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ABSTRACT Pressure ulcers are a challenge for patients and healthcare professionals. In the UK, pressure
ulcers affect 700,000 people each year. Treating them costs the National Health Service £3.8 million every
day. Their etiology is complex and multifactorial. However, evidence has shown a strong link between
old age, disease-related sedentary lifestyles, and unhealthy eating habits. Direct skin contact with a bed
or chair without frequent position changes can cause pressure ulcers. Urinary and faecal incontinence,
diabetes, and injuries that restrict body position and nutrition are also known risk factors. Guidelines and
treatments exist but their implementation and success vary across different healthcare settings. This is
primarily because healthcare practitioners have a) minimal experience in dealing with pressure ulcers, and
b) a general lack of understanding of pressure ulcer treatments. Poorly managed, pressure ulcers can lead to
severe pain, a poor quality of life, and significant healthcare costs. In this paper, we report the findings of
a clinical trial conducted by Mersey Care NHS Foundation Trust that evaluated the performance of a faster
region-based convolutional neural network and mobile platform that categorised and documented pressure
ulcers automatically. The neural network classifies category I, II, III, and IV pressure ulcers, deep tissue
injuries, and pressure ulcers that are unstageable. District nurses used their mobile phones to take pictures
of pressure ulcers and transmit them over 4/5G communications to an inferencing server for classification.
The approach uses existing deep learning technologies to provide a novel end-to-end pipeline for pressure
ulcer categorisation that works in ad hoc domiciliary settings. The strength of the approach resides within
MLOPS,model deployment at scale, and the platforms in-situ operation.While solutions exist in the NHS for
analysing pressure ulcers none of them automatically classify and report pressure ulcers from a service users’
residential home automatically. We acknowledge that there is a great deal of work to do, but the approach
offers a convincing solution to standardise pressure ulcer categorisation and reporting. The results from the
study are encouraging and show that using 216 images, collected over an eight-month trial, it was possible to
generate a mean average Precision=0.6796, Recall=0.6997, F1-Score=0.6786 with 45 false positives using
an @.75 confidence score threshold.

INDEX TERMS Pressure Ulcers, MLOPS, Faster Region-Based Convolutional Neural Networks, Classifi-
cation, Deep Learning, Machine Learning, Clinical Practice, Patient Care, In-Situ Operation

I. INTRODUCTION

IN the UK, pressure ulcers affect 700,000 people each
year [1]. According to National Health Service (NHS)

Improvement, pressure ulcers cost the NHS more than £3.8
million every day to manage and treat [2]. In England, 24,674

patients developed a new pressure ulcer between April 2015
and March 2016 [2]. UK-wide, the number of new pressure
ulcers in 2017/2018 was 200,000. The cost to the NHS for
treating a category I pressure ulcer is £1,124 while a category
IV is £14,108. [3], [4]. A House of Lords strategy discussion
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group in the UK in November 2017 reported that the NHS
spent £5 billion on wound care every year - a similar financial
cost to the NHS for managing obesity [5]. Malpractice claims
against UK trusts relating to pressure ulcers increased by forty
three percent in the three years leading up to 2017-18. The
number of litigation cases increased from 279 in 2014-15 to
399 in 2017-18 with the bill to the NHS increasing fifty three
percent from more than £13.6m to £20.8m. In total, pressure
ulcer claims cost £72.4m over that period. While most cases
are settled out of court for £20-30,000, some have cost the
NHS as much as £3m [6].

Unrelieved pressure over bony parts of the body cause
pressure ulcers [7]. Skin shearing, friction, moisture, and
faecal soiling increase the risk of pressure ulcers significantly.
These conditions are common in patients that are elderly, sick,
debilitated or paralysed [8]. Poorly managed, pressure ulcers
can lead to severe pain, reduced quality of life and significant
economic costs to the NHS [9]. Pressure ulcers can be either
a Category I, II, III, IV pressure ulcer, a Deep Tissue Injury
(DTI) or Unstageable (Figure 1).

FIGURE 1. From top left to botton right you can see the classifications
made during the trial for Category I, Category II, Category III, Category IV,
Deep Tissue Injury and Unstaegable

Pressure ulcers often occur on a) the ischial region (but-
tocks) typical for chair-bound patients, b) the back of the heal
- in the supine position, c) the sacrum - in the supine position
and d) the trochanteric region - in the lateral position [10].
When the surface of the skin is intact but reacts to injury by
becoming red and hyperaemic, this is classed as a Category
I. Category II ulcers occur in the epidermis and dermis layers
where they can become necrotic and cause skin cover defi-
ciency. Category III ulcers involve subcutaneous tissue and

Category IVs have lesions that penetrate underlying muscle
or bone. Category III and IV ulcers often have substantial
amounts of necrotic tissue deep within the wound cavity.
DTIs appear underneath intact skin and present themselves as
deep bruises, which can deteriorate into a deep pressure ulcer.
Unstageable wounds have an undetermined level of tissue
damage covered with slough or eschar/necrotic tissue. Once
an Unstageable pressure ulcer has been debrided, it can be
categorised [11].

The National Institute for Care Excellence (NICE) provide
guidelines for pressure ulcer risk assessment and prevention
[12]. Clinicians use the NHS Safety Thermometer incident
reporting system and the Strategic Executive Information
System to document pressure ulcer incidents in the UK [13].
However, there is significant variation in their implementa-
tion and use [14], [15]. This is primarily because healthcare
practitioners have a) varied experience in dealing with pres-
sure ulcers, and b) a general lack of understanding of pressure
ulcers and the treatment thereof [16]. The challenge is to
provide a decision-support tool for healthcare practitioners
that standardises pressure ulcer categorisation and reporting
and makes pressure ulcer management more accessible to a
wider group of healthcare professionals.

To address this challenge, we present a pressure ulcer
management system that uses a Faster Region-based Con-
volutional Neural Network (Faster R-CNN) [17] and a mo-
bile platform to automatically categorise and report pressure
ulcers. We train a Faster R-CNN with a custom dataset of
images to detect Category I, II, III, and IV pressure ulcers,
DTIs, and Unstageable pressure ulcers that cannot be cate-
gorised in real-time. The proposed system does not replace
human assessments, but enhances clinical practice, prevents
diagnostic errors, and standardises how clinicians analyse
and report pressure ulcers. The approach implements exist-
ing deep learning technologies to provide a novel end-to-
end pipeline for pressure ulcer categorisation that works in
ad hoc domiciliary settings. The strength of the approach
resides within MLOPS [18], model deployment at scale, and
its in-situ operation. The current pressure ulcer systems that
exist do not automatically classify and report pressure ulcers
from a service users’ residential home in real-time. To the
best of our knowledge, this is the first time clinicians have
evaluated a deep learning end-to-end solution for automatic
pressure ulcer categorisation and reporting in a service users’
domiciliary setting.

