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Abstract 

Optimal design and analysis of three-phase graphene/fibre reinforced laminated 

nanocomposite plates with respect to maximizing the fundamental frequency is the subject 

of the present study. Optimal design solutions are given for four different sets of design 

parameters. First design problem determines the optimal graphene contents of individual 

layers, the second one both graphene and fibre contents, the third optimizes the graphene 

and fibre contents as well as the layer thicknesses of individual layers, and the fourth 

problem optimizes the graphene and fibre contents, layer thicknesses and fibre 

orientations. Purpose of this approach is to assess and compare different levels of 

optimization by means of a design efficiency index and as such to determine the 

effectiveness of different design parameters in maximizing the fundamental frequency. 

Optimization is implemented using a Sequential Quadratic Programming algorithm and 

the mechanical properties of graphene/fibre nanocomposite are determined via 

micromechanical relations. Vibration analysis is conducted by the finite element method 

using four-noded Mindlin plate elements. Results are obtained for simply supported 

(SSSS), clamped (CCCC) and simply supported-clamped boundary conditions for 
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opposite edges (SCSC). It is observed that non-uniform distributions of graphene and fibre 

as well as fibre orientations are quite effective in improving the design efficiency.  

 

Keywords: Optimal design; Nano-structures; Graphene reinforcement; Vibration; Finite 

element analysis (FEA); Laminated nanocomposite 

 

1. Introduction 

 

Nanocomposite laminates are used widely in several sectors of civil, mechanical and 

aerospace engineering. The concept of the enhancement of traditional composite 

structures by utilizing advanced materials with superior mechanical properties has gained 

wider acceptance, implementation and applications in the last few years as noted in a 

number of publications [1, 2, 3]. Recent research efforts have highlighted the idea of 

incorporating nano-scale reinforcements, such us carbon nanotubes (CNTs) or graphene 

nanoplatelets (GPLs), to improve the mechanical and physical properties of polymer 

composites further. The specific interest in the present study is the use of GPLs as 

reinforcement due to their superior properties as noted in [4, 5].  Several issues 

concerning the reinforcement of composites by GPLs have been investigated in [6]. 

An important tool in the design of composite components is design optimization in order 

to improve their performance facilitated by the availability of several design parameters 

[7]. The most common way of optimizing a composite laminate is by determining the fibre 

orientations optimally in order to maximize (or minimize) a specific design objective. An 

important aspect of a design is to keep the weight of the component as low as possible. 

This can be achieved by placing the reinforcements mostly in the outer layers and a 

smaller portion of the reinforcements in the middle layers. This approach is based on the 

fact that reinforcements closer to the surface layers contribute more to the laminate 

stiffness [8]. Non-uniform fibre distribution has been implemented as a design tool in a 

number of studies in order to improve the design efficiency and reduce the weight [9, 10, 

11]. In this case fibre volume fractions of layers become design parameters. In the present 

study the design parameters to maximize the fundamental frequencies include the volume 

fractions of graphene platelet and fibres in each layer, ply thicknesses and fibre 

orientations. In order to assess the effect of different design parameters on the design 

efficiency, the design parameters are introduced in four steps, namely, graphene content 
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only of each layer, graphene and fibre contents of each layer, ply thicknesses and finally 

fibre orientations. 

Graphene is a monolayer of sp2 hybridized carbon atoms arranged in a honeycomb 

structure and is well known for its exceptional mechanical properties [12]. It also 

possesses additional beneficial properties such as light weight, electrical conductivity and 

mechanical toughness [13] and presently it is being used widely in several industrial 

applications [14]. It was noted that Young’s modulus of graphene could approach 1000 

GPa and its tensile strength 130 GPa [15]. It was also noted that 0.1% GPL added to 

epoxy composites can increase the Young’s modulus by 31% [16]. The main reason for 

the high reinforcing capacity of graphene is attributed to large surface area of platelets 

resulting in a high level load transfer from the polymer matrix to reinforcing component as 

observed in [17, 18]. However, the introduction of a nano-scale reinforcement into polymer 

matrix should also consider such effects as the diminishing returns caused by using a high 

amount of nano reinforcement which can lead to the nano material not dispersing in the 

matrix uniformly. Uniform dispersion of nano-scale reinforcements in a matrix is an 

important consideration as a high volume content can lead to coalescing and inadvertently 

affecting the stiffness and the strength of the material. Another issue is the high cost of 

nano materials which makes the optimal use of the nano reinforcements an important 

requirement to keep the material costs to a minimum. These considerations become of 

major importance in the design of three-phase nanocomposites (nano-scale 

reinforcement + fibre + matrix). Within this framework, several studies investigated the 

behaviour of nano-reinforced laminated structures undergoing free or forced vibrations, or 

subject to buckling or bending loads. One of the main areas of this research has been the 

study of two-phase graphene reinforced nanocomposite laminates consisting of only 

graphene and a matrix. 

Free vibration, buckling and static bending of multi-layered and functionally graded GPL 

reinforced composite plates were analysed in [19]. Elastic constants of the nanocomposite 

were computed using the modified Halpin-Tsai micromechanical model. The results 

indicated that the natural frequencies and buckling loads were significantly improved with 

the addition of graphene. In [20], vibration damping properties of GPL reinforced 

NR/EPDM (Natural rubber/ethylene-propylene-diene rubber) were studied via free 

vibration tests. The results showed that the addition of GPLs significantly improved the 

damping ratio values (up to 50%) when compared to the NR/EPDM blend only.  
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Light weight structures are often exposed to severe vibrations and it becomes important 

to improve their performance by reducing the possibility of resonance. To avoid 

resonance, natural frequencies of the structure have to be away from the excitation 

frequency. One way of achieving this objective is to increase the fundamental frequency 

and make it higher than the excitation frequency. Another way is to increase the frequency 

gaps and place the excitation frequency into one of these gaps [21, 22].  The first case 

leads to an optimal design problem to maximize the fundamental frequency.  A statistical 

analysis is given for the free vibrations of functionally graded graphene reinforced 

composite plates in [23]. The study indicates that boundary conditions and volume 

fractions of GPLs were the most significant parameters for the vibration response, 

followed by thickness ratio and distribution pattern of GPLs. More recent works on the 

vibration of two-phase graphene reinforced nanocomposites include [24, 25, 26, 27, 28, 

29, 30, 31, 32, 33].  

Recently, the research was directed towards investigating the mechanical response of 

three-phase multi-scale laminates. In this case, the polymer matrix is reinforced by a nano-

scale material such as carbon nanotubes (CNT) or graphene as well as fibres (mostly 

glass or carbon) leading to a multi-scale composite involving macro (matrix), micro (fibre) 

and nano (CNTs or GPLs) scales. The motivation for this study emanates from the fact 

that the limits of improving the mechanical properties of traditional fibre reinforced 

composites are gradually reached [34] while the requirements for advanced material 

properties increase. A major reason for the high-level of reinforcement of composites by 

graphene platelets is the two-dimensional nature of graphene which results for the 

reinforcement to take place in the in-plane directions. Furthermore, graphene platelets 

have larger surface to volume ratios which create a larger interface for bonding [35]. In 

[36] it is concluded that the flexural modulus of three-phase graphene/fibre reinforced 

composites is 1.7, 4.5 and 6.4 times larger than those of the two-phase fibre reinforced 

composites, the two-phase graphene reinforced composites and the polymer host, 

respectively. Scanning electron microscope image analysis presented in the same article 

indicates that the enhancement of the mechanical properties for the three-phase 

composite is attributed to the synergetic effect of the fibres and the nano-reinforcement 

(graphene nanoplatelets) on the polymer matrix in terms of improvement of the interfacial 

interactions and decrease of the matrix-rich and free-volume regions. Therefore, it is 

expected that three-phase composites provide a further improvement over the two-phase 

conventional composites and two-phase nanocomposites. The advantages of a graphene 
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and fibre reinforcement of polymer composites have also been noted in a number of 

publications [36, 37, 38, 39, 40]. Studies on the bending, buckling and vibration behaviour 

of multi-scale three-phase laminates are given in [41, 42, 43, 44]. Numerical results of [41] 

indicated that the central deflection and fundamental frequencies were significantly 

improved by incorporating a small percentage of GPLs in a fibre-reinforced composite. In 

[44], it was observed that exceeding a certain fibre content in a three-phase laminate leads 

to a decrease in the buckling strength by reducing the volume fraction of graphene 

reinforced matrix.  

Several studies were directed to the optimization of fibre composite laminates to improve 

the vibrations response [8, 45, 46, 47, 48]. However, a relatively small number of studies 

involved optimization of two-phase or three-phase nanocomposite laminates. In [49], 

vibration and optimization of CNT reinforced beam was investigated based on higher order 

theories. In [50], CNT and glass fibre reinforced composite plates were optimized for 

maximum frequency. Results indicated that higher CNT volume fraction does not 

necessarily increase the frequencies. It was observed that the stacking sequence can 

significantly influence the frequencies, especially in the case of simply supported 

boundary conditions.  

Presently, there seems to be no work published on the optimization of the frequencies of 

three-phase, graphene/fibre reinforced composite laminates taking the graphene and fibre 

contents non-uniformly distributed across the thickness, taking the ply thicknesses non-

uniform, combined with the optimal orientation of fibres. In the present study, this problem 

is studied in detail from analysis and optimization points of view to offer an insight on the 

vibration response of three-phase laminates. The main emphasis is on the optimal 

graphene distribution across the laminate thickness as well as on optimal graphene and 

fibre distributions across the thickness. In addition to these two design variables, 

optimizations with respect to layer thicknesses and fibre orientations are also studied in 

combination with optimal graphene and fibre distributions. To implement the analysis and 

optimization solutions for various boundary conditions, a finite element analysis code is 

developed based on the first-order shear deformation theory (FSDT) for the computation 

of the fundamental frequencies of the laminated composite. The code is then incorporated 

in an optimization scheme based on the sequential quadratic programming (SQP).  

Section 2 of the paper presents the theoretical background for the finite element code 

developed to simulate the free vibration response of laminate plates. Section 3 is allocated 

to the micromechanical equations implemented to determine the effective material 
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properties of the laminate. Section 4 presents the optimization formulation and Section 5 

the verification of the proposed numerical scheme by comparing the results to published 

research and also the ones obtained by commercial software. In Section 6, analysis 

results are given, investigating the effects of reinforcements of graphene and fibres on 

frequencies. Section 7 presents the optimal design results and Section 8 the conclusions 

of this work. 

