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1 Introduction

“Slingshot” arguments are usually formulated to demonstrate some un-
expected simplicity of semantical or ontological structures lying behind
certain philosophical ideas about meaning and reference. Church’s rea-
soning from 1943 [6] is often mentioned as the first argumentation of
this kind, where Church criticizes Carnap’s idea of treating a denota-
tion of a sentence as a relation between the sentence and a proposition.
The aim of Church’s critique was to show that the theory proposed by
Carnap, which reduced meanings of terms and sentences to extensions,
actually led to some kind of collapse: it emerged that there are only
two denotations of all sentences — Fregean logical values the True and
the False. The same conclusion (although justified in a different way)
was again formulated by Church in 1956 [7, §04], and the similar ar-
guments for the paradoxical statement that any two sentences with the
same truth value refer to only one fact (proposition) were considered by
Godel (1944! [16]) and Davidson (1967 [9]). Two approaches by Quine

Tt is an interesting detail that until now it is not clear if Godel formulated his ar-
gument perhaps before Church’s formulation of the argument in 1943. According to
the Godel — Schilpp correspondence ([19, p. 217-232], see also Parsons [36]), Godel
was invited by Schilpp on November 18, 1942 to write a paper on Russell’s logical
work. As stated in the correspondence, Church read the manuscript for the purpose
of linguistic correction sometimes between June/July 1943 and September 27, 1943,
when the manuscript was finally sent to the editor. At the end of the text Godel ex-
pressed his thankfulness to Church for linguistic corrections. However it is not evident

“Published in: Kordula Swietorzecka (ed.), Gédel’s Ontological Argument: His-
tory, Modifications, and Controversies, Warszawa: Semper, 2015, pp. 123-162. Here
slight typographic corrections.



(in 1953 [38], and 1960 [37, §41]) are also regarded as “slingshot” argu-
mentations. They intend to undermine the sense of constructing modal
logic in view of the fact that necessity is reducible to factuality.

The common and crucial feature of all the mentioned arguments
is to use abstract terms, definite descriptions or/and modal contexts
together with some generally acceptable logical tools: the way of un-
derstanding logical equivalence and the rule of composition according
to which the substitution of any expression by a co-referential expres-
sion does not change the reference of an expression where this sub-
stitution has been carried out. The relatively simple construction of
these arguments is considered on the one hand as a source of their
high pragmatic power to undermine the validity of the so called sit-
uationallfactualistic/propositionalistic (and also modal) semantics or
ontologies, and on the other as a reason to speak of them as of rather
non-interesting logical puzzles.> We refrain from general statements
about the mentioned arguments and focus our analysis on a version
of Godel’s “slingshot” argument reconstructed in a specific Godelian
onto-theological context.

Our motivation comes at first from Godel’s original text: the com-
mentary to Russell’s work on mathematical logic [16], which contains
Godel’s “slingshot” argument, is considered in general as being the es-
say that "marks the transition of Godel’s main attention from the quest
for definite mathematical results in logic to investigations of more dis-
tinctly philosophical (and historical) character” [52, p. 305], and as be-
ing “the first and the most extended philosophical statement” of Godel
[36, p. 103]. We claim that some of these philosophical references are
clearly present also in the fragment containing the “slingshot” argu-
ment. In the frame of our philosophical interpretation we link (at least
some version of) Godel’s “slingshot” to his theological views in order

that Church had at that time already finished his review of Carnap’s book. Although
Church’s review is published in the Philosophical Review for May 1943 (nr. 3 of vol.
52), it is possible, as mentioned by Neale [30], that this number was actually published
later than May, and thus only after Church had already read Godel’s paper. The con-
tent of Church’s paper does not help in solving this question. Church does not refer to
Godel (nor Godel to Church’s review), and Church’s 1943 argumentation is to some
extent different from that which is present in Godel’s approach. Church uses A abstrac-
tions instead of 7 descriptions, and gives more details about meaning (Sinn) semantics
(similarities are emphasized in [45]).
2Cf. discussion between Neale and Oppy [34].



to get a more clear and complete picture.

The idea to link Godel’s “slingshot” argument with Godel’s onto-
logical argument and his theological views was put forward by Sobel.?
We elaborate upon it in the context of Godelian theory of the most pos-
itive being and formulate a certain kind of Gddel’s “slingshot” which
does not trivialize this theory but rather makes the vision of its universe
richer, where everything that happens (and everything that does not
happen) is essentially dependent on a necessarily existent God. In this
respect, our standpoint also follows the interpretation of modal collapse
from [27]. The reduction of necessity to factuality (again originally no-
ticed by Sobel in [43, 42], and proved in an interesting way with the use
of abstraction operator and a sort of substitution into modal contexts)
is not understood here as a negative effect of Godel’s onto-theological
theory of reality but as an intended realization of the “rise of modalities
to the perfect being” [27].

2 The problem and the argument

Godel formulated his “slingshot” argument in order to comment on the
way in which the Russellian concept of using expressions with operator
“the” avoids, as he calls it, “Frege’s puzzling” conclusion according to
which all true propositions signify the only one object — the True, and
false propositions signify the False [16, p. 122]. G6del’s commentary
shows at first the compatibility of two components of Russell’s philos-
ophy: his theory of reference and his realism, being reduced over time
to logical atomism.* Simultaneously, it exposes the essential difference
between Russell’s approach and Frege’s idea to treat sentences as denot-
ing expressions. Contrary to Frege, Russell claims that sentences play
essentially a different semantical role than names: we say that names
denote (or signify) objects, while sentences indicate facts (situations).
To be more precise, only true sentences refer to facts, and false ones do
not indicate anything, or simply: they indicate nothing, as expressed by

31t is expressed in the correspondence with a co-author of this paper (S. Kovac) on
February 5, 2004, as well as in [45, p. 135].

4Godel mentions Russell’s “pronouncedly realistic attitude”, which “has been grad-
ually decreasing in the course of time” [16, p. 120—121]. Even in Russell’s theory of
definite descriptions Godel recognizes a realistic attitude of finding the “right” solution
(unless Russell meant it merely in a psychological sense) [16, p. 123].



Godel in an analogy to Frege’s truth-value the False [16, p. 122]. There-
fore, in the context of Russell’s proposal, as Godel notes, the problem
of a possible collapsing effect may actually concern only a plurality
of facts corresponding to true sentences, and this effect is blocked by
Russell precisely by treating descriptions as contextual expressions, not
as proper names. Russell eliminates definite descriptions by definitions
according to which expressions containing syncathegorematic phrases
with “the” abbreviate some complex sentences built with quantifiers
and variables (this is the realization of the idea that every simple sen-
tence with a definite description is a statement about concepts). After
all, in Godel’s opinion, the formal advantage of Russellian theory does
not lead to a general and convincing solution. Russellian approach is not
satisfactory, especially from Godel’s Platonic perspective: there are still
definitions to be considered that introduce names referring to investi-
gated objects. So, according to Godel, the way of blocking the Fregean
puzzle as proposed by Russell rather “evades” the problem than offers
the real solution [16, p. 123].

All Godel’s argumentation is expressed in a rather sketchy form.
We thus start by extracting its main steps.

Godel begins with a consideration about the semantical status of
definite descriptions and assumes, in contrast to Russell, that

P1 adescriptive phrase denotes the object described [16,
p. 123].

This assumption together with the second “apparently obvious axiom”
according to which

P2 the signification of a composite expression, contain-
ing constituents which have themselves a significa-
tion, depends only on the signification of these con-
stituents (not on the manner in which this significa-
tion is expressed) [16, p. 122]

leads to the paradoxical statement that

(*) the sentence “Scott is the author of Waverley” signi-
fies the same thing as “Scott is Scott” [16, p. 122].

Godel sketches the extension of this unwanted effect to any pair of sen-
tences. To this aim, he formulates further assumptions:

4



Assm1 “p(a)” and the proposition “a is the object which has
the property ¢ and is identical with a” means the
same thing [16, p. 122, ftn. 5]

Assm2 every proposition “speaks about something”, i.e., can
be brought to the form ¢(a) [16, p. 122, ftn. 5]

and infers the final conclusion that

SG all true sentences have the same signification (as well
as all false ones) [16, p. 122].