The structure of the remainder of the paper is as fol-
lows. Section 2 discuses traditional automated image anal-
ysis. Section 3 discusses the relevant works undertaken in
deep learning image analysis before Section 4 introduces the
methodology for the proposed solution in this paper. Section
5 presents the results and Section 6 discusses the findings,
before Section 7 concludes the paper and presents future
work.
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II. TRADITIONAL AUTOMATED IMAGE ANALYSIS
Automated medical image analysis has been an active area
of research since computers digitised and processed scans.
Between 1970 and 1990, clinicians used edge and line de-
tector filters to analyse images. For example, snakes active
contour models (ACM) where often implemented to perform
segmentation in [19]. Later, clinicians used the approach in
leg ulcer studies with piecewise B-spline arcs to adaptively
initialise the ACMs [20].

Region-based approaches, also known as similarity-based
segmentation, appeared in the late 1990s. Both [21] and [22]
used this approach to build colour histogram models, and
with Bayesian inference, were able to compute the posterior
membership probability of pixels belonging to segments in
a pressure ulcer image. By assigning pixels to different seg-
ments, the authors deconstructed ulcers to measure the wound
and its constituent tissue.

Other image processing approaches include a) spectral
clustering [23] which finds segments in images using mor-
phological operators [24], b) relationship modelling between
density and pixel intensity using synthetic frequencies ex-
tracted with contrast changes and energy density models [25],
and c) toroidal geometry, where images over multiple contrast
levels and varying synthetic frequencies are segmented with
the method described in [26].

The focus moved from 2D to 3D image processing in the
late 1990s with the introduction of the Measurement of Area
and Volume Instrument System (MAVIS) [27]. MAVIS con-
structs three-dimensional mappings of pressure ulcers by pro-
jecting parallel stripes of alternating colours onto the region
of interest. Clinicians then compute the volume of the ulcer
using cubic spline interpolation. Similar 3D image processing
approaches in [28] and [29] constructed 3Dmodels of wounds
by matching calibrated images captured from different angles
and Stereoscopic 3D reconstruction.

While these approaches have proved to be useful in con-
trolled environments, there use in domiciliary settings, where
most pressure ulcers develop, less so due to the need for costly
and complex lighting, specialised devices, and qualified staff
trained to use the systems.

III. DEEP LEARNING IMAGE ANALYSIS
In the 1990s, scientists developed machine learning algo-
rithms to perform semantic segmentation, data fitting, and
statistical classification using image-specific features [30],
[31]. Applications were primarily in the medical domain were
clinicians manually performed feature extraction [32]. Today,
Convolutional Neural Networks (CNNs) extract features from
images automatically [33], [34]. In fact, since AlexNet (a
CNN architecture) [35], DL has replaced most traditional
image processing approaches given their ability to solve com-
plex image processing problems.

In pressure ulcer studies there are some notable works. For
example, [36] proposed a system that classifies tissue types
and performs segmentation using CNNs. However, like the
studies in [37], [38], ML developers train models with low-

quality images which have limited utility in complex wound
analysis where clinicians often require high-resolution im-
agery. The challenge is getting high-resolution images which
is fundamentally important for successfully training deep
learning models [39]. At the time of writing, the Medetec
dataset [40] is the most comprehensive open-source pressure
ulcer dataset which contains 175 low resolution images of
pressure ulcers - an insufficient number for training CNN
models.
A common way to deal with this issue is to use the check-

points of models trained on a large corpus of images and
fine-tune them with images contained in smaller datasets
(a technique known as transfer learning) [41]. This is an
accepted method given that smaller organisations do not have
the data or the compute to generate large-scale models - GPT-
3 was pre-trained on 45 TB of text data with supercomputers
(285,000 CPUs and 10,000 GPUs) [42]. Studies that do not
have access to large datasets or compute use transfer learning
in this way. For example, [43] fined-tuned a pre-trainedmodel
with a small dataset of pressure ulcer images to segment
wounds and detect infection. Scientists discuss similar trans-
fer learning approaches in [44], [45] and [46].
Obviously, the quality of the data and the type or problem

clinicianswant to solve informsDL practitioners onwhat type
of DL architecture to use. Faster RCNNs are heavyweight
detectors trained by scientists with a large corpus of high-
quality data. Other less intensive models (in terms of data and
compute requirements) for pressure ulcer analysis have been
proposed. For example, scientists in [47], trained a single shot
detector (SSD) based on the Mobilenet V2 Object Detection
Model with low-resolution infrared thermography images
[48]. While the results reported in the paper for training
(confidence level=96-100%) are encouraging, the paper does
not show any evaluation results for inference in a real-world
setting. This is a major weakness of the paper which detracts
from the fact results drop by thirty percent when clinicians
use models in real-world environments due to the ad hoc
nature of environmental conditions (devices, operational use,
space, temperature, and ambient light). This is academic as
the major limitation with this approach is the fact the model
only has a "PU" class (hence the good training results) which
severely limits its clinical utility when clinicians require au-
tomatic report generation and progress monitoring of distinct
categories. [49]. We found similar problems in other studies
reported in the literature [50], [51], [52], [53]. When clini-
cians need complex medical image analysis DL practitioners
use more advanced models, such as the Faster RCNN [54],
[55], [56].
There is also a large body of work that uses deep learning to

segment pressure ulcers in images [57], [58], [59], and [60].
Segmentation models use object detection to first identify ob-
jects of interest and identify the class before mask algorithms
segments objects into constituent parts. During the tagging
process candidate objects are tagged using binding boxes,
followed by pixel-level masking [61]. This is an important
aspect of pressure ulcer analysis that allows clinicians to
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analyse andmeasure the constituent components of a pressure
ulcer (i.e., granulating tissue, eschar, and slough). This paper
does not consider segmentation, but it is something we will
consider in future work once a sufficient pressure ulcer detec-
tor is developed. The scope of this paper is to automatically
categorise pressure ulcers for the purpose of assessment and
report standardisation.