 

2. Theoretical formulation 

 
The present study involves the vibrations of a laminated composite plate having length a  

in the x-direction, width b  in the y-direction and with a total thickness of  D  as shown in Fig. 

1. The plate consists of N  layers with the principal material coordinates of the kth lamina 

oriented at an angle k  to the laminate coordinate x. The xy−plane coincides with the mid-

plane of the plate with the z-axis being normal to the mid-plane (Fig. 1). The vertical 

coordinates of the top and bottom of the kth layer are given by kzz =  and 1−= kzz . The polymer 

matrix is reinforced with graphene nanoplatelets and fibres noting that their volume fractions 

in each lamina could be different. Furthermore, layer thicknesses could be non-uniform and 

could be determined optimally.  

 

Fig 1. Geometry of the laminated plate 

 

2.1 Mechanical displacements and strains 

 
One of the most widely used displacement based theories for laminated plates is the first-

order shear deformation theory (FSDT) which is based on the displacement field 

described by the equations: 

𝛼 

 

𝑏 

 

𝐷 
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𝑢1(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝑥, 𝑦, 𝑡) − 𝑧𝜑𝑥(𝑥, 𝑦, 𝑡) 

𝑢2(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣(𝑥, 𝑦, 𝑡) − 𝑧𝜑𝑦(𝑥, 𝑦, 𝑡)                                     (1) 

𝑢3(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑦, 𝑡) 

 

where (u1, u2, u3) are the displacements along the (x, y, z) coordinates, (u, v, w) are the 

displacements of a point on the mid-plane of the panel and 𝜑𝑥, 𝜑𝑦 are the normal rotations 

about the x and y-axes, respectively. Using the strain–displacement relations, the bending 

and shear strains can be expressed as 

 

{𝜀𝑏} = {𝜀0𝑏} + 𝑧{к},        {𝜀𝑠} = {𝜀0𝑠}                  (2) 

where 

{𝜀𝑏} = {𝜀𝑥𝑥, 𝜀𝑦𝑦, 𝛾𝑥𝑦}
𝑇
 , {𝜀𝑠} = {𝛾𝑦𝑧 , 𝛾𝑥𝑧}

𝑇 ,     {𝜀0𝑏} = {
𝜕𝑢

𝜕𝑥
,
𝜕𝑣

𝜕𝑦
,
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
}
𝑇

                (3a) 

            {к} = {−
𝜕𝜑𝑥

𝜕𝑥
, −

𝜕𝜑𝑦

𝜕𝑦
, − (

𝜕𝜑𝑥

𝜕𝑦
+
𝜕𝜑𝑦

𝜕𝑥
)}
𝑇

,     {𝜀0𝑠} = {
𝜕𝑤

𝜕𝑦
− 𝜑𝑦,

𝜕𝑤

𝜕𝑥
− 𝜑𝑥}

𝑇

                 (3b) 

 

2.2 Constitutive equations 

 
For an orthotropic material possessing a plane of elastic symmetry parallel to the x-y 

plane, the constitutive equations for the kth lamina are given by:  

{𝜎}𝑘 = [𝑄]𝑘{𝜀}                    (4) 

where {𝜎}𝑘 is the stress tensor and    is the strain tensor. [𝑄]𝑘 is the plane-stress 

reduced stiffness matrix. Bending and shear stresses for kth lamina can be expressed as 

{𝜎𝑏}𝑘 = [𝑄𝑏]𝑘{𝜀},    {𝜎𝑠}𝑘 = [𝑄𝑠]𝑘{𝜀}                (5) 

where  {𝜎𝑏}𝑘 = {𝜎1, 𝜎2, 𝜎6}
𝑇 , {𝜎𝑠}𝑘  = {𝜎4, 𝜎5}

𝑇 and 

 

[𝑄𝑏]𝑘 = [

 𝑄11
(𝑘)  𝑄12

(𝑘) 0

 𝑄21
(𝑘)  𝑄22

(𝑘) 0

0 0  𝑄66
(𝑘)

]       [𝑄𝑠]𝑘 = [
 𝑄44

(𝑘) 0

0  𝑄55
(𝑘)
]              (6) 
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In Eqs. (6), 
( )k

ijQ  are the plane stress-reduced stiffnesses of the kth lamina [51] 

𝑄11
(𝑘)
=

𝐸1
(𝑘)

(1 − 𝑣12
(𝑘)
𝑣21
(𝑘)
)
,   𝑄12

(𝑘)
=

𝑣12
(𝑘)𝐸2

(𝑘)

(1 − 𝑣12
(𝑘)
𝑣21
(𝑘)
)
= 𝑄21

(𝑘)
,   𝑄22

(𝑘)
=

𝐸2
(𝑘)

(1 − 𝑣12
(𝑘)
𝑣21
(𝑘)
)
,   

  𝑄66
(𝑘)
= 𝐺12

(𝑘)
, 𝑄44

(𝑘)
= 𝑘𝑠𝐺23

(𝑘)
, 𝑄55

(𝑘)
= 𝑘𝑠𝐺13

(𝑘)
 

where 
( )

1

kE , 
( )

2

kE are the longitudinal and transverse moduli, 
( )

12

kν , 
( )

21

kν   are the Poisson’s 

ratios, 
( )

12

kG , 
( )

23

kG , 
( )

13

kG  are the shear moduli of the kth layer and 𝑘𝑠 is a shear correction 

factor taken as 
5

6
. The reduced stiffness 

( )k

ijQ  of the kth lamina can be transformed to 
( )k

ijQ  

as 

[𝑄]
(𝑘)
= ([𝐿]𝑇[𝑄][𝐿])(𝑘)    (7)        

where [L] is a transformation matrix for the fibre angle 𝜃𝑘 of the kth lamina [51]. 

 

2.3 Finite element formulation and eigenvalue problem 

 
In the present study, the laminated plate has been discretized using a four-noded 

isoparametric quadrilateral Lagrangian element with five degrees of freedom (DOF) per 

node. The generalized displacement vector is interpolated as: 

 

{𝑢(𝑥, 𝑦, 𝑡)} ≡ {𝑢, 𝑣, 𝑤, 𝜑𝑥, 𝜑𝑦}
𝑇
= [𝑁𝑢]{𝑑}𝑒 = ∑ (𝑁𝑗[𝐼]5𝑥5{𝑑𝑗}𝑒)

4
𝑗=1   (8) 

where {𝑑𝑗}𝑒 = {𝑢𝑗 , 𝑣𝑗 , 𝑤𝑗 , 𝜑𝑥𝑗, 𝜑𝑦𝑗}
𝑇
 corresponds to the jth node of the element and jN  are 

the shape functions. Substituting Eq. (8) into Eqs. (2) gives  

{𝜀(𝑥, 𝑦, 𝑡)} = [𝐵]{𝑑}𝑒 = ∑ ([𝐵𝑗]{𝑑𝑗}𝑒)
4
𝑗=1     (9) 

or equivalently  

                       {𝜀} = {

{𝜀𝑏0}
{к}
{𝜀𝑠0}

} = [

[𝐵𝑏]
[𝐵𝑘]
[𝐵𝑠]

] {𝑑}𝑒 = ∑ ([

[𝐵𝑏]𝑗
[𝐵𝑘]𝑗
[𝐵𝑠]𝑗

] {𝑑𝑗}𝑒
)4

𝑗=1                              (10)  

where  

 

0 0 0 0

0 0 0 0

0 0 0

x

b y jj

y x

B N

 
 

=  
   

,      

0 0 0 0

0 0 0 0

0 0 0

x

k y jj

y x

B N

− 
 

= −
 
 − − 

,     
0 0 1 0

0 0 0 1

x

s jj
y

B N
 − 

=  
 − 

  

and 
x x

 =


, y y
 =
 . 



9 
 
 

Using Hamilton's principle, the governing equation of the laminated plate subject to 

mechanical loads is expressed as 

∫ (𝛿𝑇− 𝛿𝑈+ 𝛿𝑊)
𝑡0

0
𝑑𝑡 = 0                      (11) 

where U is the strain energy, T is the kinetic energy and W is the work done by the 

mechanical forces of the laminated composite plate. Analytic expressions of U, T and W 

are given in the Appendix.  

The global form of the final governing equation is then expressed as  

[𝑀]{𝑑̈} + [𝐾]{𝑑} = {𝐹𝑚}             (12) 

where [M], [K], {d} and {𝐹𝑚} are global mass matrix, global linear stiffness matrix, global 

displacement and force vectors, respectively. The generalized governing Eq. (12) can be 

employed to study the free vibration by dropping the force term as: 

[𝐾]{𝑑} = 𝜆[𝑀]{𝑑}             (13) 

with the eigenvalue 
2 =  where   is the frequency of natural vibrations. Eq. (13) is 

solved within the framework of the finite element method using Cholesky factorization [52]. 

This method can be adopted since the stiffness matrix [K] is symmetric and the mass 

matrix [M] is symmetric positive-definite. The solution of the eigenvalue problem is 

implemented within MATLAB [53, 54]. 

 

3. Effective material properties using micromechanics equations 

 
The laminate under consideration is a three-phase graphene and fibre reinforced polymer 

nanocomposite. The concept of the three-phase material relies on the need to enhance 

its structural response by adding a small quantity of nano-reinforcement (graphene 

nanoplatelets in the present study), and improving its mechanical properties by doing so. 

First, particles of the nano-reinforcement are distributed into the matrix, resulting in a 

nano-reinforced, isotropic matrix. Then, the nano-reinforced matrix is further reinforced 

with fibres. 

