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Abstract

Ensuring the security of stable, efficient and reliable energy supplies has intensified the
interconnections between energy markets. Imbalances between supply and demand due to
operational failures, congestion and other sources of risk faced by market connections can lead
to a system that is vulnerable to the spread of risk and its spill-over. The main contribution of
this paper is the development and estimation of a Bayesian Graphical Vector-AutoRegression
and a Bayesian Graphical Structural Equation Modelling with external regressors - BG-VARX
and BG-SEMX, respectively - enhancing the proper analysis of market connections.

The Italian electricity market has been chosen because it is a clear example of a zonal
market where risk can spread over connected zones. We estimate, for the first time, within-
day and across-day zonal market interconnections with a multivariate time series of hourly
prices, actual and forecast power demand and forecast wind generation over the period 2014-
2019 and evaluate the dynamics and persistence of zonal market connections, examining the
spread of risk in the zones of the Italian electricity market.

Our findings provide an improved, accurate explanation of risk contagion, identifying the
zones that are most influential in terms of hub centrality (major transmitters) and authority
centrality (major recipients), respectively, for intra-day and inter-day risk propagation in the
Italian electricity market. In addition, the policy implications in terms of market-monitoring
are discussed.

Keywords

OR in energy; complex networks; electricity price volatility; systemic risk; zonal electricity
market

JEL: C11; C15; C32; C52; G01; Q41

1. Introduction

For several decades, in many countries, the hallmark of energy policy and regulation has
been security in energy supply and its reliability. Recently, the focus of the energy sector has
been on improving economic efficiency, increasing productivity and reducing costs, thereby
providing long-term efficiency gains. Specifically, in the electricity sector, many markets
have introduced competitive bid-based electricity auctions to set energy prices and capacity,
which often involve congestion costs (Creti and Fontini, 2019). Several of the efficiency
mechanisms put in place are facing new and unexpected challenges in terms of transmission
and distribution.

In this research we exploit the structure of the Italian electricity market as a unique case
study for the understanding of the interconnections in a zonal market and the results of the
study may help to examine risk propagation in the zones in which the market is organized.
Moreover, the benefit of various regulatory and structural changes in the zonal electricity
market can be calculated in full, accounting for volatility interconnections between zones.

This paper studies the relationships governing the risk spread over the zones of the Italian
electricity market, and seeks to understand the impact of market integration, resulting from
new interconnections and other structural changes. Many causes underlie the exposure of the
Italian electricity market to risks of contagion between zones (see, for instance, Creti et al.,
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2010). The efficiency of zonal pricing is challenged by its failure, in network management, to
take into account the behavioral perspective of the public good, because of the indivisibility
of network security. In addition, it neglects consumer behavior in terms of price differentials,
which impact on overall social welfare. Evidently, enhancing welfare from the viewpoint of
new interconnections is only beneficial to the region that starts off with higher prices (see,
for instance, Creti et al., 2010) i.e Sardinia and Sicily.

However, de Menezes and Houllier (2015) examine potential implications of national poli-
cies and their impact on the electricity mix for interconnected European electricity markets
and point out that the physical interconnections between European markets signal a trade-off
between lower average prices and the export of volatility from larger markets with richer
endowments of intermittent renewable sources. As such, it involves higher risk, which may
prevent new investments in power generating facilities.

Despite the different methods adopted in pricing electricity, various network structures
inherent in the market need to be explored and these provide the first steps in understand-
ing the extent of risk exposure in the market (Zugno and Conejo, 2015). Congestions in
transmission lines cause price differences in various zones of the network (Fianu, 2015).

Sapio and Spagnolo (2020) examine transmission volatility patterns via the VAR-GARCH
estimation approach, before and after the inauguration of a new cable infrastructure, account-
ing for linkages in electricity market zones rich in intermittent renewable energy sources. As
indicated by Klos et al. (2015), the configuration of the zonal energy market is often a result of
political decisions. Among the methods developed to aid zonal delimitation, Klos et al. (2015)
present a technique which aims to curb the loop flow effect, an element of unscheduled flows
that introduces a loss of market efficiency in addition to a detailed decomposition of power
flow in order to carry out zonal partitioning and to identify zones which cause problems in the
network. Our approach contributes to this strand of literature because it identifies changes in
the dynamics of volatility contagion both in terms of the originating source and of the “path”
followed by the shocks in their spread across the geographical zones of an electricity market.

In detail, the original contributions of this paper can be summarized as follows. First, to
the best of our knowledge, no paper has put forward and developed BG-VARX and BG-SEMX
and further considered their applications, specifically, to examine the spread of systemic risk
in zonal electricity markets. Our paper, therefore, presents these frontier methodologies in
studying energy markets as built up on the Bayesian Graphical Vector Autoregression (BG-
VAR) model by Ahelegbey et al. (2016a). The procedure suggested in this paper aims at
correctly identifying the network structure risk inherent in the Italian electricity market.
This is interesting for various reasons. The volatility dynamics and patterns can be used to
understand deregulation, structural transformation and other regulatory processes and may
explain competition in the electricity markets in relation to spot and future prices. In addition,
a good model identification is essential for proper network congestion management in the quest
for continuous real-time balancing and the need for forecasting, trading, generation planning,
plant availability and for risk management purposes, among others. Since transmission pricing
provides economic signals, which can lead to the efficient use of transmission grids, this paper
provides an accurate indication of such signals by tracing the “path” of shocks and thus can
help capture most of the economic benefits of efficient congestion management.

Another original contribution of this paper is the introduction of two different types of
analysis of risk contagion: “intra-day” and “inter-day”. The intra-day mechanism spreading
volatility refers to very short contagion events, with effects limited to the day of the auction.
The inter-day approach also includes contagion transmitted from past auctions. In this way,
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it is possible to disentangle a pure spatial contagion (intra-day) from a mixed spatial and
temporal contagion (inter-day).

Therefore, the output of the models can help to provide answers, both theoretically and
empirically, as to how zone interconnections, structural and regulatory changes, congestion,
and the quantity of renewable sources affect zonal prices. A clear overview of these intercon-
nections would provide a platform to deduce and design policy. The approach adopted in this
paper enables us to identify dominant zones in the spread of systemic risk. In addition, it
detects various hidden network structures and relationships between the various zones. The
final contribution of this paper is the use of the models with external variables to investigate
how short-term interconnectedness relevant for electricity markets are affected by variables
connected to prices. A rolling-window procedure for both intra-day and inter-day volatility
connectedness over the sample period has been carried out by comparing networks from both
models with and without the exogenous variable.

We believe that the findings of the suggested procedure are relevant for policymakers and,
if properly taken into account, would ensure good policy design for the proper risk manage-
ment of energy markets, especially those that are spatial in nature. For instance, they provide
a benchmark for the market design mechanism to guide the regulation of network access, fa-
cilitate trading in the energy markets and can therefore help to promote efficient network
utilization. As highlighted by Bertsch et al. (2017), the design of the European electricity
market is based on zonal markets with uniform prices. From a long-term perspective, since the
national electricity markets in the European Union have a high potential for improvements
via additional capacity investments and the further promotion of market coupling (Gugler
et al., 2018), our paper provides a unique data-driven case that can help in policymaking and
taking actionable decisions to achieve a well-integrated and efficient European market. The
application of the procedure utilized in this paper provides a platform for making optimal en-
vironmental and energy policies, especially when the different congestion events and regimes
identified are considered for investment decisions.

The remaining sections of the paper are organized as follows: section 2 reviews the litera-
ture on risk propagation, interconnections and linkages in energy markets. Section 3 provides
an overview of the structure of the Italian zonal market and details the various market op-
erations in the zonal electricity market. Section 4 presents the underpinning of the graphic
methodology used in the paper. The data in the empirical section and results are presented
and discussed in section 5. Finally, section 6 sets out some concluding remarks and policy
recommendations for policymakers, market participants, regulators and governments.

2. Literature review

The theoretical and empirical literature has so far dealt with price differentials from both
the supply and demand side, starting with Bigerna and Bollino (2016). As is well known,
in the zonal day-ahead market (MGP: Mercato del Giorno Prima) the so-called “market
splitting” occurs in the event of congestion. In this case, prices in contiguous market zones
are different because, in the market zone where the supply of electricity is lower than the
demand, the prices are higher. Due to market congestion, the Ancillary Services Market
(ASM) must be activated in order to find a balance between supply and demand (Cappers
et al., 2013). Prices on the ASM may differ greatly from prices on the MGP with a significant
risk of price hikes for end users (Lamadrid and Mount, 2012; Lisi and Edoli, 2018). Market
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congestion is a source of concern for market regulators, who must always ensure the right
balance between supply and demand in order to avoid power outages (Weron, 2000).

Another source of risk in electricity markets is price spikes (Grossi and Nan, 2019). Ex-
treme price changes are common in electricity price time series because electricity cannot be
economically stored and must be delivered immediately. It is worth noting that risks from
spikes can spread from one zone to others creating a contagion effect (Weron, 2014). A further
source of contagion, as observed in recent years, is associated with the massive introduction
of renewable sources (RES) such as solar and wind energy (Pham, 2019).1

The intermittent nature of RES increases the volatility of prices in zones where solar and
particularly wind plants are common and this additional volatility can spread to other zones
through contagion (Sapio, 2019). Energy market risks affecting market participants, including
wholesalers, retailers, and consumers, can be hedged by resorting to futures contracts, but
this involves high costs normally reflected in retail prices on deregulated markets (Caldana
et al., 2017; Trueck and Weron, 2016).

Consequently, it is essential to study how different types of risk are transmitted from
one zone to another. To the best of our knowledge, while many papers have been published
dealing with contagion and systemic risk in financial markets, very few empirical studies exist
on contagion in energy markets. They include Lautier and Raynaud (2012); Pierret (2013)
and, more recently, Bollino et al. (2012), and Bigerna et al. (2017) among others. This paper
provides a first-time approach to the use of network analysis in order to examine the direction
of contagion in electricity markets. In addition, given the design of the European electricity
market, which portrays zonal markets with uniform prices, as mentioned by Bertsch et al.
(2017), our methodology is therefore not simply limited to the Italian zonal market but could
be extended and utilized in relation to any system with zonal or regional features and some
form of interconnectedness between zones or regions.

Complex networks are currently gaining ground in various disciplines, for example, in eco-
nomics, finance, mathematics and so on (see, for example, Acemoglu et al., 2015; Ahelegbey,
2016; Ahelegbey et al., 2016a,b; Ahelegbey and Giudici, 2014; Billio et al., 2012; Diebold and
Yilmaz, 2014). The use of complex networks has helped to extract hidden information from
various complex systems. In terms of the energy market, it pinpoints the centrality of net-
works and the volatility that spreads over other networks. It helps market participants such
as traders, investors and regulators to guard against sudden systemic failures which can neg-
atively impact on many businesses and economies because of the significant socio-economic
impact of energy in the global economy.

