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Abstract
The reactivity of methanol and methyl acetate mixtures over a HZSM-5 catalyst is studied over a period of 6 h at 350 °C, 
with small molecular weight olefins and aromatic compounds observed as reaction products. Post-reaction analysis of the 
catalyst shows the coke content to increase with methyl acetate content. Vibrational spectra (DRIFTS and inelastic neutron 
scattering, INS) indicate the major hydrocarbon species present in the coked catalysts to be methylated aromatic molecules, 
with INS spectra indicating a greater degree of methylation in the catalysts used with higher methyl acetate content. The 
greater extent of deactivation at higher methyl acetate concentrations is tentatively attributed to a diminishment of water in 
the zeolite cavity, which would otherwise facilitate re-generation of the active sites.
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1  Introduction

The methanol-to-hydrocarbons reaction (MTH) provides a 
catalytic route where methanol, a relatively cheap feedstock, 
can be turned into more valuable and industrially relevant 
products. The MTH reaction uses an acidic zeolite catalyst, 
commonly ZSM-5, which can produce light olefins and a 
range of methylated aromatics [1]. The catalyst at steady-
state is thought to operate via a ‘hydrocarbon pool’ (HCP) 
mechanism. The HCP mechanism is an autocatalytic cycle 
that describes how the catalyst functions after the first hydro-
carbons have formed [2, 3]. However, the mechanism of 

formation of the first carbon–carbon bonds is still elusive, 
with many different proposals in the literature [4].

Understanding how the first C–C bonds are created may 
help optimisation of catalyst composition in order to both 
maximise efficiency but also tune selectivity. One recent 
proposal independently reported by the groups of Lercher 
[5] and Weckhuysen [6] is that carbon–carbon bonds are 
created via methyl acetate (MeOAc) as the first intermediate.
[5, 6]. Formation of MeOAc from methanol or dimethylether 
(DME) requires the feedstock to undergo a carbonylation 
reaction, which forms surface acetate groups. The carbon-
ylation reaction also requires a source of CO, which Lercher 
et al. suggest may result from dehydrogenation of methanol 
[5]. Methanol and DME carbonylation to form MeOAc has 
been reported mainly with a mordenite acid zeolite catalyst, 
although good selectivity towards MeOAc at relatively lower 
temperatures has also been observed with HZSM-5 [7, 8]. 
CO has also been observed as part of the initial stages of 
the MTH reaction, both on ZSM-5 and on SAPO-34 [9, 10]. 
In studies where the carbonylation reaction was the main 
focus, it has been reported that water causes the carbonyla-
tion rate to decrease due to competitive adsorption with the 
CO, since methanol is dehydrated to form DME and water, 
the carbonylation step is expected to be the rate limiting step 
of the MTH reaction [7, 11].

In this study we have explored the reactivity of meth-
anol–MeOAc mixtures over an HZSM-5 catalyst at 
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temperatures representative of that employed in MTH 
chemistry. We particularly focus on the effects of MeOAc 
on the catalyst lifetime, employing inelastic neutron scat-
tering spectroscopy (INS) to characterise the used catalysts. 
INS has considerable potential for investigating zeolite cata-
lysts as it provides access to the vibrational spectra of used 
catalysts over a wide frequency range without obstruction 
from zeolite lattice modes [12]. We have recently reported 
the use of INS to study HZSM-5 catalysts used in the MTH 
reaction [13, 14] and the role of DME in the MTH reaction 
chemistry [15].

In the present work we examine the MTH reaction for a 
period of 6 h at 350 °C in the presence of different amounts 
of MeOAc. The reaction was monitored by in-line mass 
spectrometry whilst, additionally, liquid products were col-
lected in a catch-pot and analysed by GC–MS. Post-reac-
tion, the catalyst samples were analysed by INS, N2 sorption 
experiments and temperature programmed oxidation (TPO).