A common aspect missing in the studies reviewed in this
paper is an evaluation protocol to assess the model’s useful-
ness in a clinical trial setting. Studies rarely report results
beyond training and validation (i.e., mAP and IOU at .50
and .75 and precision/recall for small, medium, and large
objects) [62], [63], [64], [65]. Clinicians need to evaluate
the utility of the trained model in the settings they work
in. What you tend to find is that the data used to train the
model is significantly different to the data produced in clinical
practice. As such the performance of the model significantly
decreases. Running a clinical trial with the NHS is challeng-
ing, particularly when the technological solution is still in the
initial stages of development. However, trials are important as
they allow you to fully understand the strengths and weakness
of the system through independent evaluation in a real-world
clinical setting and continually re-train models to improve
accuracy and clinical utility over time – the studies reviewed
fail to report this critical aspect of on-going model training
and evaluation.

IV. METHODOLOGY
This section describes the data collection strategy used in the
study. The article discusses how we use a custom dataset,
image augmentation, and transfer learning to train a Faster
R-CNN model for categorising pressure ulcers. The paper
also delves into the integration of the model into a mobile
platform, used by clinicians in the clinical trial. The section
concludes by presenting a set of evaluation metrics for assess-
ing themodel’s performance during the training and inference
stages of the clinical trial.

A. DATA COLLECTION AND PRE-PROCESSING
The Medetec pressure ulcer dataset provides a baseline im-
age set in this study which contains 174 images of pressure
ulcers (classes included are Category I, II, III, and IV, DTI
and Unstageable) [40]. We added an additional 675 images
(across the same classes) acquired from Google Images to the
Medetec dataset. Images were used based on the following
inclusion criteria: a) they have a minimum width and height
of 600 pixels by 400 pixels to align picture quality with the
quality of the images contained in the Medetec dataset (note
we do not consider these to be high-quality images - but
these were the only open access images we could obtain); b)
they complement the images in the Medetec dataset where
specific categories do not exist or are poorly represented; and
c) they were not a duplicate of any existing image already
included in the dataset. The Python Augmentor tool generates
additional images by flipping, scaling, tilting, and rotating the
858 images. Each image is resized with a fixed ratio of 1024

by 1024 to match the input resolution of the Faster RCNN
network. A district nurse with expertise in pressure ulcer
categorisation tagged each pressure ulcer in the dataset as one
of the six pressure ulcer classes - a total of 5084 objects in
4290 images: 685 tags for Category I, 1401 tags for Category
II, 432 tags for Category III, 740 tags for Category IV, 899
for DTI and 927 for Unstageable. Figure 2 shows the class
distribution.
It is clear to see from Figure 2 that there is a class imbalance

problem in the study. Due to the small number of images
collected from Medetec and Google images it was extremely
difficult to appropriately deal with class balance in a sensible
way. We could not under sample because we already had
little data to train with. Therefore, the only option was to
oversample using augmentation but there is only so much we
could dowith the small number of base images we had. This is
because after a certain point augmentation stops introducing
any additional variance. Nonetheless, despite the significant
difficulties we had and the effort we put into this study, the
model still performs reasonably well. The district nurse used

FIGURE 2. Class Distributions for the Tagged Dataset

Labelme to place binding boxes around objects to identify
regions of interest. We export the tagged regions in each im-
age as Extensible Mark-up Language (XML) in TensorFlow
Pascal VOC format [66] which we later convert to Comma
Separated Values (CSV) using Pandas and XML. Following a
train and validation dataset split on the tagged classes, we use
the Tensorflow Object Detection API and Pillow to convert
the XML and associated images into TFRecords for training.

B. FASTER REGION-BASED CONVOLUTIONAL NEURAL
NETWORK
The platform uses the Faster R-CNN architecture for object
detection and classification on images containing pressure
ulcers [67]. It has three parts: a) a CNN for classification
and feature map generation, b) a region proposal network
(RPN) for generating Regions of Interest (RoI), and c) a
regressor, which finds the locations of each object and its
classifications. Figure 3 provides an overview of the network
architecture. The RPN identifies candidate pressure ulcer cat-
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FIGURE 3. Faster R-CNN

egories in photographs using previously learnt features in the
base network (ResNet101 in this instance). The RPN replaces
the selective search approach used in early R-CNN networks
where the model generated region proposals at the pixel level
rather than the feature map level. The RPN finds bounding
boxes in the image using nine size and aspect ratios as shown
in figure 4.

The size and aspect ratio configurations describe anchors
(fixed bounding boxes) placed throughout the image. The
RPN references the anchors to predict object locations. The
RPN is a CNN, which uses the feature map provided in the
base network to find a set of anchors of interest in an image.
Note that the feature map dimensions are the same as those in
the original image.

The RPN generates two outputs for each anchor bounding
box a) a probability objectness score and b) a set of bounding
box coordinates. The first output is a binary classification,
the second a bounding box regression adjustment. During
the training process, all the classified anchors are placed into
one of two categories a) foreground: anchors that overlap the
ground-truth object with an Intersection over Union (IoU)
bigger than 0.5, or b) background: anchors that do not overlap
any ground truth object or have less than a 0.1 IoU with
ground-truth objects. The IoU is defined as:

IoU =
Anchor box ∩ Ground Truth box
Anchor box ∪ Ground Truth box

(1)

Anchors are randomly sampled to create mini-batches with

256 balanced foreground and background anchors. Each
batch is used to calculate the classification loss using binary
cross-entropy. Anchors marked as foreground in the mini-
batch are used to calculate the regression loss and the correct
∆ to transform the anchor into the object. If no foreground
anchors are found foreground anchors are selected that have
the greatest IoU with overlapping ground truth objects. This
ensures that foreground samples and targets are provided for
the network to learn from rather than having no anchors at all.
Anchors will overlap; therefore, proposals will also overlap

on the same object. Non-Maximum Suppression (NMS) is
performed to delete intersecting anchor boxes with lower
IoU values. IoU values greater than 0.7 describe positive
object detection and values less than 0.3 describe background
objects. Caution is required when setting the IoU threshold
as setting it to low will result in proposals for objects being
missed; too high and there will be too many proposals for the
same object. It is typical to use 0.6 for the IoU threshold. The
top N proposals, sorted by score, are selected after applying
NMS. The loss functions for both the classifier and bounding

