) f1 and f2 with different numbers of clusters; (c)-(f) 
traffic partitioning results when the numbers of clusters are 11, 14, 17 and 20. 

X. Xin et al.                                                                                                                                                                                                                                      



Expert Systems With Applications 231 (2023) 120825

11

complexity through a specific maritime traffic scenario. Then a traffic 
evolution scheme is analysed to displayed how the proposed method-
ology sheds light on enhancing maritime traffic surveillance and guiding 
ship anti-collision risk management. 

Fig. 9 illustrates the ship traffic partitioning results for a traffic sce-
nario with high traffic density at one moment. In Fig. 9(a), the visuali-
zation of the graph representation of traffic relations is displayed. The 
red points represent the ships, the blue lines represent the similarities (i. 
e., Wij greater than 0) between ship pairs, and the red lines indicate that 
the ship pairs have conflicting interactions. As the number of clusters for 
a clustering issue needs to be determined in advance, the values of f1 and 
f2 when performing clustering with different numbers of clusters are 
presented in Fig. 9(b). Four traffic partitioning results in terms of mul-
tiple troughs of orange polyline in Fig. 9(b) are exhibited (see Fig. 9(c- 
f)). It is evident from these figures that the produced traffic clusters are 
spatially compact, while at the same time most of the conflicting ship 
pairs are assigned to the same clusters, illustrating the good properties of 
the proposed methodology. In the meantime, it is found that there are 
complicated conflicting relations among ships (e.g., Clusters 2 and 3 in 
Fig. 9(e)), hence much attention should be paid to the spatiotemporal 
interactions of multiple ships instead of focusing on the interactions 
between ship pairs. Additionally, the clustering quality is robust with 
respect to different numbers of clusters, and more outliers (i.e., the 
produced clusters with one ship, which can be regarded as safe ships) 
tend to be filtered out with the increase in the number of clusters. This 
implies that instead of focusing on a single number of clusters, one can 
conduct a multi-view analysis by exploring clustering performance of a 
traffic scenario with different input numbers of clusters. Overall, the 
proposed methodology performs well in partitioning the whole ship 
traffic into several high spatial compact and conflict-connected clusters. 

Besides, the properties of the generated clusters in Fig. 9(d) and (f) 
are examined and analysed in more detail. Here the clusters with a 
number of ships smaller than 3 are not labelled. The number of ships and 
NSk(Ao) (Eq. (12)) of each produced cluster are shown in Fig. 10(a) and 

(c). It is found that the values of NSk(Ao) of all produced clusters are 
smaller than 1, implying the traffic scenario is properly partitioned. 
Then Fig. 10(b) and (d) present each cluster’s traffic density and sum of 
conflict criticality. The traffic density of each cluster is measured based 
on the average ship density in one cluster and one can refer to the work 
in Tan, Steinbach, and Kumar (2016) about the density definition. As 
shown in these figures, the clusters with high density/conflict severity 
can be easily found, e.g., Cluster 3 in Fig. 10(b) and Cluster 9 in Fig. 10 
(d). This indicates the necessity of decomposing the whole traffic instead 
of directly implementing MSA from a global/regional perspective. 
Regarding the practical application of the proposed methodology, one 
can check the risk/density indices of partitioned traffic clusters to assist 
surveillance operators in paying more attention to the critical traffic 
clusters. In this way, the proposed traffic partitioning methodology is 
supportive for improving situational awareness and identifying high- 
risk/density traffic clusters. 

To illustrate how the proposed methodology enhances the maritime 
operational monitoring and provides vital support in anti-collision de-
cision-making over the water areas of interest, the evolution of density 
and conflict criticality of both the whole ship traffic and generated 
traffic clusters is provided in Fig. 11. Here the maximum density and 
conflict criticality of traffic clusters generated at each moment are 
exhibited. The number of clusters adopted for partitioning all traffic 
scenarios at different time moments is 15. From the figure, two inter-
esting findings are revealed. First, the whole traffic density is unfeasible 
to assist in comprehending the traffic situation due to its slight fluctu-
ations with time. Based on this indicator, maritime operators may 
encounter difficulties in issuing timely warnings. By contrast, the den-
sity of generated traffic clusters varies over time, which can facilitate 
maritime operators and regulators in identifying which time moments 
are in high traffic complexity. Second, the conflict criticalities of the 
whole ship traffic and the traffic clusters show consistent trends. 
Notably, they are very close during some periods, e.g., 130–150 min. 
This implies that the conflicting ship pairs have a high probability of 

Fig. 10. Feature statistics of each cluster in Fig. 9(d) and (f), including number of ships, NSk(Ao), traffic density and sum of conflict criticality.  
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being in the same cluster; that is, the traffic partitioning approach can 
effectively group the ships with high conflict relations into one cluster, 
which further provides a practical foundation for maritime operators to 
devise and implement anti-collision risk control strategies. These ob-
servations highlight the necessity and effectiveness of the traffic parti-
tioning approach in strengthening MSA and supporting collision risk 
control. 

