Multi-Agent Intention Recognition and Progression

Michael Dann', Yuan Yao?, Natasha Alechina®, Brian Logan®*, Felipe Meneguzzi® and John
Thangarajah'
'RMIT University
2University of Nottingham, Ningbo China
3Utrecht University
4 University of Aberdeen

michael.dann @rmit.edu.au, yuan.yao@nottingham.edu.cn, {n.a.alechina, b.s.logan} @uu.nl,
felipe.meneguzzi @abdn.ac.uk, john.thangarajah@rmit.edu.au

Abstract

For an agent in a multi-agent environment, it is of-
ten beneficial to be able to predict what other agents
will do next when deciding how to act. Previous
work in multi-agent intention scheduling assumes
a priori knowledge of the current goals of other
agents. In this paper, we present a new approach to
multi-agent intention scheduling in which an agent
uses online goal recognition to identify the goals
currently being pursued by other agents while act-
ing in pursuit of its own goals. We show how
online goal recognition can be incorporated into
an MCTS-based intention scheduler, and evaluate
our approach in a range of scenarios. The results
demonstrate that our approach can rapidly recog-
nise the goals of other agents even when they are
pursuing multiple goals concurrently, and has sim-
ilar performance to agents which know the goals of
other agents a priori.

1 Introduction

The Belief-Desire-Intention (BDI) model [Rao and GeorgefT,
1992] is a popular approach to implementing autonomous
agents that must act in complex and dynamic environments
[de Silva et al., 2020]. In the BDI approach, beliefs represent
the agent’s information about the environment and its own
state, goals (desires) represent states of the environment the
agent should achieve, and intentions represent commitments
to achieving particular goals. The program of a BDI agent
consists of a set of initial beliefs and a set of plans for achiev-
ing goals. Each plan consists of a sequence of primitive ac-
tions that change the state of the environment, and subgoals
which in turn are achieved by their own plans.

A key advantage of the BDI approach is that agents are ca-
pable of pursuing multiple goals concurrently, by interleaving
steps (actions or sub-plans) in the intentions for each goal.
For example, consider an agent in a Craft World [Andreas et
al., 2017] environment with top-level goals to craft a stick
and a plank. Both items require wood, but are crafted at dif-
ferent locations: sticks can only be crafted at a workbench
while planks are crafted at a toolshed. A BDI agent agent

may collect wood for both items before crafting either a stick
or a plank. To pursue multiple goals concurrently, at each de-
cision cycle, a BDI agent must solve the intention progression
problem (IPP) [Logan et al., 2017], i.e., which of its multiple
intentions it should progress next, and, if the next step in the
selected intention is a subgoal, which plan should be used to
achieve it. The IPP has been extensively studied in the sin-
gle agent setting, and a number of approaches have been pro-
posed in the literature, including summary-information-based
(SI) [Thangarajah et al., 2003; Thangarajah and Padgham,
20111, coverage-based (CB) [Waters et al. 2014; 2015] and
Monte-Carlo Tree Search-based (MCTS) [Yao et al., 2014;
Yao and Logan, 2016; Yao et al., 2016b].

In recent work [Dann et al., 2020; Dann et al., 2021;
Dann et al., 2022], the IPP has been extended to the multi-
agent setting. In the multi-agent setting, solutions to the IPP
must take into account the implications of action scheduling
for both the agent’s own goals and the achievement of the
goals of other agents, e.g., when the execution of a step in
a plan of one agent makes the execution of a step in a plan
of another agent impossible. This is termed intention-aware
multi-agent scheduling by Dann et al. [2020]. Work to date in
intention-aware scheduling assumes an agent knows the goals
currently being pursued by other agents a priori. For exam-
ple, the MCTS-based ‘intention-aware’ scheduler 74 devel-
oped by Dann ef al. [2020] assumes that agents have access
both to the current goals of other agents and the plans used to
achieve them. In [Dann et al., 2022] agents predict the actions
of other agents based on a high-level declarative specification
of the tasks performed by an agent rather than its program;
however knowledge of current goals of other agents is still
assumed.

In many cases, the assumption that the current goals of
other agents are known a priori is unrealistic. For example, in
a disaster-response scenario the possible goals of other agents
may be known (searching for survivors, providing first aid,
etc.), but their current intentions may not. In such situations,
simply ascribing all possible goals as the current goals of an
agent typically results in poor predictions of its behaviour.
In this paper, we develop a new approach to intention-aware
multi-agent scheduling in which an agent uses online goal
recognition to identify the goals currently being pursued by

other agents at runtime based on their actions in the environ-
ment. Goal recognition occurs while the agent acts in pur-
suit of its own goals, allowing agents to anticipate the future
actions of other agents in ‘one-shot’ scenarios, e.g., ad-hoc
teamwork.

We formally define the multi-goal recognition and multi-
agent intention recognition and progression problems, and
extend recent work on goal recognition as reinforcement
learning [Amado et al., 2022] to settings where agents may
have multiple concurrently active goals. This is essential
when interacting with more complex agents, e.g., when the
other agents in the environment are BDI agents. A key contri-
bution of our approach is avoiding the exponential explosion
inherent to a naive application of the techniques from Amado
et al. [2022]. We show how online goal recognition can be
incorporated into an MCTS-based intention scheduler, and
evaluate our approach in range of scenarios, including coop-
erative, neutral and adversarial settings. The results demon-
strate that our approach can rapidly recognise the goals of
other agents even when they are pursuing multiple goals con-
currently, and has similar performance to agents which know
the goals of other agents a priori.

2 BDI Agents

Before we define the problems we address in this paper, we
briefly recall the key components of a BDI agent including
beliefs, goals, actions, plans, goal-plan trees and intentions.

Beliefs and goals. We assume agents encode their beliefs
and goals using a finite set of propositions P. The state space
S C p(P) induced by this language consists of all truth as-
signments to propositions in P. Beliefs B = {b1,...,b,}
encode the agent’s information about the environment, and
consists of a finite set of ground literals defined over P. For
simplicity, we assume the environment is fully observable,
and the agent’s beliefs are updated when the state of the en-
vironment changes. The agent’s desires, or top-level goals
G = {91,.-.,9m}, consist of a finite set of literals repre-
senting the states of the environment desired by the agent.
The agent’s goals need not be consistent, since goals g and
—g can be achieved at different times. For simplicity, and to
allow comparison with previous work, we consider only BDI
agents with achievement goals in what follows. However, Wu
et al. [Wu et al., 2023] show how MCTS-based scheduling
can be extended to handle maintenance goals (i.e., goals to
maintain a particular condition).