The effective material properties of the nano-reinforced matrix are derived in this article 

using the Halpin-Tsai model and the rule of mixtures. This micromechanical 

homogenization approach is widely adopted in published research to capture the effective 

response of graphene reinforced laminates, see for example [55, 56, 57, 58]. 
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For the calculation of the effective properties of the three-phase fibre/graphene reinforced 

matrix, a second set of micromechanics equations is adopted in this article. This set of 

equations is traditionally used to derive the effective material properties of a fibre 

reinforced matrix involving two-phase fibre reinforced composites [11]. This concept of 

using micromechanical homogenization schemes for three-phase laminates, initially 

adopted for two-phase fibre reinforced composites, has been elaborated in several 

publications. For instance, micromechanics equations adopted in [59] for a two-phase 

fibre reinforced composite, are also used in [41] to derive the effective material properties 

of three-phase fibre/graphene reinforced matrix. The same concept of using 

micromechanics approaches for three-phase composites, which had initially been 

adopted for two-phase composites, has also been implemented in a number of 

publications involving three-phase CNT/fibre reinforced laminates [42, 50]. 

Elastic constants in this article are computed from the applicable micromechanical 

equations. First, the effective material properties of the graphene reinforced matrix are 

computed using the micromechanical equations applicable to uniformly distributed GPLs. 

Next step involves the computation of the material properties of the three-phase 

graphene/fibre reinforced composite using the applicable micromechanics equations.  

 

3.1 Graphene reinforced matrix 

 
In this section, Young’s and shear moduli, Poisson’s ratio and density of graphene 

reinforced matrix are computed using the micromechanical equations presented in [55, 

60, 61, 62]. In the equations, subscripts GPL, M and GM denote graphene nanoplatelets 

(GPL), the matrix (M) and the graphene reinforced matrix (GM). Young’s modulus of the 

GPLs reinforced matrix is given by 

𝐸𝐺𝑀 = (
3

8

1+𝜉L𝜂𝐿𝑉𝐺𝑃𝐿

1−𝜂𝐿𝑉𝐺𝑃𝐿
+
5

8

1+𝜉𝑤𝜂𝑤𝑉𝐺𝑃𝐿

1−𝜂𝑤𝑉𝐺𝑃𝐿
) × 𝐸𝑀                           (14) 

where VGPL denotes the volume content of GPLs. Parameters  𝜉L and 𝜉𝑤 are given in Eq. 

(15) in terms of the length (lGPL), the width (wGPL) and the thickness (hGPL) of GPLs: 

 

𝜉L = 2
𝑙𝐺𝑃𝐿

ℎ𝐺𝑃𝐿
 ,     𝜉𝑤 = 2

𝑤𝐺𝑃𝐿

ℎ𝐺𝑃𝐿
                                        (15) 

 
Symbols 𝜂𝐿 and 𝜂𝑤 in Eq. (14) are calculated next in terms of Young’s moduli EGPL of the 

graphene nanoplatelets and EM  of the matrix as  
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𝜂𝐿 = 
(𝐸𝐺𝑃𝐿/𝐸𝑀)−1

(𝐸𝐺𝑃𝐿/𝐸𝑀)+ 𝜉L 
  ,        𝜂𝑤 = 

(𝐸𝐺𝑃𝐿/𝐸𝑀)−1

(𝐸𝐺𝑃𝐿/𝐸𝑀)+ 𝜉𝑤 
                                     (16) 

 
The volume content of graphene nanoplatelets can be computed in terms of its weight 

fraction WGPL as 

𝑉𝐺𝑃𝐿 = 
𝑊𝐺𝑃𝐿

𝑊𝐺𝑃𝐿+ (𝜌𝐺𝑃𝐿/𝜌𝑀)(1−𝑊𝐺𝑃𝐿)
                                     (17) 

 
where 𝜌𝐺𝑃𝐿 and 𝜌𝑀 represent the mass densities of graphene nanoplatelets and the 

polymer matrix, respectively. Poisson’s ratio, shear modulus and the density of the 

graphene reinforced matrix are given by 

 
𝑣𝐺𝑀 = 𝑣𝐺𝑃𝐿𝑉𝐺𝑃𝐿 + 𝑣𝑀(1 − 𝑉𝐺𝑃𝐿)                             (18) 

     

𝐺𝐺𝑀 = 
𝐸𝐺𝑀

2(1+𝑣𝐺𝑀)
                                        (19) 

 
𝜌𝐺𝑀 = 𝜌𝐺𝑃𝐿𝑉𝐺𝑃𝐿 + 𝜌𝑀(1 − 𝑉𝐺𝑃𝐿)                                   (20)  

 

3.2 Graphene and fibre reinforced matrix 

 
Fibre reinforcement of the graphene reinforced matrix improves the properties of the 

composite further. The fibres employed for this purpose are unidirectional and continuous. 

Young’s moduli, shear modulus, Poisson’s ratio and density of the graphene/fibre 

reinforced nanocomposite are computed via micromechanical relations given in [11]:  

 

𝐸11 = 𝐸𝐹11𝑉𝐹 + 𝐸𝐺𝑀(1 − 𝑉𝐹)                                                 (21) 

 

    𝐸22 = 𝐸𝐺𝑀  (
𝐸𝐹22+𝐸𝐺𝑀+(𝐸𝐹22−𝐸𝐺𝑀)𝑉𝐹

𝐸𝐹22+𝐸𝐺𝑀−(𝐸𝐹22− 𝐸𝐺𝑀)𝑉𝐹
)                                            (22) 

 

𝐺12 = 𝐺13 = 𝐺𝐺𝑀  (
𝐺𝐹12+𝐺𝐺𝑀+(𝐺𝐹12−𝐺𝐺𝑀)𝑉𝐹

𝐺𝐹12+𝐺𝐺𝑀−(𝐺𝐹12− 𝐺𝐺𝑀)𝑉𝐹
)                                    (23) 

     

                 𝐺23 = 
𝐸22

2(1+ 𝑣23)
                                                           (24) 

 

𝑣12 = 𝑣𝐹12𝑉𝐹 + 𝑣𝐺𝑀(1 − 𝑉𝐹)                                            (25) 
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𝑣23 = 𝑣𝐹12𝑉𝐹 + 𝑣𝐺𝑀(1 − 𝑉𝐹) (
1+𝑣𝐺𝑀+𝑣12𝐸𝐺𝑀/𝐸11

1−𝑣𝐺𝑀  
2 + 𝑣12𝑣𝐺𝑀𝐸𝐺𝑀/𝐸11

)                         (26) 

 

 𝜌 = 𝜌𝐹𝑉𝐹 +  𝜌𝐺𝑀(1 − 𝑉𝐹)                                             (27) 

 

Subscripts GM and F refer to graphene reinforced matrix and fibres, respectively. The 

fibre volume content is represented by 𝑉𝐹 and the density of fibres by 𝜌𝐹. 

 

4. Optimal design problem 

 
The design objective is the maximization of the fundamental frequency under different 

boundary conditions and employing a number of design parameters. Design parameters 

include the distributions of GPLs and fibres across the thickness, layer thicknesses and 

the fibre orientations. The constraints imposed on the optimization include the total weight 

of GPLs, total volume content of fibres as well as the weight content of GPLs and the 

volume content of fibres in individual layers. 

The first two optimization problems involve laminates with uniform layer thicknesses with 

the distributions of GPLs (Problem 1) and GPLs plus fibres (Problem 2) taken as non-

uniform across the thickness and their distributions across the thickness are to be 

determined optimally. The next optimization problem involves laminates with non-uniform 

layer thicknesses in addition to having non-uniform distributions of GPLs and fibres 

(Problem 3). In the final optimization problem (Problem 4), the fibre orientations are also 

specified as design variables in addition to the previous three design variables. As such 

Problem 4 has four design variables, namely, GPL and fibre distributions, layer 

thicknesses and fibre orientations.  

Dimensions of the composite laminate are given by a  in the x-direction and b  in the y-

direction as shown in Fig. 1. The total laminate thickness is D  and the number of layers 

is N. In the first two optimization problems, thickness of each layer is specified as constant 

and equal to h  with DNh = . In the third and fourth optimization problems, the thicknesses 

ih  of layers are taken as design variables leading to laminates with non-uniform layer 

thicknesses with Dh
N

i

i
=

=
1

. The fibre and graphene volume contents of each layer are 

denoted as 𝑉𝐹𝑖 and 𝑉𝐺𝑃𝐿𝑖 , respectively.  
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4.1 Formulation for laminates with uniform layer thicknesses (Problems 1 and 2) 

 

The volume of fibres in each layer is given by FiFi abhVVol =  and the total volume of fibres 

in the laminate by 
==

==
N

i

Fi

N

i

FiFT VabhVolVol
11

 for a laminate with N  layers. The volume 

of the laminated plate is given by abDVol plate = . The maximum amount (volume) of fibres 

available for the laminate is specified as maxmax FF abDVVol =  where maxFV  is the maximum 

fibre volume content of the laminate. Based on these definitions, the design constraints 

for the total fibre volume are given by  

                   max

1

max

1

max F

N

i

FiF

N

i

FiFFT VV
D

h
abDVVabhVolVol  

==

                      (28) 

In the specific case of a composite laminate with 8 layers which is studied in the numerical 

results sections, Eq. (28) becomes: 

 

max

8

1

max

8

1 8

1

8
F

i

FiF

i

Fi VVVV
h

h
 

==

                                     (29) 

 
A similar formulation is adopted for the constraint on the overall weight of graphene 

nanoplatelets and for an 8-layered laminate, the constraint is given as 

max

8

18

1
GPL

i

GPLi WW 
=

                                                        (30) 

In Eq. (30), 𝑊 and 𝑊𝐺𝑃𝐿𝑚𝑎𝑥 denote the weight of graphene nanoplatelets for the 
thi layer 

and the maximum graphene weight for the laminate, respectively. With the design 

constraints defined as above, the optimization problem for an 8-layered laminate can be 

stated as follows: 

 

max𝐹𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓(𝑉𝐹,𝑊𝐺𝑃𝐿 , 𝜃) = 𝜔                       (31a) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  
max

8

18

1
F

i

Fi VV 
=

                      (31b) 

max

8

18

1
GPL

i

GPLi WW 
=

                       (31c) 

  0GPLiW                                                  (31d) 
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21 dVd Fi                                  (31e) 

−90𝑜 ≤ 𝐹𝑖𝑏𝑟𝑒 𝑎𝑛𝑔𝑙𝑒 𝜃 ≤ 90𝜊                                     (31f) 

                                          

Eq. (31d) states that graphene weight of each layer must be greater than or equal to zero 

and Eq. (31e) imposes lower and upper limits 1d  and 2d on the fibre volume content for 

each layer. As shown in Eqs. (31), each layer represents a three-phase material since the 

contents of graphene and fibre reinforcement are greater than zero. If for a layer, the case 

of zero graphene content arises (case of equality in Eq. (31d)), then the composite 

becomes two-phase. However, this is determined by the optimization algorithm since the 

code is set up for three-phase composites. Practically, some zero graphene layers arise 

in the middle of the laminate as observed in the results sections.  

