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Abstract

Background

The environmental prevalence of widely prescribed human pharmaceuticals that target key

evolutionary conserved biomolecules present across phyla is concerning. Antidepressants,

one of the most widely consumed pharmaceuticals globally, have been developed to target

biomolecules modulating monoaminergic neurotransmission, thus interfering with the

endogenous regulation of multiple key neurophysiological processes. Furthermore, rising

prescription and consumption rates of antidepressants caused by the burgeoning incidence

of depression is consistent with increasing reports of antidepressant detection in aquatic

environments worldwide. Consequently, there are growing concerns that long-term expo-

sure to environmental levels of antidepressants may cause adverse drug target-specific

effects on non-target aquatic organisms. While these concerns have resulted in a consider-

able body of research addressing a range of toxicological endpoints, drug target-specific

effects of environmental levels of different classes of antidepressants in non-target aquatic

organisms remain to be understood. Interestingly, evidence suggests that molluscs may be

more vulnerable to the effects of antidepressants than any other animal phylum, making

them invaluable in understanding the effects of antidepressants on wildlife. Here, a protocol

for the systematic review of literature to understand drug target-specific effects of environ-

mental levels of different classes of antidepressants on aquatic molluscs is described. The

study will provide critical insight needed to understand and characterize effects of antide-

pressants relevant to regulatory risk assessment decision-making, and/or direct future

research efforts.

Methods

The systematic review will be conducted in line with the guidelines by the Collaboration for

Environmental Evidence (CEE). A literature search on Scopus, Web of Science, PubMed,

as well as grey literature databases, will be carried out. Using predefined criteria, study

selection, critical appraisal and data extraction will be done by multiple reviewers with a

web-based evidence synthesis platform. A narrative synthesis of outcomes of selected
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studies will be presented. The protocol has been registered in the Open Science Framework

(OSF) registry with the registration DOI: 10.17605/OSF.IO/P4H8W.

Introduction

The widespread occurrence of human pharmaceuticals in the environment is a cause of

increasing concern. Particularly worrisome is the presence, in the aquatic environment, of

neuromodulatory pharmaceuticals developed to specifically target critical-function biomole-

cules such as monoamine neurotransmitter re-uptake transporters, their synaptic receptors

and deamination enzymes in humans, that are well conserved across animal phyla [1–5].

Monoamine neurotransmitters are biogenic amines containing one amine group (and essen-

tially include serotonin, norepinephrine and dopamine), that are critical in the modulation of

virtually all brain functions, and play key roles in the regulation of physiological processes

such as development, reproduction, autonomic functions, hormone secretion and complex

behaviours [6–9]. The synaptic activity of monoamines is tightly modulated by their re-uptake

transporters, pre-and post-synaptic receptors and deaminating oxidases [6,10,11]. These criti-

cal-function biomolecules regulate the intensity and duration of synaptic monoamine signal-

ing, and for this reason, they are key pharmacological targets for antidepressant drugs [6,12].

Antidepressants are a major class of psychotropic drugs that target and inhibit monoamine re-

uptake transporters, their synaptic receptors and terminating enzymes, thereby interfering

with the endogenous modulation of monoaminergic neurotransmission, a key neurophysio-

logical process [13]. They are used for the treatment of depression, and are also prescribed for

other disorders such as generalized anxiety disorders, obsessive-compulsive disorder, panic

disorder, social anxiety disorder and specific phobia [14–16].

Based on their modes of action and chemical structures, antidepressants are classified into

four major groups: monoamine oxidase inhibitors (MAOIs), tricyclic antidepressants (TCAs),

selective serotonin reuptake inhibitors (SSRIs), and serotonin-norepinephrine reuptake inhib-

itors (SNRIs) [17,18]. Additionally, however, a fifth group of largely heterogenous antidepres-

sant drugs exists, and are accordingly, referred to as ‘atypical’ or ‘other’ antidepressants [19].

Briefly, MAOIs exert inhibitory action on monoamine oxidases (the enzymes that oxidatively

deaminate monoamine neurotransmitters). TCAs, named after their tricyclic chemical struc-

tures, inhibit serotonin and norepinephrine re-uptake transporters, and also exert antagonistic

actions on post-synaptic adrenergic α1 and α2, muscarinic and histamine H1 receptors. SNRIs

like TCAs also inhibit serotonin and norepinephrine re-uptake transporters, but they do so

with little, or no, pharmacological action on the post-synaptic receptors affected by TCAs.