Actions and plans. We define the agent’s action space as
a set Act = {a1,...,ar} of STRIPS-style actions. Each
action a; € Act is a tuple (¢, 1) consisting of a set of pre-
conditions ¢ = pre(c;), and effects 1) = eff (a;). These rep-
resent, respectively, literals that must be true before the agent
can execute «; (i.e., it must be the case that B = ¢), and the
literals that are true after the agent executes «;. For simplic-
ity, we assume that actions are deterministic: if B |= ¢, then
1 holds after the agent executes the action.! The set of fluents

"Yao et al. (2016) present an MCTS-based scheduling approach
which is able to handle nondeterministic actions. It would be
straightforward to integrate their approach into Igg.

F' C P are the propositions whose truth value may change as
the result of an action. A BDI agent achieves its goals by em-
ploying a set of hierarchical plans H = {p1,...,p,}. Each
goal g is associated with one or more plans p; € H of the
form g : x < S1;...;Sm, Where x = con(p;) is the context
condition (i.e., a set of literals which must be true for p; to
be applicable), and s;;...;s,, is a sequence of steps which
are either actions or subgoals. A plan can be executed if its
context condition holds, the precondition of each of its action
steps holds when the step is reached, and each of its subgoal
steps has an executable plan when the subgoal is reached. We
assume that successful execution of any plan for g achieves g.

Goal-plan trees and intentions. We represent the relation-
ship between the plans, actions, and subgoals that can be used
to achieve a goal by a hierarchical structure termed a goal-
plan tree (GPT) [Thangarajah et al., 2003; Thangarajah and
Padgham, 2011; Yao er al., 2016al. Each top-level goal is
represented by a goal-node that forms the root of a goal-plan
tree representing a state of the environment an agent may try
to bring about. Its children are plan nodes representing the
plans associated with the top-level goal. As only one plan
needs to be executed to achieve the goal, goal nodes can be
viewed as or-nodes. In contrast, the children of a plan node
are the action and subgoal nodes corresponding to the steps
in the plan body. As these must be executed sequentially,
plan nodes can be viewed as (ordered) and-nodes. Each sub-
goal node has its associated plans as children, giving rise to
a hierarchical tree structure representing all possible ways
an agent can achieve the top-level goal. The intentions of
an agent at each deliberation cycle are represented by a pair
(T, C)y where T' = {t1, ..., t,, } is a set of goal-plan trees and
C ={e,...,cn } are indexes to the current step of each ¢;.

3 Multi-Agent Intention Recognition and
Progression

In this section, we formally define the problems we address
in this paper. Previous work on goal recognition focuses on
single goals. In single goal recognition the task is to infer
the current goal of an agent, given observations of the agent’s
behaviour in the environment,? the dynamics of the environ-
ment, and possibly information about the agent’s preferences
over goals [Meneguzzi and Pereira, 2021].3 However, agents,
e.g., BDI agents, may pursue multiple goals concurrently. We
therefore generalise the single-goal recognition problem to
the multi-goal recognition problem, which is defined as:

Definition 1 (Multi-Goal Recognition). A multi-goal recog-
nition problem Py is a tuple (2, sg, G,), where: = =
(F, Act) is the planning domain, F is a set of fluents, and
Act is a set of actions; sq is the initial state; G is the set of

“We focus on keyhole goal recognition, that is, where the agent
being observed is not aware of the observing agent.

3Some approaches compute a probability distribution over an
agent’s possible goals, e.g., [Ramirez and Geffner, 2010; Sohrabi
et al., 2016; Masters and Vered, 20211, and assume the goal with the
highest probability is the agent’s current goal.

possible goals,* Q) = [sg, a9, 51,01, - .., Sn, Q] is a sequence
of observations where s; € S and a; € Act.

A solution to a multi-goal recognition problem Py is a
set of goals G' C G. A solution is correct if G’ = G* where
G™ is the set of current goals of the agent that generated the
observations.

It is important to note that, for intention-aware multi-agent
scheduling, in many cases goal recognition does not have to
be perfectly correct in this sense. The agent is not trying to
identify the goals of the other agent per se, but to allow it to
choose its own actions based on predictions of what the other
agent will do next. Ascribing an incorrect set of goals G’ is
acceptable if the actions chosen by the agent are the same as
the actions it would have chosen had G* been ascribed to the
other agent. In many cases, it is sufficient to correctly pre-
dict only the next k actions of the other agent; for example
when agents may interact only briefly; the other agent’s goals
change at runtime, e.g., due to changes in the environment
or the agent being asked to do something else, reducing the
value of predictions more than a few steps ahead. Moreover,
goal recognition is an ongoing process, and future observa-
tions may be used to discriminate between “similar” goals.

Finally, we extend the definition of the single agent inten-
tion progression problem given in [Logan et al., 2017] to in-
clude multi-goal recognition. Below we state the problem
of multi-agent intention recognition and progression for the
general case where there is a set of m > 1 ‘other agents’ Agt
in the environment, each having multiple concurrent goals.
However, in the rest of this paper, to simplify the presenta-
tion and analysis of the experimental results, m = 1 (there is
only one ‘other agent’).

Definition 2 (Multi-Agent Intention Recognition
and Progression). A multi-agent intention recogni-
tion and progression problem is a tuple Prp
{Pume, | i€ Agt} ,B,T,C), where Pyg, follows
Definition 1, B are the agent’s current beliefs, and T, C are
the agent’s intentions.

A solution to a multi-agent intention recognition and pro-
gression problem Prp is a policy II(Pgrp), that, at each de-
liberation cycle, selects a current step c; € C' to progress so
as to maximise some overall utility function U™ (Prp):

H(PRP) =c¢; andﬂ Il s.t. UH/ (PRP) > UH(PRP).