In order to assess the effectiveness of an optimal design, that is, the increase in the 

fundamental frequency as compared to a benchmark, a design efficiency factor is 

introduced. It is defined as the ratio of the maximum fundamental frequency 𝜔𝑚𝑎𝑥 of the 

optimally designed laminate and a reference frequency 𝜔0. The reference frequency 

corresponds to a laminate with uniformly distributed graphene and fibres across the 

thickness of the laminate with the efficiency factor for an 8-layered laminate defined as 

 

)8,...,,2,1,
8

,
8

(

),,(

maxmax

0

max

===

=

i
W

W
V

V

WV

GPL
GPLi

f

i

GPLF




                       (32) 

 

4.2 Formulation for non-uniform layer thicknesses (Problems 3 and 4) 

 
For a laminate with non-uniform layer thicknesses, i.e., each layer having a different 

thickness, the layer thicknesses ℎ𝑖   become design variables to be determined optimally 

subject to the total thickness constraint ∑
ℎ𝑖

𝐷
= 1𝑁

𝑖=1 . The volume of fibres in each layer is 

given by 𝑉𝑜𝑙𝐹𝑖 = 𝑎𝑏ℎ𝑖𝑉𝐹𝑖  and the total volume of fibres in the laminate by 


==

==
N

i

Fii

N

i

FiFT VhabVolVol
11

 for a laminate with N  layers. Design constraint on the total 

fibre volume content FTVol  is given by 

                 max

1

max

1

max

1
F

N

i

FiiF

N

i

FiiFFT VVh
D

abDVVhabVolVol  
==

                  (33)                                                                  
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A similar constraint applies to the total weight of graphene platelets and is given by 

 

max

1

1
GPL

N

i

GPLii WWh
D


=

                                                        (34) 

In the numerical results sections, optimization of an 8-layered laminate is studied. For this 

specific case, the optimal design problem can be stated as follows: 

 

  max fundamental frequency 𝑓 (𝑉𝐹,𝑊𝐺𝑃𝐿 ,
ℎ𝑖

𝐷
, 𝜃𝑖) = 𝜔                       (35a) 

subject to  max

8

1

1
F

i

Fii VVh
D


=

                          (35b) 

max

8

1

1
GPL

i

GPLii WWh
D


=

                                           (35c)     

𝑊𝐺𝑃𝐿  ≥ 0                                                          (35d) 

𝑑1  ≤ 𝑉𝐹  ≤ 𝑑2                              (35e) 

−90𝑜  ≤ Fibre angles 𝜃𝑖 ≤ 90𝜊                                            (35f) 

 
For this case, the design efficiency factor is defined as 
 

  

)8,...,,2,1,
8

,
8

,
8

(

),,,(

maxmax

0

max

====

=

i
D

h
W

W
V

V

D

hi
WV

i
GPL

GPLi

f

i

GPLF




                                (36) 

 
where the denominator corresponds to a laminate with uniform graphene and fibre 

distributions as well as having uniform layer thicknesses.  

 

4.3 Solution of the optimization problem 
 
Numerical solutions of the optimization problems are obtained by a Sequential Quadratic 

Programming algorithm (SQP).  This is an effective optimization method which generates 

steps by solving quadratic sub-problems for nonlinearly constrained problems [63, 64, 65]. 

In particular, an approximation of the Hessian of the Lagrangian function is considered at 

each major iteration using a quasi-Newton updating method. This is then used to generate 

a Quadratic Programming sub-problem the solution of which is used to define a search 

direction. This scheme is briefly presented below. The optimization problem with nonlinear 

equality and inequality constraints is given by [63]: 
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min 𝑓(𝑥) 

    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑐𝑖(𝑥) = 0, 𝑖 ∈ 𝐸                                           (37) 

                                                               𝑐𝑖(𝑥) ≥ 0, 𝑖 ∈ 𝐼      

The problem is then linearized into: 

min
𝑝
𝑓𝑘 + ∇𝑓𝑘

𝑇𝑝 + 
1

2
 𝑝𝑇∇𝑥𝑥

2 𝐿𝑘𝑝 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∇𝑐𝑖(𝑥𝑘)
𝑇𝑝 + 𝑐𝑖(𝑥𝑘) = 0, 𝑖 ∈ 𝐸                                   (38) 

∇𝑐𝑖(𝑥𝑘)
𝑇𝑝 + 𝑐𝑖(𝑥𝑘) ≥ 0, 𝑖 ∈ 𝐼 

The solution of the problem formulated above is implemented within MATLAB [53,54]. It 

is noted that since the MATLAB algorithms mentioned above are originally defined for 

minimization, the objective functions presented in Eqs. (31) and (35) are modified as 

follows: 

min𝐹𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑓(𝑉𝐹,𝑊𝐺𝑃𝐿 , 𝜃) = −𝜔. 
 

Τhe fundamental frequency is calculated by solving the eigenvalue problem. This solution 

is implemented within the optimization algorithm aiming to maximize the fundamental 

frequency as defined in the optimization formulation, considering the constraints 

presented in sections 4.1 and 4.2. In particular, the finite element model for the composite 

laminate is included in the optimization algorithm. The classical steps of the finite element 

method are implemented, the mass and the stiffness of the structure are determined and 

the eigenvalue problem is solved, resulting in the computation of the fundamental 

eigenfrequency. Then, optimization is implemented until the optimal solution satisfying the 

constraints is obtained.  

 

5. Verification of the numerical approach  

 
In the numerical results sections, the non-dimensional form of the fundamental frequency   

𝜔, namely, Ω is used which is given by   

M

M

E
D


=                                                   (39)                                                        

Verification of the method of solution implemented in the present study is done by 

comparing the present results with the results available in the literature and also with the 

results obtained by using a commercial software package. In the computations, the 
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material properties given in Table 1 are used. For the dimensions of the GPLs, the 

following values are used: lGPL = 2.5 μm, wGPL = 1.5 μm, hGPL = 1.5nm. The graphene 

weight content is specified as %1=GPLW . First, the natural frequencies obtained by the 

present method are compared in Table 2 with the results available in the literature, for the 

case of a GPL reinforced laminate. Results are given using the non-dimensionalized 

frequency defined in Eq. (39). The same non-dimensional frequency is used for numerical 

results presented in this work. Comparisons are given for the case of an isotropic plate 

(zero graphene and fibre content), as well as for the case of a graphene reinforced plate 

(with zero fibre content). As shown in Table 2, for both cases, a close agreement between 

the published research and the present model is observed.  

 

Table 1: Material properties of GPLs, matrix, carbon and glass fibres 

Material E11(GPa) E22 (GPa) G12 (GPa) ν12 Density (kg/m3) 

GPL 1010 1010 E11/(2(1+ν)) 0.186 1060 

Matrix 3 3 E11/(2(1+ν)) 0.34 1200 

Carbon fibres 263 19 27.60 0.20 1750 

Glass fibres 72.4 72.4 E11/(2(1+ν)) 0.20 2400 
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Table 2: Comparison of non-dimensional frequencies   of simply supported (SSSS) square 

plates reinforced by GPLs with the thickness/length ratio of 1.0/ =aD    

Pattern Method 
Mode 

1 2 

 

Isotropic plate 

(zero graphene and fibre 

content) 

Present/Mesh 5x5 0.0610 0.1611 

Present/Mesh 10x10 0.0590 0.1441 

Present/Mesh 15x15 0.0587 0.1413 

Ref. [66] 0.0584 0.1391 

Ref. [27] 0.0584 0.1390 

 

Uniformly distributed 
GPLs with WGPL=1% 

  

Present/Mesh 5x5 0.1267 0.3352 

Present/Mesh 10x10 0.1228 0.2999 

Present/Mesh 15x15 0.1221 0.2941 

Ref. [66] 0.1216 0.2895 

Ref. [27] 0.1216 0.2895 

 

Frequencies of the same composite laminate have been computed using ABAQUS 

commercial finite element analysis package and compared with the results obtained by 

the present method of solution. Four node shell elements and a 10x10 mesh have been 

used in the ABAQUS implementation. Then, several cases were examined as shown in 

Table 3 involving laminates with different number of layers and fibre angles as well as 

different boundary conditions. In all these cases, glass fibres are used as reinforcement 

with fibre content set to 50% for each layer. Results indicate a good agreement between 

the natural frequencies obtained by the model developed in this article and using the 

commercial software. 
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Table 3: Comparison of non-dimensionalized frequencies   of GPLs/glass fibre square plate 

with thickness/length ratio of 1.0/ =aD , %1=GPLW  and fibre volume content is 50% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For further validation of the proposed model, the optimal fundamental frequency obtained 

by the proposed approach is compared with a number of discrete simulations conducted 

using the commercial software package. A two-layer hybrid laminate finite element model 

is developed and several simulations are conducted, adopting different stacking 

sequences. As shown in Table 4, both the proposed approach and the commercial 

software result in the same optimal stacking sequences as well as giving a very close 

value for the optimal fundamental frequency. 

