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Abstract 

The in vitro micronucleus (MN) assay is a globally used test to quantify DNA damage induced by test 

chemicals from various industries such as pharmaceuticals, cosmetics and agriculture. Currently, 

manual scoring is used which is extremely time-consuming and scorer subjective so causes a 

significant bottleneck in the use of the MN assay.  This project shows that imaging flow cytometry 

coupled with deep learning neural networks can be reliably and accurately used with inter-

laboratory function, to automatically score micronucleus events in chemically exposed human B 

lymphoblastoid cells called TK6 cells. Images were taken from both the cytokinesis-block 

micronucleus (CBMN) assay and the mononucleate MN assay at Newcastle University.  Six different 

chemicals were tested in this study which are known genotoxic agents and known non-genotoxic 

agents: aroclor, carbendazim, methyl methanosulphate (MMS), vinblastine, benzo(a)pyrene, D-

mannitol. These images were then inputted into a “Deep Flow” neural network, coded in the 

MATLAB platform which was previously trained on human-scored images assembled from the CBMN 

assay conducted by Cardiff and Cambridge universities, using MMS and carbendazim treated TK6 

cells. Using image data from multiple laboratories in this study provides evidence that the neural 

network can be used to score unseen data from any laboratory. The neural network correctly scores 

micronucleus events for both the CBMN and mononucleate MN assays at a percentage confidence 

of 70% and above. Dose response data for each chemical is parallel to ECVAM guidelines. The 

aneugen, carbendazim, was shown by the deep learning algorithm to increase the mean dose 

response by 3.4-fold which shows that as the dose of carbendazim increases, the abundance of 

micronuclei increases. Further optimisation of the ground truth will prevent underscoring of 

micronuclei in binucleated cells. It can be concluded that with further optimisation and development 

of the neural network, this automated platform offers a great potential for the use of the in vitro MN 

assay to be widened. This method has a higher throughput and has the capability to test greater 

numbers of compounds and chemicals, therefore, this method will be able to keep up with the 

increasing demand for genotoxicity testing in industrial and pharmaceutical settings.    
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1. Literature Review 
 

i) Cell Cycle 

The cell cycle has four main stages, G1, synthesis (S), G2, and mitosis (M) (Alberts, 2008).  Firstly, in 

G1, the cell increases in size before undergoing DNA replication in the S stage. In G2, the cell then is 

prepared for carrying out cytokinesis by checking for any errors in DNA replication and then the cell 

goes into mitosis. The cell spends the majority of its time in G1, S and G2 phases and this is also 

called interphase. Then the cell goes into a 5-stage process called mitosis, the 5 stages of mitosis are 

Prophase, Pro - metaphase, Metaphase, Anaphase and Telophase. When a cell divides, it becomes 

prone to DNA replication errors despite the multiple cell cycle checkpoints and repair mechanisms. 

Some of the replication error mechanisms include nucleotide and base excision repair (NER/BER) 

and mismatch repair (MMR), during which mismatched nucleotides are excised using 3’ to 5’ 

exonucleases called Pol ɛ and Pol δ, then replaced with the correct nucleotides. One named example 

of a marker of DNA damage in the cell is the production of micronuclei at anaphase (Alberts, 2008).   

ii) Cellular and DNA Damage 

Despite the mechanisms described above for ensuring correct alignment of nucleotides, the 

nucleotide error rate still exists at approximately 1 per 100,000 nucleotides which equates to 

approximately 120,000 mistakes every time a cell goes through one cell cycle (Pray, 2008). 

DNA damage is significant in mutagenesis and carcinogenesis therefore plays a pivotal role in the 

onset of genetic disease. DNA damage can either be caused by endogenous sources or exogenous 

sources (De Bont, 2004).  

Endogenous DNA damage and mutations can arise from multiple intracellular processes such as DNA 

replication errors (transition and transversion mutations), transposable genetic elements and 

metabolic processes such as oxidation, methylation, deamination and depurination of DNA bases 

and the production of reactive oxygen species (ROS) (Ames et al., 1993). Transition mutations are 

when a purine is substituted for another purine, or a pyrimidine is replaced by another pyrimidine 

during DNA replication. These transition mutations can be caused by deamination. For example, 

deaminated cytosine forms uracil which forms a complementary base pair with adenine in 

replication, therefore if the deamination is not reversed, a G-C pair will be converted into an A-T pair 

hence causing a transition mutation. Transversion mutations occur when a purine is substituted with 

a pyrimidine base and vice versa. ROS such as superoxide and hydroxyl radicals are routinely formed 

as by-products of metabolic pathways such as aerobic respiration. ROS can lead to DNA damage by 

oxidizing DNA bases and inducing single and double strand breaks (Palero & Crandall, 2009).  

DNA damage can also be caused by exogenous sources which may be exposure to carcinogenic 

chemicals. These exogenous agents may include alkylating agents, aromatic amines, and radioactive 

chemicals. Exogenous agents can act as a structural isomers of normal DNA bases, for example, 5-

bromouracil is a structural isomer of thymine so can cause a mis-pair. Alkylating agents such as 

ethylmethanosulfonate can bind to DNA bases and alter their structure which then leads to point 

mutations. Finally, radiation can cause the ionization and excitation of molecules hence lead to the 

production of ROS which can then damage DNA structurally. This may lead to the formation of 

apurinic/apyrimidinic sites or single and double strand breaks. The consequence may be point, 

frameshift, deletion, or duplication mutations (Griffiths et al., 2000).  

There is a positive correlation between the presence of mutations and the induction of cancer, 

which suggests that mutagenesis drives tumour progression and metastasis. It is known that 



carcinogenesis events can be started by mutations arising in genes essential for genetic stability in 

cells, for example, P53 which is associated with cell cycle regulation and Bcl-2 associated with 

apoptosis. Consequently, detecting chemicals and compounds that cause DNA mutations is essential 

for the protection of populations exposed to these (Loeb & Loeb, 2000). To fully test the ability of a 

chemical to induce mutations, DNA damage must be assessed on three levels; gene mutation, 

clastogenicity which covers structural chromosome aberrations and aneuploidy which assess 

numerical chromosome aberrations (COM, 2011). Therefore, to allow for this, genotoxicity testing has 

been developed to investigate the mutagenicity and hence carcinogenicity of new compounds and 

chemicals used in multiple industries such as cosmetics and pharmaceuticals. Regulatory bodies such 

as The Organisation of Economic Co-operation and Development (OECD) and The International 

Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) have 

published guidelines and assays for reliable and accurate genotoxicity testing.  

 

iii) Cancer 

As genotoxicity testing has progressed over the last three to four decades, there has been a 

paradigm shift, showing a connection between mutagenesis, initiated by exposure to genotoxins, 

and carcinogenesis, the initiation of cancer formation.  In 1966, Malling added a chemical 

hydroxylating mixture to known carcinogens; diethylnitrosamine and dimethylnitrosamine. These 

two compounds were found to not be mutagenic in vitro, however the resulting metabolites from 

the reaction were found to be mutagenic in the Neurospora crassa fungus (Malling, 1966). Later in 

1971, Malling conducted another experiment of adding dimethylnitrosamine to the supernatant 

from mouse liver homogenate with additional cofactors (activation mixture) and again 

dimethylnitrosamine was found to be mutagenic in Salmonella typhimurium bacteria in a liquid 

culture (Malling, 1971). Then in 1972, Ames et al. conducted a plate incorporation assay in Salmonella 

bacteria, and this demonstrated that the metabolites of known carcinogenic agents were also 

mutagenic (Ames et al., 1972). This paradigm shift was further demonstrated in 1973 when Ames et al. 

performed a similar experiment however used a rat liver homogenate with cofactors as a metabolic 

activation mixture. Compounds that were previously determined as carcinogens but not mutagens 

were found to in fact be mutagenic. These assays led to the hypothesis that many carcinogens are 

innately or after metabolic activation are mutagenic, thus mutagenesis plays a pivotal role in 

carcinogenesis (Ames et al., 1973).  

A variety of mutagens have shown to have a similar ‘mutation spectrum’ which means that they 

induce the same base substitution mutation in multiple phylogenies. Therefore, if these mutations 

arise in cancer-related genes (oncogenes or tumour-suppressor genes), they can drive the formation 

of tumours. For example, exposure to aflatoxin B, produced by many species of Aspergillus fungus, is 

strongly associated with G – T mutations in codon 259 of the TP53 gene in liver tumours. When a 

mutation occurs in the TP53 gene, it causes the under expression of tumour protein 53, a key 

regulator of the cell cycle. Therefore, when there is reduced tumour protein 53, cells can rapidly 

divide and metastasised hence leading to cancerous tumours being produced (Baan et al., 2019).   

Tumours are extremely heterogeneous which means that they can contain a wide variety of 

different mutations, chromosomal aberrations, and aneuploidy (Parsons, 2008). However, there is 

now also evidence that epigenetic changes can drive carcinogenesis, therefore, genotoxic agents 

that induce epigenetic changes are significant in the carcinogenesis pathway. For example, 

mutations in DNA demethyltransferases; DNMT1 and DNMT3A are associated with colorectal cancer 

and acute myeloid leukaemia as these mutations will cause DNA to not be methylated in the 

epigenetic interface (Ren et al., 2017). Additionally, mutations in histone lysine methyltransferases 



(responsible for methylation of histone tails in chromatin) HK4 and H3K9 are present in kidney and 

colon cancers. Finally, mutations in histone acetyltransferases (responsible for acetylation of histone 

tails in chromatin) H3K18 and H3K27 are implicated in acute lymphoblastic leukaemia (Peltomäki, 

2012).   

Recognising the role of chemical and biological genotoxic agents in carcinogenesis can contribute to 

a model of ‘agent-induced carcinogenesis’. This model can clearly illustrate the role of a genotoxic 

agent in carcinogenesis by firstly identifying whether it causes changes on a mutagenic or epigenetic 

level, the resulting changes in gene expression then the phenotypic changes it induces in the cancer 

cells. These are known as the hallmarks of cancer and include; mutations in oncogenes, altered gene 

expression, changes in cell signalling pathways, altered cell growth, evasion of apoptosis 

(programmed cell death), sustained angiogenesis (blood vessel production), increased genomic 

instability and metastasis (Hanahan & Weinberg, 2011).  

 

1.1 Genetic Toxicology 

 

Due to the wide variety of inducible mutations and genetic events from test chemicals on DNA, 

multiple in vitro and in vivo tests have been developed to screen for genotoxicity on the three levels 

listed above. Figure 1 shows the drug development pipeline and the genotoxicity tests that new 

pharmaceuticals are subjected to test for both carcinogenicity and genotoxicity.  

Figure 1. Flow diagram of the drug development pipeline from screening of potential compounds and 

chemicals to progressing the pharmaceuticals to market (Modified from Johnson, 2020).  

  

In the late 1990s, the ICH achieved a consensus for a testing battery for the pharmaceuticals 

industry. The three tests are firstly a bacterial test for gene mutations in bacteria, an in vitro 

mammalian chromosome aberration test called the L5178Y mouse lymphoma mammalian cell 

mutagenesis test, and finally an in vivo chromosomal damage test in rodent haematopoietic cells 

called the in vivo erythrocyte micronucleus assay (MacGregor et al., 2000).   



However, since this initial testing battery, regions of the world have adapted this to create specific 

test batteries for their region and specific industries. The European Union (EU) test battery is a 

three-tiered system and the type of tests carried out depend on the nature of the chemical or 

compound. For industrial products, the first tier requires two in vitro tests which are the bacterial 

gene mutation assay (Ames Test) and a mammalian cell assay. In contrast, for pesticides, cosmetics 

and food additives, the EU requires three in vitro tests which includes the Ames Test, either the 

chromosome aberration test or the in vitro micronucleus assay, and thirdly a mammalian cell gene 

mutation assay. The EU’s requirements are again different for pharmaceuticals. The tests required 

are an Ames Test, an in vitro mammalian cell chromosome aberrations assay or an in vitro gene 

mutation assay in mouse lymphoma cells, and thirdly either an in vivo chromosome aberration test 

or the in vivo micronucleus assay (Müller et al., 1999). 

Furthermore, recently, changes have needed to be made to this testing regime due to the 

prohibition of in vivo testing in cosmetic products and some pharmaceuticals. Therefore, to reduce 

animal testing, in vitro genotoxicity testing has become the forefront of chemical testing for genetic 

damage. This being said, more attention has been paid to increase the accuracy and sensitivity of in 

vitro assays to consequently reduce the rate of false positives (Pfuhler et al., 2014). Also, more 

research is being carried out to develop new in vitro assays which aim to follow up positive results 

from the in vitro assays. An example of a follow up test uses 3D reconstructed skin models as well as 

gaining a deeper understanding of the biochemistry of the chemical/compound itself and the effects 

it has on metabolism (Allemang et al., 2021). 