2 � Experimental

The HZSM-5 (Si:Al ratio = 30) zeolite used is a commer-
cially available catalyst provided in powder form by John-
son Matthey plc. Catalyst characterisation has been reported 
elsewhere [13]. Residual HZSM-5 template (tetrapropyl 
ammonium bromide) was removed by heating the zeolite in 
air at 500 °C for 12 h prior to use.

2.1 � Reaction Testing

The reactions were conducted using a reaction test facil-
ity located in the ISIS Neutron and Muon Source that is 
described in detail by Warringham et al. [16]. The fixed bed 
reactor is made of stainless steel with an internal diameter 
of 35 mm and length of 60 cm. 12 g of calcined HZSM-5 
were loaded on the reactor and dried under a constant flow 
of He (150 ml min−1, CK gas, > 99%) at 350 °C for 3 h. After 
the drying process, the reactor is kept at temperature and the 
reactant feed was introduced into the reactor at a rate of 1 
greactant gcatalyst

−1 h−1. The reactant feed was a liquid mixture 
of methanol and methyl acetate (with molar percentages of 
0% MeOAc, 10% MeOAc, 30% MeOAc, 60% MeOAc and 
100% MeOAc) and all reactions were stopped after 6 h. The 
reactor was then flushed for 15 min with helium to remove 
any excess reactant feed present before being isolated and 
allowed to cool to ambient temperature.

2.2 � Product Analysis

Gaseous products were analysed by in-line mass spectrometry 
(Hiden Analytical, HPR-20) connected to the exit line of the 
reactor via a differentially-pumped heated quartz capillary. A 

catch-pot placed downstream of the reactor was used to col-
lect liquid products. They were analysed by off-line GC–MS 
(Agilent 7890A GC, 5975 MSD, DB-1MS capillary l: 60 m, 
ID 0.25 mm, t 0.25 μm). Initial oven temperature 40 °C held 
for 2 min, increased at a ramp rate of 10 °C min−1 to 150 °C 
and held for 3 min.

2.3 � Post‑reaction Catalyst Analysis

For the INS measurements all sample handling was con-
ducted in an argon filled glove box (MBraun UniLab MB-
20-G, [H2O] < 1 ppm, [O2] < 1 ppm). The reacted catalyst was 
removed from the reactor and transferred into aluminium INS 
flat cells sealed with indium wire. INS spectra were collected 
with the TOSCA instrument. TOSCA is an indirect geometry 
instrument with a spectral range of  25 to 4000 cm−1 but is 
optimal below 2000 cm−1. Some of the reacted catalyst was 
kept for further analysis using diffuse reflectance infrared Fou-
rier transform spectroscopy (DRIFTS), nitrogen adsorption 
and temperature programmed oxidation (TPO).

TPO experiments were conducted on the post-reacted 
ZSM-5 samples using a Hiden CatLab Microreactor inte-
grated with a mass spectrometer and the coke weight percent 
was verified by thermogravimetric analysis (TGA) using the 
same procedure (TGA Q50, TA instruments). Approximately, 
0.05 g of reacted catalyst was placed in a quartz reactor and 
dried at 300 °C until no water was detected in the mass spec-
trometer. The TPO was carried out under 20% O2/He with 
increasing temperature from 40 to 800 °C at a heating rate of 
10 °C min−1. TGA was completed in the same way, however, 
air was used instead of the O2/He mixture.

Surface area analysis was completed using a Quantachrome 
Quadrasorb EVO/Si gas adsorption instrument. 0.15 g of sam-
ple was placed in a 9 mm quartz sample tube and was degassed 
at < 20 mTorr at 200 °C for 20 h. The weight of the sample was 
recorded before being mounted on the Quadrasorb instrument. 
The Brunauer–Emmett–Teller (BET) equation was used to cal-
culate the surface area in the pressure range P/P0 of 0.02–0.04. 
The micropore volume was calculated from the t-plot curve 
using the thickness range between 5 and 6.9 Å. Adsorption iso-
therm analysis was completed using the QuadraWin software.