Unlike any other, this paper develops and applies Bayesian Graphical Vector AutoRegres-
sion with external regressors (BG-VARX), based on the recent Bayesian Graphical Vector
AutoRegression model put forward by Ahelegbey et al. (2016a) in addition to the Bayesian
Graphical Structural Equation model (BG-SEMX), thereby incorporating exogenous (i.e. BG-
SEMX) and non-exogenous variables (i.e. BG-SEMX) to investigate the complex network dy-
namics of zonal electricity markets. The Vector AutoRegressive (VAR) model has been widely

1For instance, photovoltaic plants have led to increases in the cost of energy in the evening because of the
need for operators of conventional power plants to recover investments and idling costs in a shorter time span,
when PV generation is unavailable. The Energy and Gas Regulatory Authority or the “Autorità per l’Energia
Elettrica e il Gas (AEEG)” reported to the Senate Industry Commission on 18 April 2012. The share of
renewable sources has been increasing over the years due to public policy, which enshrine the 20/20/20 targets
of the EU climate and energy package providing incentives in the form of a feed–in premium for solar plants
and green certificates for all other renewable energy sources. For a detailed overview, see Schwartz (2012).
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applied in econometrics to model temporal dependence and interdependence in systemic risk
analysis (Ahelegbey et al., 2016a; Billio et al., 2012; Diebold and Yilmaz, 2014). The Bayesian
Graphical VAR (BG-VAR), proposed by Ahelegbey et al. (2016a), presents a framework to
model directional relationships in a multivariate time series that can be operationalized as
VAR models. The approach is based on a Bayesian procedure and a graphic representation of
VAR models. The methodology involves inferring the underlying dependence structure of the
model in which the coefficients of the relevant covariates have to be selected and estimated.
This setting naturally produces sparse and parsimonious models for effective forecasts and
easy interpretation. Knowledge of the underlying dependence structures can help researchers
and policymakers to understand directional or causal relationships among market variables.
Furthermore, such structures can be visualized to provide insight into the connectivity pat-
tern between variables and to identify communities and channels for risk propagation. For
regulators, this captures and helps to identify the central zones that can cause a systemic
breakdown when severely affected, and to advance policy measures to ensure the stability of
the electricity market.

As pointed out by Creti and Fontini (2019), the main challenge of network regulators
in various developed countries is how to synchronize regulatory frameworks in the context
of the penetration of renewable energy sources allowing them to pursue such traditional
aims as adequacy, efficiency and security of infrastructures, while serving customers and
remaining customer-friendly. Nonetheless, energy markets continue to undergo regulatory
change and a recent paper by Ciferri et al. (2020) investigates the degree of integration using
wholesale electricity prices for countries such as Italy, France, the Netherlands, Poland, and
the integrated market of Germany and Austria. Ciferri et al. (2020) highlight the fact that
that exogenous shocks have permanent effects and orthogonalized shocks largely affect the
variance of neighboring markets.

3. The Italian zonal electricity market

There are several reasons to study the risk spreading mechanism in the Italian electricity
market. First, the geographical structure of the Italian zonal market naturally shows how
risk is transmitted to/received by different zones connected by transmission cables which are
prone to congestion. Moreover, the Italian market has seen an increase in renewable sources
in the generation mix. The intermittent nature of renewables, particularly wind, increases
the exposure of the electricity system to the risk of supply shortages (Wozabal et al., 2016).
Considering that the future integrated European market will have a structure similar to that
of a zonal market and given the sharp increase in renewable sources in the most important
European national markets, the Italian market can show how risk could spread between the
areas of the future integrated European market. Another point that makes the Italian market
an interesting case is its extreme transparency in terms of available data. Full data on single
bids and offers made by market operators are made freely available on the website of the
Italian electricity market management company (GME, Gestore del Mercato Elettrico). As
such, in recent years, the Italian market has become one of the most intensely analyzed in
terms of price forecasting, measuring market power and, very recently, risk assessment (Graf
et al., 2020).

This section provides an overview of the Italian zonal power market. The Italian elec-
tricity market is called the Italian power exchange (IPEX) and comprises a spot market, a
forward market and an over-the-counter (OTC) session, which provides a platform for the
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physical delivery of contracts. The spot market comprises three types of markets: the day-
ahead (MGP), the intra-day (MI: Mercati Infra-giornalieri) with 7 sessions, and the ancillary
services markets (MSD: Mercato dei Servizi di Dispacciamento).2 GME (Gestore dei Mer-
cati Elettrici) manages the IPEX together with the OTC registration platform for forward
electricity contracts stipulated on the bidding system. The market embeds 7 foreign virtual
zones, 6 physical zones (see Figure 1 and Table 1, Panel 1) and 5 poles of limited production
(national virtual zones)3. The physical zones analyzed in this paper are the North (NORD),
Center-North (CNOR), Center-South (CSUD), South (SUD), Sardinia (SARD) and Sicily
(SIC) (see Figure 1).

A physical zone is a portion of the power grid, with - for system security purposes - physical
limits to the transfer of electricity to/from other geographical zones. Figure 2 gives further
details of the structure of the Italian zonal market in the current regulatory framework. Zonal
prices are the market clearing prices, which are characteristic of each physical and virtual zone
in the Day–Ahead Market4. The equilibrium price is determined hourly by the intersection
of supply and demand curves, see Fianu (2015) for further details. Constraints in inter-zonal
capacity often lead to congestion in the grid. Congestion involves different market clearing
prices in two zones, creating potential market imperfections. In terms of the operational
paradigm, the market is divided into two macro-zones, North and South, with generators
located in both. The role of the Market Operator (MO) is to coordinate consumption and
generation via the day-ahead market, which is organized on an hourly basis. Therefore, at
the beginning of every hour, the MO invites generators to submit a menu of prices at which
they are willing to supply with corresponding quantities. The MO, then, forecasts market
demands in the various zones. Given the location of each generator and the demand in various
zones, the MO solves the optimal dispatch problem subject to an exogenous set of inter-zonal
transmission constraints5. This determines optimal prices every hour in every zone, along
with the quantity of transfer between the zones (see Boffa et al., 2010).

In the event of congestion, and following demonstrations by Bigerna and Bollino (2016),
the IPEX is segmented into a variable number of market zones (NoZ), (1 ≤ NoZ ≤ 6);
we denote this configuration as the “NoZ-market”. It is worth noting that each of these
configurations consists of NoZ “markets” that possesses different characterizations of the
system marginal price (SMP), called PnZ. Each physical zone belongs to a particular market
configuration (see Table 1, Panel 2). For example, if NoZ is equal to two, this means there
are several two-market configurations; if three, there several three-market configurations. A
two-market configuration can be ML:SARD and SIC, ML:SIC and SARD, ITA:eNORD and
NORD, etc., as shown in Table 1, Panel 2. In the case of the two-market configuration
“ML:SARD and SIC”, the physical zone SIC is a market zone on its own with a PnZ, while
ML:SARD is a market zone made up of the interconnections between the physical zones of
NORD, CNOR, CSUD, SUD and SARD. In a three-market configuration, for instance, we
could have the following market zones: ML, SIC and SARD. Given the time span under
consideration, we account for a total of 52,588 hours. Many different market configurations
were observed throughout the period (Table 2). For instance, one-market (ITA) occurred for

2Abbreviations are of Italian market names. See http://www.mercatoelettrico.org/en/
Mercati/MercatoElettrico/MPE.aspx.

3https://www.terna.it/en-gb/sistemaelettrico/mercatoelettrico.aspx
4The Day–Ahead Market hosts most of the electricity transactions.
5The aim of optimal dispatch is to minimize the total electricity expenditure of consumers.
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12,389 hours (23.56% of the total period). Four- and five-market configurations accounted
for 2.81% (equivalent to 1,467 hours) of the total number of hours. Two- and three-market
configurations are the most common, totalling 38,718 hours, accounting for 73.63% of the
total number.6

Table 2 also shows annual equilibrium price statistics for various market configurations
from one-market to five-market zones. Focusing on the most frequent configurations (one to
three-market configurations), as the table shows, the higher the complexity of the configu-
ration the higher the average price and corresponding volatility, measured by the standard
deviation. This is expected, as the splitting of the market is due to congestion events which
usually cause higher prices and volatility in some market zones. Prices decrease in 2016 and
then increase until 2018; there is a downward trend in 2019 compared to the previous year.
The equilibrium prices that result in the most frequent configurations (one-, two-and three-
market configurations) contribute to about 97.20% of the hours in the whole period as shown
in Table 2. Table 3 gives summary statistics related to the main market zones illustrated
Table 1.The main market zones have a price range from 0.00 to 276.00 Euro/MWh with
obvious price variations between the different configurations. The overall average price in
the one-market configuration is 48.8 Euro/MWh. The price differential in the two-market
configuration, specifically, ML:SARD and SIC lies within the range of 51.17 versus 63.17
Euro/MWh compared to that of ML:SIC against SARD corresponding to 53.51 and 51.46
Euro/MWh, respectively.

Physical Zones Acronym

North Italy NORD
Center-North Italy CNOR
Center-South Italy CSUD
South Italy SUD
Sardinia SARD
Sicily SIC
Main market zones Components (Physical zones) Acronym

Italy NORD:CNOR:SARD:CSUD:SUD:SIC ITA
Mainland NORD:CNOR:CSUD:SUD ML
Mainland and Sicily NORD:CNOR:CSUD:SUD:SIC ML:SIC
Mainland and Sardinia NORD:CNOR:SARD:CSUD:SUD ML:SARD
Italy excluding North Italy CNOR:SARD:CSUD:SUD:SIC ITA:eNORD
Italy excluding North Italy and Sicily CNOR:SARD:CSUD:SUD ITA:eNORD:eSIC
Italy excluding North Italy and Sardinia CNOR:CSUD:SUD:SIC ITA:eNORD:eSARD

Table 1: Main market zones in the IPEX electricity market.

