available at www.sciencedirect.com journal homepage: www.eu-openscience.europeanurology.com

Review – Renal Disease

A Systematic Review of Heterogeneity in Outcome Definition and Reporting in Localised Renal Cancer

Katharina Beyer^{*a*,*,1}, Christiaan Widdershoven^{*b*,1}, Lisa M. Wintner^{*c*}, Saeed Dabestani^{*d*}, Lorenzo Marconi^{*e*}, Charlotte Moss^{*a*}, Netty Kinsella^{*a*,*f*}, Yuhong Yuan^{*g*}, Rachel H. Giles^{*h*}, Ravi Barod^{*i*}, Mieke Van Hemelrijck^{*a*}, Axel Bex^{*c*,*i*}, Patricia Zondervan^{*c*,2}, Steven MacLennan^{*j*,2}

^a Translational Oncology and Urology Research, King's College London, London, UK; ^bDepartment of Urology, Amsterdam University Medical Centers, Amsterdam, The Netherlands; ^cUniversity Hospital of Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria; ^dDepartment of Translational Medicine, Division of Urological Cancers, Lund University, Kristianstad Central Hospital, Lund, Sweden; ^eDepartment of Urology, Coimbra University Hospital, Coimbra, Portugal; ^fDepartment of Urology, Royal Marsden Hospital, London, UK; ^gDepartment of Medicine, McMaster University, Hamilton, Canada; ^hInternational Kidney Cancer Coalition, Duivendrecht, The Netherlands; ⁱSpecialist Centre for Kidney Cancer, Royal Free Hospital, London, UK; ^jAcademic Urology Unit, Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK

Article info

Article history: Accepted November 21, 2022

Associate Editor: M. Carmen Mir

Keywords:

Renal cell carcinoma Treatment choice Patient decision-making Oncology Barriers Facilitators Treatment selection

Abstract

Context: Outcomes in renal cell carcinoma (RCC) are reported inconsistently, with variability in definitions and measurement. Hence, it is difficult to compare intervention effectiveness and synthesise outcomes for systematic reviews and to create clinical practice guidelines. This uncertainty in the evidence makes it difficult to guide patient-clinician decision-making. One solution is a core outcome set (COS): an agreed minimum set of outcomes.

Objective: To describe outcome reporting, definitions, and measurement heterogeneity as the first stage in co-creating a COS for localised renal cancer.

Evidence acquisition: We systematically reviewed outcome reporting heterogeneity in effectiveness trials and observational studies in localised RCC. In total, 2822 studies (randomised controlled trials, cohort studies, case-control studies, systematic reviews) up to June 2020 meeting our inclusion criteria were identified. Abstracts and full texts were screened independently by two reviewers; in cases of disagreement, a third reviewer arbitrated. Data extractions were doublechecked.

Evidence synthesis: We included 149 studies and found that there was inconsistency in which outcomes were reported across studies and variability in the definitions used for outcomes that were conceptually the same. We structured our analysis using the outcome classification taxonomy proposed by Dodd et al. Outcomes linked to adverse events (eg, bleeding, outcomes linked to surgery) and renal injury outcomes (reduced renal function) were reported most commonly. Outcomes

¹ These authors contributed equally and are joint first authors.

² These authors contributed equally and are joint senior authors.

* Corresponding author. Translational Oncology and Urology Research, School of Cancer and Pharmaceutical Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK. Tel. +44 207 188 5594.

E-mail address: katharina.beyer@kcl.ac.uk (K. Beyer).

https://doi.org/10.1016/j.euros.2022.11.014

2666-1683/© 2022 The Author(s). Published by Elsevier B.V. on behalf of European Association of Urology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

related to deaths from any cause and from cancer were reported in 44% and 25% of studies, respectively, although the time point for measurement and the analysis methods were inconsistent. Outcomes linked to life impact (eg, global quality of life) were reported least often. Clinician-reported outcomes are more frequently reported than patient-reported outcomes in the renal cancer literature.

Conclusions: This systematic review underscores the heterogeneity of outcome reporting, definitions, and measurement in research on localised renal cancer. It catalogues the variety of outcomes and serves as a first step towards the development of a COS for localised renal cancer.

Patient summary: We reviewed studies on localised kidney cancer and found that multiple terms and definitions have been used to describe outcomes. These are not defined consistently, and often not defined at all. Our review is the first phase in developing a core outcome set to allow better comparisons of studies to improve medical care.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of European Association of Urology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Renal cell carcinoma (RCC) represents 2.2% of all new cancers worldwide [1,2]. With the increase in reporting of incidental findings, a greater proportion of patients newly diagnosed with renal cancer currently present with stage I disease [3,4]. Historically, surgery has been the standard of care for localised renal cancer, but international guidelines have more recently proposed ablative treatments and active surveillance as alternative options [5,6]. Currently, oncological outcomes across treatments are similar and treatment decision-making is multifactorial [7].