Godel points out that the crucial nerve of this collapse actually comes
from the conjunction of mentioned postulates P1 and P2, and hence
the obvious way to avoid the collapse would be to reject either P1 or
P2. Russell rejects P1, accepting that in contrast to it, “a descriptive
phrase denotes nothing at all” [16, p. 123], and probably does not drop
(or restrict) the principle expressed by P2. As already said, Godel finds
that the way chosen by Russell is not in general satisfactory. Before we
sketch a few other possible solutions consisting of restrictions of P2,
we want to show the main reasoning in some precise and clear logical
form.

3 Formal reconstruction of Godel’s “slingshot”
argument. Free non-Fregean proposal

There are quite extensive reconstructions of Godel’s argumentation.
Most of them are expressed in metalanguage to keep the semantical
character of the argument. This style — in some aspects very different
one from each other — is taken e.g. by Neale in [30] and also by So-
bel in [45]. Since proposals offer in part a very informative analysis of
Godel’s approach, we refer to some of their results. However, in our pre-
sentation we use the idea initiated by Wojtowicz [53, 54], developed by
Shramko and Wansing [40, 41], and express Godel’s “slingshot” argu-
ment in an object language with identity connective = of non-Fregean
logics. The motivation for choosing this tool for an analysis of a sort
of “Fregean collapse” follows the philosophical background of non-
Fregean logics pointed by their founder Suszko [46, 47]: let us remind



ourselves that the essential idea lying behind this approach was to dis-
tinguish the equivalence of propositions (facts) from their identity, and
so to describe the situational ontology, in which the following implica-
tion is not valid:

FA (A< B) —» (A= B).

Non-Fregean logics are actually intended to describe some possible
connections between equivalence and identity that are weaker than those
expressed by FA. “Slingshot” arguments in general revolve around cer-
tain conditions just leading to FA.

We proceed in a way similar to the approach from [41] but with
some modifications and new remarks.

We take the minimal non-Fregean logic PCl as a starting point.

The logic considered is formulated in a so called W language.’
Its vocabulary consists of: (i) individual variables: x,y,z, xg,...; (ii)
predicates: X!, YI,ZI,Xll, D CN identity predicate =; (iii) con-
nectives: —, A, V, =, &, =; (iv) quantifier symbols V, 3; (v) parenthe-
ses.

Individual terms are individual variables, while formulas are de-
fined in the following way:

¢r=X"x1...x0 [ X1 =221 2@ | (D1 A2) | (h1V ¢h2)
| (01 = ¢2) | (1 & ¢2) | (@1 = ¢2) | Vxop | Axgp

Expression x; # x, will be used as the abbreviation for —x; = x;.

Further, we use « and 8 as metavariables representing terms or for-
mulas, and metasymbol = so that (¢ = B) is understood as @ = 8 or
(a = B), dependently on the category of « and .

By a universal closure of a formula ¢ we understand any formula
obtained from ¢ by prefixing to it any sequence of universal quantifiers
with possible length 0.

Following Bloom [5], we characterize the considered logic by using
the above notion of universal closure. We accept the axiomatics given
by Omyta in [31].

5The general characterization of W languages is given e.g. in [5] (‘W for Wittgen-
stein).



Definition 1 (PCl). Logic PCl is defined by all universal closures of

CpPC classical propositional axiom schemes,
and of the formulas of the following shapes:
Q1 Yla Vx¢ — ¢(y/x),y is free for x in ¢
¥1b Vx(¢ — ¢) — (Vx¢ — Vxy)
Vlc ¢ — Yx¢, where x ¢ free(d)
AV Ax¢p & =Yx—¢
1D il «a = B, where a and B are different at most in case of
bound variables
2 @=u)—> G-y
iSubs (a; =B A... Aaisk = Bjk)
= (F(ai,...,aiwk) = FBjlai, . ... Bjkl@ivk)),
for every k > 0 and every F being a predicate (then a, 3
are individual variables) or every F being a connective
(then a, B are formulas, in case of two-place connectives,
the prefix notation is changed to the infix one)
QUID iV Vx(¢p =v) - (Vx¢p = Vxy)
id VYx(¢ =¢) - Axg = Axy).

The primitive rule is MP: + ¢ — Y, = + .

Let us note that both identities are reflexive, symmetric and transi-
tive:

Proposition 1. All universal closures of the following schemes are PCI
derivable:

PCl r a=a (ref =)
PCl v (@28)— B=a) (sym =)
PCl v+ (@=B)—>((B=y)—> (@ =v)) (trans =).

Scheme (ref =) is a case of scheme (i1); (sym =) and (trans =) easily
follow from the axioms.

Let us now investigate possible extensions of PCl by definite de-
scriptions. The first proposals to use definite descriptions in certain



non-Fregean systems come from Bloom [5] and Omyta (first published
in [33]). Both authors follow the style of Lewandowski and Suszko [28]
and refer to the approach by Bernays [4] in order to retain the Fregean
idea that grammatical rules for the use of such expressions, treated as
individual terms, should be independent of any extralinguistic condi-
tions.

The symbol 7is used in [4] in context 1x(¢, ), which reads: the only
one x which is ¢ or is otherwise t, where ¢ is an individual variable or
constant.

The same notation is adopted in [28], together with the following
schemes:

DI* Jjx¢(x) = ¢(1x(p(x), 1)/x)

D2* T xg(x) - (X)) = 1,
where

M3; 3jx¢ =gr Vy(p & x = y).

D1* and D2* may be added to the first order predicate logic with iden-
tity as axioms introducing definite descriptions. As it is shown in [28],
this addition is non-creative and equivalent to the second way of intro-
ducing 7 terms by assuming the equivalence

(/™) = x(d(x),1) o (Vx(p(x) & x =)V (=i xp(x) AL’ = 1)).

The fact that the extension of any W language by (3/ <>*) is non-creative
was shown by Bloom in [5]. Omyta uses (1/ «&*) to introduce 7 terms in
[32].

The described solution could be modified to keep the usual use
of 7 operator and take expressions 1x¢ as terms. After the appropri-
ate enlargement of the language, all universal closures of the following
schemes would be accepted:

D1 3Jix¢(x) = ¢(1x¢(x)/x)

% Another approach comes from Hilbert and Bernays [22, p. 383]. In this case any
7 term may be introduced into a language only if the unique existence of the object
which fulfills the condition given by this term is provable. The use of descriptions for
which this condition is not fulfilled is incorrect already on the level of the formation
of expressions.




D2 —3Jix¢p(x) = ixp(x) = 1y-y =y,

coming from D1* and D2* for t =: 7y—y = y.” Equivalently, all univer-
sal closures of the following equivalence could be adopted:

(/<) t=1x¢(x) & (Yx(@(x) & x=1) V (=J1xd(x) A t=1y7y=Y)).

The same way of introducing 7 terms into classical predicate logic with
identity is proposed by Kalish and Montague in [23].2 Sobel, too, bases
his analysis of Godel’s “slingshot” argument on this approach [45].
However Kalish and Montague block the derivability of expressions
like dx(x = 7y—y = y) (©) by not introducing ¢ = ¢ instead of x = x.
They modify the unwanted use of 7 terms (occuring in the same position
as free variables) in connection with identity by adopting the primitive
rule Vx(x =t — ¢) = ¢(t/x) into their system. After all, we do not
want to weaken the sense of existential quantifier to the sense connected
with the provability of (©), but choose another solution of this problem
offered by the free logic approach.’ The use of the existence predicate
regulated by free logic will enable us to articulate certain connections
between the “slingshot” effect and the necessary existence of some in-
dividuals.'®

We are going to base our analysis on a free version of PCI. To this
end we consider the minimal positive free logic PFL expressed in first-
order predicate language with 7 terms and predicate =. We use symbols
t and ¢’ for individual variables or 7 terms.

Definition 2 (PFL). PFL is characterized by
CPC classical propositional axiom schemes,

formulas of the shapes: ¥Y1b, Y1c¢, 3/V, and

"Bernays introduces primitive constant 0 to the vocabulary, and then uses the defi-
nition 1x@(x) =g 1x(h(x), 0) (cf. [4, p. 54-55]).