In general, solving a multi-agent intention recognition and
progression problem requires solving the multi-goal recogni-
tion problems Py, for each of the other agents in the en-
vironment, using the inferred goals to predict their likely ac-
tions, and then deciding how to act to maximise U T For ex-
ample, if U™ would be increased if another agent i achieves a
particular goal g, then the agent should choose actions that (at
a minimum) do not prevent ¢ achieving g while still achieving
its own goals. Conversely, if i achieving g reduces U, then
the agent may act to prevent the achievement of g, e.g., by
denying 7 some resource necessary to achieve g.

“To allow comparison with previous work, we focus on recog-
nising the achievement goals of the other agent(s). However, our ap-
proach requires only the rewards of the other agent and is insensitive
to whether the reward results from achieving a goal or maintaining
a condition.

4 Recognising Multiple Goals

In this section we present our approach to the multi-
goal recognition problem. Our approach extends recent
work on Goal Recognition as Reinforcement Learning
(GRAQL) [Amado et al., 2022] for the single goal recogni-
tion task. GRAQL represents the possible goals G in a single
goal recognition problem by a set of Q-functions {Qg}geg.s
Given a sequence of observations) of an agent’s behaviour,
the Q-functions are used to infer which reward function (i.e.,
implicit goal in the MDP formalisation) the agent is likely
to be following. Inference is based on a distance measure,
DISTANCE(S, @), to determine the degree of divergence be-
tween the observation sequence, Q = (sg, ag, $1,01,--.),
and the behaviour expected from an agent pursuing goal g.
The inferred goal g*, then, is the one with the smallest dis-
tance:

g = arg min DISTANCE(, Q) ()

geG

In what follows, we use KL divergence as the distance mea-
sure, as this was found to give good performance in [Amado
et al., 2022]. KL divergence is defined as:

KL(.Qy) = 3 malas | si)log 221 50)

2

i€|Q ﬂ.g(ai | Si) ()
where g, is a pseudo-policy where 7q(a; | s;) = 1 for each
(si,a;) € €, and 7, is a softmax policy derived from the
Q-values Q.

One possible way of extending GRAQL to multi-goal
recognition is to generate a set of Q-functions {Q s} amrep(a)
for all possible sets of current goals, and then find the multi-
goal Q-function that minimises the distance measure from
the observations. However, such a naive approach requires
2/G1 Q-functions to be trained, and rapidly becomes imprac-
tical as the set of possible goals grows. Moreover, even small
changes in the set of possible goals requires the regeneration
of many Q-functions. We therefore adopt a heuristic approach
that requires only single-goal Q-functions, in which we take
the set of inferred current goals, G’, to be those goals whose
KL divergence is within some threshold, §, of the goal with
the minimum KL divergence:

G'={geG|KLQ,Q, < Igréig KL(Q,Qz) +6} (3)

In effect, all the goals for which the sequence of observations
are within § of being optimal are inferred to be the current
goals of the agent. A potential weakness of this approach is
that, when the current goals of an agent must be pursued se-
quentially (e.g., because they must be achieved in different
parts of the environment), some of the agent’s actual current
goals may not be recognised initially. In general, the extent
to which later goals can be recognised depends on the num-
ber of actions ‘““characteristic” of the goal in the sequence of
actions observed so far. However, as noted above, in many
cases even inaccurate goal recognition that allows the correct

5The Q-functions can, for example, be learned from the goal
and the environment dynamics, or from previous traces of agent be-
haviour where the goal is known.

prediction of the next few actions is sufficient for effective
intention progression.

Our aim is therefore to infer the goal(s) an agent may be
actively pursuing (i.e., that may give rise to the next few ac-
tions), and we rely on MCTS (see Section 5) to determine
which actions (and hence which goal(s)) the agent is likely
to pursue next, given the inferred goals. Thus, rather than
using the definition of KL divergence given in Equation 2
(where KL divergence is summed over the entire observation
sequence), we use an exponential moving average of the KL
divergence which is more sensitive to recent observations.

Let KL(at, s¢,Qg4) denote the KL divergence for a single
state-action observation (s, a;) under goal g:

ma(as | st)
Tg(at | s¢)
Letn € (0, 1), and define the sequence k; (€2, Q) as:

kt(Q7 Qg) = nkt—l(Q7 Qg) + (1 - U)KL(ah St, Qg) (5)

If k; is initially set to zero for all goals, then this gives a zero-
biased moving average. To debias it, we need to divide by
(1 —n'), as in the Adam optimiser [Kingma and Ba, 2015]:

KL(Q,Qq) = ke (2,Qq)/(1 —71") (©6)

We use this as the KL divergence in Equation 3.

KL(ata Sty Qg) = WQ(Gt | St) 1Og (4’)

5 Intention Scheduling with Goal Recognition

In this section, we explain how we incorporate our multi-goal
recognition approach into a multi-agent intention scheduler.
The new scheduler, which we call I4R, is based on the state
of the art intention-aware multi-agent scheduler Iy, [Dann
et al., 2022].

Much of the recent work on multi-agent intention pro-
gression [Dann et al., 2020; Dann et al., 2021; Dann ef al.,
2022] is based on the MCTS algorithm [Browne et al., 2012].
Briefly, MCTS works by iteratively building a search tree.
Each node in the tree is evaluated by averaging the outcomes
of stochastic rollouts (i.e., possible future executions). Nodes
which have been visited less often and which have better aver-
age outcomes are favoured for expansion, yielding an asym-
metric tree where promising action sequences are analysed in
greater depth. In order to predict the behaviour of other agents
in rollouts, previous multi-agent intention schedulers based
on MCTS require a priori knowledge of the current goals of
other agents. For example, Iz uses the current goals of the
other agents to calculate a tactic set for each agent, which is
essentially a multi-goal policy for achieving all of the other
agent’s goals as quickly as possible.

In contrast, I uses the multi-goal recognition approach
described in Section 4 to infer the current goals of other
agents. However, using the inferred goals to predict the be-
haviour of other agents in rollouts is non-trivial. Irs only
has to calculate each agent’s tactic set once, as the agent’s
goals are known initially and assumed not to change during
execution (except through achievement). Calculating each
agent’s tactic set online based on inferred goals is potentially
much more computationally demanding, since the inferred
goals of other agents may change frequently.