Across many clinical areas including urology, patientreported outcomes and clinical outcomes are reported inconsistently, with variability in definitions and measurement, for instance in the settings of localised prostate cancer and bladder cancer [8–10]. This makes it very difficult to compare and synthesise outcomes to improve guidelines to better direct and support patients and clinicians during treatment decision-making and ultimately improve results in clinical practice [11,12]. A core outcome set (COS) is a standardised set of prioritised outcomes and is proposed by current research as a solution to decrease heterogeneity in collection, reporting, and analysis of outcomes. COS in urology are needed because inconsistencies and variability cause not only frustration but also potentially problematic conclusions [9]. This issue is also clearly apparent for localised renal cancer, and ultimately results in barriers for the multifactorial process of decision-making [7].

The aim of this systematic review was to identify which outcomes are reported in intervention effectiveness research in localised kidney cancer and to assess heterogeneity in outcome definitions and measurements. It constitutes the initial stage in the development of a COS for localised renal cancer with the intention of identifying a minimum set of outcomes that are potentially important to health care professionals and patients. The outcomes identified in this systematic review are organised under the taxonomy developed by Dodd et al. [13], which helps to structure general health research vocabularies to reduce inconsistencies. It is embedded in a larger project registered in the Core Outcome Measures in Effectiveness Trials (COMET) database [14], and uses the same robust methodology that was already followed for the prostate cancer COS [15] developed in collaboration with the European Association of Urology.

2. Evidence acquisition

This systematic review followed the guidelines of the COMET initiative, an international expert body that established guidelines on how to develop methodologically robust COS. We report our study in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and the COS-STAR reporting guidelines, which are relevant to this stage of COS development [16]. A project steering committee (S.M., M.V.H., P.Z., A.B., L.M., S.D., R.B., N.K.) supported the development from a methodological and clinical perspective. The study protocol was registered on PROSPERO (ID: CRD42020198605).

2.1. Aims and objectives

The aim of this project was to systematically review which outcomes have been reported in effectiveness trials and observational studies in localised renal cancer, and how they were defined and measured.

2.2. Identification of relevant studies

We searched Medline, EMBASE, Cochrane CENTRAL, and Cochrane Database of Systematic Reviews (via Ovid) from inception to June 2020. We worked with an information scientist to design the search strategy (Supplementary Fig. 1). To balance the feasibility and precision of the search, we used a two-step approach. First, we identified all published systematic reviews and intervention trials related to RCC without limiting the search to localised renal cancer, and we screened the reference lists in all the articles as a pragmatic way to identify primary studies potentially meeting our inclusion criteria. Second, we searched for and screened all interventional studies on localised RCC from 2015 onwards without limiting the study design. We included randomised controlled trials (RCTs), cohort studies, and case-control studies that reported on eligible interventions for localised renal cancer. We excluded case studies owing to their low level of evidence according to the Oxford Centre for Evidence-Based Medicine (level of evidence 4 or lower [14]) and the unlikelihood of changing clinical practice. We also excluded conference abstracts.

2.2.1. Study participants

Adults (male and female) with suspected localised renal cancer (NOMO according to the TNM classification; all versions of the TNM staging system) on magnetic resonance imaging, computed tomography, or ultrasound imaging were included.

Those undergoing treatment for renal metastasis or other tumours were excluded.

2.2.2. Intervention and comparator

Studies reporting on any intervention for localised renal cancer were retained, including but not limited to active surveillance, radical nephrectomy (all modes and approaches), partial nephrectomy (all modes and approaches), cryoablation, radiofrequency ablation, microwave ablation, irreversible electroporation, watchful waiting, high-intensity focused ultrasound, or radiotherapy.

2.2.3. Eligibility of studies

All abstracts and full texts were screened independently by at least two reviewers (C.W., K.B.). Any disagreements were arbitrated by a third review author (S.M).

2.3. Data extraction

Data were independently extracted from the studies included by two researchers (C.W., K.B.) and checked for accuracy by another reviewer (S.M.). We extracted data on study design; author details; year and journal of publication; intervention(s) under investigation; each effectiveness outcome reported; whether the outcome was defined or not; the definition used; the indicators and/or tool(s) used to operationalise or measure the outcome; the time point or period for outcome measurement; and how the outcome was reported.

2.4. Data analysis and synthesis

The outcome names extracted were coded and categorised according to the outcome reporting taxonomy developed by Dodd et al. [13], which has been suggested by COMET for classification of outcomes and group domains.

2.5. Assessment of risk of bias

A risk-of-bias assessment was not conducted, as no estimation of the effect size of treatments was conducted and only qualitative information containing terminology was extracted.

3. Evidence synthesis

3.1. Characteristics of the studies included

Our initial search returned 2785 abstracts. Of these, we assessed 319 full-text articles, of which 149 were included (Fig. 1). Of the 149 studies included, 97% were observational studies and five (3%) were RCTs.

3.2. Heterogeneity in outcome reporting, detection, and definitions

A suitable outcome taxonomy for health research must differentiate between high-level outcome domain classifications, and comprehensively classify all outcomes, while also proposing a standardised terminology. Therefore, we reported and organised the outcomes in the studies under the taxonomy developed by Dodd et al. [13] and recommended by the COMET initiative. Taxonomies help to

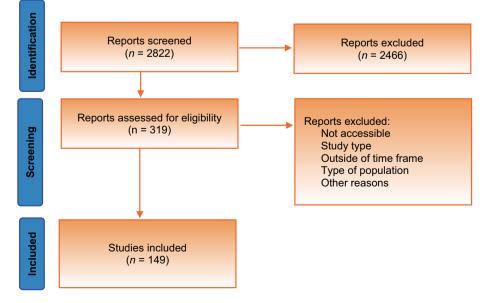


Fig. 1 – Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) diagram.