8They consider a natural deduction system and so, instead of D1 and D2, they in-
troduce two primitive rules for “proper” and “improper” descriptions, respectively [23,
p. 318-319].

This is obvious in connection with the onto-theological system of Gddel consid-
ered below, in which the existence of God is expressed just by 3 (cf. Theorem 1 below).

10Tn analysis of Godelian “slingshot” argument from [40], PCl is used (and some
strengthening of it), conservatively extended with 7 terms. The derivability of (©) is
redundant with respect to the results presented there.



V1aE Vx¢ — (Et — ¢(t/x)) tis free for x in ¢
E VxEx

il* t=t
Subs t =ty = (@(t1/x) = ¢(t2/x)) 11,12 are free for x in ¢
Eid Et & dxx =1t

The basic rules are MP and Ul: + ¢ = + Vx¢.

Now we combine PCl and PFL. We take our W language with 7
terms of the form 1x¢, and consider the following system:

Definition 3 (fPCl;). fPCl; is defined by all universal closures of sche-
mata CPC,VY1aE, E, Y1b, Y1c, 3/¥, Eid, i1, i2, iSubs and rule MP.

(Now metavariables @ and 8 represent descriptive terms, t0o.)
It is rather obvious that fPCl; is consistent. Let us add to PFL, con-
servatively extended with connective =, all formulas of the shape

FAA (Y o x) o W =x).

This enrichment, which we name PFL-+FAA, is consistent. Otherwise,
a derivation of some formula A as well as of A could be formulated
in PFL- + FAA. Every step of this derivation would be obtained by
means of PFL- or, if the transformed formula contains =, it could be
eliminated by means of FAA and MP, and thus, we could proceed using
only axioms and rules of PFL=. In this way, the derivation of A and —A
would yield inconsistency of PFL=. The fPCl; is consistent because it
is a subsystem of FD= + FAA.

To start with our formulation of the “slingshot” argument, we say
that the assumption P1 is accepted by the introduction of definite de-
scriptions as individual terms into our language.

The principle of composition P2 is expressed by scheme iSubs.

We use the notation L[Tq’] to speak about any consistent theory T
based on logic L and such that ¢ is provable in T.

Let us come to Godel’s argumentation concerning the unexpected
statement (*). Sentences “Scott is Scott” and “Scott is the author of
Waverley” are meant to “signify the same thing”, which follows directly
from the following fact:

10



Proposition 2 (SG1). fPCH[T®]1F ¢ =1 =t = wx¢(x), where ® =: t =
1x¢(x) for some t and ¢.

Proof.
1 t=1wmx¢(x) P
2 (t=tAt=1mx¢d(x)) > (t=t=1t=1x¢p(x)) iSubs
3 t=t=1t=1x¢(x) 1,2, il

O

The next step is to prove a more general result. To this end we con-
sider Godel’s assumption Assml. Let us take, first, its cautious formu-
lation using the following scheme:

(o) P(t) =t =1x(x =t A P(x)), for any atomic formula
P(t)

We name fPCl;[T°] any consistent theory T based on fPCl;, such that
T+ (o).
Now we can state the following:

Proposition 3 (SG2). fPCIH[T°] + (Xt A Yt - (Xt =7Y1)

Proof.

1 Xt=t=m(x=1tAXx) (o)

2 Yt=t=m(x=tAYx) (o)

3 Xt—>t=m(x=1tAXx) 1,i2

4 Yt—>t=mx(x=tAYx) 2,i2

5 t=mx(x=1tAXx) il, iSubs
- (=t=t=1x(x=1tAXx))

6 t=mxx(x=tAYx) il, iSubs
- (t=t=t=1x(x=tAYx))

T Xt->@=t=t=mx(x=tANXx)) 3,5

8 Yt—-(t=t=t=mx(x=tAYx)) 4,6

9 Xt—>(t=t=Xr) 7,1,trans =

10 Yt—>(t=t=Y1) 8,2, trans =

11 (XtAYt)—> (Xt=Yr) 9, 10, trans =

11



To obtain a result more general than SG2, we assume the scheme:
(o) ¢=1t=1x(x=1tAd(t)), ¢ possibly containing 7.

Identity (o) is a special case of (e), and in this sense (o) gives a more
extended meaning to Assm1 than (o).

Now we can notice that in any consistent theory fPCl;[T°] the con-
junction of any two formulas i and y implies their identity:

Proposition 4 (SG3). fPCLH[T* ]+ W Ax) = W =x)
Proof.

1 y=t=ux(x=tAY) (o)
2 ys=t'=mx(x=t'Ay) (o)
3 y-ot=mx(x=tAY) 1,i2
4 y->t'=mx(x=t'Ay) 2,i2
5 t=wx(x=1AY)) il, iSubs
s @=t=t=w(x=tAY)
6 y-o>@=1=y) 3,5,1,trans =
7 t=t >(=t=mx(x=tAy)) 2
8 t=t' > (y—-t=m(x=1tAy)) 7,i2
9 t=mxx(x=tAy) il, iSubs

_)(l’:l’El’ZUC(x:tAX))
10 t:t’_)(X_)([:[EZ:DC(x:t/\X)) 8’9

11 1= >K—->@t=t=y)) 7,10, trans =
12 t=t' > WAy - W =yx) 11,6, trans =
13 t#tV=t=mx(x=tAx#Vt) (o)
14 t#¢ =t =mx(x=t Ax#1) (o)
15 t#0 ANy > mx(x=tAx#L1) 13,3, i2
=wm(x=tAY)
16 x(x=tAx#t)=m(x=tAY) > iSubs
t=m(x=tAx#t)=t=mx(x =t AY))
17 G#UANY)> (t=mx(x=tAx#L) 15,16
=t=w(x=tAY))
18 t# P/ Ay > (@#1 =) 17,13, 1 trans =
19 120 Ay > @ #1 =y) like 18, by
14,12, iSubs, 2
20 t#t > WAy DU =y) 18,19, trans =
21 WAy - W=y 12,20

12
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The derivation is essentially the same as in case of PCl; extended by
(e), as presented in [41].

In connection with SG3, let us notice that, according to [41], in no
PCI[T*] we could prove

) (W A ) = W= x).

Otherwise, we would already reach the collapse of < and =.

Perhaps SG3 could justify the abovementioned Godel’s remark about
non-symmetry of Frege’s and Russell’s theories: although Frege and
Russell have essentially different opinions about reference (denotation
or signification) of true sentences, they keep similar view in case of
false ones

[...] according to Russell’s terminology and view, true sen-
tences “indicate” facts and, correspondingly, false ones in-
dicate nothing. Hence Frege’s theory would in a sense ap-
ply [in the context of Russell’s construction] to false sen-
tences, since they all indicate the same thing, namely noth-
ing. But different true sentences may indicate many differ-
ent things. [16, p. 122]

After all, the authors of [41] say that the acceptance of (e) allows the
derivation of FA on the ground of the next known non-Fregean logic
WBQ);.

Definition 4. The logic WBQ; is the conservative 1 extension of WBQ
which results from PCl by the addition of the following primitive rule:

RB Ao B = A=B, forany A & B whichis a law of classical
predicate logic."!

WBQ (or already its sentential fragment WB) weakens the differ-
ence between identity and equivalence in case of classical laws. In par-
ticular, the formulas of the following shape are WBQ derivable:

P (W= - W =x

1A, B represent any formulas of any given W language.

13



A proof can be established directly from iSubs and RB.
For our aim it is sufficient to introduce only the extension of fPCl;
by (-|F), named fPCl; + (-|%). The addition of (e) leads us to FA:

Proposition 5 (SG4). fPCl; + (L[5 [T*] F (¥ & x) = W = x)

The proof consists, first, of the derivation of (¥ Ax) — (¥ = y) as it
is for SG3 (Proposition 4), and then, in the same way, of the derivation
of (= A =y) = (= = —y). Finally, we use (7).

We generalize the above result to logics stronger than fPCl; + (-|7):
Proposition 6 (SGS). For any L 2 fPCl; + (L[5), LIT*]+ (¥ & x) —
W =x).