FIGURE 4. Region Proposal Network

box calculation are defined as:

Lcls(pi, p∗i ) = −(p∗i log(pi) + (1− p∗i )log(1− pi)) (4)

Lreg(ti, t∗i ) = Σi∈{x,y,w,h}smoothL1(ti − t∗i ) (5)

where

smoothL1(ti − t∗i ) =

{
0.5x2 if |ti − t∗i | < 1

|x| − 0.5 0ther
(6)

pi the object possibility, ti the 4k anchor coordinate, pi*
the ground truth label, t* the ground truth coordinate, Lcls
the classification loss (log loss), and Lreg the regression loss
(smooth L1 loss)
Once the RPN step has completed there will be a set of ob-

ject proposals. At this stage, the proposals do not have a class
assigned to them. Each bounding box must be classified and
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assigned a category. In the Faster R-CNN implementation,
the convolutional feature map is cropped using each proposal.
Each crop is then resized to 14 * 14 * convdepth using interpo-
lation. After cropping, max pooling with a 2x2 kernel is used
to get a final 7 * 7 * 512 feature map for each proposal (via
RoI Pooling). These dimensions are default parameters set by
the Fast R-CNN; however, they are customizable depending
on second stage use.

The Fast R-CNN takes the 7 ∗ 7 ∗ 512 feature map for
each proposal, flattens it into a one-dimensional vector and
connects it to two fully-connected layers of size 4096 with
Rectifier Linear Unit (ReLU) activation. An additional fully-
connected layer to identify object classes is implemented
where N describes the total number of classes and +1 the
background. In parallel, a second fully-connected layer with
4N units is implemented for bounding box regression pre-
diction. The 4 parameters correspond to ∆centerx , ∆centery ,
∆width, ∆height for each of the N possible classes. Figure 5
describes the Fast R-CNN architecture. Targets in a Fast R-

FIGURE 5. Fast R-CNN

CNN are calculated in a similar way to the RPN targets but
with different possible classes taken into account. Proposals
and ground-truth boxes are used to calculate the IoU be-
tween them. Proposals with an IoU greater than 0.5 when
compared with any ground truth box get assigned to that
ground truth. Proposals with an IoU between 0.1 and 0.5 are
assigned to the background. Proposals with no intersection
are ignored. Targets for bounding box regression can then be
calculated by determining the offset between the proposal and
its corresponding ground-truth box. Note this only happens
for proposals that have been assigned a class based on the
IoU threshold. The Fast R-CNN is trained using backpropa-
gation and Stochastic Gradient Descent. Calculating the loss
function in the Fast R-CNN is defined as:

L(p, u, tu, v) = Lcls(p, u) + λ. [u ≥ 1]Lreg(tu, ν) (7)

Where p describes the object possibility, u the classification
class, t the ground truth label, v the ground truth coordinates
for class u, Lcls the Loss function for classification, Lreg the
Loss function for the bounding box regressor, and θ the
balancing parameter. The Lcls is defined as:

Lcls(p, u) = − log(
epu

ΣK
j=1e

pj
) (8)

Where p is the object possibility, u the classification class,
Lcls the Loss function for classification and K the number of

classes. Lreg can be calculated using the equation described in
5 with tu and v as input.
Following object classification, bounding box adjustments

are performed. This is achieved by taking into account the
class with the highest probability for that proposal. Proposals
that have a background class assignment are ignored. Using
the final set of objects class-based NMS is applied and,
to minimise the final set of objects returned, a probability
threshold is set.
Putting the complete model together there are two losses

for the RPN and two for the R-CNN. The four losses are
combined using a weighted sum to give classification losses
more weight relative to regression losses, or give R-CNN
losses more power over the RPNs’.

C. TRANSFER LEARNING
Transfer learning is adopted to fine-tune a pre-trained model
using the six pressure ulcer classes in our dataset. This is
an important technique as training CNNs on small datasets
(which we have in this study) leads to extreme overfitting
due to low variance. The base model is the residual neural
networks-101 (Resnet101) model [68]. It has been pre-trained
using the COCO dataset which contains 330 thousand images
and 1.5 million object instances. Residual neural networks
are deep neural networks based on a highway networks ar-
chitecture [69]. They accelerate training in very deep neural
networks and using skip connectors, avoid vanishing and
exploding gradients. We do not claim any novelty in either
the Faster RCNN or the transfer learning aspects but rather
use them as a component in a novel end-to-end platform for
automatically categorising and reporting pressure ulcers in
domiciliary settings.

D. MODEL TRAINING
Model training is performed on an HP ProLiant ML 350
Gen 9 Server with x2 Intel Xeon E5-2640 v4 series pro-
cessors, 768GB of RAM and four NVidia Quadro RTX8000
graphics cards with a combined 192GB of GPU memory.
TensorFlow 2.2, TensorFlow Object Detection API, CUDA
10.2 and CuDNN version 7.6 are used in the training pipeline.
In the TensorFlow pipeline.config file the following hyper
parameters are set:

• Tomaintain aspect ratio resizer minimum andmaximum
coefficients are set to 1024x1024 pixels respectively.
This minimises the scaling effect on the acquired data.

• The default setting for the feature extractor coefficient
is retrained to provide a standard 16-pixel stride length
to maintain a high-resolution aspect ratio and improve
training time.

• The batch size coefficient is set to thirty-two to maintain
GPU memory limits.

• The learning rate is set to 0.0004 to prevent large varia-
tions in response to the error.

In order to improve generalisation and to account for variance
in the camera trap images the following augmentation settings
were used:

6 VOLUME 11, 2023
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• Random_adjust_hue which adjusts the hue of an image
using a random factor.

• Random_adjust_contrast which adjusts the contrast of
an image by a random factor.

• Random_adjust_saturation which adjusts the saturation
of an image by a random factor.

• Random_square_crop_by_scale which was set with a
scale_min of 0.6 and a scale_max of 1.3.