DRIFTS spectra were collected using an Agilent Carey 680 
FTIR spectrometer equipped with a Harrick Praying Mantis 
accessory. Catalyst samples were loaded under argon into the 
Harrick Praying Mantis high temperature in situ cell fitted 
with ZnSe windows. It was then heated in flowing nitrogen 
(50 mL min−1) at a ramp rate of 10 °C min−1 to 350 °C and 
held at 350 °C for 30 min. Spectra were collected with 64 
scans at 4 cm−1 resolution using a liquid nitrogen cooled MCT 
detector.
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3 � Results

3.1 � Reaction Monitoring

Figure 1 shows the product profiles versus time on stream 
for (a) methanol alone, (b) methanol:MeOAc 7:3, (c) 
methanol:MeOAc 4:6 and (d) MeOAc alone. The mass 
spectrometric analysis is complicated by the contribu-
tions from fragmentation of other species but, nonethe-
less, a number of trends can be identified. For methanol 
alone, the formation of ethene, propene and aromatic prod-
ucts remains effectively constant over the 6 h run time. 
Although there is some increase in the amount of unre-
acted methanol and DME over this time period, the overall 
conversion of methanol remains high (> 90%). Figure 2 
plots the methanol and MeOAc conversions versus time 
for the different reactant compositions tested (conversions 
were calculated from comparison with mass spectral peak 

intensities measured at time = 0 on bypassing the reac-
tor). Figure 1b shows the addition of 30% MeOAc leads 
to a proportionally greater degree of aromatic products, 
whilst Fig. 2 shows both MeOH and MeOAc conversions 
to remain high. Over the range 0–30% MeOAc content, 
Fig. 2a shows methanol conversion to be slightly improved 
in increasing MeOAc; for example at 5 h T-o-S 10% and 
30% MeOAc return XMeOH values of 99.0% and 99.9% 
respectively, compared to a value of 98.0% for a pure 
methanol feed. These small shifts in methanol conversion 
may reflect changes in the formation of the hydrocarbon 
pool on increasing presence of the ester.

At 60% MeOAc Fig. 2 shows a noticeable deactivation to 
occur. The methanol conversion falls steadily throughout the 
run and, although aromatic production continues (Fig. 1c), 
the apparent continued production of ethene and propene 
is largely due to the contributions to m/z = 42 and 27 from 
fragmentation of unreacted MeOAc. For a pure MeOAc 
feedstream, Fig. 1d shows the aromatic signal to steadily 

Fig. 1   Mass spectral analysis of reactor exit gases during MeOH/
MeOAc conversion at 350 °C. a 0% MeOAc, b 30% MeOAc, c 60% 
MeOAc and d 100% MeOAc. m/z 91 ( ) signifies the tropylium 

ion indicating aromatics. m/z 74 ( ) signifies methyl acetate, m/z 
46 ( ) signifies DME, m/z 42 ( ) signifies propene, m/z 31 
( ) signifies methanol and m/z 27 ( ) signifies ethene
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decline after ~ 3 h time-on-stream. There is also a significant 
increase in the methanol signal, suggesting that hydrolysis 
of MeOAc may be occurring.

Figure 3 shows GC–MS analysis of the liquid products 
retained in the reactor catchpot (total product after 6 h on 
stream). For pure MeOAc as the reactant, acetic acid is the 
major liquid product. In all of the reactions, the hydrocarbon 
products comprise a mixture of xylenes, tri-methylbenzenes, 

tetra-methylbenzenes and substituted naphthalenes. These 
products are still present but at much lower levels when pure 
MeOAc was the reactant.

The conversion of MeOAc over SAPO-34 catalysts is 
reported to give an initial product distribution similar to that 
formed from methanol, although the production of alkenes 
falls after only 10 min on stream at 400 °C [17]. We are not 
aware of any comparable study of MeOAc conversion over 
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Fig. 2   Methanol (a) and methyl acetate (b) percentage conversion versus time on stream at 350 °C

Fig. 3   Catch-pot analysis via 
GC–MS of liquid products 
accumulated during 6 h on 
stream at 350 °C
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HZSM-5, although we note that coupling of CO and metha-
nol over HZSM-5 is reported to form aromatic products, 
presumably via MeOAc [18]. The results presented above 
suggest that the major role of MeOAc is to promote catalyst 
deactivation. Accordingly, we examined the used catalysts 
from the above reactions in more detail.