 

 

 

 

 

 

 

Boundary 
conditions 

Pattern 
Stacking 
sequence 

Method 
Mode 

1 2 

 

 

 

 

 

SSSS 

 

1 layer 

 

 

[45] 

Present 0.1579  0.3647 

Commercial 
software 

0.1555 0.3601 

 

3 layers 

 

 

     [0/90/0] 

Present 
0.1500 0.3498 

Commercial 
software 

0.1483 0.3454 

 

8 layers 

 

[0/30/45/90]s 

Present 0.1530 0.3565 

Commercial 
software 

0.1511 0.3520 

 

CCCC 

 

8 layers 

 

[0/30/45/90]s 

Present 0.2639 0.4937 

Commercial 
software 

0.2611 0.4885 

 

SCSC 

 

8 layers 

 

[0/30/45/90]s 

Present 0.2226 0.3891 

Commercial 
software 

0.2204 0.3844 
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Table 4: Comparison of non-dimensional frequencies   with those obtained from the commercial 

software package for a GPLs/glass fibre SSSS square plate with thickness/length ratio    

1.0/ =aD , %1=GPLW  and fibre volume content 50%  

Commercial software discrete simulations Proposed optimization code 

Case Stacking 
sequence 

Non-
dimensionalized 

frequency 

Optimal 
stacking 

sequence 

Optimal non-
dimensionalized 

frequency 

1 [0/0] 0.1483 
[45/45] 0.1579 

2 [30/0] 0.1505 

3 [45/0] 0.1510 

4 [60/0] 0.1496 

5 [90/0] 0.1464 

6 [0/30] 0.1505 

7 [30/30] 0.1537 

8 [45/30] 0.1543 

9 [60/30] 0.1528 

10 [90/30] 0.1496 

11 [0/45] 0.1510 

12 [30/45] 0.1543 

13 [45/45] 0.1555 

14 [60/45] 0.1543 

15 [90/45] 0.1510 

16 [0/60] 0.1496 

17 [30/60] 0.1528 

18 [45/60] 0.1543 

19 [60/60] 0.1537 

20 [90/60] 0.1505 

21 [0/90] 0.1464 

22 [30/90] 0.1496 

23 [45/90] 0.1510 

24 [60/90] 0.1505 

25 [90/90] 0.1483 
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6. Analysis of the effects of reinforcements on frequencies 

 
Before presenting the results for the optimal design problems, some preliminary 

simulations are conducted with the GPLs and fibres distributed uniformly across the 

layers, i.e., all layers having the same volume content of the reinforcements. The objective 

of this exercise is to assess the effect of different graphene and/or fibre contents on the 

fundamental frequency and to study the trends as reinforcements increase. This study is 

conducted to observe the behaviour of three-phase composites which may have some 

unusual trends in terms of the effect of different reinforcements on frequencies. For this 

purpose, uniform glass or carbon fibre contents of 30% or 60% are specified for each 

layer. The results of this exercise are shown in Figs. 2 and 3 for different boundary 

conditions. In Fig. 2 results for an anti-symmetric stacking sequence and in Fig. 3 for a 

symmetric stacking sequence are given. 

 

(a) 

 

(b) 

Fig. 2. Non-dimensional frequencies   of 8-layered laminates with uniform graphene and 

fibre distributions in layers and anti-symmetric stacking sequence [0/90/0/90]anti-s with 

1.0/ =aD , 1/ =ba  for a) glass fibres, b) carbon fibres 
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(a) 

 

(b) 

Fig. 3. Non-dimensional frequencies   of 8-layered laminates with uniform graphene and 

fibre distributions in layers and symmetrical stacking sequence [90/0/90/0]s with  

1.0/ =aD , 1/ =ba  for a) glass fibres, b) carbon fibres 

 
It can be observed from Figs. 2 and 3 that as the graphene weight increases beyond a 

certain limit, a lower percentage of fibres (30%) results in a higher frequency as compared 

to the higher percentage of fibres (60%) for both glass and carbon fibres. This cross-over 

point for glass fibres is approximately 3% of graphene weight and for carbon fibres 

approximately 6% of graphene weight. A physical explanation for this behaviour can be 

presented, by noting that the contribution of the Young’s modulus of the graphene 

reinforced matrix 𝐸𝐺𝑀 (Eq. (14)) to 𝐸11 (Eq. (21)) decreases, as the fibre content 𝑉𝐹 

increases, due to the second term of Eq. (21) decreasing as 𝑉𝐹 increases. Since the 

graphene reinforced matrix has a high elastic modulus 𝐸𝐺𝑀, decrease in the contribution 

of 𝐸𝐺𝑀 to 𝐸11 affects the natural frequency negatively once 𝑉𝐹 becomes too high. The 
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reason for the cross-over point being higher in the case of carbon fibres is due to the high 

value of Young’s modulus of carbon fibres which compensate the decrease in the 

contribution of 𝐸𝐺𝑀 as fibre content increases. 

This observation indicates that the optimal distribution of graphene and the fibres along 

the thickness of the laminate needs to be taken into account for an efficient design since 

a simplified consideration, e.g., of uniform distribution of the graphene reinforcement 

across the thickness may lead to diminishing returns. Also the results indicate that a higher 

fibre content does not lead to higher frequencies at higher graphene contents since 

increasing the fibre content has the effect of reducing the frequency if the graphene 

content exceeds a certain threshold. It is observed that this threshold value is higher for 

carbon fibre reinforced laminates as compared to glass fibre reinforced laminates. This 

effect is due to the higher stiffness of the carbon fibres. It is observed that the two different 

stacking sequences shown in Figs. 2 and 3, namely, cross-ply anti-symmetric and 

symmetric, result in similar behaviours. 

 

7. Optimal design results 

 
Optimization results obtained by the maximization of the fundamental frequency are given 

in this section. Results are presented for three different boundary conditions, namely, 

simply supported (SSSS), clamped (CCCC) and simply supported and clamped in 

opposite edges (SCSC). The simulations are conducted for eight-layered laminates and 

the design variables are the graphene weight and the fibre volume contents of layers, the 

layer thicknesses, the fibre angles as well as combinations of these variables. The layer 

thickness ratio is defined as the thickness of the layer over the total thickness of the 

laminate, i.e., Dh / . The ratio of the total thickness of the laminate over the length of one 

edge is given by aD /  and the aspect ratio by ba / . 

 

7.1 Graphene content as the design variable 

 
Next, the design problem for the optimal distribution of GPLs across the thickness is 

studied with the graphene weight percentages of layers being the only design variables of 

the problem. This leads to an optimal laminate with the graphene distributed non-uniformly 

and optimally across the thickness. The design constraint is the maximum GPL weight 

fraction for the overall laminate, denoted as maxGPLW  which is set to 1.25%, i.e., 
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0125.0max GPLW  . In Table 5, results for optimal graphene content of each layer, maximum 

frequencies and design efficiency factors are given. The reference frequency 0  

corresponds to a laminate with uniform graphene weight equal to 1.25% in all layers.  

 

Table 5: Maximum fundamental frequencies   of 8-layered laminates with GPLiW  (graphene 

weight content of 
thi  layer) as the design variables subject to 0GPLiW  and %25.1max =GPLW  with  

1.0/ =aD , 1/ =ba  and SSSS boundary conditions 

Stacking 
sequence 

BCs 
Fibre 

contents 
Optimal WGPL per layer Ω 

0

max




=

 

 
 
[0/90/0/90]anti-s 

 

SSSS 

Glass 30% [0.048 / 0.0022 / 0 / 0]s 0.1766 1.196 

Glass 60% [0.036 / 0.014 / 0.0002 / 0]s 0.1774 
1.091 

Carbon 30% [0.047 / 0.003 / 0 / 0]s 0.2054 1.108 

Carbon 60% [0.033 / 0.013 / 0.004 / 0]s 0.2254 1.033 

  
    

 
 

[90/0/90/0]s 

SSSS 

Glass 30% [0.049 / 0.0017 / 0 / 0]s 0.1767 
1.196 

Glass 60% [0.036 / 0.014 / 0.0001 / 0]s 0.1774 1.090 

Carbon 30% [0.047 / 0.003 / 0 / 0]s 0.2068 1.108 

Carbon 60% [0.034 / 0.012 / 0.004 / 0]s 0.2275 1.034 

 

Table 5 shows that the outer layers of the laminate have a higher percentage of graphene 

as compared to the inner layers for optimum design. Since the first eigenmode 

corresponds to a bending deflection, the (top and bottom) outer layers of the plate 

influence the response to a higher extend as compared to the middle layers due to the 

increased contribution of the outer layers to laminate stiffness as compared to the inner 

layers. Therefore, the optimization algorithm assigns a higher content of reinforcement in 

the outer layers and less or even zero content of reinforcement in the middle layers, in 

order to maximize the natural frequency. The same trend is also observed in the majority 

of the results presented in this article.  
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For most of the cases shown in Table 5, only the two outer layers (out of the eight layers) 

get an increased amount of graphene while the middle layers are kept to a small or zero 

amount of graphene. 

The highest increase in the fundamental frequency with respect to the reference frequency 

is 19.6% corresponding to the laminate with 30% glass fibres for the symmetric and anti-

symmetric cases as indicated by the design efficiency index shown in the last column of 

Table 5. In the case of 30% fibre content (glass or carbon), increase in the frequency is 

approximately twice or more compared to the case of 60% fibre content. This indicates 

that in the present case of uniformly distributed fibres across the thickness, a more 

efficient design is achieved with lower fibre volume contents. As mentioned in section 6, 

this is attributed to the fact that the increase in the fibre content 𝑉𝐹 leads to a decrease in 

the contribution of 𝐸𝐺𝑀 to 𝐸11 as can be observed from Eq. (21). 

Moreover, the increase in the frequency (design efficiency) is higher for glass fibres than 

for carbon fibres. Also Table 5 indicates that symmetric and anti-symmetric stacking 

sequences have not produced significantly different results. 

To investigate the effect of increasing the allowable graphene weight for the overall 

laminate (WGPLmax) on the design efficiency, three different values of WGPLmax, equal to 1.25%, 

2.5% and 5%, have been studied as shown in Fig. 4. The fibre volume contents across 

the thickness were kept uniform as before.  

 

Fig. 4. Design efficiency vs maxGPLW  for different fibres and fibre contents with SSSS 

boundary conditions and [0/90/0/90]anti-s laminates 

 

Fig. 4 indicates that increasing the total graphene weight is more efficient when a lower 

fibre content is used. For glass fibres with 60% fibre content, increasing the maximum 

graphene weight has almost no effect on the design efficiency. Results show that when a 
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uniform fibre distribution is adopted, non-uniform distribution of graphene across the 

thickness leads to higher frequencies. The corresponding design efficiency factor 

becomes higher when lower fibre volume contents are used. An increase in the fibre 

content or use of carbon instead of glass result in increased frequency. However, this 

leads to lower design efficiency.  