This shows that a deductive minimum to achieve FA is even weaker
than that which is described in Theorem 2.2 [41, p. 28].

As a comment to stronger and stronger versions of the “slingshot”
argument, let us say that they are always derivable thanks to a special
combination of logical and extralogical components. In our approach,
the first essential step is the decision to treat definite descriptions as in-
dividual terms. The next one is the application of substitution in the
contexts with =. The extralogical assumptions become stronger and
stronger: in the weakest version, SG1, we have to assume some non-
trivial identity of individuals: ¢ = 7x¢(x); in the strongest version, SGS,
we need to assume the identity of some kind of propositions/facts (situa-
tions) (e). Actually, the assumption (e) is mentioned as a generalization
of Assml justified by Assm2. In Godel’s opinion, this generalization
validates the general form of his “slingshot” argument. Actually, SG5
may be considered as a proposition realizing this effect. However, we
want to check the effect of disturbing the balance between logical and
extralogical assumptions by looking also for a justification of (e).!?

12 Assm1 and its formal counterparts would be questioned on the ground of Quine’s
principle of shallow analysis, according to which an adequate formalization of any
sentence should not be more complex than the formalized sentence. Following this
idea, the sentence “Scott is the author of Waverley” would be adequately formalized by
¢(t) and not by ¢ = 1x¢(x), because the second formula has higher level of complexity
than the considered sentence. The same applies to any sentence “a is the object which
has the property ¢ and is identical with a” — the shallow formalization would be ¢(a)
and not a = 1x(x = a A ¢(a/x)). Baumgartner [3] shows that the acceptance of Quine’s
principle blocks the discussed argumentation. Quine’s principle leads to the restriction
of the substitution in = contexts to the expressions with the same level of complexity.
Thus this principle is not applicable to (e).

14



To this aim, we consider the weakest theory FD of descriptions,
based on minimal free logic PFL (proposed in [51]).
FD is obtained from PFL by the addition of the scheme

AFD Vy(y = mx¢ & (Vx(¢p — x = y) A ¢(y/x))), with different x and y.
So we consider the following system:
Definition 5 (FD). FD = PFL + AFD!3

We note that

Proposition 7. FD + Vy (¢ & y = 1x(x = y A ¢(x/y))), x ¢ free(o).

Proof.

1 99 CPC

2 y=y il*

3 Vx(x=yAodlx/y) > x=y) CPC, Ul

4 ¢ o (Vx((x=yAd(x/y) > x=y)Ay=yA¢) 1,2,3

5 Ey->(=mx(x=yAdx/y) o Vx((x=y AFD,
ANP(xX[y)) 2 x=y) Ay =y A@)) V1aE

6 Ey— (4o y=1x(x=yAdx/y) 4,5

T Vy(Ey = (¢ &y =1x(x =y A¢x/y))) 6 Ul

8 Vy(¢ o y=1x(x=yAdx/y)) 7Y1b,E

O]

3The next logic — FD; — results from FD by adding ¢ = 1xx = ¢ (AFD1). In this
frame we can speak also about non-existent objects using descriptive terms: in FD; we
say that even contradictory objects are self-identical: 7y -y = y = mxx = 1y—y = y.
FD, still seems to be a rather intuitive theory of descriptions in comparison with its
strengthening to FD,. In FD; there still does not appear the questionable solution with
the existence of the special outer domain individual aull: 1y -y = y. This problematic
situation appears in FD, obtained from FD by adding all universal closures of r =
xP(x) o Yyt =y & (¢(y) AVx(¢p - y = x))) (AFD2, x and y being different
variables).

Van Fraassen and Lambert [51] consider FD, as a sort of marriage of Russelian and
Fregean ideas on descriptions. Indeed, we can derive, in FD,, Elix¢ < JyVx(¢ <
x = y) (with the condition from AFD), which expresses the Russellian way of using
descriptive phrases as well as: yVx(¢p & x = y) — d(xd(x)/x), ~IyVx(p & x =
y) = 1x¢(x) = 17y—y = y. These implications realize precisely Fregean style of treating
1 terms (cf. D1, D2).
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Let us now combine FD with the next strengthening of PCI.

This time we refer to logic WTQ, which extends WBQ. More pre-
cisely, we extend our W language by sentential constant 1 and modal
operator O for necessity, and add to WBQ new axioms of the following
shapes:

GF) I=A—-4)
() DA=@A=1),

as well as the following specific rule:
RT +AoB=+A=B, forany A < B e WBQ.

It is already known that O has §4 properties in the logic thus obtained,
called here WT Qo (cf.[31, p.108]). We use only the following facts:

Proposition 8.

WTQio + O — B) —» (DA — OB) (K)
WTQo + A=B < UOA < B) =15)
the rule Nec: + A = + UA is derivable in WT Q.

By a O closure of a formula ¢ we understand any formula obtained
from ¢ by prefixing it with any sequence of O with possible length 0.

We consider the conservative O extension of PCl named PClg. All
O closures of PClg theorems, together with O closures of the formulas
of the shapes _|7, K, =|5 form a subsystem of WTQ 5. We consider a
free version of the subsystem with 7 terms and O, named D(fPCIm +

-5 K, E|E’)). (The obtained logic is consistent: it is a subsystem of the
free version of WTQ;, defined analogously to fPCl; — cf. Def. 3.)

To meet the intended description of 7 terms originating from FD,
we add the following O closure of AFD:

OAFD OVy(y = 1x¢ & (Yx(¢ = x = y) A ¢(y/x))),
with different x and y.

The addition of DAFD to our system gives the following effect:
Proposition 9. fPClip + (5, K, 2|5) + OAFD + OEt — (¢ =t =

1x(x =t A ¢(x/t))), with different x and t.
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Proof.

1 OVy(¢p & y=1x(x =y Adx/y))) OAFD, cf. Prop.7
via AFD

2 Ot - (9o t=1x(x =t Ad(x/t))) OIVaE, K, 1

OFEt » O ot =1x(x =t Ad(x/t) K,2

4 OEt— (¢p=r1=1x(x =1t A @x/1))) =lg,3

(O8]

O

Thus, we may say that in any theory T based on D(fPCIm +(-5, K,

E|‘5’)) + OAFD, and such that T + OE¢, we can prove our general for-
mulation of Assm1. Moreover:

Proposition 10. For any L 2 O(fPChin + (.. K, =[5)) + DAFD,
LITZE] + (o).

Finally, we reach the “slingshot” effect in the following sense:
Proposition 11 (SG6). ForanylL 2 D(fPChD +( 5K, = E’))+DAFD,
LITZ* T (0 & x) = @ = x).

The proof is based on Proposition 10 — we proceed in the same way
as in the case of SG4 (Proposition 5).

Interestingly, Propositions 10 and 11 may be considered in connec-
tion with the already mentioned Sobel’s suggestion that the validity of
Godel’s argumentation is dependent on the necessary existence of some
individuals.

Let us try to investigate Godel’s possible way of reasoning, start-
ing from the analysis sketched by Neale [30], who tries to formulate a
satisfactory justification for Assml.

Following Neale, we would say that if every sentential expression
F would have a reference, or could be reformulated so as to have a ref-
erence, then F would have some logical value. Thus, we would have
the equivalence (or perhaps even necessary equivalence) of F and the
statement about the identity of an individual y with the object a given
by the condition of being identical with y and fulfilling F (even if this
fulfilment would not depend on a). A possible “procedure” of reformu-
lating every sentential expression into some refering subject-predicate
sentence is pictured by Neale:
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[...] he [Godel] would say that “Socrates snored and Plato
snored” can be rendered as “Socrates is an x such that x
snored and Plato snored’, and that “all men snore” can be
rendered as somethig like “Socrates is an x such that all
men snore” (harmlessly assuming a non empty universe)
[30, p. 130].