3.2 � Post‑reaction Catalyst Characterisation

Consistent with the suggested role of MeOAc in promoting 
catalyst deactivation, the coke content of the used catalysts 
increased with increasing MeOAc content of the reaction 
feed, as shown in Table 1. It is noted that this systematic 
trend contrasts with the small and somewhat anomalous 
methanol conversion trends observed in Fig. 2a. There is also 
a corresponding loss of surface area, principally micropore 
volume, which correlates with the increasing coke content.

These data are consistent with earlier reports that initial 
coke formation in methanol conversion over HZSM-5 occurs 
within the micropores of the zeolites [19]. Temperature-
programmed oxidation measurements reveal that addition 

of MeOAc to the reaction feed causes some change in the 
nature of the coke species. (Fig. 4).

There is a significant shift to higher temperature in the 
peak maximum in the TPO profile of the used catalysts 
when MeOAc is added to the feed, from ~ 520 to 580 °C. 
The shift being observed even when 10% MeOAc is added 
to the methanol feed. This suggests that in the presence of 
MeOAc the coke deposits have a lower H:C ratio than that 
formed from methanol alone, although there is no evidence 
for the presence of “hard” or graphitic coke [20] even with 
a pure MeOAc feed at 350 °C. The peak shift is consistent 
with an increased presence of aromatics when methyl acetate 
is added to the methanol feed.

Figure 5 shows DRIFTS spectra of the used catalysts 
in the 4000–2200 cm−1 region, in all cases recorded at 
350 °C in flowing helium. The blank zeolite dehydrated at 
350 °C shows two characteristic ν(OH) bands at 3735 and 
3596 cm−1 assigned respectively to SiOH groups on the 
external surface or in defects and to Si(OH)Al Brønsted acid 
sites [21, 22]. An additional weak shoulder at 3650 cm−1 is 
due to extra-framework AlOH groups [23, 24]. The used 
catalysts all show attenuation of the Brønsted acid band, 
which becomes more attenuated as the MeOAc content of 
the feed increases. At higher MeOAc concentrations the 
silanol and extra-framework AlOH bands are also attenu-
ated. The attenuation of the Brønsted acid sites was seen pre-
viously in catalysts used for methanol conversion at 350 °C 
for 3 days [13], consistent with coke formation at the acid 
sites. Attenuation of the silanol and extra-framework AlOH 
sites is associated specifically with the presence of MeOAc.

In the ν(CH) region the four bands appearing at 3121, 
2971, 2926 and 2869 cm−1 closely resemble those reported 
by Suwardiyanto et al. [13] and assigned to methylated aro-
matic hydrocarbon species trapped in the zeolite pores. The 
intensities of these bands increase with MeOAc content of 
the feed, as does the coke content, but from this region of 
the infrared spectrum we cannot identify any differences in 
the nature of the coke species formed from methanol ver-
sus MeOAc. Accordingly, we turned to INS spectroscopy to 
observe the lower frequency vibrational spectra.

3.3 � Inelastic Neutron Scattering

Figure 6 shows INS spectra of the blank zeolite, the zeo-
lite containing MeOAc adsorbed at room temperature, and 
a sample of pure MeOAc. The spectra are normalised with 
respect to the weight of the sample. The dosed MeOAc on 
ZSM-5 shows that the MeOAc remains intact on the ZSM-5 
with all the major peaks distinguishable. The peaks become 
broadened and less intense which could be attributed to 
the confinement effects of the MeOAc inside the zeolite 
structure. The blank ZSM-5 spectrum is shown as a refer-
ence, showing that the zeolite contribution to the spectra is 

Table 1   Coke content and nitrogen sorption data for the used cata-
lysts

Reaction feed Coke con-
tent (wt%)

BET surface 
area (m2 g−1)

Micropore 
volume (cm3 
g−1)

Fresh ZSM-5 [15] 0 387 0.148
0% MeOAc 2.53 302 0.112
10% MeOAc 2.81 327 0.121
30% MeOAc 7.55 155 0.054
60% MeOAc 9.33 40.6 0.009
100% MeOAc 9.76 22.1 0.003
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minimal (and emphasising the advantage of INS for studying 
this region of the spectrum).