 
7.2 Graphene and fibre contents as design variables 
 
 

Next, optimal designs with two sets of design variables are considered, namely, the 

optimal distributions of GPLs and fibres across the thickness. The results are shown in 

Table 6. The maximum graphene content for the overall laminate maxGPLW  is set to 1.25% 

and the maximum fibre volume content maxFV  to 30%. The reference frequency 0  to 

compute the design efficiency corresponds to a uniform graphene content of 1.25% and 

a uniform fibre content of 30% for all layers.  

 
Table 6: Maximum fundamental frequencies   of 8-layered laminates with two design variables: 

graphene and fibre contents ( GPLiW , iFV ) of layers subject to 0GPLiW , 6.01.0  FiV , 

%25.1max =GPLW , %30max =FV  with 1.0/ =aD , 1/ =ba  and stacking sequence 

[0/90/0/90]anti-s 

BCs Fibres Optimal WGPL Optimal VF Ω 
0

max




=  

 

SSSS 
Glass  [0.035 / 0.015 / 0 / 0]s [0.6 / 0.4 / 0.1 / 0.1 /]s 0.1864 1.262 

Carbon [0.042 / 0.008 / 0 / 0]s [0.4 / 0.6 / 0.1 / 0.1 /]s 0.2209 1.192 

 
     

 

CCCC 
Glass  [0.032 / 0.018 / 0 / 0]s [0.6 / 0.4 / 0.1 / 0.1]s 0.3113 1.202 

Carbon [0.027 / 0.014 / 0.009 / 0]s [0.48 / 0.52 / 0.1 / 0.1]s 0.3709 1.117 

 
     

 

SCSC 
Glass [0.033 / 0.018 / 0 / 0]s [0.6 / 0.4 / 0.1 / 0.1]s 0.2566 1.216 

Carbon  [0.039 / 0.011 / 0 / 0]s [0.4 / 0.6 / 0.1 / 0.1]s 0.3045  1.132 

 

In most cases, as shown in Table 6, a higher graphene content is allocated to the two 

outer layers while zero graphene weight is allocated to the middle layers. For carbon fibres 
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and CCCC boundary conditions, the top and bottom three layers have higher graphene 

content while only two middle layers have zero graphene content. Concerning the optimal 

fibre content, all boundary conditions result in higher fibre content in the two outer layers 

with the middle layers having the minimum fibre content as dictated by the constraint on 

minimum fibre content. Similar to the discussion presented in section 7.1, the optimization 

algorithm assigns a higher reinforcement content to the outer layers due to these layers 

affecting the structural response of the laminate more than the middle layers. 

In the case of carbon fibres, it seems that values of fibre volume contents for the outer 

layers depend on the type of the boundary conditions. Design efficiency is observed to be 

the highest for glass fibres and SSSS boundary conditions (26.2%), followed by SCSC 

(21.6%) and CCCC (20.2%). For carbon fibres, highest efficiencies are obtained for SSSS 

(19.2%), followed by SCSC (13.2%) and CCCC (11.7%). Thus, as the boundary 

conditions become more stiff (from SSSS to CCCC), less space is left for improvement of 

the natural frequency, which results in the decrease of the design efficiency. Comparing 

Tables 5 and 6, it is observed that design efficiency index in Table 6 indicates an increase 

of 26.2% for glass fibres and 19.2% for carbon fibres for SSSS boundary conditions. The 

corresponding increases for the case of uniform fibre distributions shown in Table 5 are 

19.6% and 10.8%, respectively, indicating that optimal non-uniform fibre distribution 

results in significantly increased frequencies for both glass and carbon fibres. It is noted 

that in both cases the same amount of total fibre content for the laminate is specified.   

Therefore, this increase in the design efficiency in the case of non-uniform fibre (and 

graphene) distributions is due to the fact that optimization distributes the fibre 

reinforcement optimally by assigning a higher fibre content in the outer layers and a lower 

fibre content in the middle layers as compared to the case of a uniform fibre distribution 

presented in Table 5.   

To investigate the sensitivity of the frequency to design parameters, contour plots with 

respect to graphene and fibre contents are drawn as shown in Fig. 5 for SSSS boundary 

conditions. In Fig. 5, the two horizontal axes indicate the variation of the graphene weight 

and fibre volume contents of the outer (surface) layers of the 8-layered laminate. The 

values of the graphene and fibre contents of the intermediate layers (layers 2 to 7) are 

taken from the optimization results shown in Table 6. 
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                                  (a)                                                                              (b) 

Fig 5. Contour plots of frequency for SSSS boundary conditions with varying graphene 

weight and fibre volume contents of the surface layers for a) glass and b) carbon fibres 

 

Both Figs. 5a and 5b indicate that there is an optimal graphene weight for the outer layer 

which maximizes the frequency. Exceeding this optimal value of the graphene weight 

leads to a decrease in the frequency. In the case of glass fibres (Fig. 5a), the maximum 

frequency is not sensitive to the change in the fibre volume content. However, for carbon 

fibres (Fig. 5b), when the graphene content is high, the lower fibre content results in higher 

frequency and increasing the fibre content results in lower frequency. 

For glass fibres and CCCC or SCSC boundary conditions, similar patterns for the contour 

plots were observed. For carbon fibres and CCCC boundary conditions, the contour plot 

shown in Fig. 6a indicates that frequency is quite sensitive to change in the graphene 

weight around the maximum frequency as compared to SSSS boundary conditions (Fig. 

5b). This becomes more pronounced for higher fibre volume contents and for the (more 

stiff) CCCC boundary conditions, followed by the SCSC boundary conditions (Fig. 6b). 
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                                   (a)                                                                             (b) 

Fig. 6. Contour plots of the frequency for carbon fibre reinforced laminates with varying 

graphene weight and fibre volume contents of the outer layers for a) CCCC and b) SCSC 

boundary conditions 

 
To further investigate the contribution of graphene on maximizing the frequency, additional 

simulations with zero graphene weight have been performed. Two design efficiency 

factors are calculated for this case: a) 𝜂 =
𝛺𝑚𝑎𝑥

𝛺0
  where  𝛺𝑚𝑎𝑥 is the optimal frequency and 

𝛺0 the reference frequency obtained for non-zero, uniform graphene weight equal to 1.25% 

for all the layers of the laminate and b) 𝜂2 =
𝛺𝑚𝑎𝑥

𝛺02
  where the reference frequency 𝛺02 is 

obtained for zero graphene weight. The design efficiency factor 𝜂2  shown in Table 7 

indicates a significant increase of the fundamental frequency when the fibres are 

distributed optimally among the layers as compared to the frequency of a laminate with 

uniformly distributed fibres. The increase is observed to be greater in the case of glass 

fibre reinforced laminates as compared to the carbon fibre reinforced ones. When the 

efficiency factor 𝜂 is examined in Table 7, it is observed that a significant reduction in the 

maximum frequency occurs in the absence of graphene reinforcement noting that the 

reference frequency 𝛺0  refers to a laminate with uniformly distributed graphene of 1.25% 

volume content. The highest reduction in the frequency is observed in the case of glass 

fibres and CCCC and SCSC boundary conditions and it is equal to (1-0.727)/100 = 27.3%.  

A more holistic insight on the positive contribution of the non-uniform distribution of 

graphene across the laminate thickness can be obtained by comparing the design 

efficiency factors in Table 6 (non-zero, non-uniform graphene distribution along thickness) 

and the factor 𝜂 of Table 7 (zero graphene). Both factors are calculated using the same 

reference frequency 𝛺0 which corresponds to uniform graphene distribution with a weight 
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content of 1.25% for all layers. For glass fibres and CCCC boundary conditions, Table 6 

indicates an increase of 20.2% of the maximum frequency with respect to the reference 

frequency. For the same case (glass fibres and CCCC), the reduction in the fundamental 

frequency with respect to the reference frequency 𝛺0 obtained from Table 7 (1-0.727)/100 

=  27.3%), a total increase equal to 20.2% + 27.3% = 47.5% of the optimal fundamental 

frequency with non-uniform graphene distribution arises, in comparison to zero graphene 

usage. Significant improvements in the vibration response also arise when the proposed 

non-uniform graphene distribution shown in Table 6 is used for all the cases presented in 

Tables 6 and 7.  

 

Table 7: Maximum fundamental frequencies   of 8-layered laminates with zero graphene content 

and design variables as the fibre contents iFV  of layers subject to 6.01.0  FiV , %30max =FV  

with 1.0/ =aD ,  1/ =ba  and stacking sequence [0/90/0/90]anti-s 

BCs 
 

Optimal VF Ω 
0

max




=  

02

max
2




=  

 

SSSS 

Glass [0.6 / 0.4 / 0.1 / 0.1]s 0.1079 0.731 1.202 

Carbon [0.57 / 0.43 / 0.1 / 0.1]s 0.1611 0.869 1.167 

      

 

CCCC 

Glass [0.6 / 0.4 / 0.1 / 0.1]s 0.1883 0.727 1.165 

Carbon [0.6 / 0.4 / 0.1 / 0.1]s 0.2508 0.755 1.113 

   
 

  

 

SCSC 

Glass [0.6 / 0.4 / 0.1 / 0.1]s 0.1533 0.727 1.173 

Carbon [0.6 / 0.4 / 0.1 / 0.1]s 0.2103 0.782 1.127 

 

To better represent the aforementioned improvement of the vibration behaviour of the 

composite laminate when a non-uniform graphene distribution is adopted, Fig. 7 

represents the (Ωmax-Ω0)/Ω0 (%) vs boundary conditions diagrams, obtained from Tables 

6 and 7. The top line in each diagram represents the increase of the maximum frequency 

for the non-uniform graphene distribution shown in Table 6 with respect to the reference 

frequency (non-zero, uniform graphene) for glass and carbon fibres. The bottom line 

shows the corresponding percentage, representing the decrease of the maximum 

frequency obtained for zero graphene with respect to the reference frequency (non-zero, 
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uniform graphene). The figure indicates that a significant increase of the fundamental 

frequency corresponding to the non-uniform graphene distribution is observed for all 

cases as compared to zero graphene content. For glass fibres, this increase may reach 

51% (SSSS) and is not less than 46% (CCCC). For carbon fibres the maximum increase 

is 36% (CCCC) and the minimum 30% (SSSS).   