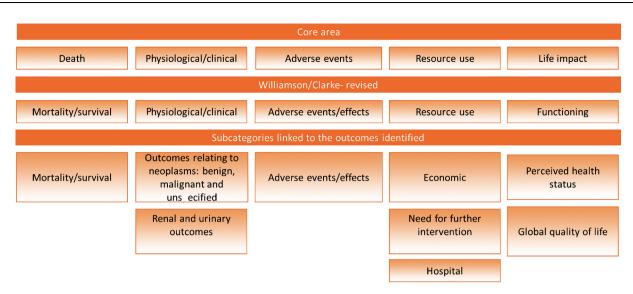


Fig. 2 – The Dodd [13] taxonomy applied for classification.

structure vocabularies for general health research to reduce inconsistencies and ambiguities in how current studies describe and define outcomes. The Dodd taxonomy has been proposed to increase the reuse value of outcome data. The taxonomy comprises 38 outcome domains within five core areas: death, adverse events, life impact, physiological/clinical, and resource use [13]. The core outcomes are further subclassified as shown in Figure 2.

Table 1 lists the outcomes reported by the studies by domain and highlights the heterogeneity of outcomes identified. We have merged the synonyms and redundant terms. The next section explains the heterogeneity of the terminology in more detail. Table 2 shows which outcomes were reported in the studies included in the review.

3.3. Death (mortality/survival)

Death was reported 103 times. We categorised these outcomes according to the Dodd mortality/survival classification into "overall survival" and "cancer-specific survival". Overall survival (OS) was measured in 65 studies (44%; Table 2) as OS, death, or mortality; more details are provided in Table 1. Cancer-specific survival (CSS) was reported in 43 (29%) of the studies (Table 2) as CSS, death from renal cancer, or cancer-specific mortality.

Definitions of OS and CSS differed across studies (Table 1). The heterogeneity for the definitions was linked to time points. For instance, some studies started measurement at diagnosis, whereas others used the treatment date as the starting point for survival. The time endpoint also differed, with studies reporting either a rate at a defined time (eg, at 10 yr) or a hazard ratio based on survival analyses.

3.4. Adverse events (adverse events/effects)

Adverse events (AEs) were the most common outcome reported (n = 101, 68%). However, many different types of AE were reported, sometimes as the number or percentage of patients experiencing the outcome and sometimes subsumed in a classification system linked to severity or consequences (eg, the Clavien-Dindo scheme). Examples of

events that play a role in AE assessment include bleeding, operation time, warm ischaemia time, intra-abdominal pressure, surgical time, drainage time, serum creatinine, blood loss, trifecta/pentafecta outcomes, and dialysis, which are linked to the complexity of the surgery. Many articles reported several AEs within one study, but the AEs reported varied across studies (eg, surgical complications were measured as intraoperative complications, conversion to nephrectomy, or short-term complications).

"Adverse events/effects or resource use: hospital" outcomes were reported in six studies (4%). Outcome reporting and measurement were inconsistent; examples include dialysis-free probability, number requiring dialysis, temporary dialysis, and permanent dialysis (Table 1).

3.5. Life impact/functioning (perceived health status; global quality of life)

Only eight studies (5%) reported outcomes reflecting life impact. Five studies (3%) reported outcomes classified as perceived health status. Three studies (2%) reported on global quality of life (QoL), one study using the Short Form (SF)-36 and another using the Functional Assessment of Cancer Therapy-Kidney Symptom Index (FKSI)-15 patientreported outcome measures (PROMs; Table 2).

3.6. Physiological/clinical (physiological or clinical)

Physiological or clinical outcomes were subclassified as "renal and injury outcomes" (eg, new chronic kidney disease [CKD], CKD stage, time to CKD), which were defined very heterogeneously and reported in 87 (58%) of the studies; and "outcomes relating to neoplasms" (linked to cancer follow-up and progression, reported in 55 studies [37%]) according to the Dodd taxonomy [13] (Tables 1 and 2).

3.7. Resource use (economic, need for further intervention, hospital)

Resource use consisted of the subcategories "economic resource" (eg, health care expenditure; reported in four

Table 1 – Outcomes classified according to the taxonomy of Dodd et al. [13]