 

 

1.2 The Micronucleus (MN) Assay  

 

The MN assay is a globally significant, OECD approved in vitro assay used to quantify DNA damage at 

the chromosomal level, in genotoxicity testing. Therefore, it is one of the first tests that a new 

compound or chemical is used as a subject for, to test its genotoxic, cytotoxic and carcinogenic 

potential (OECD, 2016).  

MN occur in dividing cells and they are composed of either whole or fragments of chromosomes that 

have not properly adhered to the spindle machinery on the metaphase plate and they lag behind 

during anaphase movement. Therefore, they are not incorporated into the daughter nuclei of the 

dividing cell and thus a separate nuclear envelope forms around them and they become a 

micronucleus. Due to their nature, MN are a very effective genotoxicity endpoints as their presence 

is strongly indicative of chromosome damage either of aneugenic (chromosome loss) or clastogenic 

(chromosome breakage) nature. Common cells to host the in vitro MN assay is blood lymphocytes 

because they divide rapidly, are widely available and they are systemically distributed around the 

body so they are representative of how the body would respond when exposed to certain chemicals 

and compounds (Luzhna et al., 2013).  

Prior to the 1980s, there was one conventional MN assay, however, in the early 1980s, Fenech and 

Morley devised the cytokinesis-block micronucleus (CBMN) assay which used cytochalasin B to 

inhibit cytokinesis in the dividing cells, therefore the cells become binucleated. The mode of action 

of cytochalasin B is inhibition of the polymerisation of actin (Fenech, 1993). Actin is an essential 

protein that composes the cytoskeleton and plays a significant role in the production of the cleavage 

furrow which thus leads to cytokinesis (Subramanian et al., 2013).  

MN are formed once a cell has divided once, however their abundance in a cell decreases when the 

cell undergoes multiple cell cycles. Therefore, it is advantageous to conduct the CBMN assay as the 



researcher can distinguish which cells are actively dividing and those that are not by whether the 

cells are binucleated or not.  

On the other hand, there are disadvantages to the CBMN assay. Cytochalasin B does not significantly 

interfere with nuclear division; however, it may contribute to the formation of MN in binucleated 

cells as actin also has a key role in the migration of chromosomes in anaphase. Therefore, it is 

important to use the correct concentration of cytochalasin B to maximise cytokinesis inhibition but -

minimise interference with mitosis (Fenech, 1997). 

Figure 2 illustrates aneugenic and clastogenic activity in a diploid cell and the resulting MN after 

cytokinesis and when cytokinesis is blocked (CBMN assay).  

Figure 2. Illustrative representation of aneugenic and clastogenic activity the resulting MN formation after 

both cytokinesis and cytokinesis-block (CBMN assay) (Nath & Krishna, 1998). Screenshot of original figure has 

been imported. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.3 Endpoint Analysis 

 

As mentioned above, MN are very effective genotoxicity endpoints, however in order to gain a deep 

understanding of the modes of action of test chemicals, different endpoints can be used. Firstly, 

markers for the histone protein, H3, can be used to indicate the occurrence of chromosomal 

damage. Greater levels of H3 correlates to greater levels of chromosomal loss. Importantly, the use 

of H3 allows information to be gained of alterations taking place such as methylation, acetylation, 

phosphorylation, and ubiquitination. Therefore, mechanisms of a chemical’s toxicity can be 

determined. For example, H3K9 methylation links to signalling damage to the DNA, and H3K9 

acetylation links to chromatin unravelling (Hake & Allis, 2006). 

   

The second endpoint commonly used is p53 which is a nuclear transcription factor linked with 

stimulating apoptosis (programmed cell death). P53 is also implicated in many cancers, and it is 

found to be mutated in approximately 50% of malignant cancers. P53 is known to control the arrest 

of the cell cycle; a cell with damaged DNA will be halted, then once the damaged DNA is repaired, 

the cell can continue the cell cycle. However, if a cell has significant amounts of damaged DNA, p53 

will stimulate the cell to undergo apoptosis so the damaged DNA is not passed onto the daughter 

cells. Under healthy conditions, p53 is expressed in very low concentrations, therefore cells with 

DNA damage have an increase in p53 expression compared to a healthy control. This therefore 

alludes to the fact that p53 is a very reliable endpoint for genotoxic testing (Perri et al., 2016). 

The final endpoint for genotoxicity testing is H2AX. H2AX is a histone protein which becomes 

phosphorylated when double stranded DNA breaks occur from chemical exposure. When H2AX is 

phosphorylated at the 139th serine residue, γH2AX is produced which can be detected in 

immunofluorescence-based assays. Research has shown phosphorylation of H2AX is an early 

response to double stranded breaks, and the γH2AX molecules surround the double stranded break 

to initiate opening of the chromatin at the damaged site. This therefore allows repair proteins to 

enter the site and repair the break. Moreover, H2AX is another reliable genotoxicity endpoints as 

increased levels of γH2AX indicate the presence of DNA damage (Mah et al., 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.4 Biochemistry of Genotoxic and Non-Genotoxic Compounds 

 

The main purpose of the in vitro MN assay is to quantifiably test chemicals and compounds for its 

genotoxic and carcinogenic potential. When developing an assay, it is important that known 

compounds are used to test the accuracy, precision, reliability and thus validity of the assay. 

Therefore, the OECD have published a list of compounds and their known genotoxicity potential. 

This study uses six known compounds to test the validity of the newly developed deep learning 

neural network.  

Firstly, carbendazim is a known aneugen of the benzimidazole family of fungicides. Therefore, the 

main source of human exposure to carbendazim is through residues on food crops. In vivo studies 

involving rodent exposure to carbendazim showed that mice exposed to carbendazim had an 

increased incidence of adenoma and carcinoma, particularly in the reproductive organs. Biochemical 

studies suggest that the biological effect of carbendazim is due to its interaction with cell 

microtubules which have a key role in intracellular transport and cell division (Davidse, Flach., 1977). In 

fungal species, the benomyl moiety binds to the protein tubulin, therefore tubulin polymerisation is 

inhibited, and the microtubules are not formed and thus cannot function correctly. Dysfunctional 

microtubules in turn cause interference with mitosis as the spindle fibres will no longer be able to 

form properly. This therefore can lead to the production of micronuclei as the chromosomes can no 

longer bind to the spindle and get pulled apart during anaphase so whole chromosomes will not be 

incorporated into the daughter nuclei which explains the aneugenic properties of carbendazim 
(International Programme on Chemical Safety, 1993).   

Figure 3. Chemical structure of carbendazim (Lu et al., 2004). 

The second aneugen used in this study is vinblastine which is a type of vinca alkaloid derived from 

the Madagascar periwinkle plant (Catharanthus roseus). Vinblastine as well as other vinca alkaloids 

have been successfully used in management of the progression of different cancers including non-

Hodgkin’s lymphoma and breast cancer. Vinblastine specifically inhibits angiogenesis which is the 

production of blood vessels towards a tumour. Vinblastine has multiple mechanisms of action to 

induce genotoxic events. Similar to carbendazim, vinblastine can bind to tubulin hence interfering 

with spindle production. An additional mode of action for vinblastine is that it induces the 

production of reactive oxygen and nitrogen species. Studies have shown that vinblastine caused a 

significant increase in the production of 8-hydroxy-2-deoxy guanosine (8-OHdG) which is indicative 

of oxidative DNA damage. This also shows vinblastine induces endogenous DNA damage which 

causes micronucleus production by aneugenic processes (Mhaidat et al., 2016).  



 Figure 4. Chemical structure of vinblastine sulphate (Enzo Life Sciences, 2021). 

Thirdly, MMS is a known clastogen which means it induces structural chromosome breaks. MMS is a 

DNA alkylating agent; therefore, its mode of action is to bind to and therefore modify DNA 

nucleotides. MMS specifically modifies guanine to 7-methylguanine and adenine to 3-

methyladenine. This means that these nucleotides are no longer able to complementary base pair to 

cytosine and thymine respectively, therefore mispairing and replication blocks occur hence leading 

to double stranded DNA breaks. This therefore can contribute to the formation of micronuclei as 

fragments of the chromosomes will not be incorporated into the daughter nuclei from mitosis, 

hence form a micronucleus (Lundin et al., 2005). 

Figure 5. Chemical structure of MMS (Merck, 2021).  

Fourthly, another known clastogen is benzo(a)pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH) 

which are formed during the incomplete combustion or pyrolysis of organic materials. Therefore, 

BaP can be commonly found in air, water, soil and sediments at the source of the incompletely 

combusting organic material. PAHs such as BaP can be found in high concentrations in tobacco 

smoke and they can also be found in some foods such as broiled or smoke-cured meat, baked and 

fried foods that have been processed at high temperatures and vegetables that have been grown in 

contaminated soils. BaP can also be found in coal tar-based pharmaceuticals which are for example 

dermatologically applied. BaP-induced genotoxicity has been found to be due to two complementary 

mechanisms. The first of these is the diolepoxide mechanism in which BaP is converted to BaP-7,8-

diol-9,10-epoxide through a series of metabolic transformations using the cytochrome P450 (CYP) 

enzymes, CYP1A1 and CYP1B1. Diolepoxides are carcinogenic because they react with the purines, 

deoxyguanosine and deoxyadenosine to produce bulky adducts in both the cis and trans 

conformations. Therefore, BaP-7,8-diol-9,10-epoxide has the potential to induce the production of 

16 different DNA adducts. However, the most abundant BaP adduct found in in vivo studies is the N2-

deoxyguanosine adduct. This adduct causes G/T (transversion) and G/A (transition) mutations, 

therefore if these mutations occur in oncogenes such as the Ras gene or in tumour-suppressor genes 

such as the p53 gene, it can drive the proliferation of cancer cells.  

The second mechanism of BaP-induced genotoxicity is through the production of radical cations. 

One -electron oxidation of BaP by CYP enzymes can cause the production of a radical cation on the 

6th carbon due to the stereochemical change of the BaP molecule and the ionisation from the 



oxidation reaction. Radical cations then can induce the assembly of chemically unstable covalent 

adducts with guanine and adenine bases. These adducts denature the bases which results in apurinic 

sites in the DNA which can lead to point and frameshift mutations. Similarly, to the diolepoxide 

mechanism, if these adducts and mutations occur in oncogenes and tumour suppressor genes a 

carcinogenic effect can be driven. 

Due to these two mechanisms, BaP can cause chromosomal breaks which explains the clastogenic 

nature of the compound. The chromosomal fragments produced from BaP-induced DNA damage can 

lead to the production of micronuclei which are scored for in the in vitro MN assay (International 

Agency for Research on Cancer, 2012).  

 Figure 6. Chemical structure of benzo(a)pyrene (Toronto Research Chemicals, 2021).  

Finally, two known non-genotoxic agents were used. The first of these is Aroclor which is a 

polychlorinated biphenyl (PCB). PCBs are commonly used as dielectric fluids in coolants, 

transformers and capacitors, however due to the abundance of chlorine in its structure, PCBs are 

acutely toxic to freshwater organisms as well as marine organisms. They are toxic to fish because 

PCBs are isomers to ligands of steroid nuclear receptors therefore, binding can lead to disruption of 

the endocrine system which can therefore lead to the onset of yolk sac oedema and haemorrhaging. 

This can also be called blue sac disease. PCB exposure in fish has also shown to cause abnormalities 

in the reproductive system such as inhibition of spermatogenesis and reduced egg production as 

well as other biochemical abnormalities such as hyperglycaemia and the formation of neoplasms.  

However, the effects of PCB are dependent on the congener that the organism has been exposed to. 

In vitro studies in mammalian cells have shown that Aroclor is not genotoxic in human cells therefore 

toxicity is unique to marine and freshwater organisms. This finding resulted in the termination of the 

use of Aroclor in the 1970s (Farrell, 2014). 

 

 

 

 

 

 

 

 

 



Figure 7. Chemical structure of Aroclor (Fisher Scientific, 2021).  

The second non-genotoxic agent used in this study was D-mannitol. D-mannitol is an osmotic 

diuretic that naturally occurs as a sugar alcohol in fruits and vegetables. The main function of D-

mannitol is to increase the blood plasma osmolality which increases the flow of water from the 

tissues into the interstitial fluid and blood plasma. This can therefore alleviate oedema in organs 

such as the lungs and the brain and it can induce diuresis to prevent the progression of kidney 

failure. Additional applications of D-mannitol are firstly to promote urinary excretion of toxicants 

and secondly enhance water flow from the eye to ease pressure in the eye which can help in the 

treatment of glaucoma. Thirdly, D-mannitol can establish an osmotic gradient in the epithelium of 

the trachea and bronchi which can push fluid into the extracellular matrix and can ease mucus 

clearance in cystic fibrosis patients. Finally, D-mannitol can be used as a diagnostic aide by 

measuring glomerular filtration rate through inducing urinary excretion of toxicants (Cruz et al., 2001).  

Figure 8. Chemical structure of D-mannitol (MedChemExpress, 2021).  