The Adam optimizer is implemented in Resnet 101 to min-
imise the loss function [70]. Unlike optimisers that maintain
a single learning rate (alpha) throughout the entire training
session (stochastic gradient descent), Adam calculates the
moving average of the gradient mt /squared gradients vt and
the parameters beta1/beta2 to dynamically adjust the learning
rate. Adam is defined as:

mt = β1mt − 1 + (1− β1)gt
vt = β2vt − 1 + (1− β2)g2t

(1)

where mt and vt are estimates of the first and second moment
of the gradients. Bothmt and vt are initialised with 0’s. Biases
are corrected by computing the first and second moment
estimates:

m̂t =
mt

1− βt1

v̂t =
vt

1− βt2

(2)

Parameters are updated using the Adam update rule:

θt+1 = θt −
n√
v̂t + ϵ

m̂t · (3)

The ReLU activation function is adopted to overcome the
saturation changes around the mid-point of their input which
is a common problem with sigmoid or hyperbolic tangent
(tanh) activations [71]. ReLU is defined as:

g(x) = max(0, x) (4)

E. CLINICAL TRIAL PROTOCOL
TensorFlow serving hosts the trained pressure ulcer model
[72]. District nurses in the study use iOS and Android mobile
devices over 4/5G communications to transmit photographs
of pressure ulcers through a WordPress web interface hosted
on Apache. A Rest-API submits photographs received server-
side to TensorFlow Serving [73] for classification. AMySQL
database on the server stores the URLs to classified images
on disk. Clinicians can view classification results in the
WordPress gallery 2-3 seconds after the photograph is taken.
A custom-built server containing an Intel Xeon E5-1630v3
CPU, 64GB of RAM and an NVidia Tesla T4 GPU. Tensor-
Flow 2.2, CUDA 10.2 and CuDNN 7.6 is used to inference
the model. The taking of photographs did not impact service
users or district nurses beyond normal clinical practice. The
study ran between the 15th of March 2021 and the 21st of De-
cember 2021. Throughout the trial, specialist nurses reviewed
the classifications made and either confirmed the category(s)
was correct or reported what the correct category should be.

FIGURE 6. PUMS Mobile Phone Web Services Interface

Poor quality images, images with patient or nurse identifiable
information, and images that did not contain pressure ulcers
were removed from the study.

F. EVALUATION METRICS
The model’s performance during training is evaluated us-
ing RPNLoss/objectiveness, RPNLoss/localisation, BoxClas-
sifierLoss/classification, BoxClassifierLoss/localisation and
TotalLoss. These metrics are collected from Tensorboard
2.6. The RPNLoss/objectiveness measures how well the
model can generate suitable bounding boxes and categorise
them as either a background or foreground object. RPN-
Loss/localisation measures howwell the RPN is at generating
bounding box regressor coordinates for foreground objects.
In other words, how far each anchor target is from the closest
bounding box. BoxClassifierLoss/classification measures the
output layer/final classifier loss and describes the computed
error for prediction. BoxClassifierLoss/localisation measures
the performance of the bounding box regressor. All these
measures are combined to produce a total loss metric.
The validation set during training is measured using mAP

(mean average precision), which is a standard metric for eval-
uating the performance of an object detection model. mAP is
defined as:

mAP =

∑Q
q=1 AveP(q)

Q
(5)

Where Q is the number of queries in the set and AveP(q) is
the average precision (AP) for a given query a.
The mAP is calculated on the binding box locations for

the final two checkpoints. IoU thresholds @.50 and @.75 are
used to assess the overall performance of the model. This is
achieved by measuring the percentage ratio of the overlap
between the predicted bounding box and the ground truth
bounding box and is defined as:

IoU =
AreaofOverlap
AreaofUnion

(6)

A threshold of @.50 measures the overall detection accuracy
while the upper threshold of @.75 measures localisation ac-
curacy.
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Using the final trained model, inference is measured using
photographs taken during the clinical trial to evaluate the
performance of the model in a real-world situation. Inference
is evaluated using Precision, Recall, F1-Score and Support.
Precision is defined as:

Precision =
TP

TP+ FP
(7)

Recall is defined as:

Recall =
TP

TP+ FN
(8)

F1 Score is defined as:

F1Score = 2 ∗ Precision ∗ Recall
Precision+ Recall

(9)

Support is used to describe the number of samples of the
true response that reside within specific classes in the test set
(the number of pressure ulcers in images obtained from the
clinical trial).

The ground truths for images taken by nurses during the
trial are provided by clinical staff at Mersey Care NHS Foun-
dation Trust and used to calculate the detections generated by
the in-trial model. Precision, Recall, F1-Score and Support
are calculated with IoU@.50 for all experiments and confi-
dence scores (CS) @.30, @.50, @.75, @.90. These metrics
are used to provide an overall assessment for each class in the
model during clinical trial inference. The experiments also
report all false positives that reside outside of the IoU@.50
threshold at each of the four CS thresholds. The precision-
recall receiver operator curve (ROC) is used to visually rep-
resent the cutoffs and the area under the curve (AUC).

V. EVALUATION
The results obtained during the training of the Faster RCNN
model are presented first. This is followed by two additional
evaluations to determine howwell the trainedmodel performs
in a clinical setting. The first evaluates the model’s ability to
classify pressure ulcers in the photographs taken by district
nurses. The second evaluates the same photographs cropped
to only include the pressure ulcer (to remove noise and un-
necessary information and to increase the size of the pressure
ulcer).

A. TRAINING RESULTS FOR MODEL TRAINED ON THE
MEDETEC AND GOOGLE DATASET
In the first experiment, the training set (Medetec and Google
scrapped images - 4291 in total) are used to fit themodel. Note
this is a pre-trained Faster RCNN model fined tuned using a
dataset containing the images from the Medetec pressure ul-
cers dataset and pressure ulcer images scrapped from Google
images. The dataset is randomly split into training (90%), and
validation (10%). The model is trained over 25000 steps (781
epochs) using a batch size of 32.

1) Results for Training Dataset
The results in Table 1 indicate that the model is generally
good at producing candidate regions of interest (0.0593). The
results also show that the RPN can effectively perform local-
isation on the objects identified (0.0598). The classification
loss is higher (0.2015) than all other losses indicating the
model is much less accurate at classifying identified objects
of interest. This will correlate with the results presented for
inference later in this section. In terms of box classifier lo-
calisation (0.0564), this is much more in line with the results
produced by the RPN and shows that placing binding boxes
around objects is not a real issue for the model. Table 1 shows
the total loss (0.3770) for both the RPN and Box Classifier
which is considered a good loss in object detection.