SSRIs act therapeutically as selective inhibitors of serotonin reuptake transporters, while atypi-

cal antidepressants exert a range of pharmacological actions on monoamine neurotransmitter

system including acting as antagonists and agonists of several pre- and post-synaptic receptors,

and inhibitors of serotonin, norepinephrine and dopamine transmembrane transporters

[13,19].

Interestingly, in recent times the prescription and consumption of antidepressants have

consistently been on the increase due to a burgeoning prevalence of depression in society

[20,21]. Indeed, depression is projected to become the leading cause of disease morbidity

worldwide by 2030 [20,22,23]. Although readily biotransformed following consumption by

patients, antidepressant drugs are essentially excreted as parent compounds and pharmaceuti-

cally active metabolites [24–29]. As they are not completely removed by wastewater treatment

processes [30,31], antidepressant drugs end up in wastewater effluents discharged into surface
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waters [32–34], and in sewage sludge or reclaimed water applied to agricultural land [35]. The

fallout of this has been their widespread occurrence and detection in the aquatic environments

across the globe, with different antidepressant drugs and their active metabolites detected in

soil, ground water, surface water and wildlife [34,36–39]. While current environmental antide-

pressant levels range from ng/L to low μg/L, they are designed to act on their molecular targets

at particularly low concentrations [40,41]. Consequently, investigations into potential effects

of exposure to antidepressants in wildlife have been on the increase owing to their known neu-

romodulatory effects in humans [42,43]. There are now a considerable number of laboratory

studies describing a range of toxicological effects following exposure to various antidepressants

in different aquatic species. However, drug target-specific effects of different classes of antide-

pressants in non-target aquatic organisms remain to be understood [18,41,43,44]. Importantly,

data suggest molluscs may be more vulnerable to the effects of antidepressants than any other

animal phylum because multiple key physiological processes (including reproduction and

development) are regulated by monoamines rather than vertebrate-type sex steroids in mol-

luscs. To illustrate, in vertebrates the enzyme 5α-reductase is involved in the conversion of tes-

tosterone to the more potent form, dihydrotestosterone (DHT), which is important for the

formation of male phenotype and the development of external genitalia during embryogenesis

[45–47]. However, inhibition of 5α-reductase during early development in the freshwater pul-

monate gastropods, Biomphalaria glabrata and Physella acuta, has been shown to affect shell

formation [48], and to date, no androgen receptor (the target for DHT action) has been identi-

fied in molluscs [49–52], while monoamines have been reported to have a role in shell forma-

tion in the Pacific oyster, Crassostrea gigas. [53,54]. Furthermore, in the bivalves, Nodipecten
subnosus, Crassostrea gigas and Argopecten purpuratus, monoamines are detected in the

gonads, with increased concentrations during gonadal growth stages, which decrease after

spawning [55–57], suggesting a direct role in reproduction. Additionally, in freshwater pulmo-

nate gastropods including Biomphalaria glabrata, dopamine is detected in the albumen gland

with increased concentrations during perivitelline fluid secretion, while in Helisoma duryi, it is

involved in perivitelline fluid secretion [58,59]. In Helisoma trivolvis, serotonin is involved in

larval development via serotonin receptor-modulated cAMP-dependent regulation of cell divi-

sion [8].

Molluscs are a highly biodiverse group (second only to arthropods in terms of number of

species), displaying a wide variety of ecologically unique body forms, sizes, lifestyles, and

microhabitat preferences [60,61]. This makes them indispensable for understanding ecological

effects of anthropogenic chemicals in the aquatic environments. Molluscan monoamines are

produced by the nervous system where they mediate chemical communication between neu-

rons, with other innervated cell types, or exert hormonal action when released into the blood

[62–65]. There are also hormone-producing neurons, the neurosecretory cells, which together

with their targets, form the neuroendocrine system that is the main source of hormones in

molluscs [61,66]. Interestingly, targets for antidepressant action, including monoamine trans-

membrane transporters, monoamine synaptic receptors and monoamine oxidases, are present

in molluscs [67–72], and the effective concentrations of antidepressant drugs in molluscs are

in the range of those commonly detected in the aquatic environment [73–75]. Also, the need

to consider the effects of substances of high environmental relevance and poor scientific

underpinning in molluscs has long been recognized as a priority area [76].