Algorithm 1 Rollout phase for I (one other agent).
: function ROLLOUT(s)
: /I Determine single goal rollout policy for other agent, 7,
Tsingte < {mg | 9 € G}
To = AIgMAX, c, . MaXacAct Q" (s,a)

if other agent’s turn to act then
if maxaea Q@™ (s,a) < Qmin then

1
2
3
4:
5: while s is not terminal do
6
7
8 To 4= ArgmaX c. . maxacac Q" (5, a)

9: if maxgea Q™ (s,a) < Qmin then
10: Select a uniformly at random from Act
11: else
12: an~ T,
13: else
14: /l Igr’s own turn to act
15: Select a based on IgRr’s rollout policy
16: s.step(a)
return s

To address this, we use an alternative rollout approach (see
Algorithm 1), in which the single-goal policies used by the
goal recogniser are also used to predict the actions of other
agents. The rollout model assumes that the other agent will
pursue the inferred goal with the greatest Q-value, and com-
mits to that goal until its Q-values drop below a certain thresh-
old, Q.nin (indicating that the goal has either been achieved
or is no longer achievable). The agent then switches to pursu-
ing the goal that currently has the greatest Q-value, and so on.
This process repeats until there are no goals with Q-values ex-
ceeding Q.in, at which point the other agent is assumed to
pick actions uniformly at random.

In addition, IR generalises how an agent interleaves its
intentions. Previous approaches either interleave intentions
at the plan level, e.g., [Thangarajah er al., 2003; Yao er al.,
2014], or at the action level e.g., [Yao and Logan, 2016;
Dann et al., 2022]. Which approach is better depends on the
structure of the agent’s plans and the application. For ex-
ample, for goals that require moving to a particular location
in the environment, action-level interleaving is often subopti-
mal. Conversely, when actions can be interleaved effectively,
plan-level interleaving may delay or even prevent the achieve-
ment of goals. Igg can therefore be configured to interleave
an agent’s intentions at both the plan and action level. For
action-level interleaving, in the rollout phase, /g randomly
chooses an action from one of its progressible intentions (line
15 in Algorithm 1). For plan-level interleaving, line 15 ran-
domly chooses an available plan and selects actions from that
plan until the plan is complete or no longer progressible. Im-
plementing plan-level interleaving for the tree policy phase
is more challenging, as the multi-player variant of MCTS
used by Irps assumes a turn-based environment. With plan-
level interleaving, each step in the search tree is temporally-
extended, so the agents no longer take “turns” but act concur-
rently in the environment. We therefore use the single-player
version of MCTS for plan-level interleaving (as in [Yao et
al., 2014]), treating other agents as if they are part of the en-
vironment. During the tree policy phase, instead of following
a UCT-based policy [Browne et al., 2012], the other agents’
behaviour is simulated in the same manner as in the rollouts.

Goal Item Ingredients Tools Needed Craft Location

Axe Iron, stick — Toolshed
Bed Grass, plank ~ — ‘Workbench
Bridge Iron, wood — Factory
Cloth Grass Factory
Gem — Axe —

Gold — Bridge —

Plank Wood — Toolshed
Rope Grass — Toolshed
Stick Wood — ‘Workbench

Table 1: Item recipes in Craft World.

6 Evaluation

We evaluate our approach in the two-agent version of the
well-known Craft World [Andreas et al., 2017] environment
developed by Dann et al. (2022) to evaluate Iry;.

In Craft World, agents must craft or gather certain goal
items. The rules for acquiring items are summarised in Table
1. For example, to mine a gem, an agent must first acquire
an axe, which can be crafted from iron and a stick at a tool-
shed. Raw ingredients (grass, iron and wood) can be collected
directly from squares containing those resources. The start-
ing locations of all objects in the environment, including the
agents, are randomised at the start of each episode.

Agents have six possible actions: movement in the four car-
dinal directions, plus collect and craft. Actions that are cur-
rently inapplicable have no effect on the environment, e.g.,
performing collect at an empty square. We assume that ac-
tions are fully observable, i.e., agents can see the actions of
all other agents. Goal-plan trees were generated algorithmi-
cally for each goal item.

We consider 10 scenarios, listed in Table 2. As in previous
work [Dann et al., 2020; Dann et al., 2021], these are of three
types: selfish, allied and adversarial. In selfish scenarios,
agents seek to maximise achievement of their own goals. In
allied scenarios, they seek to maximise the achievement of
both agents’ goals. In adversarial scenarios, they maximise
own_goals — other_agent_goals. Goal items can be crafted
multiple times, and each successful craft is worth 1 point.

The specific set of goal items for each agent depends on
the scenario. In Table 2, the column “evaluation agent goals”
shows the set of goal items for the agent under evaluation,
“paired agent true goals” are the actual goals of the paired
agent, i.e., the other agent in the environment, and “paired
agent possible goals” are the set of possible goals given to
I k. Note that in two of the scenarios (Selfish 3 and Self-
ish 4) there is a true goal that is not included in the possible
set (indicated by an asterisk). This was done to evaluate the
performance of Iy when the assumed set of possible goals
does not include all of the paired agent’s actual goals.

We designed the goal sets and resource counts to yield in-
teractions between the agents’ plans. For example, in Selfish
1, there is insufficient iron and wood for the evaluation agent
to craft both an axe and a bridge (assuming that the paired
agent will craft an axe to mine a gem). Thus, it cannot mine
both gems and gold and must decide which to pursue.

Igr configuration. Since Craft World requires taking
many movement actions, we configured I g to use plan-level
interleaving. Unlike Amado et al. (2022), who use tabular Q-

functions for goal recognition, we use deep function approx-
imation. To obtain generalising Q-functions that do not need
to be trained separately for each scenario, we apply the DQN
algorithm [Mnih er al., 2015] across randomly generated lev-
els. For the goal recogniser, we set § = 2.5 and n = 0.95.
The Q,in parameter of the rollouts (see Algorithm 1) is set
to 0.5. For MCTS, we use o = 100, 8 = 10, ¢ = 2.5.5

Baselines. We compare /g against three baselines:

e (Q-learn: A DQN agent [Mnih et al., 2015], trained in a
single-agent version of the environment.

e Sp: Yao et al.’s (2016b) scheduler, based on single-
player Monte Carlo Tree Search.

o Irpnr: A reimplementation of Dann et al.’s (2022) state-
of-the-art multi-agent scheduler that assumes a priori
knowledge of the paired agent’s goals. We made some
small changes to the implementation to facilitate a fair
comparison with the other schedulers: the main differ-
ence is that we use deep function approximation to esti-
mate Irp’s heuristic values.