Death	Adverse events/effects	Physiological or clinical	Resource use	Life impact
Mortality/survival	38. Adverse events/effects	2–24. Physiological/clinical	Resource use	Functioning
Mortality/survival	38. Adverse events	19. Renal and injury outcomes	34. Economic	31. Perceived health
Overall survival	Complications	New CKD	Cost	status
OS rate	 Ŝurgical complications 	CKD probability	 Health care expenditure 	 Perceived health
 Cumulative survival 	 Intraoperative complications 	CKD stage	 Medical cost 	• Pain
 Stage-related OS 	 Conversion to nephrectomy 	CKD stage	 Total cost 	 Adverse health out-
Mean OS	 Short-term complications 	 Upgrading to CKD grade III–V 	 Imaging (linked to costs) 	comes
 Survival probability 1 yr 	Conversions	CKD upstaging	Medications?	
Deaths	 Grade I and grade II complications 	No CKD upstaging		
Deaths	Highest complication grade	Postoperative CKD stage		
 Death from any cause 	Overall complications	 Postoperative new onset of stage III or IV CKD 		30. Global quality
Mortality	 30-d postoperative complications 	• Final CKD stage	36. Need for further inter-	of life
Other-cause mortality		• Patients with acquired stage III–V CKD at follow-up, compared to preop-	vention	 Health-related
Mortality events	Bleeding Bleeding severity	erative	Readmission	guality of life
Overall mortality	• Units of blood transfused during	Time to CKD	• Reddinission	quality of file
Total mortality	hospitalisation	Decline in CKD stage		
X-day mortality		Progression to CKD		
Cancer-specific survival	Estimated bleeding	CKD upstaged-free survival		
RCC-specific survival	Bleeding-related complications	De novo CKD stage III	35. HospitalLength of stay	
Recurrence-free survival	Haemoglobin postoperatively			
Death from kidney cancer	Perioperative	Survival without CKD upstaging	Postoperative HSP time	
• Number of patients deceased at	Surgical margins	• Time to diagnosis of CKD	HSP time	
last follow-up	 Surgical margins 	Outcomes linked to procedure Mean ablation time 	 Hospital stay 	
Death from kidney cancer	 Negative margins 		 Average hospital stay 	
RCC death	 Positive surgical margins 	Laser excision time	 Duration of HSP 	
Death from RCC	Outcomes linked to surgery	Median procedure time	 Duration of postoperative 	
	Operation time	Renal outcomes	hospital stay	
• Death due to cancer	• WIT	Urinary function	 Median hospital stay 	
Cancer-specific mortality	 Surgical time 	Oncological outcomes	Surgical supplies and	
Cancer-specific mortality	 Drainage time 	Collecting system entry	devices	
• Death from nonRCC, other-cause	 Procedure time 	Haemostatic agent	 Operating room 	
mortality	 Pneumoperitoneum time 	eGFR	- operating room	
	Suture time	Mean eGFR change		
	• WIT ≤25 min	Median eGFR preservation		
	Conversions	Median percentage eGFR change		
	Open conversion	Change in GFR		
	 Average clamping time 	• eGFR preservation (%)		
		Latest eGFR preservation		
	Haemoglobin after surgery	• Δ GFR change		
	Postoperative drainage time	Last eGFR		
	 Intra-abdominal pressure 			
	 Adverse health outcomes 	eGFR 1-yr post operation		
	 Clampless rate 	Percentage change in eGFR		
	Blood loss	• eGFR decrease		
	 Mean estimated blood loss 	 Postoperative eGFR change (%) from baseline to 1-yr follow-up 		
	 Estimated blood loss 	Serum creatinine		
	 Changes in estimated blood loss 	Preoperative creatinine		
	• Units of blood transfused during	Creatinine level		
	surgery	Serum creatinine		
	Transfusion requirement	Difference in serum creatinine between preoperative and postoperative		
	Transfusion requirement Transfusion rate	levels		
	 Intraoperative transfusion 	Postoperative creatinine level		
	Intraoperative ES transfusion	Postoperative creatinine		
	•	Latest creatinine level		
	Transfusions received			
	Perioperative allogenic blood	Percentage change in creatinine		
	transfusion	 Variation of creatinine 		

(continued on next page)

Table 1 (continued)

carcinoma; WIT = warm ischaemia time.

Death	Adverse events/effects	Physiological or clinical	Resource use	Life impact
	 Percentage blood transfusion 	 Δ creatinine 		
	 BUN after 1 d and 1 mo 	Recurrence-free survival		
	Trifecta/pentafecta	• RFS + time		
	 Trifecta 			
	 Trifecta rate 			
	 Pentafecta reached 			
	 Highest complication grade 			
	Low-grade complication			
	38. Adverse events/effects or 35.	16. Outcomes relating to neoplasms: benign, malignant and unspe	cified	
	Resource use: hospitalDialysis free probability	(including cysts and polyps) Metastasis		
	 No. requiring dialysis 	Distant metastasis-free survival		
	Temporary dialysis	Distant metastasis		
	Permanent dialysis	• Extrarenal metastasis		
		Follow-up		
		Follow-up		
		Long-term outcomes		
		Median postoperative follow-up time		
		Average length of follow-up		
		Median follow-up time		
		Progression-free survival • PFS		
		Systemic PFS		
		Clinical PFS		
		Progression		
		Local tumour progression		
		Disease progression		
		Recurrence Local recurrence 		
		Disease-free survival		
		Recurrence rate		
		Recurrence-free survival		
		Recurrence result		
		Recurrence linked to time		
		Time to local recurrence		
		Events of local recurrenceDelayed recurrence		
		Time to recurrence		
		Local recurrence rate		
		Local recurrence-free survival		
		Recurrence (local or metastatic)		
		Local ipsilateral recurrence		
		Disease-free survival		

6

1	,

Table 2 – Outcomes reported in each study after classification according to the taxonomy suggested by Dodd et al. [13]