While there are reviews on general effects of antidepressants on aquatic organisms (with

data on molluscs), including Fong and Ford [77], published almost 10 years ago; Silva et al.

[78], with scope limited to SSRIs; Sehonova et al. [42] and Moreira et al. [79], with very brief

sections on molluscan data; and Canesi et al. [80], limited to bivalves, they are all narrative

reviews. Based on continued research interest, a considerable number of individual studies on
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different pertinent aspects of the subject now exist. The present study, therefore, seeks to

understand target-specific effects of environmental levels of different classes of antidepressants

in molluscs through a systematic review of literature. The study provides the opportunity to (i)

synthesize the first systematic review of the effects of exposure of aquatic molluscs to different

classes of antidepressant drugs, with the potential to provide critical insight relevant to regula-

tory risk assessment decision-making, (ii) identify research gaps in our current understanding

of their mechanisms of action, (iii) establish best practice within research studies to improve

future work in the field, and (iv) identify questions for which available evidence provide clear

answers and further research may not be necessary. The authors are solely responsible for the

design and conduct of the study, and it does not involve any form of external organizational

stakeholder engagement.

Objective of the review

Primary question. The primary question of the study is: what are the target-specific

effects of environmental levels of different classes of antidepressant drugs on aquatic molluscs?

The primary question consists of the following PECO (population, exposure, comparator and

outcome) components—Population: molluscs (all aquatic species and all life stages) exposed to

laboratory-based water-borne antidepressants; Exposure: acute/chronic exposure to any class

of antidepressants and/or their major pharmaceutically active metabolites; Comparator: vehi-

cle-treated or naïve controls; Outcome: all study outcomes directly related to behaviour, move-

ment, feeding, respiration, reproduction, development, immunity, neurophysiology, and

intercellular signaling events.

Methods

The systematic review will be conducted in line with the guidelines by the Collaboration for

Environmental Evidence (CEE) [81]. Accordingly, the systematic review protocol was devel-

oped following the CEE Reporting standards for Systematic Evidence Synthesis (ROSES) [82]

(See S1 Table for ROSES; S2 Table for PRISMA-P in compliance with PLOS One protocol

publication criteria). As recommended by Whaley et al. [83], the protocol has been registered

in the Open Science Framework (OSF) registry, with the Registration DOI: 10.17605/OSF.IO/

P4H8W.

Searching for articles

While two bibliographic databases are usually considered sufficient for evidence synthesis

involving animal studies [84], prioritizing sources with the largest number of relevant articles

has been suggested [85]. Consequently, article searches will be conducted in three key biblio-

graphic databases, namely Web of science, Scopus and PubMed. The search strategy outlined

in Table 1, comprehensively includes key study population and exposure terms for peer-

reviewed original research articles in English language using information retrieval sensitivity

and relevance criteria for each of the databases. The search strategy was developed in consulta-

tion with an academic liaison librarian as recommended for evidence synthesis [86]. Further,

as supplementary searches for grey literature in catalogues of academic theses, databases of

conferences and proceedings, preprint servers and funders’ databases of on-going research

have been recommended for mitigating publication bias in systematic reviews [87], additional

searches will be conducted in ProQuest Dissertations and Theses Global, Open Access Theses

and Dissertations, OpenGrey, Grey Literature Report, Research square and EcoEvoRxiv for

grey literature. The supplementary searches will be carried out using key study terms [88].
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Article screening and study eligibility criteria

Screening process. A web-based evidence synthesis platform, EPPI-Reviewer [89], will be

used to manage article search across all selected databases. In the first phase, articles will be

screened using only titles and abstracts within EPPI-Reviewer to facilitate uniform review by

two reviewers. The outcome of this screening phase will then be evaluated by both reviewers

for correctness, and a third reviewer will be contacted to provide an independent opinion in

the event of any discrepancy. In the second phase, the full text of articles that have been

selected and approved in the first phase are then screened against the pre-defined inclusion

and exclusion criteria shown in Table 2 by two reviewers. In the final phase, full text-screened

articles that are selected and approved by the two reviewers using the study PECO-based inclu-

sion and exclusion criteria will be included in the study. This procedure will be replicated for

grey literature.