To ensure a fair comparison with Igg, we configured Iras
and Sp to use plan-level interleaving. These schedulers can
be thought of roughly as best-case and worst-case baselines
for our approach. Since I has a priori knowledge of the
paired agent’s goals, we would expect it to exceed I Rr’s per-
formance on average. On the other hand, since Sp is com-
pletely unaware of the other agent, /o ought to be able to
outperform it, provided that I5g’s goal recognition is suf-
ficiently accurate to predict some interactions between the
agents.

Paired agents. Ideally, a multi-agent scheduling approach
ought to perform well when paired with a variety of agents.
Therefore, we consider two different classes of paired agent:

o [ntention-unaware: (Q-learn and Sp. These agents sim-
ply pursue their own goals, ignoring potential interac-
tions with other agents in the environment.

o [ntention-aware: Iryr and I . These agents are aware
of other agents in the environment, and thus, when
paired, both agents in the environment (the evaluation
agent and the paired agent) are attempting to predict the
other agent’s behaviour.

All paired agents are configured to pursue the “paired agent
true goals” in Table 2.

6.1 Results

The experiment results are summarised in Tables 3, 4 and 5.
All results are averaged over 500 randomly generated task
instances, with the best results highlighted in bold.

As expected, I outperformed the intention-unaware Sp,
but performed less well than Irj,, which has a priori knowl-
edge of the paired agent’s goals. Across all 40 combinations
of scenario and paired agent, I outperformed Sp in all
cases. This clearly shows I was able to predict some in-
teractions with the paired agent, despite only being provided
with the set of the paired agent’s possible goals. As expected,

8Code is available at https://github.com/mchldann/IJCAI_GR.

https://github.com/mchldann/IJCAI_GR

Scenario Evaluation agent goals Paired agent possible goals Paired agent true goals ~ Grass Iron Wood Gem Gold
Selfish 1 Gem, gold Gem, gold Gem 2 2 2 5 4
Selfish2 Bridge, gold, rope Cloth, plank, rope, stick Plank, stick 1 2 2 0 3
Selfish 3 Bridge, gold, rope Cloth, plank Plank, stick* 1 2 2 0 3
Selfish4 Bridge, gold, rope Cloth, plank Stick* 1 2 2 0 3
Allied 1 Axe, bed Cloth, bed, gold Bed, gold 1 1 1 3 3
Allied 2 Cloth, gold, stick Cloth, gem, gold, stick Cloth, gold 1 2 2 2 2
Allied 3 Axe, bed Axe, bridge, cloth, plank Bridge, cloth, rope 2 2 3 3
rope, stick
Adv. 1 Axe, bed, gold Axe, bridge, rope Rope 4 4 4 1 1
Adv. 2 Axe, bridge, cloth, rope Cloth, gem, gold, rope Gem, gold 2 4 1 2 2
Adv. 3 Cloth, plank, rope, stick Axe, bed, bridge, cloth, rope ~ Axe, bed, bridge 3 6 3 2 2

Table 2: The 10 scenarios considered in Craft World.

IR performed less well than Iz, overall, although the dif-
ference in performance is fairly small. While there is vari-
ation across the individual results, on average, I scored
0.79 points more than Sp, but only 0.20 points less than I ;.
In other words, /¢ g achieved most of the advantages of full
intention-awareness by inferring the goals of the paired agent.

Interestingly, IR actually outperformed Irj; in 8 cases
(3 cases in each of Selfish 2, Selfish 3 and Allied I). Given
Irn’s complete knowledge of the other agent’s goals, this
may seem surprising. However, recall that, in the MCTS roll-
outs, Irps assumes that the paired agent will follow a policy
based on the conjunction of its goals, whereas I assumes
that the paired agent will follow the single-goal policy with
the largest Q-value. When paired with the @Q)-learn agent,
which actually does follow a policy based on the conjunction
of its goals, Ir s therefore performs very well: in all 10 sce-
narios, it achieved the highest score of any agent paired with
Q-learn. However, when I, is paired with agents that do
not conform as well to its rollout model, it performed less
well. The results suggest that I r’s rollout model, based on
Q-values for individual goals, is better at predicting the paired
agent’s behaviour in some settings.

Other results further support this analysis. For example,
Q-learn performs broadly the worst, but achieves the best
score in Allied 3 when paired with Irp;. The most likely
explanation for this is not that ()-learn behaved particularly

Paired agent

Q—learn SP IRIW IGR

= Q-learn 2.59 225 2.18 223
& Sp 3.52 2.33 2.36 2.42
8 Irm 4.41 3.96 3.96 3.97
Igr 4.17 3.44 3.43 3.52

2 Q-learn 247 1.88 1.81 1.86
& Sp 3.97 2.08 2.10 2.15
E Irm 4.98 3.25 3.24 3.30
Icr 4.68 4.08 4.06 4.17

2 Q-learn 2.44 1.83 1.80 1.85
& Sp 4.07 2.08 2.16 221
E IrMm 4.98 3.10 3.22 3.21
Igr 4.44 3.29 3.28 3.36

;" Q-learn 2.39 2.10 2.09 2.10
& Sp 3.49 232 2.32 232
E IrMm 5.06 4.37 4.33 4.39
Igr 3.94 3.04 3.11 2.96

Table 3: Results for the selfish scenarios (own_score).

intelligently, but rather that it behaved predictably for Iy,
allowing Irps to assist it better. Conversely, Q-learn per-
formed very poorly against I, in the adversarial scenarios
(especially in Adv. 3), probably because I, could anticipate
its behaviour and so obstruct it effectively.