First author	Design	Location	Death	l	Advers events		Physio or clin	ological nical	Resource use		se	Life in	ipact
			OS	CSS	AEs	AEs/		E		Н	NFI	PHI	GQL
						ERUH	RIO	ORN					
Patel	OBS	US	Х				Х	Х					
Li	OBS	China			Х		Х			Х			
Wang	OBS	China		N/	Х	V	X	N		Х			Х
Morkos	OBS	USA Gaudi Anabia	Х	Х	V	Х	Х	Х					
Alshyarba Wu	OBS OBS	Saudi Arabia China	Х		X X		Х			Х			
Packiam	OBS	USA			X		X			X			
Yang	OBS	Not stated	Х		X		~			X			
Rembeyo	OBS	France	X	Х	X		х	Х		Л			
Uhlig	OBS	USA	X	~	Λ		~						
Yu	OBS	China	X	Х	Х		Х	Х					
Kartal	OBS	Turkey	Х		Х		Х	Х					
Jalbani	OBS	Pakistan			Х		Х			Х			
Seon	OBS	South Korea	Х	Х	Х		Х	Х					
Choi	OBS	South Korea			Х		Х			Х			
Tan	OBS	USA, Puerto Rico	Х										
Grant	OBS	USA	Х										
Chen	RCT	China			Х		Х			Х			
Liu	OBS	China			Х		Х			Х			
Sandbergen	OBS	Netherlands			Х								Х
Shapiro	OBS	USA		Х	Х		Х	Х					
De Cobelli	OBS	Italy			Х		Х						
Nayan	OBS	Canada	Х	Х			Х	Х					
Jin	OBS	China			Х		Х			Х			
Mourao	OBS	USA, Spain	Х	Х	Х		Х			Х			
Anglickis	OBS	Lithuania			Х		Х	Х		Х		Х	
Marchioni	OBS	USA	Х	Х									
Li	OBS	China		Х									
Liao	OBS	USA	Х	Х									
Simone	OBS	Italy	Х	Х	Х		Х	Х					
Shao	OBS	Taiwan			Х			Х		Х			
Antonelli	RCT	Italy			Х		Х			Х			
Kitley	OBS	USA	Х										
Zhou	OBS	China			Х		Х						
Andrews	OBS	USA		Х				Х					
Zhou	OBS	USA		Х			Х	Х					
Fraisse	OBS	France	Х		X			Х				Х	
Hu	OBS	China	V	V	Х		V	V					
Abu-Ghanem	OBS	Israel	Х	Х	V		X	Х		V			
Kavaric	OBS	Montenegro			Х		Х	v		Х			
Ziegelmueller	OBS	Germany	Х		N		х	Х					
Talenfeld	OBS	USA	Х	X	Х		V	V					
Bhindi	OBS	USA Natharlanda Italu	X	Х	X		X	X X		V			
Larcher	OBS	Netherlands, Italy	X	v	Х		Х	X		Х		v	
Xing	OBS	USA Duorto Pico	X	Х								Х	
Ristau	OBS	USA, Puerto Rico	Х		v		v	v		v			
Zhao Gershman	OBS OBS	China USA	х	Х	Х		X X	X X		Х			
Benoit	OBS	France	Λ	Λ	х		X	X X		х			
Paulucci	OBS	USA			X		X	X		X			
Abdel Raheem	OBS	South Korea		х	X		X	X		X			
Lourenco	OBS	Canada	Х	л	X		X	X		X			
Hasegawa	OBS	Japan	Λ		Λ		X	X		A	х		
Streja	OBS	USA		Х			X	л			л		
Borghesi	OBS	Globally		Λ	х		X			х			
Uhlig	OBS	USA	Х		Λ		Λ			X	Х		
Ye	OBS	China	Λ		х			х		X	Λ		
Park	OBS	Not stated			~			~		Λ			
Venkatramani	OBS	USA	х							Х			
Uhlig	OBS	USA	~	Х						~			
Zhang	OBS	USA	х	X									
Lee	OBS	South Korea	X	X	Х			Х					
Chong	OBS	USA	~		X			X			х		
Chang	OBS	Taiwan			X			Λ	Х	Х	Λ		
Yang	OBS	China			X			Х	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X			
Veys	OBS	Belgium	Х	Х	X		Х	X		~			
Banapour	OBS	USA	~		X		X			Х			
Cai	OBS	China	Х	Х	~		X			Λ			
Lanchon	OBS	France	Λ	Λ	х		X			х			
Venkatramani	OBS	USA	Х		~		~			~	Х		
Karalli	RCT	Sweden	A								Λ	Х	

(continued on next page)