4.5. Model comparison and validation 

The model comparison and validation are essential for the practical 
application of the modelling methodology. Therefore, the proposed 
methodology is first compared with the widely used graph-based algo-
rithm (i.e., spectral clustering) to exhibit the superiority of the SNMF 
framework. Subsequently, the functionality and utility of the functional 
modules (i.e., the composite similarity model) are tested and examined. 

Table 2 presents a comprehensive comparison between the proposed 
methodology and spectral clustering. As shown in the table, the overall 
performance of the proposed methodology outperforms that of spectral 
clustering in terms of multiple evaluation metrics. The reason is mainly 
because of the good properties of the SNMF framework and the fact that 
the orthogonality constraint has smaller influence on it. Note that other 
classes of clustering algorithms, like prototype-based and density-based 
clustering, are not considered for comparison because they focus on each 
data sample’s features. For instance, k-means algorithm performs clus-
tering based on the cluster centres, which is meaningless when the 
spatial distance between ships is measured by the length of their shortest 
path on the route network instead of Euclidean distance. The DBSCAN 
algorithm requires identifying the core samples and has difficulty of 
handling datasets with varying densities. Therefore, they are not feasible 
for traffic partitioning based on the interactions/similarities between 
ships. To further evaluate the generalization ability of the proposed 
model, extensive comparisons of the two approaches with different 
numbers of clusters and ships are conducted. As shown in Fig. 12, the 
proposed methodology remains superior to spectral clustering under all 
kinds of situations with respect to both the NSk and NC. These results 
confirmed the stability and scalability of the traffic partitioning model. 

As the designed composite similarity model is among the most crit-
ical methodological contributions in this work, the functionality and 
utility of key modules in the model are tested and analysed from the 
following two aspects. Firstly, a traffic scenario is displayed, where using 
the Euclidean/physical distance may encounter issues in ensuring good 

clustering quality (see Fig. 13(a)), while the proposed spatial distance 
measure model could be potentially better (see Fig. 13(b)). According to 
Fig. 13(a), ships i and j are surrounded by obstacles and have negligible 
interactions with other ships. However, they are grouped into clusters, 
indicating that the Euclidean distance is not appropriate for complex 
waters with restricted geographical characteristics. In contrast, by using 
the shortest path length on the derived traffic route network as the 
distance measure criteria, ships i and j in Fig. 13(b) can be identified as 
outliers. Besides, it is found that Group k in Fig. 13(b) is also well 
separated by using the newly proposed distance measure model. These 
comparisons reveal that the ship traffic should be more reasonably 
grouped based on their real spatial distance relations instead of their 
physical distance. As a result, the proposed spatial distance measure 
leads to a significant improvement in the traffic partitioning 
performance. 

Another traffic scenario is used to examine the necessity of consid-
ering both the spatial compactness and conflict connectivity indices. 
Fig. 14 illustrates a clustering performance comparison in which one 
conducts clustering only based on the compactness similarity model, 
whereas another uses the composite similarity model. From Fig. 14(a), 
the generated traffic clusters are highly spatial compact, but the ships in 
conflict are not guaranteed to be assigned to the same clusters. For 
example, the ships with conflict relations in Circles i, j, and p are not well 
grouped, which is detrimental to discovering conflicting interaction 
patterns among ships. On the other hand, it is found from Fig. 14(b) that 
the conflicting ships are well clustered while the spatial compactness is 
maintained properly as well. Indeed, Fig. 14(a) provides an extreme 
scenario with the weighting coefficient α = 0, while Fig. 14(b) makes a 
good trade-off between spatial compactness and conflict connectivity. It 
must be mentioned that conflict-based interactions among ships receive 
more attention from ship navigators and maritime operators than 
distance-based interactions. This is because high conflicting relations 
explicitly indicate the potentially dangerous situation, while high- 
density relations merely mean the traffic situation is busy and compli-
cated. Therefore, both the conflict connectivity and spatial compactness 
indices are critical to improving the traffic partitioning quality. In 
summary, the designed bi-objective similarity model is desirable as it 
allows the two indices to be considered simultaneously. 

5. Discussion, insights, implications, and limitations 

This study conducts a comprehensive experimental analysis and 
validation for the proposed traffic partitioning methodology, covering 
from sensitivity analysis of super parameters and application case 
demonstration to model comparison as well as examination of key 
modules’ functionality. 