The performance of Igpr in scenarios Selfish 2 — Selfish
4 illustrates the impact of incorrect assumptions about the
paired agent’s possible goals. In Selfish 2, the assumed possi-
ble goals (cloth, plank, rope, stick) include the paired agent’s
true goals (plank, stick). In Selfish 3, however, one of the true
goals (stick) is not included in the possible goal set. IR still
performed well here, surpassing Ir s, but by a much smaller
margin than in Selfish 2. In Selfish 4, the assumed possible

Faired agent

Q-learn Sp Irm Icr

— Q-learn 0.98 134 215 198
B Sp 126 108 158 2.00
2 Irum 1.95 233 245 265
Icr 1.81 238 254 266

o Q-learn 2.64 3.27 3.65 3.30
B Sp 3.26 329 340 343
2 Inum 3.89 392 392 390
Icr 3.42 371 379 379

e Q-learn 3.38 3.64 3.94 3.58
B Sp 3.20 317 318 314
2 Inum 3.91 391 387 383
Icr 3.61 363 350 343

Table 4: Results for the allied scenarios.
own_score + other_agent_score.

The score reported is

Faired agent

Q-learn Sp Irm Igr

_ Q-learn -0.99 -1.52 -1.49 -1.49
> Sp 0.23 -0.22 -0.22 -0.22
2 Irnm 1.14 0.53 0.57 0.56
Icr 1.04 051 051 050

o Qlearn 0.97 0.58 0.32 0.46
o Sp 1.33 0.91 0.77 0.59
E IrM 2.09 1.83 1.62 1.29
Icr 2.00 1.81 1.59 1.23

- Q-learn 2.30 1.57 -0.09 1.25
- Sp 2.69 205 170 1.92
2 Irum 3.97 2.92 1.93 2.44
Icr 3.77 2.88 1.82 2.26

Table 5: Results for the adversarial scenarios. The score reported is
own_score — other_agent_score.

KL Divergence

=Axe

Bridge
= Cloth
=Rope

=
)

ad
<]
]
e

Paired agent
Grass

Iron

‘Wood
Factory
Toolshed
‘Workbench

—Time I E:b

}—

Figure 1: A partial trajectory from the Adv. 3 scenario, showing how the KL divergences from Igr’s goal recogniser evolved over time.
Some details of the Craft World states (such as the position of the evaluation agent) have been omitted to aid readability.

goals no longer include any of the true goals. Unsurprisingly,
IR performs less well than I, in this case, although it still
outperforms the intention-unaware Sp. This is likely because
one of the possible goals (plank) has a similar plan to the true
goal (stick). Iggr could therefore anticipate that the paired
agent was competing for wood, but could not predict all of its
movements accurately.

Lastly, note that I performed well in scenarios with > 4
possible goals and > 2 true goals, indicating that its goal
recogniser is capable of handling multiple goals.

Goal Recognition Example. To illustrate the operation of
IgRr’s goal recogniser, we provide a partial trajectory in
Figure 1, showing how the KL divergences evolve over time.
The paired agent (black sprite, initially located near the
bottom-left of the world) moves upwards, stopping to col-
lect a piece of iron at step 2, then later collecting a piece of
wood at step 7. Out of the set of possible goals (axe, bed,
bridge, cloth, rope), iron is only required for axes and bridges,
so when the agent collects iron, the goal recogniser becomes
confident that it is not pursuing beds, cloth or rope. The di-
vergences for cloth and rope reduce over steps 3 and 4, as the
agent moves closer to a piece of grass (which these items re-
quire), but increase again when the agent skips over the grass
at step 5. While beds also require grass, they require wood
too, and it is plausible from the trajectory that the agent has
decided to collect wood before grass; hence the bed diver-
gence continues to decline. The small increase in divergence
for axe at step 1 is more difficult to explain (as the agent has
moved to a piece of iron, which axes require), and may reflect
a quirk in the deep RL policy that the goal recogniser uses for
axes. This illustrates the usefulness of the threshold, J, in
our goal recognition approach: for 6 = 2.5 (as in the experi-
ments), the axe divergence remains just within the threshold,
so the goal recogniser still considers it to be an inferred goal
at step 1.

Computational Cost. At each deliberation cycle, the time
that Isr spends on goal recogition is negligible (less than
a millisecond) compared to the time spent on MCTS roll-
outs (around 4.5 seconds on a Ryzen 9 5900X, with a =
100, 8 = 10). The most expensive operation, by far, is the
neural network forward pass in the computation of the roll-

out policy, meaning that the complexity of the algorithm is
O(ap). Since Igr and the reimplemented Iry; both use
deep learned rollout policies, their computational costs are
near-identical.

7 Related Work

The problems we address in this paper overlap with three key
areas of research on agent behaviour: Ad Hoc teamwork, goal
recognition, and counterplanning.

In Ad Hoc teamwork, agents try to collaborate efficiently
and robustly with unknown agents without any explicit com-
munication protocol [Stone er al., 2013]. Research on in this
area has yielded a number of techniques, some of which also
include inferring the task or goal currently being pursued by
other agents [Mirsky et al., 2022]. Unlike our work, these
techniques all assume that agents are either wholly cooper-
ative, or have no conflicting objectives. However, we make
no such assumptions, and our experiments show that our ap-
proach performs well, even when the agents involved are ad-
versarial.

In goal recognition, the agent’s behaviour consists of a se-
quence of actions performed by the agent or snapshots of the
current environment state or both. The sequence may be in-
complete (e.g., observations may not include some actions,
or state descriptions may be only partial) and/or noisy (e.g.,
incorrect action labels or fluents in the state descriptions).
Goal recognition approaches often encode the agent prefer-
ences in an exhaustive enumeration of the potential goals an
agent can be pursuing, or as a plan library/goal-plan tree. The
former representation is common in goal recognition as plan-
ning [Ramirez and Geffner, 2009; Meneguzzi and Pereira,
2021], whereas the latter is common in plan library-based
approaches to goal recognition [Avrahami-Zilberbrand and
Kaminka, 2005; Mirsky et al., 2019]. In contrast, in Igg the
preferences of the observed agent are encoded as Q-functions
rather than explicit goals or GPTs. This can be seen as closer
to the GPT approach, but with potentially greater coverage of
the action space. While we have not evaluated I g in sce-
narios with partial observability or noisy observations, goal
recognition as reinforcement learning has been shown to be
robust to partial and noisy observation sequences [Amado

et al., 2022], which suggests Iz may be similarly robust.
However, evaluating this is future work.