First author	Design	Location	Death	Death		e	Physic or clin	ological nical	Reso	ource u	se	Life in	ipact
			OS CSS		AEs AEs/				E	H NFI		PHI GQI	
						ERUH	RIO	ORN					
Dong	OBS	Not stated					Х						
Wang	OBS	USA	Х										
Tang	OBS	USA	Х	Х									
Yin	OBS	China	Х					Х					
Shah	OBS	USA					Х						
Annino	OBS	Italy			Х			Х					
Wang	OBS	China	Х					Х			v		
Shum	OBS	USA	Х	V				Х		Х	Х		
Luo	OBS	USA South Korea	X	X	v			Х					
Lee Caputo	OBS OBS	USA	X X	X X	X X		Х	X					
Lu	OBS	China	^	Λ	X		X			Х			
Maric	OBS	Serbia			X		Λ			~			
Matei	OBS	Italy			X	х	х	Х		х			
Paulucci	OBS	USA			X	Λ	X	Λ		~			
Rassweiler	OBS	Germany			X		Λ						
Larcher	OBS	USA	Х		X			Х	Х	Х	Х		
Lenis	OBS	USA	X		X				~	~	~		
Wang	OBS	USA	~		X					Х			
Peng	OBS	China		Х	X		х	Х		X			
Malkoc	OBS	USA			X			X		X	Х		
Long	OBS	France	Х	х	X	Х	Х	X		X			
Yoo	OBS	South Korea					X			-			
Redondo	OBS	Spain			Х					х			
Carrion	OBS	Spain			Х		Х						
Shah	OBS	USA			Х		Х						
Moskowitz	OBS	USA	Х										
Huang	RCT	China			Х		Х			Х			
Larcher	OBS	USA		Х									
Jang	OBS	South Korea	Х	Х	Х		Х	Х					
Forbes	OBS	Canada	Х		Х		Х	Х					
Kara	OBS	Not stated			Х		Х	Х		Х			
Takagi	OBS	Not stated			Х		Х	Х		Х			
Oh	OBS	Not stated			Х								
Andrade	OBS	Not stated			Х	Х			Х	Х			
Dong	OBS	Not stated	Х		Х		Х	Х		Х			
Trudeau	OBS	USA	Х		Х								
Lai	OBS	China	Х	Х	Х					Х			
Liu	OBS	China	Х		Х		Х			Х			
Pantelidou	OBS	UK			Х		Х	Х		Х			
Liu	OBS	China	Х		Х		Х	Х					
Larcher	OBS	USA			Х		Х						
Hossein	OBS	Iran			Х		Х						
Komatsuda	OBS	Japan		V	Х		Х						
Janicic	OBS	Serbia	Х	Х	N/								
Lyon	OBS	USA			X	V	17			Х			
Satkunasivam	OBS	USA	Х		Х	Х	Х	V		Х			
Thompson	OBS	USA	Х				Х	X					
Tabayoyong	OBS	USA		v				Х					
Alanee	OBS	USA		Х	v		v	v					
Zargar	OBS	USA	v		X		X	X		v			
Mano	OBS	USA	X	v	X		X	X		X			
Chang	OBS	China	X	X	X		X	X		Х			
Serni	OBS	Italy Koroa	X	X	Х		X	Х					
Chung	OBS	Korea Not stated	X	Х	v		Х						
Yu Weinberg	OBS OBS	Not stated USA	Х		X X				Х	Х			
Park	RCT	South Korea			X X				Λ	X		х	х
Balasar	OBS	Turkey			X		Х			Λ		Λ	Λ
Balasar O'Malley	OBS	USA	Х	Х	Λ		X						
Kim	OBS	South Korea	Λ	л	Х		X						
Chang	OBS	China	Х		X X		Λ						
Cooper	OBS	USA	Λ		X		Х						
Cooper Alam	OBS	USA	Х	х	Λ		X X						
Alam Çömez	OBS	Turkey	Λ	л	Х		X			Х			
çonicz	OBS	USA			X		X	х		X			
Konn		USA			X		X	л		Λ			
	Obc						~						
Danzig	OBS				A								
Kopp Danzig Hussein Simcok	OBS	Egypt					Х			v			
Danzig				х	X X X					X X			

Table 2 (continued)

First author Design		Location	Death		Adverse events		Physiological or clinical		Resource use			Life impact	
			OS	CSS	AEs	AEs/			Е	Н	NFI	PHI	GQL
						ERUH	RIO	ORN					
Mason	OBS	USA					Х						
Chehab	OBS	Not stated			Х								
An	OBS	USA			Х					Х			
Rosen	OBS	USA			Х		Х						
Ramirez	OBS	USA			Х		Х						
Malkoc	OBS	Turkey			Х		Х				Х		

H = hospital resource use; NFI = need for further intervention; OBS = observational study; ORN = outcomes relating to neoplasms; OS = overall survival; PHI = perceived health impact; RCT = randomised controlled trial; RIO = renal and injury outcomes.

studies (3%) as mean or median costs), "need for further intervention" (eg, readmission; reported in eight studies [5%] as a binary yes/no result or median value), and "hospital" (eg, length of hospital stay, reported in 58 studies [39%] as mean or median length of hospital stay in days).

3.8. Discussion

To the best of our knowledge, this is the first systematic review of outcome reporting heterogeneity in the literature on localised renal cancer. Our results build a framework for developing a COS for localised renal cancer with the aim of reducing heterogeneity for outcome definitions, measurement, and reporting.