Further data analysed in this project was from TK6 cells treated with quinoxaline. Quinoxaline is a 

heterocyclic compound which is composed of a benzene ring and a pyrazine ring. When the nitrogen 

atoms of the pyrazine ring are oxidised, quinoxaline 1,4-di-N-oxide (QdNO) are produced which 

manifest multiple beneficial biological properties including antitumoral, antibacterial, antifungal, 

antiprotozoal and anti-inflammatory properties, hence there is potential to use them in human 

medicines. For example, the use of QdNOs has shown promising effects in the treatment of 

antibiotic-resistant tuberculosis. QdNOs are induced to exhibit these antimicrobial properties in 

hypoxic conditions. In hypoxic conditions (absence of oxygen), QdNOs receive an electron and 

hydrogen ion, thus they form a radical which then goes on to induce DNA damage (Cheng et al., 2016).  

Figure 9. Chemical structure of Quinoxaline (Merck, 2021).  

 

 

 



1.5 Nuclear Stains 

When visualising cells using either manual microscopy through light microscopy, or automated 

microscopy through imaging flow cytometry, it is important to use nuclear stains on the sample of 

cells in order to aide visualisation of the nuclear DNA material. This is very important for scoring 

micronuclei in genotoxic tests as they are essential for distinguishing between micronuclei, main 

nuclei and cellular debris.  

The first nuclear stain routinely used is Deep Red Anthraquinone 5 (DRAQ5) which is a fluorescent 

dye that stains nucleic acids. This stain allows images to be viewed in both the brightfield and 

nuclear fluorescence channels of a tiff file originally from the IDEAS software. The stain also causes a 

red fluorescence to be emitted when visualising the cells. DRAQ5 is also optimally excited at 568nm, 

633nm and 647nm as shown by the black line on the emission and excitation spectrum below 
(Biolegend, 2021).  

Figure 10. Emission and excitation spectra of DRAQ5 (Biostatus, 2021).  

The second nuclear stain commonly used in genotoxicity testing is Hoechst 33342 which similarly to 

DRAQ5 can stain nucleic acids in live or fixed cells. Hoechst 33342 is particularly advantageous for 

the in vitro MN assay because it has a high affinity for double stranded DNA, therefore it can clearly 

label double stranded DNA and hence the nuclei and micronuclei it is located in. This also avoids 

staining of RNA molecules so this limits the staining of other cytoplasmic organelles such as 

ribosomes. When there has been stain-DNA binding, a blue fluorescence is emitted. Hoechst 33342 

is optimally excited at 350nm and 461nm (ThermoFisher Scientific, 2021).  



 Figure 11. Excitation spectrum of Hoechst 33342 (Bio-Rad, 2021).  

 

1.6 TK6 Cells 

Human lymphoblast, thymidine kinase heterozygote is more commonly known as the TK6 cell line 

which was originally isolated from the lymphoblastoid cell line called HH4. The TK6 cell line is a 

frequently used cell line for genetic toxicology testing because they have a relatively rapid mitotic 

division rate, and they are morphologically larger than primary lymphocytes. It is advantageous that 

they are larger in size because more laboratory tests can be carried out at a decreased magnification 

therefore procedures involving TK6 cells are more reproducible, accessible and cost effective. TK6 

cells are also cultured in suspension rather than as a monolayer which makes them an easier cell line 

to culture as they do not have to be treated with trypsin before subculturing. This therefore prolongs 

the viability of the cells in vitro. In addition, TK6 cells do not produce a high concentration of CYP 

enzymes, therefore TK6 cells tend to be treated with chemicals and compounds that do not require 

metabolic activation (Rees et al., 2017). If metabolic activation is required for test chemicals, other 

lymphoblastic cell lines such as AHH-1, which produce lots of CYP1A1, and MCL-5 which express 

other CYP enzymes such as CYP1A2, CYP2A6, CYP3A4 and CYP2A1 in a plasmid (Aranda et al., 2014).  

1.7 Progression of Automating the in vitro MN Assay 

 

Manual scoring of MN is the gold standard method of determining the dose response of test 

chemicals and compounds, however, it is a laborious and time-consuming process, as well as being 

scorer subjective, therefore, to keep up with the demand for genotoxicity testing, automation of MN 

assay is required. There are two elements of the assay that can be automated: the imaging of the 

exposed and treated cells, and secondly the scoring of those cells. Table 1 below presents the 

protocols and equipment that have been developed to automate the in vitro MN assay, as well as 

the advantages and disadvantages of these developments. 

 

For the traditional scoring methods, the treated cells are stained then viewed under light or 

fluorescent microscopes. In order for cell analysis to be fair and accurate across all the test 

chemicals, multiple scoring measures have been implemented and approved by regulatory bodies. 

Firstly, when analysing binucleated cells, at least 1000 cells are required to be scored for the MN 

count to be valid. For mononucleated cells, this figure increases to 2000. Another implemented 

measure is that MN are required to be between a third and sixteenth the diameter of the main 

nucleus, and it should have a circular or ovular shape (Seager et al., 2014). 

 

To increase the throughput of the assay in comparison to manual microscopy in traditional methods, 

automated microscopy methods have been developed. In automated microscopy, the measures 

mentioned above are automatically checked for therefore, the process is less laborious and scorer 

subjective. Metafer™ is an automated microscopy system that has been compared to manual 

microscopy and flow cytometry procedures as shown in table 1 (Verma et al., 2016). Metafer™ is a 

semi-automated system where the cells are first stained with a fluorescent dye to increase the ease 

and speed of scoring MN. The stained cells are then loaded for scanning and images are taken at a 

10x objective. The images are then checked at with a 100x objective lens using the graticule in the 

display view. When this method was compared to the gold standard manual microscopy, the results 

were parallel, showing that this is a reliable method. Metafer™ also allows results to be stored for 



further evaluation as well as for dose response calculations. This means that comparisons can be 

made between scorers which improves the reliability and validity of the results (Verma et al., 2016).  

On the other hand, there are disadvantages to this semi-automated method. Firstly, it is difficult to 

change the settings for checking the validity of the cells of different cell lines. For example, human 

lymphoblastic TK6 cells are a different size to HepG2 cells so the parameters would need to be 

altered. It is also difficult for the system to differentiate MN from the parent nuclei when they are 

overlapping. Finally, due to the use of nuclear fluorescent staining, there is reduced cytoplasmic 

staining therefore it is difficult to determine the cytotoxic effects of a test chemical, for example it is 

hard to determine if the cells are apoptotic. Therefore, due to these disadvantages, there is still a 

need to manually validate the images which significantly increases the time taken to score the 

images and reduces the automation properties of the system. Changing the parameters for each cell 

line can cause an underestimation of the MN frequency because unique morphologies for each cell 

line may not be identified and large MN may be misclassified as parent nuclei.  

 

 

Following the development of automated microscopy methods, the natural next step was the 

development of a system to automate the scoring of MN as this was still causing a bottleneck in the 

use of the MN assay. This led to the introduction of the Microflow® which is a flow cytometric 

approach and aims to increase the throughput of the assay. The use of nuclear stains such as 

ethidium monoazide (EMA) allows apoptotic and necrotic bodies to be distinguished from MN which 

greatly improves the reliability and accuracy of the results and overcomes a significant challenge in 

manual microscopy methods. Flow cytometry also greatly decreases the scoring time, with 10,000 

cells being scored in 1 – 2 minutes which is a very significant advantage to the scoring process and 

overcomes the bottleneck. This also makes the assay less laborious and scorer subjective (Verma et 

al., 2016). 

 

On the contrary, unlike the Metafer™ system, the images cannot be stored for further evaluation, 

therefore, the images cannot be checked and if false positive or false negative results are acquired, 

they cannot be re-validated. This is a considerable disadvantage to this technique because it 

decreases the confidence of the results. Another disadvantage is that before MN scoring can begin, 

the cells must be lysed, therefore it cannot be determined if cells are mono-, bi-, tri or tetra- 

nucleated. This can subsequently lead to over- or under-estimation of MN frequency which can 

decrease the reliability and accuracy of the results. Over or under estimation of MN can also occur 

because when the cells are lysed, excess debris can be incorporated into the images and can be 

misclassified as MN, or MN may not be correctly identified. Cell lysis also limits the ability to 

determine the mode of action (MOA) of a test chemical which can decrease the significance of the 

assay (Fenech, 2000).  

 

The next step in modernising and streamlining the MN assay was therefore to develop a system 

which does not require cell lysis, and combines automation of imaging and scoring, to form a fully  

 automated process. The result of this was the imaging flow cytometer called Flowsight®, produced 

by Amnis, EMD Millipore. This machine functions as flow cytometer however, an image of each 

individual cell is taken, therefore the researcher is able to analyse each cell if extra checking or 

confirmation is required for example due to the occurrence of false positive or false negative results. 

The Flowsight® can also produce images with 20x magnification, which is double that that of manual 

microscopy. Amnis have also developed an ImageStream X Mark II® which can capture images at 40x 

magnification which makes it more powerful than the Flowsight® and it still has the advantages of 

the Flowsight®. This increased magnification means the system can be applied to smaller cell lines 



such as T and B lymphocytes which would not be able to be visualised on the previous systems 
(Rodrigues, 2018).  

 

A further advantage to the ImageStream X Mark II® is that scoring does not take place on the 

microscope, it takes place on a computer programme called IDEAS®. Scoring on a computer 

programme is less strenuous for the scorer which means scoring is likely to be more consistent and 

improves the reliability of the results. IDEAS® also has multiple functions which improve the 

accuracy of scoring. Firstly, the images can be viewed in 12 channels therefore, a wider variety of 

stains and biomarkers can be used to aid MN classification. Also, IDEAS® includes the use of masks 

and templates which allow the scorer to define parameters for MN identification so confusing MN 

events can be checked. Finally, images are taken in three channels, brightfield, darkfield and nuclear 

fluorescence. The brightfield channel allows the cell to be viewed on a cytoplasmic level therefore, it 

is easier for the scorer to distinguish the cytotoxicity of the test chemicals, and the MOA of the 

chemical can be determined as the researcher is able to identify if the cells are mono-, bi-, tri- or 

tetra- nucleated, or even apoptotic or necrotic.  

 

However, as with the previous systems, there are disadvantages to the Flowsight® and the 

ImageStream X Mark II®. The cells must still be manually scored which is still laborious for the scorer. 

Also, these machines are very expensive, therefore it is not accessible for all laboratories, which 

limits its use for the in vitro MN assay so does not necessarily overcome the bottleneck in 

throughput (Rodrigues, 2018).  

 

 

 

 

 

 

 

 



 

Table 1. Summary of the advantages and disadvantages of manual, Metafer™ and Microflow® approaches to 

the in vitro MN assay (Verma et al., 2016). 

 

 

 

 

 

 

 

MN Scoring Approach Scoring Platform Advantages Disadvantages 

Image Analysis Manual (light) 
microscopy 

Suitable for dose 
response and MOA 
analysis. 

Inter-scorer variations 
can lead to subjective 
MN scoring. 

Simple, economical, 
and adaptable. 

Slow, tedious, and 
time-consuming. 

Can be used in the 
presence and absence 
of cyto-B. 

Not able to carry out 
multiplex assays. 

Stained slides can be 
stored for a long time 
and re-analysed if 
needed. 

Limits the number of 
cells that can be 
scored, therefore 
reduces statistical 
precision. Suitable for analysing 

bi-, tri- and tetra 
nucleated cells. 

Metafer™ (fluorescent 
microscopy) 

Semi-automated. Classification settings 
for MN must be 
optimised for different 
cell lines and test 
chemicals. 

Allows for higher 
content input and 
therefore higher 
statistical precision. 

Unable to stain the 
cytoplasm so it 
becomes difficult to 
detect small MN. 

Suitable for dose 
response and MOA 
analysis. 

Images from the 
microscope can be 
stored for re-
validation if needed. 

Flow Cytometry Microflow® Fully automated to 
score MN. 

Requires cell lysis 
prior to MN scoring. 

Suitable for dose 
response and MOA 
analysis. 

Misleading MN cannot 
be re-validated from 
the same sample. 

Allows for higher 
content input and 
therefore higher 
throughput. 

Can over- and 
underestimate MN to 
expert analysis is 
required.  

10,000 events can be 
scored in 1-2 minutes. 

Reduced MOA analysis 
with TK6 cells.  

Capable of analysing 
the cell cycle. 



1.8 Deep Learning Convolutional Neural Networks 

 

Therefore, to fully utilise the advantages of the imaging flow cytometry approaches, full automation 

of the scoring process needs to be achieved. Therefore, the next and current step in the progression 

of the automation of the in vitro MN assay is to develop a deep learning convolutional neural 

network which applies machine learning and artificial intelligence so a network coded in MATLAB 

and Python programmes, can be trained to identify micronuclei in images taken from the imaging 

flow cytometry.   