Some approaches to activity and plan recognition based
on hierarchical plan libraries have considered the problem
of agents with multiple goals. For example, approaches
to mixed activity and plan recognition directly from sen-
sor data [Hu and Yang, 2008; Hu et al., 2008] have used
skip-chain conditional random fields to successfully deal with
agents executing plans in parallel towards different goals.
These approaches rely on learning not only the likelihood
of observations, but also the way in which goals may inter-
act. In contrast, I g learns policies associated with each goal
through a reward function. It is not clear how we could con-
vert between the two formalisms to allow a direct compari-
son. Similarly, approaches based on grammar parsing [Geib
and Goldman, 2009] developed to recognise multiple con-
current goals require a precondition-free goal-plan tree rep-
resentation of each goal, augmented with probabilities about
agent choices. This is significantly more information than
our approach requires for each potential goal of an agent,
which makes a direct comparison difficult. However, more
recent approaches to learn agent preferences over specific
plans [Amado et al., 2023] may allow such a comparison in
the future.

Finally, the adversarial setting, in which an agent tries to
prevent another agent achieve its goals, overlaps with recent
work in counterplanning [Pozanco et al., 2018]. Applying
such techniques directly in our scheduler would be a non-
trivial extension, and we leave this for future work.

8 Discussion and Conclusion

In this paper, we introduced the multi-agent intention recog-
nition and progression problem, that is, the problem of iden-
tifying the goals currently being pursued by other agents at
runtime to allow the more effective scheduling of an agent’s
intentions. Our key contributions are threefold. First, we for-
mally define the multi-agent intention recognition and pro-
gression problem, connecting the intention scheduling prob-
lem with that of goal recognition. As part of our formalisa-
tion, we expand the definition of goal recognition problems
to situations in which an agent may pursue multiple goals
rather than a single goal. Second, we extend reinforcement
learning-based goal recognition techniques to the multi-goal
recognition problem. Third, we present I g, an approach to
intention scheduling that uses the output of a goal recogniser
to predict the actions that may be taken by other agents, al-
lowing an IR agent to choose its own actions so as to max-
imise its utility. We show experimentally that I agents per-
form as well (and sometimes better) as agents which know the
goals of other agents a priori.

Acknowledgements

For the purpose of open access, the authors have applied a
Creative Commons Attribution (CC BY) licence to any Au-
thor Accepted Manuscript version arising from this submis-
sion.

References

[Amado er al., 2022] Leonardo Amado, Reuth Mirsky, and
Felipe Meneguzzi. Goal recognition as reinforcement
learning. In Proceedings of the 36th AAAI Conference
on Artificial Intelligence, pages 9644-9651. AAAI Press,
2022.

[Amado et al., 2023] Leonardo R. Amado, Ramon F
Pereira, and Felipe Meneguzzi. Robust Neuro-Symbolic
Goal and Plan Recognition. In Proceedings of the 37th
AAAI Conference on Artificial Intelligence. AAAI Press,
2023.

[Andreas et al., 2017] Jacob Andreas, Dan Klein, and
Sergey Levine. Modular Multitask Reinforcement Learn-
ing with Policy Sketches. In Proceedings of the 34th In-
ternational Conference on Machine Learning, volume 70,

pages 166—-175. PMLR, 2017.

[Avrahami-Zilberbrand and Kaminka, 2005] Dorit
Avrahami-Zilberbrand and Gal A. Kaminka. Fast
and Complete Symbolic Plan Recognition. In Pro-
ceedings of the 19th International Joint Conference on
Artificial Intelligence, pages 653-658. Professional Book
Center, 2005.

[Browne et al., 2012] Cameron Browne, Edward Jack Pow-
ley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowl-
ing, Philipp Rohlfshagen, Stephen Tavener, Diego Perez
Liebana, Spyridon Samothrakis, and Simon Colton. A Sur-
vey of Monte Carlo Tree Search Methods. IEEE Trans-
actions on Computational Intelligence andAl in games,
4(1):1-43, 2012.

[Dann et al., 2020] Michael Dann, John Thangarajah, Yuan
Yao, and Brian Logan. Intention-Aware Multiagent
Scheduling. In Proceedings of the 19th International Con-
ference on Autonomous Agents and Multiagent Systems,

pages 285-293, 2020.

[Dann ez al., 2021] Michael Dann, Yuan Yao, Brian Logan,
and John Thangarajah. Multi-Agent Intention Progression
with Black Box Agents. In Proceedings of the 30th In-
ternational Joint Conference on Artificial Intelligence. 1J-
CAI 2021.

[Dann et al., 2022] Michael Dann, Yuan Yao, Natasha
Alechina, Brian Logan, and John Thangarajah. Multi-
Agent Intention Progression with Reward Machines. In

Proceedings of the 31st International Joint Conference on
Artificial Intelligence, pages 215-222. 1JCAI, 2022.

[de Silva er al., 2020] Lavindra de Silva, Felipe Meneguzzi,
and Brian Logan. BDI Agent Architectures: A Survey. In
Proceedings of the 29th International Joint Conference on
Artificial Intelligence. 1JCAI, 2020.

[Geib and Goldman, 2009] Christopher W. Geib and
Robert P. Goldman. A probabilistic plan recognition algo-
rithm based on plan tree grammars. Artificial Intelligence,
173(11):1101-1132, 2009.

[Hu and Yang, 2008] Derek H. Hu and Qiang Yang. CIGAR:
Concurrent and Interleaving Goal and Activity Recogni-
tion. In Proceedings of the 23rd AAAI Conference on Ar-
tificial Intelligence, pages 1363—1368. AAAI Press, 2008.

[Hu et al., 2008] Derek H. Hu, Sinno J. Pan, Vincent W.
Zheng, Nathan N. Liu, and Qiang Yang. Real world ac-
tivity recognition with multiple goals. In Proceedings of

the 10th International Conference on Ubiquitous Comput-
ing, pages 30-39. ACM, 2008.

[Kingma and Ba, 2015] Diederik P. Kingma and Jimmy Ba.
Adam: A Method for Stochastic Optimization. In Pro-
ceedings of the 3rd International Conference on Learning
Representations, 2015.