Figure 7 shows spectra recorded over the same frequency 
range for the used catalyst samples. As with the infrared 
spectra in Fig. 5, the intensities of the bands due to hydrocar-
bon coke species increase with increasing MeOAc content 
in the feed. This trend additionally reflects that observed 
for retained coke content (Table 1). No evidence of features 
attributable to surface bound methyl acetate entities is appar-
ent in either the IR or INS spectra.

Interestingly, the spectra measured from catalysts exposed 
to 30% or more MeOAc resemble those previously reported 
for HZSM-5 zeolite catalysts reacted with dimethylether 
at 350 °C [15] and importantly have no correspondence 
to the spectrum of adsorbed MeOAc (Fig. 6). For exam-
ple, the doublet at 1370 and 1456 cm−1 in Fig. 7 is respec-
tively assigned to CH3 symmetric and asymmetric bend-
ing modes of methyl groups attached to aromatic rings and 
both features are present in all of the spectra except that of 
the 0% MeOAc catalyst. A band at 1186 cm−1 is present 

Fig. 5   DRIFTS Spectra of the 
reacted samples. Spectra were 
normalised with respect to the 
zeolite framework peaks at 
1864 cm−1 and 1972 cm−1
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in all spectra, and appears to grow together with the 1370, 
1456 cm−1 doublet, suggesting it is associated with the same 
species. Likewise, the lower frequency bands are similar to 
those seen with dimethylether as the reactant [15]. Some dif-
ferences in relative intensity are noted: bands between 800 
and 1000 cm−1 are assigned to aromatic CH out-of-plane 
bending modes which are less intense in Fig. 7 relative to the 
1033 cm−1 band due to CH3 rocking modes compared with 
the spectra of the dimethylether catalysts [15]. We attribute 
these differences to a greater degree of methylation of the 
aromatic rings in the presence of MeOAc. Highly methyl-
ated aromatics have been linked with ZSM-5 deactivation 
[19, 25], which could explain why the increase in MeOAc 
has also nudged the catalyst in to a deactivation stage earlier 
than is seen with either methanol or DME. This enhanced 
extent of methylation in the adsorbed aromatic hydrocar-
bons appears to be the only significant difference in the INS 
spectra between the coke deposits formed in the presence 
and absence of MeOAc.

4 � Discussion

Methyl acetate has been included in the methanol feedstream 
and its role in MTH chemistry over HZSM-5 considered. 
Methyl acetate additions over the range 10–100% are seen to 
modify the product distribution of low molecular weight ole-
fins plus aromatic compounds and perturb methanol conver-
sion. The ester appears to accelerate catalyst deactivation by 
enhancing the formation of methylated aromatic coke com-
pounds that block active sites within the zeolite. Müller et al. 
[26] have suggested that initial coke formation in ZSM-5 is 
enhanced by the presence of oxygenated compounds, but 

the vibrational spectroscopic data show no evidence for the 
presence of anything other than methylated aromatics in the 
used catalysts studied here, and the TPO data show no sign 
of the Type I coke observed in reference [26]. One pos-
sible origin for the deactivation trends observed could be 
that the presence of methyl acetate in the feedstream leads 
to a constrained supply of water molecules in the reaction 
zone (formed as a product in the dimerization of methanol 
to produce dimethyl ether), which would otherwise facilitate 
re-generation of the active sites (Brønsted acid sites) [15].
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