TABLE 1. Tensorboard Results for Training

Metric Smoothed Value
RPNLoss/objectness 0.0593 0.0521
RPNLoss/localisation 0.0598 0.0103

BoxClassifierLoss/classification 0.2015 0.0622
BoxClassifierLoss/localisation 0.0564 0.0240

Total Loss 0.3770 0.1486

2) Results for Validation Dataset
Table 2 provides the detection boxes’ mAP metrics across
several configurations. mAP provides the mean average pre-
cision over all classes averaged over IoU thresholds ranging
between .5 and .95 with .05 increments. Precision (0.7743) is
relatively good indicating a reduced number of false positives.
The three metrics for large, medium and small objects indi-
cate the model is better at detecting large and medium objects
in images rather than smaller ones. mAP@.50IoU is themean
average at 50% IoU and mAP @.75IoU is precision at 75%
IoU. The results in Table 2 show that the best precision values
are mAP (Large)=0.8045 and mAP@.50=0.9732. Utilising
large objects and the mAP@.50 IoU threshold will minimise
the number of false positives returned. In other words, the
validation results suggest that the model will perform rea-
sonably well with large/medium objects and less so with
smaller objects. This means that photographs of pressure
ulcers will need to be taken close to the actual wound. Table

TABLE 2. Tensor Board Results for Eval - Precision

Metric Smoothed
DetectionBoxes/Precision/mAP 0.7743

DetectionBoxes/Precision/mAP (Large) 0.8045
DetectionBoxes/Precision/mAP (Medium) 0.7380
DetectionBoxes/Precision/mAP (Small) 0.1620
DetectionBoxes/Precision/mAP@.50IOU 0.9732
DetectionBoxes/Precision/mAP@.75IOU 0.9119

3 provides the detection boxes AR metrics across the same
configurations used to calculate Precision. AR@1 provides
the average recall with 1 detection, AR@10 is the average
recall with 10 detections and AR@100 is the average recall
with 100 detections. Recall in this instance represents the
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number of ground truths detected divided by the total number
of ground truths that exist. A significant jump is seen between
1 detection and 10 detections but little change between 10 and
100. Again, the results are reasonably good when 10 or more
detections are returned (0.8221 and 0.8249). In this instance,
the results suggest that most of the ground truths presented
were detected by the trained model. The recall values for
AR@100(small, medium and large) show the average recall
with 100 detections across small, medium and large objects in
images. Again, the best results are obtained when large and
medium objects in images are present (0.8496-0.7819) and
less so for small objects (0.4212).

TABLE 3. Tensorboard Results for Eval - Recall

Metric Smoothed
DetectionBoxes/Recall/AR@1 0.7308
DetectionBoxes/Recall/AR@10 0.8221
DetectionBoxes/Recall/AR@100 0.8249

DetectionBoxes/Recall/AR@100 (Large) 0.8496
DetectionBoxes/Recall/AR@100 (Medium) 0.7818
DetectionBoxes/Recall/AR@100 (Small) 0.4212

B. CLINICAL TRIAL RESULTS USING TRAINED MODEL
The trained model was deployed and used in the clinical
trial to analyse pressure ulcer photographs taken by district
nurses during routine patient visits. During the trial, 1016
images were collected. Following quality checking, this num-
ber was reduced to 624 by removing blurry images, images
that contained identifiable patient or staff information, and
images that did not contain pressure ulcers. A second review
was performed to remove images that were similar (the same
pressure ulcer taken repeatedly during the trial with little
variance). The final test set contained 216 images (5 Category
I images, 93 Category II, 11 Category III, 0 Category IV (none
were seen during the trial), 30 DTI, and 77 unstageable) as
shown in Figure 7.

FIGURE 7. Inference Class Distribution

1) Inference Using Uncropped Images
The 216 photographs are evaluated class-by-class using Pre-
cision and Recall, with IoU@.50 and CS @.30, @.50, @.75
and @.90. The F1-score is used to calculate the harmonic
mean between the Precision and Recall values. The Support
for each class is Category I=5, Category II=93, Category
III=11, Category IV=0, Unstageable=77, and DTI=30. The
number of false positives that reside outside of IoU@.50 are
also provided. Table 4 shows the performance metrics using
a CS @0.30. Note the mean average is divided by 5 as no
Category IV pressure ulcers were seen during the trial.

TABLE 4. Faster R-CNN Inference Results Using Uncropped Images with
IOU@.50 CS@.30

Class Precision Recall F1-Score
CategoryI 0.2222 0.4444 0.2962
CategoryII 0.3555 0.3609 0.3581
CategoryIII 0.2400 0.3750 0.2926
CategoryIV 0.0000 0.0000 0.0000
Unstageable 0.6785 0.4222 0.5205

DTI 0.7619 0.3478 0.4775
Mean Average 0.4516 0.3900 0.3889

In this evaluation, 109 false positives were reported. The re-
sults overall were poor across all classes. The best performing
class was unstageable - the worse was category III which is
reasonable considering support was only 11 and this category
had the smallest number of tags for training (432).
The mAP for all classes was 0.4516 and 0.3900 for mAR.

The F1-Score was reported as 0.3889. Increasing the CS
threshold to @.50 does improve the results slightly however
most Precision-Recall values are below 0.50 as shown in
Table 5. The @.50 threshold does however significantly re-

TABLE 5. Faster R-CNN Inference Results Using Uncropped Images with
IOU@.50 CS@.50

Class Precision Recall F1-Score
CategoryI 0.3333 0.4444 0.3809
CategoryII 0.4105 0.2932 0.3420
CategoryIII 0.3571 0.3125 0.3333
CategoryIV 0.0000 0.0000 0.0000
Unstageable 0.7200 0.4000 0.5142

DTI 0.8500 0.3695 0.5150
Mean Average 0.5341 0.3639 0.4170

duce the number of false positives from 109 to 46. Increasing
the CS further to @.75 fails to balance the Precision-Recall
values and suggests that a CS @.50 is the most optimal
configuration for this model as shown in Table 6. Setting the
CS to @.75 reduces the false positives to 16 in line with the
higher precision values but decreases the model’s ability to
recall a sufficient number of ground truths. Setting the CS to
@.90 further decreases the number of false positives to 4 but
the overall Recall in many classes is again reduced as shown
in Table 7.
A) Precision-Recall Curve for Original Images@IOU.50 and
@CS.50
The precision-recall ROC curve in Fig. 8 shows the overall
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TABLE 6. Faster R-CNN Inference Results Using Uncropped Images with
IOU@.50 CS@.75