In a framework similar to the one studied by Gianfreda and Grossi (2012) concerning
congestion analysis, congestion can be assumed to occur every time we observe different
zonal prices between couples of contiguous zones. Table 4 shows the frequency of congestion
between each of the physical zones in Mainland Italy and the other connected physical zones.
For example, the second row shows frequencies when prices in CNOR differ from those in
NORD, CSUD and SARD and thus provide an indication of congestion between selected
configurations. Comparatively, over various years and with various configurations, the highest

6The six-market configuration was observed over just 4 hours, so the corresponding statistics have been
omitted from the table.
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Year 2014 2015 2016 2017 2018 2019 2014-2019
One Mkt Mean 47.30 47.69 41.88 47.75 55.25 47.24 48.80

Std. Dev. 16.07 13.22 12.83 15.18 13.34 11.74 14.16
Frequencies 716 978 1,740 2,577 3,354 3,024 12,389

% 1.36% 1.86% 3.31% 4.90% 6.38% 5.75% 23.56%
Two Mkts Mean 54.82 52.36 42.53 55.01 65.29 56.16 53.99

Std. Dev. 23.76 13.91 13.60 16.60 17.72 18.22 18.84
Frequencies 5,147 5,222 4,769 4,318 4,028 4,176 27,660

% 9.79% 9.93% 9.07% 8.21% 7.66% 7.94% 52.60%
Three Mkts Mean 57.42 53.94 44.03 58.90 70.15 59.05 56.10

Std. Dev. 28.45 15.63 14.09 20.25 20.33 19.82 21.96
Frequencies 2,595 2,161 2,022 1,676 1,195 1,409 11,058

% 4.93% 4.11% 3.84% 3.19% 2.27% 2.68% 21.03%
Four Mkts Mean 52.04 51.13 42.19 57.89 62.04 55.60 52.48

Std. Dev. 28.97 14.44 14.68 23.23 19.51 18.22 21.26
Frequencies 299 378 240 174 178 151 1,420

% 0.57% 0.72% 0.46% 0.33% 0.34% 0.29% 2.70%
Five Mkts Mean 56.70 47.55 42.52 62.76 65.97 - 52.04

Std. Dev. 33.81 15.13 16.96 23.50 16.42 - 20.61
Frequencies 2 22 14 13 6 0 57

% 0.00% 0.04% 0.03% 0.02% 0.01% 0.00% 0.11%

Table 2: IPEX market configurations (2014-2019). Descriptive statistics of prices and number of hours (fre-
quencies) for the different configurations. Percentages in terms of total hours in the period 2014-2019.

Market configurations Market zones (with components) Mean SD Min. Max.
(No. of hours)

One-market (12389)
ITA NORD:CNOR:CSUD:SUD: 48.80 14.16 1.00 170.00

SIC:SARD

Two-market (25036)

ML:SARD-SIC (20972) NORD:CNOR:CSUD:SUD:SARD 51.17 15.14 0.84 170.00
SIC 63.17 26.84 0.00 259.03

ML:SIC-SARD (205) NORD:CNOR:CSUD:SUD:SIC 53.51 15.68 1.00 170.00
SARD 51.46 16.92 0.00 276.16

ITA:eNORD-NORD (2116) CNOR:CSUD:SUD:SIC:SARD 53.40 15.96 0.00 170.99
NORD 52.01 16.16 1.00 206.12

Three-market (13537) 51.09

ML-SA-SI (824) NORD:CNOR:CSUD:SUD 51.09 15.07 1.00 170.00
SARD 51.46 16.92 0.00 276.16
SIC 63.17 26.84 0.00 259.03

ITA:eNORD:eSIC (3958) NORD 52.01 16.16 1.00 206.12
CNOR:CSUD:SUD:SARD 50.96 15.30 0.00 170.99
SIC 63.17 26.84 0.00 259.03

Table 3: Summary statistics of prices in main market zones.

frequency of congestion (15.19%) was between NORD and CNOR in 2018. On the other hand,
the configuration CSUD connected with SARD, SUD and CNOR suffered no congestion in
2014 and 2016.

In recent years, the Italian energy market has undergone various regulatory transforma-
tions, which have helped to ensure fair competition among market participants. Indeed, the
development of electricity networks and the excess of supply due to the reduction in demand
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2014 2015 2016 2017 2018 2019

NORD vs CNOR 13.88% 13.37% 12.46% 14.82% 15.19% 14.88%
CNOR vs NORD-CSUD-SARD 0.13% 0.17% 0.53% 0.47% 0.41% 0.39%
CSUD vs SARD-SUD-CNOR 0.00% 0.01% 0.00% 0.03% 0.02% 0.01%
SUD vs CSUD-SIC 1.56% 2.24% 2.02% 1.98% 1.26% 0.73%

Table 4: Frequencies of congestion events according to various zone configurations in alignment with physical
grid interconnections (2014-2019)

and growth in renewable energy sources have enhanced competition in electricity markets in
Italy. Legislative Decree 28/11 came into effect in 2012, transforming incentives for renewable
sources.7

Figure 1: Map of Italy with the regional distribution of installed wind energy capacity (in varying degrees of
green) in 2016 and the borders between zones in the transmission grid (thick black lines). The zonal connections,
in the top right corner, show the basic structure of the market—physical zones. Source: processing by the
authors.

In 2016, the Italian government passed a decree supporting incentives for renewable en-
ergy sources in addition to photovoltaic systems. The introduction of market coupling with
Slovenia, Austria and France provides significant benefits by reducing inefficiencies in the al-
location of rights for cross-border transmission capacity. The internal grid was modified and
upgraded in 2012, allowing for improved integration between market zones and consequently
the improved transmission of electricity throughout CSUD and SUD zones.

7For instance, the green certificate mechanism was replaced by feed-in tariffs, with maximum allowable
expenditure to provide incentives for capacity with auction procedures reserved for large plants. However, in
2013, a new national energy strategy was approved and confirmed by the Italian government. In the wholesale
market, competition is growing continually. For example, the market share of the four largest operators
decreased by 5% in 2012 compared to 2011 (49%). Specifically, ENEL remains the main market operator with
25% of the market (26% in 2011), followed by ENI (9%), Edison (7.2%) and E.On (4.4%). Correspondingly,
the collective shares of small operators increased to 30.2%.
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Figure 2: The structure of the Italian zonal market. Source: Processing by the authors based on a map by
Terna

.

4. Model Formulation and Estimation

We model the zonal risk channels by decoupling the path of influence as: 1) intra-
day (within-day) effects; and 2) inter-day (between-day) spillovers. The intra-day captures
spillover channels that occur within the same day, while the inter-day measures spillovers
between zones with a time-lag. We model the intra-day and inter-day dependencies from
multivariate time series using, respectively, a simultaneous equation and a vector autoregres-
sive model with exogenous factors.

4.1. Modeling Intra-day Dependence
Let Yt = (Y1,t, . . . , Yn,t) be the vector of log price volatilities in n zones at time t. We

model the intra-day pattern of dependence among zones via a panel structural equation model
with exogenous factors (SEMX) with the i-th equation given by:

Yi,t =
n∑

i,j=1
Bij|yYj,t +Bi|dDi,t +Bi|fFi,t +Bi|wWi,t + Ui,t (1)

where Di,t, Fi,t and Wi,t are the log transformation of daily electricity demand, forecast
electricity demand and forecast wind generation, respectively, for zone i, Bi|d, Bi|f and Bi|w
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capturing the effect of these exogenous macro factors on Yi,t. Bij|y measures the effect of Yj
on Yi at time t, and Ut is a vector of error terms assumed to be independent and identically
distributed, Ut ∼ N (0,Σu). We define B·|y as a full (non-symmetric) matrix with zeroes on
the main diagonal that records the contemporaneous effects among Yi,t. The matrix form of
(1) is given by

Yt = BXt + Ut = By|yYt +By|zZt + Ut, Ut ∼ N (0,Σu) (2)

where B = (By|y, By|z), Xt = (Y ′t , Z ′t)′, Zt = (D1,t, . . . , Dn,t, F1,t, . . . , Fn,t,W1,t, . . . ,Wn,t) is a
collection of the zonal specific exogenous macro factors (in our case actual/forecast electricity
demand and wind generation). By|z = (By|d, By|f , By|w) is a stacked collection of coefficient
matrices By|d, By|f and By|w each of dimension n×n with zero off-diagonal elements and only
the main diagonals contain coefficients of the effects of the exogenous factors for each zone.
Our focus here is to analyze the direction of influence between zones as shown in Figure 3.

By|y =




0 0 0 0 0
β21 0 0 0 0
β31 0 0 0 0
0 β42 0 0 β45
β51 0 β53 0 0




=⇒

Y1

Y2

Y3Y4

Y5

Figure 3: Coefficient matrix and the associated network structure. The non-zero elements in By|y are real
numbers. The column and row labels of By|y are (Y1, Y2, Y3, Y4, Y5) at time t. Links in the network are related
to the non-zero elements in By|y and are directed from column labels to row labels.

4.2. Modeling Inter-day Dependence
We model the inter-day dependence via a panel VAR (or VARX) model of n units

Yt = BXt + Vt =
p∑

l=1
Al,y|yYt−l +Ay|zZt + Vt, Vt ∼ N (0,Σv) (3)

where p is the lag order; B = (A1,y|y, . . . , Ap,y|y, Ay|z), Xt = (Y ′t−1, . . . , Y
′
t−p, Z

′
t)′, Al,y|y is the

coefficients matrix at lag l; Ay|z is a zero off-diagonal coefficients matrix; Zt is a set of zonal-
specific macro variables; Ay|z = (Ay|d, Ay|f , Ay|w) is a stacked representation of coefficient
matrices Ay|d, Ay|f and Ay|w each of dimension, n × n with zero off-diagonal elements and
only the main diagonals contain coefficients of the effects of the exogenous factors for each
zone.

The difference between the model presented in (3) and that of Ahelegbey et al. (2016a)
is that the exogenous variables Zt of the current model are equation-specific factors instead
of common factors. Thus, the current version is a panel structure model instead of standard
VAR model with exogenous factors.

Inter-day networks generally comprise own-lagged and cross-lagged dependencies. In this
application, we follow a concept similar to that of Granger causality (Granger, 1969) by
focusing on the cross-lagged dependencies. See Figure 4 for an illustration.

4.3. Bayesian Graphical Network Model Estimation
The application of the Bayesian graph-based approach in the current work is to model

separately the intra-day and inter-day volatility spillover among zones of an electricity market
12

                  



A1,y|y =




α11 0 0 0 0
α21 0 α23 0 0
α31 0 α33 α34 0
0 0 α43 α44 0
0 α52 0 0 α55




=⇒

Y1

Y2

Y3Y4

Y5

Figure 4: Coefficient matrix of a VAR(1) model and the associated cross-lagged network. The column labels
of Ay|y are lags of (Y1, Y2, Y3, Y4, Y5) and row labels are at time t. Links in the network are results of non-zero
elements in Ay|y and are directed from column labels to row labels.

via a panel structure of the data for purposes of interpretability and to produce a parsimonious
specification of the model.