Our systematic review highlights the persisting problem of outcome reporting heterogeneity in studies on localised renal cancer. Multiple terms are used to refer to conceptually similar outcomes, and there is variation in the outcome definitions used. This has not improved over time and is problematic when summarising the evidence base for treatment effectiveness to inform decision-making, because it is not advisable to synthesise data with different outcome definitions within a meta-analysis. Such a practice can produce meaningless summary statistics that may be given more credibility than they are due. Therefore, a cumbersome and often less-informative narrative synthesis must be undertaken instead. Furthermore, our work highlights variety in data reporting and measurement. For instance, if dichotomous outcomes such as OS and CSS are reported using different methods (eg, some studies report adjusted and some unadjusted hazard ratios, others report a rate at median follow-up or at specified time points such as 1 yr or 5 yr), then these data cannot be easily or reliably synthesised in a meta-analysis. When these problems all occur together, then it is difficult to interpret the body of evidence and clinical practice guideline panels encounter challenges in drawing up recommendations and applying certaintyof-evidence attributes such as those proposed by the GRADE working group [17].

Worryingly, we identified very few patient-reported outcomes (PROs), which might be related to the limited number of specific tools available for capturing QoL for renal cancer. In their systematic review, Rossi et al. [18] identified three generic PROMs (RAND medical outcome survey SF-36 and SF-12, EuroQol [EQ-5D], Convalescence and Recovery Evaluation [CARE]) and eight cancer-specific PROMs (Cancer Rehabilitation Evaluation System-Short Form [CARES-SF], European Organisation for Research and Treatment of Cancer [EORTC] Quality of Life Questionnaire [QLQ]-C30, Functional Assessment of Cancer Therapy-General [FACT-G], FKSI, Renal Cell Carcinoma-Symptom Index [RCC-SI], Instruments to assess psychological wellbeing Impact of Events Scale [IES], Hospital Anxiety and Depression Scale [HADS], Mishel Uncertainty in Illness Scale (MUIS)) which are currently being used in renal cancer. However, of the PROM instruments used, only two are specific to renal cancer and are not stage-specific (FKSI, RCC-SI) [18].

In their study of the symptom index most commonly used for renal cancer, Rosenblad et al. [19] assessed the psychometric properties of the FKSI-19 (which captures physical and emotional disease-related symptoms, function/ wellbeing, and treatment side effects) among patients with RCC and reported that it is barely fit for this purpose. Decat Bergerot et al. [20] conducted a patient survey that identified many of the FKSI-19 questions as irrelevant from a patient perspective and stressed the need to incorporate patients in the development of PRO tools to determine areas of importance to them. The EORTC Quality of Life group is currently developing an RCC-specific module to be used in combination with their QLQ-C30 instrument.

Our project steering group includes clinical RCC experts, patient advocacy groups, methodologists, and guideline developers from the European Association of Urology (most are co-authors of this study). We aim to use these networks to improve recruitment to our research stages, and to subsequently endorse and disseminate the final COS as part of our implementation strategy.

We curated the different terms used and collated them using a standardised outcome classification taxonomy [13] as a first step in creating a COS for localised renal cancer. In the next step we will use consensus processes in a multistakeholder group to prioritise which outcomes are core and to recommend definitions for each outcome. Once we know which outcomes are considered core by our stakeholders, we will systematically review the psychometric properties of PROMs available, with coverage of core outcomes using the COSMIN criteria [21,22] and will recommend one to be used in future research on treatment effectiveness. This is a medium- to long-term vision to standardise the definition, measurement, and reporting of outcomes in research on localised renal cancer, with the ultimate aim of improving the decision-making process at all levels.

3.9. Limitations

We may have missed studies reporting PROs and/or QoL because we did not search specifically for primary qualitative studies of patient experiences of renal cancer treatment. However, we will supplement the list of outcomes presented here with outcomes identified in our own primary interview study with patients who have been treated for renal cancer, and further review work. Furthermore, as part of our prioritisation process, participants will be able to propose outcomes they think are missing from our list.

4. Conclusions

Our review indicates that clinical research on localised renal cancer is impeded by heterogeneity in outcome selection, definitions, and reporting. This work represents the first step in the development of a COS that will ultimately improve the evidence basis for treatment of patients with localised renal cancer and the process for creating clinical practice guidelines, and will facilitate treatment decisionmaking by health care professionals and patients.

Author contributions: Katharina Beyer had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: Beyer, Widdershoven, Van Hemelrijck, Bex, Zondervan, MacLennan.

Acquisition of data: Beyer, Widdershoven, MacLennan.

Analysis and interpretation of data: Beyer, Zondervan, MacLennan.

Drafting of the manuscript: Beyer, Zondervan, MacLennan.

Critical revision of the manuscript for important intellectual content: Beyer, Widdershoven, Wintner, Dabestani, Marconi, Moss, Kinsella, Yuan, Giles, Barod, Van Hemelrijck, Bex, Zondervan, MacLennan.

Statistical analysis: None.

Obtaining funding: None.

Administrative, technical, or material support: Beyer, Widdershoven, Yuan. Supervision: Zondervan, MacLennan.

Other: None.

Financial disclosures: Katharina Beyer certifies that all conflicts of interest, including specific financial interests and relationships and affiliations relevant to the subject matter or materials discussed in the manuscript (eg, employment/affiliation, grants or funding, consultancies, honoraria, stock ownership or options, expert testimony, royalties, or patents filed, received, or pending), are the following: None.

Funding/Support and role of the sponsor: None.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.euros.2022.11.014.