Class Precision Recall F1 Score
CategoryI 0.4285 0.3333 0.3749
CategoryII 0.4626 0.2330 0.3099
CategoryIII 0.3846 0.3125 0.3448
CategoryIV 0.0000 0.0000 0.0000
Unstageable 0.7500 0.3666 0.4924

DTI 0.8750 0.3043 0.4515
Mean Average 0.5801 0.3099 0.3947

TABLE 7. Faster R-CNN Inference Results Using Uncropped Images with
IOU@.50 CS@.90

Class Precision Recall F1 Score
CategoryI 0.7500 0.3333 0.4615
CategoryII 0.4545 0.1503 0.2258
CategoryIII 0.5555 0.3125 0.3999
CategoryIV 0.0000 0.0000 0.0000
Unstageable 0.8571 0.3333 0.4799

DTI 0.9285 0.2826 0.4333
Mean Average 0.7091 0.2824 0.4000

model performance. The AUC values for Category I, II, III,
IV, DTI and Unstageable was 0.4660, 0.6296, 0.1979, 0.0000,
0.6691 and 0.4914 respectively. It is clear from these results

FIGURE 8. Model Trained on the Medetec and Google dataset with
Uncropped Images.

the model’s performance is poor. This is partly due to the
ad-hoc way in which photographs of pressure ulcers were
takenwhich did not reflect the images used for training.While
best practice advice was given to district nurses, photograph
quality varied due to poor lighting, pressure ulcer site access,
and the distance mobile phones were held from the wound
site when photographs were taken.

2) Inference Using Cropped Images
To mitigate the issues raised in the previous evaluation the
216 images were standardised by cropping them with a 1024
by 1024 aspect ratio. Figure 9 shows an example of the
original images on the left and the classified cropped pressure

ulcer images on the right (note these images where from
the Medetec and Google dataset - they were not images of
patients who participated in the trial).

FIGURE 9. Example images represent original images on the Left and
images on the right where the pressure ulcer has been cropped from the
image to remove noise.

The assumption is that removing noise will improve the
overall localisation and classification results. In other words,
zoom into the image and make the pressure ulcers appear
bigger. In this evaluation, the performance of the model was
measured using the same metrics. Table 8 provides the results
for IoU@.50 and a CS@.30. Adopting this strategy improved

TABLE 8. Faster R-CNN Inference Results Using Cropped Images with
IOU@.50 and CS@.30

Class Precision Recall F1 Score
CategoryI 0.1666 0.8000 0.2757
CategoryII 0.3852 0.7096 0.4994
CategoryIII 0.1923 0.4545 0.2702
CategoryIV 0.0000 0.0000 0.0000
Unstageable 0.7037 0.7402 0.7214

DTI 0.7037 0.6333 0.6666
Mean Average 0.4203 0.6675 0.4866

the mean average for Precision, Recall and F1-Score but
nothing significant beyond the previous set of results. The
mean averages remain below 0.50 for both Precision and the
F1-Score however there is a marked increase in Recall which
means more of the ground truths were detected. There was
an increase in the number of false positives (152). Setting the
CS to @.50 increased all mean average values above 0.50 as
shown in Table 9. This time 93 false positives were reported.
With a CS@.75 themean average results for Precision, Recall
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TABLE 9. Faster R-CNN Inference Results Using Cropped Images with
IOU@.50 and CS@.50

Class Precision Recall F1 Score
CategoryI 0.3076 0.8000 0.4443
CategoryII 0.5000 0.6666 0.5714
CategoryIII 0.2608 0.5454 0.3528
CategoryIV 0.0000 0.0000 0.0000
Unstageable 0.7500 0.7402 0.7450

DTI 0.7307 0.6333 0.6785
Mean Average 0.5098 0.6771 0.5584

TABLE 10. Faster R-CNN Inference Results Using Cropped Images with
IOU@.50 and CS@.75

Class Precision Recall F1 Score
CategoryI 0.3750 0.6000 0.4615
CategoryII 0.6595 0.6666 0.6630
CategoryIII 0.5714 0.7272 0.6399
CategoryIV 0.0000 0.0000 0.0000
Unstageable 0.8378 0.8051 0.8211

DTI 0.9545 0.7000 0.8076
Mean Average 0.6796 0.6997 0.6786

and F1-Score increase further to just below .70 as indicated
in Table 10 with 45 false positives reported. In the final ex-

TABLE 11. Faster R-CNN Inference Results Using Cropped Images with
IOU@.50 and CS@.90

Class Precision Recall F1 Score
CategoryI 0.5000 0.6000 0.5454
CategoryII 0.7763 0.6344 0.6982
CategoryIII 0.6666 0.5454 0.5999
CategoryIV 0.0000 0.0000 0.0000
Unstageable 0.9384 0.7922 0.8591

DTI 1.0000 0.6333 0.7754
Mean Average 0.7762 0.6410 0.6956

periment, there were further increases for precision (0.7762)
and F1-Score (0.6956) however recall dropped from 0.6997
to 0.6410. As would be expected with a higher precision the
number of false positives reported fell to 19.
A) Precision-Recall Curve for Cropped Images@IOU.50 and
@CS.50
The Precision-Recall ROC curve in Fig. 10 shows themodel’s
performance. This time the AUC values for category I, II,
III, IV, DTI, and unstageable were 0.6253, 0.8552, 0.5051,
0.0000, 0.9299 and 0.8194 respectively. Compared with the
results in Table 5 there was a 0.1593 improvement for cat-
egory I, a 0.2256 improvement for category II, a 0.3072
improvement for category III, 0.2608 improvement for un-
stageable and a 0.3281 improvement for DTI.