Application of machine learning can be achieved by using the guidelines identified that MN need to 

be between a third and sixteenth of the diameter of the parent nuclei, and that they exist as a 

circular or ovular shape. These guidelines can be used to train a network to classify MN and 

furthermore, dose response calculations can be conducted. 

 

The deep learning convolutional neural network mimics the mechanism of neurons in the brain. The 

neurons link together in order to form connections, and similarly the neural network is composed of 

multiple layers which communicate with each other by passing on their predictions to the 

subsequent layer. Therefore, the more layers incorporated into the neural network, the more 

communications can be made, hence the better the integrity and performance of the network 
(Emmert-Streib et al., 2020).  

 

In the same way as we learn to identify different objects by being taught what they are, a neural 

network learns in the same way. Therefore, a neural network is trained on a ‘ground truth’ set of 

images. When a network is trained on a greater number of images, the accuracy of its performance 

will be increased as its been taught on a wider repertoire of images. The ground truth’ acts as a bank 

of images on which the algorithm can make decisions on unseen images. The network is trained on 

images called the ‘training data’ and then it is validated and tested using ‘validating data’ in which 

the phenotype is known. A confusion matrix is then produced by the algorithm, which shows how 

accurate the network was, by comparing its classification with the manual classifications. It is 

essential that the training and validating data are not mixed because the network’s reliability will be 

decreased because the network may have not been validated and checked on new images (Beale et 

al., 2020).  

 

For the deep learning convolutional neural network to be utilised to the maximum potential, it 

needs to be trained on a wide variety of cellular phenotypes so that as many different classifications 

of images can be correctly recognized by the network. These cellular phenotypes the neural network 

is trained on are mononucleates with and without MN, binucleates with and without MN, 

trinucleates with or without MN and tetra nucleates with and without MN. Therefore, images of 

cells with these phenotypes are incorporated with significant frequency in the ground truth set of 

images. This allows a dose response to be calculated. When the deep learning convolutional neural 

network has been trained to the optimum level and it is shown to produce results parallel to those 

of manual scoring, it is predicted that the algorithm can be used across multiple laboratories to score 

cells automatically, without the need for manual scoring. There is also potential for the network to 

be applied to multiplex labels such as H2ax, p53 and H3 to further increase the likelihood of 

classifying MN events. Therefore, this will significantly increase the throughput, the accuracy and 

reliability of the assay.  

However, the main limitation of this approach is that the algorithm is trained on images that have 

been scored manually and is therefore subjected to interscorer subjectivity. Therefore, the accuracy 



of the network is limited to the accuracy of human scoring (Beale et al., 2020). MATLAB is a computer 

tool that can be used for running code in order to produce algorithms for artificial intelligence, 

machine learning and deep learning purposes. MATLAB does not require the use of a coding 

language as all code is written in English. This therefore makes MATLAB more accessible for multiple 

users whatever their previous experience of coding is. 

 

MATLAB comes with different toolboxes, including both machine learning and deep learning 

toolboxes, which aide the user.  The deep learning toolbox has a variety of sections that can help the 

user with many aspects of deep learning. The one of focus for this project is training a deep learning 

network to classify new images. To achieve this, the deep learning network uses a pretrained 

network. This pretrained network is trained on millions of images which can be classified into 

categories. Therefore, the pretrained network holds huge amounts of data with rich representations 

for each category of images. Each of these images act as an input then the network outputs a label 

for the image as well as probabilities for each category. A commonly used technique for deep 

learning is transfer learning, where the pretrained network is used as a starting point to learn new 

tasks, then fine-tuning is carried out of the deep learning network to increase its accuracy and 

specificity. This saves the users time and convenience as they do not have to create a new algorithm, 

they can just update the pre-existing network (Beale et al., 2020). 

 

 
 

 

 

 

 

 

 

 

 

Figure 12. Flow diagram to illustrate transfer learning using a pretrained network (Beale et al., 2020).  



The data that is loaded into the deep learning network must be split into training and validation data 

sets. A common adopted method undertaken to ensure training and validation data do not overlap 

is to use a 3:1 ratio of training images to validation images. This ratio provides a good balance for 

having enough images for each function. Figure 13 shows the code that is used in MATLAB 

programming to load a pretrained network which is then applied to the validation data set to 

improve the specificity and thus performance of the neural network (Beale et al., 2020).  

 

% load previously trained network 

load('previously trained network') 

  
%% get tester imagesfiles 
imageFolder_Validate ='Validation data’ 

  
% set up datastore 
% 2 channel 
imdsValidation = imageDatastore(imageFolder_Validate, 'LabelSource', 'foldernames', 

'IncludeSubfolders',true,'FileExtensions','.tif','ReadFcn',@two_channel_tiff_reader

); 

  
% print out table 
tbl_validation = countEachLabel(imdsValidation) 

  
% set image size based on trained network 
inputSize = trainedNet.Layers(1).InputSize; 

 
 
Figure 13. MATLAB programming code used to load a pretrained network which is subsequently applied to 
validation data sets. 

 

MATLAB programming requires the use of special characters to produce a functioning script. Firstly, 

the percent sign (%) is used to add comments into the code as this text is non-executable. In figure 

12, the % has been used to annotate the code to inform the user that a previously trained network 

must be loaded. Additionally, the double percent sign (%%) is used to begin a new section of the 

code, so any text after %% denotes the section title. The equal sign (=) is used to assign data to a 

named variable. In figure 12, the folder of validation data that is uploaded to the script will be 

assigned to the variable of ‘imageFolder_Validate’.  The at symbol (@) is used to indicate a class 

folder name. In this deep learning network, a class has been scripted called ‘two channel tiff reader’ 

which allows the network to read and therefore be trained on the two channel tiff files that are 

inputted from the imaging flow cytometer. Then in figure 12, a line of code is used to assign the 

variable ‘imdsValidation’ to a combination of data files, one of which is the class folder ‘two-channel 

tiff reader’. Additional characters commonly used in MATLAB programming are a semicolon to 

signify the end of a row, a colon to separate elements and commands of an array and parentheses 

are used to enclose the data to be used in variable assignment or functions (MATLAB Operators and 

Special Characters, 2022). 

The deep learning network is composed of layers and the first layer is known as the image input 

layer. This first layer denotes the properties of the images being processed. Once the images have 

been loaded, they go through each layer and connections are made between each layer, similar to 

the mode of action of neurones in the central nervous system. The following layers that make up the 

largest proportion of the convolutional deep learning network are pooling, rectified linear units and 

repeating convolutional layers. The function of these layers is to build greater connections between 



the layers to aide network training, and to confirm the weighting of filters. For example, rarer MN 

phenotypes such as binucleates, trinucleates and tetranucleates with MN can be given a greater 

weighting to accommodate for the lower number of images in the training data set with these 

phenotypes. 

Another function of MATLAB is normalising the sizes of the images in the data set. Data 

augmentation allows all the training images to be equally resized. Additionally, training images can 

be randomly flipped along the vertical axis and randomly translated up 30 pixels. This process helps 

to prevent the network from becoming over-trained. Over-training should be avoided because the 

network may start to score images incorrectly due to small differences. For example, if an image 

contains a MN that is micrometers different in size, the network may not correctly identify the MN. 

Figure 14 includes the code used in MATLAB to carry out image normalisation. 

 

%% Augment the validation set if needed 
pixelRange = [-5 5]; 

imageAugmenter = imageDataAugmenter( ... 
'RandRotation',[0 360], ... 
'RandXReflection',true, ... 
'RandYReflection',true, ... 

'RandXTranslation',pixelRange, ... 
'RandYTranslation',pixelRange); 

 

 
Figure 14. MATLAB programming code used to normalise the sizes of images in training and validation data 
sets. 

 
The validation images can also be resized automatically by specifying this line of code: 
 

augimdsValidation = augmentedImageDatastore(inputSize,imdsValidation); 

Figure 15. MATLAB programming code used to automatically resize images in the training and validation data 

sets. 

 

It is essential to set parameters for the training of a deep learning algorithm to improve the accuracy 

of the network. When deep learning network training begins, the error rate is high, and the accuracy 

is low because the network has been trained on very few images, so it has less opportunity to learn 

and make a prediction on new images. However, as training progresses, the accuracy increases and 

subsequently the error rate decreases. Low accuracy may either be due to the training data or the 

network itself. If the issue is with the training data, this may be because the images are of low 

quality, therefore the network can not be trained properly. The user can tell if the low accuracy is 

due to the training data through analysing the confusion matrix output. The confusion matrix 

displays the performance of the algorithm by calculating the accuracy for each phenotype being 

classified, therefore it clearly shows if there is phenotype category that requires further 

optimisation. On the other hand, low accuracy may be occurring due to an issue with the network 

itself. This may be caused by too many pooling layers in the main body of the deep learning network, 

which can in turn lead to over-training of the network.  The first parameter to avoid low accuracy is 

the number of epochs. An epoch is a full training cycle of the entire data set of images. Again, to 

avoid over-training, the correct balance of epochs needs to be found, so that a high enough accuracy 

can be obtained, without over-training and increasing the error rate. The second parameter is the 

batch size. This is defined as the number of samples from the data set that will be inputted into the 

network at a time. In other words, epochs are split into batches in order for the network to go 



through the data set in an organised manner. For example, if a data set contains 2000 images and 

the batch size is set to 100 images, the network will have to go through 20 iterations to complete an 

epoch and train the network. A smaller batch size is advantageous because less computational 

power is required, and the speed of training is faster. However, smaller batch sizes can cause lower 

accuracy because each training sample has less images therefore there is less opportunity for the 

network to correctly classify images.  Overall, a balance needs to be found between computational 

power, time and accuracy (Beale et al., 2020). 

In the context of the in vitro MN assay, including the CBMN assay, deep learning convolutional 

neural networks have recently been applied to imaging flow cytometry data using ‘Amnis Artificial 

Intelligence’ software in order to identify micro-nucleated binucleated (MNBN) cells in a 3D 

reconstructed skin MN assay (Allemang et al., 2021). When the MNBN cells imaged on the imaging 

flow cytometer were visually scored, their frequency was parallel with manual scoring which gave 

strong evidence that imaging flow cytometry and Amnis AI could be combined to successfully 

improve the throughput and robustness of the 3D reconstructed skin MN assay (Allemang et al., 2021). 

An additional progression in the automation of the in vitro MN assay which has great clinical 

significance is the creation of an open framework that allows multiple laboratories to access the 

same deep learning network, switch the parameters for the requirements of the specific laboratory 

such as the calibration of the imaging flow cytometry and the nuclear stain used. This will improve 

the accessibility, reproducibility and accuracy of the deep learning algorithm. A study carried out in 

2021 assessed the ability of deep learning algorithms to be used for MN scoring across different 

laboratories (Wills et al., 2021). 

This masters by research project aimed to continue the optimisation of the deep learning 

convolutional neural network and apply it to imaging flow cytometry data from multiple laboratories 

including Newcastle, Swansea and Aberystwyth universities. The initial optimisation of the neural 

network was carried out using data from Newcastle university which was composed of TK6 cells 

cultured in vitro and treated with the six different chemicals addressed earlier.  

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Materials and Methods 

2.1 Image Collection 

Image data from the Amnis ImageStream X Mark II® imaging flow cytometers were collected from 

three different laboratories: Faculty of Medical Sciences of Newcastle University, Institute of 

Biological, Environmental and Rural Sciences (IBERS) of Aberystwyth University and Swansea 

University Medical School. 

2.2 Chemicals 

The following six compounds were purchased from Sigma Aldrich (Merck). Carbendazim (CAS 

registry number 10605-21-7) (working concentrations: 0.0, 0.4, 0.8, 1.0 and 1.6 µg/mL), vinblastine 

(CAS no. 143-67-9) (working concentrations: 0.0, 0.0002, 0.0004, 0.0006, 0.0008, 0.001 and 0.002 

µg/mL), methyl methanosulphate (MMS) (CAS no. 66-27-3) (working concentrations: 0.0, 1.25, 2.5 

and 5.0 µg/mL), benzo(a)pyrene (CAS no. 50-32-8) (working concentrations: 0.0, 2.0, 2.5 and 3.0 

µg/mL), Aroclor (working concentrations: 0.0, 0.0004, 0.0006, 0.0008, 0.001, 0.002 and 0.004 

µg/mL), D-mannitol (CAS no. 69-65-8) (working concentrations: 0.0, 500, 1000, 1500 and 2000 

µg/mL) and quinoxaline (CAS no. 49-48-9)(working concentrations: 0.0, 0.5, 2.0 and 4.0 µg/mL), 

purchased from Fluorochem.  