Table 1. Study search strategy for use in Scopus, Web of Science and PubMed.

Bibliographic

databases

Search strings

Scopus (TITLE-ABS-KEY (mollusc*OR gastropod*OR mussel* OR clam OR clams OR bivalves

OR mollusk* OR snail*OR cuttlefish) AND TITLE-ABS-KEY (“psychotropic drug*" OR

antidepressants OR sertraline OR fluoxetine OR citalopram OR paroxetine OR

amitriptyline OR venlafaxine OR mirtazapine OR dosulepin OR clomipramine OR

dosulepin OR escitalopram OR fluvoxamine OR imipramine OR nortriptyline OR

lofepramine)) AND (LIMIT-TO (DOCTYPE, "ar"))

Web of Science,

PubMed

(Mollusc* OR Gastropod* OR Mussel*OR Clam OR clams OR Bivalves OR Mollusk*OR

Snail*OR cuttlefish) AND (“psychotropic drug*” OR Antidepressants OR Sertraline OR

Fluoxetine OR Citalopram OR paroxetine OR amitriptyline OR venlafaxine OR

mirtazapine OR Dosulepin OR Clomipramine OR Dosulepin OR Escitalopram OR

Fluvoxamine OR Imipramine OR Nortriptyline OR Lofepramine)

https://doi.org/10.1371/journal.pone.0287582.t001

Table 2. Study inclusion and exclusion criteria.

Study

parameters

Inclusion criteria Exclusion criteria

Study design Waterborne antidepressant laboratory exposures In vitro studies, feed-borne exposure, injection of

antidepressants

Population All genera/species and life stages of aquatic molluscs Molluscan cell lines, land molluscs, any other animal

phylum

Exposure Exposure to all classes of antidepressants (parent compound/active metabolites) singly

administered

Antidepressant mixtures, other pharmaceuticals/xenobiotics

Outcome

measures

Effects on behaviour, locomotion, respiration, feeding, reproduction, development,

immunity, neurophysiology, and intracellular signalling events

Any general toxicity effects including biotransformation,

cytotoxicity, cytogenetics and mortality

Language English Any other language

Publication

date

No restriction No restriction

Others Nil Nil

https://doi.org/10.1371/journal.pone.0287582.t002
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Eligibility criteria. As the study seeks to understand the effects of antidepressants in the

aquatic environment on aquatic molluscs, only whole-animal laboratory studies, and not in
vitro exposure studies, will be included. Additionally, since the pharmaceuticals of interest are

antidepressants that are widely detected in the aquatic environment, only waterborne antide-

pressant exposure studies will be included. As a result, studies on other routes of exposure,

including foodborne antidepressants and injection of antidepressants will not be included. On

account of the habitat of interest, only aquatic molluscs (all life stages), and not terrestrial spe-

cies, will be eligible for inclusion. With regard to test chemical eligibility criteria, laboratory

exposure studies on all antidepressant drugs and their major active metabolites (since pharma-

cologically active metabolites of antidepressants are also widely detected in the aquatic environ-

ment) will be included. Furthermore, since it is difficult to delineate constituent chemical effects

in mixture exposures [90], only studies using singly administered antidepressants will be

included. However, studies containing data on both mixtures and singly administered antide-

pressants will be included in order to extract data for singly administered antidepressants only.