The introduction of networks in a typical multivariate regression model helps to interpret
the relationships in the model. To formalize this representation, equations (2) and (3) can be
specified through the lens of networks by assigning to each coefficient Bij a latent variable
inclusion indicator, Gij ∈ {0, 1}, such that for i, j = 1, . . . , n:

Bij =
{

0 if Gij = 0 =⇒ Yj 6→ Yi
bij ∈ R if Gij = 1 =⇒ Yj → Yi

(4)

where Yj 6→ Yi means that Yj does not influence Yi. Thus, the objective of the network model
is to learn the sparse latent dependence structure, G, and the associated coefficients matrix,
B, which measures the weights and signs of the dependence structure in the data.

Estimating jointly the parameters of the BG-SEMX in (2), or the BG-VARX in (3), or the
simplified regression model is a challenging problem and a computationally intensive exercise.
We specify the prior distributions as follows:

[Bij |Gij = 1] ∼ N (0, η), Gij ∼ Ber(πij), Σε ∼ W(δ,Λ0)

where η, πij , δ, and Λ0 are hyper-parameters. The specification for Bij conditioned on Gij
follows a normal distribution with zero mean and variance η. Therefore, the relevant explana-
tory variables with significant information to predict a response variable are associated with
coefficients different from zero and the rest (representing variables that are not relevant) are
restricted to zero. We consider Gij as Bernoulli distributed with πij as the prior probability.
Finally, we assume Σ−1

ε is Wishart distributed with prior expectation 1
δΛ0 and δ > n as the

degrees of freedom parameter.
Let Yt be the vector of log volatilities of the zones and Xt the vector of explanatory

variables at time t. In addition, let Y = (Y1, . . . , YT ) and X = (X1, . . . , XT ) denote a
collection of Yt and Xt over a fixed window of length T . Following the Bayesian framework of
Geiger and Heckerman (2002), the structural parameters can be integrated out analytically
to obtain a marginal likelihood function over the graphs. This allows for the application of an
efficient Gibbs sampling algorithm to sample the graph structure and the model parameters in
blocks. In order to approximate the graph and parameters posterior distribution, we consider
a collapsed Gibbs sampler that proceeds as follows:

1. sample via a Metropolis-within-Gibbs [G|Y,X] (see Algorithms 1 and 2 in Appendix A);
2. sample from [B,Σε|Y,X] by iterating the following steps:
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(a) sample [Bi,πi |Y,X, Ĝ,Σε] ∼ N (B̂i,πi , Qπi) where

B̂i,πi = σ−2
ε,iQπiX

′
πiYi, Qπi = (η−1Idx + σ−2

ε,iX
′
πiXπi)−1 (5)

where Xπi ∈ X is the set of predictors of Yi that corresponds to (Ĝyi,xπ = 1), σ2
ε,i

is the i-th diagonal element of Σ̂ε, and dx is the number of covariates in Xπi .

(b) sample [Σ−1
ε |Y,X, Ĝ, B] ∼ W(δ +N, ΛT ) where

ΛT = Λ0 + (Y −XB̂′)′(Y −XB̂′) (6)

For further details concerning the network sampling algorithm and convergence diagnostics,
refer to Appendix A for an overview.

4.3.1. Lasso Regularization Method
We apply the Lasso regularization by Tibshirani (1996) as a benchmark model for our

empirical analysis. This approach estimates the coefficients of a regression model by solving:

B̂ij = min
Bij

{ T∑

t=1

(
Yi,t −

q∑

j=1
BijXj,t

)2
+ λ

q∑

j=1
|Bij |

}
(7)

where T is the number of observations, q is the number of covariates, λ is the penalty term
such that high values shrinks a large number of the coefficients towards zero. In the empirical
exercise, we select the regularization parameter, λ · 1se, that corresponds to one standard
error from the minimum mean square cross-validated errors.

5. Modeling risk contagion and applications

Network analysis is currently gaining ground in various disciplines given the fact that
almost everything seems to have some kind of interrelationship. Network analysis and its
applications, especially in energy markets is no different. With the energy revolution taking
place in various countries, the slow but steady transition from non-renewable energy sources
is faced by investors and regulators with different forms of uncertainty. The Italian electricity
market, with its zonal structure and the close interconnections between zones, provides an
ideal framework for original network analysis.

We analyze intra-day and inter-day volatility spill-over channels among the physical zones
of the Italian market, characterizing the dynamics of the networks via a yearly (365-day)
rolling window. We set the increments between consecutive rolling windows at a one-month.

The first rolling window is from March 2014 - February 2015, followed by April 2014 -
March 2015, and the last from January 2019 - December 2019. In all, there are 59 rolling
windows. The primary objective of our empirical exercise is to investigate the joint impact
of the exogenous macro causes of volatility (in our case actual/forecast electricity demand
and forecast wind generation) on volatility spill-over in the Italian zonal electricity market.
Section 5.2 and 5.3 present our findings for the above research goal, respectively, for the
intra-day and inter-day volatility channels of contagion.
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5.1. Data description
Hourly spot prices (in the day-ahead market) in the 6 physical zones of the Italian elec-

tricity market from January 2014 to December 2019 are obtained from the Italian Electricity
Market Management website. We also utilize actual/forecast electricity demand and forecast
wind generation in the Italian zonal electricity market between March 2014 and December
2019.8 We analyze the physical zones of the North (NORD), Central-North (CNOR), Central-
South (CSUD), South (SUD), Sardinia (SARD) and Sicily (SIC).

Suppose that Pi,l,t is the observed price for the i-th zone at the l-th hour of day t. We
construct daily standard deviations (σi,t) as a measure of realized volatility by:

σi,t =

√√√√ 1
N − 1

N∑

l=1
(Pi,l,t − P̄i,t)2 (8)

where P̄i,t is the average of Pi on day t and N is the total number of observations in a day,
i.e., N = 24. This formula was used to compute standard deviations for prices.9

Figure 5 sets out the time dynamics of daily electricity prices and volatility in the Italian
zonal power market in the period 2014-2019. They highlight variations in electricity prices in
the various zones. A quick glimpse at the prices and volatilities shows some co-movements in
the evolution of the time series, which initially confirm the existence of some form of structure
in the various zones. The autocorrelation functions of log-volatility are shown in Appendix
Appendix B, Figure B.1. The distribution of daily log-volatilities shows non-negative values
virtually throughout the sample period. From the various multivariate regression models
presented in the previous section, the error terms of the models are assumed to be drawn
from a multivariate Gaussian distribution. To satisfy this condition, we standardize the log-
volatility series to a zero mean and unit variance.

Table 5 gives the descriptive statistics of the daily log-volatility of prices and log-transformation
of the exogenous factors for physical zones in terms of mean, standard deviation, minimum,
maximum, skewness, excess kurtosis, and Jaque-Bera test. SIC and SARD (although very
close to SIC) recorded the minimum and maximum daily price volatilities, respectively, over
the sample period.10 On average, the price volatility in the NORD zone was lower than the
SUD. With the exception of SIC, which appeared to be negatively skewed (-1.3) with higher

8Day-ahead prices were downloaded from the website of the Italian Regulator for the electricity mar-
ket (GME), www.mercatoelettrico.org. Forecast electricity generation from wind and actual and forecast
electricity demand (one day-ahead horizon) data were obtained from the website of the Italian TSO Terna,
www.terna.it. Complete data from Terna are available only from the beginning of March 2014.

9We are aware that the choice of the daily summary index of volatility is not neutral in relation to the
model estimation. In this section, the usage of the unweighted mean and the standard deviation means that
all hourly prices have the same weight for the daily outcome. Moreover, the 24 hourly prices used to compute
the daily average price and the daily volatility measure may refer to different market zones, because on a given
day a physical zone may be isolated for some hours and on others may connect to form a different market zone.
This is a source of bias for the analysis. However, we assume that when multiple-market zones are created,
prices are less volatile and this should be reflected by low volatility. In order to see the effect of different choices
of the daily aggregation on risk contagion, we carried out the same analysis using a robust version of daily
volatility given by the Median Absolute Deviation (MAD). The results are shown and discussed in section 5.5.
The authors are grateful to one of the referees, who raised this point, and for for the opportunity to highlight
the impact the selection of a daily aggregation formula can have on the final results.

10High prices and volatility in Sicily were examined by Sapio and Spagnolo (2016) who found evidence of
tacit collusion in this zone.
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Figure 5: Time series plots of daily mean electricity prices and log daily standard deviations in North (NORD),
Central-North (CNOR), Central-South (CSUD), South (SUD), Sardinia (SARD), and Sicily (SIC), between
March 1, 2014 and December 31, 2019.

kurtosis (2.875), the remaining zones have an approximately normal distribution with skew-
ness ranging from -0.08 to 0.15, with excess-kurtosis ranging between -0.13 and 0.21. The
Jaque-Berra test for normality in the table is represented by the p-values. The test strongly
supports normality for NORD, CNOR, CSUD and SUD. However, it rejects normality for
SARD and SIC.

We carried out unit root tests (Augmented Dickey–Fuller, ADF, and Phillips–Perron, PP,
test) on the time series of log-volatility of zonal prices, which reject the null hypothesis of
unit root (see Table 6).