Actually, the main nerve of the described way of finding a referential
counterpart of any sentential expression is to have at disposal some ex-
isting individual (like Socrates) which would ‘guarantee’ this reference.
But what would happen if this referential ‘guarantor’ would cease to ex-
ist? Would we not obtain the situation in which some sentential expres-
sions have lost their reference? These questions lead Sobel to propose
the following reinterpretation of Godelian text:

A response available to Godel to this problem with his fur-
ther ‘assumption’ [Assm2] would be to change it to say
that every proposition ‘speaks about something that ex-
ists necessarily’. I believe that Godel thought that numbers
are necessary existents, and I know that he was inclined to
think that God is a necessary existent. [45, p. 135]

The acceptance of the necessary existence of some individual would
guarantee a fixed reference of every sentence — as mentioned by Godel
in Assm2 —and, in effect, also the validity of the general form of Assm2.

The above assumption about the necessary existence of something
has, of course, extralogical provenience, and thus the obtained collapse
has not to be associated only with logical tools. However, this logi-
cal background should still be discussed: especially the counterpart of
Fregean rule of composition P2, as formulated by Godel. As it may be
already seen in case of the proof of G1, Axiom iSubs, which expresses
P2, seems to lose its obviousness when applied to 7 terms. The mean-
ing of = in PCl is very strong: in connection with (il), the formulas
referring to the same situation may be different at most with respect
to bound variables, and iSubs, applied to 7 terms, changes the basic
structure of formulas. The problem remains even in connection with
the weaker meaning of = as determined in SG6. This weaker meaning
seems to follow the original Godel’s intention — such an interpretation
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is suggested by Neale and Sobel. The symbol = is (extensionally) un-
derstood as necessary equivalence, but the application of substitution
in referentially non-transparent contexts with O is still problematic. A
possible solution for this difficulty would be to introduce some restric-
tion on iSubs. In this case we could apply Fgllesdall’s proposal to rede-
fine a class of expressions treated as singular terms, and to restrict the
instantiation in modal non-transparent contexts only to “genuine singu-
lar terms”, which necessarily apply to their objects and are in this sense
rigid [11, p. 95].
Let us accept the following meaning of rigid terms:

Definition 6 (Rigid term). Termtisrigidin Tiff T+ x =t > Ox =1.

We name L*[T] any consistent theory T based on L with iSubs re-
stricted to the terms rigid in T.

Now our restriction blocks all “slingshot” derivations in the sense
of SG1-SG6 but, interestingly, it is still possible to reduce identity to
equivalence if to the assumption of the necessary existence of some
individual we add the condition that every description if the individual
is arigid term, i.e.:

Proposition 12 (SG6). Let us take any L 2 D(fPChD +(I5, K, zlE’)) +
OAFD and any theory T based on L, such that (®): if (i) T + OEt, and
(ii) for every formula ¢, 1x(x = t A ¢(x/t)) is rigid, then

LT*1 - @ & x) = @ = x).

The proof is obtained in a similar way as for SG3 (Proposition 4 —
terms 2x(x =t A ) and 1x(x =t A y) are rigid). After that, we proceed
like in the proof of SGS (Proposition 11).

In the following section we will meet all the assumptions expressed
in Proposition 12 leading to the modal collapse. However, this will hap-
pen in a specific perspective of Godel’s onto-theological context with a
necessarily existent God-like being and with all its descriptions rigid.

4 Onto-theological “slingshot”

The aim of this section is to show that a sort of “slingshot” argument can
be established on the ground of a Godelian onto-theological system.
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We recall that Godel in his 1944 discussion concludes that there are
two ways to defend the view that “different true sentences may indicate
many different things” [16, pp. 122—-123]) instead to allow the collapse
of the signification of all true sentences into one and the same fact (see
here Section 2): either to reject prinicple P1 (a definite description de-
notes the object described) or to reject principle P2 (compositionality
of the signification, with the irrelevance of the “manner” of expression).

Since Godel was in [16] not convinced by Russell’s eliminative the-
ory of definite descriptions, we will in the following formalization of
a Godelian ontology retain definite descriptions as individual terms,
but will axiomatically restrict the principle of the compositionality —
the principle of substitution will be restricted to non-modal context. In
addition, the first-order instantiation of universal formulas will be re-
stricted to rigid terms (with existence predicated). Godel’s assumptions
Assml and Assm2 will not be axiomatically presupposed, although
they will be provable in the system. Thus, we will propose a second-
order onto-theological system fGO;, where no existent object will be
axiomatically assumed, as if the system is “universally free” (“inclu-
sive”). However, since in fGO; (like in GO'*) the necessary existence
of an object (God) is provable, the system turns out not to be universally
free, but “exclusive”, and that in a “constructive” way, namely, proving
which object(s) exist(s).

We now first define the language of fGO; and thereafter describe
the axiomatic system.

The language of fGO,

Vocabulary: first-order variables x,y, z, x1, ...; second-order vari-
ables X!, YI,ZI,Xll, ...: X2 ... third-order term P'; operators —, =,
0,V,1, 4; parentheses. A first-order term (¢), a second-order term (7),
and a formula (¢) are defined in the following way:

ti=x|1x¢o
T:=X, | (Ax]...x,.0)
pu=T"t1...ty |1 =t | PT" | = | (¢1 = ¢2)

4For the definition of GO see [21]. It is TG of [48]. Cf. Gédel’s outline from 1970
in [17] as well as [42, 43] (including Scott’s emendation).
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| B¢ | Vx| VX))

V, A, e,3, O, #, T, and L are defined in a familiar way.

Besides, we will use the notion of substitutability, in the sense that
a term ¢ is substitutable for x in ¢ if ¢ or a free variable occurring in ¢
does not become bound by V, A, or 7 operator when ¢ is substituted for
x in ¢. Similarly for second-order terms.

Abbreviations

Et =4,y dxx = t (see Eid in Definition 2),

X =def (Ax.—XX),

Gt =4.r YX(PX — X1),

EIIX, 1) =4op Xt AVY(Y1 — OVy(Xy — Yy)),
Nt =45 YY(E[J(Y,1) - OAxYx)

Axiomatic system fGO,

Axiom schemes:

CPC classical propositional axiom schemes
K O(¢ = ¢) - (0g — Oy)

T O¢p > ¢

5 O¢p - 009

Vl1a Vx¢ — (Et — ¢(t/x)), t is rigid and substitutable for x in ¢ (for
“rigid” see Definition 6 as well as Axiom =R)">

V1b Vx(¢p — ¢) = (Vx¢ — Yxy)

Yic ¢ — Vx¢, x ¢ free(¢)

Y2a YX¢ — ¢(T/X), T is substitutable for X in ¢
V2b YX(¢p - ¢) > (VX¢ — VX¥)

Y2¢ ¢ — ¥X¢, X ¢ free(¢)

=1t=t

SWithout the rigidity condition, Et — Ix0Ox = ¢ would be provable for any ¢ (from
Axiom =1 below); see Garson in [13, p. 282-3, 284-5]. See also [12, pp. 626, 628].
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=R x = y—-Ox=y
E VxEx
AConv ¢(t/x) & (Ax.¢)(t), t is substitutable for x in ¢,

D Vy(y = ¢ & (Vx(¢ — x = y) A ¢(y/x))), x and y are different
variables (cf. AFD above)

Sub 1 =t - (¢(t2/x) — ¢(t1/x)), x does not occur in the scope of O
in ¢, and #; and t, are substitutable for x in ¢.

We add special Godel’s axioms about “positivity” of properties:
GAl PX & -PX
GA2 (PX AOVx(Xx —> Yx)) > PY
GA3 PG
GA4 PX — OPX
GAS PN

Note that by axiom AConv the unrestricted comprehension scheme is
expressed: for each formula there is a corresponding second-order term.

Rules MP, Ul, Nec: + ¢ = + O¢, and U2: + ¢ = + YX¢. (For
MP and Ul, see PCl and PFL above. See also Proposition 8 for Nec.)

Rigid term in fGO; is defined as for T in Definition 6. We note that
Deduction Theorem holds for fGO; with standard restrictions for ¥ and
0. (For convenience, in justifications of proofs we will disregard the
distinction between normal and bold letters).

In the following we will recall some propositions and theorems of
GO which also hold for fGO;, and add some new propositions in order
to show that the slingshot theorem is provable in fGO;. This theorem
will be conceived in the sense of the provable necessary biconditional
between any two sentences supposed to hold. Afterwards, we will add
some notes on a possible strengthened sense of the slingshot theorem.