2.3 Cell Culture 

TK6 cells purchased from the Health Protection Agency Culture Collections were cultured in RPMI 

1640 media (#A1049101, ThermoFisher), supplemented with 100 U/mL penicillin, 100 µg/mL 

streptomycin and 10% heat inactivated horse serum (#2605008, ThermoFisher). The cells were 

seeded at a density of 2 x 105 cells/mL in 25cm3 culture flasks. The cultured cells were then 

incubated at 37 °C and 5% CO2 for approximately 1.5 cell cycles (24-30 hours). Samples of cells were 

exposed and treated with the chemicals and half of the samples were also treated with 3 µg/mL 

cytochalasin B (#C6762, Sigma Aldrich). Following cell culture and treatment, the cells were pelleted 

and washed with phosphate buffered saline (PBS), then resuspended in FACS lysing solution 

(#349202, BD) for 12 minutes so the cells became permeabilised.  

2.4 Nuclear Staining 

The permeabilised cells were then incubated with 0.05 mM DRAQ5 (#564902) in PBS at room 

temperature for 30 minutes. The cells were then pelleted, resuspended and diluted in PBS to an 

optimal concentration for imaging flow cytometry which is approximately 100 µL volumes with 1 x 

107 cells/mL. 

2.5 Imaging Flow Cytometry  

Brightfield and nuclear fluorescence images were collected using the ImageStream X Mark II® with 

an x40 objective lens. The DRAQ5 stained cells were excited using 488nm laser and the brightfield 

images were collected in channel 1 and nuclear fluorescence images in channel 11.  

These processes of cell treatment, culture and image capture were performed on a previous project 

so that the current study could only focus on the optimisation of the deep learning algorithm.  

2.6 Compensated Image File (.cif) Formation in IDEAS 

Once the images were taken, the raw image files (.rif) were transformed into .cif files then data 

analysis files (.daf) in IDEAS® 6.2 software. A master template was created in IDEAS from masks and 



features in order to produce images of individual cells to make it easier to recognise the different 

cell phenotypes which in turn aides the creation of the ground truth data set.  

2.7 Cif to Tif Extraction 

The individual images of cell populations exported as .cif files were then converted to grayscale, 

three 8-bit channel tif files (composed of brightfield, nuclear fluorescence and darkfield channels). 

The three individual channels were (max-min) renormalised and cropped to 64x64 pixel squares 

which was the correct format for the tif files to be loaded into the DeepFlow convolutional neural 

network for incorporation into the ground truth data set and deep learning. The MATLAB script used 

for cif to tif extraction was downloaded from Wills et al., 2021.  

2.8 Automated Scoring and Image Classification by the Deep Learning Network 

Automated scoring and classification of the tif files was performed using the trained DeepFlow 

neural network. The deep neural network was previously trained on a ground truth image set 

representing a wide range of cell phenotypes that arose from TK6 cells treated with carbendazim 

and MMS.  The ground truth was created using imaging flow cytometry images from Cardiff and 

Cambridge universities (Wills et al, 2021). The methods of cell culture in Cardiff and Cambridge 

universities were identical to the methods described above, however Cambridge used Hoechst 

33342 nuclear staining, thus the stained cells were excited during imaging flow cytometry with 

405nm lasers and brightfield images were collected in channel 4 and nuclear fluorescence images in 

channel 1.  

To follow the guidelines for the in vitro MN assay, positive scores for MN were given to cells with 

fluorescently labelled MN that were circular or ovular in shape and were 1/3rd – 1/16th the size of the 

main nucleus. The experiment was also conducted in triplicate. When calculating the dose response 

for each compound, two thousand cells were scored.  

2.9 Percentage Confidence Assay of the Deep Learning Neural Network 

When the tif files were loaded into the trained deep learning neural network, a sample of 36 cell 

images were produced which the algorithm had scored as binucleated and BNMN and those images 

were then scored manually. The confidence level that the algorithm outputted was recorded and it 

was determined at what confidence the algorithm had given a classification when the algorithm’s 

score matched the manual score using a light microscope.  

2.10 Dose Response Calculation of Unanalyzed Image Data 

Tif file images from the three locations were inputted into the trained DeepFlow convolutional 

neural network and the dose response for each compound was calculated using the following 

formula: (number of binucleated or mononucleated cells with MN/number of binucleated or 

mononucleated cells)/100 to determine the percentage frequency of MN in a sample. 

2.11 Statistical Significance of MN Dose Responses 

Assessment of the statistical significance of the MN dose response was conducted using the 

workflow detailed in (Johnson et al., 2014). The response data was log transformed and it was 

determined if the data was firstly normally distributed and homogeneously varied using the Shapiro-

Wilks and Bartletts tests, respectively. If the data was N=3 and passed these tests (p>0.05), the one-

sided Dunnett’s test was run to determine the statistical significance of the MN dose response 

compared to the control (significant if p<0.05). If the data was N=3 and failed the Shapiro-Wilks and 

or the Bartlett’s test, the one-sided Dunn’s test was run which is non-parametric (Johnson et al., 2014). 



When the data was only N=2, a different statistical test was used called the Fisher’s Exact which 

compares the dose responses of each increase in dose, with the control group in a two-way 

contingency table.  

 

2.12 Benchmark Dose Analysis 

To compare the MN dose responses of the compounds, benchmark dose (BMD) analysis was used. 

This was carried out using the online PROAST software and the data was analysed using two models 

called the Exponential and Hill models. The data was analysed using dose and MN frequency as the 

variables, then the chemical was used as a covariate parameter. The benchmark response (BMR) was 

set to 50% which represents a 50% increase in dose response when compared to the control. BMD 

here is expressed as a range using the lower (BMDL) and upper (BMDU) confidence limits. 

Determining the BMDL is clinically significant as it can be used to estimate an oral or dermal 

exposure level of the tested compound. BMDL is interpreted as a dose in which the genotoxic or 

cytotoxic effect is lower than the BMR hence considered lower risk in risk assessments. An additional 

criterion that can be used is the Akaike Information Criterion (AIC). The AIC is a method to determine 

if the models are a good fit to the data. AIC can also be used as an additional parameter to check if 

there is statistical evidence of a dose-related trend. For a model to show statistical evidence for a 

dose-related trend, the AIC should be lower than the null AIC – 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. Results  

3.1 Selection and Justification of the Percentage Confidence Cut-off Rule 

After the raw image files taken on the imaging flow cytometer from Newcastle University were 

processed into cif then tif files, the tif files were loaded into the pre-trained deep learning neural 

network to be automatically scored by the algorithm in MATLAB programming. The cell phenotypes 

that the network is trained to classify are mononucleates, binucleates, trinucleates and 

quadranucleates with and without MN events, as well as the additional ‘other or unscorable’ 

classification. When using the neural network on unseen images, it was essential that the algorithm 

was scoring the images correctly, even if that resulted in images being scored as other or unscorable 

as opposed to a specific phenotype. Therefore, it was important to investigate how accurate the 

algorithm was at scoring the phenotypes included in the dose response calculations for a test 

chemical; mononucleates and binucleates with and without MN events. The network outputted a 

sample of 36 images that it scored as either mononucleates or binucleates with or without MN, and 

it also outputted a percentage confidence level that it had in the classification. For this project, 

spreadsheets were produced to present when the algorithm was correct in its classification of 

binucleates and mononucleates, with and without MN, and at what percentage confidence level 

range the algorithm consistently correctly scored the images (Please see appendices 1 and 2). This 

study shows that at 70% confidence and above, the algorithm correctly classified the images. One 

exception was found in the sample of binucleates with MN, and seven exceptions were found in the 

sample of mononucleates with MN, however when viewing these images manually, it was found the 

images contained shadows which made the classification incorrect. However, the parameter of 70% 

confidence and above was well represented in the samples, therefore when dose response 

calculations were conducted later, only images that the algorithm had scored with 70% confidence 

and above were incorporated.  

To increase the transparency of these results shown in appendices 1 and 2, and thus ensure the 

results are reliable, reproducible and valid, a JPEG of each of the samples of 36 images for each 

dosage and repetition of each chemical were added to the spreadsheets. Therefore, if researchers 

would like to see how the percentage confidence cut-off was concluded to be 70%, they could check 

the images (please see appendices 3 – 8). A number of the JPEGs are included and presented in 

figures 16 and 17. Figure 16 consists of images of TK6 cells of the cyto-b and non cyto-b assays, 

treated with 1.6 μg/mL carbendazim that have been correctly and incorrectly scored by the neural 

network as binucleates and mononucleates with MN respectively. This figure demonstrates that the 

neural network correctly classified the cells with a confidence level of 70% and above. Figure 17 

gives an example of when the neural network incorrectly scored an image at the 70% confidence 

point. 





Figure 16. Images of TK6 cells treated with 1.6 μg/mL Carbendazim from the cyto-b (A-C) and non-cyto b (D-

F) assays.  

(A) TK6 cell that the neural network incorrectly scored as a binucleate with MN with a confidence level of 

57.5%. After manual scoring, this cell was classified as a mononucleate with MN.  

(B) TK6 cell that the neural network correctly scored as a binucleate with MN with a confidence level of 71.7%. 

(C) TK6 cell that the neural network correctly scored as a binucleate with MN with a confidence level of 92.2%. 

(D) TK6 cell that the neural network incorrectly scored as a mononucleate with MN with a confidence level of 

54.8%. After manual scoring, this cell was classified as a mononucleate with 2 micronuclei. 

(E) TK6 cell that the neural network correctly scored as a mononucleate with MN with a confidence level of 

76.7%. 

(F) TK6 cell that the neural network correctly scored as a mononucleate with MN, with a confidence level of 

95.7%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Images that the neural network incorrectly scored with a confidence level above 70% compared 

to images scored correctly.  

(A) TK6 cell of the cyto-b assay treated with 2.5 μg/mL benzo(a)pyrene, incorrectly scored as a binucleate with 

MN at a confidence level of 75.8%. After manual scoring this cell was classified as a mononucleate with 2 

micronuclei.  

(B) TK6 cell of the cyto-b assay treated with 2.5 μg/mL benzo(a)pyrene, correctly scored as a binucleate with 

MN at a confidence level of 89.2%.  

(C) TK6 cell of the non cyto-b assay treated with 1000 μg/mL D-mannitol, incorrectly scored as a mononucleate 

with MN at a confidence level of 79.7%. After manual scoring this cell was classified as a binucleate with MN. 

(D) TK6 cell of the non cyto-b assay treated with 1000 μg/mL D-mannitol, correctly scored as a mononucleate 

with MN at a confidence level of 92.1%.  
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3.2 Dose Response Data from collaboration with Newcastle University 

3.2.1 Demonstration that the neural network produces valid dose response data.  

Since determining the accuracy of the pretrained deep learning neural network, the algorithm could 

be used to calculate the dose response of aneugenic, clastogenic and non-genotoxic chemicals from 

images collected from multiple laboratories.  

Firstly, Fig. 18  demonstrate the aneugenic effect of carbendazim. he control has a mean MN 

frequency of 0.351% for binucleates with MN and 0.499% for mononucleates. Then as the dose 

increases to 1.6 µg/mL, the mean MN frequency increases for binucleates to 1.198% and for 

mononucleates the MN frequency increases to 1.784%. Since the collected data was N=2, the non-

parametric Fisher’s Exact test could be applied for statistical analysis. The increase in MN frequency 

from 0.8 – 1.6 µg/mL was found to be statistically significant in both the binucleate and 

mononucleate experiments (p<0.0001).  

 

 

 

Figure 18. Comparison of mean MN dose response of the cyto-b and non-cyto b MN assay of carbendazim 

treated TK6 cells. N=2,.  * p<0.05 using Fisher’s Exact. 

Secondly, Fig.19 shows the aneugenic effect of vinblastine. The control has a mean MN frequency of 

0.309% for binucleates with MN and 0.602% for mononucleates. Then as the dose increases to 0.002 

µg/mL, the mean MN frequency increases a small amount for binucleates to 0.361% and for 

mononucleates the MN frequency increases more greatly to 1.134%. The Shapiro-Wilks test showed 

that the mononucleates MN dose response data was normally distributed, however the Bartlett’s 

test showed that the variants through the dose range were not homogeneous, therefore a non-

parametric one-sided Dunn’s test was applied since N=3. The increase in MN frequency was not 

statistically significant. On the other hand, for the cyto-b experiment, the data (N=3) passed both the 

Shapiro-Wilks and the Bartlett’s tests, so the one-sided Dunnett’s test was used. The binucleated 

MN dose response data was not found to be statistically significant (p>0.05). 

* 



0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6

M
ea

n
 D

o
se

 R
es

p
o

n
se

 (
%

)

Dosage (μg/mL)

Methyl Methanosulphate (MMS) Dose Response as a 
Scatter Plot

Binucleate Experiment

Mononucleate
Experiment

Linear (Binucleate
Experiment)

Linear (Mononucleate
Experiment)

Figure 19. Comparison of MN dose response of the cyto-b and non-cyto b MN assay of vinblastine treated TK6 

cells. N=3, mean = +/- standard deviation. 