5.2. Intra-day volatility spillover networks
We present the results of the dynamic nature of intra-day zonal log price volatilities

interconnectedness over the sample period 2014–2019 and analyze the evolution of four dif-
ferent models: BG-SEMX and Lasso-SEMX, BG-SEM and Lasso-SEM, i.e. two models
without exogenous variables and two X inclusive models with exogenous macro factors, i.e.,
actual/forecast electricity demand and forecast wind generation.11

11The codes used to estimate the models illustrated in the empirical section have been written in Matlab.
An old version of the BG-VAR code is publicly available from Ahelegbey et al. (2016a). The new version of the
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Min Max Mean SD Skew Ex.Kurt JB(p-value)

NORD 0.470 3.672 2.091 0.464 0.038 0.147 0.287
CNOR 0.396 3.672 2.159 0.478 0.007 -0.043 0.923
CSUD 0.396 3.672 2.143 0.479 -0.015 -0.109 0.582
SUD 0.206 3.645 2.126 0.493 -0.077 -0.126 0.179
SARD 0.396 4.076 2.204 0.506 0.146 0.206 0.003
SIC -0.776 4.002 2.721 0.659 -1.300 2.875 0.000

D.NORD 12.430 13.302 12.967 0.179 -0.737 -0.526 0.000
D.CNOR 10.756 11.679 11.289 0.160 -0.523 -0.394 0.000
D.CSUD 11.311 11.994 11.716 0.115 -0.457 -0.007 0.000
D.SUD 10.752 11.549 11.136 0.137 0.183 -0.204 0.000
D.SARD 9.793 10.647 10.129 0.129 1.128 1.481 0.000
D.SIC 10.376 11.045 10.742 0.108 -0.118 -0.048 0.077

FD.NORD 12.403 13.371 12.986 0.191 -0.754 -0.346 0.000
FD.CNOR 10.529 11.779 11.344 0.155 -0.645 -0.071 0.000
FD.CSUD 11.071 12.089 11.728 0.118 -0.347 0.540 0.000
FD.SUD 10.528 11.975 11.131 0.135 0.355 0.892 0.000
FD.SARD 9.455 10.430 10.062 0.094 -0.181 1.977 0.000
FD.SIC 10.446 11.175 10.787 0.107 0.276 0.138 0.000

FW.NORD 0.881 6.579 4.376 0.887 -0.444 -0.230 0.000
FW.CNOR 1.483 7.471 5.669 0.941 -0.619 0.398 0.000
FW.CSUD 0.000 10.425 8.338 1.248 -1.978 8.810 0.000
FW.SUD 6.250 11.384 9.604 0.842 -0.451 -0.238 0.000
FW.SARD 0.000 9.929 7.929 1.159 -1.645 8.134 0.000
FW.SIC 0.000 10.393 8.531 1.083 -2.303 14.712 0.000

Table 5: Descriptive statistics of the daily log-volatilities of prices and log-transformations of exogenous factors
in North (NORD), Central-North (CNOR), Central-South (CSUD), South (SUD), Sardinia (SARD) and Sicily
(SIC). Note: D.* means actual Demand, FD.* Forecast Demand and FW.* Forecast Wind generation in the
* zone.

Test Type CNOR CSUD NORD SARD SIC SUD Sig.

ADF 1 lag -6.60 -6.54 -6.52 -9.64 -8.11 -6.20 ∗∗∗

1 lag, trend -19.11 -18.75 -19.60 -19.49 -23.20 -17.00 ∗∗∗

1 lag, drift -18.20 -17.69 -18.25 -18.01 -18.65 -16.71 ∗∗∗

PP 1 lag, drift -833.98 -824.29 -833.98 -765.65 -1103.15 -817.23 ∗∗∗

1 lag, trend -24.15 -24.31 -24.32 -23.44 -24.15 -23.45 ∗∗∗

Table 6: Unit root tests on daily log-volatility of prices. Note: ∗∗∗ is 1% level of significance.

With numerical summaries, we characterize the time-varying nature of interconnections
by monitoring network density. The density of an n-nodes network is given by:

Network Density = Total Edges in Estimated Network

Total Number of Possible Links

code is available from the authors, upon request. The average time to run 20,000 simulations for the network
sampling and model estimation can be summarized as follows:

SEM SEMX VAR VARX
BG 9.63 12.07 2.67 2.8

Lasso 2.15 3.38 3.89 6.06
The longest time required in the case of BG-SEM are due to the constrains imposed in the acyclic graphs.
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For directed graphs, such as the Lasso-SEM networks, the number of possible links is n(n−1),
while for Directed-Acyclic-Graphs (DAGs), such as the BG-SEM networks, the number of
possible links is 1

2n(n−1). This is because, by construction, the Lasso-SEM estimates directed
networks that allow bi-directed links. The BG-SEM, on the other hand, infers directed
networks without feedbacks (bi-directed links) and cycles. Thus, the DAGs produced by the
BG-SEM are naturally suitable for making causal inferences, unlike the Lasso-SEM where it
is not possible to distinguish between cause and effects in a directed network.
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Figure 6: Yearly rolling series of network density from the BG-SEM & SEMX and Lasso-SEM & SEMX.

Figure 6 shows the time series of intra-day volatility network densities for the competing
methods from the yearly rolling window estimations over the sample period. The BG-SEM
and Lasso-SEM network densities are plotted in the top panel, while the BG-SEMX and
Lasso-SEMX are in the bottom panel. The degree of interconnectedness according to the
Lasso-SEM and Lasso-SEMX is more stable than that of the BG-SEM and BG-SEMX. The
BG-SEM network density exhibits a higher degree of fluctuation than the rest. One takeaway
from Figure 6 is that the inclusion of the macro variables (actual/forecast demand and forecast
wind generation), have an impact on volatility spillover in the Italian zonal electricity market,
since the BG-SEM and BG-SEMX record different network densities.

To assess the impact of the exogenous macro factors on volatility spillover, we compare
all four models over two sub-periods: 2015–2017 and 2018–2019.12

12The year 2015 was very significant in terms of the integration of national electricity markets in the European
market and years 2017 and 2018 saw the reversal of the upward trend in fuel prices in the European market.
However, the Italian electricity market was affected by French nuclear shutdowns. The average national
price (PUN) of the IPEX rose until November 2018 compared to the first eleven months of 2017, due to the
increase in fuel prices and CO2 emissions rights. More than all other production methods and technologies,
the production of renewable technologies increased by 13.4% up to November 2018. In the same period, wind
generation increased by 1.1% and solar energy decreased by 9.3% compared to the same period in 2017. In the
year 2019, prices dropped with the PUN falling to levels close to 52 Euros/MWh, due to a continuing trend
in line with the fall in gas costs and with European prices. As a result, a “structural” spread of about 12
Euro/Mwh persists. Interestingly, a similar trend can be found in the zones of Italy where price differentials
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Figure 7: Averaged Intra-day Networks 2015–2017. Dark (light) green-links indicate strong (mild)
positive impacts, and dark (light) red-links indicate strong (mild) negative effects. The node size is based on
hub scores.
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Figure 8: Averaged Intra-day Networks 2018–2019. Dark (light) green-links indicate strong (mild)
positive impacts, and dark (light) red-links indicate strong (mild) negative effects. The node size is based on
hub scores.

between NORD-SUD were nullified along with drops in prices to 0 Euros/Mwh in SIC. Volatility in the market
increased in SARD, SUD and SIC, zones characterized by a high share of renewables, albeit in constant supply.
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Figures 7 and 8 present the intra-day network topology averaged over the two sub-periods.
Figures 7(c) and 7(f) (Figures 8(c) and 8(f)) display network links common to BG-SEM and
BG-SEMX (Lasso-SEM and Lasso-SEMX). For cases with a common link that changes sign
depending on exogenous variables, we show the common link with the sign of the average
coefficients. For the sake of clarity, we used various colors and sizes of nodes and links to
depict the network interactions. The size of the nodes is deduced based on weighted out-
degrees, i.e. the average of the absolute value of the coefficients weighted by the hub scores.
As such, a larger node means that these particular nodes have a stronger impact on the
network. A dark green link indicates a strong simultaneous effect, while a light green link
signals mild impact. For instance, the BG-SEM network in Figure 7(a) shows that between
2015–2017, the volatility of NORD is strongly positively sensitive to the risk from CNOR,
and strongly negatively sensitive to that of CSUD. Furthermore, a light green link from
SARD to SUD and a reverse link from SUD to SARD suggest a mild positive impact and
are evidence of simultaneity between the two zones. Since the BG-SEM networks are DAGs
depicting lead-lag relationships in a simultaneous network, the simultaneity between SARD
and SUD indicates that the volatility of one zone may precede the other in some periods,
and this relationship may be reversed at other times. Thus, neither of the two zones play a
dominant role in terms of influencing the other. CNOR in Figure 7(a) is larger than the rest,
suggesting that, between 2015–2017, CNOR plays a significant role in spillover transmission
according to the BG-SEM network. When exogenous factors are included in the model, the
BG-SEMX reveals CSUD as the central zone for risk propagation. This is confirmed by the
other networks in Figure 7.

It is well known that in turbulent times some assets/markets perform generally badly
while others have mild reactions. Assets that react negatively are often desirable and sell
at a premium. To hedge energy market risk, it is ideal for an investor to select an asset
that correlates negatively with others. The BG-SEMX structure in Figure 7(b) shows that,
between 2015–2017, NORD exhibited a mild negative sensitivity to risk from SIC, and SIC
reacted in like manner to CSUD. However, this observation was not persistent over time and
was not recorded in the 2018–2019 sub-period.

Period Method SEM SEMX SEM ∩ SEMX

2015 – 2017 BG 15 23 14
Lasso 17 18 17

2018 – 2019 BG 13 19 11
Lasso 13 14 13

Table 7: Total number of links in intra-day sub-period networks for the competing methods.

Table 7 tabulates the total number of links in the SEM and SEMX network and the
topological structure common to the networks. The table shows that, on average, the inclusion
of exogenous macro factors increases intra-day volatility interconnectedness between the zones
of the market. On average, 2015-2017 saw more interconnectedness than 2018-2019. The
SEMX networks also recorded a higher number of links than the SEM. For instance, Table 7
shows a total of 15 links for BG SEM and 23 for BG-SEMX, 14 of them in both. Thus, the

These episodes explain the peaks and troughs represented in the network density plot and motivate the choice
to split the period into two sub-periods 2015–2017 and 2018–2019.

20

                  



BG-SEMX included almost all the connections in the BG-SEM and more. On the other hand,
the Lasso-SEMX identified one more link than the Lasso-SEM. The same is true of 2018-2019
sub-period networks. Thus, overall, the macro determinants of volatility increase volatility
spill-over in the electricity market.

We now turn our attention to the following question: “In the event of a shock to a zones or
a group of zones, which zone will be most central to intra-day volatility spillover propagation
in the Italian zonal electricity market?”. In other words, which zone or group of zones, when
affected by a major shock, will lead to increasing uncertainty in the Italian electricity market?

Answering this question requires the adoption of network measures of centrality to identify
the transmitters and receivers of intra-day volatility spill-over in the two sub-periods. Hence,
we rank the importance of nodes in the network using hub and authority scores.13 From
a financial viewpoint, nodes with high authority scores are strongly influenced by others
(receivers), and high hub scoring nodes are the influencers (transmitters).

Table 8 sets out the numerical summary of the centrality ranking of the markets according
to hub and authority scores. Focusing on the BG-SEMX column presents a realistic view of
interconnectedness between the markets, not limited to the interaction of the markets alone
but incorporating exogenous variables.