[Logan et al., 2017] Brian Logan, John Thangarajah, and
Neil Yorke-Smith. Progressing Intention Progresson: A
Call for a Goal-Plan Tree Contest. In Proceedings of the
16th International Conference on Autonomous Agents and
Multiagent Systems, pages 768-772. IFAAMAS, 2017.

[Masters and Vered, 2021] Peta Masters and Mor Vered.
What’s the Context? Implicit and Explicit Assumptions
in Model-Based Goal Recognition. In Proceedings of the
30th International Joint Conference on Artificial Intelli-
gence, pages 4516-4523. IJCAI, 2021.

[Meneguzzi and Pereira, 2021] Felipe Meneguzzi and Ra-
mon F. Pereira. A Survey on Goal Recognition as Plan-
ning. In Proceedings of the 30th International Joint Con-
ference on Artificial Intelligence. IICAI, 2021.

[Mirsky et al., 2019] Reuth Mirsky, Kobi Gal, Roni Stern,
and Meir Kalech. Goal and Plan Recognition Design
for Plan Libraries. ACM Trans. Intell. Syst. Technol.,
10(2):14:1-14:23, 2019.

[Mirsky et al., 2022] Reuth Mirsky, Ignacio Carlucho, Ar-
rasy Rahman, Elliot Fosong, William Macke, Mohan Srid-
haran, Peter Stone, and Stefano V. Albrecht. A Survey
of Ad Hoc Teamwork Research. In Procceddings of the
19th European Conference on Multi-Agent Systems, vol-
ume 13442, pages 275-293. Springer, 2022.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg, and Demis Hass-
abis. Human-Level Control Through Deep Reinforcement
Learning. Nature, 518(7540):529-533, 2015.

[Pozanco et al., 2018] Alberto Pozanco, Yolanda E-Martin,
Susana Ferndndez, and Daniel Borrajo. Counterplanning
using Goal Recognition and Landmarks. In Proceedings
of the 27th International Joint Conference on Artificial In-
telligence, pages 4808-4814. ijcai.org, 2018.

[Ramirez and Geffner, 2009] Miquel Ramirez and Hector
Geffner. Plan Recognition as Planning. In Proceedings
of the 21st International Joint Conference on Artificial In-

telligence, pages 1778-1783, 2009.

[Ramirez and Geffner, 2010] Miguel Ramirez and Hector
Geftner. Probabilistic plan recognition using off-the-shelf
classical planners. In Proceedings of the 24th AAAI Con-
ference on Artificial Intelligence, pages 1121-1126, 2010.

[Rao and Georgeff, 1992] Anand S. Rao and Michael P.
Georgeff. An Abstract Architecture for Rational Agents.
In Proceedings of the 3rd International Conference on
Principles of Knowledge Representation and Reasoning,
pages 439—-449. Morgan Kaufmann, 1992.

[Sohrabi et al., 2016] Shirin Sohrabi, Anton V. Riabov, and
Octavian Udrea. Plan recognition as planning revisited. In
Proceedings of the 25th International Joint Conference on
Artificial Intelligence, pages 3258-3264, 2016.

[Stone et al., 2013] Peter Stone, Gal A. Kaminka, Sarit
Kraus, Jeffrey S. Rosenschein, and Noa Agmon. Teaching
and leading an ad hoc teammate: Collaboration without
pre-coordination. Artificial Intelligence, 203:35-65, 2013.

[Thangarajah and Padgham, 2011] John Thangarajah and
Lin Padgham. Computationally Effective Reasoning
About Goal Interactions. Journal of Automated Reason-
ing, 47(1):17-56, 2011.

[Thangarajah et al., 2003] John Thangarajah, Lin Padgham,
and Michael Winikoff. Detecting & Avoiding Interference
Between Goals in Intelligent Agents. In Proceedings of
the 18th International Joint Conference on Artificial Intel-
ligence, pages 721-726. Morgan Kaufmann, 2003.

[Waters er al., 2014] Max Waters, Lin Padgham, and Sebas-
tian Sardina. Evaluating Coverage Based Intention Selec-
tion. In Proceedings of the 13th International Conference
on Autonomous Agents and Multi-agent Systems, pages

957-964. IFAAMAS, 2014.

[Waters er al., 2015] Max Waters, Lin Padgham, and Sebas-
tian Sardifia. Improving domain-independent intention se-
lection in BDI systems. Autonomous Agents and Multi-
Agent Systems, 29(4):683-717, 2015.

[Wu et al., 2023] Di Wu, Yuan Yao, Natasha Alechina, Brian
Logan, and John Thangarajah. Intention Progression with
Maintenance Goals. In Proceedings of the 22nd Interna-

tional Conference on Autonomous Agents and Multiagent
Systems, pages 2400-2402. IFAAMAS, 2023.

[Yao and Logan, 2016] Yuan Yao and Brian Logan. Action-
Level Intention Selection for BDI Agents. In Proceed-
ings of the 15th International Conference on Autonomous
Agents and Multiagent Systems, pages 1227-1236. IFAA-
MAS, 2016.

[Yao et al.,2014] Yuan Yao, Brian Logan, and John
Thangarajah. Sp-mcts-based intention scheduling for bdi
agents. In Proceedings of the 21st European Conference
on Artificial Intelligence, pages 1133-1134. IOS Press,
2014.

[Yao et al., 2016a] Yuan Yao, Lavindra de Silva, and Brian
Logan. Reasoning about the Executability of Goal-Plan
Trees. In Proceedings of the 4th International Work-
shop on Engineering Multi-Agent Systems, pages 181—
196, 2016.

[Yao et al., 2016b] Yuan Yao, Brian Logan, and John
Thangarajah. Robust Execution of BDI Agent Programs
by Exploiting Synergies Between Intentions. In Proceed-
ings of the 30th AAAI Conference on Artificial Intelligence,
pages 2558-2565. AAAI Press, 2016.

	Introduction
	BDI Agents
	Multi-Agent Intention Recognition and Progression
	Recognising Multiple Goals
	Intention Scheduling with Goal Recognition
	Evaluation
	Results

	Related Work
	Discussion and Conclusion