Fig. 20 validates the clastogenic effect of MMS. The graph shows a bell-shaped curve where the MN 

frequency increases then decreases again. The control has a mean MN frequency of 0.337% for 

binucleates with MN and 0.776% for mononucleates. Then as the dose increases in the cyto-b 

experiment to 1.25 µg/mL, the mean MN frequency increases to 1.198% and as the dose increases 

again to 5.0 µg/mL, the mean MN frequency decreases again to 0.188%. On the other hand, for 

mononucleate experiment, as the dose increases to 2.5 µg/mL the MN frequency increases to 

1.221%, then when the dose increases further to 5.0 µg/mL, the mean MN frequency decreases to 

1.093%. Both the binucleate and mononucleate experiment data was N=2, therefore, the Fisher’s 

Exact test was used on the data. The increase in MN frequency from 1.25 – 5.0 µg/mL in the 

mononucleate experiment was found to be statistically significant (p<0.05). However, the dose 

response curve from the binucleate experiment was not found to be statistically significant (p>0.05).  
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Figure 20. Comparison of mean MN dose response of the cyto-b and non-cyto b MN assay of MMS treated TK6 

cells. N=2,.  * p<0.05 using Fisher’s Exact. 

Fourthly, Fig. 21 shows the clastogenic effect of benzo(a)pyrene. The control has a mean MN 

frequency of 0.721% for binucleates with MN and 2.666% for mononucleates with MN. In the 

mononucleate experiment, as the dose increases to 3.0 µg/mL, the mean MN frequency increases to 

4.934%. However, in the cyto-b experiment, the initial increase in dose to 2.0 µg/mL causes a 

decrease in MN frequency to 0.508%, then as the dose increases again to 3.0 µg/mL, the frequency 

of MN in binucleated cells increased to 0.721%. The N=3 data from the mononucleate experiment 

failed the Shapiro-Wilks test, showing that the data is not normally distributed, however it did pass 

the Bartlett’s test which means the individual MN frequencies in the dose range are comparable. 

Therefore, the non-parametric one-sided Dunn’s test was applied. The increase in MN frequency 

was not found to be statistically significant (p>0.05). However, the binucleated cell data (also N=3) 

passed the Shapiro-Wilks and Bartlett’s tests concluding it is normally distributed and 

homogeneously varied. The one-sided Dunnett’s test on the other hand showed the data was not 

statistically significant (p>0.05). 

Figure 21. Comparison of MN dose response of the cyto-b and non-cyto b MN assay of benzo(a)pyrene treated 

TK6 cells. N=3, mean = +/- standard deviation. 

 

Fig. 22 validates the non-genotoxic properties of Aroclor. The scatter plot below shows that there is 

no correlation between the dose of aroclor that the cultured TK6 cells were exposed to, and the 

percentage frequency of MN identified by the neural network.  
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The control has a mean MN frequency of 0.292% for binucleates with MN and 1.138% for 

mononucleates with MN. In the mononucleate experiment, as the dose increases to 0.0006 µg/mL, 

the mean MN frequency decreases to 0.396%. Then as the dose increases further to the top dose of 

0.004 µg/mL, the MN frequency of mononucleates with MN increased to 0.992%. On the other 

hand, in the cyto-b experiment, the frequency of MN remained moderately constant. As the dose 

increased to 0.004 µg/mL, the MN frequency slightly decreased to 0.187%. The mononucleate 

experiment data was N=2, therefore the non-parametric Fisher’s Exact test was conducted. This test 

showed that the dose response curve was statistically significant (p<0.0001) for the dose range 

0.0004 – 0.0006 µg/mL, and p<0.05 for the dose range 0.0008 – 0.004 µg/mL. The binucleate cell 

experiment data on the other hand was found to not be statistically significant, using the Fishers 

Exact test (p>0.05).  

 

Figure 22. Comparison of mean MN dose response of the cyto-b and non-cyto b MN assay of aroclor treated 

TK6 cells. N=2, * p<0.05 using Fisher’s Exact.  

 

Finally, Fig. 23 shows the non-genotoxicity of D-Mannitol. In a similar fashion to the results of 

Aroclor exposure, the scatter plot below shows no correlation between the dose of D-Mannitol and 

the percentage frequency of MN identified by the neural network. This is therefore evidence that D-

Mannitol has no genotoxic properties.  

The control has a mean MN frequency of 0.596% for binucleates with MN and 0.290% for 

mononucleates with MN. In the cyto-b experiment, there is a slight decrease in MN frequency as the 

dose increases. When the dose increases to 2000 µg/mL, the MN frequency in binucleated cells 

decreases to 0.520%. However, for the mononucleate experiment, a different pattern is exhibited. 

As the dose increases to 1000 µg/mL, the mean MN frequency in the mononucleated cell sample 

increases initially to 0.433%. Then when the dose increases to 2000 µg/mL, the MN frequency in 

mononucleated cells decreases again to 0.313% which is only an 0.023% increase from the control. 

Both experiment data sets were N=2 so the Fisher’s Exact test was conducted. In both experiments, 

the p values were greater than 0.05, therefore the results are not statistically significant.  
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Figure 23. Comparison of mean MN dose response of the cyto-b and non-cyto b MN assay of D-Mannitol 

treated TK6 cells. N=2,. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.2.2 Investigating Statistical Significance by Benchmark Dose Analysis 

The pairwise and two-way contingency statistical testing methods, using the Dunnett’s, Dunn’s and 

Fisher’s Exact tests did not show concordance in statistical significance. A common finding was that 

the tests did not show statistical significance for the dose response curves on the binucleate 

experiments but did show significance on the mononucleate experiments. Therefore, it was essential 

to carry out further statistical tests as alone these figures are not informative to draw conclusions 

regarding the project hypothesis.   

To better understand the applications of the calculated dose responses above to genotoxicology, the 

exponential and Hill models for assessment of continuous genotoxicity data using BMD were used to 

analyse the mononucleate and binucleate experiment data of Fig. 18 -23. Fig. 24 shows the BMD 

analysis of the six chemicals tested using the mononucleate (non cyto-b) experiment and the dotted 

lines show the prediction of the BMR at 50% to in turn estimate the BMD50. The AIC for the 

exponential model was 98.76 and for the Hill model the AIC was defined as 98.94. The following 

table outlines the predicted BMD50, BMDL50 and BMDU50 values for each chemical according to 

each model.  

 Table 2. BMD50, BMDL and BMDU values for compounds tested in Newcastle University. *Inf is abbreviation 

of infinity.   

COMPOUND FITTED MODEL BMD50 (µg/mL) BMDL50 (µg/mL) BMDU50 
(µg/mL) 

Aroclor Exponential 0.005 0.002 Infinity (Inf*) 

 Hill 0.006 0.002 Inf 

Benzo(a)pyrene Exponential 2.280 0.763 Inf 

 Hill 2.202 0.726 Inf 

Carbendazim Exponential 0.428 0.167 0.655 

 Hill 0.407 0.158 0.640 

D-Mannitol Exponential 8230.000 1400.000 Inf 

 Hill 8286.000 1330.000 Inf 

MMS Exponential 14.280 2.950 Inf 

 Hill 14.180 2.790 Inf 

Vinblastine Exponential  0.001 0.001 0.002 

 Hill 0.001 0.001 0.002 



Figure 24. Benchmark dose (BMD) analysis using Exponential (left panel) and Hill (right panel) models. The curves represent non-cyto b MN assay dose response data for all 

six compounds. Carbendazim (green), vinblastine (pink), MMS (light blue), benzo(a)pyrene (red), Aroclor (black), D-mannitol (dark blue). Both models use covariate 

dependent parameters. Horizontal and vertical dashed lines represent the benchmark response at 50% to calculate the BMD50.  



Fig. 25 shows the range of BMDL50 and BMDU50 from fig. 24 in a graphical form. When the dotted 

lines are further apart, this demonstrates that the data does not fit well with the exponential and Hill 

models and there is therefore a greater amount of variation within the data.  

Figure 25. BMD confidence intervals of the exponential and hill models of BMD analysis. Represents the range 

of upper and lower BMD50 values. 

 

  

 

 

 



3.3 Dose Response Data collected at Swansea University 

The second set of data the DeepFlow deep learning neural network was applied to was collected 

from the ImageStream X Mark II® at Swansea University Medical School. Images of the carbendazim 

and MMS treated TK6 cells were collected as raw image files and subsequently processed as per the 

method explained above. Fig. 36 is the mononucleated MN dose response of the aneugen, 

carbendazim. The control has a mean MN frequency of 0.386%. Then as the dose increases to 1.6 

µg/mL, the mean MN frequency increases to 2.881%. The Shapiro-Wilks and Bartletts tests showed 

that the MN dose response data was normally distributed and homogeneously varied so a one-sided 

parametric Dunnett’s test could be applied. The increase in MN frequency from 0.0 – 1.6 µg/mL was 

found to be statistically significant (p<0.05).  

 

Figure 26. MN dose response of the non-cyto b MN assay of Carbendazim treated TK6 cells. N=3, mean = +/- 

standard deviation. *p<0.05 using one-sided Dunnett’s test. 

Secondly, Fig. 27 is the mononucleated MN dose response of the clastogen, MMS. Similarly, to 

findings from Newcastle University, the dose response for MMS had a bell-shaped curve where the 

MN frequency initially increases, then decreases again at the top dose. The control has a mean MN 

frequency of 0.279%. Then as the dose increases to 2.5 µg/mL, the mean MN frequency increases to 

0.707%. As the dose increases further to 5.0 µg/mL, the mean MN frequency decreases again to 

0.555%. The data passed both the Shapiro-Wilks and Bartletts tests which showed that the MN dose 

response data was normally distributed and homogeneously varied so a one-sided parametric 

Dunnett’s test could be applied. The increase in MN frequency from 1.25 – 2.5 µg/mL was found to 

be statistically significant (p<0.05). However, the other dose response points within the dose range 

were not statistically significant (p>0.05). 
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Figure 27. MN dose response of the non-cyto b MN assay of MMS treated TK6 cells. N=2, mean = +/- standard 

deviation. *p<0.05 using one-sided Dunnett’s test. 

BMD analysis was then carried out which is presented in Fig. 28. The AIC for the exponential model 

was 17.52 and for the Hill model the AIC was defined as 17.56. The following table shows the 

estimation of the BMD50, BMDL50 and BMDU50 for the MN dose responses of each chemical. 

COMPOUND FITTED MODEL BMD50 (µg/mL) BMDL50 (µg/mL) BMDU50 
(µg/mL) 

Carbendazim Exponential 0.084 0.004 0.263 

 Hill 0.086 0.004 0.263 

MMS Exponential 1.437 0.210 6.980 

 Hill 1.453 0.213 6.980 
Table 3. BMD50, BMDL and BMDU values for compounds tested in Swansea University.  
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Figure 28. Benchmark dose (BMD) analysis using Exponential (left panel) and Hill (right panel) models. The curves represent non-cyto b MN assay dose response data for 

carbendazim (black) and MMS (red). Both models use covariate dependent parameters. Horizontal and vertical dashed lines represent the benchmark response at 50% to 

calculate the BMD50.



3.4 Dose Response Data from collaboration with Aberystwyth University 

The final set of data the DeepFlow deep learning neural network was applied to was images taken at 

Aberystwyth University. Fig. 29 is the mononucleated MN dose response of the non-genotoxic 

compound, quinoxaline. The data shows that the MN frequency does not deviate far from the 

control dose point which highlights that quinoxaline is non-genotoxic. The control has a mean MN 

frequency of 0.445%. Then as the dose increases to 0.5 µg/mL, the mean MN frequency increases to 

0.563%. As the dose further increases to the top dose of 4.0 µg/mL, the mean MN frequency 

decreases again to 0.397% which is 0.048% different from the control. The data failed both the 

Shapiro-Wilks and Bartletts tests hence showing that the MN dose response data was not normally 

distributed and the individual MN frequencies within the dose range were not comparable. 

Therefore, a one-sided non-parametric Dunn’s test was applied. The change in MN frequency within 

the dose range of quinoxaline was not found to be statistically significant (p>0.05).  

Figure 29. MN dose response of the non-cyto b MN assay of Quinoxaline treated TK6 cells. N=3, mean = +/- 

standard deviation. Relative Cell Growth (%RCG) is also displayed (Padalino et al., 2021). 
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BMD analysis was again carried out on the data and is presented in Fig. 30. The AIC for the exponential and Hill models was 18.22. However, due to the non-

genotoxic nature of quinoxaline and the wide variation within the data, the data did not fit at all to the exponential and Hill models, therefore no BMD50, 

BMDL50 and BMDU50 values could be estimated.   

Figure 30. Benchmark dose (BMD) analysis using Exponential (left panel) and Hill (right panel) models. The curves represent non-cyto b MN assay dose response data for 

quinoxaline. Both models use covariate dependent parameters. 



4. Discussion  

The in vitro MN assay is a globally used method used to quantify the DNA and chromosomal damage 

induced by test chemicals found in developing pharmaceuticals, cosmetics and agricultural products. 