BG-SEM BG-SEMX Lasso-SEM Lasso-SEMX

Hub Centrality : Top Three Transmitters

2015–2017 1 CNOR ( 0.922 ) CSUD ( 0.842 ) CSUD ( 0.995 ) CSUD ( 0.995 )
2 CSUD ( 0.387 ) CNOR ( 0.333 ) NORD ( 0.103 ) NORD ( 0.099 )
3 SUD ( 0.027 ) SUD ( 0.315 ) SUD ( 0.009 ) SUD ( 0.009 )

2018–2019 1 CSUD ( 0.859 ) SARD ( 0.801 ) CSUD ( 0.983 ) CSUD ( 0.984 )
2 CNOR ( 0.507 ) SUD ( 0.394 ) NORD ( 0.17 ) NORD ( 0.162 )
3 SARD ( 0.071 ) NORD ( 0.344 ) CNOR ( 0.048 ) SARD ( 0.058 )

Authority Centrality : Top Three Receivers

2015–2017 1 NORD ( 0.855 ) CNOR ( 0.571 ) CNOR ( 0.585 ) SUD ( 0.589 )
2 SARD ( 0.346 ) SARD ( 0.566 ) SUD ( 0.580 ) SARD ( 0.572 )
3 SUD ( 0.282 ) SUD ( 0.519 ) SARD ( 0.567 ) CNOR ( 0.570 )

2018–2019 1 SUD ( 0.677 ) CSUD ( 0.713 ) SARD ( 0.699 ) SARD ( 0.687 )
2 NORD ( 0.505 ) CNOR ( 0.506 ) SUD ( 0.556 ) SUD ( 0.580 )
3 CNOR ( 0.455 ) NORD ( 0.365 ) CNOR ( 0.446 ) CNOR ( 0.435 )

Table 8: Centrality ranking of zones according to hub and authority scores for intra-day networks.

The table shows the top three zones central to transmitting risk (according to the BG-
SEMX), which are CSUD, CNOR, and SUD for 2015-2017, and SARD, SUD, and NORD for
2018-2019. For sub-period 2015-2017, CSUD and SUD are in the top three of all four com-
peting methods, albeit with different rankings, while CNOR is in two of the four competing
methods. For the second sub-period, SARD and NORD are among the top-ranked zones in
three of the four networks.

Authority centrality shows that in the event of a major shock to a zone or group of zones,
the physical zones most affected are CNOR, SARD and SUD during the 2015-2017 sub-period,
while CSUD, CNOR and NORD are the most affected during the 2018- 2019 period. Including

13See Borgatti (2005) for details on network centrality measures.
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to the ranking of competing methods shows that, during the 2015-2017 sub-period, CNOR,
SARD and SUD are the top three risk receivers in at least three of the four methods. For
the second period, CNOR makes the list for all four methods, while NORD is ranked highly
in two of the four methods.

Overall, we find evidence that intra-day volatility spill-overs in the Italian energy market
during the 2015-2017 sub-period spread from CSUD, CNOR, and SUD, while in the 2018-
2019 sub-period, they spread from SARD, SUD, and NORD to other zones. The other central
zones on the receiving side of intra-day volatility spill-overs are CNOR, SARD and SUD (in
2015-2017), and CSUD, CNOR and NORD (in 2018-2019).

5.3. Inter-day volatility connections
This section illustrates the results of inter-day (or across-day) volatility channels in the

physical zones of the market. We begin by selecting the appropriate lag of the VAR and
VARX via a BIC for different lag orders (p ∈ {1, . . . , 7}). Table 9 shows the BIC scores
corresponding to the different lag orders. The minimum BIC score selects p = 1 as the
optimal lag order to model inter-day volatility interconnectedness.

p=1 p=2 p=3 p=4 p=5 p=6 p=7

VAR -8.46 -8.06 -7.61 -7.17 -6.72 -6.34 -5.98
VARX -7.95 -7.57 -7.17 -6.75 -6.30 -5.97 -5.59

Table 9: BIC scores for lag order selection. Boldface values indicate the minimum BIC.

Using the selected lag order, we carry out the yearly rolling window estimation for the
Bayesian Graphical (BG) and the Lasso-VAR and VARX. To clarify, the VAR models the
across-time lead-lag relationship between log price volatilities. The VARX = VAR + X, where
X = exogenous factors (actual/forecast electricity demand and forecast wind generation).

Feb 2015 Jan 2016 Jan 2017 Jan 2018 Jan 2019 Dec 2019

10

20

30

40

50

60

70 BG−VAR
BG−VARX

Lasso−VAR
Lasso−VARX

Figure 9: Yearly rolling series of network density from the BG-VAR & VARX and Lasso-VAR & VARX.

The across-day analysis of the network topology is carried out via rolling-window inter-
day volatility connectedness in the sample period by comparing networks estimated from
BG-VAR, BG-VARX, Lasso-VAR, Lasso-VARX, i.e. with and without exogenous variables.
In this paradigm, we estimate the rolling-window network for all four models between March
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Figure 10: Averaged Inter-day Networks 2015–2017. Dark (light) green-links indicate strong (mild)
positive impacts, and dark (light) red-links for strong (mild) negative effects. The node size is based on hub
scores.
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Figure 11: Averaged Inter-day Networks 2018–2019. Dark (light) green-links indicate strong (mild)
positive impacts, and dark (light) red-links for strong (mild) negative effects. The node size is based on hub
scores.

2015 and December 2019, which enables us to investigate the impact of electricity demand
and the contribution of renewable energy sources (in our case wind) on inter-day volatility
connectivity between zones in the last five years (2015-2019). Figure 9 plots network densities
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over the period March 2015 to December 2019. Network density peaks can be observed in
the period around the last quarter of 2015, 2016, with a mild peak around mid-2017, and
the last quarters of 2018 and 2019. Conversely, troughs occur in the second quarter of 2015,
mid-2016, Q1 in 2017 and a relatively lengthy trough from Q4 2016 until Q2 in 2018, followed
by one from Q4 2018 until Q1 2019 and finally in Q3 2019. One feature is that all four models,
namely the BG-VAR, BG-VARX, the Lasso-VAR and Lasso-VARX have similar patterns in
the evolution of network densities.

Period Method VAR VARX VAR ∩ VARX

2015–2017 BG 28 29 28
Lasso 27 29 27

2018–2019 BG 22 25 22
Lasso 22 25 22

Table 10: Total number of links in inter-day sub-period networks of the competing methods.

BG-VAR BG-VARX Lasso-VAR Lasso-VARX

Hub Centrality : Top Three Transmitters

2015–2017 1 SUD ( 0.583 ) NORD ( 0.604 ) CNOR ( 0.664 ) CNOR ( 0.690 )
2 NORD ( 0.566 ) SUD ( 0.593 ) SUD ( 0.501 ) SUD ( 0.513 )
3 CNOR ( 0.473 ) SARD ( 0.341 ) SARD ( 0.317 ) SARD ( 0.290 )

2018–2019 1 SUD ( 0.742 ) SUD ( 0.664 ) SUD ( 0.706 ) SUD ( 0.706 )
2 SIC ( 0.618 ) SIC ( 0.628 ) SARD ( 0.523 ) CNOR ( 0.395 )
3 CNOR ( 0.161 ) CSUD ( 0.258 ) CNOR ( 0.352 ) SARD ( 0.393 )

Authority Centrality : Top Three Receivers

2015–2017 1 CSUD ( 0.628 ) CNOR ( 0.575 ) CSUD ( 0.697 ) CSUD ( 0.688 )
2 SARD ( 0.527 ) CSUD ( 0.531 ) SARD ( 0.494 ) SARD ( 0.486 )
3 CNOR ( 0.506 ) SARD ( 0.515 ) CNOR ( 0.418 ) CNOR ( 0.360 )

2018–2019 1 CSUD ( 0.590 ) NORD ( 0.534 ) NORD ( 0.596 ) NORD ( 0.695 )
2 NORD ( 0.497 ) CSUD ( 0.522 ) CSUD ( 0.561 ) CSUD ( 0.541 )
3 CNOR ( 0.472 ) CNOR ( 0.492 ) CNOR ( 0.528 ) CNOR ( 0.436 )

Table 11: Centrality ranking of zones according to hub and authority score from inter-day networks.

5.4. Comparing Model Performance
As discussed above, BG-SEM(X) infers directed-acyclic-graphs that are suitable for mak-

ing causal inferences, while the Lasso-SEM estimates networks with bi-directed links. Thus,
comparing the performance of the BG-SEM(X) against the Lasso-SEM(X) may not reveal
explanatory power of the former since, by construction, the two approaches capture differ-
ent network structures of the data. The above problem does not occur when comparing the
BG-VAR(X) with the Lasso-VAR(X), since both models estimate a Granger-causality type
of network where links are directed from lagged variable to current variables and there are no
bi-directions.

We compare the performance of the competing methods by computing the network marginal
likelihood for the in-sample and out-of-sample predictive exercise to investigate how well the
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Bayesian graphical approach fits the data against the Lasso model (see Table 12). We evalu-
ate the out-of-sample performance in terms of the root mean square forecast error (RMSFE)
and the predictive marginal likelihood. We perform the out-of-sample prediction via a multi-
period forecasting of one month ahead. Since it is well known that VAR models perform
better out-of-sample, due to the autoregressive structure of the model, it makes it easier to
use past observations to forecast future realizations. Thus, we compare the out-of-sample per-
formance of the models between the BG-VAR and BG-VARX with their Lasso counterparts.

Intra-day Models Inter-day Models

BG Lasso BG Lasso

SEM SEMX SEM SEMX VAR VARX VAR VARX

Network Marginal Likelihood Score

-7.2569 -6.9646 -6.8760 -6.7594 -7.6190 -7.5579 -7.6390 -7.5582
(0.4030) (0.2965) (0.1451) (0.1322) (0.2218) (0.1994) (0.2306) (0.2136)

Out-of-Sample RMSFE

- - - - 0.4663 0.4630 0.4697 0.5280
- - - - (0.1031) (0.1030) (0.1056) (0.1063)

Predictive Marginal Likelihood

- - - - -6.1972 -6.1879 -6.2085 -6.3835
- - - - (0.3177) (0.3147) (0.3261) (0.3633)

Table 12: Summary statistics of model performance. Bold values indicate the best choice for each metric.

The results in Table 12 show that among the Intra-day estimated models, the Lasso-SEMX
records the best and highest score followed by the Lasso-SEM. Among the Intra-day Bayesian
graphical models, the BG-SEMX emerged as the best model to fit the contemporaneous causal
channels of volatility spillover among the zones. Among the Inter-day estimated models, the
BG-VARX reports the best and highest score followed by the Lasso-VARX.

In terms of forecasting performance, the BG-VARX reports the best RMSFE followed by
the BG-VAR. The BG-VARX also dominates in terms of the predictive marginal likelihood
followed by the BG-VAR.