References

- [1] Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 2013;49:1374–403. https://doi. org/10.1016/j.ejca.2012.12.027.
- [2] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209–49. https:// doi.org/10.3322/caac.21660.
- [3] Sun M, Abdollah F, Bianchi M, et al. A stage-for-stage and grade-forgrade analysis of cancer-specific mortality rates in renal cell carcinoma according to age: a competing-risks regression analysis. Eur Urol 2011;60:1152–9. https://doi.org/10.1016/j. eururo.2011.07.064.
- [4] Rosiello G, Larcher A, Montorsi F, et al. Renal cancer: overdiagnosis and overtreatment. World J Urol 2021;39:2821–3. https://doi.org/ 10.1007/s00345-021-03798-z.
- [5] Martini A, Larcher A, Bravi CA, et al. How to select the optimal candidates for renal mass biopsy. Eur Urol Oncol 2021;4:506–9. https://doi.org/10.1016/j.euo.2020.10.001.
- [6] Ljungberg B, Albiges L, Abu-Ghanem Y, et al. European Association of Urology guidelines on renal cell carcinoma: the 2022 update. Eur Urol 2022;82:399–410. https://doi.org/10.1016/j.eururo.2022. 03.006.
- [7] Beyer K, Barod R, Fox L, et al. The current evidence for factors that influence treatment decision making in localized kidney cancer: a mixed methods systematic review. J Urol 2021;206:827–39. https://doi.org/10.1097/ju.000000000001901.
- [8] Williamson PR, Altman DG, Bagley H, et al. The COMET handbook: version 1.0. Trials 2017;18(Suppl 3):280. https://doi.org/10.1186/ s13063-017-1978-4.
- [9] MacLennan S, Williamson PR. The need for core outcome sets in urological cancer research. Transl Androl Urol 2020;10:2832–3285.
- [10] Meregaglia M, Ciani O, Banks H, et al. A scoping review of core outcome sets and their 'mapping' onto real-world data using prostate cancer as a case study. BMC Med Res Methodol 2020;20:41. https://doi.org/10.1186/s12874-020-00928-w.
- [11] Violette PD, Jewett MAS, Richard PO. Evidence-based urology: trustworthy guidelines. Eur Urol Focus 2021;7:1243–2126. https:// doi.org/10.1016/j.euf.2021.10.012.
- [12] Kirkham JJ, Dwan KM, Altman DG, et al. The impact of outcome reporting bias in randomised controlled trials on a cohort of systematic reviews. BMJ 2010;340:c365.
- [13] Dodd S, Clarke M, Becker L, et al. A taxonomy has been developed for outcomes in medical research to help improve knowledge discovery. J Clin Epidemiol 2018;96:84–92. https://doi.org/ 10.1016/j.jclinepi.2017.12.020.
- [14] MacLennan S, Marconi L, Van Hemelrijck M, Beyer K, Bex A, Zondervan P. Renal cancer Core Outcome Sets (R-COS) programme encompassing 1) localised renal cell carcinoma (RCC) 2) locally advanced RCC and 3) metastatic RCC. COMET Initiative 2019. https://www.comet-initiative.org/studies/details/1406.
- [15] Beyer K, Moris L, Lardas M, et al. Updating and integrating core outcome sets for localised, locally advanced, metastatic, and nonmetastatic castration-resistant prostate cancer: an update from the PIONEER Consortium. Eur Urol 2022;81:503–14. https:// doi.org/10.1016/j.eururo.2022.01.042.
- [16] Kirkham JJ, Gorst S, Altman DG, et al. Core Outcome Set-Standards for Reporting: the COS-STAR statement. PLoS Med 2016;13: e1002148.
- [17] Schünemann H, Brożek J, Guyatt G, Oxman A. GRADE handbook. Updated October 2013. https://gdt.gradepro.org/app/handbook/ handbook.html.
- [18] Rossi SH, Klatte T, Stewart GD. Quality of life outcomes in patients with localised renal cancer: a literature review. World J Urol 2018;36:1961–72. https://doi.org/10.1007/s00345-018-2415-3.
- [19] Rosenblad AK, Sundqvist P, Westman B, et al. A psychometric evaluation of the Functional Assessment of Cancer Therapy-Kidney Symptom Index (FKSI-19) among renal cell carcinoma patients suggesting an alternative two-factor structure. Qual Life Res 2021;30:2663–70. https://doi.org/10.1007/s11136-021-02839-9.
- [20] Decat Bergerot C, Psutka S, Plimack E, et al. Relevance of items in the FACT Kidney Cancer Symptom Inventory-19 (FKSI-19): results of a patient survey. Presented at the 2022 European International Kidney Cancer Symposium (EIKCS), Antwerp, April 22–24, 2022.

- [21] Mokkink LB, de Vet HCW, Prinsen CAC, et al. COSMIN risk of bias checklist for systematic reviews of patient-reported outcome measures. Qual Life Res 2018;27:1171–9. https://doi.org/10.1007/ s11136-017-1765-4.
- [22] Prinsen CAC, Mokkink LB, Bouter LM, et al. COSMIN guideline for systematic reviews of patient-reported outcome measures. Qual Life Res 2018;27:1147–57. https://doi.org/10.1007/s11136-018-1798-3.