The manual scoring method is both time-consuming and scorer-subjective, therefore this method 

that is heavily relied upon creates a bottleneck in the use of the assay. Therefore, it has been 

significant in this project to show that imaging flow cytometry coupled with deep learning image 

scoring can represent a reliable and accurate method for automating the in vitro MN assay.  

To successfully allow the progression of automating the in vitro MN assay using imaging flow 

cytometry and deep learning neural networks, it was firstly essential to assess how accurately the 

algorithm was performing. During this study, it was determined at what confidence level the 

algorithm assigned to correctly scored images. Appendices 1 and 2 show that for both binucleates 

and mononucleates with and without MN, when the algorithm was 70% confident and above, the 

images were consistently scored correctly. However, it is notable that there was one exception to 

this finding in the binucleated cells and seven exceptions in the mononucleated cell data, which are 

identified as being incorrectly scored at 70% confidence above. When an image is regarded as having 

been scored correctly, this means that the phenotype of the image can be coherently classified and 

the phenotypic classification that the algorithm assigned the image matches what the manual 

classification was. If the algorithm’s classification of an image does not match the classification given 

manually, the image is viewed again and if required, a more experienced scorer also views the 

image, and a conclusion is made if the algorithm has scored the image incorrectly or correctly. 

Manual visualisation of these images however showed that there were shadows and debris which 

interfere with the neural network’s training of MN identification. Therefore, this must be considered 

in future study and therefore an aim can be made to train the network to identify MN within images 

containing shadows and debris, through either defining more specific parameters for MN 

classification or by developing techniques to use multiplex labels to train an algorithm. This assay 

however has demonstrated that the trained neural network is correctly scoring MN events in sample 

images which validates its applicability to its routine use in genotoxicity testing of new compounds 

and chemicals.  

Once the accuracy of the pretrained deep learning neural network was determined, the algorithm 

was used to calculate dose responses of multiple compounds from different laboratories. It must be 

highlighted that the scored images used in the dose response calculation were only included if they 

were scored with 70% confidence and above. Figures 18 - 23 firstly show that the algorithm 

produced results that were parallel to the findings of the ECVAM guidelines from images tested in 

Newcastle, Swansea and Aberystwyth universities. This is significant for the prospects of this method 

being routinely used in genotoxicity testing. In 2008, ECVAM published a list of chemicals and 

compounds and the results of their genotoxic test. Compounds could either be labelled as genotoxic, 

non-genotoxic or as negative in vitro but have induced gene mutations in mouse lymphoma cells. 

This list of recommendations was published in order to reduce the abundance of misleading positive 

results (Kirkland et al., 2016). Therefore, it is significant that the network’s MN dose response curves 

and subsequent classification of the genotoxic or non-genotoxic nature of a compound agree with 

the ECVAM classifications because it shows that the neural network is  less likely to produce 

misleading positive results when unseen chemicals and compounds are tested with this technology.  

In addition to the results aligning with the ECVAM guidelines, it is also important for the negative 

control data to be compared to a historical negative control data set. The use of a historical negative 

control data set is significant because it helps to determine if the laboratory is competent to conduct 



the in vitro MN assay. The OECD have stated that in addition to evaluating the statistical significance 

of the dose response data, at least one of the dose response data points must fall outside of the 

range of the historical negative control data. The Health and Environmental Sciences Institute (HESI) 

Genetic Toxicology Technical Committee (GTTC) conducted a study in 2018 in which they collected 

dose response data from 13 laboratories using TK6 cells to perform the in vitro MN assay to produce 

a historical negative control database. The mean frequency of micro-nucleated cells in 1000 cells 

ranged from 3.2 – 13.8. This 4.31-fold difference does show that there was a high degree of variation 

but no laboratory in the study was found to be an outlier as no individual data sets had abnormally 

high variability. Therefore, this historical control database is valid and can be used to compare this 

project’s negative control data to. The negative control data collected from Newcastle and Swansea 

universities across the 6 tested compounds ranged from 6 – 16.7 micro-nucleated cells in 2000 cells. 

These results have a lower variance than the historical negative control database from the HESI 

GTTC, however, to improve the significance of this comparison, the number of replicates should be 

increased. (To generate the historical negative control database, one laboratory conducted an 

experiment with 795 replicates) (Lovell et al., 2018). Despite this, it is encouraging that the negative 

control data from this project can be compared to a historical negative control database as this gives 

significant confidence in the reliability and conformity of the neural network as an automated 

scoring method for the in vitro MN assay.      

The dose response curves of the seven compounds tested in this project, showed that all of the 

compounds apart from MMS showed either an increase or decrease in MN frequency as dose 

increased. However, interestingly, MMS exhibited a bell-shaped curve in data collected from 

Newcastle and Swansea Universities, where the MN frequency increased then decreased at the top 

dose. This leads to the suggestion that MMS in fact has cytotoxic properties as well as genotoxicity. 

Previous publications have shown that when cells from multiple cell lines such as 10T1 cells are 

exposed to MMS, the cells were no longer able to divide and form colonies in culture. There is 

evidence to suggest that MMS is an alkylating agent which specifically methylates cellular 

macromolecules which in turn leads to the production of nucleophiles. These nucleophiles then 

actively attack carbon atoms in the structures of cellular molecules, including plasma membrane 

proteins. Therefore, at the higher doses of MMS, there is increased nucleophilic damage to the 

plasma membranes of cells hence sending the cell into apoptosis and necrosis (Smith & Grisham, 

1983).  

In figures 18 -23 which were produced from images of compounds tested in Newcastle university, a 

common yet notable phenomenon found was that the percentage MN frequency in mononucleated 

cells was higher than that of binucleated cells. The only exception to this trend was the dose 

responses of D-mannitol.  

From the perspective of the mechanism of MN production, increased MN in mononucleated cells is 

unexpected. Cell division is necessary to produce MN once a chemical or compound has induced 

damage in the cells. The CBMN assay is very effective as it can detect clastogenic and aneugenic 

damage in cells that have previously divided. This is because cytochalasin B inhibits cytokinesis. 

However, the mononucleated assay can only detect MN in mononucleated cells which may not have 

gone through division since damage was induced (MNi). A reason why a lower frequency of 

micronucleated binucleated cells has been observed in this study is that there may have been a 

delay in the division of cells with damaged DNA. The regulation of the cell cycle is closely coupled 

with DNA repair mechanisms that are initiated in response to DNA damage, and most DNA repair 

mechanisms occur before the S phase (when DNA is replicated). Therefore, cells that contain DNA 

damage get arrested during G1 and G2 phases in order to provide time for the DNA to be repaired 



and to avoid mutations getting fixed into the daughter cells of mitosis. This division delay in cells 

containing damaged DNA therefore means that micronucleated binucleate cells appear at a later 

time in the culture, in comparison to non-damaged cells. This therefore suggests that it will be 

beneficial to harvest binucleated cells at a later time point to ensure that DNA-damaged cells have 

been able to complete cytokinesis before harvest and subsequent imaging. Therefore, in future 

experiments following on from this project, a preliminary study should firstly be conducted to 

determine when the frequency of MN plateaus in binucleated cells cultured with the different test 

compounds. After this, the CBMN assay can be run and the binucleated cells should be harvested for 

imaging at the time point of when the number of MN stops increasing and levels off. This ensures 

that all of the DNA-damaged cells have been able to complete nuclear division. (Kirsch-Volders & 

Fenech, 2001). 

On the other hand, seeing higher frequencies of MN scored in mononucleated cells is synergistic 

with the expected outcome from the perspective of training the deep learning neural network. For a 

network to be trained to identify mononucleated cells with MN, it must detect two circular bodies, 

with one being larger than the other by 1/3rd to 1/16th. However, for the neural network to correctly 

score binucleated cells with MN, it must detect three circular entities, with two being approximately 

the same size and one smaller. Therefore, this shows that there is a greater number of outcomes 

that can still lead to the same phenotype score of binucleates with MN. This means that there is 

more chance for the algorithm to become confused and mis-score these MN BN events.  

The underscoring of binucleated cells with MN is a significant limitation of the deep learning neural 

network as the frequency of MN in binucleated cells is an essential component of the dose response 

calculation. Therefore, work following on from this project should focus on the optimisation of the 

ground truth set of images to have a higher representation of binucleated with MN, including images 

that contain shadows and debris to try and prevent the algorithm from slipping up on images where 

the classification is less obvious. To optimise the ground truth, human scorers score a sample of 

images that the algorithm scored as ‘other or unscorable’ to determine whether the images 

classified as so, could instead be scored as an objective phenotype, this will therefore re-supplement 

the ground truth with images with a definite classification and this hence may aide the network in 

identifying binucleated cells with MN.  

Previous publications have shown that the magnification of the objective lens and the resulting 

depth of focus can influence the accuracy of imaging MN. The magnification used in this project was 

x40 which results in a 4 µm depth of focus. On the other hand, x60 magnification produces a depth 

of focus of 2.5 µm. Therefore, using x40 magnification can allow for MN to appear brighter than the 

main nuclei if the MN are located in a different depth of focus than the main nuclei. Since the MN 

appear brighter, they can be identified and thus score more coherently which increases the accuracy 

of the calculated dose response of a chemical or compound (Rodrigues, 2018). Consequently, even 

though x40 magnification is a slightly lower magnification, it can detect MN that were dimmer in the 

image, which may have been missed at x60 magnification with the shorter depth of focus.  

An additional result identified in this study was that the results from Swansea University’s data set 

had lower resolution, however the accuracy and precision of the results are significantly higher than 

the results from Newcastle and Aberystwyth universities. A factor contributing to this is the 

transport the samples underwent from Swansea to each of these two universities. The samples 

contain DNA and RNA therefore, if the samples were not packaged appropriately, gene expression 

may be repressed or induced. This can lead to subsequent DNA degradation which can thus cause 

abnormal behaviour in the cell. For example, in environments of elevated heat and stress, the 

Fas/FasL signalling pathway is upregulated which is a pro-apoptotic pathway (Bouchier-Hayes et al., 



2010). Therefore, the cells will undergo uncontrolled cell death leading to lots of debris 

extracellularly. If this has occurred to the cells being used for the ground truth data set, the images 

will not be clear so manual and automated scoring will be difficult, thus the data decreases in 

accuracy and precision.  To improve the accuracy and precision of ground truth images of cells that 

have travelled, DNA and RNA stabilizers such as EDTA can be added to the samples to reduce DNA 

and RNA degradation. Also, the samples should be in a controlled temperature environment. 

Previous studies have shown that a temperature of 4°C provides stability for cells being transported. 

Finally, once the cells have reached their destination, detection experiments of biomarkers should 

be performed. Expression of genes such as GAPDH and interleukin-8 (IL-8) can be tested as it is 

known in what conditions these genes are induced or repressed, therefore this can allude to 

whether other genes of interest could have been up or downregulated during transportation 
(Malentacchi et al., 2016).   

When dose responses were calculated for the data sets from each university, it was essential that 

statistical tests were carried out to check if the data was normally distributed and statistically 

significant in order to determine observed effect levels and benchmark responses. These statistical 

tests were conducted according to the protocol defined in (Johnson et al., 2014). If the data was N=3, 

found to be normally distributed and homogeneously varied, a Dunnett’s test was used which is 

equivalent to a one-sided ANOVA. The Dunnett’s test calculates variation between the samples with 

dose and control samples. Therefore, the data must be normally distributed to conduct this 

calculation.  On the other hand, when the data was N=2, the Fisher’s Exact test was used. The 

Fisher’s Exact test is as statistical test of independence which determines if the proportion of a 

variable you are testing is different depending on the value of the other variable (McDonald, 2009).  

Of the seven compounds tested across the three laboratories in this project, only the dose response 

from carbendazim in the cytochalasin-B (binucleates) experiment was found to be statistically 

significant and in the mononucleates experiments, the dose responses for Aroclor, carbendazim and 

MMS were found to be statistically significant.  

From these findings, it could be concluded that the lowest observed effect level (LOEL) for 

carbendazim is 0.8 µg/mL. This is because statistical significance in the Newcastle data was found in 

the dosed samples from 0.8 µg/mL upwards, and in the Swansea data, 0.8 µg/mL was the lowest 

dosed sample. However, since the 0.4 µg/mL dosed sample was not found to be significant in the 

Newcastle data, it could be determined that the no observed effect level (NOEL) was 0.4 µg/mL.  