Thus, we find evidence that models incorporating exogenous macro factors, like actual/forecast
electricity demand and forecast wind generation, perform better at fitting the volatility
spillover structure in the zonal electricity data. In conclusion, we signal that the choice
of the best models depends on the goal of the analysis. Thus, if the interest is to understand
the contemporaneous causal directions volatility spillover among the zones, then intra-day
BG-SEMX model will be the optimal choice, since it presents an unambiguous direction of
influence among the zones. If the purpose of the analysis is to obtain a parsimonious model
for forecasting, then the BG-VARX will be the best choice, since it takes advantage of the
autoregressive structure of the data.

5.5. Sensitivity Analysis
Several robustness checks were carried out to study the sensitivity of our empirical results

using a different measure of price volatility calculated as the median of the absolute deviations
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from the median daily price. We construct daily median absolute deviation (σMad
i,t ), as a

measure of outlier-robust realized price volatility, as follows:

σMad
i,t = med |Pi,l,t − P̄i,t|, l = 1, . . . , N (9)

where med(Ai,t) is the median value of Ai on day t and N is the total number of hours in a
day, i.e., N = 24.14

The same sub-periods, 2015-2017 and 2018-2019, are used to examine the various scenarios
of the network structure. For instance, how does using the standard deviation compare with
the use of the median absolute deviation for the various models utilized in the analysis? In
other words, how sensitive is our modelling framework to different definitions of volatility?
To answer this question, we investigated the above scenarios via within-day and across-day
dependencies as illustrated below.

5.5.1. Intra-day Networks
Overall, the results shown in Figures 12 and 13, obtained using the MAD version of the

volatility measure, are related and comparable to the risk structures of the findings, using the
standard deviation, in Figures 7 and 8, respectively, for the BG and Lasso approaches.

In detail, comparing the different network risk structures in the sub-periods, the results
for robust volatility confirm the structures obtained with the standard deviation. There are
some small differences in the colors of links and sometimes in the size of nodes. For instance,
in the BG-SEMX network 2015-2017 the only red link is from SIC to NORD (Figure 7), while
the sole red link is from CSUD to NORD for the same model in the robust framework (Figure
12). Moreover, the node is largest for SARD in the BG-SEMX model 2018-2019 with standard
deviation (Figure 8), becoming the largest for NORD in the same model and period, using
MAD (Figure 13). The similarity between the two analyses is confirmed by comparing Table
7 to Table 13 which show that the number of network links is very similar in the non-robust
and robust case.

In addition, analyzing Table 14 and comparing it with Table 8, shows that the most
influential zone in terms of risk transmission underlying almost all models is CSUD for both
sub-periods (2015–2017 and 2018–2019) and this confirms the findings of the intra-day analysis
based on the standard deviation (Table 8). Moreover, the role of top-transmitter played by
NORD - quite clear in the non-robust analysis - is confirmed in the robust analysis (Table 8).
CNOR is the zone that is most vulnerable to risk from other zones underlying all models in
both sub-periods, confirming the results of the non-robust analysis, as shown in the bottom
panel of Table 8. The role of SARD as top-receiver, as seen in the previous analysis, is even
stronger with robust volatility in both sub-periods (see Table 14, bottom panel).

5.5.2. Inter-day Networks
The across-day network structures deduced as a result of the BG-VAR/BG-VARX esti-

mated according to the MAD in the sub-period 2015-2017 (Figure 14) are comparable to the
structures related to the same models estimated on the standard deviation of prices (Figure
10). In the sub-period 2018-2019, the structures obtained on the MAD (Figure 15) generally
have fewer connections between the zones than the networks produced by the same models

14As pointed out in section 5.1, the choice of the daily volatility measure affects the final results. In this
case, by using the median, we are comparing different hours of the day.
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Figure 12: Averaged Intra-day Networks 2015–2017 - Robust volatility. Dark (light) green-links
indicate strong (mild) positive impacts, and dark (light) red-links for strong (mild) negative effects. The node
size is based on hub scores.
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Figure 13: Averaged Intra-day Networks 2018–2019 - Robust volatility. Dark (light) green-links
indicate strong (mild) positive impacts, and dark (light) red-links for strong (mild) negative effects. The node
size is based on hub scores.

using the standard deviation (Figure 11). A striking feature, however, is the fact that, using
the standard deviation, the linkages with negative impacts on the network structures are less
clear (or absent) in the network topological structures produced using the MAD. This might
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Period Method SEM SEMX SEM ∩ SEMX

2015–2017 BG 15 23 15
Lasso 18 18 18

2018–2019 BG 13 18 10
Lasso 13 15 13

Table 13: Total number of links in intra-day sub-period networks of the competing methods. Robust volatility.

BG-SEM BG-SEMX Lasso-SEM Lasso-SEMX

Hub Centrality : Top Three Transmitters

2015–2017 1 CSUD ( 0.997 ) CSUD ( 0.745 ) CSUD ( 0.988 ) CSUD ( 0.989 )
2 CNOR ( 0.074 ) NORD ( 0.477 ) NORD ( 0.153 ) NORD ( 0.150 )
3 NORD ( 0.032 ) CNOR ( 0.400 ) SARD ( 0.015 ) SARD ( 0.019 )

2018–2019 1 CNOR ( 0.867 ) NORD ( 0.941 ) CSUD ( 0.974 ) CSUD ( 0.979 )
2 CSUD ( 0.497 ) SUD ( 0.277 ) NORD ( 0.217 ) NORD ( 0.183 )
3 SARD ( 0.032 ) SARD ( 0.141 ) SARD ( 0.070 ) SARD ( 0.085 )

Authority Centrality : Top Three Receivers

2015–2017 1 SUD ( 0.710 ) SARD ( 0.737 ) SARD ( 0.710 ) SARD ( 0.702 )
2 SARD ( 0.639 ) CNOR ( 0.413 ) SUD ( 0.514 ) SUD ( 0.530 )
3 CNOR ( 0.285 ) CSUD ( 0.406 ) CNOR ( 0.480 ) CNOR ( 0.473 )

2018–2019 1 NORD ( 0.812 ) CNOR ( 0.835 ) SARD ( 0.833 ) SARD ( 0.812 )
2 SARD ( 0.420 ) CSUD ( 0.503 ) SUD ( 0.451 ) SUD ( 0.509 )
3 SUD ( 0.295 ) SARD ( 0.198 ) CNOR ( 0.315 ) CNOR ( 0.279 )

Table 14: Centrality ranking of zones according to hub and authority score from intra-day networks. Robust
volatility.

be due to larger volatilities in the sub-period 2018-2019. These conclusions are confirmed
comparing Table 15 to Table 10.

On the whole, in both sub-periods (2015-2017 and 2018-2019) NORD is the zone underly-
ing all four models (BG-VAR/VARX and Lasso-VAR/VARX) with an influential role in the
spread of risk to other zones (see Figures 14 and 15 and the corresponding numerical results
in Table 16). However, in sub-period 2018–2019, SUD and NORD, with varying rankings,
are the zones that transmit the most risk. To sum up, the results in Figures 14 and 15,
obtained on the robust volatility, have similar network patterns for the findings in Figures 10
and 11 with the Bayesian graphical approach and the Lasso regularization method applied
to the non-robust standard deviation. See Table 16 for their numerical comparison. Again,
Table 16, (bottom Panel), shows the top-three risk recipients for sub-periods 2015-2017 and
2018-2019. For instance, SARD is among the top receivers in all the four models BG-VARX
and Lasso-VARX with varying rankings in the sub-period 2015-2017. This is not the case
in sub-period 2018-2019. In addition, all models are representative of the same zones, i.e.
SARD, CSUD, CNOR have the same order of ranking in the two sub-periods. Compared to
the non-robust volatility, NORD is the only top risk receiver not confirmed (see Table 11,
bottom panel.)
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Figure 14: Averaged Inter-day Networks 2015–2017 - Robust volatility. Dark (light) green-links
indicate strong (mild) positive impacts, and dark (light) red-links for strong (mild) negative effects. The node
size is based on hub scores.
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Figure 15: Averaged Inter-day Networks 2018–2019 - Robust volatility. Dark (light) green-links
indicate strong (mild) positive impacts, and dark (light) red-links for strong (mild) negative effects. The node
size is based on hub scores.

6. Conclusions

This paper investigates risk propagation between zones in Italy in a period in which
the presence of intermittent renewables increased significantly (2015-2019). Bayesian graph-
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Period Method VAR VARX VAR ∩ VARX

2015–2017 BG 24 27 24
Lasso 23 27 23

2018–2019 BG 16 17 15
Lasso 13 16 13

Table 15: Total number of links in inter-day sub-period networks of the competing methods. Robust volatility.

BG-VAR BG-VARX Lasso-VAR Lasso-VARX

Hub Centrality : Top Three Transmitters

2015–2017 1 NORD ( 0.645 ) CSUD ( 0.617 ) CSUD ( 0.858 ) CSUD ( 0.796 )
2 CSUD ( 0.576 ) NORD ( 0.581 ) NORD ( 0.43 ) NORD ( 0.507 )
3 SUD ( 0.369 ) SUD ( 0.427 ) CNOR ( 0.216 ) SUD ( 0.257 )

2018–2019 1 NORD ( 0.751 ) NORD ( 0.703 ) NORD ( 0.976 ) NORD ( 0.912 )
2 SUD ( 0.606 ) SUD ( 0.638 ) SUD ( 0.165 ) SUD ( 0.321 )
3 SARD ( 0.261 ) SARD ( 0.305 ) SARD ( 0.142 ) SARD ( 0.253 )

Authority Centrality : Top Three Receivers

2015–2017 1 CNOR ( 0.711 ) CNOR ( 0.65 ) CNOR ( 0.769 ) CNOR ( 0.825 )
2 SARD ( 0.574 ) SARD ( 0.643 ) SARD ( 0.525 ) SARD ( 0.441 )
3 CSUD ( 0.292 ) CSUD ( 0.29 ) SUD ( 0.27 ) SUD ( 0.248 )

2018–2019 1 CNOR ( 0.746 ) CNOR ( 0.688 ) CNOR ( 0.959 ) CNOR ( 0.907 )
2 CSUD ( 0.585 ) CSUD ( 0.611 ) CSUD ( 0.246 ) CSUD ( 0.381 )
3 SARD ( 0.287 ) SARD ( 0.364 ) SARD ( 0.136 ) SARD ( 0.171 )

Table 16: Centrality ranking of zones according to hub and authority score from inter-day networks. Robust
volatility.

ical models are used to estimate how electricity price volatility spreads between the areas
into which a zonal electricity market is divided. Specifically, we innovatively use different
versions of Bayesian graphical models, with and without exogenous variables, (BG-VAR, BG-
VARX, BG-SEM, BG-SEM, BG-SEMX) and compare them to benchmarks (Lasso-SEM and
Lasso-SEMX) to investigate risk propagation in the Italian electricity market, accounting for
volatility interconnections between zones. One of the most important original contributions
of the paper is the disentangling of the analysis into the intra-day and inter-day transmission
of risk between zones. Our analysis provides a better understanding of risk transmission. For
instance, it is well-known that imbalances of electricity supply and demand due to opera-
tional failures, congestions and other causes of shocks such as the presence of more renewable
sources in these interconnections are likely to affect the stability and efficiency of the power
supply and impact on the volatility of prices. As such, our analysis provides guidance for
policymakers to identify zones that can cause these kinds of instability within the electricity
system over a day or across days.