4.1 Necessary existence, uniqueness, and rigidity of God

Theorem 1 (Neccessary existence of God). fGO; + OdxGx
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Proof. Similar to the proof in GO [21, 48, 17, 43], which can be repro-
duced in fGO;, without dependence on Axioms dxEx and Yx¢ — ¢
(x ¢ free(¢)). We give some examples where first-order quantification
is involved. — (a) In the first part, in Godel’s version of the proof, PX —
<&dXx is proved on the ground of the previously proved P(Adx.x = x).
From Yx(=Xx —» (Xx — —-x = x)) we deduce Yx—Xx —» Vx(Xx —
—x = x) by Y1b. By Nec we obtain O(Vx—-Xx — Vx(Xx — —x = x)),
and by K, OVx—=Xx — OVx(Xx — —-x = x). From Axiom (PX A
OVx(Xx — —-x = x)) —» P(Ax.-~x = x) and PX as assumption,
O-Xx — P(Ax.—x = x) follows, from where (by contraposition) =#(1x
.—x = x) — —OVx—Xx is derivable. From the positivity of (Ax.x = x)
and Axiom GA1 (together with the definition of ), the proposition
PX — OdxXx is proved. — (b) Near the end of the proof, the proposi-
tion 3xGx — O3xGx is proved. Starting point is the previously proved
proposition Gx — OdxGx. From there, by contraposition, U1, and
V1b, Vx-03dxGx — VYx—Gx is deducible, and by Y1¢, -O03dxGx —
Vx—Gx follows. Therefore, by contraposition and the definition of 3,
we obtain dAxGx — OdxGx. O

The following two propositions with their proofs are also part of
the proof of Theorem 1.

Proposition 13. fGO; + Gx —» YX(Xx — PX)
Proof. Can be proved in quite a similar way as in GO. O
Proposition 14. GO, + Gx — &J[(G, x)

Proof. Similarly as in GO. From the definition of G we have Yy(Gy —
(PX — Xy)), and thus, by propositional logic, Yy(PX — (Gy — Xy)).
From there, VyPX — VYy(Gy — Xy) follows by V1b. By V1e¢ (and
propositional logic), we have PX — Vy(Gy — Xy). By Nec and K,
OPX — OVy(Gy — Xy)) follows. Now, by Axiom GA4 and Proposi-
tion 13, we deduce Gx — (Xx — OVy(Gy — Xy)), and by proposi-
tional logic we obtain Gx — (Gx A (Xx — OVy(Gy — Xy))). Hence,
Gx — (Gx AVX(Xx — OVy(Gy — Xy))) is derivable by U2, and
V2a-c, which is equivalent with Gx — &/ [(G, x) (by the definition of
elb. O

We now prove that there is at most one God.
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Proposition 15 (At most one God). fGO; + Gx —» (Gy — x =y)

Proof.

1 Gx assumption
2 Gy assumption
3 VX Xy — PX) 2 Prop. 13
4 (Azz=y)) » Plzz=y) 3VY2a
5 y=y—->PAzz=y) 4 AConv.
6 Plzz=1y) 5 =1, MP
7 VXX — Xx) 1 def. G
8 PAzz=y)—> (Azz=y)(x) TVY2a
9 (Az.z=y)x) 6,8 MP

10 x=y 9 AConv.

11 Gx—> (Gy—>x=y) 1(2)-10 Ded. Theor.

For line 5, see the note on the unrestricted “comprehension scheme”
after the list of axioms above. — Alternatively, this proposition can be
proved on the ground of (& [(G, x)AES[(G,y)) = VX(Xx & Xy) (+)
as following from Godel’s definition of &S [49]. Assume Gx and Gy.
From (##) and from Proposition 14, VX(Xx < Xy) follows. Hence we
obtain x = y. — For another version of a proof (in a weakened GO), see
[24]. A similar idea can be found in [2, p. 296] for Anderson’s revised
version of Godel’s ontological system.'® O

In the reconstruction of the “slingshot” argument, the definite de-
scription of God, 1xGx, will have a crucial role. We first prove some
related propositions.

Proposition 16 (Rigidity of God). fGO; + y = 1xGx — Oy = xGx

Proof. We assume y = 1xGx. By D we derive Gy, and by Sub, G1xGx,
from where VX(PX < XixGx) follows by the definition of G. From
Gy we obtain YX(Xy — PX) by Proposition 13. Now, a similar rea-
soning is used like in the proof of Proposition 15, so that the follow-
ing formulas are being derived after one another: (1z.0y = z)(y) —

16See [49] for a discussion and possible ways to supplement the axioms explicitly
mentioned in Scott’s version of Godel’s ontological proof [43] in order to prove the
unity and the necessary identity of God (i.e. (GxAGy) — x = yand Gx — OVy(Gy —
x =y). For the latter proposition in particular, see [20].
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P(A1z.0y = z), Oy =y —» P(1z.0y = 2), P(1z.0y = z), P(1z.0y = 2),
P(Az.0y = z) — (Az.0y = 2)(1xGx) (from YX(PX < XixGx) above),
(Az.0y = 7)(1xGx), and Oy = 1xGx. By Deduction Theorem, the propo-
sition follows. ]

In general, we note that Gx — OGx almost immediately follows
from Hajek’s theorem Yx(Gx < YY(PY < OYx)), proven in GO
[211."

Proposition 17 (The unique existent God). fGO; + dxx = 1xGx (i.e.
Ei1xGx)

Proof.
1 GxANEx assumption
2 ¥Yy(Gx — (Gy > x=1Yy)) Prop. 15, U1
3 Gx->VYy(Gy > x=Yy) 2 ¥Y1b—c
4 VYy(Gy > x=y) 1,3 MP
5 GxAVY(Gy - x=Y) 1,4 CPC
6 x=1m1xGx 5D, MP
7 x=1xGx — (Ex — E1xGx) Sub
8 dxx =1xGx 1,6,7 MP, def. E
9 (Gx A Ex) — dxx =1xGx 1-8 Ded. Theor.
10 Vx((Gx A Ex) — dxx = 1xGx) 9 U1
11 Vx—=3xx = mxGx = Yx—=(Gx A Ex) 10 contrp., V1b
12 —3dxx = xGx — Yx—(Gx A Ex) 11 Vl1c, CPC
13 dx(Gx A Ex) — dxx = xGx 12 contrp., def.E
14 Ixx = xGx 13 Theor. 1, T, MP

O
Hence, fGO; + dxEx.
Corollary 1. fGO; + GixGx

Proof. From Axiom D (substitution 1xGx/y) and Propositions 16 and
17. O

17Besides, in a system including Axioms Yx3XOVy(Xy < x = y) or AXVy(Xy <
x = y) (see [20] and [49], respectively), which ensure the existence of a uniquely
descriptive property for each first-order object, Proposition Gx — OGx is easily de-
ducible via Gx — OVy(Gy — x = y) (mentioned in footnote 16) by standard means.
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Further, the proved existence of God makes vacuous instantiation
possible:

Corollary 2. fGO; + Vx¢ — ¢, x ¢ free(¢)

Proof. From Yx¢ — (EmxGx — ¢(1xGx/x)) (Axiom V1a), and =R
with Propositions 16 and 17. O

The following proposition will also be needed in the course of the
proofs:

Proposition 18 (Positivity of facts). fGO; + ¢ — P(Ax.¢), x ¢ free(e).