Based on the experimental analysis, three methodological insights 
can be drawn. Firstly, performing MSA in terms of global traffic situation 
evaluation indices is not constantly recommended for maritime opera-
tors because these indices will likely provide less insight into the 
comprehension of the traffic situation. By contrast, traffic partitioning 
could improve traffic pattern interpretability and facilitate the discovery 
of high-risk/density traffic clusters. Secondly, the incorporation of both 
spatial compactness and conflict connectivity as well as the influence of 
water topography features into traffic partitioning could help obtain a 
full understanding of the actual multi-attribute interrelationships among 
ships. Existing studies such as Liu et al. (2019) and Zhen et al. (2017; 
2021) have not addressed either of these two issues. Thirdly, the pro-
posed methodology has strong applicability and robustness to complex 
waters. Generally, complex waters refer to ports or channels that are 
exposed to highly intricate traffic situations, characterised by high 
traffic density, dynamic ship movements, and restricted geographical 
features, among others. The proposed approach effectively addresses 
these complexities by 1) utilizing a probabilistic conflict detection 
model that considers traffic motion dynamics and uncertainty to accu-
rately identify potential collision danger; 2) adopting a traffic route 

Fig. 11. Density and conflict criticality evolution of whole ship traffic and 
traffic clusters over five hours. 

Table 2 
A comprehensive comparison between proposed traffic partitioning model and 
spectral clustering.  

Clustering model NSk NC f1 f2 

Proposed model  0.535  0.032  0.006  0.371 
Spectral clustering  0.741  0.115  0.157  0.538  
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network to measure spatial distance reliably when ships are blocked by 
obstacles such as islands; and 3) designing a traffic partitioning model 
that focuses on the multi-ship interactions in heavy traffic waters rather 

than ship pair interrelationships. These desirable features of the pro-
posed approach allow it to be easily tailored and applied to other port 
and waters. 

Fig. 12. Performance comparison between the proposed traffic partitioning model and spectral clustering with different numbers of ships and clusters: (a-b) NSk 
comparisons; (c-d) NC comparisons. 

Fig. 13. A comparison of clustering results when using (a) Euclidean distance and (b) real spatial distance based on the formulated traffic route network.  

Fig. 14. A comparison of clustering results when using (a) compactness similarity model and (b) composite similarity model.  
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The analytical discussion of the methodology and experimental re-
sults also provides practical implications to maritime surveillance op-
erators, vessel navigators, and port stakeholders. With respect to the 
implications for maritime surveillance operators such as maritime 
management authorities and port safety-related departments, the pro-
posed methodology is helpful for them to enhance maritime awareness 
capabilities by decomposing the complexity levels of the whole traffic 
situation. Such a methodology provides insightful knowledge concern-
ing how maritime risks are distributed spatially and which traffic clus-
ters need priority attention instead of focusing on the global traffic 
situation. Without the proposed methodology, maritime controllers 
would have to undertake MSA in complex waters based on their intui-
tion and experience, which may result in them being subject to 
tremendous monitoring pressure and even impede the timely imple-
mentation of collision risk management strategies. This issue even be-
comes more worrisome once the traffic situations in ports are more 
complex due to the occurrence of mixed encounter situations involving 
both manned and autonomous ships. However, the proposed method-
ology will aid maritime surveillance operators in promoting maritime 
traffic safety management and proactively making timely and efficient 
decisions to control ship collision risks. 

The most important implication of this study for vessel navigators is 
to provide useful guidelines for anti-collision risk management. Vessels 
tend to focus on their operations and situations rather than taking the 
traffic situation from a global/regional perspective. However, in a 
complicated encounter scenario, the measures taken by one ship to 
avoid a collision with another ship could pose a higher risk to others. 
This is because the navigational complexity of a scenario may be highly 
associated with multiple dependent conflicts, especially in high-traffic 
waters, which would lead to confusion in the anti-collision decision- 
making design. This work captures the traffic clusters with high intra- 
interactions by a new traffic partitioning methodology, thereby aiding 
the traffic conflicts to be resolved at a regional level instead of based on a 
local ship pair. In other words, it makes a ground-breaking development 
by shifting the anti-collision control from being dependent on the vessel 
navigator locally to taking strategical action so that the collision risks of 
multi-ship encounters can be better managed. On the other hand, the 
division of the whole traffic into small clusters by the traffic partitioning 
methodology can support to tackle each cluster’s risk independently, 
which would not make the design of risk mitigation schemes too so-
phisticated. As a result, the proposed methodology would be particularly 
applicable in autonomous maritime anti-collision risk management and 
lay a solid foundation for the future coexistence of mixed manned and 
autonomous ships. 