In view of this, our approach is to see whether exogenous variables can affect the intra-
day and inter-day spreading of risk among zones. Within this framework, we identified and
quantified zones that are major transmitters of risk and zones that are vulnerable to volatility
spill-overs within a day and over different days, according to the BG-SEMX and BG-VARX,
respectively. Considering all summary tables about hub and authority centrality in section
5 and focusing just on the top position of the rankings, we can try to give some synthetic
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indications about risk contagion in the Italian zonal electricity market. The top transmitter
within the same day is CSUD, because it is at the top in all rankings obtained through the
Lasso-SEM and Lasso-SEMX in both sub-periods, using both the standard deviation and the
MAD as price volatility measure. Moreover, the score of CSUD is always double than that of
the second zone in the same ranking. In the case of the BG approach, CSUD is clearly the
top transmitter in 2015-2017. The physical connections of CSUD with three other physical
zones (CNOR, SUD and SARD) has surely made CSUD the most important hub for the
transmission of risk to the whole system.

In sub-period 2018-2019 CSUD is not even among the three top-transmitters when ex-
ogenous variables are included, considering both the standard deviation and the MAD as
volatility measures. This means that in the second sub-period, the unidirectional nature of
the BG combined with the influence of regressors has changed the contagion structure in the
market. SARD and NORD become the top-transmitters, with standard deviation and MAD,
respectively. A possible explanation could be the strong increase of wind and hydroelectric
generation observed in 2019, particularly in the Northern regions (hydro) and in Sardinia
(wind). On the other hand, the most important receiver in the intra-day analysis is SARD,
which is the top-receiver in all the rankings obtained using the MAD of prices in the Lasso
estimation (with and without regressors) in both sub-periods. According to the robust SEM
approach (based on MAD) SARD is the top-receiver in the first sub-period with regressors,
but is always among the three-top receivers also in the remaining cases. Another important
risk receiver is CNOR, which is at the top of the ranking two times in the BG approach (one
in the first sub-period and one in the second) and in both Lasso models based on the standard
deviation in the sub-period 2015-2017. Moving to the inter-day analysis, two zones can be
identified as top-transmitters: NORD and SUD. The main difference between the two zones is
that SUD is the most selected in the rankings of models relying on the standard deviation as
measure of price volatility in both sub-periods and with or without external regressors, while
NORD is the main top-transmitter when MAD is used. However, SUD is always between
the three top-transmitters, even when MAD is used, meaning that the presence of spikes in
hourly data for SUD plays a strong influence on the final results. Recalling that CSUD is the
top-transmitter in the within-day analysis, we can conclude that the role of main transmitter
is passed to the SUD zone when a one-day lag is considered in the connection between phys-
ical zones. Therefore, the SUD and CSUD zones play a big role in the spread of volatility in
the Italian zonal market. Finally, it is worth stressing the identification of the CNOR as the
top receiver in the inter-day analysis: this zone is always the first of the rankings when the
MAD is used as measure of price volatility and replaces SARD as top-receiver moving from
intra- to inter-day analysis.

Our findings are relevant for policy in terms of market monitoring at the intra-day and
inter-day level and require policymakers to pay close attention to these interdependencies.
We empirically analyze the sparse interconnectedness of the Italian zonal electricity market
to clearly identify the significant channels of relevant potential risk spill-overs and thus build
up full picture of risk transmission in the system. Analyzing the zonal market provides
useful insights for power generation companies and transmitters in Italy, with implications
for markets such as commodities and other financial markets. Furthermore, these findings are
relevant for policymakers because they can be used to view and quantify the extent of risk
exposure and the spread of systemic risk in the zonal market. They also establish a platform
to identify the spread of systemic risk providing a support mechanism for the design of optimal
environmental and energy policies by prudently including early-warning and local investment
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signals. Similarly, they are useful for risk managers and other practitioners in their efforts to
anticipate and prepare for shocks in the electricity market increasing its resilience. Finally,
given this amount of information, market participants are able to take prudent decisions in
their trading and dealings in the zonal electricity market. In this light, our analysis could be
extended to modeling other segmented commodity markets.

For example, it is clear that the CSUD zone is the top-transmitter of risk within the same
day, so investments supporting the transmission grid for this zone could be beneficial not
only for the Central South, but also for the entire Italian market, reducing price volatility.
Conversely, zones receiving risk from zones where intermittent renewable plants are installed
(for example SARD) might claim for re-balancing investments in their area. The results
obtained suggest that the maximum lag for the spreading of risk is one day. This could be
interpreted as a sign of low persistence in the spread of risk which usually disappears within
24 hours. However, when the inter-day network and the intra-day network are compared
some differences are evident. For example, we have seen that CSUD is substituted by SUD
as top transmitter in the inter-day models, while SARD is replaced by CNOR as top receiver
of risk. Market signals could induce the efficient use of transmission grids in order to capture
most of the economic benefits from proper congestion management and promote effective
network utilization. This indicates that network analysis and its application to systemic risk
is a promising tool, providing a platform to meet current and future challenges and solutions
to the problems of society and emerging risk. It may also indicate the peak and end of crises.
For instance, linkages between the spread of systemic risk in energy systems and the presence
of renewable energy sources are extremely significant, especially in the effort to create a single
European electricity market, incorporating bidding zones.
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Appendix A. Network Sampling Algorithms

The Bayesian inference of a network graph underlying a system of linear equations is made
feasible by integrating other parameters analytically to obtain a marginal likelihood function
over graphs (see Ahelegbey et al., 2016a; Geiger and Heckerman, 2002). Let Vy = (yi, . . . , yn)
be the vector of indices of response variables, and Vx = (x1, . . . , xq) the indices of the predictor
variables in X. The network relationship from xψ ∈ Vx to yi ∈ Vy can be represented by
(Gyi,xψ = 1). Following Geiger and Heckerman (2002), the closed-form expression of the local
marginal likelihood is given by

P (Y |Gyi,xψ) = π−
1
2N ν

1
2ν0
0

ν
1
2νn
n

Γ
(ν0+T−nr

2
)

Γ
(ν0−nr

2
)
( |X ′ψXψ + ν0Inv |
|R′iRi + ν0Inr |

) 1
2νn

(A.1)

where Γ(·) is the gamma function, Ri = (Yi, Xψ), Id is a d-dimensional identity matrix, nψ is
the number of covariates in Xψ, nr = nψ + 1, ν0 > nr is a degree of freedom hyper-parameter
of the prior precision matrix of (Y,X), and νn = ν0 + T . Equation (A.1) indicates that only
the ratio of the posterior sum of squares depends on the data. Thus, we reduce computational
time by pre-computing the part of (A.1) that is independent of the data, for different values
of nr ∈ [1,m] and for fixed ν0 = m + 2 and T . We also pre-compute the posterior of the
full sum of squares matrix and extract the sub-matrices that relate to {Xψ} and {(Yi, Xψ)}.
For computational details of the score function (see Ahelegbey et al., 2016a). The algorithm
presented for sampling G is a Metropolis-within-Gibbs sampler with random walk proposal
distribution (see Algorithm 1 and Algorithm 2).
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Algorithm 1 Sampling SEMX Network
1: Let Xt = (Y ′t , Z ′t)′ be the vector of explanatory variables for the SEMX model.
2: Set of responses Vy = (y1, . . . , yn) and predictors Vx = (x1, . . . , xq), Vy ⊆ Vx
3: Initialize G(1) = ∅
4: for h = 1 to Total iterations do
5: Pick at random (r1, . . . , rn) from permutations of the integers {1, . . . , n}
6: for i = 1 : n do
7: Set ỹi = yri , ỹi ∈ Vy and G∗ = G(h)

8: Draw a candidate explanatory variable, xk ∈ Vx\{ỹi}
9: if G∗(xk, ỹi) = 1 then set G∗(xk, ỹi) = 0

10: Add/remove edge; G∗(ỹi, xk) = 1−G∗(ỹi, xk)
11: if G∗ is acyclic then sample u ∼ U(0,1)

12: Compute φ = exp [ logP (Y |G(∗)
yi )− logP (Y |G(h)

yi ) ]
13: if u < min{1, φ} then G(h+1) = G∗

14: else G(h+1) = G(h)

15: else G(h+1) = G(h)

Algorithm 2 Sampling VARX Network
1: Let Xt = (Y ′t−1, . . . , Y

′
t−p̂, Z

′
t)′ be the vector of predictors for the VARX model.

2: Set of responses Vy = (yi, . . . , yn) and predictors Vx = (x1, . . . , xq)
3: Initialize G(1) = ∅
4: for yi ∈ Vy do
5: for xj ∈ Vx do
6: Compute φa = P (Y |G(1)

yi,∅) and φb = P (Y |G(1)
yi,xj )

7: if φb > φa then G
(1)
yi,xj = 1

8: else G
(1)
yi,xj = 0

9: for h = 2 to Total iterations do
10: for yi ∈ Vy, set G(∗)

yi = G
(h−1)
yi do

11: Draw a candidate explanatory variable, xk ∼ Vx
12: Add/remove link from xk to yi: G(∗)

yi,xk = 1−G(h−1)
yi,xk

13: Compute φ = exp [ logP (Y |G(∗)
yi )− logP (Y |G(h−1)

yi ) ].
14: Draw u ∼ U(0, 1).
15: if u < min{1, φ} then G

(h)
yi = G

(∗)
yi

16: else G
(h)
yi = G

(h−1)
yi

For the empirical application, we set the hyper-parameters as follows: πij = 0.5 (which
leads to a uniform prior on the graph space), η = 100, δ = n + 2 and Λ0 = δIn. We set
the number of MCMC iterations to sample 20,000 graphs and ensure that the convergence is
tested via the potential scale reduction factor (PSRF) of Gelman and Rubin (1992).
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Appendix B. Autocorrelation functions
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Figure B.1: Autocorrelation functions of the log-volatility (log of standard deviation of prices). Lags are on
the x-axis.
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