 

 

(a) 

 

(b) 

Fig. 7. Comparison between the maximum and the reference frequencies for three 

boundary conditions and a) glass, b) carbon fibres 

 
7.3 Graphene and fibre contents and layer thicknesses as design variables 

 
Next, in addition to the two design variables of graphene and fibre contents studied so far, 

another design variable, namely, the layer thicknesses are included as design variables. 

This leads to optimal design for maximum frequency with three design variables. The 

results of the optimization with these design variables are shown in Tables 8, 9 and 10 

corresponding to the three boundary conditions of SSSS, CCCC and SCSC, respectively. 
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Table 8: Maximum fundamental frequencies   of 8-layered laminates with three design variables 

subject to 0GPLiW , 6.01.0  FiV , 15.0/01.0  Dhi , %25.1max =GPLW , %30max =FV  with 

1.0/ =aD , 1/ =ba  and SSSS boundary conditions 

Stacking 
sequence 

Fibres Optimal WGPL Optimal VF hi/D Ω 
0

max




=

 

 

[0/90/0/90]anti-s 

Glass [0.042/0.021/0/0]s [0.6/0.6/0.1/0.1]s [0.095/0.105/0.15/0.15]s 0.1892 1.281 

Carbon [0.041/0.02/0.003/0]s [0.6/0.6/0.1/0.1]s [0.08/0.12/0.15/0.15]s 0.2244 1.211 

       

 

[90/0/90/0]s 
Glass [0.043/0.021/0/0]s [0.6/0.6/0.1/0.1]s [0.094/0.106/0.15/0.15]s 0.1892 1.280 

Carbon [0.043/0.021/0.003/0]s [0.6/0.6/0.1/0.1]s [0.07/0.13/0.15/0.15]s 0.2244 1.203 

 

Table 9: Maximum fundamental frequencies   of 8-layered laminates with three design variables 

subject to 0GPLiW , 6.01.0  FiV , 15.0/01.0  Dhi , %25.1max =GPLW . %30max =FV  with 

1.0/ =aD , 1/ =ba  and CCCC boundary conditions 

Stacking 
sequence 

Fibres Optimal WGPL Optimal VF hi/D Ω 
0

max




=

 

 

[0/90/0/90]anti-s 
Glass [0.041/0.023/0/0]s [0.6/0.6/0.1/0.1]s [0.09/0.11/0.15/0.15]s 0,3146 1.214 

Carbo

n 

[0.019/0.014/0.021/0]s [0.6/0.6/0.1/0.1]s [0.08/0.12/0.15/0.15]s 0.3802 1.145 

     
  

 

[90/0/90/0]s 
Glass [0.041/0.023/0/0]s [0.6/0.6/0.1/0.1]s [0.09/0.11/0.15/0.15]s 0,3146 1.214 

Carbo

n 

[0.103/0.008/0/0]s [0.1/0.6/0.27/0.1]s [0.05/0.15/0.15/0.15]s 0.3794 1.141 
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Table 10: Maximum fundamental frequencies   of 8-layered laminates with three design variables 

subject to 0GPLiW , 6.01.0  FiV , 15.0/01.0  Dhi , %25.1max =GPLW , %30max =FV  with

1.0/ =aD , 1/ =ba  and SCSC boundary conditions 

Stacking 
sequence 

Fibres Optimal WGPL Optimal VF Optimal hi/D Ω 
0

max




=

 

 

[0/90/0/90]anti-s 

Glass  [0.041/0.023/0/0]s [0.6/0.6/0.1/0.1]s [0.09/0.11/0.15/0.15]s 0.2595 1.230 

Carbon [0.109/0.006/0/0]s [0.1/0.6/0.27/0.1]s [0.05/0.15/0.15/0.15]s 0.3082 1.146 

 
 

   
  

 

[90/0/90/0]s 

Glass  [0.057/0.014/0/0]s [0.45/0.6/0.1/0.1]s [0.07/0.15/0.13/0.15]s 0.2614 1.254 

Carbon [0.093/0.011/0/0]s [0.1/0.6/0.27/0.1]s [0.05/0.15/0.15/0.15]s 0.3282 1.272 

 

Comparison between the results presented in Tables 8-10 (including non-uniform layer 

thicknesses) and Table 6 (with uniform layer thicknesses) indicates that the efficiency 

factor increases with the addition of layer thicknesses to design variables as expected. 

The minimum increase is 1.2% (CCCC-glass fibres) and the maximum increase is 2.8% 

(CCCC-carbon fibres). In the majority of the cases, the layers close to laminate surface 

receive a higher graphene content with an increase in the thicknesses of the middle layers. 

Thus, the optimal designs correspond to a reduced thickness in the surface layers which 

have increased graphene content compared to the cases of uniform layer thicknesses as 

observed in Table 6. 

Moreover, for SCSC boundary conditions and carbon fibres, the symmetric stacking 

sequence results in significantly higher efficiency factor as compared to the anti-symmetric 

case. For the other boundary conditions, both stacking sequences result in similar 

efficiency factors. 

 
7.4 Graphene and fibre contents, layer thicknesses and fibre orientations as design 

variables 

 
In view of the importance of fibre orientations in the design of composite laminates, fibre 

angles are now introduced as the fourth set of design variables in addition to graphene 

and fibre contents and layer thicknesses. This leads to an optimal design problem with 

four design variables. 
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Table 11: Maximum fundamental frequencies   of 8-layered laminates with four design variables 

subject to 0GPLiW , 6.01.0  FiV , 15.0/01.0  Dhi , − 9090 i , %25.1max =GPLW , 

%30max =FV  with 1.0/ =aD , 1/ =ba  

Boundary 

conditions 
Fibres Optimal WGPL Optimal VF hi/D 

i  Ω 
0

max




=

 

 

SSSS 

Glass 
[0.110/0.005/ 

0/0]s 

[0.10/0.60/ 

0.27/0.10]s 

[0.05/0.15 

/0.15/0.15]s 

[45/-45/45/45]s 
0.2006 1.359 

Carbon 
[0.119/0.003/ 

0/0]s 

[0.10/0.60/ 

0.27/0.10]s 

[0.05/0.15/ 

0.15/0.15]s 

[45/-45/45/45]s 
0.2586 1.395 

       
 

 

CCCC 

Glass 
[0.041/0.023/ 

0/0]s 

[0.6/0.6/ 

0.1/0.1]s 

[0.09/0.11/ 

0.15/0.15]s 
[0/90/0/90]s 0.3146 1.214 

Carbon 
[0.019/0.014/ 

0.021/0]s 

[0.6/0.6/ 

0.1/0.1]s 

[0.07/0.13/ 

0.15/0.15]s 
[0/90/0/90]s 0.3802 1.145 

       
 

 

SCSC 

 

Glass 
[0.057/0.015/ 

0/0]s 

[0.46/0.6/ 

0.1/0.1]s 

[0.07/0.15/ 

0.15/0.13]s 
[0/0/0/0]s 0.2625 1.244 

Carbon 
[0.087/0.012/ 

0.001/0]s 

[0.10/0.60/ 

0.27/0.10]s 

[0.05/0.15/ 

0.15/0.15]s 
[0/0/0/0]s 0.3372 1.254 

 

Results of this optimization problem are shown in Table 11. It is observed that the optimal 

designs for different boundary conditions result in different stacking sequences as 

expected. Similar to the previous cases, higher graphene weights are allocated to outer 

layers. Comparison between the results presented in Tables 8-10 (cross-ply laminates) 

indicates a further increase of the fundamental frequency for SSSS and SCSC boundary 

conditions. This increase is quite significant for SSSS boundary conditions (+ 7.8% for 

glass and +18.4% for carbon fibres) and for SCSC-carbon fibres (+10.8%). It is noted that 

the design efficiency factors shown in Table 11 are calculated for a reference frequency 

obtained by using the anti-symmetric, cross-ply stacking sequence, and therefore 

efficiency comparisons between Table 11 and Tables 8-10 are based on this stacking 

sequence. For CCCC boundary conditions no increase of the design efficiency is 

observed, indicating that the cross-ply stacking sequence used in Table 9 results in the 

optimal vibration response.  
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A final investigation is conducted by assessing the effect of the variation of the fibre angles 

of the two outer layers on the fundamental frequency and the corresponding sensitivities. 

The reason the top two outer layers are chosen for this purpose is because the outer 

layers contribute most to the stiffness of the laminate. This work is done by means of 

contour plots of the frequencies with respect to fibre orientations. In the contour plots 

shown in Figs 8-10, the problem parameters have been assigned their optimal values 

presented in Table 11 in all layers except the top two outer layers. Thus, the only 

parameters which vary in these plots are the fibre angles of the outer layers, that is, θ1 

and θ8 of the top and bottom layers, and θ2 and θ7 of the second outer layers. 

 

    

                          (a)                                                                                (b) 

Fig 8. Contour plots of the frequency with respect to the fibres angles of the two outer 

layers for SSSS boundary conditions, a) glass fibres, b) carbon fibres 

 

   

                                (a)                                                                          (b)          

Fig 9. Contour plots of the frequency with respect to the fibres angles of the two outer 

layers for CCCC boundary conditions, a) glass fibres, b) carbon fibres 
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                                  (a)                                                                            (b) 

Fig 10. Contour plot of the frequency with respect to the fibres angles of the two outer 

layers for SCSC boundary conditions, a) glass fibres, b) carbon fibres 

 

Comparisons between the optimal solutions presented in Table 11 and Figs 8-10 confirms 

the optimization solution and the corresponding angles θ1,8 and θ2,7 in every case. It is 

also observed that different boundary conditions result in different shapes of the contour 

plots as expected. Thus CCCC boundary conditions lead to multiple optimal points. For 

SSSS and SCSC boundary conditions, a single optimal point is observed and this point is 

more prominent in the case of carbon fibre reinforced laminates. This leads to the 

observation that when glass fibres are used for reinforcement, the difference between the 

minimum and the maximum values of the frequency is relatively small as compared to the 

case of carbon fibres.  