This study also brings significant benefits to strengthening port 
competitiveness and sustainability. Implementing the proposed 
approach in an intelligent transportation support system offers the po-
tential to effectively manage port traffic. From the economic develop-
ment point of view, intelligent traffic safety management means the 
enhancement of port performance and efficiency, which is seen as one of 
the key determinants of attracting port users and investment. Evidently, 
the ships will be more willing to give priority to the ports with high-end 
port services. This work therefore makes a significant contribution in 
achieving the competitive advantages of the port over its competitors. 

Although the proposed analytical approach has demonstrated its 
superiority over traditional traffic cluster detection models, it still has 
limitations that could be addressed in future research. These limitations 
include the following:  

1. The dynamic evolution characteristics of ship traffic clusters require 
further exploration, especially in the port areas where traffic expe-
riences intense dynamic behaviour at various times of the day. The 
influence of traffic evolution over time on traffic partitioning should 
not be underestimated. It is essential to develop a dynamic traffic 
partitioning technique to produce temporally consistent partitioning 
results that are less sensitive to traffic evolution. This can facilitate 

the continuous implementation of anti-collision risk management 
strategies for any detected traffic cluster.  

2. The effect of traffic topological properties on the collision risk of 
traffic clusters needs to be explored. This study determines and 
monitors the critical traffic clusters based on the sum of conflict 
criticality and traffic density. However, these indicators alone are 
insufficient to capture the complete interactions among multiple 
ships. Other indicators, such as Clustering Coefficient and K-shell 
Decomposition, in complex network theory, can measure the 
resolving difficulty of multiple ship conflicts. Therefore, advanced 
models that can measure the interactions among multiple ships from 
various perspectives could be developed, to assist maritime operators 
in reasonably determining which traffic clusters should be given 
prioritized attention.  

3. In this study, the maritime traffic partitioning approach captures 
traffic clusters based on conflict and spatial distance relations among 
ships. However, more vessel motion interactions, such as 
converging/diverging trends of ship pairs and ship movement 
behaviour patterns, could be incorporated into the traffic partition-
ing process to better unveil complementary information related to 
ship traffic interactions.  

4. A new conflict resolution approach that can coordinate and balance 
intra-cluster and inter-cluster collision risks deserves more attention. 
This approach could guide surveillance operators to devise multi- 
layered strategies for hierarchical risk control, to realize maritime 
traffic safety surveillance and management. 

6. Conclusion 

The development of advanced MSA techniques and tools is one of the 
essential components of emerging intelligent ports and autonomous 
ships. This study proposes an optimal ship traffic partitioning method-
ology that captures conflict-connected and spatial compact traffic clus-
ters to enhance situational awareness and support collision risk 
management. The developed methodology has been embedded with 
several unique features: 1) the multi-attribute interrelationships be-
tween ships are considered, including their conflict relation and spatial 
distance; 2) it identifies the exact spatial distance based on maritime 
traffic knowledge extraction, enabling the methodology to be adaptive 
to complex geographical waters; and 3) a more competitive graph-based 
clustering formulation is employed to support robust traffic partitioning. 
Extensive numerical experiments with real AIS-based data are con-
ducted to demonstrate the practicality and superiority of the proposed 
methodology. The experimental results show that the proposed 
approach works well in partitioning the whole ship traffic scenario into 
spatial compact and conflict-connected clusters, can help detect high- 
risk/density traffic clusters, and is supportive for collision risk control. 
Additionally, the model comparison and validation results indicate that 
the proposed model remains superior to the typical clustering tech-
niques and has good generalization ability and stability under various 
traffic scenarios. It sheds valuable light on supporting intelligent mari-
time surveillance and promoting autonomous anti-collision risk man-
agement. Furthermore, it provides the possibility and applicability for 
the intelligent maritime safety management of both manned ships and 
autonomous ships as well as their hybrid traffic. Therefore, the proposed 
methodology could be applied in the maritime autonomous navigation 
system to aid in automatic situation awareness and update. 

Potential future research can be conducted from the following as-
pects. First, the dynamic evolution characteristics of maritime traffic 
could be incorporated into the traffic partitioning process to produce 
temporally stable clusters and support the continuously implementation 
of risk management strategies for the detected traffic clusters. Second, a 
new evaluation model that can compare the collision risk between 
different traffic clusters is worth being developed to more reliably 
identify and monitor high-risk traffic clusters. Lastly, it would be valu-
able to explore conflict resolution strategies that can effectively control 

X. Xin et al.                                                                                                                                                                                                                                      



Expert Systems With Applications 231 (2023) 120825

15

and balance the local and regional collision risks. 
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