It was common in the results to see that the data had a relatively high degree of variance from the 

mean. This was found particularly in the data from the binucleates experiments. This could be due to 

several reasons. Firstly, errors may have arisen during the cell treatment process in the laboratory in 

one of the experiment repetitions. For example, there may have been irregularities in the amount of 

time each sample was left exposed to the compound. Another reason for high variation in the results 

is under or over scoring of MN events by the deep learning neural network. This is likely to be the 

main contributor to variance because binucleated cells with MN are under-represented in the 

ground truth used to previously train the neural network. Therefore, the frequency of MN events 

that have been mis-scored is increased because the algorithm has had less training on this 

phenotype. This is a limitation of automating the in vitro MN assay because MN are less abundant 

than binucleated and mononucleated cells without MN, therefore, these categories will always be 

scored more accurately and abundantly. To overcome this limitation, technology is being developed 

to train a deep learning neural network on a synthetic ground truth where each category is manually 

drawn on computer software. This means that the neural network will no longer be trained on 

images taken on the imaging flow cytometer. Therefore, there can be equal representation of the 



cell phenotypes in the ground truth so there is less and eventually no bias when unseen images are 

scored using the neural network.   

However, a key concern for the application of deep learning neural networks to the in vitro MN 

assay, that still exists with a synthetic ground truth, is that they have a reputation as a ‘black box’. 

The ‘black box’ concept illustrates the lack of transparency and interpretability when deep learning 

neural networks transforms the input data into an output. For example, in this study, there is no 

quantifiable measure that can be analysed that explains how the algorithm classified an image with 

a particular phenotype. This therefore makes the algorithm very difficult to validate and optimise. 

Therefore, going forward, to make this method more robust, more work must be done to increase 

the transparency and interpretability of the neural network (Sheu, 2020). Developing the synthetic 

ground truth may help with this concern because the data that the algorithm is trained on will have 

decreased background noise, therefore the output that the algorithm predicts will be easier to 

interpret.  

Pairwise testing is a technique widely used by researchers to test their data for statistical significance 

and observable effect levels. It is also relatively easy to carry out using programs such as GraphPad 

Prism, SPSS and mutait.org. However, there are limitations to pairwise testing that reduce its power 

as a tool. Pairwise testing is based completely on the study design, space between doses and sample 

sizes. Therefore, for example when determining the LOEL doses, only the experimental doses can be 

used, and this is not representative of what the true LOEL is of a compound. Extrapolation of the 

assay’s results hence does not provide reliable data for assigning observable effect levels of a 

compound. Therefore, because of this, the LOEL value from the data set may not actually be a dose 

with no effect, and this can have serious implications when bringing the test chemical or compound 

into trials (OECD, 2010). 

Due to these limitations to pairwise testing, it is advantageous to carry out additional statistical tests 

to provide a further in-depth analysis of the continuous data. An alternative approach is the 

benchmark dose analysis (BMD) approach which is widely accepted as a test used to determine 

benchmark responses (BMR) and PoD’s. A factor that separates BMD from pairwise testing is that it 

uses confidence levels. Therefore, finding out degrees of confidence makes the results more reliable 

and valid. BMD is also very effective at identifying trends in the dose response curve, therefore, the 

BMR, BMDU and BMDL values are not necessarily the experimental doses. This therefore increases 

the accuracy and precision of these values. As demonstrated in the results of this project, BMD 

analysis allowed BMR, BMDU and BMDL values to be calculated even when the results were not 

found to be statistically significant in the pairwise testing (Tables 2 and 3.) This therefore allows 

results and conclusions to be drawn from acquired data despite not being normally distributed and 

or statistically significant. However, it should be highlighted also that BMD analysis has limitations to 

be aware of before using this technique. BMD has limited use to data from non-genotoxic 

compounds. Therefore, it is not possible to extrapolate the dose response curves for these 

compounds to determine if there is an upper dose limit when the compound starts to become 

genotoxic or cytotoxic. For example, quinoxaline and D-Mannitol are non-genotoxic, however since 

they are used clinically, it is beneficial to calculate if there is an upper dose where it starts to become 

toxic (Sand et al., 2008).  

When applying imaging flow cytometry and deep learning neural network technology to the in vitro 

MN assay, it can be challenging to advance the specificity of the deep learning network to identifying 

MN events. This is because the parameters for MN classification will have to represent very subtle 

morphological changes of MN compared to parent nuclei, therefore this can in turn lead to over 

training of the deep learning model. Hence, as deep learning codes become more advanced and 



computer power increases, developments can occur through a multiplexed MN assay. In a 

multiplexed MN assay, fluorescence stains and fluorescent antibodies can be used to detect 

different markers that can show if cytotoxicity or genotoxicity is occurring post compound or 

chemical exposure. For example, fluorescence can be used to detect the presence of apoptotic and 

necrotic bodies. This is advantageous as these entities are morphologically similar to MN so this 

would avoid mis-scoring. Additionally, MN have their own nuclear envelope so fluorescent 

antibodies specific to a protein of the nuclear envelope could be incorporated into the protocol 

during cell treatment and exposure and deep learning neural networks can be trained to identify the 

phenotype. MN’s nuclear envelopes differ in structure compared to parent nuclei, for example MN 

nuclear envelopes are composed with significantly more emerin protein. Therefore, if emerin 

fluorescent antibodies are used, this could provide more conclusive results for the presence of MN 

(Maass et al., 2018). Another example of multiplex labelling used in the in vitro MN assay is the use of 

fluorescent antibodies specific to the kinetochore of chromosomes. This can allow the detection of 

chromosomes with centromeres and acentric chromosomes. This development can aide the 

identification of MN which contain these entities but can also contribute to proposing the mode of 

action of a chemical or compound. The presence of chromosomes with full centromeres is indicative 

of aneugenic modes of actions and the presence of acentric chromosomes can indicate clastogenic 

activity (Rodrigues et al., 2021).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5. Conclusion  

In this project it has been demonstrated that the combination of imaging flow cytometry and deep 

learning neural network automated scoring mechanisms can produce accurate dose response results 

which are parallel to the ECVAM guidelines and akin to the gold standard. The developed deep 

learning neural network was applied to images of individual cells taken at three different 

laboratories in Swansea, Newcastle, and Aberystwyth universities. Even though the ground truth 

population of binucleated MN cells was very small, the deep learning neural network developed in 

this project was shown to achieve high accuracy levels in identifying mononucleated and binucleated 

MN cells across all three data sets. Applying the algorithm to images from different locations has 

streamlined the automation of the in vitro MN further as researchers are able to use the pre-created 

ground truth and deep learning neural network to analyse unseen samples. This project has shown a 

positive step forward in the modernizing and streamlining of the genotoxicity testing of new 

chemicals and compounds in pharmaceuticals, cosmetics, agricultural and other industries. 

The deep learning neural network was found to correctly score binucleated and mononucleated MN 

cells consistently, when the algorithm assigned 70% confidence in the phenotypic score. Then using 

only images that the algorithm scored with 70% confidence, the calculated dose responses were 

parallel to the ECVAM guidelines.    

Forming greater ground truth populations leads to an increase in the occurrence of rarer cell 

phenotypes in the ground truth, such as binucleated cells with MN, therefore this could increase the 

accuracy of the deep learning neural network and thus improve the accuracy of the calculated dose 

responses. In the Newcastle dose responses, only the dose response curve between 0.8 – 1.6 μg/mL 

of carbendazim was found to be statistically significant. Likewise, in the Swansea dose responses, 

only carbendazim and MMS dose responses were found to be statistically significant. The measured 

dose responses across all three data sets in the CBMN assay were found to be lower than dose 

responses previously recorded, therefore this suggests that the binucleated MN cell accuracy is not 

high enough. Increasing the number of images in the ground truth population will allow for a greater 

representation of binucleated MN cells in the ground truth which can be manually scored and 

subsequently used to train the deep learning neural network. This in turn will allow the identification 

of binucleated MN cells to be increased and hence improve the calculated dose responses. 

Previous studies have shown that different chemicals and compounds can induce the production of 

MN with slight morphological changes, therefore this could cause a bottleneck in a deep learning 

neural network’s ability to identify micro-nucleated cells as the ground truth may not be 

representative of the abnormal phenotype. Therefore, an exciting future study could be based on 

the development of a deep learning neural network trained on multiplex labels such as fluorescent 

antibodies specific to proteins on the nuclear envelope of MN such as the emerin protein. Another 

example of a multiplex label is fluorescent antibodies specific to the kinetochore of chromosome. 

These labels are both strong biomarkers for genetic damage so will be alternative effective means to 

test the genotoxicity of chemicals and compounds.  

With further optimisation of the neural network to improve the network’s ability to recognise 

binucleated cells with MN and potentially identify different multiplex labels in the future, this 

protocol could be established as a 21st century assay for testing the genotoxicity of chemicals and 

compounds across multiple laboratories, industries, and research fields.  

 



Glossary 

Artificial Intelligence: A branch of computer science that allows computers and machines to mimic 

problem-solving and decision-making abilities of the human brain. 

Benchmark Dose: The dose or concentration of a test chemical or compound that produces a 

predetermined change in an adverse response compared to the response in an unexposed subject. 

Benchmark Response: The predetermined change in response that the benchmark dose induces. 

Examples of benchmark responses include 5% or 10% increase in micronuclei frequency, body 

weight or erythrocyte count. 

Cytochalasin-B: Cell-permeable mycotoxin that inhibits cytokinesis (cytoplasmic division) by 

preventing the formation of actin filaments. It is commonly used in the in vitro MN assay as it 

disrupts cytokinesis whilst nuclear division continues, thus leading to the formation of binucleated 

cells. 

Deep Learning: A branch of artificial intelligence that imitates the human brain by using neural 

networks to identify cellular phenotypes from image data sets.  

Ground Truth: A set of images that have been manually scored by the researcher and assigned a 

particular phenotype. The neural network is trained on these images that compose the data set. 

Imaging Flow Cytometry: A microscopy tool that combines flow cytometry with digital fluorescent 

microscopy. Samples are suspended in fluid and labelled with fluorescent markers. The fluorescent 

markers are excited by light which subsequently scatters to allow high-throughput data analysis to 

occur. Individual images of cells can be analysed by the researcher due to the flow cytometry aspect 

of the machine. This allows extra confidence and transparency to be attributed to the results of the 

data analysis. 

Machine Learning: A branch of artificial intelligence that develops computer systems to learn, using 

algorithms and models to analyse patterns in a data set.  

MATLAB®: Programming and coding software used to create the deep learning neural networks on 

which the ground truth data sets will be analysed in order to score unseen images in the in vitro MN 

assay and to thus calculate the dose response for test chemicals and compounds. 

Micronucleus: Small DNA-containing nuclear structures, spatially isolated from the main nucleus 

that form when a whole or fragments of chromosomes are not incorporated into the main nucleus 

during mitosis. Usually 1/3rd – 1/16th the diameter of a regular nucleus, micronuclei are commonly 

used to assess the genotoxic potential of a test compound or chemical.  

Neural Network: A series of algorithms that are all connected in order to recognise patterns in data 

sets. They mimic the function of the neuronal system in the human brain. 
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Appendix 1 

Analysis of the percentage confidence of the deep learning algorithm in the CBMN assay. Green 

indicates at what percentage confidence levels the algorithm consistently scores the images 

correctly. 

 

Appendix 2 

 

Analysis of the percentage confidence of the deep learning algorithm in the non-cyto b assay. Green 

indicates at what percentage confidence levels the algorithm consistently scores the images 

correctly.



Appendix 3  

Sample of 36 images that the neural network scored as binucleated with MN from the cytochalasin B 

experiment with 0.0006 µg/mL Aroclor, second repetition. 

Appendix 4 

Sample of 36 images that the neural network scored as binucleated with MN from the cytochalasin B 

experiment with 0.8 µg/mL Carbendazim, first repetition. 

 

 

 



Appendix 5 

Sample of 9 images that the neural network scored as binucleated with MN from the cytochalasin B 

experiment with 2.5 µg/mL Benzo(a)pyrene, third repetition.   

 

 

 

 

 

 

 



Appendix 6 

Sample of 36 images that the neural network scored as mononucleated with MN from the 

mononucleate experiment with 2000 µg/mL D-Mannitol, first repetition. This appendix includes an 

exception to the 70% cut-off rule. The third image in the sample was classified by the neural network 

as a binucleated cell with an MN with 75.8% confidence however, after manual visualisation, the 

image is manually scored as a mononucleated cell with two MN, therefore the algorithm has 

incorrectly scored the image. The eighth image also provides an example of where misclassifications 

of phenotypes occur due to the presence of debris in the image. In this image, the cells appear very 

faint and fuzzy therefore it is very difficult to manually score the phenotype of the image.    

 



Appendix 7 

Sample of 36 images that the neural network scored as mononucleated with MN from the 

mononucleate experiment with 1.25 µg/mL MMS, second repetition. 

 

 

 

 



Appendix 8 

Sample of 36 images that the neural network scored as mononucleated with MN from the 

mononucleate experiment with 0.0002 µg/mL vinblastine, third repetition. 

This appendix includes another exception to the 70% cut-off rule. The first image in the sample was 

classified by the neural network as a mononucleated cell with an MN with 76.9% confidence 

however, after manual visualisation, the image is manually scored as a binucleated cell with an MN, 

therefore the algorithm has incorrectly scored the image.



 