 

8. Conclusions  

 
Optimal design and analysis of a hybrid graphene/fibre reinforced composite laminate for 

maximum fundamental frequency was the subject of the present study. The composite 

material is defined as a three-phase nanocomposite consisting of graphene nanoplatelets, 

fibres and polymer matrix. The main objective was the study of the vibration response and 

optimization of this multiscale laminate combining a nano-scale reinforcement (graphene) 

within the traditional fibre reinforced matrix and the effect of the graphene content on the 

maximum frequency. To achieve a cost-effective design, the optimal distributions of the 

constituent materials along the thickness of the structure as well as optimal layer 

thicknesses are investigated to maximize the fundamental frequency. 
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For the implementation of the optimization scheme, a Sequential Quadratic Programming 

algorithm (SQP) was adopted. The natural vibration problem is solved within the 

framework of the finite element method using the First Order Shear Deformation plate 

theory (FSDT). Three different boundary conditions, namely, SSSS, CCCC and SCSC are 

investigated to assess their effect on the optimal designs. Effective properties of three-

phase composite are obtained from micromechanics equations applicable to graphene 

and fibre reinforced polymers. The numerical results are given for symmetric and anti-

symmetric 8-layered laminates. 

Among the main findings of the study is the optimal distributions of graphene and fibre 

reinforcements along the thickness of the laminate. It is observed that a non-uniform 

distribution of graphene platelets, with higher graphene contents in the surface layers and 

lower or zero graphene contents in the middle layers, results in the optimal distribution of 

the graphene. When the fibre volume contents are also included as design variables, a 

similar pattern of optimal fibre distribution is observed, that is, higher fibre contents in the 

outer layers and the less fibre content in the middle layers. 

A design efficiency factor is introduced which is defined as the ratio of the fundamental 

frequency of the optimally designed laminate over a reference frequency based on uniform 

distributions of the reinforcements and uniform layer thicknesses. This provides a 

quantitative measurement of the positive effect of the non-uniformly distributed 

reinforcements leading to optimal designs. When the layer thicknesses and the fibre 

angles are also included as design variables of the optimization problem, the design 

efficiency factors indicate a further increase in the fundamental frequency as expected. 

Some specific conclusions are presented below: 

a) Increasing graphene weight is more effective in improving the fundamental frequencies 

for lower fibre volume contents (Figs 2 and 3). 

b) When the graphene contents of layers are the only design variables of the optimization 

problem and a uniform fibre distribution along the thickness is adopted, a higher graphene 

content results in the outer layers as expected. The highest increase of the fundamental 

frequency with respect to the reference frequency is 19.6%. This corresponds to a 

symmetric cross-ply laminate with glass fibres of 30% volume content. The corresponding 

increase when 30% of carbon fibres is used is 10.8%. This is due to the fact that glass 

fibres have lower stiffness and graphene becomes more effective in improving the 

maximum frequency while carbon fibres have higher stiffness and addition of graphene 

is, relatively speaking, not as efficient as it was in the case of glass fibres. 
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c) For the case of optimal distribution of graphene (same as case b), the increase in the 

fundamental frequency when fibre volume content is 60% (instead of 30% as in case b), 

is half in the case of glass fibre reinforcement and one third for carbon fibre reinforcement.  

This indicates that the graphene reinforcement is more efficient at lower fibre contents. 

d) It was observed that a higher design efficiency factor was obtained when glass instead 

of carbon fibres are used. This is attributed to the lower stiffness of glass fibres which 

results in higher contribution of graphene platelets to the fundamental frequency. 

e) When both graphene and fibre reinforcements are specified as design variables, a non-

uniform distribution along the thickness arises for both reinforcements. The optimal non-

uniform fibre distributions result in significantly increased frequencies in comparison to 

uniform fibre distributions.   

f) The highest increase of the fundamental frequency with respect to the reference 

frequency is 26.2% in the case of SSSS boundary conditions. CCCC boundary conditions 

result in the lowest increase in the design efficiency. This can be attributed to the fact that 

for CCCC boundary conditions, the fundamental frequencies are already relatively high 

compared to the case of SSSS boundary conditions. 

g) When zero and non-zero graphene reinforcements are compared, results indicate that 

a large increase in the fundamental frequency is observed relative to case with zero 

graphene content compared to the case of non-uniformly distributed graphene. This 

increase reaches 51% in the case of additional reinforcements with glass fibre and 36% 

with carbon fibres. 

h) When the layer thicknesses are specified as further design variables (in addition to 

graphene and fibre volume contents), a relatively small increase in the design efficiency 

factor is observed which is 1.2% for CCCC-glass fibres and 2.8% for CCCC-carbon fibres. 

i) For the case of three design variables involving graphene and fibre contents of layers 

and the layer thicknesses, the fundamental frequency is 28.1 % higher compared to the 

reference frequency in the case of glass fibre reinforced laminates with SSSS boundary 

conditions compared to 26.2% for the case of uniform layer thickness (two sets of design 

variables). The corresponding increase is 19.6% in the case of uniform layer thicknesses 

and uniform fibre contents with the graphene contents of layers being the only design 

variables. 

j) When the fibre angles are also included as the design variables in addition to the 

previous set of three design variables (graphene and fibre contents and thicknesses of 

layers), a significant increase in the design efficiency factor is observed. These increases 
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are 7.8% for GFRP and 18.4% for CFRP laminates with SSSS boundary conditions. and 

10.8% for CFRP laminates with SCSC boundary conditions. 

k) For this case (four sets of design variables) and SSSS boundary conditions, the 

increase of the fundamental frequency with respect to the reference frequency reaches 

35.9% for GFRP and 39.5% for CFRP laminates.  

Future research on three-phase nanocomposites is to include the investigation of 

functionally graded nanomaterials where the graphene weight varies along the thickness 

of the laminate which may be a pre-defined distribution or an optimally determined 

continuous distribution. In addition, a non-constant graphene distribution in each layer 

may also result in an improved design and a cost-effective use of the expensive graphene 

reinforcement. Finally, more advanced theories and bounds for the micromechanical 

formulations presented in literature [67, 68], can be adopted and compared for three-

phase composites.  
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Appendix 

 

1. Strain energy 

 
The strain energy of the laminated composite plate is expressed as 

 

𝑈 =
1

2
∫({𝜀𝑏0}

𝑇[𝑄𝑏]{𝜀𝑏0} + {𝜀𝑏0}
𝑇𝑧[𝑄𝑏]{𝜅} + {𝜅}

𝑇𝑧[𝑄𝑏]{𝜀𝑏0} + {𝜅}
𝑇𝑧2[𝑄𝑏]{𝜅}

𝑉𝑒

+ {𝜀𝑠0}
𝑇[𝑄𝑠]{𝜀𝑠0})𝑑𝑉 

 

 =
1

2
∫ {

{𝜀𝑏0}
{𝜅}
{𝜀𝑠0}

}

𝑇

[

[𝑄𝑏] 𝑧[𝑄𝑏] 0

𝑧[𝑄𝑏] 𝑧2[𝑄𝑏] 0

0 0 [𝑄𝑠]

] {

{𝜀𝑏0}
{𝜅}
{𝜀𝑠0}

}𝑑𝑉 =
1

2
∫ {𝜀}𝑇[𝐶(𝑧)]{𝜀}𝑑𝑉
𝑉𝑒𝑉𝑒

                   (Α1) 

 

where 𝑉𝑒 is the volume of an element. Substituting for  0b
,    and  0 s

 in the above 

equation, 𝑈 can be written as 

 

𝑈 =
1

2
{𝑑}𝑒

𝑇[𝐾]𝑒{𝑑}𝑒       (Α2) 

where 

[𝐾]𝑒 = ∑ [∫ [𝐵]𝑇[𝐶(𝑧)]𝑘[𝐵]𝑑𝑉𝑘𝑉𝑘
]𝑁

𝑘=1                                       (Α3) 

 

In equation (Α3) kV  is the volume of the kth layer, N is the number of lamina, [𝐶] is the 

elasticity tensor and [𝐵] is the strain – displacement matrix. 

 

2. Kinetic energy 

 
The kinetic energy of the composite plate is expressed as 

𝑇 =
1

2
∑ (∫ 𝜌𝑘[{𝑢1}̇

2 + {𝑢2}̇
2 + {𝑢3̇}

2]𝑑𝑉𝑘𝑉𝑘
)𝑁

𝑘=1 ,    (Α4) 

 

where k  is the density of the kth layer. Substituting the displacements relations of Eq. 

(1), Eq. (Α4) becomes 
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𝑇 =
1

2
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𝑥
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1

2
∫ {𝑢̇}

𝑇
[𝐼(𝑧)]𝑘{𝑢̇}𝑑𝑉𝑘 𝑉𝑘

𝑁
𝑘=1  

𝑉𝑘
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Equation (Α5) then becomes: 

𝑇 =
1

2
{𝑑̇}𝑇[𝑀]{𝑑̇}             (Α6) 

where 

[𝑀]𝑒 = ∫ ∑ ∫ [𝑁]𝑇
𝑧𝑘
𝑧𝑘−1

[𝐼(𝑧)]𝑘[𝑁]𝑑𝑧𝑑𝐴
𝑁
𝑘=1𝐴𝑒

                       (Α7) 

 

where eA  is the area of the element and 1kz − , kz  are the z coordinates of the laminate 

corresponding to the bottom and top surface of the kth layer. 

 

3. Work done by the mechanical forces 

 
The work done by the mechanical forces is given by 

 

𝑊 = {𝑢}𝑇{𝑓𝑐} + ∫{𝑢}𝑇{𝑓𝑠
(𝑖)}𝑑𝑆 + ∫{𝑢}𝑇

𝑉

{𝑓𝑣}𝑑𝑉

𝑆1

 

     = {𝑑}𝑒
𝑇
[𝑁]𝑇{𝑓𝑐} + {𝑑}𝑒

𝑇
∫ [𝑁]𝑇
𝑆1

{𝑓𝑠
(𝑖)}𝑑𝑆 + {𝑑}𝑒

𝑇
∫ [𝑁]𝑇
𝑉

{𝑓𝑣}𝑑𝑉 ≡ {𝑑}𝑒
𝑇{𝐹𝑚}𝑒     (Α8) 

 

In Equation (Α8),  cf  denotes the concentrated forces and sf ,  vf denote the surface 

and volume forces, respectively. S1 is the surface area, 𝑉 is the volume and {Fm}e is the 

vector of the applied mechanical forces on an element.  

 