Proof. Assume Gx. If we also assume ¢ (a fact), we can derive (1x.¢)(x)
by a vacuous A-conversion with x/x, x not occurring free in ¢. By ap-
plying Proposition 13 we obtain $(Ax.¢). Thus, by the deduction the-
orem and a bit propositional logic Gx — (¢ — P(Ax.¢)) follows.
From there and from Yx(Gx — (¢ — P(Ax.¢))) (by Ul), we deduce
AxGx — (¢ — P(Ax.¢)) (by first-order reasoning using ¥1b and V1c).
Finally, referring to Theorem 1 and T, we derive the proposition. — A
proof can be also arranged as a branch to the modal collapse proof if
already available (cf. [27]). ]

Proposition 19. fGO; + X1xGx — OXmxGx

Proof.
1 VYx(Gx - YX(Xx - PX)) Prop. 13
2 EixGx — (GixGx —» VX(XixGx—PX)) 1 Vla, Prop.16
3 VXX1ixGx — PX) 2 Cor. 1,
Prop. 17
4 XmxGx - PX 3V2a
5 XmxGx —» OPX 4 GA4, CPC
6 OMWPX — XixGx) Prop. 17,
def. G, Nec
7 XixGx —» OXixGx 5,6 K
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4.2 Slingshot by G

On the grounds of the previously proved propositions we can devise
a modal “slingshot” argument in fGO;, where the identity of the “sig-
nification” of ¢ and ¢ is reduced, at first, to necessary biconditional
O(¢ & ). The proof is essentially connected with G and 1xGux, since
the being of which we provably know, within fGO,, that it exists, is x
which is G (possibly nothing else exists).'3

In fGO,, the following proposition obviously follows from Propo-
sition 18 and GA4 by propositional modal logic:

¢ — ¥ - OFPUx.¢) & PAxy)) x ¢ free(d, ) (D

(Of course, we could also prove the similar proposition with A instead
of —))
Further, from the definition of G and Proposition 13 it follows:

¢ = ¥ — O(Ax.9)(1xGx) & (Axy)(1xGx))) (2)
From (2) we obtain:
¢— W — D@ < y) (3)

by A conversion. We can now establish the “slingshot” argument for
negated (“false”) propositions:

¢ = (Y = O(p & y)) 4

Proof. Analogous to Sobel [45]: from O(——¢ < ——¢) and from ~¢ —
(~¢ — O(-¢ & —)) (see (3)), we get =¢p — (- — O(——¢ <
—-y)), by the replacement of - for —¢ in the tautology. Proposition
¢ — (= — O(¢ & y)) follows. O

The modal collapse, too, is provable on the ground of the available
propositions:

¢ — O¢ 5)

Proof. From Propositions 18 and 19 it is provable that ¢ — O(Ax.¢)
(1xGx), with x ¢ free(¢), from where ¢ — O¢ follows. O

13Cf. Sobel remark in [45, p. 135].
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The “slingshot” argument can be easily derived from the modal col-
lapse.'?

In still another way, the modal “slingshot” theorem can be proved
from Assml1 (page 5), which is deducible by means of Axiom D:

Proposition 20. fGO; F Vy(¢ & y = mx(x = y A ¢(x/y))), x ¢ free(p).
Proof. Analogous to the proof of Proposition 7. O

Corollary 3. fGO; + ¢ & 1xGx = x(x = 1xGx A ¢(x/1xGx)), x ¢
free(¢) (1xGx possibly not occurring in ¢).

Proof. From Proposition 20 with 72xGx for y, and from Propositions 17
and 16 (.xGx = 1xGx from =1). ]

As we can see, the proof of Corollary 3 requires the provable existence
of a rigidly determined being (because of the application of Axiom
V1a), and this has been proved of the most positive being (1xGx) in
the Propositions 16 and 17.

Using Corollary 3 and Proposition 19, we can now prove the “sling-
shot” theorem in the sense of a necessary conditional:

Theorem 2. fGO; + ¢ — (y — O(¢ © ¥))
Proof.

1 ¢ o 1ixGx = wx(x = 1xGx A p(x/1xGx)) Corollary 3
x ¢ free(¢)

2 O(p & 1xGx = ix(x=1xGx A ¢(x/1xGx)) 1 Nec

3 ¢ & 1xGx = 1x(x = 1xGx A Y(x/1xGx)) Corollary 3
x ¢ free(y)

4 O o 1xGx = ix(x=1xGx Ay (x/1xGx))) 2 Nec

19Cf. Sobel’s remark on this in [45, p. 147]. As to the possible acceptability of the
modal collapse, see Orilia [35, p. 130-131]; for the possibility of Godel’s acceptance
of the modal collapse, see Adams [1]; in favor of Godel’s real acceptance of the modal
collapse, see Co-author [24, p. 582] and [25], Sobel [44], and Co-author [26, 27].
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11
12
13

14

15

16

17

18

19
20

¢

¥

1xGx = 1x(x = 1xGx A ¢p(x/1xGx))
(Ay.x = x(x =y A ¢(x/1xGx))(1xGx)
OxGx = 1x(x = 1xGx A ¢(x/1xGx))
1xGx = 1x(x = 1xGx A Y (x/1xGx))
(Ay.x = 1x(x =y AY(x/1xGx))(1xGx)
OxGx = 1x(x = 1xGx A Yy (x/1xGx))
1xGx = 1x(x = 1xGx A Y (x/1xGx))

o 1x(x = 1xGx A ¢p(x/1xGx))

=1x(x = mGx A Y(x/1xGx))
O@xGx = w(x = 1xGx A Y(x/1xGx))
o 1x(x = 1xGx A ¢(x/1xGx))

=1x(x = wGx A Y (x/1xGx)))

Owx(x = 1xGx A ¢(x/1xGx))

=1x(x = xGx A Y(x/1xGx))

O@x(x = 1xGx A ¢p(x/1xGx))

=1x(x = xGx A Y(x/1xGx))

— (1xGx = 1x(x = 1xGx A ¢(x/1xGx))

o xGx = w(x = 1xGx A Y (x/1xGx))))

O@xGx = m(x = 1xGx A ¢(x/1xGx))

o xGx = w(x = 1xGx A Y (x/1xGx)))

O(¢ & (1xGx

=1x(x = xGx Ay (x/1xGx)))
O(p & ¥)

¢— W - 0@ oY)

assumption
assumption
1,5 MP

7 AConv

8, Prop. 19
3,6 MP

11 AConv
11, Prop. 19
7 Sub, CPC

13 AConv,
Prop. 19

12,14 K, MP

Sub, Nec,
CPC

15,16 K,

MP

2,17 CPC,

K, MP

4,18 CPC,K
5(6)-19 Ded.Th.

O

If there would be no existing object whatsoever, the slingshot argu-
ment would only conditionally hold (on the condition that the objects
considered exist). If we have a proof of the necessary existence of God,
then the (non-conditional) slingshot argument should hold “vacuously”
unless sentences are about God. The argument is almost the same as if
it would be for any (necessarily) existing object. Another kind of proof,
more specific for G, would be dependent on the essence of God and on
the necessity of each property of God (similarly as in the modal collapse
proof, see [43, 10]).
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Remark 1 (Models). Let us briefly consider a model and assignment
for fGO; defined as (W, R, D, q, D(n), I, a), where W is a set of worlds,
R reflexive and euclidean relation on W, D a first-order domain of the
model, q a function from W to pD, D(n) C (DY a set of world rel-
ative second-order domains for each predicate arity (n) (D(n) should
be chosen in the right way — in accordance with the satisfaction of for-
mulas on the ground of a previously defined frame), I an interpretation
function, and a some valuation of variables. Assume that the interpre-
tation of the third-order term P corresponds to the axioms of positivity.
Let a definite description 1x¢ denote at w a unique member of g(w) that
satisfies ¢, and a member of D outside q(w’) for any w' € W other-
wise. — We take as an example a most simple, one-world model It with
W ={w}, R = {(w,w)}, D = {g,0}, g(w) = {8}, a properly defined D(n),
with [(P) being a (principal) ultrafilter of properties generated by g. It
can be shown that all the axioms and rules of {GO; as well as Theorem
2 and the modal collapse are satisfied in this model. As an example, we
take Axiom D. Let d € g(w) be the value of y for w. If [[1x¢]]2ﬁ’w denotes
(the unique) d € q(w) that satisfies ¢, then both sides of D hold. If ¢
does not uniquely denote d, then ¢(y) on the right side does not hold
for d, and the left side of D (y = 1x¢(x)) does not hold either — it re-
mains that [[1x¢ﬂ2n’w = 0. — In the chapter “Causal interpretation of
Gaodel’s ontological proof” (this book), we more extensively describe
the semantics for the case of an extended and slightly modified logic
QCGO [27], containing causal terms instead of modal operators.