Antidepressants are designed to pharmacologically target monoamine re-uptake transport-

ers, pre-and post-synaptic receptors of monoaminergic neurons, and monoamine oxidases. In

molluscs, monoamines have been shown to have functions in key physiological processes

including behaviour [91,92], locomotion [93,94], respiration [95,96], feeding [97,98], repro-

duction [57,59] development [8,99] and immunity [100]. As a result, outcome data directly

related to these physiological processes will be included in the study. Furthermore, as recent

studies have revealed that in addition to monoaminergic system, other neural targets especially

those directly involved in the regulation of neuronal survival, neuronal growth and synaptic

plasticity, may play more direct roles in antidepressant effects [101,102], outcome data on

neurophysiology, and intracellular signaling events will be included in the study. Conversely,

study outcomes other than those selected by these criteria including biotransformation, cyto-

toxicity, cytogenetics, mortality and any other general toxicity effects will not be included in

the review. On the whole, external validity, the relevance of each included study to the system-

atic review question [103,104], was centrally factored into the eligibility criteria development.

Study validity assessment. ‘Internal validity’, ‘risk of bias’ or ‘critical appraisal’ generally

describes the quality assessment of each of the included studies in a systematic review [103].

The assessment is usually based on a set of questions defined in advance to address various

types of bias [105]. In environmental science, this is generally flexible, and the development

and operationalization of specific internal validity assessment tools depend on a number of

key study design and performance parameters [104]. Consequently, a comprehensive set of

quality parameters bordering on study design and performance were defined for the risk of

bias assessment of each included study in this systematic review (Table 3) while adopting a

framework of select sources of bias [86,105]. Specifically, our tool is framed into a set of 10

questions which requires a yes-or-no answer. The answers (yes = 1; no = 0) to the quality ques-

tions for each of the included studies are summed to further classify each study into any of

three quality categories, namely low risk of bias (� 8), medium risk of bias (6–7) and high risk

of bias (� 5). The appraisal will be done by one reviewer, and evaluated by three reviewers for

completeness and consistency.

Data extraction. All data on the systematic review PECO statement including study ID

(or authors and the year of publication) and data on all study characteristics of each included

study will be extracted. Data extraction will be carried out on EPPI-Reviewer platform to facili-

tate uniform extraction. Extraction will be carried out by one reviewer, while extracted data

will be evaluated by two independent reviewers for completeness and consistency. Where

there are incomplete data, authors will be contacted for clarifications. Finally, extracted data

will be made available as an additional data file.
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Potential effect modifiers. Potential effect modifiers, or factors that may cause some

degree of heterogeneity in the response of molluscs exposed to antidepressants, will be

extracted from each included study and considered in the review. We have selected the follow-

ing key potential effect modifiers associated with toxicological responses of biological systems

to chemical exposure:

• Species, sex, reproductive strategy, life stage and chosen endpoints

• Antidepressant class and exposure concentrations

• Exposure duration, renewal regime and percentage renewal

Data synthesis, presentation and discussion

Given the wide variety of aquatic molluscan species, classes of antidepressant drugs and expo-

sure conditions reported in laboratory studies, the data are not considered to be amenable to

meta-analysis [105], and only narrative synthesis will be conducted. Accordingly, data on all

study characteristics and statistically significant results of each included study will be presented

with tables [105]. Further, data within distinct subgroups comprising species of molluscs, class

of antidepressants, exposure concentrations and nature of effects will be summarized, com-

pared and contrasted [106]. The synthesis will be followed by an extensive discussion. Where

Table 3. Study critical appraisal framework.

Key study parameter questions Study ID Study ID Study ID

Yes No Yes No Yes No

Were the control and treatment groups similar at baseline?

Is there any difference in the way the control and treatment groups were handled during the experiment (apart from difference due to

treatment)?

Was the experiment replicated?

Was an appropriate control provided?

Were the exposure concentrations experimentally determined in the exposure medium?

Is it likely that the water renewal level and frequency are sufficient to maintain exposure conditions?

Are the test concentrations environmentally relevant or were the internal (tissue) levels determined?

Is there any difference in the way the outcome measures in both control and treatment groups were accessed?

Is there selective reporting in the way the outcome measures are presented and reported?

Is the study free from any other form of bias of concern not listed here?

Summation � 8 6–7 � 5

Risk of bias level low risk

of bias

medium

risk of

bias

high risk

of bias

https://doi.org/10.1371/journal.pone.0287582.t003
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full text-screened articles are excluded from data synthesis, a list of affected studies with the

reason for exclusion will be provided. The EPPI-Centre approach to assessing the overall

robustness of the synthesis will be adopted, and described in terms of the internal validity of

included studies [107].
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