VI. DISCUSSION
This paper presented an end-to-end platform that classifies
and documents pressure ulcers automatically. The results
demonstrated that the Faster R-CNN, trained on a custom
set of pressure ulcer images, using its RPN was able to
effectively detect objects and apply localisation with losses
of 0.0593, and 0.0598 respectively. The BoxClassifierLoss

FIGURE 10. Model Trained on the Medetec and Google dataset with
Cropped Images.

was able to produce a similar loss for localisation (0.0564)
but classification loss was higher (0.2015). Collecting the
required pressure ulcer images for each class (typically 1500
objects per class is required when using transfer learning)
proved to be difficult in this study as there are no publicly
available datasets. Images from the internet were sourced but
the quality and distribution between classes was poor.
Despite this limitation, the evaluation dataset achieved an

overall mAP of 0.7743 which is considered a good result in
object detection. Table 2 also showed the mAP results for
large, medium, and small objects. Larger objects produced
higher mAP values than smaller objects as you would expect
(0.8045 and 0.1620 respectively). Therefore, close images
of pressure ulcers produce better results than those taken
at longer distances - a point we will return to later in the
discussion. Similar results were reported for Recall as indi-
cated in Table 3. Recall increased in line with the number of
detections (AR@1 0.7308 and AR@100 0.8249) showing a
strong correlation between large and small objects (0.8496
and 0.4212 respectively). Again, this suggested the model is
better at recalling larger objects than smaller ones.
The trained model was evaluated in a clinical setting. The

results from the first evaluation were disappointing and there
are several reasons for this. First, the number of images
collected from the trial was small with a significant imbalance
across all classes. Category III performed the worst with an
F1-Score of 0.2926. This is reasonable given that only eleven
category III instances were recorded during the trial and only
432 tags were used in training. The best performing category
was Unstageable with an F1-Score of 0.5205.
DTIs and unstageable (which are often larger in appear-

ance) produced better results than smaller pressure ulcers
(category I and II) which are more difficult to analyse be-
cause of their size. This was in line with the training results
discussed earlier. However, this did not fully explain the poor
results. The images collected from Google and Medetec for
training were pre-processed to maximise the appearance of
a pressure ulcer in an image. In the trial, however, there
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was significant variance in how photographs were taken (i.e.,
distance and lighting). Larger representations of pressure ul-
cers were better detected (although in several instances they
were miss-classified). Photographs of pressure ulcers taken
at larger distances were often missed and recorded as a false
negative.

To address this issue the 216 images were cropped to
remove unwanted information. With the CS @.30, a marked
improvement in both unstageable and DTI classifications
was observed with F1-Scores of 0.7214 and 0.6666, re-
spectively. With CS @.50 the results improved further with
similar improvements @.75 and @.90. The best-balanced
results reported was @.75 with category I=0.4615, category
II=0.6630, category III=0.6399, category IV=N/A (note no
Category IV pressure ulcers were seen during the trial hence
the N/A value to indicate this category could not be eval-
uated), unstageable=0.8211 and DTI=0.8076. In compari-
son with the best results obtained from uncropped images
(@.50 - mAP=0.5341, mAR=0.3639, mAF1=0.4170) and
the results obtained @.75 in this evaluation (mAP=0.6796,
mAR=0.6997, mAF1=0.6786), cropping the images signifi-
cantly improved overall performance.

We accept the results are not clinically relevant. However,
they are encouraging. The model was trained on poor-quality
images obtained from the Internet and despite the limitations
reported, we were able to develop a pressure ulcer categori-
sation and reporting system that produced reasonably good
results. It is hoped that this evidence will convince clinical
organisations that a better model could be developed if high-
quality pressure ulcer images are openly shared with the
research community. There are obviously several other issues
that need to be addressed, particularly with the mobile app.
For example, there needs to be a feature that can automatically
zoom and crop a pressure ulcer - this is something that will
address in future work.

VII. CONCLUSIONS AND FUTURE WORK
Pressure ulcers are a significant challenge for patients and
healthcare professionals. While training and guidelines are
given to assess, treat, and report their occurrence there are
inconsistencies in the type of ulcers reported, data collection
and classification systems used. This paper considered the
issue and reported the results from a clinical trial conducted
by Mersey Care NHS Foundation Trust who evaluated the
efficacy of an automated pressure ulcer categorisation and re-
porting system. District nurses in the study took photographs
of pressure ulcers using their mobile phones and transmitted
them over a 4/5G network to servers at LJMU. A total of
1016 images were collected over eight months. This num-
ber was reduced to 216 following quality checks to remove
blurry images, images that contain patient or staff identifiable
information, images that did not contain pressure ulcers and
images that looked similar.

While the results from the evaluation are encouraging the
main challenge was getting access to a sufficient number of
high-quality images with equal distributions across all cate-

gories. Empirically, we found that transfer learning requires a
minimum of 1500 tagged objects per class to produce results
in the 90s. This means that for the six classes we would
need 9000 tags for training a new model. To achieve this a
widespread push across all NHS trusts in the UK would be
required which was beyond the scope of this study.
Nonetheless, given the challenges, we believe the results

highlight the benefits of the end-to-end platform and its
ability to detect, categorise, and report pressure ulcers. This
contributes to the biomedical field and provides new insights
into the use of deep learning and mobile platforms for pres-
sure ulcer management that warrants further investigation.
While work exists in the digital analysis of pressure ulcers
using different machine learning methods, to the best of our
knowledge the study in this paper is the first comprehensive
NHS clinical trial of its kind that combines deep learning
and an enterprise mobile platform to analyse, categories, and
report pressure ulcers in real-time in domiciliary settings.
The work builds on existing research where current methods
are only capable of classifying a limited range of pressure
ulcer conditions (usually the most visually distinctive) in very
controlled environments.
In future work, the focus will be on obtaining NIHR fund-

ing to carry out a much larger study. There will also be a focus
on understanding NHS data access policies and leveraging
resources to obtain a much larger corpus of pressure ulcer
images across the UK. Following sufficient imagery, we will
also focus on segmentation to measure pressure ulcers and
their constituent tissue types. Additional development work
will be undertaken to help clinicians standardise the photog-
raphy of pressure ulcers in the community to improve the
predictive performance of the model.
We believe that the application of this technology also has

huge potential in many other wound care settings. The mobile
application makes this particularly attractive to wound care
in countries where there is no NHS-level of service, i.e. in
Africa (for example in Uganda healthcare is very inaccessible
so applications like this with appropriate recommendations on
how to treat wounds would be a welcomed intervention to the
many poor people who live there). This is also an area we will
be looking at in future work.
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