4.3 The sameness of facts

A considerable and natural restriction on the strict biconditional (O(¢ <
), as well as on necessary identity (d¢; = #,) can be applied to define
anew the “slingshot” collapse. Let us introduce = (“sameness of facts”)
as a sentence connective (in analogy with Section 3) and the following
axioms:

Al ¢ =y, with ¥ having the following shapes: ¢, =—¢,

PAG, GAT, §V ¢, ¢V L, (Ay.¢(y/1))(1) (y ¢ free(d)),
Yy’ (y/x) if ¢ = Vx¢'(y ¢ free(¢’), y is substitutable for x

in ¢"),
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Ale (e1 = ep) — (e(ey/ey) = e(er/ey)), where = stands for =
or =,and e, ¢; are expressions (terms or formulas), with
the restriction as for Sub,
DI Vy(y =x¢ = (Vx(¢ = x =y) A $(y/x))),
x and y are different variables,

2 (p=y)— 0@ - yY).

Definition 7 (fGO;2). Let fGO;= be like fGO;, with Ale and DI in-
stead of Sub and D, respectively, and extended by Al 12,iV, and id
(see Definition 1 above).

In fGO;=, the =-slingshot theorems for the positive (“truth”) and the
negative (“falsehood”) case are provable.

Proposition 21. fGO; =+ Vy(¢ = (y = m(x = y A (Wy.d)(x)), x ¢
free(o).

Proof. Like the proof of Proposition 7, replacing < with = throughout
the proof, using Al in line 4, Ale in line 6, and DI instead of D. O

Theorem 3. fGO;=+ ¢ — (¥ — (¢ = ¢))

Proof.
1 ¢ assumption
2 ¥ assumption
3 ¢ = (xGx = mx(x = 1xGx A ¢(x/1xGx))), Prop. 21
x ¢ free(¢)
4 Y = (ixGx = 1x(x = 1xGx A Y(x/1xGx))), Prop. 21
x ¢ free(y)
5 O(¢ & (xGx = x(x = 1xGx A ¢(x/1xGx)))) 312
6 ¢ o (xGx =1x(x = xGx A ¢(x/1xGx))) 5T
7 1xGx =1x(x = xGx A ¢(x/1xGx)) 1,6 MP
8 O & (1xGx = x(x = xGx A Y(x/1ixGx)))) 412
9 ¥ o (1xGx = 1x(x = 1xGx A Y(x/1xGx)) 8T
10 1xGx = 1x(x = 1xGx A Y (x/1xGx)) 2,9 MP
1T 2x(x = 1xGx A ¢(x/1xGx))
= 1x(x = Gx A Y (x/1xGx)) 7,10 Ale
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12 ¢ = (ixGx = 1x(x = xGx Ay (x/1xGx))) 3,11 Ale

13 ¢=y 4,12 Ale
14 ¢ > W —(@=y)) 1(2)-13
Ded. Th.

Theorem 4. fGO;=F ¢ — (=Y — (¢ = ¢)))

Proof. Analogous to the proof of (4) above, starting from ——¢ = ——¢
(AI3) and —¢p — (= — (=¢ = —)) (Theorem 3). ]

An analogous modification of AO (in the nomenclature by Hajek
[21]), that is, Anderson’s emendation of GO [2], to fAO;=, makes possi-
ble to prove the “slingshot” collapse. We will, first, define fAO,, starting
from AQO.

As is known, GA1 is replaced in AO by

AAl PX — -PX,
and the abbreviations (definitions) of G, &f [, and N are as follows:

Gt =def VX(PX « OX1)
EJ(X, 1) =4ep VY (OYt & OVx(Xx — Yx)).

Axioms GA2-5 as well as the definition of N remain nominally the
same as in GO. The axioms on positivity are named AA1-5.

Let us note that in AO the “slingshot” argument does not hold. The
countermodel for modal collapse described in [2] is also a counter-
model for the “slingshot”. In this countermodel there is a world w with
one object in its domain, and a world w’ with two objects its domain.
In w’ both sentences “There is at least one object” (1) and “There are
at least two objects” (2) are true, whereas O((1) <> (2)) does not hold
in w’ since in w (accessible to w’) (1) is true but (2) is not.2?

20Let us also note that in the modifications of GO by the restrictions of the compre-
hension scheme (A abstraction) as in [8] and [20] by Czermak and Héjek, respectively,
the “slingshot” argument does not hold. For example, in Czermak’s countermodel for
the modal collapse, there is a world w with an object d satisfying ¢, and a world w’
where no object satisfies ¢. Thus (analogously to Anderson’s countermodel), in w’ sen-
tences “At least one object is ¢ (3) and “At least two objects are ¢ (4) are both false,
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Let us define fAO; like fGO; with the only difference consisting
in the replacement of axioms and definitions as mentioned above in
connection with AQO. It can be shown that 0dxGx, Gy — Oy = 1xGx,
and y = mxGx — Oy = mxGx are provable in fAO;.

Proposition 22. fAO; + O3xGx

Proof. Anderson’s proof [2] can be routinely accommodated to “uni-
versally free” basis. O

Proposition 23. fAO; + Gy — Oy = 1xGx

Proof. From O(ly.y = x)(x), and assuming Gx, P(1ly.y = x)) fol-
lows (Anderson’s definition of G), and thus, assuming Gy, we derive
O(Ay.y = x)(y) (the same definition). Therefore, Gx — (Gy — y = x)
is deducible (cf. also the alternative proof of Proposition 15 above and
[2]). From there,

1 Gy - Vy(Gy - y=1x)) Ul,V1b,V¥lc
2 Gy - (¥Vy(Gy—->y=x)AGx) 1CPC

3 Gx - x=1xGx 2D

4 OVx(Gx — x = 1xGx) 3 Ul, Nec

5 P(Ax.x =1xGx) 4 AA3, AA2
6 Gy — O(Ax.x = xGx)(y) 5 def. of G

7 Gy — Oy =mxGx 6 AConv

Proposition 24. fAO; + y = xGx — Oy = xGx

Proof. From y = 1xGx, according to Axiom D, and from Proposition
23,y = ixGx — Oy = 1xGx follows. O

If we modify fAO; to fAO;= as mentioned, i.e. in analogous way
as fGO; to fGO;=, the =-“slingshot” and, by 12, O-“slingshot” are de-
ducible similarly as by the proof of Theorem 3.

but in w (accessible to w’) (3) is true but (4) is false and hence O((3) < (4)) is not true
at w. In Héjek’s Example 2, there are at least two worlds (w, w’) and two objects (g, 1)
so that, extending the example a bit, we ccould have g and # satisfying property X at
w, and g satisfying X while /4 not satisfying X at w’. Hence, although both “g is X” and
“his X are true at w, “0O(g is X < his X)” is not true at w.
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A concluding remark

The reconstruction of a “slingshot” argument within fGO; may perhaps
throw some light on Godel’s statement (regarding the collapsing con-
clusion of the argument) that “there is something behind it which is
not yet completely understood” [16, p. 123]. What seems to be obvious
(“apparently obvious” “slingshot” axioms) has in general a hardly ac-
ceptable consequence (the collapse of the signification of sentences).
Russell’s elimination of definite descriptions can prevent the “sling-
shot” argument, but is as such for Godel not quite plausible (Godel has
a “feeling that ... the problem ... has only been evaded” by Russell’s so-
lution [16, p. 123]). In Godelian onto-theological systems like the ones
considered, the mentioned presuppositions of the “slingshot” argument
(P1-2, Assm1-2) are partly embedded in the axioms and partly derived
from them. What seems to be obvious, especially the assumptions that
something exists, and that there is anything at all the terms (including
descriptions) could denote and the propositions could speak about, are
in fact only (not from the start obvious) consequences of onto-theology.
In addition, what does not seem to be obvious nor acceptable (like the
collapsing “slingshot” argument) should be in fact accepted on the ba-
sis of Godelian onto-theological presuppositions considered (including
an extension of AO by factual identity, =). From the 1940s to 1970s,
Godel’s attempts are documented to establish an ontological system
containing an ontological proof. The question arises why Godel would
not have been aware of such consequences of his onto-theology, and
found the “slingshot” (similarly as “modal collapse”) acceptable — not
as an obvious common sense truth, but as a consequence of a deeper,
ontologically analysed theistic world-view.
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